Sample records for unit lung volume

  1. Lung volume changes during cleaning of closed endotracheal suction catheters: a randomized crossover study using electrical impedance tomography.

    PubMed

    Corley, Amanda; Sharpe, Nicola; Caruana, Lawrence R; Spooner, Amy J; Fraser, John F

    2014-04-01

    Airway suctioning in mechanically ventilated patients is required to maintain airway patency. Closed suction catheters (CSCs) minimize lung volume loss during suctioning but require cleaning post-suction. Despite their widespread use, there is no published evidence examining lung volumes during CSC cleaning. The study objectives were to quantify lung volume changes during CSC cleaning and to determine whether these changes were preventable using a CSC with a valve in situ between the airway and catheter cleaning chamber. This prospective randomized crossover study was conducted in a metropolitan tertiary ICU. Ten patients mechanically ventilated via volume-controlled synchronized intermittent mandatory ventilation (SIMV-VC) and requiring manual hyperinflation (MHI) were included in this study. CSC cleaning was performed using 2 different brands of CSC (one with a valve [Ballard Trach Care 72, Kimberly-Clark, Roswell, Georgia] and one without [Portex Steri-Cath DL, Smiths Medical, Dublin, Ohio]). The maneuvers were performed during both SIMV-VC and MHI. Lung volume change was measured via impedance change using electrical impedance tomography. A mixed model was used to compare the estimated means. During cleaning of the valveless CSC, significant decreases in lung impedance occurred during MHI (-2563 impedance units, 95% CI 2213-2913, P < .001), and significant increases in lung impedance occurred during SIMV (762 impedance units, 95% CI 452-1072, P < .001). In contrast, cleaning of the CSC with a valve in situ resulted in non-significant lung volume changes and maintenance of normal ventilation during MHI and SIMV-VC, respectively (188 impedance units, 95% CI -136 to 511, P = .22; and 22 impedance units, 95% CI -342 to 299, P = .89). When there is no valve between the airway and suction catheter, cleaning of the CSC results in significant derangements in lung volume. Therefore, the presence of such a valve should be considered essential in preserving lung volumes and uninterrupted ventilation in mechanically ventilated patients.

  2. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  3. Effect of body position on respiratory system volumes in anesthetized red-tailed hawks (Buteo jamaicensis) as measured via computed tomography.

    PubMed

    Malka, Shachar; Hawkins, Michelle G; Jones, James H; Pascoe, Peter J; Kass, Philip H; Wisner, Erik R

    2009-09-01

    To determine the effects of body position on lung and air-sac volumes in anesthetized and spontaneously breathing red-tailed hawks (Buteo jamaicensis). 6 adult red-tailed hawks (sex unknown). A crossover study design was used for quantitative estimation of lung and air-sac volumes in anesthetized hawks in 3 body positions: dorsal, right lateral, and sternal recumbency. Lung volume, lung density, and air-sac volume were calculated from helical computed tomographic (CT) images by use of software designed for volumetric analysis of CT data. Effects of body position were compared by use of repeated-measures ANOVA and a paired Student t test. Results for all pairs of body positions were significantly different from each other. Mean +/- SD lung density was lowest when hawks were in sternal recumbency (-677 +/- 28 CT units), followed by right lateral (-647 +/- 23 CT units) and dorsal (-630 +/- 19 CT units) recumbency. Mean lung volume was largest in sternal recumbency (28.6 +/- 1.5 mL), followed by right lateral (27.6 +/- 1.7 mL) and dorsal (27.0 +/- 1.5 mL) recumbency. Mean partial air-sac volume was largest in sternal recumbency (27.0 +/- 19.3 mL), followed by right lateral (21.9 +/- 16.1 mL) and dorsal (19.3 +/- 16.9 mL) recumbency. In anesthetized red-tailed hawks, positioning in sternal recumbency resulted in the greatest lung and air-sac volumes and lowest lung density, compared with positioning in right lateral and dorsal recumbency. Additional studies are necessary to determine the physiologic effects of body position on the avian respiratory system.

  4. Cough Augmentation Techniques in the Critically Ill: A Canadian National Survey.

    PubMed

    Rose, Louise; Adhikari, Neill K; Poon, Joseph; Leasa, David; McKim, Douglas A

    2016-10-01

    Critically ill mechanically ventilated patients experience impaired airway clearance due to ineffective cough and impaired secretion mobilization. Cough augmentation techniques, including mechanical insufflation-exsufflation (MI-E), manually assisted cough, and lung volume recruitment, improve cough efficiency. Our objective was to describe use, indications, contraindications, interfaces, settings, complications, and barriers to use across Canada. An e-mail survey was sent to nominated local survey champions in eligible Canadian units (ICUs, weaning centers, and intermediate care units) with 4 telephone/e-mail reminders. The survey response rate was 157 of 238 (66%); 78 of 157 units (50%) used cough augmentation, with 50 (64%) using MI-E, 53 (68%) using manually assisted cough, and 62 (79%) using lung volume recruitment. Secretion clearance was the most common indication (MI-E, 92%; manually assisted cough, 88%; lung volume recruitment, 76%), although the most common units (44%) used it <50% of the time. Use during weaning from invasive (MI-E, 21%; manually assisted cough, 39%; lung volume recruitment, 3%) and noninvasive ventilation (MI-E, 21%; manually assisted cough, 33%; lung volume recruitment, 21%) was infrequent. The most common diagnoses were neuromuscular disease (97%) and spinal cord injury (83%). Pneumothorax was the most frequently identified absolute contraindication for MI-E (93%) and lung volume recruitment (83%); rib fracture was most frequently identified for manually assisted cough (69%). MI-E mean inspiratory pressure was 31 cm H2O, and expiratory pressure was -32 cm H2O. Mucus plugging requiring tracheostomy inner change was the most frequent complication for MI-E (23%), chest pain for manually assisted cough (36%), and hypotension for lung volume recruitment (17%). The most commonly cited barriers were lack of expertise (70%), knowledge (65%), and resources (52%). We found moderate adoption of cough augmentation techniques, particularly for secretion management. Lack of expertise and knowledge are potentially modifiable barriers addressed with educational interventions. Copyright © 2016 by Daedalus Enterprises.

  5. TU-F-CAMPUS-J-01: Dosimetric Effects of HU Changes During the Course of Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, C; Yin, L; Ainsley, C

    2015-06-15

    Purpose: To characterize the changes in Hounsfield unit (HU) in lung radiotherapy with proton beams during the course of treatment and to study the effect on the proton plan dose distribution. Methods: Twenty consecutive patients with non-small cell lung cancer treated with proton radiotherapy who underwent multiple CT scans including the planning CT and weekly verification CTs were studied. HU histograms were computed for irradiated lung volumes in beam paths for all scans using the same treatment plan. Histograms for un-irradiated lung volume were used as control to characterize inter-scan variations. HU statistics were calculated for both irradiated and un-irradiatedmore » lung volumes for each patient scan. Further, multiple CT scans based on the same planning CT were generated by replacing the HU of the lung based on the verification CT scans HU values. Using the same beam arrangement, we created plans for each of the altered CT scans to study the dosimetric effect using the dose volume histogram. Results: Lung HU decreased for irradiated lung volume during the course of radiotherapy. The magnitude of this change increased with total irradiation dose. On average, HU changed by −53.8 in the irradiated volume. This change resulted in less than 0.5mm of beam overshoot in tissue for every 1cm beam traversed in the irradiated lung. The dose modification is about +3% for the lung, and less than +1% for the primary tumor. Conclusion: HU of the lung decrease throughout the course of radiation therapy. This change results in a beam overshoot (e.g. 3mm for 6cm of lung traversed) and causes a small dose modification in the overall plan. However, this overshoot does not affect the quality of plans since the margins used in planning, based on proton range uncertainty, are greater. HU needs to change by 150 units before re-planning is warranted.« less

  6. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    PubMed Central

    Stein, Jill M.; Walkup, Laura L.; Brody, Alan S.; Fleck, Robert J.

    2016-01-01

    Background The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. Objective To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. Materials and methods We conducted a retrospective query of normal CT chest examinations in children ages 0–7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. Results We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42±27 months). Lung volume ranged 0.10–1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as −380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately −650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of −860 HU as age and lung volume increased. Conclusion Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. PMID:27576458

  7. Low-dose CT for quantitative analysis in acute respiratory distress syndrome

    DTIC Science & Technology

    2013-08-31

    noise of scans performed at 140, 60, 15 and 7.5 mAs corresponded to 10, 16, 38 and 74 Hounsfield Units , respectively. Conclusions: A reduction of...slice of a series, total lung volume, total lung tissue mass and frequency distribution of lung CT numbers expressed in Hounsfield Units (HU) were...tomography; HU: Hounsfield units ; CTDIvol: volumetric computed tomography dose index; DLP: dose length product; E: effective dose; SD: standard deviation

  8. Sub-Volumetric Classification and Visualization of Emphysema Using a Multi-Threshold Method and Neural Network

    NASA Astrophysics Data System (ADS)

    Tan, Kok Liang; Tanaka, Toshiyuki; Nakamura, Hidetoshi; Shirahata, Toru; Sugiura, Hiroaki

    Chronic Obstructive Pulmonary Disease is a disease in which the airways and tiny air sacs (alveoli) inside the lung are partially obstructed or destroyed. Emphysema is what occurs as more and more of the walls between air sacs get destroyed. The goal of this paper is to produce a more practical emphysema-quantification algorithm that has higher correlation with the parameters of pulmonary function tests compared to classical methods. The use of the threshold range from approximately -900 Hounsfield Unit to -990 Hounsfield Unit for extracting emphysema from CT has been reported in many papers. From our experiments, we realize that a threshold which is optimal for a particular CT data set might not be optimal for other CT data sets due to the subtle radiographic variations in the CT images. Consequently, we propose a multi-threshold method that utilizes ten thresholds between and including -900 Hounsfield Unit and -990 Hounsfield Unit for identifying the different potential emphysematous regions in the lung. Subsequently, we divide the lung into eight sub-volumes. From each sub-volume, we calculate the ratio of the voxels with the intensity below a certain threshold. The respective ratios of the voxels below the ten thresholds are employed as the features for classifying the sub-volumes into four emphysema severity classes. Neural network is used as the classifier. The neural network is trained using 80 training sub-volumes. The performance of the classifier is assessed by classifying 248 test sub-volumes of the lung obtained from 31 subjects. Actual diagnoses of the sub-volumes are hand-annotated and consensus-classified by radiologists. The four-class classification accuracy of the proposed method is 89.82%. The sub-volumetric classification results produced in this study encompass not only the information of emphysema severity but also the distribution of emphysema severity from the top to the bottom of the lung. We hypothesize that besides emphysema severity, the distribution of emphysema severity in the lung also plays an important role in the assessment of the overall functionality of the lung. We confirm our hypothesis by showing that the proposed sub-volumetric classification results correlate with the parameters of pulmonary function tests better than classical methods. We also visualize emphysema using a technique called the transparent lung model.

  9. A new approach to assess COPD by identifying lung function break-points

    PubMed Central

    Eriksson, Göran; Jarenbäck, Linnea; Peterson, Stefan; Ankerst, Jaro; Bjermer, Leif; Tufvesson, Ellen

    2015-01-01

    Purpose COPD is a progressive disease, which can take different routes, leading to great heterogeneity. The aim of the post-hoc analysis reported here was to perform continuous analyses of advanced lung function measurements, using linear and nonlinear regressions. Patients and methods Fifty-one COPD patients with mild to very severe disease (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV) and 41 healthy smokers were investigated post-bronchodilation by flow-volume spirometry, body plethysmography, diffusion capacity testing, and impulse oscillometry. The relationship between COPD severity, based on forced expiratory volume in 1 second (FEV1), and different lung function parameters was analyzed by flexible nonparametric method, linear regression, and segmented linear regression with break-points. Results Most lung function parameters were nonlinear in relation to spirometric severity. Parameters related to volume (residual volume, functional residual capacity, total lung capacity, diffusion capacity [diffusion capacity of the lung for carbon monoxide], diffusion capacity of the lung for carbon monoxide/alveolar volume) and reactance (reactance area and reactance at 5Hz) were segmented with break-points at 60%–70% of FEV1. FEV1/forced vital capacity (FVC) and resonance frequency had break-points around 80% of FEV1, while many resistance parameters had break-points below 40%. The slopes in percent predicted differed; resistance at 5 Hz minus resistance at 20 Hz had a linear slope change of −5.3 per unit FEV1, while residual volume had no slope change above and −3.3 change per unit FEV1 below its break-point of 61%. Conclusion Continuous analyses of different lung function parameters over the spirometric COPD severity range gave valuable information additional to categorical analyses. Parameters related to volume, diffusion capacity, and reactance showed break-points around 65% of FEV1, indicating that air trapping starts to dominate in moderate COPD (FEV1 =50%–80%). This may have an impact on the patient’s management plan and selection of patients and/or outcomes in clinical research. PMID:26508849

  10. Relationship between linear and nonlinear dynamics of heart rate and impairment of lung function in COPD patients.

    PubMed

    Mazzuco, Adriana; Medeiros, Wladimir Musetti; Sperling, Milena Pelosi Rizk; de Souza, Aline Soares; Alencar, Maria Clara Noman; Arbex, Flávio Ferlin; Neder, José Alberto; Arena, Ross; Borghi-Silva, Audrey

    2015-01-01

    In chronic obstructive pulmonary disease (COPD), functional and structural impairment of lung function can negatively impact heart rate variability (HRV); however, it is unknown if static lung volumes and lung diffusion capacity negatively impacts HRV responses. We investigated whether impairment of static lung volumes and lung diffusion capacity could be related to HRV indices in patients with moderate to severe COPD. Sixteen sedentary males with COPD were enrolled in this study. Resting blood gases, static lung volumes, and lung diffusion capacity for carbon monoxide (DLCO) were measured. The RR interval (RRi) was registered in the supine, standing, and seated positions (10 minutes each) and during 4 minutes of a respiratory sinus arrhythmia maneuver (M-RSA). Delta changes (Δsupine-standing and Δsupine-M-RSA) of the standard deviation of normal RRi, low frequency (LF, normalized units [nu]) and high frequency (HF [nu]), SD1, SD2, alpha1, alpha2, and approximate entropy (ApEn) indices were calculated. HF, LF, SD1, SD2, and alpha1 deltas significantly correlated with forced expiratory volume in 1 second, DLCO, airway resistance, residual volume, inspiratory capacity/total lung capacity ratio, and residual volume/total lung capacity ratio. Significant and moderate associations were also observed between LF/HF ratio versus total gas volume (%), r=0.53; LF/HF ratio versus residual volume, %, r=0.52; and HF versus total gas volume (%), r=-0.53 (P<0.05). Linear regression analysis revealed that ΔRRi supine-M-RSA was independently related to DLCO (r=-0.77, r (2)=0.43, P<0.05). Responses of HRV indices were more prominent during M-RSA in moderate to severe COPD. Moreover, greater lung function impairment was related to poorer heart rate dynamics. Finally, impaired lung diffusion capacity was related to an altered parasympathetic response in these patients.

  11. Lung Quality and Utilization in Controlled Donation after Circulatory Determination of Death Donors within the United States

    PubMed Central

    Mooney, Joshua J; Hedlin, Haley; Mohabir, Paul K; Vazquez, Rodrigo; Nguyen, John; Ha, Richard; Chiu, Peter; Patel, Kapilkumar; Zamora, Martin R.; Weill, David; Nicolls, Mark R; Dhillon, Gundeep S

    2016-01-01

    While controlled donation after circulatory determination of death (cDCDD) donors could increase the supply of donor lungs within the United States, the yield of lungs from cDCDD donors remain low compared to donation after neurologic determination of death (DNDD) donors. To explore the reason for low lung yield from cDCDD donors, Scientific Registry of Transplant Recipient data were used to assess the impact of donor lung quality on cDCDD lung utilization by fitting a logistic regression model. The relationship between center volume and cDCDD use was assessed and distance between center and donor hospital was calculated by cDCDD status. Recipient survival was compared using a multivariable Cox regression model. Lung utilization was 2.1% for cDCDD donors and 21.4% for DNDD donors. Being a cDCDD donor decreased lung donation (adjusted OR 0.101, CI 0.085–0.120). A minority of centers have performed cDCDD transplant with higher volume centers generally performing more cDCDD transplants. There was no difference in center to donor distance or recipient survival (adjusted HR 1.03, CI 0.78–1.37) between cDCDD and DNDD transplants. cDCDD lungs are underutilized compared to DNDD lungs after adjusting for lung quality. Increasing transplant center expertise and commitment to cDCDD lung procurement is needed to improve utilization. PMID:26844673

  12. Exponential analysis of the lung pressure-volume curve in patients with chronic pigeon-breeder's lung.

    PubMed

    Sansores, R; Perez-Padilla, R; Paré, P D; Selman, M

    1992-05-01

    Pigeon-breeder's lung (PBL) is extremely common in Mexico City and often progresses to irreversible pulmonary fibrosis. The exponential analysis of the lung pressure-volume (PV) curve (V = A - Be-kp) has been suggested as a method to separate the lung restriction caused by inflammation from that caused by pulmonary fibrosis; a significantly decreased value for the exponential constant, k, suggests a change in the mechanical properties of the functioning lung parenchyma, while a normal value accompanied by restriction suggests subtraction of lung units without a change in the mechanical properties of the functioning units. We measured lung volumes and static PV curves in 29 patients who had persistent lung restriction following a biopsy-proven diagnosis of PBL. Mean values in the 29 subjects were as follows: age, 43 +/- 13 years; TLC, 61 +/- 15 percent of predicted; VC, 46 +/- 19 percent of predicted; and k, 55 +/- 17 percent of predicted. Twenty-four of the 29 patients had values for k that were below the 95 percent confidence level, and five had "normal" values. There was no difference in TLC and VC (percent of predicted) between those with or without a decreased value for k. Four of five patients with a normal value for k improved subsequent to diagnosis, while only one of 21 patients with a decreased k improved. We conclude that increased lung elasticity manifested by a low value for k is common in patients with chronic PBL. These results support the observation of frequent irreversible lung fibrosis in these patients. Measurements of k could prove a good prognostic indicator at the time of initial diagnosis.

  13. Distribution of extravascular fluid volumes in isolated perfused lungs measured with H215O.

    PubMed Central

    Jones, T; Jones, H A; Rhodes, C G; Buckingham, P D; Hughes, J M

    1976-01-01

    The distributions per unit volume of extravascular water (EVLW), blood volume, and blood flow were measured in isolated perfused vertical dog lungs. A steady-state tracer technique was employed using oxygen-15, carbon-11, and nitrogen-13 isotopes and external scintillation counting of the 511-KeV annihilation radiation common to all three radionuclides. EVLW, and blood volume and flow increased from apex to base in all preparations, but the gradient of increasing flow exceeded that for blood and EVLW volumes. The regional distributions of EVLW and blood volume were almost identical. With increasing edema, lower-zone EVLW increased slightly relative to that in the upper zone. There was no change in the distribution of blood volume or flow until gross edema (100% wt gain) occurred when lower zone values were reduced. In four lungs the distribution of EVLW was compared with wet-to-dry ratios from lung biopsies taken immediately afterwards. Whereas the isotopically measured EVLW increased from apex to base, the wet-to-dry weight ratios remained essentially uniform. We concluded that isotopic methods measure only an "exchangeable" water pool whose volume is dependent on regional blood flow and capillary recruitment. Second, the isolated perfused lung can accommodate up to 60% wt gain without much change in the regional distribution of EVLW, volume, or flow. PMID:765354

  14. Effects of tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome.

    PubMed

    Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C

    2006-01-01

    To assess the effects of step-changes in tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury (ALI) or the acute respiratory distress syndrome (ARDS). Prospective, nonconsecutive patients with ALI/ARDS. Adult surgical, trauma, and medical intensive care units at a major inner-city, university-affiliated hospital. Ten patients with ALI/ARDS managed clinically with lung-protective ventilation. Five patients were ventilated at a progressively smaller tidal volume in 1 mL/kg steps between 8 and 5 mL/kg; five other patients were ventilated at a progressively larger tidal volume from 5 to 8 mL/kg. The volume mode was used with a flow rate of 75 L/min. Minute ventilation was maintained constant at each tidal volume setting. Afterward, patients were placed on continuous positive airway pressure for 1-2 mins to measure their spontaneous tidal volume. Work of breathing and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). Work of breathing progressively increased (0.86 +/- 0.32, 1.05 +/- 0.40, 1.22 +/- 0.36, and 1.57 +/- 0.43 J/L) at a tidal volume of 8, 7, 6, and 5 mL/kg, respectively. In nine of ten patients there was a strong negative correlation between work of breathing and the ventilator-to-patient tidal volume difference (R = -.75 to -.998). : The ventilator-delivered tidal volume exerts an independent influence on work of breathing during lung-protective ventilation in patients with ALI/ARDS. Patient work of breathing is inversely related to the difference between the ventilator-delivered tidal volume and patient-generated tidal volume during a brief trial of unassisted breathing.

  15. SU-E-T-572: Normal Lung Tissue Sparing in Radiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, C; Ju, S; Ahn, Y

    2015-06-15

    Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directionalmore » block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.« less

  16. Lung Quality and Utilization in Controlled Donation After Circulatory Determination of Death Within the United States.

    PubMed

    Mooney, J J; Hedlin, H; Mohabir, P K; Vazquez, R; Nguyen, J; Ha, R; Chiu, P; Patel, K; Zamora, M R; Weill, D; Nicolls, M R; Dhillon, G S

    2016-04-01

    Although controlled donation after circulatory determination of death (cDCDD) could increase the supply of donor lungs within the United States, the yield of lungs from cDCDD donors remains low compared with donation after neurologic determination of death (DNDD). To explore the reason for low lung yield from cDCDD donors, Scientific Registry of Transplant Recipient data were used to assess the impact of donor lung quality on cDCDD lung utilization by fitting a logistic regression model. The relationship between center volume and cDCDD use was assessed, and the distance between center and donor hospital was calculated by cDCDD status. Recipient survival was compared using a multivariable Cox regression model. Lung utilization was 2.1% for cDCDD donors and 21.4% for DNDD donors. Being a cDCDD donor decreased lung donation (adjusted odds ratio 0.101, 95% confidence interval [CI] 0.085-0.120). A minority of centers have performed cDCDD transplant, with higher volume centers generally performing more cDCDD transplants. There was no difference in center-to-donor distance or recipient survival (adjusted hazard ratio 1.03, 95% CI 0.78-1.37) between cDCDD and DNDD transplants. cDCDD lungs are underutilized compared with DNDD lungs after adjusting for lung quality. Increasing transplant center expertise and commitment to cDCDD lung procurement is needed to improve utilization. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. IMPACT OF VENTILATION FREQUENCY AND PARENCHYMAL STIFFNESS ON FLOW AND PRESSURE DISTRIBUTION IN A CANINE LUNG MODEL

    PubMed Central

    Amini, Reza; Kaczka, David W.

    2013-01-01

    To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cmH2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized. PMID:23872936

  18. Lung volume reduction for emphysema.

    PubMed

    Shah, Pallav L; Herth, Felix J; van Geffen, Wouter H; Deslee, Gaetan; Slebos, Dirk-Jan

    2017-02-01

    Advanced emphysema is a lung disease in which alveolar capillary units are destroyed and supporting tissue is lost. The combined effect of reduced gas exchange and changes in airway dynamics impairs expiratory airflow and leads to progressive air trapping. Pharmacological therapies have limited effects. Surgical resection of the most destroyed sections of the lung can improve pulmonary function and exercise capacity but its benefit is tempered by significant morbidity. This issue stimulated a search for novel approaches to lung volume reduction. Alternative minimally invasive approaches using bronchoscopic techniques including valves, coils, vapour thermal ablation, and sclerosant agents have been at the forefront of these developments. Insertion of endobronchial valves in selected patients could have benefits that are comparable with lung volume reduction surgery. Endobronchial coils might have a role in the treatment of patients with emphysema with severe hyperinflation and less parenchymal destruction. Use of vapour thermal energy or a sclerosant might allow focal treatment but the unpredictability of the inflammatory response limits their current use. In this Review, we aim to summarise clinical trial evidence on lung volume reduction and provide guidance on patient selection for available therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test].

    PubMed

    Bokov, P; Delclaux, C

    2016-02-01

    Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  20. Lung volumes and lung volume recruitment in ARDS: a comparison between supine and prone position.

    PubMed

    Aguirre-Bermeo, Hernan; Turella, Marta; Bitondo, Maddalena; Grandjean, Juan; Italiano, Stefano; Festa, Olimpia; Morán, Indalecio; Mancebo, Jordi

    2018-02-14

    The use of positive end-expiratory pressure (PEEP) and prone position (PP) is common in the management of severe acute respiratory distress syndrome patients (ARDS). We conducted this study to analyze the variation in lung volumes and PEEP-induced lung volume recruitment with the change from supine position (SP) to PP in ARDS patients. The investigation was conducted in a multidisciplinary intensive care unit. Patients who met the clinical criteria of the Berlin definition for ARDS were included. The responsible physician set basal PEEP. To avoid hypoxemia, FiO 2 was increased to 0.8 1 h before starting the protocol. End-expiratory lung volume (EELV) and functional residual capacity (FRC) were measured using the nitrogen washout/washin technique. After the procedures in SP, the patients were turned to PP and 1 h later the same procedures were made in PP. Twenty-three patients were included in the study, and twenty were analyzed. The change from SP to PP significantly increased FRC (from 965 ± 397 to 1140 ± 490 ml, p = 0.008) and EELV (from 1566 ± 476 to 1832 ± 719 ml, p = 0.008), but PEEP-induced lung volume recruitment did not significantly change (269 ± 186 ml in SP to 324 ± 188 ml in PP, p = 0.263). Dynamic strain at PEEP decreased with the change from SP to PP (0.38 ± 0.14 to 0.33 ± 0.13, p = 0.040). As compared to supine, prone position increases resting lung volumes and decreases dynamic lung strain.

  1. Lung recruitment manoeuvres are effective in regaining lung volume and oxygenation after open endotracheal suctioning in acute respiratory distress syndrome

    PubMed Central

    Dyhr, Thomas; Bonde, Jan; Larsson, Anders

    2003-01-01

    Introduction Lung collapse is a contributory factor in the hypoxaemia that is observed after open endotracheal suctioning (ETS) in patients with acute lung injury and acute respiratory distress syndrome. Lung recruitment (LR) manoeuvres may be effective in rapidly regaining lung volume and improving oxygenation after ETS. Materials and method A prospective, randomized, controlled study was conducted in a 15-bed general intensive care unit at a university hospital. Eight consecutive mechanically ventilated patients with acute lung injury or acute respiratory distress syndrome were included. One of two suctioning procedures was performed in each patient. In the first procedure, ETS was performed followed by LR manoeuvre and reconnection to the ventilator with positive end-expiratory pressure set at 1 cmH2O above the lower inflexion point, and after 60 min another ETS (but without LR manoeuvre) was performed followed by reconnection to the ventilator with similar positive end-expiratory pressure; the second procedure was the same as the first but conducted in reverse order. Before (baseline) and over 25 min following each ETS procedure, partial arterial oxygen tension (PaO2) and end-expiratory lung volume were measured. Results After ETS, PaO2 decreased by 4.3(0.9–9.7)kPa (median and range; P < 0.005). After LR manoeuvre, PaO2 recovered to baseline. Without LR manoeuvre, PaO2 was reduced (P = 0.05) until 7 min after ETS. With LR manoeuvre end-expiratory lung volume was unchanged after ETS, whereas without LR manoeuvre end-expiratory lung volume was still reduced (approximately 10%) at 5 and 15 min after ETS (P = 0.01). Discussion A LR manoeuvre immediately following ETS was, as an adjunct to positive end-expiratory pressure, effective in rapidly counteracting the deterioration in PaO2 and lung volume caused by open ETS in ventilator-treated patients with acute lung injury or acute respiratory distress syndrome. PMID:12617741

  2. The effects of intraoperative lung protective ventilation with positive end-expiratory pressure on blood loss during hepatic resection surgery: A secondary analysis of data from a published randomised control trial (IMPROVE).

    PubMed

    Neuschwander, Arthur; Futier, Emmanuel; Jaber, Samir; Pereira, Bruno; Eurin, Mathilde; Marret, Emmanuel; Szymkewicz, Olga; Beaussier, Marc; Paugam-Burtz, Catherine

    2016-04-01

    During high-risk abdominal surgery the use of a multi-faceted lung protective ventilation strategy composed of low tidal volumes, positive end-expiratory pressure (PEEP) and recruitment manoeuvres, has been shown to improve clinical outcomes. It has been speculated, however, that mechanical ventilation using PEEP might increase intraoperative bleeding during liver resection. To study the impact of mechanical ventilation with PEEP on bleeding during hepatectomy. Post-hoc analysis of a randomised controlled trial. Seven French university teaching hospitals from January 2011 to August 2012. Patients scheduled for liver resection surgery. In the Intraoperative Protective Ventilation trial, patients scheduled for major abdominal surgery were randomly assigned to mechanical ventilation using low tidal volume, PEEP between 6 and 8  cmH2O and recruitment manoeuvres (lung protective ventilation strategy) or higher tidal volume, zero PEEP and no recruitment manoeuvres (non-protective ventilation strategy). The primary endpoint was intraoperative blood loss volume. A total of 79 (19.8%) patients underwent liver resections (41 in the lung protective and 38 in the non-protective group). The median (interquartile range) amount of intraoperative blood loss was 500 (200 to 800)  ml and 275 (125 to 800)  ml in the non-protective and lung protective ventilation groups, respectively (P = 0.47). Fourteen (35.0%) and eight (21.5%) patients were transfused in the non-protective and lung protective groups, respectively (P = 0.17), without a statistically significant difference in the median (interquartile range) number of red blood cells units transfused [2.5 (2 to 4) units and 3 (2 to 6) units in the two groups, respectively; P = 0.54]. During hepatic surgery, mechanical ventilation using PEEP within a multi-faceted lung protective strategy was not associated with increased bleeding compared with non-protective ventilation using zero PEEP. The current study was not registered. The original Intraoperative Protective Ventilation study was registered on clinicaltrials.gov; number NCT01282996.

  3. Breakdown of lung framework and an increase in pores of Kohn as initial events of emphysema and a cause of reduction in diffusing capacity.

    PubMed

    Yoshikawa, Akira; Sato, Shuntaro; Tanaka, Tomonori; Hashisako, Mikiko; Kashima, Yukio; Tsuchiya, Tomoshi; Yamasaki, Naoya; Nagayasu, Takeshi; Yamamoto, Hiroshi; Fukuoka, Junya

    2016-01-01

    Pulmonary emphysema is the pathological prototype of chronic obstructive pulmonary disease and is also associated with other lung diseases. We considered that observation with different approaches may provide new insights for the pathogenesis of emphysema. We reviewed tissue blocks of the lungs of 25 cases with/without emphysema and applied a three-dimensional observation method to the blocks. Based on the three-dimensional characteristics of the alveolar structure, we considered one face of the alveolar polyhedron as a structural unit of alveoli and called it a framework unit (FU). We categorized FUs based on their morphological characteristics and counted their number to evaluate the destructive changes in alveoli. We also evaluated the number and the area of pores of Kohn in FUs. We performed linear regression analysis to estimate the effect of these data on pulmonary function tests. In multivariable regression analysis, a decrease in the number of FUs without an alveolar wall led to a significant decrease in the diffusing capacity of the lung for carbon monoxide (DLCO) and DLCO per unit alveolar volume, and an increase in the area of pores of Kohn had a significant effect on an increase in residual capacity. A breakdown in the lung framework and an increase in pores of Kohn are associated with a decrease in DLCO and DLCO per unit alveolar volume with/without emphysema.

  4. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    PubMed

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  5. Tidal volume in acute respiratory distress syndrome: how best to select it.

    PubMed

    Umbrello, Michele; Marino, Antonella; Chiumello, Davide

    2017-07-01

    Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO 2 R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented.

  6. Tidal volume in acute respiratory distress syndrome: how best to select it

    PubMed Central

    Umbrello, Michele; Marino, Antonella

    2017-01-01

    Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO2R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented. PMID:28828362

  7. Effect of lung-protective ventilation with lower tidal volumes on clinical outcomes among patients undergoing surgery: a meta-analysis of randomized controlled trials.

    PubMed

    Gu, Wan-Jie; Wang, Fei; Liu, Jing-Chen

    2015-02-17

    In anesthetized patients undergoing surgery, the role of lung-protective ventilation with lower tidal volumes is unclear. We performed a meta-analysis of randomized controlled trials (RCTs) to evaluate the effect of this ventilation strategy on postoperative outcomes. We searched electronic databases from inception through September 2014. We included RCTs that compared protective ventilation with lower tidal volumes and conventional ventilation with higher tidal volumes in anesthetized adults undergoing surgery. We pooled outcomes using a random-effects model. The primary outcome measures were lung injury and pulmonary infection. We included 19 trials (n=1348). Compared with patients in the control group, those who received lung-protective ventilation had a decreased risk of lung injury (risk ratio [RR] 0.36, 95% confidence interval [CI] 0.17 to 0.78; I2=0%) and pulmonary infection (RR 0.46, 95% CI 0.26 to 0.83; I2=8%), and higher levels of arterial partial pressure of carbon dioxide (standardized mean difference 0.47, 95% CI 0.18 to 0.75; I2=65%). No significant differences were observed between the patient groups in atelectasis, mortality, length of hospital stay, length of stay in the intensive care unit or the ratio of arterial partial pressure of oxygen to fraction of inspired oxygen. Anesthetized patients who received ventilation with lower tidal volumes during surgery had a lower risk of lung injury and pulmonary infection than those given conventional ventilation with higher tidal volumes. Implementation of a lung-protective ventilation strategy with lower tidal volumes may lower the incidence of these outcomes. © 2015 Canadian Medical Association or its licensors.

  8. Regional physiology of ARDS.

    PubMed

    Gattinoni, Luciano; Tonetti, Tommaso; Quintel, Michael

    2017-12-28

    The acute respiratory distress (ARDS) lung is usually characterized by a high degree of inhomogeneity. Indeed, the same lung may show a wide spectrum of aeration alterations, ranging from completely gasless regions, up to hyperinflated areas. This inhomogeneity is normally caused by the presence of lung edema and/or anatomical variations, and is deeply influenced by the gravitational forces.For any given airway pressure generated by the ventilator, the pressure acting directly on the lung (i.e., the transpulmonary pressure or lung stress) is determined by two main factors: 1) the ratio between lung elastance and the total elastance of the respiratory system (which has been shown to vary widely in ARDS patients, between 0.2 and 0.8); and 2) the lung size. In severe ARDS, the ventilatable parenchyma is strongly reduced in size ('baby lung'); its resting volume could be as low as 300 mL, and the total inspiratory capacity could be reached with a tidal volume of 750-900 mL, thus generating lethal stress and strain in the lung. Although this is possible in theory, it does not explain the occurrence of ventilator-induced lung injury (VILI) in lungs ventilated with much lower tidal volumes. In fact, the ARDS lung contains areas acting as local stress multipliers and they could multiply the stress by a factor ~ 2, meaning that in those regions the transpulmonary pressure could be double that present in other parts of the same lung. These 'stress raisers' widely correspond to the inhomogenous areas of the ARDS lung and can be present in up to 40% of the lung.Although most of the literature on VILI concentrates on the possible dangers of tidal volume, mechanical ventilation in fact delivers mechanical power (i.e., energy per unit of time) to the lung parenchyma, which reacts to it according to its anatomical structure and pathophysiological status. The determinants of mechanical power are not only the tidal volume, but also respiratory rate, inspiratory flow, and positive end-expiratory pressure (PEEP). In the end, decreasing mechanical power, increasing lung homogeneity, and avoiding reaching the anatomical limits of the 'baby lung' should be the goals for safe ventilation in ARDS.

  9. Quantification of lung microstructure with hyperpolarized 3He diffusion MRI

    PubMed Central

    Sukstanskii, Alexander L.; Woods, Jason C.; Gierada, David S.; Quirk, James D.; Hogg, James C.; Cooper, Joel D.; Conradi, Mark S.

    2009-01-01

    The structure and integrity of pulmonary acinar airways and their changes in different diseases are of great importance and interest to a broad range of physiologists and clinicians. The introduction of hyperpolarized gases has opened a door to in vivo studies of lungs with MRI. In this study we demonstrate that MRI-based measurements of hyperpolarized 3He diffusivity in human lungs yield quantitative information on the value and spatial distribution of lung parenchyma surface-to-volume ratio, number of alveoli per unit lung volume, mean linear intercept, and acinar airway radii—parameters that have been used by lung physiologists for decades and are accepted as gold standards for quantifying emphysema. We validated our MRI-based method in six human lung specimens with different levels of emphysema against direct unbiased stereological measurements. We demonstrate for the first time MRI images of these lung microgeometric parameters in healthy lungs and lungs with different levels of emphysema (mild, moderate, and severe). Our data suggest that decreases in lung surface area per volume at the initial stages of emphysema are due to dramatic decreases in the depth of the alveolar sleeves covering the alveolar ducts and sacs, implying dramatic decreases in the lung's gas exchange capacity. Our novel methods are sufficiently sensitive to allow early detection and diagnosis of emphysema, providing an opportunity to improve patient treatment outcomes, and have the potential to provide safe and noninvasive in vivo biomarkers for monitoring drug efficacy in clinical trials. PMID:19661452

  10. The Effect of Compartmental Asymmetry on the Monitoring of Pulmonary Mechanics and Lung Volumes.

    PubMed

    Keenan, Joseph C; Cortes-Puentes, Gustavo A; Adams, Alexander B; Dries, David J; Marini, John J

    2016-11-01

    Esophageal pressure measurement for computation of transpulmonary pressure (P tp ) has begun to be incorporated into clinical use for evaluating forces across the lungs. Gaps exist in our understanding of how esophageal pressure (and therefore P tp ), a value measured at a single site, responds when respiratory system compartments are asymmetrically affected by whole-lung atelectasis or unilateral injury as well as changes in chest wall compliance. We reasoned that P tp would track with aerated volume changes as estimated by functional residual capacity (FRC) and tidal volume. We examined this hypothesis in the setting of asymmetric lungs and changes in intra-abdominal pressure. This study was conducted in the animal laboratory of a university-affiliated hospital. Models of unilateral atelectasis and unilateral and bilateral lung injury exposed to intra-abdominal hypertension (IAH) in 10 deeply sedated mechanically ventilated swine. Atelectasis was created by balloon occlusion of the left main bronchus. Unilateral lung injury was induced by saline lavage of isolated right lung. Diffuse lung injury was induced by saline lavage of both lungs. The peritoneum was insufflated with air to create a model of pressure-regulated IAH. We measured esophageal pressures, airway pressures, FRC by gas dilution, and oxygenation. FRC was reduced by IAH in normal lungs (P < .001) and both asymmetric lung pathologies (P < .001). P tp at end-expiration was decreased by IAH in bilateral (P = .001) and unilateral lung injury (P = .003) as well as unilateral atelectasis (P = .019). In the setting of both lung injury models, end-expiratory P tp showed a moderate correlation in tracking with FRC. P tp tracks with aerated lung volume in the setting of thoracic asymmetry and changes in intra-abdominal pressure. However, used alone, it cannot distinguish the relative contributions of air-space distention and recruitment of lung units. Copyright © 2016 by Daedalus Enterprises.

  11. The effect of latent adenovirus 5 infection on cigarette smoke-induced lung inflammation.

    PubMed

    Vitalis, T Z; Kern, I; Croome, A; Behzad, H; Hayashi, S; Hogg, J C

    1998-03-01

    The aim of this study was to test the hypothesis that latent adenovirus (Ad) 5 infection increases the lung inflammation that follows a single acute exposure to cigarette smoke. A recently developed model of latent adenoviral infection in guinea-pigs was used. Twelve animals were infected with Ad5 (10(8) plaque-forming units) and 12 animals were sham-infected. Thirty five days later six Ad5-infected and six sham-infected animals were exposed to the smoke from five cigarettes. The remaining animals were used as controls for both infection and smoking. As markers of inflammation, the volume fraction of macrophages, T-lymphocytes, neutrophils and eosinophils were measured by quantitative histology. We found that latent Ad5-infection alone, doubled the number of macrophages in the lung parenchyma and that smoking alone, doubled the volume fraction of neutrophils in the airway wall and the volume fraction of macrophages in the lung parenchyma. Neither viral infection nor smoking, alone, had an effect on T-lymphocytes or eosinophils. However, the combination of viral infection and smoking doubled the T-lymphocyte helper cells and quadrupled the volume fraction of macrophages in the lung parenchyma. We conclude that in guinea-pigs, latent adenovirus 5 infection increases the inflammation that follows a single acute exposure to cigarette smoke, by increasing the volume fraction of macrophages and T-lymphocyte helper cells.

  12. The Impact of Sources of Variability on Parametric Response Mapping of Lung CT Scans

    PubMed Central

    Boes, Jennifer L.; Bule, Maria; Hoff, Benjamin A.; Chamberlain, Ryan; Lynch, David A.; Stojanovska, Jadranka; Martinez, Fernando J.; Han, Meilan K.; Kazerooni, Ella A.; Ross, Brian D.; Galbán, Craig J.

    2015-01-01

    Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented. PMID:26568983

  13. Electrical impedance tomography

    PubMed Central

    Lobo, Beatriz; Hermosa, Cecilia; Abella, Ana

    2018-01-01

    Continuous assessment of respiratory status is one of the cornerstones of modern intensive care unit (ICU) monitoring systems. Electrical impedance tomography (EIT), although with some constraints, may play the lead as a new diagnostic and guiding tool for an adequate optimization of mechanical ventilation in critically ill patients. EIT may assist in defining mechanical ventilation settings, assess distribution of tidal volume and of end-expiratory lung volume (EELV) and contribute to titrate positive end-expiratory pressure (PEEP)/tidal volume combinations. It may also quantify gains (recruitment) and losses (overdistention or derecruitment), granting a more realistic evaluation of different ventilator modes or recruitment maneuvers, and helping in the identification of responders and non-responders to such maneuvers. Moreover, EIT also contributes to the management of life-threatening lung diseases such as pneumothorax, and aids in guiding fluid management in the critical care setting. Lastly, assessment of cardiac function and lung perfusion through electrical impedance is on the way. PMID:29430443

  14. Emptying patterns of the lung studied by multiple-breath N2 washout

    NASA Technical Reports Server (NTRS)

    Lewis, S. M.

    1978-01-01

    Changes in the nitrogen concentration seen during the single-breath nitrogen washout reflect changes in relative flow (ventilation) from units with differing ventilation/volume ratios. The multiple-breath washout provides sufficient data on ventilation for units with varying ventilation/volume ratios to be plotted as a function of the volume expired. Flow from the dead space may also be determined. In young normals the emptying patterns are narrow and unimodal throughout the alveolar plateau with little or no flow from the dead space at the end of the breath. Older normals show more flow from the dead space, particularly toward the end of the breath, and some show a high ventilation/volume ratio mode early in the breath. Patients with obstructive lung disease have a high flow from the dead space which is present throughout the breath. A well ventilated mode at the end of the breath is seen in some obstructed subjects. Patients with cystic fibrosis showed a poorly ventilated mode appearing at the end of the breath as well as a very high dead space.

  15. Regional Distribution of Pulmonary Blood Volume with Dual-Energy Computed Tomography: Results in 42 Subjects.

    PubMed

    Felloni, Paul; Duhamel, Alain; Faivre, Jean-Baptiste; Giordano, Jessica; Khung, Suonita; Deken, Valérie; Remy, Jacques; Remy-Jardin, Martine

    2017-11-01

    The noninvasive approach of lung perfusion generated from dual-energy computed tomography acquisitions has entered clinical practice. The purpose of this study was to analyze the regional distribution of iodine within distal portions of the pulmonary arterial bed on dual-source, dual-energy computed tomography examinations in a cohort of subjects without cardiopulmonary pathologies. The study population included 42 patients without cardiorespiratory disease, enabling quantitative and qualitative analysis of pulmonary blood volume after administration of a 40% contrast agent. Qualitative analysis was based on visual assessment. Quantitative analysis was obtained after semiautomatic division of each lung into 18 areas. The iodine concentration did not significantly differ between the right (R) and left (L) lungs (P = .49), with a mean attenuation of 41.35 Hounsfield units (HU) and 41.14 HU, respectively. Three regional gradients of attenuation were observed between: (a) lung bases and apices (P < .001), linked to the conditions of examination (mean Δ: 6.23 in the R lung; 5.96 in the L lung); (b) posterior and anterior parts of the lung (P < .001) due to gravity (mean Δ: 11.92 in the R lung ; 15.93 in the L lung); and (c) medullary and cortical lung zones (P < .001) (mean Δ: 9.35 in the R lung ; 8.37 in the L lung). The intensity of dependent-nondependent (r = 0.42; P < .001) and corticomedullary (r = 0.58; P < .0001) gradients was correlated to the overall iodine concentration. Distribution of pulmonary blood volume is influenced by physiological gradients and scanning conditions. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  16. Lung Morphometry with Hyperpolarized 129Xe: Theoretical Background

    PubMed Central

    Sukstanskii, A.L.; Yablonskiy, D.A.

    2011-01-01

    The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface-to-volume ratio, number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. PMID:21713985

  17. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu; Diwanji, Tejan; Shi, Xiutao

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1more » session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance imaging. These results were demonstrated on retrospective analysis of patient data, and further research using prospective data is under way to validate this technique against established clinical tests.« less

  18. Validation study of an interpolation method for calculating whole lung volumes and masses from reduced numbers of CT-images in ponies.

    PubMed

    Reich, H; Moens, Y; Braun, C; Kneissl, S; Noreikat, K; Reske, A

    2014-12-01

    Quantitative computer tomographic analysis (qCTA) is an accurate but time intensive method used to quantify volume, mass and aeration of the lungs. The aim of this study was to validate a time efficient interpolation technique for application of qCTA in ponies. Forty-one thoracic computer tomographic (CT) scans obtained from eight anaesthetised ponies positioned in dorsal recumbency were included. Total lung volume and mass and their distribution into four compartments (non-aerated, poorly aerated, normally aerated and hyperaerated; defined based on the attenuation in Hounsfield Units) were determined for the entire lung from all 5 mm thick CT-images, 59 (55-66) per animal. An interpolation technique validated for use in humans was then applied to calculate qCTA results for lung volumes and masses from only 10, 12, and 14 selected CT-images per scan. The time required for both procedures was recorded. Results were compared statistically using the Bland-Altman approach. The bias ± 2 SD for total lung volume calculated from interpolation of 10, 12, and 14 CT-images was -1.2 ± 5.8%, 0.1 ± 3.5%, and 0.0 ± 2.5%, respectively. The corresponding results for total lung mass were -1.1 ± 5.9%, 0.0 ± 3.5%, and 0.0 ± 3.0%. The average time for analysis of one thoracic CT-scan using the interpolation method was 1.5-2 h compared to 8 h for analysis of all images of one complete thoracic CT-scan. The calculation of pulmonary qCTA data by interpolation from 12 CT-images was applicable for equine lung CT-scans and reduced the time required for analysis by 75%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The physiological basis and clinical significance of lung volume measurements.

    PubMed

    Lutfi, Mohamed Faisal

    2017-01-01

    From a physiological standpoint, the lung volumes are either dynamic or static. Both subclasses are measured at different degrees of inspiration or expiration; however, dynamic lung volumes are characteristically dependent on the rate of air flow. The static lung volumes/capacities are further subdivided into four standard volumes (tidal, inspiratory reserve, expiratory reserve, and residual volumes) and four standard capacities (inspiratory, functional residual, vital and total lung capacities). The dynamic lung volumes are mostly derived from vital capacity. While dynamic lung volumes are essential for diagnosis and follow up of obstructive lung diseases, static lung volumes are equally important for evaluation of obstructive as well as restrictive ventilatory defects. This review intends to update the reader with the physiological basis, clinical significance and interpretative approaches of the standard static lung volumes and capacities.

  20. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD.

    PubMed

    O'Donnell, D E; Flüge, T; Gerken, F; Hamilton, A; Webb, K; Aguilaniu, B; Make, B; Magnussen, H

    2004-06-01

    The aim of this study was to test the hypothesis that use of tiotropium, a new long-acting anticholinergic bronchodilator, would be associated with sustained reduction in lung hyperinflation and, thereby, would improve exertional dyspnoea and exercise performance in patients with chronic obstructive pulmonary disease. A randomised, double-blind, placebo-controlled, parallel-group study was conducted in 187 patients (forced expiratory volume in one second 44 +/- 13% pred): 96 patients received 18 microg tiotropium and 91 patients received placebo once daily for 42 days. Spirometry, plethysmographic lung volumes, cycle exercise endurance and exertional dyspnoea intensity at 75% of each patient's maximal work capacity were compared. On day 42, the use of tiotropium was associated with the following effects at pre-dose and post-dose measurements as compared to placebo: vital capacity and inspiratory capacity (IC) increased, with inverse decreases in residual volume and functional residual capacity. Tiotropium increased post-dose exercise endurance time by 105 +/- 40 s (21%) as compared to placebo on day 42. At a standardised time near end-exercise (isotime), IC, tidal volume and minute ventilation all increased, whilst dyspnoea decreased by 0.9 +/- 0.3 Borg scale units. In conclusion, the use of tiotropium was associated with sustained reductions of lung hyperinflation at rest and during exercise. Resultant increases in inspiratory capacity permitted greater expansion of tidal volume and contributed to improvements in both exertional dyspnoea and exercise endurance.

  1. Evaluation of Neonatal Lung Volume Growth by Pulmonary Magnetic Resonance Imaging in Patients with Congenital Diaphragmatic Hernia.

    PubMed

    Schopper, Melissa A; Walkup, Laura L; Tkach, Jean A; Higano, Nara S; Lim, Foong Yen; Haberman, Beth; Woods, Jason C; Kingma, Paul S

    2017-09-01

    To evaluate postnatal lung volume in infants with congenital diaphragmatic hernia (CDH) and determine if a compensatory increase in lung volume occurs during the postnatal period. Using a novel pulmonary magnetic resonance imaging method for imaging neonatal lungs, the postnatal lung volumes in infants with CDH were determined and compared with prenatal lung volumes obtained via late gestation magnetic resonance imaging. Infants with left-sided CDH (2 mild, 9 moderate, and 1 severe) were evaluated. The total lung volume increased in all infants, with the contralateral lung increasing faster than the ipsilateral lung (mean ± SD: 4.9 ± 3.0 mL/week vs 3.4 ± 2.1 mL/week, P = .005). In contrast to prenatal studies, the volume of lungs of infants with more severe CDH grew faster than the lungs of infants with more mild CDH (Spearman's ρ=-0.086, P = .01). Although the contralateral lung volume grew faster in both mild and moderate groups, the majority of total lung volume growth in moderate CDH came from increased volume of the ipsilateral lung (42% of total lung volume increase in the moderate group vs 32% of total lung volume increase in the mild group, P = .09). Analysis of multiple clinical variables suggests that increased weight gain was associated with increased compensatory ipsilateral lung volume growth (ρ = 0.57, P = .05). These results suggest a potential for postnatal catch-up growth in infants with pulmonary hypoplasia and suggest that weight gain may increase the volume growth of the more severely affected lung. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lung protection: an intervention for tidal volume reduction in a teaching intensive care unit.

    PubMed

    Briva, Arturo; Gaiero, Cristina

    2016-01-01

    To determine the effect of feedback and education regarding the use of predicted body weight to adjust tidal volume in a lung-protective mechanical ventilation strategy. The study was performed from October 2014 to November 2015 (12 months) in a single university polyvalent intensive care unit. We developed a combined intervention (education and feedback), placing particular attention on the importance of adjusting tidal volumes to predicted body weight bedside. In parallel, predicted body weight was estimated from knee height and included in clinical charts. One hundred fifty-nine patients were included. Predicted body weight assessed by knee height instead of visual evaluation revealed that the delivered tidal volume was significantly higher than predicted. After the inclusion of predicted body weight, we observed a sustained reduction in delivered tidal volume from a mean (standard error) of 8.97 ± 0.32 to 7.49 ± 0.19mL/kg (p < 0.002). Furthermore, the protocol adherence was subsequently sustained for 12 months (delivered tidal volume 7.49 ± 0.54 versus 7.62 ± 0.20mL/kg; p = 0.103). The lack of a reliable method to estimate the predicted body weight is a significant impairment for the application of a worldwide standard of care during mechanical ventilation. A combined intervention based on education and repeated feedbacks promoted sustained tidal volume education during the study period (12 months).

  3. Transplant center volume and outcomes in lung transplantation for cystic fibrosis.

    PubMed

    Hayes, Don; Sweet, Stuart C; Benden, Christian; Kopp, Benjamin T; Goldfarb, Samuel B; Visner, Gary A; Mallory, George B; Tobias, Joseph D; Tumin, Dmitry

    2017-04-01

    Transplant volume represents lung transplant (LTx) expertise and predicts outcomes, so we sought to determine outcomes related to center volumes in cystic fibrosis (CF). United Network for Organ Sharing data were queried for patients with CF in the United States (US) receiving bilateral LTx from 2005 to 2015. Multivariable Cox regression was used to model survival to 1 year and long-term (>1 year) survival, conditional on surviving at least 1 year. A total of 2025 patients and 67 centers were included in the analysis. The median annual LTx volumes were three in CF [interquartile range (IQR): 2, 6] and 17 in non-CF (IQR: 8, 33). Multivariable Cox regression in cases with complete data and surviving at least 1 year (n = 1510) demonstrated that greater annual CF LTx volume (HR per 10 LTx = 0.66; 95% CI: 0.49, 0.89; P = 0.006) but not greater non-CF LTx volume (HR = 1.00; 95% CI: 0.96, 1.05; P = 0.844) was associated with improved long-term survival in LTx recipients with CF. A Wald interaction test confirmed that CF LTx volume was more strongly associated with long-term outcomes than non-CF LTx volume (P = 0.012). In a US cohort, center volume was not associated with 1-year survival. CF-specific expertise predicted improved long-term outcomes of LTx for CF, whereas general LTx expertise was unassociated with CF patients' survival. © 2016 Steunstichting ESOT.

  4. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    PubMed

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  5. Continuous on-line measurements of respiratory system, lung and chest wall mechanics during mechanic ventilation.

    PubMed

    Kárason, S; Søndergaard, S; Lundin, S; Stenqvist, O

    2001-08-01

    We present a concept of on-line, manoeuvre-free monitoring of respiratory mechanics during dynamic conditions, displaying calculated alveolar pressure/volume curves continuously and separating lung and chest wall mechanics. Prospective observational study. Intensive care unit of a university hospital. Ten ventilator-treated patients with acute lung injury. Different positive end-expiratory pressure (PEEP) and tidal volumes, low flow inflation. Previously validated methods were used to present a single-value dynostatic compliance for the whole breath and a dynostatic volume-dependent initial, middle and final compliance within the breath. A high individual variation of respiratory mechanics was observed. Reproducibility of repeated measurements was satisfactory (coefficients of variations for dynostatic volume-dependent compliance: < or =9.2% for total respiratory system, < or =18% for lung). Volume-dependent compliance showed a statistically significant pattern of successively decreasing compliance from the initial segment through the middle and final parts within each breath at all respiratory settings. This pattern became more prominent with increasing PEEP and tidal volume, indicating a greater distension of alveoli. No lower inflection point (LIP) was seen in patients with respiratory rate 20/min and PEEP at 4 cmH2O. A trial with low flow inflation in four of the patients showed formation of a LIP in three of them and an upper inflection in one. The monitoring concept revealed a constant pattern of successively decreasing compliance within each breath, which became more prominent with increasing PEEP and tidal volume. The monitoring concept offers a simple and reliable method of monitoring respiratory mechanics during ongoing ventilator treatment.

  6. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit

    PubMed Central

    Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2016-01-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg−1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg−1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg−1 predicted body weight and 7.9(±1.8) ml kg−1 predicted body weight for pressure-controlled ventilation (P < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level. PMID:28979556

  7. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit.

    PubMed

    Newell, Christopher P; Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2017-05-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg -1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg -1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg -1 predicted body weight and 7.9(±1.8) ml kg -1 predicted body weight for pressure-controlled ventilation ( P  < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level.

  8. Contribution of CT quantified emphysema, air trapping and airway wall thickness on pulmonary function in male smokers with and without COPD.

    PubMed

    Mohamed Hoesein, Firdaus A A; de Jong, Pim A; Lammers, Jan-Willem J; Mali, Willem P Th M; Mets, Onno M; Schmidt, Michael; de Koning, Harry J; Aalst, Carlijn van der; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Ginneken, Bram van; van Rikxoort, Eva M; Zanen, Pieter

    2014-09-01

    Emphysema, airway wall thickening and air trapping are associated with chronic obstructive pulmonary disease (COPD). All three can be quantified by computed tomography (CT) of the chest. The goal of the current study is to determine the relative contribution of CT derived parameters on spirometry, lung volume and lung diffusion testing. Emphysema, airway wall thickening and air trapping were quantified automatically on CT in 1,138 male smokers with and without COPD. Emphysema was quantified by the percentage of voxels below -950 Hounsfield Units (HU), airway wall thickness by the square root of wall area for a theoretical airway with 10 mm lumen perimeter (Pi10) and air trapping by the ratio of mean lung density at expiration and inspiration (E/I-ratio). Spirometry, residual volume to total lung capacity (RV/TLC) and diffusion capacity (Kco) were obtained. Standardized regression coefficients (β) were used to analyze the relative contribution of CT changes to pulmonary function measures. The independent contribution of the three CT measures differed per lung function parameter. For the FEV1 airway wall thickness was the most contributing structural lung change (β = -0.46), while for the FEV1/FVC this was emphysema (β = -0.55). For the residual volume (RV) air trapping was most contributing (β = -0.35). Lung diffusion capacity was most influenced by emphysema (β = -0.42). In a cohort of smokers with and without COPD the effect of different CT changes varies per lung function measure and therefore emphysema, airway wall thickness and air trapping need to be taken in account.

  9. Quantitative features in the computed tomography of healthy lungs.

    PubMed Central

    Fromson, B H; Denison, D M

    1988-01-01

    This study set out to determine whether quantitative features of lung computed tomography scans could be identified that would lead to a tightly defined normal range for use in assessing patients. Fourteen normal subjects with apparently healthy lungs were studied. A technique was developed for rapid and automatic extraction of lung field data from the computed tomography scans. The Hounsfield unit histograms were constructed and, when normalised for predicted lung volumes, shown to be consistent in shape for all the subjects. A three dimensional presentation of the data in the form of a "net plot" was devised, and from this a logarithmic relationship between the area of each lung slice and its mean density was derived (r = 0.9, n = 545, p less than 0.0001). The residual density, calculated as the difference between measured density and density predicted from the relationship with area, was shown to be normally distributed with a mean of 0 and a standard deviation of 25 Hounsfield units (chi 2 test: p less than 0.05). A presentation combining this residual density with the net plot is described. PMID:3353883

  10. Pulmonary function tests do not predict mortality in patients undergoing continuous-flow left ventricular assist device implantation.

    PubMed

    Bedzra, Edo K S; Dardas, Todd F; Cheng, Richard K; Pal, Jay D; Mahr, Claudius; Smith, Jason W; Shively, Kent; Masri, S Carolina; Levy, Wayne C; Mokadam, Nahush A

    2017-12-01

    To investigate the effect of pulmonary function testing on outcomes after continuous flow left ventricular assist device implantation. A total of 263 and 239 patients, respectively, had tests of forced expiratory volume in 1 second and diffusing capacity of the lungs for carbon monoxide preoperatively for left ventricular assist device implantations between July 2005 and September 2015. Kaplan-Meier analysis and multivariable Cox regressions were performed to evaluate mortality. Patients were analyzed in a single cohort and across 5 groups. Postoperative intensive care unit and hospital lengths of stay were evaluated with negative binomial regressions. There is no association of forced expiratory volume in 1 second and diffusing capacity of the lungs for carbon monoxide with survival and no difference in mortality at 1 and 3 years between the groups (log rank P = .841 and .713, respectively). Greater values in either parameter were associated with decreased hospital lengths of stay. Only diffusing capacity of the lungs for carbon monoxide was associated with increased intensive care unit length of stay in the group analysis (P = .001). Ventilator times, postoperative pneumonia, reintubation, and tracheostomy rates were similar across the groups. Forced expiratory volume in 1 second and diffusing capacity of the lungs for carbon monoxide are not associated with operative or long-term mortality in patients undergoing continuous flow left ventricular assist device implantation. These findings suggest that these abnormal pulmonary function tests alone should not preclude mechanical circulatory support candidacy. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  11. Predictive equations for lung volumes from computed tomography for size matching in pulmonary transplantation.

    PubMed

    Konheim, Jeremy A; Kon, Zachary N; Pasrija, Chetan; Luo, Qingyang; Sanchez, Pablo G; Garcia, Jose P; Griffith, Bartley P; Jeudy, Jean

    2016-04-01

    Size matching for lung transplantation is widely accomplished using height comparisons between donors and recipients. This gross approximation allows for wide variation in lung size and, potentially, size mismatch. Three-dimensional computed tomography (3D-CT) volumetry comparisons could offer more accurate size matching. Although recipient CT scans are universally available, donor CT scans are rarely performed. Therefore, predicted donor lung volumes could be used for comparison to measured recipient lung volumes, but no such predictive equations exist. We aimed to use 3D-CT volumetry measurements from a normal patient population to generate equations for predicted total lung volume (pTLV), predicted right lung volume (pRLV), and predicted left lung volume (pLLV), for size-matching purposes. Chest CT scans of 400 normal patients were retrospectively evaluated. 3D-CT volumetry was performed to measure total lung volume, right lung volume, and left lung volume of each patient, and predictive equations were generated. The fitted model was tested in a separate group of 100 patients. The model was externally validated by comparison of total lung volume with total lung capacity from pulmonary function tests in a subset of those patients. Age, gender, height, and race were independent predictors of lung volume. In the test group, there were strong linear correlations between predicted and actual lung volumes measured by 3D-CT volumetry for pTLV (r = 0.72), pRLV (r = 0.72), and pLLV (r = 0.69). A strong linear correlation was also observed when comparing pTLV and total lung capacity (r = 0.82). We successfully created a predictive model for pTLV, pRLV, and pLLV. These may serve as reference standards and predict donor lung volume for size matching in lung transplantation. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  12. Lung volumes: measurement, clinical use, and coding.

    PubMed

    Flesch, Judd D; Dine, C Jessica

    2012-08-01

    Measurement of lung volumes is an integral part of complete pulmonary function testing. Some lung volumes can be measured during spirometry; however, measurement of the residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC) requires special techniques. FRC is typically measured by one of three methods. Body plethysmography uses Boyle's Law to determine lung volumes, whereas inert gas dilution and nitrogen washout use dilution properties of gases. After determination of FRC, expiratory reserve volume and inspiratory vital capacity are measured, which allows the calculation of the RV and TLC. Lung volumes are commonly used for the diagnosis of restriction. In obstructive lung disease, they are used to assess for hyperinflation. Changes in lung volumes can also be seen in a number of other clinical conditions. Reimbursement for measurement of lung volumes requires knowledge of current procedural terminology (CPT) codes, relevant indications, and an appropriate level of physician supervision. Because of recent efforts to eliminate payment inefficiencies, the 10 previous CPT codes for lung volumes, airway resistance, and diffusing capacity have been bundled into four new CPT codes.

  13. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study.

    PubMed

    Choi, Sanghun; Hoffman, Eric A; Wenzel, Sally E; Castro, Mario; Lin, Ching-Long

    2014-09-15

    Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. Copyright © 2014 the American Physiological Society.

  14. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study

    PubMed Central

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Castro, Mario

    2014-01-01

    Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. PMID:25103972

  15. Lung protection: an intervention for tidal volume reduction in a teaching intensive care unit

    PubMed Central

    Briva, Arturo; Gaiero, Cristina

    2016-01-01

    Objective To determine the effect of feedback and education regarding the use of predicted body weight to adjust tidal volume in a lung-protective mechanical ventilation strategy. Methods The study was performed from October 2014 to November 2015 (12 months) in a single university polyvalent intensive care unit. We developed a combined intervention (education and feedback), placing particular attention on the importance of adjusting tidal volumes to predicted body weight bedside. In parallel, predicted body weight was estimated from knee height and included in clinical charts. Results One hundred fifty-nine patients were included. Predicted body weight assessed by knee height instead of visual evaluation revealed that the delivered tidal volume was significantly higher than predicted. After the inclusion of predicted body weight, we observed a sustained reduction in delivered tidal volume from a mean (standard error) of 8.97 ± 0.32 to 7.49 ± 0.19mL/kg (p < 0.002). Furthermore, the protocol adherence was subsequently sustained for 12 months (delivered tidal volume 7.49 ± 0.54 versus 7.62 ± 0.20mL/kg; p = 0.103). Conclusion The lack of a reliable method to estimate the predicted body weight is a significant impairment for the application of a worldwide standard of care during mechanical ventilation. A combined intervention based on education and repeated feedbacks promoted sustained tidal volume education during the study period (12 months). PMID:27925055

  16. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    PubMed

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  17. Lung Function before and Two Days after Open-Heart Surgery.

    PubMed

    Urell, Charlotte; Westerdahl, Elisabeth; Hedenström, Hans; Janson, Christer; Emtner, Margareta

    2012-01-01

    Reduced lung volumes and atelectasis are common after open-heart surgery, and pronounced restrictive lung volume impairment has been found. The aim of this study was to investigate factors influencing lung volumes on the second postoperative day. Open-heart surgery patients (n = 107, 68 yrs, 80% male) performed spirometry both before surgery and on the second postoperative day. The factors influencing postoperative lung volumes and decrease in lung volumes were investigated with univariate and multivariate analyses. Associations between pain (measured by numeric rating scale) and decrease in postoperative lung volumes were calculated with Spearman rank correlation test. Lung volumes decreased by 50% and were less than 40% of the predictive values postoperatively. Patients with BMI >25 had lower postoperative inspiratory capacity (IC) (33 ± 14% pred.) than normal-weight patients (39 ± 15% pred.), (P = 0.04). More pain during mobilisation was associated with higher decreases in postoperative lung volumes (VC: r = 0.33, P = 0.001; FEV(1): r = 0.35, P ≤ 0.0001; IC: r = 0.25, P = 0.01). Patients with high BMI are a risk group for decreased postoperative lung volumes and should therefore receive extra attention during postoperative care. As pain is related to a larger decrease in postoperative lung volumes, optimal pain relief for the patients should be identified.

  18. Lung Function before and Two Days after Open-Heart Surgery

    PubMed Central

    Urell, Charlotte; Westerdahl, Elisabeth; Hedenström, Hans; Janson, Christer; Emtner, Margareta

    2012-01-01

    Reduced lung volumes and atelectasis are common after open-heart surgery, and pronounced restrictive lung volume impairment has been found. The aim of this study was to investigate factors influencing lung volumes on the second postoperative day. Open-heart surgery patients (n = 107, 68 yrs, 80% male) performed spirometry both before surgery and on the second postoperative day. The factors influencing postoperative lung volumes and decrease in lung volumes were investigated with univariate and multivariate analyses. Associations between pain (measured by numeric rating scale) and decrease in postoperative lung volumes were calculated with Spearman rank correlation test. Lung volumes decreased by 50% and were less than 40% of the predictive values postoperatively. Patients with BMI >25 had lower postoperative inspiratory capacity (IC) (33 ± 14% pred.) than normal-weight patients (39 ± 15% pred.), (P = 0.04). More pain during mobilisation was associated with higher decreases in postoperative lung volumes (VC: r = 0.33, P = 0.001; FEV1: r = 0.35, P ≤ 0.0001; IC: r = 0.25, P = 0.01). Patients with high BMI are a risk group for decreased postoperative lung volumes and should therefore receive extra attention during postoperative care. As pain is related to a larger decrease in postoperative lung volumes, optimal pain relief for the patients should be identified. PMID:22924127

  19. A radiographic method to estimate lung volume and its use in small mammals.

    PubMed

    Canals, Mauricio; Olivares, Ricardo; Rosenmann, Mario

    2005-01-01

    In this paper we develop a method to estimate lung volume using chest x-rays of small mammals. We applied this method to assess the lung volume of several rodents. We showed that a good estimator of the lung volume is: V*L = 0.496 x VRX approximately equal to 1/2 x VRX, where VRX is a measurement obtained from the x-ray that represents the volume of a rectangular box containing the lungs and mediastinum organs. The proposed formula may be interpreted as the volume of an ellipsoid formed by both lungs joined at their bases. When that relationship was used to estimate lung volume, values similar to those expected from allometric relationship were found in four rodents. In two others, M. musculus and R. norvegicus, lung volume was similar to reported data, although values were lower than expected.

  20. Starting a Lung Transplant Program

    PubMed Central

    Eberlein, Michael; Geist, Lois; Keech, John; Zabner, Joseph; Gruber, Peter J.; Iannettoni, Mark D.; Parekh, Kalpaj

    2015-01-01

    Lung transplantation is an effective therapy for many patients with end-stage lung disease. Few centers across the United States offer this therapy, as a successful lung transplant program requires significant institutional resources and specialized personnel. Analysis of the United Network of Organ Sharing database reveals that the failure rate of new programs exceeds 40%. These data suggest that an accurate assessment of program viability as well as a strategy to continuously assess defined quality measures is needed. As part of strategic planning, regional availability of recipient and donors should be assessed. Additionally, analysis of institutional expertise at the physician, support staff, financial, and administrative levels is necessary. In May of 2007, we started a new lung transplant program at the University of Iowa Hospitals and Clinics and have performed 101 transplants with an average recipient 1-year survival of 91%, placing our program among the top in the country for the past 5 years. Herein, we review internal and external factors that impact the viability of a new lung transplant program. We discuss the use of four prospectively identified quality measures: volume, recipient outcomes, financial solvency, and academic contribution as one approach to achieve programmatic excellence. PMID:25940255

  1. Qualitative and quantitative interpretation of computed tomography of the lungs in healthy neonatal foals.

    PubMed

    Lascola, Kara M; O'Brien, Robert T; Wilkins, Pamela A; Clark-Price, Stuart C; Hartman, Susan K; Mitchell, Mark A

    2013-09-01

    To qualitatively describe lung CT images obtained from sedated healthy equine neonates (≤ 14 days of age), use quantitative analysis of CT images to characterize attenuation and distribution of gas and tissue volumes within the lungs, and identify differences between lung characteristics of foals ≤ 7 days of age and foals > 7 days of age. 10 Standardbred foals between 2.5 and 13 days of age. Foals were sedated with butorphanol, midazolam, and propofol and positioned in sternal recumbency for thoracic CT. Image analysis software was used to exclude lung from nonlung structures. Lung attenuation was measured in Hounsfield units (HU) for analysis of whole lung and regional changes in attenuation and lung gas and tissue components. Degree of lung attenuation was classified as follows: hyperinflated or emphysema, -1,000 to -901 HU; well aerated, -900 to -501 HU; poorly aerated, -500 to -101 HU; and nonaerated, > -100 HU. Qualitative evidence of an increase in lung attenuation and patchy alveolar patterns in the ventral lung region were more pronounced in foals ≤ 7 days of age than in older foals. Quantitative analysis revealed that mean ± SD lung attenuation was greater in foals ≤ 7 days of age (-442 ± 28 HU) than in foals > 7 days of age (-521 ± 24 HU). Lung aeration and gas volumes were lower than in other regions ventrally and in the mid lung region caudal to the heart. CONCLUSIONS AND CLINICAL RELEVANCE-Identified radiographic patterns and changes in attenuation were most consistent with atelectasis and appeared more severe in foals ≤ 7 days of age than in older neonatal foals. Recognition of these changes may have implications for accurate CT interpretation in sedated neonatal foals with pulmonary disease.

  2. The alveolar surface network: a new anatomy and its physiological significance.

    PubMed

    Scarpelli, E M

    1998-08-01

    It is generally held that the terminal lung unit (TLU) is an agglomeration of alveoli that opens into the branching air spaces of respiratory bronchioles, alveolar ducts, and alveolar sacs and that these structures are covered by a continuous thin liquid layer bearing a monomolecular film of surfactants at the open gas-liquid interface. The inherent structural and functional instability given TLUs by a broad liquid surface layer of this nature has been mitigated by the discovery that the TLU surface is in fact an agglomeration of bubbles, a foam (the alveolar surface network) that fills the TLU space and forms ultrathin foam films that 1) impart infrastructural stability to sustain aeration, 2) modulate circulation of surface liquid, both in series and in parallel, throughout the TLU and between TLUs and the liquid surface of conducting airways, 3) modulate surface liquid volume and exchange with interstitial liquid, and 4) sustain gas transfer between conducting airways and pulmonary capillaries throughout the respiratory cycle. The experimental evidence, from discovery to the present, is addressed in this report. Lungs were examined in thorax by stereomicroscopy immediately from the in vivo state at volumes ranging from functional residual capacity to maximal volume (Vmax). Lungs were then excised; bubble topography of all anterior and anterolateral surfaces was reaffirmed and also confirmed for all posterior and posterolateral surfaces. The following additional criteria verify the ubiquitous presence of normal intraalveolar bubbles. 1) Bubbles are absent in conducting airways. 2) Bubbles are stable and stationary in TLUs but can be moved individually by gentle microprobe pressure. 3) Adjoining bubbles move into the external medium through subpleural microincisions; there is no free gas, and vacated spaces are rendered airless. Adjacent bubbles may shift position in situ, while more distal bubbles remain stationary. 4) The position and movement of "large" bubbles identifies them as intraductal bubbles. 5) Transection of the lung reveals analogous bubble occurrence and history in central lung regions. 6) Bubbles become fixed in place and change shape when the lung is dried in air; the original shape and movement are restored when the lung is rewet. 7) All exteriorized bubbles are stable with lamellar (film) surface tension near zero. 8) Intact lungs prepared and processed by the new double-embedding technique reveal the intact TLU bubbles and bubble films. Lungs were also monitored directly by stereomicroscopy to establish their presence, transformations, and apparent function from birth through adulthood, as summarized in the following section. Intraalveolar bubbles and bubble films (the unit structures of the alveolar surface network) have been found in all mammalian species examined to date, including lambs, kids, and rabbit pups and adult mice, rats, rabbits, cats, and pigs. Rabbits were used for the definitive studies. 1) A unit bubble occupies each alveolus and branching airway of the TLU; unit bubbles in clusters correspond with alveolar clusters. 2) The appositions of unit bubble lamellae (films) form a network of liquid channels within the TLUs. The appositions are bubble to bubble (near alveolar entrances, at pores of Kohn, and between ductal bubbles), bubble to epithelial cell surface, and bubble to surface liquid of conducting airways. They rapidly form stable Newtonian black foam films (approximately 7 nm thick) under hydrodynamic conditions expected in vivo. 3) Lamellae of the foam films and bubbles tend to exclude bulk liquid and thus maintain near-zero surface tension. At the same time, the foam film formations--abetted by the constant but small retractive force of tissue recoil--stabilize unit bubble position within the network. 4) Unit bubble mobility in response to applied force increases as liquid accumulates within the network (e.g. (ABSTRACT TRUNCATED)

  3. Determination of regional lung air volume distribution at mid-tidal breathing from computed tomography: a retrospective study of normal variability and reproducibility

    PubMed Central

    2014-01-01

    Background Determination of regional lung air volume has several clinical applications. This study investigates the use of mid-tidal breathing CT scans to provide regional lung volume data. Methods Low resolution CT scans of the thorax were obtained during tidal breathing in 11 healthy control male subjects, each on two separate occasions. A 3D map of air volume was derived, and total lung volume calculated. The regional distribution of air volume from centre to periphery of the lung was analysed using a radial transform and also using one dimensional profiles in three orthogonal directions. Results The total air volumes for the right and left lungs were 1035 +/− 280 ml and 864 +/− 315 ml, respectively (mean and SD). The corresponding fractional air volume concentrations (FAVC) were 0.680 +/− 0.044 and 0.658 +/− 0.062. All differences between the right and left lung were highly significant (p < 0.0001). The coefficients of variation of repeated measurement of right and left lung air volumes and FAVC were 6.5% and 6.9% and 2.5% and 3.6%, respectively. FAVC correlated significantly with lung space volume (r = 0.78) (p < 0.005). FAVC increased from the centre towards the periphery of the lung. Central to peripheral ratios were significantly higher for the right (0.100 +/− 0.007 SD) than the left (0.089 +/− 0.013 SD) (p < 0.0001). Conclusion A technique for measuring the distribution of air volume in the lung at mid-tidal breathing is described. Mean values and reproducibility are described for healthy male control subjects. Fractional air volume concentration is shown to increase with lung size. PMID:25063729

  4. Whole-lung volume and density in spirometrically-gated inspiratory and expiratory CT in systemic sclerosis: correlation with static volumes at pulmonary function tests.

    PubMed

    Camiciottoli, G; Diciotti, S; Bartolucci, M; Orlandi, I; Bigazzi, F; Matucci-Cerinic, M; Pistolesi, M; Mascalchi, M

    2013-03-01

    Spiral low-dose computed tomography (LDCT) permits to measure whole-lung volume and density in a single breath-hold. To evaluate the agreement between static lung volumes measured with LDCT and pulmonary function test (PFT) and the correlation between the LDCT volumes and lung density in restrictive lung disease. Patients with Systemic Sclerosis (SSc) with (n = 24) and without (n = 16) pulmonary involvement on sequential thin-section CT and patients with chronic obstructive pulmonary disease (COPD)(n = 29) underwent spirometrically-gated LDCT at 90% and 10% of vital capacity to measure inspiratory and expiratory lung volumes and mean lung attenuation (MLA). Total lung capacity and residual volume were measured the same day of CT. Inspiratory [95% limits of agreement (95% LoA)--43.8% and 39.2%] and expiratory (95% LoA -45.8% and 37.1%) lung volumes measured on LDCT and PFT showed poor agreement in SSc patients with pulmonary involvement, whereas they were in substantial agreement (inspiratory 95% LoA -14.1% and 16.1%; expiratory 95% LoA -13.5% and 23%) in SSc patients without pulmonary involvement and in inspiratory scans only (95% LoA -23.1% and 20.9%) of COPD patients. Inspiratory and expiratory LDCT volumes, MLA and their deltas differentiated both SSc patients with or without pulmonary involvement from COPD patients. LDCT lung volumes and density were not correlated in SSc patients with pulmonary involvement, whereas they did correlate in SSc without pulmonary involvement and in COPD patients. In restrictive lung disease due to SSc there is poor agreement between static lung volumes measured using LDCT and PFT and the relationship between volume and density values on CT is altered.

  5. Automated segmentation of the lungs from high resolution CT images for quantitative study of chronic obstructive pulmonary diseases

    NASA Astrophysics Data System (ADS)

    Garg, Ishita; Karwoski, Ronald A.; Camp, Jon J.; Bartholmai, Brian J.; Robb, Richard A.

    2005-04-01

    Chronic obstructive pulmonary diseases (COPD) are debilitating conditions of the lung and are the fourth leading cause of death in the United States. Early diagnosis is critical for timely intervention and effective treatment. The ability to quantify particular imaging features of specific pathology and accurately assess progression or response to treatment with current imaging tools is relatively poor. The goal of this project was to develop automated segmentation techniques that would be clinically useful as computer assisted diagnostic tools for COPD. The lungs were segmented using an optimized segmentation threshold and the trachea was segmented using a fixed threshold characteristic of air. The segmented images were smoothed by a morphological close operation using spherical elements of different sizes. The results were compared to other segmentation approaches using an optimized threshold to segment the trachea. Comparison of the segmentation results from 10 datasets showed that the method of trachea segmentation using a fixed air threshold followed by morphological closing with spherical element of size 23x23x5 yielded the best results. Inclusion of greater number of pulmonary vessels in the lung volume is important for the development of computer assisted diagnostic tools because the physiological changes of COPD can result in quantifiable anatomic changes in pulmonary vessels. Using a fixed threshold to segment the trachea removed airways from the lungs to a better extent as compared to using an optimized threshold. Preliminary measurements gathered from patient"s CT scans suggest that segmented images can be used for accurate analysis of total lung volume and volumes of regional lung parenchyma. Additionally, reproducible segmentation allows for quantification of specific pathologic features, such as lower intensity pixels, which are characteristic of abnormal air spaces in diseases like emphysema.

  6. Association between lung function and mental health problems among adults in the United States: findings from the First National Health and Nutrition Examination Survey.

    PubMed

    Goodwin, Renee D; Chuang, Shirley; Simuro, Nicole; Davies, Mark; Pine, Daniel S

    2007-02-15

    The objective of this study was to determine the association between lung function and mental health problems among adults in the United States. Data were drawn from the First National Health and Nutrition Examination Survey (1971-1975), with available information on a representative sample of US adults aged 25-74 years. Lung function was assessed by spirometry, and provisional diagnoses of restrictive and obstructive airway disease were assigned based on percentage of expected forced expiratory volume. Mental health problems were assessed with the General Well-Being scales. Restrictive lung function and obstructive lung function, compared with normal lung function, were each associated with a significantly increased likelihood of mental health problems. After adjustment for differences in demographic characteristics, obstructive lung function was associated with significantly lower overall well-being (p = 0.025), and restrictive lung function was associated with significantly lower overall well-being (p < 0.001), general health (p < 0.0001), vitality (p < 0.0001), and self-control (p = 0.001) and with higher depression (p = 0.002) subscale scores compared with no lung function problems. Consistent with previous findings from clinical and community-based studies, these results extend available data by providing evidence of a link between objectively measured lung function and self-reported mental health problems in a representative sample of community adults. Future studies are needed to determine the mechanisms of these associations.

  7. Experimental evidence of age-related adaptive changes in human acinar airways

    PubMed Central

    Quirk, James D.; Sukstanskii, Alexander L.; Woods, Jason C.; Lutey, Barbara A.; Conradi, Mark S.; Gierada, David S.; Yusen, Roger D.; Castro, Mario

    2015-01-01

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized 3He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized 3He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  8. Automated lung volumetry from routine thoracic CT scans: how reliable is the result?

    PubMed

    Haas, Matthias; Hamm, Bernd; Niehues, Stefan M

    2014-05-01

    Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  9. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less

  10. Post-mortem CT: Hounsfield unit profiles obtained in the lungs with respect to the cause of death assessment.

    PubMed

    Schober, Daniel; Schwendener, Nicole; Zech, Wolf-Dieter; Jackowski, Christian

    2017-01-01

    Segmentation of the lungs using post-mortem computed tomography (PMCT) data was so far not feasible due to post-mortem changes such as internal livores. Recently, an Osirix plug-in has been developed allowing automatically segmenting lungs also in PMCT data. The aim of this study was to investigate if the Hounsfield unit (HU) profiles obtained in PMCT data of the segmented lung tissue present with specific behaviour in relation to the cause of death. In 105 PMCT data sets of forensic cases, the entire lung volumes were segmented using the Mia Lite plug-in on Osirix. HU profiles of the lungs were generated and correlated to cause of death groups as assessed after forensic autopsy (cardiac death, fatal haemorrhage, craniocerebral injury, intoxication, drowning, hypothermia, hanging and suffocation). Especially cardiac death cases, intoxication cases, fatal haemorrhage cases and hypothermia cases showed very specific HU profiles. In drowning, the profiles showed two different behaviours representing wet and dry drowning. HU profiles rather varied in craniocerebral injury cases, hanging cases as well as in suffocation cases. HU profiles of the lungs segmented from PMCT data may support the cause of death diagnosis as they represent specific morphological changes in the lungs such as oedema, congestion or blood loss. Especially in cardiac death, intoxication, fatal haemorrhage, hypothermia and drowning cases, HU profiles may be very supportive for the forensic pathologist.

  11. Use of body plethysmography to measure effect of bimaxillary orthognathic surgery on airway resistance and lung volumes.

    PubMed

    Rezaeetalab, Fariba; Kazemian, Mozhgan; Vaezi, Touraj; Shaban, Barratollah

    2015-12-01

    Bimaxillary orthognathic surgery can cause changes to respiration and the airways. We used body plethysmography to evaluate its effect on airway resistance and lung volumes in 20 patients with class III malocclusions (8 men and 12 women, aged 17 - 32 years). Lung volumes (forced vital capacity; forced inspiratory volume/one second; forced expiratory volume/one second: forced vital capacity; peak expiratory flow; maximum expiratory flow 25-75; maximum inspiratory flow; total lung capacity; residual volume; residual volume:total lung capacity), and airway resistance were evaluated one week before, and six months after, operation. Bimaxillary operations to correct class III malocclusions significantly increased airway resistance, residual volume, total lung capacity, and residual volume:total lung capacity. Other variables also changed after operation but not significantly so. Orthognathic operations should be done with caution in patients who have pre-existing respiratory diseases. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Single-breath CO2 analysis as a predictor of lung volume in a healthy animal model during controlled ventilation.

    PubMed

    Stenz, R I; Grenier, B; Thompson, J E; Arnold, J H

    1998-08-01

    To examine the utility of single-breath CO2 analysis as a measure of lung volume. A prospective, animal cohort study comparing 21 parameters derived from single-breath CO2 analysis with lung volume measurements determined by nitrogen washout in animals during controlled ventilation. An animal laboratory in a university-affiliated medical center. Seven healthy lambs. The single-breath CO2 analysis station consists of a mainstream capnometer, a variable orifice pneumotachometer, a signal processor and computer software with capability for both on- and off-line data analysis. Twenty-one derived components of the CO2 expirogram were evaluated as predictors of lung volume. Lung volume was manipulated by 3 cm H2O incremental increases in positive end-expiratory pressure from 0 to 21 cm H2O, and ranged between 147 and 942 mL. Fifty-five measurements of lung volume were available for comparison with derived variables from the CO2 expirogam. Stepwise linear regression identified four variables that were most predictive of lung volume: a) dynamic lung compliance; b) the slope of phase 3; c) the slope of phase 2 divided by the mixed expired CO2 tension; and d) airway deadspace. The multivariate equation was highly statistically significant and explained 94% of the variance (adjusted r2 =.94, p < .0001). The bias and precision of the calculated lung volume was .00 and 51, respectively. The mean percent difference for the lung volume estimate derived from the single-breath CO2 analysis station was 0.79%. Our data indicate that analysis of the CO2 expirogram can yield accurate information about lung volume. Specifically, four variables derived from a plot of expired CO2 concentration vs. expired volume predict changes in lung volume in healthy lambs with an adjusted coefficient of determination of .94. Prospective application of this technology in the setting of lung injury and rapidly changing physiology is essential in determining the clinical usefulness of the technique.

  13. Convexity, Jensen's inequality, and benefits of noisy or biologically variable life support (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Mutch, W. Alan C.

    2005-05-01

    Life support with a mechanical ventilator is used to manage patients with a variety of lung diseases including acute respiratory distress syndrome (ARDS). Recently, management of ARDS has concentrated on ventilating at lower airway pressure using lower tidal volume. A large international study demonstrated a 22% reduction in mortality with the low tidal volume approach. The potential advantages of adding physiologic noise with fractal characteristics to the respiratory rate and tidal volume as delivered by a mechanical ventilator are discussed. A so-called biologically variable ventilator (BVV), incorporating such noise, has been developed. Here we show that the benefits of noisy ventilation - at lower tidal volumes - can be deduced from a simple probabilistic result known as Jensen"s Inequality. Using the local convexity of the pressure-volume relationship in the lung we demonstrate that the addition of noise results in higher mean tidal volume or lower mean airway pressure. The consequence is enhanced gas exchange or less stress on the lungs, both clinically desirable. Jensen"s Inequality has important considerations in engineering, information theory and thermodynamics. Here is an example of the concept applied to medicine that may have important considerations for the clinical management of critically ill patients. Life support devices, such as mechanical ventilators, are of vital use in critical care units and operating rooms. These devices usually have monotonous output. Improving mechanical ventilators and other life support devices may be as simple as adding noise to their output signals.

  14. Lung Recruitment Assessed by Respiratory Mechanics and Computed Tomography in Patients with Acute Respiratory Distress Syndrome. What Is the Relationship?

    PubMed

    Chiumello, Davide; Marino, Antonella; Brioni, Matteo; Cigada, Irene; Menga, Federica; Colombo, Andrea; Crimella, Francesco; Algieri, Ilaria; Cressoni, Massimo; Carlesso, Eleonora; Gattinoni, Luciano

    2016-06-01

    The assessment of lung recruitability in patients with acute respiratory distress syndrome (ARDS) may be important for planning recruitment maneuvers and setting positive end-expiratory pressure (PEEP). To determine whether lung recruitment measured by respiratory mechanics is comparable with lung recruitment measured by computed tomography (CT). In 22 patients with ARDS, lung recruitment was assessed at 5 and 15 cm H2O PEEP by using respiratory mechanics-based methods: (1) increase in gas volume between two pressure-volume curves (P-Vrs curve); (2) increase in gas volume measured and predicted on the basis of expected end-expiratory lung volume and static compliance of the respiratory system (EELV-Cst,rs); as well as by CT scan: (3) decrease in noninflated lung tissue (CT [not inflated]); and (4) decrease in noninflated and poorly inflated tissue (CT [not + poorly inflated]). The P-Vrs curve recruitment was significantly higher than EELV-Cst,rs recruitment (423 ± 223 ml vs. 315 ± 201 ml; P < 0.001), but these measures were significantly related to each other (R(2) = 0.93; P < 0.001). CT (not inflated) recruitment was 77 ± 86 g and CT (not + poorly inflated) was 80 ± 67 g (P = 0.856), and these measures were also significantly related to each other (R(2) = 0.20; P = 0.04). Recruitment measured by respiratory mechanics was 54 ± 28% (P-Vrs curve) and 39 ± 25% (EELV-Cst,rs) of the gas volume at 5 cm H2O PEEP. Recruitment measured by CT scan was 5 ± 5% (CT [not inflated]) and 6 ± 6% (CT [not + poorly inflated]) of lung tissue. Respiratory mechanics and CT measure-under the same term, "recruitment"-two different entities. The respiratory mechanics-based methods include gas entering in already open pulmonary units that improve their mechanical properties at higher PEEP. Consequently, they can be used to assess the overall improvement of inflation. The CT scan measures the amount of collapsed tissue that regains inflation. Clinical trial registered with www.clinicaltrials.gov (NCT00759590).

  15. Physiologic Basis for Improved Pulmonary Function after Lung Volume Reduction

    PubMed Central

    Fessler, Henry E.; Scharf, Steven M.; Ingenito, Edward P.; McKenna, Robert J.; Sharafkhaneh, Amir

    2008-01-01

    It is not readily apparent how pulmonary function could be improved by resecting portions of the lung in patients with emphysema. In emphysema, elevation in residual volume relative to total lung capacity reduces forced expiratory volumes, increases inspiratory effort, and impairs inspiratory muscle mechanics. Lung volume reduction surgery (LVRS) better matches the size of the lungs to the size of the thorax containing them. This restores forced expiratory volumes and the mechanical advantage of the inspiratory muscles. In patients with heterogeneous emphysema, LVRS may also allow space occupied by cysts to be reclaimed by more normal lung. Newer, bronchoscopic methods for lung volume reduction seek to achieve similar ends by causing localized atelectasis, but may be hindered by the low collateral resistance of emphysematous lung. Understanding of the mechanisms of improved function after LVRS can help select patients more likely to benefit from this approach. PMID:18453348

  16. Measurement of lung volumes from supine portable chest radiographs.

    PubMed

    Ries, A L; Clausen, J L; Friedman, P J

    1979-12-01

    Lung volumes in supine nonambulatory patients are physiological parameters often difficult to measure with current techniques (plethysmograph, gas dilution). Existing radiographic methods for measuring lung volumes require standard upright chest radiographs. Accordingly, in 31 normal supine adults, we determined helium-dilution functional residual and total lung capacities and measured planimetric lung field areas (LFA) from corresponding portable anteroposterior and lateral radiographs. Low radiation dose methods, which delivered less than 10% of that from standard portable X-ray technique, were utilized. Correlation between lung volume and radiographic LFA was highly significant (r = 0.96, SEE = 10.6%). Multiple-step regressions using height and chest diameter correction factors reduced variance, but weight and radiographic magnification factors did not. In 17 additional subjects studied for validation, the regression equations accurately predicted radiographic lung volume. Thus, this technique can provide accurate and rapid measurement of lung volume in studies involving supine patients.

  17. Normal expiratory flow rate and lung volumes in patients with combined emphysema and interstitial lung disease: a case series and literature review.

    PubMed

    Heathcote, Karen L; Cockcroft, Donald W; Fladeland, Derek A; Fenton, Mark E

    2011-01-01

    Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  18. Assessment of volume reduction effect after lung lobectomy for cancer.

    PubMed

    Ueda, Kazuhiro; Murakami, Junichi; Sano, Fumiho; Hayashi, Masataro; Kobayashi, Taiga; Kunihiro, Yoshie; Hamano, Kimikazu

    2015-07-01

    Lung lobectomy results in an unexpected improvement of the remaining lung function in some patients with moderate-to-severe emphysema. Because the lung function is the main limiting factor for therapeutic decision making in patients with lung cancer, it may be advantageous to identify patients who may benefit from the volume reduction effect, particularly those with a poor functional reserve. We measured the regional distribution of the emphysematous lung and normal lung using quantitative computed tomography in 84 patients undergoing lung lobectomy for cancer between January 2010 and December 2012. The volume reduction effect was diagnosed using a combination of radiologic and spirometric parameters. Eight patients (10%) were favorably affected by the volume reduction effect. The forced expiratory volume in one second increased postoperatively in these eight patients, whereas the forced vital capacity was unchanged, thus resulting in an improvement of the airflow obstruction postoperatively. This improvement was not due to a compensatory expansion of the remaining lung but was associated with a relative decrease in the forced end-expiratory lung volume. According to a multivariate analysis, airflow obstruction and the forced end-expiratory lung volume were independent predictors of the volume reduction effect. A combined assessment using spirometry and quantitative computed tomography helped to characterize the respiratory dynamics underlying the volume reduction effect, thus leading to the identification of novel predictors of a volume reduction effect after lobectomy for cancer. Verification of our results by a large-scale prospective study may help to extend the indications for lobectomy in patients with oncologically resectable lung cancer who have a marginal pulmonary function. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Lung volumes and emphysema in smokers with interstitial lung abnormalities.

    PubMed

    Washko, George R; Hunninghake, Gary M; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C; Estépar, Raúl San José; Lynch, David A; Brehm, John M; Andriole, Katherine P; Diaz, Alejandro A; Khorasani, Ramin; D'Aco, Katherine; Sciurba, Frank C; Silverman, Edwin K; Hatabu, Hiroto; Rosas, Ivan O

    2011-03-10

    Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; P<0.001) and a lower percentage of emphysema defined by lung-attenuation thresholds of -950 Hounsfield units (-3%; 95% CI, -4 to -2; P<0.001) and -910 Hounsfield units (-10%; 95% CI, -12 to -8; P<0.001). As compared with participants without interstitial lung abnormalities, those with abnormalities were more likely to have a restrictive lung deficit (total lung capacity <80% of the predicted value; odds ratio, 2.3; 95% CI, 1.4 to 3.7; P<0.001) and were less likely to meet the diagnostic criteria for chronic obstructive pulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation; ClinicalTrials.gov number, NCT00608764.).

  20. Lung volume quantified by MRI reflects extracellular-matrix deposition and altered pulmonary function in bleomycin models of fibrosis: effects of SOM230.

    PubMed

    Egger, Christine; Gérard, Christelle; Vidotto, Nella; Accart, Nathalie; Cannet, Catherine; Dunbar, Andrew; Tigani, Bruno; Piaia, Alessandro; Jarai, Gabor; Jarman, Elizabeth; Schmid, Herbert A; Beckmann, Nicolau

    2014-06-15

    Idiopathic pulmonary fibrosis is a progressive and lethal disease, characterized by loss of lung elasticity and alveolar surface area, secondary to alveolar epithelial cell injury, reactive inflammation, proliferation of fibroblasts, and deposition of extracellular matrix. The effects of oropharyngeal aspiration of bleomycin in Sprague-Dawley rats and C57BL/6 mice, as well as of intratracheal administration of ovalbumin to actively sensitized Brown Norway rats on total lung volume as assessed noninvasively by magnetic resonance imaging (MRI) were investigated here. Lung injury and volume were quantified by using nongated or respiratory-gated MRI acquisitions [ultrashort echo time (UTE) or gradient-echo techniques]. Lung function of bleomycin-challenged rats was examined additionally using a flexiVent system. Postmortem analyses included histology of collagen and hydroxyproline assays. Bleomycin induced an increase of MRI-assessed total lung volume, lung dry and wet weights, and hydroxyproline content as well as collagen amount. In bleomycin-treated rats, gated MRI showed an increased volume of the lung in the inspiratory and expiratory phases of the respiratory cycle and a temporary decrease of tidal volume. Decreased dynamic lung compliance was found in bleomycin-challenged rats. Bleomycin-induced increase of MRI-detected lung volume was consistent with tissue deposition during fibrotic processes resulting in decreased lung elasticity, whereas influences by edema or emphysema could be excluded. In ovalbumin-challenged rats, total lung volume quantified by MRI remained unchanged. The somatostatin analog, SOM230, was shown to have therapeutic effects on established bleomycin-induced fibrosis in rats. This work suggests MRI-detected total lung volume as readout for tissue-deposition in small rodent bleomycin models of pulmonary fibrosis. Copyright © 2014 the American Physiological Society.

  1. Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography.

    PubMed

    Denison, D M; Morgan, M D; Millar, A B

    1986-08-01

    This study was intended to discover how well computed tomography could recover the volume and weight of lung like foams in a body like shell, and then how well it could recover the volume and weight of the lungs in supine man. Model thoraces were made with various loaves of bread submerged in water. Computed tomography scans recovered the volume of the model lungs (true volume range 250-12,500 ml) within +0.2 (SD 68) ml and their weights (true range 72-3125 g) within +30 (78) g. Scans also recovered successive injections of 50 ml of water, within +/- 5 ml. Scans in 12 healthy supine men recovered their vital capacities, total lung capacities (TLC), and predicted tissue volumes with comparable accuracy. At total lung capacity the mean tissue volume of single lungs was 431 (64) ml and at residual volume (RV) it was 427 (63) ml. Tissue volume was then used to match inspiratory and expiratory slices and calculate regional ventilation. Throughout the mid 90% of lung the RV/TLC ratio was fairly constant--mean 21% (5%). New methods of presenting such regional data graphically and automatically are also described.

  2. Initial mechanical ventilator settings and lung protective ventilation in the ED.

    PubMed

    Wilcox, Susan R; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey; Seigel, Todd A

    2016-08-01

    Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Poster — Thur Eve — 70: Automatic lung bronchial and vessel bifurcations detection algorithm for deformable image registration assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labine, Alexandre; Carrier, Jean-François; Bedwani, Stéphane

    2014-08-15

    Purpose: To investigate an automatic bronchial and vessel bifurcations detection algorithm for deformable image registration (DIR) assessment to improve lung cancer radiation treatment. Methods: 4DCT datasets were acquired and exported to Varian treatment planning system (TPS) EclipseTM for contouring. The lungs TPS contour was used as the prior shape for a segmentation algorithm based on hierarchical surface deformation that identifies the deformed lungs volumes of the 10 breathing phases. Hounsfield unit (HU) threshold filter was applied within the segmented lung volumes to identify blood vessels and airways. Segmented blood vessels and airways were skeletonised using a hierarchical curve-skeleton algorithm basedmore » on a generalized potential field approach. A graph representation of the computed skeleton was generated to assign one of three labels to each node: the termination node, the continuation node or the branching node. Results: 320 ± 51 bifurcations were detected in the right lung of a patient for the 10 breathing phases. The bifurcations were visually analyzed. 92 ± 10 bifurcations were found in the upper half of the lung and 228 ± 45 bifurcations were found in the lower half of the lung. Discrepancies between ten vessel trees were mainly ascribed to large deformation and in regions where the HU varies. Conclusions: We established an automatic method for DIR assessment using the morphological information of the patient anatomy. This approach allows a description of the lung's internal structure movement, which is needed to validate the DIR deformation fields for accurate 4D cancer treatment planning.« less

  4. Decrease of pulmonary blood flow detected by phase contrast MRI is correlated with a decrease in lung volume and increase of lung fibrosis area determined by computed tomography in interstitial lung disease.

    PubMed

    Tsuchiya, Nanae; Yamashiro, Tsuneo; Murayama, Sadayuki

    2016-09-01

    Lung volume and pulmonary blood flow decrease in patients with interstitial lung disease (ILD). The purpose of this study was to assess the relationship between pulmonary blood flow and lung volume in ILD patients. This research was approved by the institutional review board. Twenty-seven patients (9 men, 18 women; mean age, 59 years; range, 24-79 years) with ILD were included. Blood flow was assessed in the pulmonary trunk and the left and right pulmonary arteries by phase contrast magnetic resonance imaging (MRI). Lung volume and the computed tomography (CT) visual score that indicates the severity of ILD were assessed on the left and right sides by thin-section CT scanning. Lung volume was automatically measured by lung analysis software (VINCENT Ver. 4). The CT visual score was measured by averaging the proportion of abnormal lung area at five anatomic levels. Pearson's correlation coefficient was used to determine the relationship between pulmonary blood flow and lung volume. Pulmonary blood flow showed a significant correlation with lung volume (both: r=0.52, p=0.006; left: r=0.61, p=0.001; right: r=0.54, p=0.004) and CT visual score (both: r=-0.39, p=0.04; left: r=-0.48, p=0.01; right: r=-0.38, p=0.04). Partial correlation analysis, controlled for age, height and weight, showed a significant correlation between pulmonary blood flow and lung volume (both: r=0.43, p=0.03; left: r=0.55, p=0.005; right: r=0.48, p=0.01) and CT visual score (both: r=-0.58, p=0.003; left: r=-0.51, p=0.01; right: r=-0.64, p=0.001). In ILD, reduced pulmonary blood flow is associated with reduced lung volume and increased abnormal lung area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. The effect of minimally invasive surgical repair on the lung volumes of patients with pectus excavatum.

    PubMed

    Sengul, Aysen Taslak; Sahin, Bunyamin; Celenk, Cetin; Basoglu, Ahmet; Sengul, Bilal

    2014-04-01

    To assess the increase in lung volume after Nuss surgery in patients with pectus excavatum (PE) by using stereological methods and to evaluate the correlation between the lung volume and spirometry findings. Twenty patients, treated for PE between 2008 and 2010, were evaluated prospectively. They underwent preoperative chest radiography, computed thorax tomography (CTT), and spirometry. Thereafter, the Haller index was calculated for each patient. In the third postoperative month, CTT and spirometry were repeated.Lung volumes and volume fractions were evaluated using CTT images, applying the Cavalieri principle for stereological methods. Then the correlation between the pre- and postoperative values of the lung volumes with spirometry findings was determined. Volumes of the right and left lungs were calculated stereologically, using CTT images. Postoperative volume increase of ∼417.6 ± 747.6 mL was detected. The maximum volume increase was observed in the left lung. In the postoperative period, the total volume increase and the volume increase detected in the left lung were found to be statistically significant (p < 0.05).The preoperative correlation coefficients (r) for forced vital capacity, forced expiratory volume in 1 second, and forced expiratory flow 25 to 75% were 0.67, 0.68, and 0.61, respectively; the postoperative r figures were 0.43, 0.42, and 0.35, respectively. Although there was a strong correlation between the preoperative lung volume and spirometry findings (p < 0.05), no correlation was observed between the postoperative lung volume and spirometry findings (p > 0.05). Postoperative pulmonary volume increase occurs in patients with PE after Nuss surgery. However, postoperative spirometry findings may not reflect morphological improvement because pain restricts thoracic movements. Therefore, in patients with PE, quantitative evaluation of the results of surgical repair is possible using the CTT images through a combination of stereological methods. Georg Thieme Verlag KG Stuttgart · New York.

  6. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease.

    PubMed

    Pinheiro de Oliveira, Roselaine; Hetzel, Marcio Pereira; dos Anjos Silva, Mauro; Dallegrave, Daniele; Friedman, Gilberto

    2010-01-01

    Mechanical ventilation (MV) with high tidal volumes may induce or aggravate lung injury in critical ill patients. We compared the effects of a protective versus a conventional ventilatory strategy, on systemic and lung production of tumor necrosis factor-alpha (TNF-alpha) and interleukin-8 (IL-8) in patients without lung disease. Patients without lung disease and submitted to mechanical ventilation admitted to one trauma and one general adult intensive care unit of two different university hospitals were enrolled in a prospective randomized-control study. Patients were randomized to receive MV either with tidal volume (VT) of 10 to 12 ml/kg predicted body weight (high VT group) (n = 10) or with VT of 5 to 7 ml/kg predicted body weight (low VT group) (n = 10) with an oxygen inspiratory fraction (FIO2) enough to keep arterial oxygen saturation >90% with positive end-expiratory pressure (PEEP) of 5 cmH2O during 12 hours after admission to the study. TNF-alpha and IL-8 concentrations were measured in the serum and in the bronchoalveolar lavage fluid (BALF) at admission and after 12 hours of study observation time. Twenty patients were enrolled and analyzed. At admission or after 12 hours there were no differences in serum TNF-alpha and IL-8 between the two groups. While initial analysis did not reveal significant differences, standardization against urea of logarithmic transformed data revealed that TNF-alpha and IL-8 levels in bronchoalveolar lavage (BAL) fluid were stable in the low VT group but increased in the high VT group (P = 0.04 and P = 0.03). After 12 hours, BALF TNF-alpha (P = 0.03) and BALF IL-8 concentrations (P = 0.03) were higher in the high VT group than in the low VT group. The use of lower tidal volumes may limit pulmonary inflammation in mechanically ventilated patients even without lung injury. NCT00935896.

  7. Short-term reproducibility of computed tomography-based lung density measurements in alpha-1 antitrypsin deficiency and smokers with emphysema.

    PubMed

    Shaker, S B; Dirksen, A; Laursen, L C; Maltbaek, N; Christensen, L; Sander, U; Seersholm, N; Skovgaard, L T; Nielsen, L; Kok-Jensen, A

    2004-07-01

    To study the short-term reproducibility of lung density measurements by multi-slice computed tomography (CT) using three different radiation doses and three reconstruction algorithms. Twenty-five patients with smoker's emphysema and 25 patients with alpha1-antitrypsin deficiency underwent 3 scans at 2-week intervals. Low-dose protocol was applied, and images were reconstructed with bone, detail, and soft algorithms. Total lung volume (TLV), 15th percentile density (PD-15), and relative area at -910 Hounsfield units (RA-910) were obtained from the images using Pulmo-CMS software. Reproducibility of PD-15 and RA-910 and the influence of radiation dose, reconstruction algorithm, and type of emphysema were then analysed. The overall coefficient of variation of volume adjusted PD-15 for all combinations of radiation dose and reconstruction algorithm was 3.7%. The overall standard deviation of volume-adjusted RA-910 was 1.7% (corresponding to a coefficient of variation of 6.8%). Radiation dose, reconstruction algorithm, and type of emphysema had no significant influence on the reproducibility of PD-15 and RA-910. However, bone algorithm and very low radiation dose result in overestimation of the extent of emphysema. Lung density measurement by CT is a sensitive marker for quantitating both subtypes of emphysema. A CT-protocol with radiation dose down to 16 mAs and soft or detail reconstruction algorithm is recommended.

  8. Dosimetric comparison between 10MV-FFF and 6MV-FFF for lung SBRT

    NASA Astrophysics Data System (ADS)

    Durmus, I. F.; Atalay, E. D.

    2017-02-01

    Plans were prepared by using same non-coplanar fields and physical parameters in 6MV-FFF and 10MV-FFF energies for fourteen lung Stereotactic Body Radio Therapy (SBRT) patients. In two plans which have different energies, critic organ doses, PTV doses, quality of plans (Gradient Index (GI), Homogeneity Index (HI), Conformity Index (CI)) and Monitor Unit (MU) values were compared. Quality controls were performed with 2D-Array Iba MatriXX Evolution® dosimetry system for each plans. As a results, plan with 6MV-FFF energy give better results in terms of CI and GI values. In this way, when more conformal dose distributions were provided, there was a rapid dose decrease at out of target volume. Lower MU values were obtained in plans which was prepared with 10MV-FFF energy. In plan with 10MV-FFF energy lower MU values are obtained. Lower values in heart and spinal cord doses are founded and better results are obtained in Body and Ipsa-Lung V5, V10, V20 values with 6MV-FFF energies. When differences were very small in volume which were taken low dose (V5), these differences increased in volume which were taken high dose (V20). High dose rates can be reached by both two unfiltered energies and can be used in lung SBRT.

  9. Accurate heterogeneous dose calculation for lung cancer patients without high‐resolution CT densities

    PubMed Central

    Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.

    2009-01-01

    The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf

  10. Intravenous superoxide dismutase as a protective agent to prevent impairment of lung function induced by high tidal volume ventilation.

    PubMed

    Wu, Nan-Chun; Liao, Fan-Ting; Cheng, Hao-Min; Sung, Shih-Hsien; Yang, Yu-Chun; Wang, Jiun-Jr

    2017-07-26

    Positive-pressure mechanical ventilation is essential in assisting patients with respiratory failure in the intensive care unit and facilitating oxygenation in the operating room. However, it was also recognized as a primary factor leading to hospital-acquired pulmonary dysfunction, in which pulmonary oxidative stress and lung inflammation had been known to play important roles. Cu/Zn superoxide dismutase (SOD) is an important antioxidant, and possesses anti-inflammatory capacity. In this study, we aimed to study the efficacy of Cu/Zn SOD, administered intravenously during high tidal volume (HTV) ventilation, to prevent impairment of lung function. Thirty-eight male Sprague-Dawley rats were divided into 3 groups: 5 h ventilation with (A) low tidal volume (LTV; 8 mL/kg; n = 10), (B) high tidal volume (HTV; 18 mL/kg; n = 14), or (C) HTV and intravenous treatment of Cu/Zn SOD at a dose of 1000 U/kg/h (HTV + SOD; n = 14). Lung function was evaluated both at baseline and after 5-h ventilation. Lung injury was assessed by histological examination, lung water and protein contents in the bronchoalveolar lavage fluid (BALF). Pulmonary oxidative stress was examined by concentrations of methylguanidine (MG) and malondialdehyde (MDA) in BALF, and antioxidative activity by protein expression of glutathione peroxidase-1 (GPx-1) in the lung. Severity of lung inflammation was evaluated by white blood cell and differential count in BALF, and protein expression of inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and mRNA expression of nuclear factor-κB (NF-κB) in the lung. We also examined protein expression of surfactant protein (SP)-A and D and we measured hourly changes in serum nitric oxide (NO) level. Five hours of LTV ventilation did not induce a major change in lung function, whereas 5 h of HTV ventilation induced apparent combined restrictive and obstructive lung disorder, together with increased pulmonary oxidative stress, decreased anti-oxidative activity and increased lung inflammation (P < 0.05). HTV ventilation also decreased SP-A and SP-D expression and suppressed serum NO level during the time course of ventilation. Cu/Zn SOD administered intravenously during HTV ventilation effectively reversed associated pulmonary oxidative stress and lung inflammation (P < 0.05); moreover, it preserved SP-A and SP-D expressions in the lung and increased serum nitric oxide (NO) level, enhancing vascular NO bioavailability. HTV ventilation can induce combined restrictive and obstructive lung disorders. Intravenous administration of Cu/Zn SOD during HTV ventilation can prevent lung function impairment and lung injury via reducing pulmonary oxidative stress and lung inflammation, preserving pulmonary surfactant expression, and enhancing vascular NO bioavailability.

  11. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio.

    PubMed

    Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi

    2018-06-01

    To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP  ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.

  12. No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography.

    PubMed

    Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M

    2010-07-01

    We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10 degrees ) mode up to 60 degrees. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (V(T))]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived V(T) performed in all patients during three predefined positions (supine, 60 degrees-left dependent and 60 degrees-right-dependent) showed a significant correlation between V(T) in supine, left and right lateral positions with the corresponding AUs (r(2) = 0.356, P<0.05). Changes in V(T) were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of V(T) with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients.

  13. No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography

    PubMed Central

    Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M

    2010-01-01

    We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10°) mode up to 60°. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (VT)]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived VT performed in all patients during three predefined positions (supine, 60°-left dependent and 60°-right-dependent) showed a significant correlation between VT in supine, left and right lateral positions with the corresponding AUs (r2 = 0·356, P<0·05). Changes in VT were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of VT with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients. PMID:20491842

  14. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy.

    PubMed

    Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona

    2015-12-01

    The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Twenty SBRT patients, ten lung cases and ten liver cases, were retrospectively selected for this study. Treatment plans were optimized on average intensity projection (AIP) CTs using 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT). Afterwards, the plans were copied to the planning CTs (PCT), maximum intensity projection (MIP) and mid-ventilation (MidV) CT datasets and dose was recalculated keeping all beam parameters and monitor units unchanged. Ipsilateral lung and liver volumes and dosimetric parameters for PTV (Dmean, D2, D98, D95), ipsilateral lung and liver (Dmean, V30, V20, V10) were determined and statistically analysed using Wilcoxon test. Significant but small mean differences were found for PTV dose between the CTs (lung SBRT: ≤2.5 %; liver SBRT: ≤1.6 %). MIPs achieved the smallest lung and the largest liver volumes. OAR mean doses in MIP plans were distinctly smaller than in the other CT datasets. Furthermore, overlapping of tumors with the diaphragm results in underestimated ipsilateral lung dose in MIP plans. Best agreement was found between AIP and MidV (lung SBRT). Overall, differences in liver SBRT were smaller than in lung SBRT and VMAT plans achieved slightly smaller differences than 3D-CRT plans. Only small differences were found for PTV parameters between the four CT datasets. Larger differences occurred for the doses to organs at risk (ipsilateral lung, liver) especially for MIP plans. No relevant differences were observed between 3D-CRT or VMAT plans. MIP CTs are not appropriate for OAR dose assessment. PCT, AIP and MidV resulted in similar doses. If a 4DCT is acquired PCT can be omitted using AIP or MidV for treatment planning.

  15. Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC).

    PubMed

    Cheung, Patrick C F; Sixel, Katharina E; Tirona, Romeo; Ung, Yee C

    2003-12-01

    The active breathing control (ABC) device allows for temporary immobilization of respiratory motion by implementing a breath hold at a predefined relative lung volume and air flow direction. The purpose of this study was to quantitatively evaluate the ability of the ABC device to immobilize peripheral lung tumors at a reproducible position, increase total lung volume, and thereby reduce lung mass within the planning target volume (PTV). Ten patients with peripheral non-small-cell lung cancer tumors undergoing radiotherapy had CT scans of their thorax with and without ABC inspiration breath hold during the first 5 days of treatment. Total lung volumes were determined from the CT data sets. Each peripheral lung tumor was contoured by one physician on all CT scans to generate gross tumor volumes (GTVs). The lung density and mass contained within a 1.5-cm PTV margin around each peripheral tumor was calculated using CT numbers. Using the center of the GTV from the Day 1 ABC scan as the reference, the displacement of subsequent GTV centers on Days 2 to 5 for each patient with ABC applied was calculated in three dimensions. With the use of ABC inspiration breath hold, total lung volumes increased by an average of 42%. This resulted in an average decrease in lung mass of 18% within a standard 1.5-cm PTV margin around the GTV. The average (+/- standard deviation) displacement of GTV centers with ABC breath hold applied was 0.3 mm (+/- 1.8 mm), 1.2 mm (+/- 2.3 mm), and 1.1 mm (+/- 3.5 mm) in the lateral direction, anterior-posterior direction, and superior-inferior direction, respectively. Results from this study indicate that there remains some inter-breath hold variability in peripheral lung tumor position with the use of ABC inspiration breath hold, which prevents significant PTV margin reduction. However, lung volumes can significantly increase, thereby decreasing the mass of lung within a standard PTV.

  16. Methods for Measuring Lung Volumes: Is There a Better One?

    PubMed

    Tantucci, Claudio; Bottone, Damiano; Borghesi, Andrea; Guerini, Michele; Quadri, Federico; Pini, Laura

    2016-01-01

    Accurate measurement of lung volumes is of paramount importance to establish the presence of ventilatory defects and give insights for diagnostic and/or therapeutic purposes. It was the aim of this study to measure lung volumes in subjects with respiratory disorders and in normal controls by 3 different techniques (plethysmographic, dilutional and radiographic methods), in an attempt to clarify the role of each of them in performing such a task, without any presumptive 'a priori' superiority of one method above others. Patients andMethods: In different groups of subjects with obstructive and restrictive ventilatory defects and in a normal control group, total lung capacity, functional residual capacity (FRC) and residual volume were measured by body plethysmography, multi-breath helium (He) dilution and radiographic CT scan method with spirometric gating. The 3 methods gave comparable results in normal subjects and in patients with a restrictive defect. In patients with an obstructive defect, CT scan and plethysmography showed similar lung volumes, while on average significantly lower lung volumes were obtained with the He dilution technique. Taking into account that the He dilution technique does primarily measure FRC during tidal breathing, our data suggest that in some patients with an obstructive defect, a number of small airways can be functionally closed at end-expiratory lung volume, preventing He to reach the lung regions subserved by these airways. In all circumstances, both CT scan with spirometric gating and plethysmographic methods provide similar values of lung volumes. In contrast, the He dilution method can measure lower lung volumes in some patients with chronic airflow obstruction. © 2016 S. Karger AG, Basel.

  17. Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy.

    PubMed

    Dane, D Merrill; Yan, Xiao; Tamhane, Rahul M; Johnson, Robert L; Estrera, Aaron S; Hogg, Deborah C; Hogg, Richard T; Hsia, Connie C W

    2004-03-01

    To determine whether all-trans retinoic acid (RA) treatment enhances lung function during compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 3 mo, transpulmonary pressure (TPP)-lung volume relationship, diffusing capacities for carbon monoxide and nitric oxide, cardiac output, and septal volume (V(tiss-RB)) were measured under anesthesia by a rebreathing technique at two lung volumes. Lung air and tissue volumes (V(air-CT) and V(tiss-CT)) were also measured from high-resolution computerized tomographic (CT) scans at a constant TPP. In RA-treated dogs compared with controls, TPP-lung volume relationships were similar. Diffusing capacities for carbon monoxide and nitric oxide were significantly impaired at a lower lung volume but similar at a high lung volume. Whereas V(tiss-RB) was significantly lower at both lung volumes in RA-treated animals, V(air-CT) and V(tiss-CT) were not different between groups; results suggest uneven distribution of ventilation consistent with distortion of alveolar geometry and/or altered small airway function induced by RA. We conclude that RA does not improve resting pulmonary function during the early months after R-PNX despite histological evidence of its action in enhancing alveolar cellular growth in the remaining lung.

  18. Chronic Hypoxia Accentuates Dysanaptic Lung Growth.

    PubMed

    Llapur, Conrado J; Martínez, Myriam R; Grassino, Pedro T; Stok, Ana; Altieri, Héctor H; Bonilla, Federico; Caram, María M; Krowchuk, Natasha M; Kirby, Miranda; Coxson, Harvey O; Tepper, Robert S

    2016-08-01

    Adults born and raised at high altitudes have larger lung volumes and greater pulmonary diffusion capacity compared with adults at low altitude; however, it remains unclear whether the air and tissue volumes have comparable increases and whether there is a difference in airway size. To assess the effect of chronic hypoxia on lung growth using in vivo high-resolution computed tomography measurements. Healthy adults born and raised at moderate altitude (2,000 m above sea level; n = 19) and at low altitude (400 m above sea level; n = 23) underwent high-resolution computed tomography. Differences in total lung, air, and tissue volume, mean lung density, as well as airway lumen and wall areas in anatomically matched airways were compared between groups. No significant differences for age, sex, weight, or height were found between the two groups (P > 0.05). In a multivariate regression model, altitude was a significant contributor for total lung volume (P = 0.02), air volume (P = 0.03), and tissue volume (P = 0.03), whereby the volumes were greater for the moderate- versus the low-altitude group. However, altitude was not a significant contributor for mean lung density (P = 0.35) or lumen and wall areas in anatomically matched segmental, subsegmental, and subsubsegmental airways. Our findings suggest that the adult lung did not increase lung volume later in life by expansion of an existing number of alveoli, but rather from increased alveolarization early in life. In addition, chronic hypoxia accentuates dysanaptic lung growth by increasing the lung parenchyma but not the airways.

  19. TH-CD-202-06: A Method for Characterizing and Validating Dynamic Lung Density Change During Quiet Respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, T; Ruan, D; Heinrich, M

    2016-06-15

    Purpose: To obtain a functional relationship that calibrates the lung tissue density change under free breathing conditions through correlating Jacobian values to the Hounsfield units. Methods: Free-breathing lung computed tomography images were acquired using a fast helical CT protocol, where 25 scans were acquired per patient. Using a state-of-the-art deformable registration algorithm, a set of the deformation vector fields (DVF) was generated to provide spatial mapping from the reference image geometry to the other free-breathing scans. These DVFs were used to generate Jacobian maps, which estimate voxelwise volume change. Subsequently, the set of 25 corresponding Jacobian and voxel intensity inmore » Hounsfield units (HU) were collected and linear regression was performed based on the mass conservation relationship to correlate the volume change to density change. Based on the resulting fitting coefficients, the tissues were classified into parenchymal (Type I), vascular (Type II), and soft tissue (Type III) types. These coefficients modeled the voxelwise density variation during quiet breathing. The accuracy of the proposed method was assessed using mean absolute difference in HU between the CT scan intensities and the model predicted values. In addition, validation experiments employing a leave-five-out method were performed to evaluate the model accuracy. Results: The computed mean model errors were 23.30±9.54 HU, 29.31±10.67 HU, and 35.56±20.56 HU, respectively, for regions I, II, and III, respectively. The cross validation experiments averaged over 100 trials had mean errors of 30.02 ± 1.67 HU over the entire lung. These mean values were comparable with the estimated CT image background noise. Conclusion: The reported validation experiment statistics confirmed the lung density modeling during free breathing. The proposed technique was general and could be applied to a wide range of problem scenarios where accurate dynamic lung density information is needed. This work was supported in part by NIH R01 CA0096679.« less

  20. The measurement of lung volumes using body plethysmography and helium dilution methods in COPD patients: a correlation and diagnosis analysis.

    PubMed

    Tang, Yongjiang; Zhang, Mingke; Feng, Yulin; Liang, Binmiao

    2016-11-23

    Chronic obstructive pulmonary disease (COPD) is a chronic airway disease characterized by persistent airflow limitation. Moreover, lung hyperinflation evaluated by lung volumes is also the key pathophysiologic process during COPD progression. Nevertheless, there is still no preferred method to evaluate lung volumes. For this study, we recruited 170 patients with stable COPD to assess lung volumes stratified by airflow limitation severity. Lung volumes including residual volume (RV) and total lung capacity (TLC) were determined by both body plethysmography and helium dilution methods. The discrepancies between these two methods were recorded as ΔRV%pred, ΔTLC%pred, and ΔRV/TLC. We found that ΔRV%pred, ΔTLC%pred, and ΔRV/TLC increased significantly with the severity of COPD. The differences of lung capacity between these two methods were negatively correlated with FEV 1 %pred, and diffusing capacity for carbon monoxide (D L CO%pred). Moreover, the receiver operating characteristic (ROC) for ΔTLC%pred to distinguish severe COPD from non-severe COPD had an area under curve (AUC) of 0.886. The differences of lung volume parameters measured by body plethysmography and helium dilution methods were associated with airflow limitation and can effectively differentiate COPD severity, which may be a supportive method to assess the lung function of stable COPD patients.

  1. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glide-Hurst, Carri K.; Gopan, Ellen; Department of Radiation Oncology Wayne State University, Detroit, MI

    2010-07-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroidmore » position was <2.0 mm. Interfraction population variability was 3.6-6.7 mm (systematic) and 3.1-3.9 mm (random) for the GTV centroid and 1.0-3.3 mm (systematic) and 1.5-2.6 mm (random) for the lungs. Tumor volume regressed 44.6% {+-} 23.2%. Gross tumor volume border variability was patient specific and demonstrated anisotropic shape change in some subjects. Interfraction GTV positional variability was associated with tumor volume regression and contralateral lung volume (p < 0.05). Inter-breath-hold reproducibility was unaffected by time point in the treatment course (p > 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.« less

  2. [Lung protective ventilation - pathophysiology and diagnostics].

    PubMed

    Uhlig, Stefan; Frerichs, Inéz

    2008-06-01

    Mechanical ventilation may lead to lung injury depending on the ventilatory settings (e.g. pressure amplitudes, endexpiratory pressures, frequency) and the length of mechanical ventilation. Particularly in the inhomogeneously injured lungs of ARDS patients, alveolar overextension results in volutrauma, cyclic opening and closure of alveolar units in atelectrauma. Particularly important appears to be the fact that these processes may also cause biotrauma, i.e. the ventilator-induced hyperactivation of inflammatory responses in the lung. These side effects are reduced, but not eliminated with the currently recommended ventilation strategy with a tidal volume of 6 ml/kg idealized body weight. It is our hope that in the future optimization of ventilator settings will be facilated by bedside monitoring of novel indices of respiratory mechanics such as the stress index or the Slice technique, and by innovative real-time imaging technologies such as electrical impedance tomography.

  3. Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants.

    PubMed

    van der Burg, Pauline S; Miedema, Martijn; de Jongh, Frans H; Frerichs, Inez; van Kaam, Anton H

    2014-06-01

    Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and whole lung volume changes using electrical impedance tomography and respiratory inductive plethysmography. A prospective, single-center, observational, nonrandomized study. The study was conducted in a neonatal ICU in the Netherlands. High-frequency ventilated preterm infants with respiratory distress syndrome. Cross-sectional and whole lung volume changes were continuously and simultaneously measured by, respectively, electrical impedance tomography and respiratory inductive plethysmography during a stepwise recruitment procedure. End-expiratory lung volume changes were assessed by mapping the inflation and deflation limbs using both the pressure/impedance and pressure/inductance pairs and characterized by calculating the inflection points. In addition, oscillatory tidal volume changes were assessed at each pressure step. Twenty-three infants were included in the study. Of these, eight infants had to be excluded because the quality of the registration was insufficient for analysis (two electrical impedance tomography and six respiratory inductive plethysmography). In the remaining 15 infants (gestational age 28.0 ± 2.6 wk; birth weight 1,027 ± 514 g), end-expiratory lung volume changes measured by electrical impedance tomography were significantly correlated to respiratory inductive plethysmography measurements in 12 patients (mean r = 0.93 ± 0.05). This was also true for the upper inflection point on the inflation (r = 0.91, p < 0.01) and deflation limb (r = 0.83, p < 0.01). In 13 patients, impedance and inductance data also correlated significantly on oscillatory tidal volume/pressure relationships (mean r = 0.81 ± 0.18). This study shows that cross-sectional lung volume changes measured by electrical impedance tomography are representative for the whole lung and that this concept also applies to newborn infants.

  4. 3He Lung Morphometry Technique: Accuracy Analysis and Pulse Sequence Optimization

    PubMed Central

    Sukstanskii, A.L.; Conradi, M.S.; Yablonskiy, D.A.

    2010-01-01

    The 3He lung morphometry technique (Yablonskiy et al, JAP, 2009), based on MRI measurements of hyperpolarized gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. 3D tomographic images of standard morphological parameters (mean airspace chord length, lung parenchyma surface-to-volume ratio, and the number of alveoli per unit lung volume) can be created from a rather short (several seconds) MRI scan. These parameters are most commonly used to characterize lung morphometry but were not previously available from in vivo studies. A background of the 3He lung morphometry technique is based on a previously proposed model of lung acinar airways, treated as cylindrical passages of external radius R covered by alveolar sleeves of depth h, and on a theory of gas diffusion in these airways. The initial works approximated the acinar airways as very long cylinders, all with the same R and h. The present work aims at analyzing effects of realistic acinar airway structures, incorporating airway branching, physiological airway lengths, a physiological ratio of airway ducts and sacs, and distributions of R and h. By means of Monte Carlo computer simulations, we demonstrate that our technique allows rather accurate measurements of geometrical and morphological parameters of acinar airways. In particular, the accuracy of determining one of the most important physiological parameter of acinar airways – surface-to-volume ratio – does not exceed several percent. Second, we analyze the effect of the susceptibility induced inhomogeneous magnetic field on the parameter estimate and demonstrate that this effect is rather negligible at B0 ≤ 3T and becomes substantial only at higher B0 Third, we theoretically derive an optimal choice of MR pulse sequence parameters, which should be used to acquire a series of diffusion attenuated MR signals, allowing a substantial decrease in the acquisition time and improvement in accuracy of the results. It is demonstrated that the optimal choice represents three not equidistant b-values: b1 = 0, b2 ~ 2 s/cm2, b3 ~ 8 s/cm2. PMID:20937564

  5. Circuit compliance compensation in lung protective ventilation.

    PubMed

    Masselli, Grazia Maria Pia; Silvestri, Sergio; Sciuto, Salvatore Andrea; Cappa, Paolo

    2006-01-01

    Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.

  6. Non-lobar atelectasis generates inflammation and structural alveolar injury in the surrounding healthy tissue during mechanical ventilation.

    PubMed

    Retamal, Jaime; Bergamini, Bruno Curty; Carvalho, Alysson R; Bozza, Fernando A; Borzone, Gisella; Borges, João Batista; Larsson, Anders; Hedenstierna, Göran; Bugedo, Guillermo; Bruhn, Alejandro

    2014-09-09

    When alveoli collapse the traction forces exerted on their walls by adjacent expanded units may increase and concentrate. These forces may promote its re-expansion at the expense of potentially injurious stresses at the interface between the collapsed and the expanded units. We developed an experimental model to test the hypothesis that a local non-lobar atelectasis can act as a stress concentrator, contributing to inflammation and structural alveolar injury in the surrounding healthy lung tissue during mechanical ventilation. A total of 35 rats were anesthetized, paralyzed and mechanically ventilated. Atelectasis was induced by bronchial blocking: after five minutes of stabilization and pre-oxygenation with FIO2 = 1.0, a silicon cylinder blocker was wedged in the terminal bronchial tree. Afterwards, the animals were randomized between two groups: 1) Tidal volume (VT) = 10 ml/kg and positive end-expiratory pressure (PEEP) = 3 cmH2O (VT10/PEEP3); and 2) VT = 20 ml/kg and PEEP = 0 cmH2O (VT20/zero end-expiratory pressure (ZEEP)). The animals were then ventilated during 180 minutes. Three series of experiments were performed: histological (n = 12); tissue cytokines (n = 12); and micro-computed tomography (microCT; n = 2). An additional six, non-ventilated, healthy animals were used as controls. Atelectasis was successfully induced in the basal region of the lung of 26 out of 29 animals. The microCT of two animals revealed that the volume of the atelectasis was 0.12 and 0.21 cm3. There were more alveolar disruption and neutrophilic infiltration in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. Edema was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in the VT20/ZEEP than VT10/PEEP3 group. The volume-to-surface ratio was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. We did not find statistical difference in tissue interleukin-1β and cytokine-induced neutrophil chemoattractant-1 between regions. The present findings suggest that a local non-lobar atelectasis acts as a stress concentrator, generating structural alveolar injury and inflammation in the surrounding lung tissue.

  7. Effects of body position and extension of the neck and extremities on lung volume measured via computed tomography in red-eared slider turtles (Trachemys scripta elegans).

    PubMed

    Mans, Christoph; Drees, Randi; Sladky, Kurt K; Hatt, Jean-Michel; Kircher, Patrick R

    2013-10-15

    To determine the effects of body position and extension of the neck and extremities on CT measurements of ventilated lung volume in red-eared slider turtles (Trachemys scripta elegans). Prospective crossover-design study. 14 adult red-eared slider turtles. CT was performed on turtles in horizontal ventral recumbent and vertical left lateral recumbent, right lateral recumbent, and caudal recumbent body positions. In sedated turtles, evaluations were performed in horizontal ventral recumbent body position with and without extension of the neck and extremities. Lung volumes were estimated from helical CT images with commercial software. Effects of body position, extremity and neck extension, sedation, body weight, and sex on lung volume were analyzed. Mean ± SD volume of dependent lung tissue was significantly decreased in vertical left lateral (18.97 ± 14.65 mL), right lateral (24.59 ± 19.16 mL), and caudal (9.23 ± 12.13 mL) recumbent positions, compared with the same region for turtles in horizontal ventral recumbency (48.52 ± 20.08 mL, 50.66 ± 18.08 mL, and 31.95 ± 15.69 mL, respectively). Total lung volume did not differ among positions because of compensatory increases in nondependent lung tissue. Extension of the extremities and neck significantly increased total lung volume (127.94 ± 35.53 mL), compared with that in turtles with the head, neck, and extremities withdrawn into the shell (103.24 ± 40.13 mL). Vertical positioning of red-eared sliders significantly affected lung volumes and could potentially affect interpretation of radiographs obtained in these positions. Extension of the extremities and neck resulted in the greatest total lung volume.

  8. Exogenous surfactant preserves lung function and reduces alveolar Evans blue dye influx in a rat model of ventilation-induced lung injury.

    PubMed

    Verbrugge, S J; Vazquez de Anda, G; Gommers, D; Neggers, S J; Sorm, V; Böhm, S H; Lachmann, B

    1998-08-01

    Changes in pulmonary edema infiltration and surfactant after intermittent positive pressure ventilation with high peak inspiratory lung volumes have been well described. To further elucidate the role of surfactant changes, the authors tested the effect of different doses of exogenous surfactant preceding high peak inspiratory lung volumes on lung function and lung permeability. Five groups of Sprague-Dawley rats (n = 6 per group) were subjected to 20 min of high peak inspiratory lung volumes. Before high peak inspiratory lung volumes, four of these groups received intratracheal administration of saline or 50, 100, or 200 mg/kg body weight surfactant; one group received no intratracheal administration. Gas exchange was measured during mechanical ventilation. A sixth group served as nontreated, nonventilated controls. After death, all lungs were excised, and static pressure-volume curves and total lung volume at a transpulmonary pressure of 5 cm H2O were recorded. The Gruenwald index and the steepest part of the compliance curve (Cmax) were calculated. A bronchoalveolar lavage was performed; surfactant small and large aggregate total phosphorus and minimal surface tension were measured. In a second experiment in five groups of rats (n = 6 per group), lung permeability for Evans blue dye was measured. Before 20 min of high peak inspiratory lung volumes, three groups received intratracheal administration of 100, 200, or 400 mg/ kg body weight surfactant; one group received no intratracheal administration. A fifth group served as nontreated, nonventilated controls. Exogenous surfactant at a dose of 200 mg/kg preserved total lung volume at a pressure of 5 cm H2O, maximum compliance, the Gruenwald Index, and oxygenation after 20 min of mechanical ventilation. The most active surfactant was recovered in the group that received 200 mg/kg surfactant, and this dose reduced minimal surface tension of bronchoalveolar lavage to control values. Alveolar influx of Evans blue dye was reduced in the groups that received 200 and 400 mg/kg exogenous surfactant. Exogenous surfactant preceding high peak inspiratory lung volumes prevents impairment of oxygenation, lung mechanics, and minimal surface tension of bronchoalveolar lavage fluid and reduces alveolar influx of Evans blue dye. These data indicate that surfactant has a beneficial effect on ventilation-induced lung injury.

  9. Airways, vasculature, and interstitial tissue: anatomically informed computational modeling of human lungs for virtual clinical trials

    NASA Astrophysics Data System (ADS)

    Abadi, Ehsan; Sturgeon, Gregory M.; Agasthya, Greeshma; Harrawood, Brian; Hoeschen, Christoph; Kapadia, Anuj; Segars, W. P.; Samei, Ehsan

    2017-03-01

    This study aimed to model virtual human lung phantoms including both non-parenchymal and parenchymal structures. Initial branches of the non-parenchymal structures (airways, arteries, and veins) were segmented from anatomical data in each lobe separately. A volume-filling branching algorithm was utilized to grow the higher generations of the airways and vessels to the level of terminal branches. The diameters of the airways and vessels were estimated using established relationships between flow rates and diameters. The parenchyma was modeled based on secondary pulmonary lobule units. Polyhedral shapes with variable sizes were modeled, and the borders were assigned to interlobular septa. A heterogeneous background was added inside these units using a non-parametric texture synthesis algorithm which was informed by a high-resolution CT lung specimen dataset. A voxelized based CT simulator was developed to create synthetic helical CT images of the phantom with different pitch values. Results showed the progressive degradation in depiction of lung details with increased pitch. Overall, the enhanced lung models combined with the XCAT phantoms prove to provide a powerful toolset to perform virtual clinical trials in the context of thoracic imaging. Such trials, not practical using clinical datasets or simplistic phantoms, can quantitatively evaluate and optimize advanced imaging techniques towards patient-based care.

  10. Lung transplantation in patients who have undergone prior cardiothoracic procedures.

    PubMed

    Omara, Mohamed; Okamoto, Toshihiro; Arafat, Amr; Thuita, Lucy; Blackstone, Eugene H; McCurry, Kenneth R

    2016-12-01

    Patients who have undergone prior cardiothoracic procedures offer technical challenges that may affect post-transplant outcomes and be a reason to decline listing. Data are currently limited regarding the indication for lung transplantation among recipients who have had prior cardiothoracic procedures. Of 453 lung transplants performed at Cleveland Clinic from January 2005 to July 2010, 206 recipients (45%) had undergone prior cardiothoracic procedures: 157 lung only, 15 cardiac only, 10 cardiac + lung, 10 pleurodesis + lung, and 14 other. Chest tube placement was performed in 202 patients. Survival, post-transplant length of intensive care unit and hospital stays, primary graft dysfunction, and pulmonary function outcomes were compared with outcomes of patients not having prior procedures using propensity score adjustment. Short-term and long-term survival was similar between the 2 groups. Survival at 30 days, 1 year, and 5 years was 94%, 83%, and 55% for the prior cardiothoracic procedure group and 96%, 84%, and 53% for the no prior cardiothoracic procedure group (log-rank p = 0.9). Intensive care unit stay was longer (6 days vs 5 days, p = 0.02) in the prior cardiothoracic procedure group; this was particularly true for pleurodesis + lung (10 days, p = 0.05), although post-transplant hospital stay was similar (16 days, 16 days, and 22 days; p = 0.13). Primary graft dysfunction was not increased in the prior cardiothoracic procedure group. Forced expiratory volume in 1 second was similar for both groups but lower for thoracotomy and lung procedures using a bilateral chest tube (p < 0.05 each). A prior cardiothoracic procedure is not a contraindication for lung transplantation. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  11. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  12. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review

    PubMed Central

    Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno

    2016-01-01

    Abstract Objective: To assess the effects of obesity on lung volume and capacity in children and adolescents. Data source: This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Data synthesis: Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Conclusions: Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. PMID:27130483

  13. Chest ultrasound and hidden lung congestion in peritoneal dialysis patients.

    PubMed

    Panuccio, Vincenzo; Enia, Giuseppe; Tripepi, Rocco; Torino, Claudia; Garozzo, Maurizio; Battaglia, Giovanni Giorgio; Marcantoni, Carmelita; Infantone, Lorena; Giordano, Guido; De Giorgi, Maria Loreta; Lupia, Mario; Bruzzese, Vincenzo; Zoccali, Carmine

    2012-09-01

    Chest ultrasound (US) is a non-invasive well-validated technique for estimating extravascular lung water (LW) in patients with heart diseases and in end-stage renal disease. We systematically applied this technique to the whole peritoneal dialysis (PD) population of five dialysis units. We studied the cross-sectional association between LW, echocardiographic parameters, clinical [pedal oedema, New York Heart Association (NYHA) class] and bioelectrical impedance analysis (BIA) markers of volume status in 88 PD patients. Moderate to severe lung congestion was evident in 41 (46%) patients. Ejection fraction was the echocardiographic parameter with the strongest independent association with LW (r = -0.40 P = 0.002). Oedema did not associate with LW on univariate and multivariate analysis. NYHA class was slightly associated with LW (r = 0.21 P = 0.05). Among patients with severe lung congestion, only 27% had pedal oedema and the majority (57%) had no dyspnoea (NYHA Class I). Similarly, the prevalence of patients with BIA, evidence of volume excess was small (11%) and not significantly different (P = 0.79) from that observed in patients with mild or no congestion (9%). In PD patients, LW by chest US reveals moderate to severe lung congestion in a significant proportion of asymptomatic patients. Intervention studies are necessary to prove the usefulness of chest US for optimizing the control of fluid excess in PD patients.

  14. [Normal lung volumes in patients with idiopathic pulmonary fibrosis and emphysema].

    PubMed

    Casas, Juan Pablo; Abbona, Horacio; Robles, Adriana; López, Ana María

    2008-01-01

    Pulmonary function tests in idiopathic pulmonary fibrosis characteristically show a restrictive pattern, resulting from reduction of pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. Previous reports suggest that when both diseases coexist, pulmonary volumes are compensated and a smaller than expected reduction or even normal lung volumes can be found. We report 4 male patients of 64, 60, 73 and 70 years, all with heavy cigarette smoking history and progressive breathlessness. Three of them had severe limitation in their quality of life. All four showed advanced lung interstitial involvement, at high resolution CT scan, fibrotic changes predominantly in the subpleural areas of lower lung fields and concomitant emphysema in the upper lobes. Emphysema and pulmonary fibrosis was confirmed by open lung biopsy in one patient. The four patients showed normal spirometry and lung volumes with severe compromise of gas exchange and poor exercise tolerance evaluated by 6 minute walk test. Severe pulmonary arterial hypertension was also confirmed in three patients. Normal lung volumes does not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  15. Pseudo tumors of the lung after lung volume reduction surgery.

    PubMed

    Oey, Inger F; Jeyapalan, Kanagaratnam; Entwisle, James J; Waller, David A

    2004-03-01

    We describe 2 patients who underwent lung volume reduction surgery, who postoperatively had computed tomographic scans that showed symptomatic mass lesions suggestive of malignancy and an inhaled foreign body. Investigations excluded these conditions with the remaining likely diagnosis of pseudotumor secondary to buttressing material. These potential sequelae of lung volume reduction surgery should be recognized in follow-up investigations.

  16. Preoperative pulmonary rehabilitation for marginal-function lung cancer patients.

    PubMed

    Hashmi, Asra; Baciewicz, Frank A; Soubani, Ayman O; Gadgeel, Shirish M

    2017-01-01

    Background This study aimed to evaluate the impact of preoperative pulmonary rehabilitation in lung cancer patients undergoing pulmonary resection surgery with marginal lung function. Methods Short-term outcomes of 42 patients with forced expiratory volume in 1 s < 1.6 L who underwent lung resection between 01/2006 and 12/2010 were reviewed retrospectively. They were divided into group A (no preoperative pulmonary rehabilitation) and group B (receiving pulmonary rehabilitation). In group B, a second set of pulmonary function tests was obtained. Results There were no significant differences in terms of sex, age, race, pathologic stage, operative procedure, or smoking years. Mean forced expiratory volume in 1 s and diffusing capacity for carbon monoxide in group A was 1.40 ± 0.22 L and 10.28 ± 2.64 g∙dL -1 vs. 1.39 ± 0.13 L and 10.75 ± 2.08 g∙dL -1 in group B. Group B showed significant improvement in forced expiratory volume in 1 s from 1.39 ± 0.13 to 1.55 ± 0.06 L ( p = 0.02). Mean intensive care unit stay was 6 ± 5 days in group A vs. 9 ± 9 days in group B ( p = 0.22). Mean hospital stay was 10 ± 4 days in group A vs. 14 ± 9 days in group B ( p = 0.31). There was no significant difference in morbidity or mortality between groups. Conclusion Preoperative pulmonary rehabilitation can significantly improve forced expiratory volume in 1 s in some marginal patients undergoing lung cancer resection. However, it does not improve length of stay, morbidity, or mortality.

  17. Pulmonary Emphysema in Cystic Fibrosis Detected by Densitometry on Chest Multidetector Computed Tomography

    PubMed Central

    Wielpütz, Mark O.; Weinheimer, Oliver; Eichinger, Monika; Wiebel, Matthias; Biederer, Jürgen; Kauczor, Hans-Ulrich; Heußel, Claus P.

    2013-01-01

    Background Histopathological studies on lung specimens from patients with cystic fibrosis (CF) and recent results from a mouse model indicate that emphysema may contribute to CF lung disease. However, little is known about the relevance of emphysema in patients with CF. In the present study, we used computationally generated density masks based on multidetector computed tomography (MDCT) of the chest for non-invasive characterization and quantification of emphysema in CF. Methods Volumetric MDCT scans were acquired in parallel to pulmonary function testing in 41 patients with CF (median age 20.1 years; range 7-66 years) and 21 non-CF controls (median age 30.4 years; range 4-68 years), and subjected to dedicated software. The lung was segmented, low attenuation volumes below a threshold of -950 Hounsfield units were assigned to emphysema volume (EV), and the emphysema index was computed (EI). Results were correlated with forced expiratory volume in 1 s percent predicted (FEV1%), residual volume (RV), and RV/total lung capacity (RV/TLC). Results We show that EV was increased in CF (457±530 ml) compared to non-CF controls (78±90 ml) (P<0.01). EI was also increased in CF (7.7±7.5%) compared to the control group (1.2±1.4%) (P<0.05). EI correlated inversely with FEV1% (rs=-0.66), and directly with RV (rs=0.69) and RV/TLC (rs=0.47) in patients with CF (P<0.007), but not in non-CF controls. Emphysema in CF was detected from early adolescence (~13 years) and increased with age (rs=0.67, P<0.001). Conclusions Our results indicate that early onset emphysema detected by densitometry on chest MDCT is a characteristic pathology that contributes to airflow limitation and may serve as a novel endpoint for monitoring lung disease in CF. PMID:23991177

  18. Patterns of lung volume use during an extemporaneous speech task in persons with Parkinson disease.

    PubMed

    Bunton, Kate

    2005-01-01

    This study examined patterns of lung volume use in speakers with Parkinson disease (PD) during an extemporaneous speaking task. The performance of a control group was also examined. Behaviors described are based on acoustic, kinematic and linguistic measures. Group differences were found in breath group duration, lung volume initiation, and lung volume termination measures. Speakers in the control group alternated between a longer and shorter breath groups. With starting lung volumes being higher for the longer breath groups and lower for shorter breath groups. Speech production was terminated before reaching tidal end expiratory level. This pattern was also seen in 4 of 7 speakers with PD. The remaining 3 PD speakers initiated speech at low starting lung volumes and continued speaking below EEL. This subgroup of PD speakers ended breath groups at agrammatical boundaries, whereas control speakers ended at appropriate grammatical boundaries. As a result of participating in this exercise, the reader will (1) be able to describe the patterns of lung volume use in speakers with Parkinson disease and compare them with those employed by control speakers; and (2) obtain information about the influence of speaking task on speech breathing.

  19. Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude.

    PubMed

    Hsia, Connie C W; Carbayo, Juan J Polo; Yan, Xiao; Bellotto, Dennis J

    2005-05-12

    To examine the effects of chronic high altitude (HA) exposure on lung structure during somatic maturation, we raised male weanling guinea pigs at HA (3800m) for 1, 3, or 6 months, while their respective male littermates were simultaneously raised at low altitude (LA, 1200m). Under anaesthesia, airway pressure was measured at different lung volumes. The right lung was fixed at a constant airway pressure for morphometric analysis under light and electron microscopy. In animals raised at HA for 1 month, lung volume, alveolar surface area and alveolar-capillary blood volume (V(c)) were elevated above LA control values. Following 3-6 months of HA exposure, increases in lung volume and alveolar surface area persisted while the initial increase in V(c) normalized. Additional adaptation occurred, including a higher epithelial cell volume, septal tissue volume and capillary surface area, a lower alveolar duct volume and lower harmonic mean diffusion barrier resulting in higher membrane and lung diffusing capacities. These data demonstrate enhanced alveolar septal growth and progressive acinar remodeling during chronic HA exposure with long-term augmentation of alveolar dimensions as well as functional compensation in lung compliance and diffusive gas transport.

  20. Time-series analysis of lung texture on bone-suppressed dynamic chest radiograph for the evaluation of pulmonary function: a preliminary study

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Matsuda, Hiroaki; Sanada, Shigeru

    2017-03-01

    The density of lung tissue changes as demonstrated on imagery is dependent on the relative increases and decreases in the volume of air and lung vessels per unit volume of lung. Therefore, a time-series analysis of lung texture can be used to evaluate relative pulmonary function. This study was performed to assess a time-series analysis of lung texture on dynamic chest radiographs during respiration, and to demonstrate its usefulness in the diagnosis of pulmonary impairments. Sequential chest radiographs of 30 patients were obtained using a dynamic flat-panel detector (FPD; 100 kV, 0.2 mAs/pulse, 15 frames/s, SID = 2.0 m; Prototype, Konica Minolta). Imaging was performed during respiration, and 210 images were obtained over 14 seconds. Commercial bone suppression image-processing software (Clear Read Bone Suppression; Riverain Technologies, Miamisburg, Ohio, USA) was applied to the sequential chest radiographs to create corresponding bone suppression images. Average pixel values, standard deviation (SD), kurtosis, and skewness were calculated based on a density histogram analysis in lung regions. Regions of interest (ROIs) were manually located in the lungs, and the same ROIs were traced by the template matching technique during respiration. Average pixel value effectively differentiated regions with ventilatory defects and normal lung tissue. The average pixel values in normal areas changed dynamically in synchronization with the respiratory phase, whereas those in regions of ventilatory defects indicated reduced variations in pixel value. There were no significant differences between ventilatory defects and normal lung tissue in the other parameters. We confirmed that time-series analysis of lung texture was useful for the evaluation of pulmonary function in dynamic chest radiography during respiration. Pulmonary impairments were detected as reduced changes in pixel value. This technique is a simple, cost-effective diagnostic tool for the evaluation of regional pulmonary function.

  1. The effects of low tidal ventilation on lung strain correlate with respiratory system compliance.

    PubMed

    Xie, Jianfeng; Jin, Fang; Pan, Chun; Liu, Songqiao; Liu, Ling; Xu, Jingyuan; Yang, Yi; Qiu, Haibo

    2017-02-03

    The effect of alterations in tidal volume on mortality of acute respiratory distress syndrome (ARDS) is determined by respiratory system compliance. We aimed to investigate the effects of different tidal volumes on lung strain in ARDS patients who had various levels of respiratory system compliance. Nineteen patients were divided into high (C high group) and low (C low group) respiratory system compliance groups based on their respiratory system compliance values. We defined compliance ≥0.6 ml/(cmH 2 O/kg) as C high and compliance <0.6 ml/(cmH 2 O/kg) as C low . End-expiratory lung volumes (EELV) at various tidal volumes were measured by nitrogen wash-in/washout. Lung strain was calculated as the ratio between tidal volume and EELV. The primary outcome was that lung strain is a function of tidal volume in patients with various levels of respiratory system compliance. The mean baseline EELV, strain and respiratory system compliance values were 1873 ml, 0.31 and 0.65 ml/(cmH 2 O/kg), respectively; differences in all of these parameters were statistically significant between the two groups. For all participants, a positive correlation was found between the respiratory system compliance and EELV (R = 0.488, p = 0.034). Driving pressure and strain increased together as the tidal volume increased from 6 ml/kg predicted body weight (PBW) to 12 ml/kg PBW. Compared to the C high ARDS patients, the driving pressure was significantly higher in the C low patients at each tidal volume. Similar effects of lung strain were found for tidal volumes of 6 and 8 ml/kg PBW. The "lung injury" limits for driving pressure and lung strain were much easier to exceed with increases in the tidal volume in C low patients. Respiratory system compliance affected the relationships between tidal volume and driving pressure and lung strain in ARDS patients. These results showed that increasing tidal volume induced lung injury more easily in patients with low respiratory system compliance. Clinicaltrials.gov identifier NCT01864668 , Registered 21 May 2013.

  2. Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment.

    PubMed

    Spadaro, Savino; Mauri, Tommaso; Böhm, Stephan H; Scaramuzzo, Gaetano; Turrini, Cecilia; Waldmann, Andreas D; Ragazzi, Riccardo; Pesenti, Antonio; Volta, Carlo Alberto

    2018-01-31

    Assessing alveolar recruitment at different positive end-expiratory pressure (PEEP) levels is a major clinical and research interest because protective ventilation implies opening the lung without inducing overdistention. The pressure-volume (P-V) curve is a validated method of assessing recruitment but reflects global characteristics, and changes at the regional level may remain undetected. The aim of the present study was to compare, in intubated patients with acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS), lung recruitment measured by P-V curve analysis, with dynamic changes in poorly ventilated units of the dorsal lung (dependent silent spaces [DSSs]) assessed by electrical impedance tomography (EIT). We hypothesized that DSSs might represent a dynamic bedside measure of recruitment. We carried out a prospective interventional study of 14 patients with AHRF and ARDS admitted to the intensive care unit undergoing mechanical ventilation. Each patient underwent an incremental/decremental PEEP trial that included five consecutive phases: PEEP 5 and 10 cmH 2 O, recruitment maneuver + PEEP 15 cmH 2 O, then PEEP 10 and 5 cmH 2 O again. We measured, at the end of each phase, recruitment from previous PEEP using the P-V curve method, and changes in DSS were continuously monitored by EIT. PEEP changes induced alveolar recruitment as assessed by the P-V curve method and changes in the amount of DSS (p < 0.001). Recruited volume measured by the P-V curves significantly correlated with the change in DSS (r s  = 0.734, p < 0.001). Regional compliance of the dependent lung increased significantly with rising PEEP (median PEEP 5 cmH 2 O = 11.9 [IQR 10.4-16.7] ml/cmH 2 O, PEEP 15 cmH 2 O = 19.1 [14.2-21.3] ml/cmH 2 O; p < 0.001), whereas regional compliance of the nondependent lung decreased from PEEP 5 cmH 2 O to PEEP 15 cmH 2 O (PEEP 5 cmH 2 O = 25.3 [21.3-30.4] ml/cmH 2 O, PEEP 15 cmH 2 O = 20.0 [16.6-22.8] ml/cmH 2 O; p <0.001). By increasing the PEEP level, the center of ventilation moved toward the dependent lung, returning to the nondependent lung during the decremental PEEP steps. The variation of DSSs dynamically measured by EIT correlates well with lung recruitment measured using the P-V curve technique. EIT might provide useful information to titrate personalized PEEP. ClinicalTrials.gov, NCT02907840 . Registered on 20 September 2016.

  3. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    PubMed

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  4. Lung Volume during Swallowing: Single Bolus Swallows in Healthy Young Adults

    ERIC Educational Resources Information Center

    Hegland, Karen M. Wheeler; Huber, Jessica E.; Pitts, Teresa; Sapienza, Christine M.

    2009-01-01

    Purpose: This study examined the relationship between swallowing and lung volume initiation in healthy adults during single swallows of boluses differing in volume and consistency. Differences in lung volume according to respiratory phase surrounding the swallow were also assessed. Method: Nine men and 11 women between the ages of 19 and 28 years…

  5. Lung function in North American Indian children: reference standards for spirometry, maximal expiratory flow volume curves, and peak expiratory flow.

    PubMed

    Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S

    1982-02-01

    Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.

  6. Impacts of lung and tumor volumes on lung dosimetry for nonsmall cell lung cancer.

    PubMed

    Lei, Weijie; Jia, Jing; Cao, Ruifen; Song, Jing; Hu, Liqin

    2017-09-01

    The purpose of this study was to determine the impacts of lung and tumor volumes on normal lung dosimetry in three-dimensional conformal radiotherapy (3DCRT), step-and-shoot intensity-modulated radiotherapy (ssIMRT), and single full-arc volumetric-modulated arc therapy (VMAT) in treatment of nonsmall cell lung cancers (NSCLC). All plans were designed to deliver a total dose of 66 Gy in 33 fractions to PTV for the 32 NSCLC patients with various total (bilateral) lung volumes, planning target volumes (PTVs), and PTV locations. The ratio of the lung volume (total lung volume excluding the PTV volume) to the PTV volume (LTR) was evaluated to represent the impacts in three steps. (a) The least squares method was used to fit mean lung doses (MLDs) to PTVs or LTRs with power-law function in the population cohort (N = 32). (b) The population cohort was divided into three groups by LTRs based on first step and then by PTVs, respectively. The MLDs were compared among the three techniques in each LTR group (LG) and each PTV group (PG). (c) The power-law correlation was tested by using the adaptive radiation therapy (ART) planning data of individual patients in the individual cohort (N = 4). Different curves of power-law function with high R 2 values were observed between averaged LTRs and averaged MLDs for 3DCRT, ssIMRT, and VMAT, respectively. In the individual cohort, high R 2 values of fitting curves were also observed in individual patients in ART, although the trend was highly patient-specific. There was a more obvious correlation between LTR and MLD than that between PTV and MLD. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. Respiratory Management of Perioperative Obese Patients.

    PubMed

    Imber, David Ae; Pirrone, Massimiliano; Zhang, Changsheng; Fisher, Daniel F; Kacmarek, Robert M; Berra, Lorenzo

    2016-12-01

    With a rising incidence of obesity in the United States, anesthesiologists are faced with a larger volume of obese patients coming to the operating room as well as obese patients with ever-larger body mass indices (BMIs). While there are many cardiovascular and endocrine issues that clinicians must take into account when caring for the obese patient, one of the most prominent concerns of the anesthesiologist in the perioperative setting should be the status of the lung. Because the pathophysiology of reduced lung volumes in the obese patient differs from that of the ARDS patient, the best approach to keeping the obese patient's lung open and adequately ventilated during mechanical ventilation is unique. Although strong evidence and research are lacking regarding how to best ventilate the obese surgical patient, we aim with this review to provide an assessment of the small amount of research that has been conducted and the pathophysiology we believe influences the apparent results. We will provide a basic overview of the anatomy and pathophysiology of the obese respiratory system and review studies concerning pre-, intra-, and postoperative respiratory care. Our focus in this review centers on the best approach to keeping the lung recruited through the prevention of compression atelectasis and the maintaining of physiological lung volumes. We recommend the use of PEEP via noninvasive ventilation (NIV) before induction and endotracheal intubation, the use of both PEEP and periodic recruitment maneuvers during mechanical ventilation, and the use of PEEP via NIV after extubation. It is our hope that by studying the underlying mechanisms that make ventilating obese patients so difficult, future research can be better tailored to address this increasingly important challenge to the field of anesthesia. Copyright © 2016 by Daedalus Enterprises.

  8. Relation of exercise capacity with lung volumes before and after 6-minute walk test in subjects with COPD.

    PubMed

    Wibmer, Thomas; Rüdiger, Stefan; Kropf-Sanchen, Cornelia; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian

    2014-11-01

    There is growing evidence that exercise-induced variation in lung volumes is an important source of ventilatory limitation and is linked to exercise intolerance in COPD. The aim of this study was to compare the correlations of walk distance and lung volumes measured before and after a 6-min walk test (6MWT) in subjects with COPD. Forty-five subjects with stable COPD (mean pre-bronchodilator FEV1: 47 ± 18% predicted) underwent a 6MWT. Body plethysmography was performed immediately pre- and post-6MWT. Correlations were generally stronger between 6-min walk distance and post-6MWT lung volumes than between 6-min walk distance and pre-6MWT lung volumes, except for FEV1. These differences in Pearson correlation coefficients were significant for residual volume expressed as percent of total lung capacity (-0.67 vs -0.58, P = .043), percent of predicted residual volume expressed as percent of total lung capacity (-0.68 vs -0.59, P = .026), inspiratory vital capacity (0.65 vs 0.54, P = .019), percent of predicted inspiratory vital capacity (0.49 vs 0.38, P = .037), and percent of predicted functional residual capacity (-0.62 vs -0.47, P = .023). In subjects with stable COPD, lung volumes measured immediately after 6MWT are more closely related to exercise limitation than baseline lung volumes measured before 6MWT, except for FEV1. Therefore, pulmonary function testing immediately after exercise should be included in future studies on COPD for the assessment of exercise-induced ventilatory constraints to physical performance that cannot be adequately assessed from baseline pulmonary function testing at rest. Copyright © 2014 by Daedalus Enterprises.

  9. VARIATION OF LUNG DEPOSITION OF MICRON SIZE PARTICLES WITH LUNG VOLUME AND BREATHING PATTERN

    EPA Science Inventory

    Lung volume and breathing pattern are the source of inter-and intra-subject variability of lung deposition of inhaled particles. Controlling these factors may help optimize delivery of aerosol medicine to the target site within the lung. In the present study we measured total lu...

  10. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.

    PubMed

    Bradley, Jeffrey; Thorstad, Wade L; Mutic, Sasa; Miller, Tom R; Dehdashti, Farrokh; Siegel, Barry A; Bosch, Walter; Bertrand, Rudi J

    2004-05-01

    Locoregional failure remains a significant problem for patients receiving definitive radiation therapy alone or combined with chemotherapy for non-small-cell lung cancer (NSCLC). Positron emission tomography (PET) with [(18)F]fluoro-2-deoxy-d-glucose (FDG) has proven to be a valuable diagnostic and staging tool for NSCLC. This prospective study was performed to determine the impact of treatment simulation with FDG-PET and CT on radiation therapy target volume definition and toxicity profiles by comparison to simulation with computed tomography (CT) scanning alone. Twenty-six patients with Stages I-III NSCLC were studied. Each patient underwent sequential CT and FDG-PET simulation on the same day. Immobilization devices used for both simulations included an alpha cradle, a flat tabletop, 6 external fiducial markers, and a laser positioning system. A radiation therapist participated in both simulations to reproduce the treatment setup. Both the CT and fused PET/CT image data sets were transferred to the radiation treatment planning workstation for contouring. Each FDG-PET study was reviewed with the interpreting nuclear radiologist before tumor volumes were contoured. The fused PET/CT images were used to develop the three-dimensional conformal radiation therapy (3DCRT) plan. A second physician, blinded to the results of PET, contoured the gross tumor volumes (GTV) and planning target volumes (PTV) from the CT data sets, and these volumes were used to generate mock 3DCRT plans. The PTV was defined by a 10-mm margin around the GTV. The two 3DCRT plans for each patient were compared with respect to the GTV, PTV, mean lung dose, volume of normal lung receiving > or =20 Gy (V20), and mean esophageal dose. The FDG-PET findings altered the AJCC TNM stage in 8 of 26 (31%) patients; 2 patients were diagnosed with metastatic disease based on FDG-PET and received palliative radiation therapy. Of the 24 patients who were planned with 3DCRT, PET clearly altered the radiation therapy volume in 14 (58%), as follows. PET helped to distinguish tumor from atelectasis in all 3 patients with atelectasis. Unsuspected nodal disease was detected by PET in 10 patients, and 1 patient had a separate tumor focus detected within the same lobe of the lung. Increases in the target volumes led to increases in the mean lung dose, V20, and mean esophageal dose. Decreases in the target volumes in the patients with atelectasis led to decreases in these normal-tissue toxicity parameters. Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in over 50% of patients by comparison with CT targeting. The increasing availability of integrated PET/CT units will facilitate the use of this technology for radiation treatment planning. A confirmatory multicenter, cooperative group trial is planned within the Radiation Therapy Oncology Group.

  11. Effects of different tidal volumes in pulmonary and extrapulmonary lung injury with or without intraabdominal hypertension.

    PubMed

    Santos, Cíntia L; Moraes, Lillian; Santos, Raquel S; Oliveira, Mariana G; Silva, Johnatas D; Maron-Gutierrez, Tatiana; Ornellas, Débora S; Morales, Marcelo M; Capelozzi, Vera L; Jamel, Nelson; Pelosi, Paolo; Rocco, Patricia R M; Garcia, Cristiane S N B

    2012-03-01

    We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1β, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1β, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.

  12. Lung volume is a determinant of aerosol bolus dispersion.

    PubMed

    Schulz, Holger; Eder, Gunter; Heyder, Joachim

    2003-01-01

    The technique of inhaling a small volume element labeled with particles ("aerosol bolus") can be used to assess convective gas mixing in the lung. While a bolus undergoes mixing in the lung, particles are dispersed in an increasing volume of the respired air. However, determining factors of bolus dispersion are not yet completely understood. The present study tested the hypothesis that bolus dispersion is related, among others, to the total volume in which the bolus is allowed to mix--i.e., to the individual lung size. Bolus dispersion was measured in 32 anesthetized, mechanically ventilated dogs with total lung capacities (TLCs) of 1.1-2.5 L. Six-milliliter aerosol boluses were introduced at various preselected time-points during inspiration to probe different volumetric lung depths. Dispersion (SD) was determined by moment analysis of particle concentrations in the expired air. We found linear correlations between SD at a given lung depth and the individual end-inspiratory lung volume (V(L)). The relationship was tightest for boluses inhaled deepest into the lungs: SD(40) = 0.068 V(L) - 1.77, r(2) = 0.59. Normalizing SD to V(L) abolished this dependency and resulted in a considerable reduction of inter-individual variability as compared to the uncorrected measurements. These data indicate that lung size influences measurements of bolus dispersion. It therefore appears reasonable to apply a normalization procedure before interpreting the data. Apart from a reduction in measurement variability, this should help to separate the effects on bolus dispersion of altered lung volumes and altered mixing processes in diseased lungs.

  13. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics

    PubMed Central

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario

    2013-01-01

    The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399

  14. Transpulmonary pressures and lung mechanics with glossopharyngeal insufflation and exsufflation beyond normal lung volumes in competitive breath-hold divers.

    PubMed

    Loring, Stephen H; O'Donnell, Carl R; Butler, James P; Lindholm, Peter; Jacobson, Francine; Ferrigno, Massimo

    2007-03-01

    Throughout life, most mammals breathe between maximal and minimal lung volumes determined by respiratory mechanics and muscle strength. In contrast, competitive breath-hold divers exceed these limits when they employ glossopharyngeal insufflation (GI) before a dive to increase lung gas volume (providing additional oxygen and intrapulmonary gas to prevent dangerous chest compression at depths recently greater than 100 m) and glossopharyngeal exsufflation (GE) during descent to draw air from compressed lungs into the pharynx for middle ear pressure equalization. To explore the mechanical effects of these maneuvers on the respiratory system, we measured lung volumes by helium dilution with spirometry and computed tomography and estimated transpulmonary pressures using an esophageal balloon after GI and GE in four competitive breath-hold divers. Maximal lung volume was increased after GI by 0.13-2.84 liters, resulting in volumes 1.5-7.9 SD above predicted values. The amount of gas in the lungs after GI increased by 0.59-4.16 liters, largely due to elevated intrapulmonary pressures of 52-109 cmH(2)O. The transpulmonary pressures increased after GI to values ranging from 43 to 80 cmH(2)O, 1.6-2.9 times the expected values at total lung capacity. After GE, lung volumes were reduced by 0.09-0.44 liters, and the corresponding transpulmonary pressures decreased to -15 to -31 cmH(2)O, suggesting closure of intrapulmonary airways. We conclude that the lungs of some healthy individuals are able to withstand repeated inflation to transpulmonary pressures far greater than those to which they would normally be exposed.

  15. Predicting Structure-Function Relations and Survival following Surgical and Bronchoscopic Lung Volume Reduction Treatment of Emphysema.

    PubMed

    Mondoñedo, Jarred R; Suki, Béla

    2017-02-01

    Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.

  16. Predicting Structure-Function Relations and Survival following Surgical and Bronchoscopic Lung Volume Reduction Treatment of Emphysema

    PubMed Central

    Mondoñedo, Jarred R.

    2017-01-01

    Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction. PMID:28182686

  17. Growth Patterns of Fetal Lung Volumes in Healthy Fetuses and Fetuses With Isolated Left-Sided Congenital Diaphragmatic Hernia.

    PubMed

    Ruano, Rodrigo; Britto, Ingrid Schwach Werneck; Sananes, Nicolas; Lee, Wesley; Sangi-Haghpeykar, Haleh; Deter, Russell L

    2016-06-01

    To evaluate fetal lung growth using 3-dimensional sonography in healthy fetuses and those with congenital diaphragmatic hernia (CDH). Right and total lung volumes were serially evaluated by 3-dimensional sonography in 66 healthy fetuses and 52 fetuses with left-sided CDH between 20 and 37 weeks' menstrual age. Functions fitted to these parameters were compared for 2 groups: (1) healthy versus those with CDH; and (2) fetuses with CHD who survived versus those who died. Fetal right and total lung volumes as well as fetal observed-to-expected right and total lung volume ratios were significantly lower in fetuses with CDH than healthy fetuses (P< .001) and in those fetuses with CDH who died (P< .001). The observed-to-expected right and total lung volume ratios did not vary with menstrual age in healthy fetuses or in those with CDH (independent of outcome). Lung volume rates were lower in fetuses with left-sided CDH compared to healthy fetuses, as well as in fetuses with CDH who died compared to those who survived. The observed-to-expected right and total lung volume ratios were relatively constant throughout menstrual age in fetuses with left-sided CDH, suggesting that the origin of their lung growth abnormalities occurred before 20 weeks and did not progress. The observed-to-expected ratios may be useful in predicting the outcome in fetuses with CDH independent of menstrual age. © 2016 by the American Institute of Ultrasound in Medicine.

  18. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.

    PubMed

    Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji

    2012-05-01

    We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to <30 cm H2O. Prospective, randomized, animal study. University animal research laboratory. Thirty-two New Zealand White rabbits. Lavage-injured rabbits were randomly allocated to four groups to receive low or moderate tidal volume ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at <30 cm H2O in all groups, in moderate tidal volume ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to <30 cm H2O, combined with increased respiratory rate and tidal volume, high transpulmonary pressure generated by strong spontaneous breathing effort can worsen lung injury. When spontaneous breathing is preserved during mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.

  19. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: a feasibility study.

    PubMed

    Nicolini, Giorgia; Ghosh-Laskar, Sarbani; Shrivastava, Shyam Kishore; Banerjee, Sushovan; Chaudhary, Suresh; Agarwal, Jai Prakash; Munshi, Anusheel; Clivio, Alessandro; Fogliata, Antonella; Mancosu, Pietro; Vanetti, Eugenio; Cozzi, Luca

    2012-10-01

    A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving ≥ 95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving ≥ 5 Gy was <60%, that receiving 20 Gy was <20%-30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 ± 0.1 for RA and IMRT and 1.5 ± 0.2 for 3D-CRT. The mean lung dose was 12.2 ± 4.5 for IMRT, 11.3 ± 4.6 for RA, and 10.8 ± 4.4 for RA with FFF beams, 18.2 ± 8.5 for 3D-CRT. The percentage of volume receiving ≥ 20 Gy ranged from 23.6% ± 9.1% to 21.1% ± 9.7% for IMRT and RA (FFF beams) and 39.2% ± 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 ± 139, 322 ± 20, and 387 ± 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a ∼20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different gantry speeds). RA demonstrated, compared with conventional IMRT, a similar target coverage and some better dose sparing to the organs at risk; the advantage against conventional 3D-CRT was more evident. RA with FFF beams resulted in minor improvements in plan quality but with the potential for additional useful reduction in the treatment time. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review.

    PubMed

    Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno

    2016-12-01

    To assess the effects of obesity on lung volume and capacity in children and adolescents. This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. SU-E-J-136: Evaluation of a Non-Invasive Method on Lung Tumor Tracking.

    PubMed

    Zhao, T; White, B; Low, D

    2012-06-01

    to develop a non-invasive method to track lung motion in free-breathing patients. A free-breathing breathing model has been developed to use tidal volume and air flow rate as surrogates for lung trajectories. In this study, 4D CT data sets were acquired during simulation and were reconstructed into 10 phases. Total lung capacities were calculated from the reconstructed images. Continuous signals from the abdominal pneumatic belt were correlated to the volumes and were therefore converted into a curve of tidal volumes. Air flow rate were calculated as the first order derivative of the tidal volume curve. Lung trajectories in the 10 reconstructed images were obtained using B-Spline registration. Parameters of the free-breathing lung motion model were fit from the tidal volumes, airflow rates and lung trajectories using the simulation data. Patients were rescanned every week during the treatment. Prediction of lung trajectories from the model were given and compared to the actual positions in BEV. Trajectories of lung were predicted with residual error of 1.49mm at 95th percentile of all tracked points. Tracking was stable and reproducible over two weeks. Non-invasive tumor tracking based on a free-breathing lung motion model is feasible and stable over weeks. © 2012 American Association of Physicists in Medicine.

  2. Continuous distributions of specific ventilation recovered from inert gas washout

    NASA Technical Reports Server (NTRS)

    Lewis, S. M.; Evans, J. W.; Jalowayski, A. A.

    1978-01-01

    A new technique is described for recovering continuous distributions of ventilation as a function of tidal ventilation/volume ratio from the nitrogen washout. The analysis yields a continuous distribution of ventilation as a function of tidal ventilation/volume ratio represented as fractional ventilations of 50 compartments plus dead space. The procedure was verified by recovering known distributions from data to which noise had been added. Using an apparatus to control the subject's tidal volume and FRC, mixed expired N2 data gave the following results: (a) the distributions of young, normal subjects were narrow and unimodal; (b) those of subjects over age 40 were broader with more poorly ventilated units; (c) patients with pulmonary disease of all descriptions showed enlarged dead space; (d) patients with cystic fibrosis showed multimodal distributions with the bulk of the ventilation going to overventilated units; and (e) patients with obstructive lung disease fell into several classes, three of which are illustrated.

  3. A new functional method to choose the target lobe for lung volume reduction in emphysema - comparison with the conventional densitometric method.

    PubMed

    Hetzel, Juergen; Boeckeler, Michael; Horger, Marius; Ehab, Ahmed; Kloth, Christopher; Wagner, Robert; Freitag, Lutz; Slebos, Dirk-Jan; Lewis, Richard Alexander; Haentschel, Maik

    2017-01-01

    Lung volume reduction (LVR) improves breathing mechanics by reducing hyperinflation. Lobar selection usually focuses on choosing the most destroyed emphysematous lobes as seen on an inspiratory CT scan. However, it has never been shown to what extent these densitometric CT parameters predict the least deflation of an individual lobe during expiration. The addition of expiratory CT analysis allows measurement of the extent of lobar air trapping and could therefore provide additional functional information for choice of potential treatment targets. To determine lobar vital capacity/lobar total capacity (LVC/LTC) as a functional parameter for lobar air trapping using on an inspiratory and expiratory CT scan. To compare lobar selection by LVC/LTC with the established morphological CT density parameters. 36 patients referred for endoscopic LVR were studied. LVC/LTC, defined as delta volume over maximum volume of a lobe, was calculated using inspiratory and expiratory CT scans. The CT morphological parameters of mean lung density (MLD), low attenuation volume (LAV), and 15th percentile of Hounsfield units (15%P) were determined on an inspiratory CT scan for each lobe. We compared and correlated LVC/LTC with MLD, LAV, and 15%P. There was a weak correlation between the functional parameter LVC/LTC and all inspiratory densitometric parameters. Target lobe selection using lowest lobar deflation (lowest LVC/LTC) correlated with target lobe selection based on lowest MLD in 18 patients (50.0%), with the highest LAV in 13 patients (36.1%), and with the lowest 15%P in 12 patients (33.3%). CT-based measurement of deflation (LVC/LTC) as a functional parameter correlates weakly with all densitometric CT parameters on a lobar level. Therefore, morphological criteria based on inspiratory CT densitometry partially reflect the deflation of particular lung lobes, and may be of limited value as a sole predictor for target lobe selection in LVR.

  4. Driving pressure and mechanical power: new targets for VILI prevention.

    PubMed

    Tonetti, Tommaso; Vasques, Francesco; Rapetti, Francesca; Maiolo, Giorgia; Collino, Francesca; Romitti, Federica; Camporota, Luigi; Cressoni, Massimo; Cadringher, Paolo; Quintel, Michael; Gattinoni, Luciano

    2017-07-01

    Several factors have been recognized as possible triggers of ventilator-induced lung injury (VILI). The first is pressure (thus the 'barotrauma'), then the volume (hence the 'volutrauma'), finally the cyclic opening-closing of the lung units ('atelectrauma'). Less attention has been paid to the respiratory rate and the flow, although both theoretical considerations and experimental evidence attribute them a significant role in the generation of VILI. The initial injury to the lung parenchyma is necessarily mechanical and it could manifest as an unphysiological distortion of the extracellular matrix and/or as micro-fractures in the hyaluronan, likely the most fragile polymer embedded in the matrix. The order of magnitude of the energy required to break a molecular bond between the hyaluronan and the associated protein is 1.12×10 -16 Joules (J), 70-90% higher than the average energy delivered by a single breath of 1L assuming a lung elastance of 10 cmH 2 O/L (0.5 J). With a normal statistical distribution of the bond strength some polymers will be exposed each cycle to an energy large enough to rupture. Both the extracellular matrix distortion and the polymer fractures lead to inflammatory increase of capillary permeability with edema if a pulmonary blood flow is sufficient. The mediation analysis of higher vs. lower tidal volume and PEEP studies suggests that the driving pressure, more than tidal volume, is the best predictor of VILI, as inferred by increased mortality. This is not surprising, as both tidal volume and respiratory system elastance (resulting in driving pressure) may independently contribute to the mortality. For the same elastance driving pressure is a predictor similar to plateau pressure or tidal volume. Driving pressure is one of the components of the mechanical power, which also includes respiratory rate, flow and PEEP. Finding the threshold for mechanical power would greatly simplify assessment and prevention of VILI.

  5. Incidental lung volume reduction following fulminant pulmonary hemorrhage in a patient with severe emphysema.

    PubMed

    Hetzel, Juergen; Spengler, Werner; Horger, Marius; Boeckeler, Michael

    2015-06-01

    Endoscopic lung volume reduction is an emerging technique meant to improve lung function parameters, quality of life, and exercise tolerance in patients with severe lung emphysema. This is the first report of lung volume reduction by autologous blood in a patient with non-bullous lung emphysema. A 74-year-old woman with heterogeneous lung emphysema developed accidentally diffuse lobar bleeding immediately after valve placement. Due to persistent hemorrhage, the valves had to be removed shortly thereafter. Despite extraction of the valves, respiratory function of the patient improved rapidly indicated also by a drop in the COPD assessment test questionnaire, 3 months later. This was consistent with both improvement of lung function tests and six-minute walking test.

  6. One-Lung Ventilation with Additional Ipsilateral Ventilation of Low Tidal Volume and High Frequency in Lung Lobectomy

    PubMed Central

    Feng, Yong; Wang, Jianyue; Zhang, Yang; Wang, Shiduan

    2016-01-01

    Background To investigate the protective effects of additional ipsilateral ventilation of low tidal volume and high frequency on lung functions in the patients receiving lobectomy. Material/Methods Sixty patients receiving lung lobectomy were randomized into the conventional one-lung ventilation (CV) group (n=30) and the ipsilateral low tidal volume high frequency ventilation (LV) group (n=30). In the CV group, patients received only contralateral OLV. In the LV group, patients received contralateral ventilation and additional ipsilateral ventilation of low tidal volume of 1–2 ml/kg and high frequency of 40 times/min. Normal lung tissues were biopsied for the analysis of lung injury. Lung injury was scored by evaluating interstitial edema, alveolar edema, neutrophil infiltration, and alveolar congestion. Results At 30 min and 60 min after the initiation of one-lung ventilation and after surgery, patients in the LV group showed significantly higher ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen than those in the CV group (P<0.001). Lung injury was significantly less severe (2.7±0.7) in the LV group than in the CV group (3.1±0.7) (P=0.006). Conclusions Additional ipsilateral ventilation of low tidal volume and high frequency can decrease the risk of hypoxemia and alleviate lung injury in patients receiving lobectomy. PMID:27166086

  7. The Effect of Lung Volume on Selected Phonatory and Articulatory Variables.

    ERIC Educational Resources Information Center

    Dromey, Christopher; Ramig, Lorraine Olson

    1998-01-01

    This study examined effects of manipulating lung volume on phonatory and articulatory kinematic behavior during sentence production in ten healthy adults. Significant differences at different lung volume levels were found for sound pressure level, fundamental frequency, semitone standard deviation, and upper and lower lip displacements and peak…

  8. Lung Volume Measured during Sequential Swallowing in Healthy Young Adults

    ERIC Educational Resources Information Center

    Hegland, Karen Wheeler; Huber, Jessica E.; Pitts, Teresa; Davenport, Paul W.; Sapienza, Christine M.

    2011-01-01

    Purpose: Outcomes from studying the coordinative relationship between respiratory and swallow subsystems are inconsistent for sequential swallows, and the lung volume at the initiation of sequential swallowing remains undefined. The first goal of this study was to quantify the lung volume at initiation of sequential swallowing ingestion cycles and…

  9. Transfusion-related acute lung injury (TRALI) in graft by blood donor antibodies against host leukocytes.

    PubMed

    Goodwin, Jodi; Tinckam, Kathryn; denHollander, Neal; Haroon, Ayesha; Keshavjee, Shaf; Cserti-Gazdewich, Christine M

    2010-09-01

    It is unknown the extent to which transfusion-related acute lung injury (TRALI) contributes to primary graft dysfunction (PGD), the leading cause of death after lung transplantation. In this case of suspected transfusion-associated acute bilateral graft injury in a 61-year-old idiopathic pulmonary fibrosis patient, recipient sera from before and after transplantation/transfusion, as well as the sera of 22 of the 24 implicated blood donors, were individually screened by Luminex bead assay for the presence of human leukocyte antigen (HLA) antibodies, with recipient and lung donor HLA typing to explore for cognate relationships. A red-cell-unit donor-source anti-Cw6 antibody, cognate with the HLA type of the recipient, was identified. This is the second reported case of TRALI in the setting of lung transplantation, and the first to show an associated interaction between donor antibodies (in a low-plasma volume product) with recipient leukocytes (rather than graft antigens); therefore, it should be considered in the differential diagnosis of PGD. Copyright 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  10. SU-F-J-22: Lung VolumeVariability Assessed by Bh-CBCT in 3D Surface Image Guided Deep InspirationBreath Hold (DIBH) Radiotherapy for Left-Sided Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, A; Stanley, D; Papanikolaou, N

    Purpose: With the increasing use of DIBH techniques for left-sided breast cancer, 3D surface-image guided DIBH techniques have improved patient setup and facilitated DIBH radiation delivery. However, quantification of the daily separation between the heart and left breast still presents a challenge. One method of assuring separation is to ensure consistent left lung filling. With this in mind, the aim of this study is to retrospectively quantify left lung volume from weekly breath hold-CBCTs (bh-CBCT) of left-sided breast patients treated using a 3D surface imaging system. Methods: Ten patients (n=10) previously treated to the left breast using the C-Rad CatalystHDmore » system (C-RAD AG, Uppsala Sweden) were evaluated. Patients were positioned with CatalystHD and with bh-CBCT. bh-CBCTs were acquired at the validation date, first day of treatment and at subsequent weekly intervals. Total treatment courses spanned from 3 to 5 weeks. bh-CBCT images were exported to VelocityAI and the left lung volume was segmented. Volumes were recorded and analyzed. Results: A total of 41 bh-CBCTs were contoured in VelocityAI for the 10 patients. The mean left lung volume for all patients was 1657±295cc based on validation bh-CBCT. With the subsequent lung volumes normalized to the validation lung volume, the mean relative ratios for all patients were 1.02±0.11, 0.97±0.14, 0.98±0.11, 1.02±0.01, and 0.96±0.02 for week 1, 2, 3, 4, and 5, respectively. Overall, the mean left lung volume change was ≤4.0% over a 5-week course; however left lung volume variations of up to 28% were noted in a select patient. Conclusion: With the use of the C-RAD CatalystHD system, the mean lung volume variability over a 5-week course of DIBH treatments was ≤4.0%. By minimizing left lung volume variability, heart to left breast separation maybe more consistently maintained. AN Gutierrez has a research grant from C-RAD AG.« less

  11. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Video-assisted thoracoscopic anatomic lung resections in Germany-a nationwide survey.

    PubMed

    Reichert, Martin; Gohlke, Andrea Birgitta; Augustin, Florian; Öfner, Dietmar; Hecker, Andreas; Padberg, Winfried; Bodner, Johannes

    2016-09-01

    Video-assisted thoracoscopic surgery (VATS) is an accepted alternative to thoracotomy for anatomic lung resection (AR) and literature suggests benefits over the conventional open approach. However, it's routine clinical application is still low and varies within different countries. Nationwide survey among thoracic surgical units in Germany, evaluating the departmental structure, volume of the VATS program, experience with VATS-AR (lobectomies and other-than-lobectomies-anatomic-resections), surgical technique and learning curve data. Response rate among the 269 surgical units practicing thoracic surgery in Germany was 84.4 % (n = 227). One hundred twenty-two (53.7 %) units do have experience with any type of VATS-AR. The majority of units started the VATS program only within the last 5 years and 17.2 % (n = 21) of the units have performed more than 100 procedures by now. In 2013, 78.7 % of the units performed less than 25 % of their institutional AR via a VATS approach. Indications for VATS-AR were non-small cell lung cancer in 93.4 % (up to UICC-stage IA, IB, IIA, IIB, IIIA in 7 %, 22.8 %, 33.3 %, 17.5 %, 7 %, respectively), benign diseases in 57.4 %, and pulmonary metastases in 50.8 %. 43.4 % of the departments had experience with extended VATS-AR and 28.7 % performed VATS-AR after induction-therapy. Every second thoracic surgical unit in Germany does have experience in VATS-AR though only about 20 % of them perform it routinely and also in extended procedures.

  13. Characterizing functional lung heterogeneity in COPD using reference equations for CT scan-measured lobar volumes.

    PubMed

    Come, Carolyn E; Diaz, Alejandro A; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P; Zach, Jordan A; Schroeder, Joyce; Lynch, David A; Celli, Bartolome; Washko, George R

    2013-06-01

    CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.

  14. Influence of Sinogram-Affirmed Iterative Reconstruction on Computed Tomography-Based Lung Volumetry and Quantification of Pulmonary Emphysema.

    PubMed

    Baumueller, Stephan; Hilty, Regina; Nguyen, Thi Dan Linh; Weder, Walter; Alkadhi, Hatem; Frauenfelder, Thomas

    2016-01-01

    The purpose of this study was to evaluate the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on quantification of lung volume and pulmonary emphysema in low-dose chest computed tomography compared with filtered back projection (FBP). Enhanced or nonenhanced low-dose chest computed tomography was performed in 20 patients with chronic obstructive pulmonary disease (group A) and in 20 patients without lung disease (group B). Data sets were reconstructed with FBP and SAFIRE strength levels 3 to 5. Two readers semiautomatically evaluated lung volumes and automatically quantified pulmonary emphysema, and another assessed image quality. Radiation dose parameters were recorded. Lung volume between FBP and SAFIRE 3 to 5 was not significantly different among both groups (all P > 0.05). When compared with those of FBP, total emphysema volume was significantly lower among reconstructions with SAFIRE 4 and 5 (mean difference, 0.56 and 0.79 L; all P < 0.001). There was no nondiagnostic image quality. Sinogram-affirmed iterative reconstruction does not alter lung volume measurements, although quantification of lung emphysema is affected at higher strength levels.

  15. [Body plethysmography (I): Standardisation and quality criteria].

    PubMed

    de Mir Messa, I; Sardón Prado, O; Larramona, H; Salcedo Posadas, A; Villa Asensi, J R

    2015-08-01

    Whole body plethysmography is used to measure lung volumes, capacities and resistances. It is a well standardised technique, and although it is widely used in paediatric chest diseases units, it requires specific equipment, specialist staff, and some cooperation by the patient. Plethysmography uses Boyle's law in order to measure the intrathoracic gas volume or functional residual capacity, and once this is determined, the residual volume and total lung capacity is extrapolated. The measurement of total lung capacity is necessary for the diagnosis of restrictive diseases. Airway resistance is a measurement of obstruction, with the total resistance being able to be measured, which includes chest wall, lung tissue and airway resistance, as well as the specific airway resistance, which is a more stable parameter that is determined by multiplying the measured values of airway resistance and functional residual capacity. The complexity of this technique, the reference equations, the differences in the equipment and their variability, and the conditions in which it is performed, has led to the need for its standardisation. Throughout this article, the practical aspects of plethysmography are analysed, specifying recommendations for performing it, its systematic calibration and the calculations that must be made, as well as the interpretation of the results obtained. The aim of this article is to provide a better understanding of the principles of whole body plethysmography with the aim of optimising the interpretation of the results, leading to improved management of the patient, as well as a consensus among the speciality. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  16. Lung Size and the Risk of Radiation Pneumonitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briere, Tina Marie, E-mail: tmbriere@mdanderson.org; Krafft, Shane; Liao, Zhongxing

    2016-02-01

    Purpose: The purpose of this study was to identify patient populations treated for non-small cell lung cancer (NSCLC) who may be more at risk of radiation pneumonitis. Methods and Materials: A total of 579 patients receiving fractionated 3D conformal or intensity modulated radiation therapy (IMRT) for NSCLC were included in the study. Statistical analysis was performed to search for cohorts of patients with higher incidences of radiation pneumonitis. In addition to conventional risk factors, total and spared lung volumes were analyzed. The Lyman-Kutcher-Burman (LKB) and cure models were then used to fit the incidence of radiation pneumonitis as a functionmore » of lung dose and other factors. Results: Total lung volumes with a sparing of less than 1854 cc at 40 Gy were associated with a significantly higher incidence of radiation pneumonitis at 6 months (38% vs 12% for patients with larger volumes, P<.001). This patient cohort was overwhelmingly female and represented 22% of the total female population of patients and nearly 30% of the cases of radiation pneumonitis. An LKB fit to normal tissue complication probability (NTCP) including volume as a dose modifying factor resulted in a dose that results in a 50% probability of complication for the smaller spared volume cohort that was 9 Gy lower than the fit to all mean lung dose data and improved the ability to predict radiation pneumonitis (P<.001). Using an effective dose parameter of n=0.42 instead of mean lung dose further improved the LKB fit. Fits to the data using the cure model produced similar results. Conclusions: Spared lung volume should be considered when treating NSCLC patients. Separate dose constraints based on smaller spared lung volume should be considered. Smaller spared lung volume patients should be followed closely for signs of radiation pneumonitis.« less

  17. Lung Volume Reduction After Stereotactic Ablative Radiation Therapy of Lung Tumors: Potential Application to Emphysema

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binkley, Michael S.; Shrager, Joseph B.; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California

    2014-09-01

    Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABRmore » and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent across multiple clinical parameters. These data serve to inform our ongoing prospective trial of stereotactic ablative volume reduction (SAVR) for severe emphysema in poor candidates for LVRS.« less

  18. High lung volume increases stress failure in pulmonary capillaries

    NASA Technical Reports Server (NTRS)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological mechanism for other studies showing increased capillary permeability at high states of lung inflation.

  19. Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort.

    PubMed

    Yoshida, Takeshi; Nakahashi, Susumu; Nakamura, Maria Aparecida Miyuki; Koyama, Yukiko; Roldan, Rollin; Torsani, Vinicius; De Santis, Roberta R; Gomes, Susimeire; Uchiyama, Akinori; Amato, Marcelo B P; Kavanagh, Brian P; Fujino, Yuji

    2017-09-01

    Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.

  20. Pulmonary vascular volume ratio measured by cardiac computed tomography in children and young adults with congenital heart disease: comparison with lung perfusion scintigraphy.

    PubMed

    Goo, Hyun Woo; Park, Sang Hyub

    2017-11-01

    Lung perfusion scintigraphy is regarded as the gold standard for evaluating differential lung perfusion ratio in congenital heart disease. To compare cardiac CT with lung perfusion scintigraphy for estimated pulmonary vascular volume ratio in patients with congenital heart disease. We included 52 children and young adults (median age 4 years, range 2 months to 28 years; 31 males) with congenital heart disease who underwent cardiac CT and lung perfusion scintigraphy without an interim surgical or transcatheter intervention and within 1 year. We calculated the right and left pulmonary vascular volumes using threshold-based CT volumetry. Then we compared right pulmonary vascular volume percentages at cardiac CT with right lung perfusion percentages at lung perfusion scintigraphy by using paired t-test and Bland-Altman analysis. The right pulmonary vascular volume percentages at cardiac CT (66.3 ± 14.0%) were significantly smaller than the right lung perfusion percentages at lung perfusion scintigraphy (69.1 ± 15.0%; P=0.001). Bland-Altman analysis showed a mean difference of -2.8 ± 5.8% and 95% limits of agreement (-14.1%, 8.5%) between these two variables. Cardiac CT, in a single examination, can offer pulmonary vascular volume ratio in addition to pulmonary artery anatomy essential for evaluating peripheral pulmonary artery stenosis in patients with congenital heart disease. However there is a wide range of agreement between cardiac CT and lung perfusion scintigraphy.

  1. Lung volumes predict survival in patients with chronic lung allograft dysfunction.

    PubMed

    Kneidinger, Nikolaus; Milger, Katrin; Janitza, Silke; Ceelen, Felix; Leuschner, Gabriela; Dinkel, Julien; Königshoff, Melanie; Weig, Thomas; Schramm, René; Winter, Hauke; Behr, Jürgen; Neurohr, Claus

    2017-04-01

    Identification of disease phenotypes might improve the understanding of patients with chronic lung allograft dysfunction (CLAD). The aim of the study was to assess the impact of pulmonary restriction and air trapping by lung volume measurements at the onset of CLAD.A total of 396 bilateral lung transplant recipients were analysed. At onset, CLAD was further categorised based on plethysmography. A restrictive CLAD (R-CLAD) was defined as a loss of total lung capacity from baseline. CLAD with air trapping (AT-CLAD) was defined as an increased ratio of residual volume to total lung capacity. Outcome was survival after CLAD onset. Patients with insufficient clinical information were excluded (n=95).Of 301 lung transplant recipients, 94 (31.2%) developed CLAD. Patients with R-CLAD (n=20) and AT-CLAD (n=21), respectively, had a significantly worse survival (p<0.001) than patients with non-R/AT-CLAD. Both R-CLAD and AT-CLAD were associated with increased mortality when controlling for multiple confounding variables (hazard ratio (HR) 3.57, 95% CI 1.39-9.18; p=0.008; and HR 2.65, 95% CI 1.05-6.68; p=0.039). Furthermore, measurement of lung volumes was useful to identify patients with combined phenotypes.Measurement of lung volumes in the long-term follow-up of lung transplant recipients allows the identification of patients who are at risk for worse outcome and warrant special consideration. Copyright ©ERS 2017.

  2. Shrinking lung syndrome as a manifestation of pleuritis: a new model based on pulmonary physiological studies.

    PubMed

    Henderson, Lauren A; Loring, Stephen H; Gill, Ritu R; Liao, Katherine P; Ishizawar, Rumey; Kim, Susan; Perlmutter-Goldenson, Robin; Rothman, Deborah; Son, Mary Beth F; Stoll, Matthew L; Zemel, Lawrence S; Sandborg, Christy; Dellaripa, Paul F; Nigrovic, Peter A

    2013-03-01

    The pathophysiology of shrinking lung syndrome (SLS) is poorly understood. We sought to define the structural basis for this condition through the study of pulmonary mechanics in affected patients. Since 2007, most patients evaluated for SLS at our institutions have undergone standardized respiratory testing including esophageal manometry. We analyzed these studies to define the physiological abnormalities driving respiratory restriction. Chest computed tomography data were post-processed to quantify lung volume and parenchymal density. Six cases met criteria for SLS. All presented with dyspnea as well as pleurisy and/or transient pleural effusions. Chest imaging results were free of parenchymal disease and corrected diffusing capacities were normal. Total lung capacities were 39%-50% of predicted. Maximal inspiratory pressures were impaired at high lung volumes, but not low lung volumes, in 5 patients. Lung compliance was strikingly reduced in all patients, accompanied by increased parenchymal density. Patients with SLS exhibited symptomatic and/or radiographic pleuritis associated with 2 characteristic physiological abnormalities: (1) impaired respiratory force at high but not low lung volumes; and (2) markedly decreased pulmonary compliance in the absence of identifiable interstitial lung disease. These findings suggest a model in which pleural inflammation chronically impairs deep inspiration, for example through neural reflexes, leading to parenchymal reorganization that impairs lung compliance, a known complication of persistently low lung volumes. Together these processes could account for the association of SLS with pleuritis as well as the gradual symptomatic and functional progression that is a hallmark of this syndrome.

  3. Why does the lung hyperinflate?

    PubMed

    Ferguson, Gary T

    2006-04-01

    Patients with chronic obstructive pulmonary disease (COPD) often have some degree of hyperinflation of the lungs. Hyperinflated lungs can produce significant detrimental effects on breathing, as highlighted by improvements in patient symptoms after lung volume reduction surgery. Measures of lung volumes correlate better with impairment of patient functional capabilities than do measures of airflow. Understanding the mechanisms by which hyperinflation occurs in COPD provides better insight into how treatments can improve patients' health. Both static and dynamic processes can contribute to lung hyperinflation in COPD. Static hyperinflation is caused by a decrease in elasticity of the lung due to emphysema. The lungs exert less recoil pressure to counter the recoil pressure of the chest wall, resulting in an equilibrium of recoil forces at a higher resting volume than normal. Dynamic hyperinflation is more common and can occur independent of or in addition to static hyperinflation. It results from air being trapped within the lungs after each breath due to a disequilibrium between the volumes inhaled and exhaled. The ability to fully exhale depends on the degree of airflow limitation and the time available for exhalation. These can both vary, causing greater hyperinflation during exacerbations or increased respiratory demand, such as during exercise. Reversibility of dynamic hyperinflation offers the possibility for intervention. Use of bronchodilators with prolonged durations of action, such as tiotropium, can sustain significant reductions in lung inflation similar in effect to lung volume reduction surgery. How efficacy of bronchodilators is assessed may, therefore, need to be reevaluated.

  4. An automated landmark-based elastic registration technique for large deformation recovery from 4-D CT lung images

    NASA Astrophysics Data System (ADS)

    Negahdar, Mohammadreza; Zacarias, Albert; Milam, Rebecca A.; Dunlap, Neal; Woo, Shiao Y.; Amini, Amir A.

    2012-03-01

    The treatment plan evaluation for lung cancer patients involves pre-treatment and post-treatment volume CT imaging of the lung. However, treatment of the tumor volume lung results in structural changes to the lung during the course of treatment. In order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and homologous features which are not affected by the radiation treatment along with a smooth deformation field. Since airways are well-distributed in the entire lung, in this paper, we propose use of airway tree bifurcations for registration of the pre-treatment volume to the post-treatment volume. A dedicated and automated algorithm has been developed that finds corresponding airway bifurcations in both images. To derive the 3-D deformation field, a B-spline transformation model guided by mutual information similarity metric was used to guarantee the smoothness of the transformation while combining global information from bifurcation points. Therefore, the approach combines both global statistical intensity information with local image feature information. Since during normal breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would also be applicable to large deformation registration between maximum inhale and maximum exhale images in the same subject. The method has been evaluated by registering 3-D CT volumes at maximum exhale data to all the other temporal volumes in the POPI-model data.

  5. Volume calculation of CT lung lesions based on Halton low-discrepancy sequences

    NASA Astrophysics Data System (ADS)

    Li, Shusheng; Wang, Liansheng; Li, Shuo

    2017-03-01

    Volume calculation from the Computed Tomography (CT) lung lesions data is a significant parameter for clinical diagnosis. The volume is widely used to assess the severity of the lung nodules and track its progression, however, the accuracy and efficiency of previous studies are not well achieved for clinical uses. It remains to be a challenging task due to its tight attachment to the lung wall, inhomogeneous background noises and large variations in sizes and shape. In this paper, we employ Halton low-discrepancy sequences to calculate the volume of the lung lesions. The proposed method directly compute the volume without the procedure of three-dimension (3D) model reconstruction and surface triangulation, which significantly improves the efficiency and reduces the complexity. The main steps of the proposed method are: (1) generate a certain number of random points in each slice using Halton low-discrepancy sequences and calculate the lesion area of each slice through the proportion; (2) obtain the volume by integrating the areas in the sagittal direction. In order to evaluate our proposed method, the experiments were conducted on the sufficient data sets with different size of lung lesions. With the uniform distribution of random points, our proposed method achieves more accurate results compared with other methods, which demonstrates the robustness and accuracy for the volume calculation of CT lung lesions. In addition, our proposed method is easy to follow and can be extensively applied to other applications, e.g., volume calculation of liver tumor, atrial wall aneurysm, etc.

  6. Lung volumes in giraffes, Giraffa camelopardalis.

    PubMed

    Mitchell, G; Skinner, J D

    2011-01-01

    We have measured lung mass and trachea dimensions in 46 giraffes of both genders ranging in body mass from 147 kg to 1441 kg, calculated static and dynamic lung volumes, and developed allometric equations that relate changes in them to growth. We found that relative lung mass is 0.6±0.2% of body mass which is significantly less than it is in other mammals (1.1±0.1%). Total lung volume is significantly smaller (46.2±5.9 mL kg⁻¹) than in similar sized mammals (75.0±2.1 mL kg⁻¹). The lung volume:body mass ratio decreases during growth rather than increase as it does in other mammals. Tracheal diameter is significantly narrower than in similar sized mammals but dead space volume (2.9±0.5 mL kg⁻¹) is larger than in similar sized mammals (2.4±0.1 mL kg⁻¹). Our calculations suggest that tidal volume (10.5±0.2 mL kg⁻¹) is increased compared to that in other mammals(10.0±0.2 mL kg⁻¹) so that the dead space:tidal volume ratio is the same as in other mammals. Calculated Functional Residual Capacity is smaller than predicted (53.4±3.5 vs 33.7±0.6 mL kg⁻¹) as is Expiratory Reserve Volume (47.4±2.6 vs 27.2±1.0 mL kg⁻¹, but Residual Volume (6.0±0.4 mL kg⁻¹) is the same as in other similar sized mammals (6.0±0.9 mL kg⁻¹. Our calculations suggest that Inspiratory Reserve Volume is significantly reduced in size (11.6±1.6 vs 3.8±2.4 mL kg⁻¹), and, if so, the capacity to increase tidal volume is limited. Calculated dynamic lung volumes were the same as in similar sized mammals. We have concluded that giraffe morphology has resulted in lung volumes that are significantly different to that of similar sized mammals, but these changes do not compromise ventilatory capacity. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Effects of vertical positioning on gas exchange and lung volumes in acute respiratory distress syndrome.

    PubMed

    Richard, Jean-Christophe M; Maggiore, Salvatore Maurizio; Mancebo, Jordi; Lemaire, François; Jonson, Bjorn; Brochard, Laurent

    2006-10-01

    Supine position may contribute to the loss of aerated lung volume in patients with acute respiratory distress syndrome (ARDS). We hypothesized that verticalization increases lung volume and improves gas exchange by reducing the pressure surrounding lung bases. Prospective observational physiological study in a medical ICU. In 16 patients with ARDS we measured arterial blood gases, pressure-volume curves of the respiratory system recorded from positive-end expiratory pressure (PEEP), and changes in lung volume in supine and vertical positions (trunk elevated at 45 degrees and legs down at 45 degrees ). Vertical positioning increased PaO(2) significantly from 94+/-33 to 142+/-49 mmHg, with an increase higher than 40% in 11 responders. The volume at 20 cmH(2)O measured on the PV curve from PEEP increased using the vertical position only in responders (233+/-146 vs. -8+/-9 1ml in nonresponders); this change was correlated to oxygenation change (rho=0.55). End-expiratory lung volume variation from supine to vertical and 1 h later back to supine, measured in 12 patients showed a significant increase during the 1-h upright period in responders (n=7) but not in nonresponders (n=5; 215+/-220 vs. 10+/-22 ml), suggesting a time-dependent recruitment. Vertical positioning is a simple technique that may improve oxygenation and lung recruitment in ARDS patients.

  8. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    PubMed

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure changes in regional lung volume at high spatial and temporal resolution during breathing at much lower x-ray dose than would be required using computed tomography.

  9. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  10. SU-E-P-51: Dosimetric Comparison to Organs at Risk Sparing Using Volumetric-Modulated Arc Therapy Versus Intensity-Modulated Radiotherapy in Postoperative Radiotherapy of Left-Sided Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, L; Deng, G; Xie, J

    2015-06-15

    Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Bothmore » VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, R; Liu, T; Qi, S

    Purposes: There has been growing interest in treating breast cancer using VMAT technique. Our goal is to compare the dosimetry and treatment delivery parameters for the left-sided breast cancer treatment using various VMAT platforms from commercially available planning systems. Methods: Five consecutive left-sided breast cancer patients initially treated with conventional 3D-conformal radiotherapy (3DCRT) were selected. Four VMAT plans using most popular treatment planning systems, including Eclipse (Version 11, Varian), Pinnacle (Version 9.8, Philips), Monaco (Version 2.03, Elekta) and helical Tomotherapy (V4.0, Accuray). The same structure set and same planning goals were used for all VMAT plans. The dosimetric parameters includingmore » target coverage and minimum/maximum/mean, dose-volume endpoints for the selected normal structures: the heart, ipsilateral-/contralateral lung and breast, were evaluated. Other dosimetric indices including heterogeneity index (HI) were evaluated. The treatment delivery parameters, such as monitor unit (MUs) and delivery time were also compared. Results: VMAT increases dose homogeneity to the treated volume and reduces the irradiated heart and left-lung volumes. Compared to the 3DCRT technique, all VMAT plans offer better heart and left-lung dose sparing; the mean heart doses were 4.5±1.6(Monaco), 1.2±0.4(Pinnacle), 1.3± (Eclipse) and 5.6±4.4(Tomo), the mean left-lung doses were 5.9±1.5(Monaco), 3.7±0.7(Pinnacle), 1.4± (Eclipse) and 5.2±1.6 (Tomo), while for the 3DCRT plan, the mean heart and left-Lung doses were 2.9±2.0, and 6.8±4.4 (Gy) respectively. The averaged contralateral-breast and lung mean doses were higher in VMAT plans than the 3DCRT plans but were not statistically significant. Among all the VMAT plans, the Pinnacle plans often yield the lowest right-lung/breast mean doses, and slightly better heterogeneity indices that are similar to Tomotherapy plans. Treatment delivery time of the VMAT plans (except helical Tomotherapy IMRT) is estimated to be comparable with the conventional 3DCRT. Conclusion: VMAT achieves equal or better PTV coverage and comparable OARs sparing compared to the conventional 3DCRT techniques.« less

  12. On the Potential Role of MRI Biomarkers of COPD to Guide Bronchoscopic Lung Volume Reduction.

    PubMed

    Adams, Colin J; Capaldi, Dante P I; Di Cesare, Robert; McCormack, David G; Parraga, Grace

    2018-02-01

    In patients with severe emphysema and poor quality of life, bronchoscopic lung volume reduction (BLVR) may be considered and guided based on lobar emphysema severity. In particular, x-ray computed tomography (CT) emphysema measurements are used to identify the most diseased and the second-most diseased lobes as BLVR targets. Inhaled gas magnetic resonance imaging (MRI) also provides chronic obstructive pulmonary disease (COPD) biomarkers of lobar emphysema and ventilation abnormalities. Our objective was to retrospectively evaluate CT and MRI biomarkers of lobar emphysema and ventilation in patients with COPD eligible for BLVR. We hypothesized that MRI would provide complementary biomarkers of emphysema and ventilation that help determine the most appropriate lung lobar targets for BLVR in patients with COPD. We retrospectively evaluated 22 BLVR-eligible patients from the Thoracic Imaging Network of Canada cohort (diffusing capacity of the lung for carbon monoxide = 37 ± 12% predicted , forced expiratory volume in 1 second = 34 ± 7% predicted , total lung capacity = 131 ± 17% predicted , and residual volume = 216 ± 36% predicted ). Lobar CT emphysema, measured using a relative area of <-950 Hounsfield units (RA 950 ) and MRI ventilation defect percent, was independently used to rank lung lobe disease severity. In 7 of 22 patients, there were different CT and MRI predictions of the most diseased lobe. In some patients, there were large ventilation defects in lobes not targeted by CT, indicative of a poorly ventilated lung. CT and MRI classification of the most diseased and the second-most diseased lobes showed a fair-to-moderate intermethod reliability (Cohen κ = 0.40-0.59). In this proof-of-concept retrospective analysis, quantitative MRI ventilation and CT emphysema measurements provided different BLVR targets in over 30% of the patients. The presence of large MRI ventilation defects in lobes next to CT-targeted lobes might also change the decision to proceed or to guide BLVR to a different lobar target. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    NASA Astrophysics Data System (ADS)

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the alveolar ducts. These two model solutions correspond to significantly different mechanical properties of the tissue, and we discuss the implications of these different properties and the requirements for new experimental data to discriminate between the hypotheses.

  14. Incentive spirometry does not enhance recovery after thoracic surgery.

    PubMed

    Gosselink, R; Schrever, K; Cops, P; Witvrouwen, H; De Leyn, P; Troosters, T; Lerut, A; Deneffe, G; Decramer, M

    2000-03-01

    To investigate the additional effect of incentive spirometry to chest physiotherapy to prevent postoperative pulmonary complications after thoracic surgery for lung and esophageal resections. Randomized controlled trial. University hospital, intensive care unit, and surgical department. Sixty-seven patients (age, 59 +/- 13 yrs; forced expiratory volume in 1 sec, 93% +/- 22% predicted) undergoing elective thoracic surgery for lung (n = 40) or esophagus (n = 27) resection. Physiotherapy (breathing exercises, huffing, and coughing) (PT) plus incentive spirometry (IS) was compared with PT alone. Lung function, body temperature, chest radiograph, white blood cell count, and number of hospital and intensive care unit days were all measured. Pulmonary function was significantly reduced after surgery (55% of the initial value) and improved significantly in the postoperative period in both groups. However, no differences were observed in the recovery of pulmonary function between the groups. The overall score of the chest radiograph, based on the presence of atelectasis, was similar in both treatment groups. Eight patients (12%) (three patients with lobectomy and five with esophagus resection) developed a pulmonary complication (abnormal chest radiograph, elevated body temperature and white blood cell count), four in each treatment group. Adding IS to regular PT did not reduce hospital or intensive care unit stay. Pulmonary complications after lung and esophagus surgery were relatively low. The addition of IS to PT did not further reduce pulmonary complications or hospital stay. Although we cannot rule out beneficial effects in a subgroup of high-risk patients, routine use of IS after thoracic surgery seems to be ineffective.

  15. Patterns of Lung Volume Use during an Extemporaneous Speech Task in Persons with Parkinson Disease

    ERIC Educational Resources Information Center

    Bunton, K.

    2005-01-01

    This study examined patterns of lung volume use in speakers with Parkinson disease (PD) during an extemporaneous speaking task. The performance of a control group was also examined. Behaviors described are based on acoustic, kinematic and linguistic measures. Group differences were found in breath group duration, lung volume initiation, and lung…

  16. Outcomes and Costs for Major Lung Resection in the United States: Which Patients Benefit Most From High-Volume Referral?

    PubMed

    Wakeam, Elliot; Hyder, Joseph A; Lipsitz, Stuart R; Darling, Gail E; Finlayson, Samuel R G

    2015-09-01

    Accountable care organizations are designed to improve value by decreasing costs and maintaining quality. Strategies to maximize value are needed for high-risk surgery. We wanted to understand whether certain patient groups were differentially associated with better outcomes at high-volume hospitals in terms of quality and cost. In all, 37,746 patients underwent elective major lung resection in 1,273 hospitals in the Nationwide Inpatient Sample from 2007 to 2011. Patients were stratified by hospital volume quartile and substratified by preoperative mortality risk, age, and chronic obstructive pulmonary disease status. Mortality was evaluated using clustered multivariable hierarchical logistic regression controlling for patient comorbidity, demographics, and procedure. Adjusted cost was evaluated using generalized linear models fit to a gamma distribution. Patients were grouped into volume quartiles based on cases per year (less than 21, 21 to 40, 40 to 78, and more than 78). Patient characteristics and procedure mix differed across quartiles. Overall, mortality decreased across volume quartiles (lowest 1.9% versus highest 1.1%, p < 0.0001). Patients aged more than 80 years were associated with greater absolute and relative mortality rates than patients less than 60 years old in highest volume versus lowest volume hospitals (age more than 80 years, 4.2% versus 1.3%, p < 0.0001, odds ratio 3.31, 95% confidence interval: 1.89 to 5.80; age less than 60 years, 1.0% versus 0.8%, p = 0.19, odds ratio 1.38, 95% confidence interval: 0.74 to 2.56). Patients with high preoperative risk (more than 75th percentile) were also associated with lower absolute mortality in high-volume hospitals. Adjusted costs were not significantly different across quartiles or patient strata. Older patients show a significantly stronger volume-outcome relationship than patients less than 60 years of age. Costs were equivalent across volume quartile and patient strata. Selective patient referral may be a strategy to improve outcomes for elderly patients undergoing lung resection. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Influence of different rotation angles in assessment of lung volumes by 3-dimensional sonography in comparison to magnetic resonance imaging in healthy fetuses.

    PubMed

    Kehl, Sven; Eckert, Sven; Sütterlin, Marc; Neff, K Wolfgang; Siemer, Jörn

    2011-06-01

    Three-dimensional (3D) sonographic volumetry is established in gynecology and obstetrics. Assessment of the fetal lung volume by magnetic resonance imaging (MRI) in congenital diaphragmatic hernias has become a routine examination. In vitro studies have shown a good correlation between 3D sonographic measurements and MRI. The aim of this study was to compare the lung volumes of healthy fetuses assessed by 3D sonography to MRI measurements and to investigate the impact of different rotation angles. A total of 126 fetuses between 20 and 40 weeks' gestation were measured by 3D sonography, and 27 of them were also assessed by MRI. The sonographic volumes were calculated by the rotational technique (virtual organ computer-aided analysis) with rotation angles of 6° and 30°. To evaluate the accuracy of 3D sonographic volumetry, percentage error and absolute percentage error values were calculated using MRI volumes as reference points. Formulas to calculate total, right, and left fetal lung volumes according to gestational age and biometric parameters were derived by stepwise regression analysis. Three-dimensional sonographic volumetry showed a high correlation compared to MRI (6° angle, R(2) = 0.971; 30° angle, R(2) = 0.917) with no systematic error for the 6° angle. Moreover, using the 6° rotation angle, the median absolute percentage error was significantly lower compared to the 30° angle (P < .001). The new formulas to calculate total lung volume in healthy fetuses only included gestational age and no biometric parameters (R(2) = 0.853). Three-dimensional sonographic volumetry of lung volumes in healthy fetuses showed a good correlation with MRI. We recommend using an angle of 6° because it assessed the lung volume more accurately. The specifically designed equations help estimate lung volumes in healthy fetuses.

  18. The effect of lung-size mismatch on mechanical ventilation tidal volumes after bilateral lung transplantation.

    PubMed

    Dezube, Rebecca; Arnaoutakis, George J; Reed, Robert M; Bolukbas, Servet; Shah, Ashish S; Orens, Jonathan B; Brower, Roy G; Eberlein, Michael

    2013-03-01

    Mechanical ventilation tidal volumes are usually set according to an estimate of patient size in millilitres (ml) per kilogram (kg) body weight. We describe the relationship between donor-recipient lung-size mismatch and postoperative mechanical ventilation tidal volumes according to recipient- and donor-predicted body weights in a cohort of bilateral lung transplant patients. A most-undersized (10 patients with lowest predicted total lung capacity [pTLC] ratio = pTLC-donor/pTLC-recipient), a most-oversized (10 patients with highest pTLC ratio) and best-matched subset (10 patients with predicted total lung capacity ratio closest to 1.0) were selected within a cohort of 70 patients. All tidal volumes during mechanical ventilation in the first 96 h after bilateral lung transplantation were recorded. Tidal volumes were expressed in ml and ml/kg-recipient-predicted body weights and ml/kg-donor-predicted body weights. Postoperative absolute tidal volumes (in ml) were comparable between subsets of patients with undersized, matched and oversized allografts (552 ± 103 vs 581 ± 107 vs 582 ± 104 ml), and tidal volumes in ml/kg-recipient-predicted body weights were also similar (8.8 ± 1.4 vs 9.3 ± 1.1 vs 9.8 ± 2.1). However, tidal volumes in ml/kg-donor-predicted body weights revealed significant differences between undersized, matched, and oversized subsets (11.4 ± 3.1 vs 9.4 ± 1.2 vs 8.1 ± 2.1, respectively; P < 0.05). Two patients developed primary graft dysfunction grade 3, both in the undersized subset. Four patients in the undersized group underwent tracheotomy (vs none in matched and one in oversized subset). During mechanical ventilation after bilateral lung transplantation, undersized allografts received relatively higher tidal volumes compared with oversized allografts when the tidal volumes were related to donor-predicted body weights.

  19. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study.

    PubMed

    Needham, Dale M; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J

    2012-04-05

    To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Prospective cohort study. 13 intensive care units at four hospitals in Baltimore, Maryland, USA. 485 consecutive mechanically ventilated patients with acute lung injury. Two year survival after onset of acute lung injury. 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Clinicaltrials.gov NCT00300248.

  20. National Emphysema Treatment Trial redux: accentuating the positive.

    PubMed

    Sanchez, Pablo Gerardo; Kucharczuk, John Charles; Su, Stacey; Kaiser, Larry Robert; Cooper, Joel David

    2010-09-01

    Under the Freedom of Information Act, we obtained the follow-up data of the National Emphysema Treatment Trial (NETT) to determine the long-term outcome for "a heterogeneous distribution of emphysema with upper lobe predominance," postulated by the NETT hypothesis to be optimal candidates for lung volume reduction surgery. Using the NETT database, we identified patients with heterogeneous distribution of emphysema with upper lobe predominance and analyzed for the first time follow-up data for those receiving lung volume reduction surgery and those receiving medical management. Furthermore, we compared the results of the NETT reduction surgery group with a previously reported consecutive case series of 250 patients undergoing bilateral lung volume reduction surgery using similar selection criteria. Of the 1218 patients enrolled, 511 (42%) conformed to the NETT hypothesis selection criteria and received the randomly assigned surgical or medical treatment (surgical = 261; medical = 250). Lung volume reduction surgery resulted in a 5-year survival benefit (70% vs 60%; P = .02). Results at 3 years compared with baseline data favored surgical reduction in terms of residual volume reduction (25% vs 2%; P < .001), University of California San Diego dyspnea score (16 vs 0 points; P < .001), and improved St George Respiratory Questionnaire quality of life score (12 points vs 0 points; P < .001). For the 513 patients with a homogeneous pattern of emphysema randomized to surgical or medical treatment, lung volume reduction surgery produced no survival advantage and very limited functional benefit. Patients most likely to benefit from lung volume reduction surgery have heterogeneously distributed emphysema involving the upper lung zones predominantly. Such patients in the NETT trial had results nearly identical to those previously reported in a nonrandomized series of similar patients undergoing lung volume reduction surgery. 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  1. Changes in dynamic lung mechanics after lung volume reduction coil treatment of severe emphysema.

    PubMed

    Makris, Demosthenes; Leroy, Sylvie; Pradelli, Johana; Benzaquen, Jonathan; Guenard, Hervé; Perotin, Jeanne-Marie; Zakynthinos, Spyros; Zakynthinos, Epaminondas; Deslee, Gaëtan; Marquette, Charles Hugo

    2018-06-01

    We assessed the relationships between changes in lung compliance, lung volumes and dynamic hyperinflation in patients with emphysema who underwent bronchoscopic treatment with nitinol coils (coil treatment) (n=11) or received usual care (UC) (n=11). Compared with UC, coil treatment resulted in decreased dynamic lung compliance (C Ldyn ) (p=0.03) and increased endurance time (p=0.010). The change in C Ldyn was associated with significant improvement in FEV 1 and FVC, with reduction in residual volume and intrinsic positive end-expiratory pressure, and with increased inspiratory capacity at rest/and at exercise. The increase in end-expiratory lung volume (EELV) during exercise (EELV dyn-ch =EELV isotime EELV rest ) demonstrated significant attenuation after coil treatment (p=0.02). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Measurement of absolute regional lung air volumes from near-field x-ray speckles.

    PubMed

    Leong, Andrew F T; Paganin, David M; Hooper, Stuart B; Siew, Melissa L; Kitchen, Marcus J

    2013-11-18

    Propagation-based phase contrast x-ray (PBX) imaging yields high contrast images of the lung where airways that overlap in projection coherently scatter the x-rays, giving rise to a speckled intensity due to interference effects. Our previous works have shown that total and regional changes in lung air volumes can be accurately measured from two-dimensional (2D) absorption or phase contrast images when the subject is immersed in a water-filled container. In this paper we demonstrate how the phase contrast speckle patterns can be used to directly measure absolute regional lung air volumes from 2D PBX images without the need for a water-filled container. We justify this technique analytically and via simulation using the transport-of-intensity equation and calibrate the technique using our existing methods for measuring lung air volume. Finally, we show the full capabilities of this technique for measuring regional differences in lung aeration.

  3. Effects of cannabis on lung function: a population-based cohort study.

    PubMed

    Hancox, R J; Poulton, R; Ely, M; Welch, D; Taylor, D R; McLachlan, C R; Greene, J M; Moffitt, T E; Caspi, A; Sears, M R

    2010-01-01

    The effects of cannabis on lung function remain unclear and may be different from those of tobacco. We compared the associations between use of these substances and lung function in a population-based cohort (n = 1,037). Cannabis and tobacco use were reported at ages 18, 21, 26 and 32 yrs. Spirometry, plethysmography and carbon monoxide transfer factor were measured at 32 yrs. Associations between lung function and exposure to each substance were adjusted for exposure to the other substance. Cumulative cannabis use was associated with higher forced vital capacity, total lung capacity, functional residual capacity and residual volume. Cannabis was also associated with higher airway resistance but not with forced expiratory volume in 1 s, forced expiratory ratio or transfer factor. These findings were similar among those who did not smoke tobacco. In contrast, tobacco use was associated with lower forced expiratory volume in 1 s, lower forced expiratory ratio, lower transfer factor and higher static lung volumes, but not with airway resistance. Cannabis appears to have different effects on lung function from those of tobacco. Cannabis use was associated with higher lung volumes, suggesting hyperinflation and increased large-airways resistance, but there was little evidence for airflow obstruction or impairment of gas transfer.

  4. Lung cancer following bronchoscopic lung volume reduction for severe emphysema: a case and its management.

    PubMed

    Tummino, Celine; Maldonado, Fabien; Laroumagne, Sophie; Astoul, Philippe; Dutau, Hervé

    2012-01-01

    Bronchoscopic lung volume reduction using endobronchial valves has been suggested as a potentially safer alternative to surgery in selected cases. Complications of this technique include pneumothoraces, pneumonia, COPD exacerbations, hemoptysis, and valve migrations. We report the case of a male patient who developed a parenchymal mass in the treated lobe after valve insertion. Due to severe emphysema, transthoracic needle aspiration was not feasible. Removal of the valves was mandatory to perform transbronchialbiopsies which revealed a non-small cell primary lung cancer. This first description illustrates the potential risk of lung cancer development following bronchoscopic lung volume reduction and highlights the different approach to diagnosis and management of indeterminate peripheral lung lesions needed in this context. Copyright © 2011 S. Karger AG, Basel.

  5. Respiratory mechanics to understand ARDS and guide mechanical ventilation.

    PubMed

    Mauri, Tommaso; Lazzeri, Marta; Bellani, Giacomo; Zanella, Alberto; Grasselli, Giacomo

    2017-11-30

    As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.

  6. Clinical and Dosimetric Predictors of Radiation Pneumonitis in a Large Series of Patients Treated With Stereotactic Body Radiation Therapy to the Lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Ryan; Han Gang; Sarangkasiri, Siriporn

    2013-01-01

    Purpose: To report clinical and dosimetric factors predictive of radiation pneumonitis (RP) in patients receiving lung stereotactic body radiation therapy (SBRT) from a series of 240 patients. Methods and Materials: Of the 297 isocenters treating 263 patients, 240 patients (n=263 isocenters) had evaluable information regarding RP. Age, gender, current smoking status and pack-years, O{sub 2} use, Charlson Comorbidity Index, prior lung radiation therapy (yes/no), dose/fractionation, V{sub 5}, V{sub 13}, V{sub 20}, V{sub prescription}, mean lung dose, planning target volume (PTV), total lung volume, and PTV/lung volume ratio were recorded. Results: Twenty-nine patients (11.0%) developed symptomatic pneumonitis (26 grade 2, 3more » grade 3). The mean V{sub 20} was 6.5% (range, 0.4%-20.2%), and the average mean lung dose was 5.03 Gy (0.547-12.2 Gy). In univariable analysis female gender (P=.0257) and Charlson Comorbidity index (P=.0366) were significantly predictive of RP. Among dosimetric parameters, V{sub 5} (P=.0186), V{sub 13} (P=.0438), and V{sub prescription} (where dose = 60 Gy) (P=.0128) were significant. There was only a trend toward significance for V{sub 20} (P=.0610). Planning target volume/normal lung volume ratio was highly significant (P=.0024). In multivariable analysis the clinical factors of female gender, pack-years smoking, and larger gross internal tumor volume and PTV were predictive (P=.0094, .0312, .0364, and .052, respectively), but no dosimetric factors were significant. Conclusions: Rate of symptomatic RP was 11%. Our mean lung dose was <600 cGy in most cases and V20 <10%. In univariable analysis, dosimetric factors were predictive, while tumor size (or tumor/lung volume ratio) played a role in multivariable and univariable and analysis, respectively.« less

  7. Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results

    NASA Astrophysics Data System (ADS)

    Patz, Samuel; Muradyan, Iga; Hrovat, Mirko I.; Dabaghyan, Mikayel; Washko, George R.; Hatabu, Hiroto; Butler, James P.

    2011-01-01

    We used hyperpolarized 129Xe NMR to measure pulmonary alveolar surface area per unit gas volume SA/Vgas, alveolar septal thickness h and capillary transit time τ, three critical determinants of the lung's primary role as a gas exchange organ. An analytical solution for a simplified diffusion model is described, together with a modification of the xenon transfer contrast imaging technique utilizing 90° radio-frequency pulses applied to the dissolved phase, rather than traditional 180° pulses. With this approach, three-dimensional (3D) maps of SA/Vgas were obtained. We measured global SA/Vgas, h and τ in four normal subjects, two subjects with mild interstitial lung disease (ILD) and two subjects with mild chronic obstructive pulmonary disease (COPD). In normals, SA/Vgas decreased with increasing lung volume from ~320 to 80 cm-1 both h~13 μm and τ~1.5 s were relatively constant. For the two ILD subjects, h was, respectively, 36 and 97% larger than normal, quantifying an increased gas/blood tissue barrier; SA/Vgas and τ were normal. The two COPD subjects had SA/Vgas values ~25% that of normals, quantifying septal surface loss in emphysema; h and τ were normal. These are the first noninvasive, non-radiation-based, quantitative measurements of h and τ in patients with pulmonary disease.

  8. Indirect measurement of lung density and air volume from electrical impedance tomography (EIT) data.

    PubMed

    Nebuya, Satoru; Mills, Gary H; Milnes, Peter; Brown, Brian H

    2011-12-01

    This paper describes a method for estimating lung density, air volume and changes in fluid content from a non-invasive measurement of the electrical resistivity of the lungs. Resistivity in Ω m was found by fitting measured electrical impedance tomography (EIT) data to a finite difference model of the thorax. Lung density was determined by comparing the resistivity of the lungs, measured at a relatively high frequency, with values predicted from a published model of lung structure. Lung air volume can then be calculated if total lung weight is also known. Temporal changes in lung fluid content will produce proportional changes in lung density. The method was implemented on EIT data, collected using eight electrodes placed in a single plane around the thorax, from 46 adult male subjects and 36 adult female subjects. Mean lung densities (±SD) of 246 ± 67 and 239 ± 64 kg m(-3), respectively, were obtained. In seven adult male subjects estimates of 1.68 ± 0.30, 3.42 ± 0.49 and 4.40 ± 0.53 l in residual volume, functional residual capacity and vital capacity, respectively, were obtained. Sources of error are discussed. It is concluded that absolute differences in lung density of about 30% and changes over time of less than 30% should be detected using the current technology in normal subjects. These changes would result from approximately 300 ml increase in lung fluid. The method proposed could be used for non-invasive monitoring of total lung air and fluid content in normal subjects but needs to be assessed in patients with lung disease.

  9. Can lung volumes and capacities be used as an outcome measure for phrenic nerve recovery after cardiac surgeries?

    PubMed

    El-Sobkey, Salwa B; Salem, Naguib A

    2011-01-01

    Phrenic nerve is the main nerve drive to the diaphragm and its injury is a well-known complication following cardiac surgeries. It results in diaphragmatic dysfunction with reduction in lung volumes and capacities. This study aimed to evaluate the objectivity of lung volumes and capacities as an outcome measure for the prognosis of phrenic nerve recovery after cardiac surgeries. In this prospective experimental study, patients were recruited from Cardio-Thoracic Surgery Department, Educational-Hospital of College of Medicine, Cairo University. They were 11 patients with right phrenic nerve injury and 14 patients with left injury. On the basis of receiving low-level laser irradiation, they were divided into irradiated group and non-irradiated group. Measures of phrenic nerve latency, lung volumes and capacities were taken pre and post-operative and at 3-months follow up. After 3 months of low-level laser therapy, the irradiated group showed marked improvement in the phrenic nerve recovery. On the other hand, vital capacity and forced expiratory volume in the first second were the only lung capacity and volume that showed improvement consequent with the recovery of right phrenic nerve (P value <0.001 for both). Furthermore, forced vital capacity was the single lung capacity that showed significant statistical improvement in patients with recovered left phrenic nerve injury (P value <0.001). Study concluded that lung volumes and capacities cannot be used as an objective outcome measure for recovery of phrenic nerve injury after cardiac surgeries.

  10. Comparison of plethysmographic and helium dilution lung volumes in patients with a giant emphysematous bulla as selection criteria for endobronchial valve implant.

    PubMed

    Fiorelli, Alfonso; Scaramuzzi, Roberto; Pierdiluca, Matteo; Frongillo, Elisabetta; Messina, Gaetana; Serra, Nicola; De Felice, Alberto; Santini, Mario

    2017-09-01

    To assess whether the difference in lung volume measured with plethysmography and with the helium dilution technique could differentiate an open from a closed bulla in patients with a giant emphysematous bulla and could be used as a selection criterion for the positioning of an endobronchial valve. We reviewed the data of 27 consecutive patients with a giant emphysematous bulla undergoing treatment with an endobronchial valve. In addition to standard functional and radiological examinations, total lung capacity and residual volume were measured with the plethysmographic and helium dilution technique. We divided the patients into 2 groups, the collapse or the no-collapse group, depending on whether the bulla collapsed or not after the valves were put in position. We statistically evaluated the intergroup differences in lung volume and outcome. In the no-collapse group (n = 6), the baseline plethysmographic values were significantly higher than the helium dilution volumes, including total lung capacity (188 ± 14 vs 145 ± 13, P = 0.0007) and residual volume (156 ± 156 vs 115 ± 15, P = 0.001). In the collapse group, there was no significant difference in lung volumes measured with the 2 methods. A difference in total lung capacity of ≤ 13% and in residual volume of ≤ 25% measured with the 2 methods predicted the collapse of the bulla with a success rate of 83% and 84%, respectively. Only the collapse group showed significant improvement in functional data. Similar values in lung volumes measured with the 2 methods support the hypothesis that the bulla communicates with the airway (open bulla) and thus is likely to collapse when the endobronchial valve is implanted. Further studies are needed to validate our model. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. SU-E-T-625: Potential for Reduced Radiation Induced Toxicity for the Treatment of Inoperable Non-Small-Cell Lung Cancer Using RapidArc Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Sood, S; Badkul, R

    2015-06-15

    Purpose: To investigate the feasibility of using RapidArc (RA) treatment planning to reduce irradiation volume of normal lung and other organs at risk (OARs) in the treatment of inoperable non-small-cell lung cancer (NSCLC) patients. Methods: A retrospective treatment planning and delivery study was performed to compare target coverage and the volumes of the normal lung, spinal cord, heart and esophagus on 4D-CT scan above their dose tolerances delivered by RA vs. IMRT for ten inoperable NSCLC patients (Stage I-IIIB). RA plans consisted of either one-full or two-partial co-planar arcs used to treat 95% of the planning target volume (PTV) withmore » 6MV beam to a prescription of 66Gy in 33 fractions. IMRT plans were generated using 5–7 co-planar fields with 6MV beam. PTV coverage, dose-volume histograms, homogeneity/conformity indices (CI), total number of monitor units(MUs), beam-on time and delivery accuracy were compared between the two treatment plans. Results: Similar target coverage was obtained between the two techniques. RA (CI=1.02) provided more conformal plans without loss of homogeneity compared to IMRT plans (CI=1.12). Compared to IMRT, RA achieved a significant median dose reduction in V10 (3%), V20 (8%), and mean lung dose (3%) on average, respectively. On average, V5 was comparable between the two treatment plans. RA reduced mean esophagus (6%), mean heart (18%), and maximum spinal cord dose (7%), on average, respectively. Total number of MUs and beam-on time were each reduced almost by a factor of 2 when compared to IMRT-patient comfort, reduced intra-fraction-motion and leakage dose. The average IMRT and RA QA pass rate was about 98% for both types of plans for 3%/3mm criterion. Conclusion: Compared to IMRT plans, RA provided not only comparable target coverage, but also improved conformity, treatment time, and significant reduction in irradiation of OARs. This may potentially allow for target dose escalation without increase in normal tissue toxicity.« less

  12. Reduced lung dose during radiotherapy for thoracic esophageal carcinoma: VMAT combined with active breathing control for moderate DIBH.

    PubMed

    Gong, Guanzhong; Wang, Ruozheng; Guo, Yujie; Zhai, Deyin; Liu, Tonghai; Lu, Jie; Chen, Jinhu; Liu, Chengxin; Yin, Yong

    2013-12-20

    Lung radiation injury is a critical complication of radiotherapy (RT) for thoracic esophageal carcinoma (EC). Therefore, the goal of this study was to investigate the feasibility and dosimetric effects of reducing the lung tissue irradiation dose during RT for thoracic EC by applying volumetric modulated arc radiotherapy (VMAT) combined with active breathing control (ABC) for moderate deep inspiration breath-hold (mDIBH). Fifteen patients with thoracic EC were randomly selected to undergo two series of computed tomography (CT) simulation scans with ABC used to achieve mDIBH (representing 80% of peak DIBH value) versus free breathing (FB). Gross tumor volumes were contoured on different CT images, and planning target volumes (PTVs) were obtained using different margins. For PTV-FB, intensity-modulated radiotherapy (IMRT) was designed with seven fields, and VMAT included two whole arcs. For PTV-DIBH, VMAT with three 135° arcs was applied, and the corresponding plans were named: IMRT-FB, VMAT-FB, and VMAT-DIBH, respectively. Dosimetric differences between the different plans were compared. The heart volumes decreased by 19.85%, while total lung volume increased by 52.54% in mDIBH, compared to FB (p < 0.05). The mean conformality index values and homogeneity index values for VMAT-DIBH (0.86, 1.07) were slightly worse than those for IMRT-FB (0.90, 1.05) and VMAT-FB (0.90, 1.06) (p > 0.05). Furthermore, compared to IMRT-FB and VMAT-FB, VMAT-DIBH reduced the mean total lung dose by 18.64% and 17.84%, respectively (p < 0.05); moreover, the V5, V10, V20, and V30 values for IMRT-FB and VMAT-FB were reduced by 10.84% and 10.65% (p > 0.05), 12.5% and 20% (p < 0.05), 30.77% and 33.33% (p < 0.05), and 50.33% and 49.15% (p < 0.05), respectively. However, the heart dose-volume indices were similar between VMAT-DIBH and VMAT-FB which were lower than IMRT-FB without being statistically significant (p > 0.05). The monitor units and treatment time of VMAT-DIBH were also the lowest (p < 0.05). VMAT combined with ABC to achieve mDIBH is a feasible approach for RT of thoracic EC. Furthermore, this method has the potential to effectively reduce lung dose in a shorter treatment time and with better targeting accuracy.

  13. Effect of supplementing a high-fat, low-carbohydrate enteral formula in COPD patients.

    PubMed

    Cai, Baiqiang; Zhu, Yuanjue; Ma, Y i; Xu, Zuojun; Zao, Y i; Wang, Jinglan; Lin, Yaoguang; Comer, Gail M

    2003-03-01

    One of the goals in treating patients with chronic obstructive pulmonary disease (COPD) who suffer from hypoxemia, hypercapnia, and malnutrition is to correct the malnutrition without increasing the respiratory quotient and minimize the production of carbon dioxide. This 3-wk study evaluated the efficacy of feeding a high-fat, low-carbohydrate (CHO) nutritional supplement as opposed to a high-carbohydrate diet in COPD patients on parameters of pulmonary function.S METHODS: Sixty COPD patients with low body weight (<90% ideal body weight) were randomized to the control group, which received dietary counseling for a high-CHO diet (15% protein, 20% to 30% fat, and 60% to 70% CHO), or the experimental group, which received two to three cans (237 mL/can) of a high-fat, low-CHO oral supplement (16.7% protein, 55.1% fat, and 28.2% CHO) in the evening as part of the diet. Measurements of lung function (forced expiratory volume in 1 s or volume of air exhaled in 1 s of maximal expiration, minute ventilation, oxygen consumption per unit time, carbon dioxide production in unit time, and respiratory quotient) and blood gases (pH, arterial carbon dioxide tension, and arterial oxygen tension) were taken at baseline and after 3 wk. Lung function measurements decreased significantly and forced expiratory volume increased significantly in the experimental group. This study demonstrates that pulmonary function in COPD patients can be significantly improved with a high-fat, low-CHO oral supplement as compared with the traditional high-CHO diet.

  14. Perfusion lung imaging in the adult respiratory distress syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistolesi, M.; Miniati, M.; Di Ricco, G.

    1986-07-01

    In 29 perfusion lung scans (PLS) of 19 patients with ARDS, 20 of which were obtained within six days from the onset of respiratory symptoms, perfusion abnormalities were the rule. These included focal, nonsegmental defects, mostly peripheral and dorsal, and perfusion redistribution away from the dependent lung zones. PLS were scored for the presence and intensity of perfusion abnormalities and the scores of perfusion redistribution were validated against numerical indices of blood flow distribution per unit lung volume. PLS scores were correlated with arterial blood gas values, hemodynamic parameters, and chest radiographic scores of ARDS. Arterial oxygen tension correlated withmore » the scores of both perfusion defects and redistribution. Perfusion defects correlated better with the radiographic score of ARDS, and perfusion redistribution with PAP and vascular resistance. ARDS patients exhibit peculiar patterns of PLS abnormalities not observed in other disorders. Thus, PLS may help considerably in the detection and evaluation of pulmonary vascular injury in ARDS.« less

  15. Supine posture changes lung volumes and increases ventilation heterogeneity in cystic fibrosis.

    PubMed

    Smith, Laurie J; Macleod, Kenneth A; Collier, Guilhem J; Horn, Felix C; Sheridan, Helen; Aldag, Ina; Taylor, Chris J; Cunningham, Steve; Wild, Jim M; Horsley, Alex

    2017-01-01

    Lung Clearance Index (LCI) is recognised as an early marker of cystic fibrosis (CF) lung disease. The effect of posture on LCI however is important when considering longitudinal measurements from infancy and when comparing LCI to imaging studies. 35 children with CF and 28 healthy controls (HC) were assessed. Multiple breath washout (MBW) was performed both sitting and supine in triplicate and analysed for LCI, Scond, Sacin, and lung volumes. These values were also corrected for the Fowler dead-space to create 'alveolar' indices. From sitting to supine there was a significant increase in LCI and a significant decrease in FRC for both CF and HC (p<0.01). LCI, when adjusted to estimate 'alveolar' LCI (LCIalv), increased the magnitude of change with posture for both LCIalv and FRCalv in both groups, with a greater effect of change in lung volume in HC compared with children with CF. The % change in LCIalv for all subjects correlated significantly with lung volume % changes, most notably tidal volume/functional residual capacity (Vtalv/FRCalv (r = 0.54,p<0.001)). There is a significant increase in LCI from sitting to supine, which we believe to be in part due to changes in lung volume and also increasing ventilation heterogeneity related to posture. This may have implications in longitudinal measurements from infancy to older childhood and for studies comparing supine imaging methods to LCI.

  16. Elemental composition of particulate matter and the association with lung function.

    PubMed

    Eeftens, Marloes; Hoek, Gerard; Gruzieva, Olena; Mölter, Anna; Agius, Raymond; Beelen, Rob; Brunekreef, Bert; Custovic, Adnan; Cyrys, Josef; Fuertes, Elaine; Heinrich, Joachim; Hoffmann, Barbara; de Hoogh, Kees; Jedynska, Aleksandra; Keuken, Menno; Klümper, Claudia; Kooter, Ingeborg; Krämer, Ursula; Korek, Michal; Koppelman, Gerard H; Kuhlbusch, Thomas A J; Simpson, Angela; Smit, Henriëtte A; Tsai, Ming-Yi; Wang, Meng; Wolf, Kathrin; Pershagen, Göran; Gehring, Ulrike

    2014-09-01

    Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. We conducted a multicenter study in 5 European birth cohorts-BAMSE (Sweden), GINIplus and LISAplus (Germany), MAAS (United Kingdom), and PIAMA (The Netherlands)-for which lung function measurements were available for study subjects at the age of 6 or 8 years. Individual annual average residential exposure to copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc within PM smaller than 2.5 μm (PM2.5) and smaller than 10 μm (PM10) was estimated using land-use regression models. Associations between air pollution and lung function were analyzed by linear regression within cohorts, adjusting for potential confounders, and then combined by random effects meta-analysis. We observed small reductions in forced expiratory volume in the first second, forced vital capacity, and peak expiratory flow related to exposure to most elemental pollutants, with the most substantial negative associations found for nickel and sulfur. PM10 nickel and PM10 sulfur were associated with decreases in forced expiratory volume in the first second of 1.6% (95% confidence interval = 0.4% to 2.7%) and 2.3% (-0.1% to 4.6%) per increase in exposure of 2 and 200 ng/m, respectively. Associations remained after adjusting for PM mass. However, associations with these elements were not evident in all cohorts, and heterogeneity of associations with exposure to various components was larger than for exposure to PM mass. Although we detected small adverse effects on lung function associated with annual average levels of some of the evaluated elements (particularly nickel and sulfur), lower lung function was more consistently associated with increased PM mass.

  17. [Lung volume reduction surgery in advanced emphysema--results of the Washington University, St. Louis].

    PubMed

    Cooper, J D; Gaissert, H A; Patterson, G A; Pohl, M S; Yusen, R D; Trulock, E P

    1996-01-01

    The aim of lung volume reduction surgery is to alleviate the symptoms of severe emphysema and to improve the life quality of the patient. The appropriate candidates (approximately 20% of all emphysematic patients examined in our clinic) had considerable dyspnea, an increased lung capacity, and a heterogenous dissemination of the emphysema with regional destruction of the parenchyma, hyperinflation and poor perfusion. After preoperative physiotherapie with a specified rehabilitation aim, a resection of 20 to 30% of the total lung volume was performed via sternotomy. From January 1993 to February 1996, 150 patients underwent bilateral lung volume reduction (age range = 36 to 77 years). The mean forced expiratory volume in 1 s (FEV1) was preoperatively 25% of the predicted value, the total lung capacity (TLC) 142% and the residual volume (RV) 283%, 94% of these patients necessitated oxygen supply at rest or during exercise. The 90-day mortality was 4%. All patients except 1 were extubated immediately after operation. The median hospital stay was 10 days in the first 100 patients and 7 days in the last 50. An increase of the FEV1 by 51% and a decrease of the RV by 28% was observed 6 months after operation. The mean PaO2 was improved by 8 mm Hg while the percentage of oxygen dependent patients went down from 50 to 16%. In addition a raise of the perseverance capacity, a clear decrease of dyspnea and an improvement of the life quality were achieved. These results persist after 1 (n = 56) and 2 (n = 20) years after operation. Lung volume reduction leads to an improvement of the lung function, symptoms and the quality of life, which is superior to that achieved by maximal clinical intervention.

  18. High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.

    PubMed

    Frank, James A; Pittet, Jean-Francois; Lee, Hyon; Godzich, Micaela; Matthay, Michael A

    2003-05-01

    Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.

  19. A quasi-experimental, before-after trial examining the impact of an emergency department mechanical ventilator protocol on clinical outcomes and lung-protective ventilation in acute respiratory distress syndrome

    PubMed Central

    Fuller, Brian M.; Ferguson, Ian T.; Mohr, Nicholas M.; Drewry, Anne M.; Palmer, Christopher; Wessman, Brian T.; Ablordeppey, Enyo; Keeperman, Jacob; Stephens, Robert J.; Briscoe, Cristopher C.; Kolomiets, Angelina A.; Hotchkiss, Richard S.; Kollef, Marin H.

    2017-01-01

    Objective To evaluate the impact of an emergency department (ED) mechanical ventilation protocol on clinical outcomes and adherence to lung-protective ventilation in patients with acute respiratory distress syndrome (ARDS). Design Quasi-experimental, before-after trial. Setting ED and intensive care units (ICU) of an academic center. Patients Mechanically ventilated ED patients experiencing ARDS while in the ED or after admission to the ICU. Interventions An ED ventilator protocol which targeted parameters in need of quality improvement, as identified by prior work: 1) lung-protective tidal volume; 2) appropriate setting of positive end-expiratory pressure (PEEP); 3) oxygen weaning; and 4) head-of-bed elevation. Measurements and Main Results A total of 229 patients (186 pre-intervention group, 43 intervention group) were studied. In the ED, the intervention was associated with significant changes (P < 0.01 for all) in tidal volume, PEEP, respiratory rate, oxygen administration, and head-of-bed elevation. There was a reduction in ED tidal volume from 8.1 mL/kg PBW (7.0 – 9.1) to 6.4 mL/kg PBW (6.1 – 6.7), and an increase in lung-protective ventilation from 11.1% to 61.5%, P < 0.01. The intervention was associated with a reduction in mortality from 54.8% to 39.5% (OR 0.38, 95% CI 0.17 – 0.83, P = 0.02), and a 3.9 day increase in ventilator-free days, P = 0.01. Conclusions This before-after study of mechanically ventilated patients with ARDS demonstrates that implementing a mechanical ventilator protocol in the ED is feasible, and associated with improved clinical outcomes. PMID:28157140

  20. Quantifying Morphological Parameters of the Terminal Branching Units in a Mouse Lung by Phase Contrast Synchrotron Radiation Computed Tomography

    PubMed Central

    Hwang, Jeongeun; Kim, Miju; Kim, Seunghwan; Lee, Jinwon

    2013-01-01

    An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman’s method was adopted for the whole-lung sample preparation, and Canny’s edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method’s feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies. PMID:23704918

  1. Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults.

    PubMed

    Verbanck, Sylvia; Van Muylem, Alain; Schuermans, Daniel; Bautmans, Ivan; Thompson, Bruce; Vincken, Walter

    2016-01-01

    Monitoring of chronic lung disease requires reference values of lung function indices, including putative markers of small airway function, spanning a wide age range.We measured spirometry, transfer factor of the lung for carbon monoxide (TLCO), static lung volume, resistance and ventilation distribution in a healthy population, studying at least 20 subjects per sex and per decade between the ages of 20 and 80 years.With respect to the Global Lung Function Initiative reference data, our subjects had average z-scores for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC of -0.12, 0.04 and -0.32, respectively. Reference equations were obtained which could account for a potential dependence of index variability on age and height. This was done for (but not limited to) indices that are pertinent to asthma and chronic obstructive pulmonary disease studies: forced expired volume in 6 s, forced expiratory flow, TLCO, specific airway conductance, residual volume (RV)/total lung capacity (TLC), and ventilation heterogeneity in acinar and conductive lung zones.Deterioration in acinar ventilation heterogeneity and lung clearance index with age were more marked beyond 60 years, and conductive ventilation heterogeneity showed the greatest increase in variability with age. The most clinically relevant deviation from published reference values concerned RV/TLC values, which were considerably smaller than American Thoracic Society/European Respiratory Society-endorsed reference values. Copyright ©ERS 2016.

  2. Airway driving pressure and lung stress in ARDS patients.

    PubMed

    Chiumello, Davide; Carlesso, Eleonora; Brioni, Matteo; Cressoni, Massimo

    2016-08-22

    Lung-protective ventilation strategy suggests the use of low tidal volume, depending on ideal body weight, and adequate levels of PEEP. However, reducing tidal volume according to ideal body weight does not always prevent overstress and overstrain. On the contrary, titrating mechanical ventilation on airway driving pressure, computed as airway pressure changes from PEEP to end-inspiratory plateau pressure, equivalent to the ratio between the tidal volume and compliance of respiratory system, should better reflect lung injury. However, possible changes in chest wall elastance could affect the reliability of airway driving pressure. The aim of this study was to evaluate if airway driving pressure could accurately predict lung stress (the pressure generated into the lung due to PEEP and tidal volume). One hundred and fifty ARDS patients were enrolled. At 5 and 15 cmH2O of PEEP, lung stress, driving pressure, lung and chest wall elastance were measured. The applied tidal volume (mL/kg of ideal body weight) was not related to lung gas volume (r (2) = 0.0005 p = 0.772). Patients were divided according to an airway driving pressure lower and equal/higher than 15 cmH2O (the lower and higher airway driving pressure groups). At both PEEP levels, the higher airway driving pressure group had a significantly higher lung stress, respiratory system and lung elastance compared to the lower airway driving pressure group. Airway driving pressure was significantly related to lung stress (r (2) = 0.581 p < 0.0001 and r (2) = 0.353 p < 0.0001 at 5 and 15 cmH2O of PEEP). For a lung stress of 24 and 26 cmH2O, the optimal cutoff value for the airway driving pressure were 15.0 cmH2O (ROC AUC 0.85, 95 % CI = 0.782-0.922); and 16.7 (ROC AUC 0.84, 95 % CI = 0.742-0.936). Airway driving pressure can detect lung overstress with an acceptable accuracy. However, further studies are needed to establish if these limits could be used for ventilator settings.

  3. Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung.

    PubMed

    Maina, J N

    2007-01-15

    Among the air-breathing vertebrates, the respiratory system of birds, the lung-air sac system, is remarkably complex and singularly efficient. The most perplexing structural property of the avian lung pertains to its exceptional mechanical strength, especially that of the minuscule terminal respiratory units, the air- and the blood capillaries. In different species of birds, the air capillaries range in diameter from 3 to 20 micro m: the blood capillaries are in all cases relatively smaller. Over and above their capacity to withstand enormous surface tension forces at the air-tissue interface, the air capillaries resist mechanical compression (parabronchial distending pressure) as high as 20 cm H(2)O (2 kPa). The blood capillaries tolerate a pulmonary arterial vascular pressure of 24.1 mmHg (3.2 kPa) and vascular resistance of 22.5 mmHg (3 kPa) without distending. The design of the avian respiratory system fundamentally stems from the rigidity (strength) of the lung. The gas exchanger (the lung) is uncoupled from the ventilator (the air sacs), allowing the lung (the paleopulmonic parabronchi) to be ventilated continuously and unidirectionally by synchronized bellows like action of the air sacs. Since during the ventilation of the lung the air capillaries do not have to be distended (dilated), i.e., surface tension force does not have to be overcome (as would be the case if the lung was compliant), extremely intense subdivision of the exchange tissue was possible. Minuscule terminal respiratory units developed, producing a vast respiratory surface area in a limited lung volume. I make a case that a firm (rigid) rib cage, a lung tightly held by the ribs and the horizontal septum, a lung directly attached to the trunk, specially formed and compactly arranged parabronchi, intertwined atrial muscles, and tightly set air capillaries and blood capillaries form an integrated hierarchy of discrete network system of tension and compression, a tensegrity (tensional integrity) array, which absorbs, transmits, and dissipates stress, stabilizing (strengthening) the lung and its various structural components.

  4. MO-FG-BRA-04: A Novel Time Weighted Density Correction for Stereotactic Lung Radiotherapy: A Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohatt, D; Malhotra, H

    Purpose: Conventional treatment plans for lung radiotherapy are created using either the free breathing (FB) scheme which represents the tumor at an arbitrary breathing phase of the patient’s respiratory cycle, or the average computed tomography (ACT) intensity projection over 10-binned phases. Neither method is entirely accurate because of the absence of time dependence of tumor movement. In the present “Hybrid” method, the HU of tumor in 3D space is determined by relative weighting of the HU of the tumor and lung in proportion to the time they spend at that location during the entire breathing cycle. Methods: A Quasar respiratorymore » motion phantom was employed to simulate lung tumor movement. Utilizing 4DCT image scans, volumetric modulated arc therapy (VMAT) plans were generated for three treatment planning scenarios which included conventional FB and ACT schemes, along with a third alternative Hybrid approach. Our internal target volume (ITV) hybrid structure was created using Boolean operation in Eclipse (ver. 11) treatment planning system, where independent sub-regions created by the gross tumor volume (GTV) overlap from the 10 motion phases were each assigned a time weighted CT value. The dose-volume-histograms (DVH) for each scheme were compared and analyzed. Results: Using our hybrid technique, we have demonstrated a reduction of 1.9% – 3.4% in total monitor units with respect to conventional treatment planning strategies, along with a 6 fold improvement in high dose spillage over the FB plan. The higher density ACT and Hybrid schemes also produced a slight enhancement in target conformity and reduction in low dose spillage. Conclusion: All treatment plans created in this study exceeded RTOG protocol criteria. Our results determine the free breathing approach yields an inaccurate account of the target treatment density. A significant decrease in unnecessary lung irradiation can be achieved by implementing Hybrid HU method with ACT method second best.« less

  5. Reference Equations for Static Lung Volumes and TLCO from a Population Sample in Northern Greece.

    PubMed

    Michailopoulos, Pavlos; Kontakiotis, Theodoros; Spyratos, Dionisios; Argyropoulou-Pataka, Paraskevi; Sichletidis, Lazaros

    2015-02-14

    Background: The most commonly used reference equations for the measurement of static lung volumes/capacities and transfer factor of the lung for CO (TL CO ) are based on studies around 30-40 years old with significant limitations. Objectives: Our aim was to (1) develop reference equations for static lung volumes and TL CO using the current American Thoracic Society/European Respiratory Society guidelines, and (2) compare the equations derived with those most commonly used. Methods: Healthy Caucasian subjects (234 males and 233 females) aged 18-91 years were recruited. All of them were healthy never smokers with a normal chest X-ray. Static lung volumes and TL CO were measured with a single-breath technique according to the latest guidelines. Results: Curvilinear regression prediction equations derived from the present study were compared with those that are most commonly used. Our reference equations in accordance with the latest studies show lower values for all static lung volume parameters and TL CO as well as a different way of deviation of those parameters (i.e. declining with age total lung capacity, TL CO age decline in both sex and functional residual capacity age rise in males). Conclusions: We suggest that old reference values of static lung volumes and TL CO should be updated, and our perception of deviation of some spirometric parameters should be revised. Our new reference curvilinear equations derived according to the latest guidelines could contribute to the updating by respiratory societies of old existing reference values and result in a better estimation of the lung function of contemporary populations with similar Caucasian characteristics. © 2015 S. Karger AG, Basel.

  6. Assessment of lung function in a large cohort of patients with acromegaly.

    PubMed

    Störmann, Sylvère; Gutt, Bodo; Roemmler-Zehrer, Josefine; Bidlingmaier, Martin; Huber, Rudolf M; Schopohl, Jochen; Angstwurm, Matthias W

    2017-07-01

    Acromegaly is associated with increased mortality due to respiratory disease. To date, lung function in patients with acromegaly has only been assessed in small studies, with contradicting results. We assessed lung function parameters in a large cohort of patients with acromegaly. Lung function of acromegaly patients was prospectively assessed using spirometry, blood gas analysis and body plethysmography. Biochemical indicators of acromegaly were assessed through measurement of growth hormone and IGF-I levels. This study was performed at the endocrinology outpatient clinic of a tertiary referral center in Germany. We prospectively tested lung function of 109 acromegaly patients (53 male, 56 female; aged 24-82 years; 80 with active acromegaly) without severe acute or chronic pulmonary disease. We compared lung volume, air flow, airway resistance and blood gases to normative data. Acromegaly patients had greater lung volumes (maximal vital capacity, intra-thoracic gas volume and residual volume: P  < 0.001, total lung capacity: P  = 0.006) and showed signs of small airway obstruction (reduced maximum expiratory flow when 75% of the forced vital capacity (FVC) has been exhaled: P  < 0.001, lesser peak expiratory flow: P  = 0.01). There was no significant difference between active and inactive acromegaly. Female patients had significantly altered lung function in terms of subclinical airway obstruction. In our cross-sectional analysis of lung function in 109 patients with acromegaly, lung volumes were increased compared to healthy controls. Additionally, female patients showed signs of subclinical airway obstruction. There was no difference between patients with active acromegaly compared with patients biochemically in remission. © 2017 European Society of Endocrinology.

  7. Static lung volumes in healthy subjects assessed by helium dilution during occlusion of one mainstem bronchus.

    PubMed

    Johansen, B; Bjørtuft, O; Boe, J

    1993-04-01

    Single lung function is usually assessed by radioisotopes or, more rarely, by bronchospirometry in which a double lumen catheter is used to separate ventilation of the two lungs. The latter is more precise but less comfortable. An alternative bronchoscopic method is described for determining the volume of a single lung. One mainstem bronchus was temporarily occluded with an inflatable balloon during fibreoptic bronchoscopy in 12 healthy volunteers aged 18-29 years. The functional residual capacities (FRC) of the right, left, and both lungs were measured in duplicate by closed circuit helium dilution. Supplementary vital capacity (VC) manoeuvres permitted calculation of single lung capacities (TLC) and residual volumes (RV). The standard deviation of a single determination of capacities of the right, left, and both lungs were: TLC, 80, 96, and 308 ml; VC, 56, 139, 171 ml; FRC, 131, 74, and 287 ml; RV, 112, 185, and 303 ml, respectively. The sum of the right and left unilateral TLC was not different from bilateral TLC (6.12 v 5.95 l) and the sum of the unilateral FRC was not different from the bilateral FRC (2.60 v 2.78 l). The sum of the unilateral VC was lower than bilateral VC (4.52 v 4.80 l), that of the unilateral RV was higher than bilateral RV (1.60 v 1.16 l). For all subdivisions of lung volume, the right lung was larger than the left. The most common complaint was substernal discomfort during complete exhalation. Oxygen saturation rarely fell below 90%. Temporary occlusion of a mainstem bronchus in normal subjects is safe, relatively simple, and allows fairly precise and accurate measurements of unilateral static lung volumes. Occlusion at TLC, however, probably prevents proper emptying of the non-occluded lung.

  8. Surgeon specialization and operative mortality in United States: retrospective analysis

    PubMed Central

    Dalton, Maurice; Cutler, David M; Birkmeyer, John D; Chandra, Amitabh

    2016-01-01

    Objective To measure the association between a surgeon’s degree of specialization in a specific procedure and patient mortality. Design Retrospective analysis of Medicare data. Setting US patients aged 66 or older enrolled in traditional fee for service Medicare. Participants 25 152 US surgeons who performed one of eight procedures (carotid endarterectomy, coronary artery bypass grafting, valve replacement, abdominal aortic aneurysm repair, lung resection, cystectomy, pancreatic resection, or esophagectomy) on 695 987 patients in 2008-13. Main outcome measure Relative risk reduction in risk adjusted and volume adjusted 30 day operative mortality between surgeons in the bottom quarter and top quarter of surgeon specialization (defined as the number of times the surgeon performed the specific procedure divided by his/her total operative volume across all procedures). Results For all four cardiovascular procedures and two out of four cancer resections, a surgeon’s degree of specialization was a significant predictor of operative mortality independent of the number of times he or she performed that procedure: carotid endarterectomy (relative risk reduction between bottom and top quarter of surgeons 28%, 95% confidence interval 0% to 48%); coronary artery bypass grafting (15%, 4% to 25%); valve replacement (46%, 37% to 53%); abdominal aortic aneurysm repair (42%, 29% to 53%); lung resection (28%, 5% to 46%); and cystectomy (41%, 8% to 63%). In five procedures (carotid endarterectomy, valve replacement, lung resection, cystectomy, and esophagectomy), the relative risk reduction from surgeon specialization was greater than that from surgeon volume for that specific procedure. Furthermore, surgeon specialization accounted for 9% (coronary artery bypass grafting) to 100% (cystectomy) of the relative risk reduction otherwise attributable to volume in that specific procedure. Conclusion For several common procedures, surgeon specialization was an important predictor of operative mortality independent of volume in that specific procedure. When selecting a surgeon, patients, referring physicians, and administrators assigning operative workload may want to consider a surgeon’s procedure specific volume as well as the degree to which a surgeon specializes in that procedure. PMID:27444190

  9. Elevated airway liquid volumes at birth: a potential cause of transient tachypnea of the newborn.

    PubMed

    McGillick, Erin V; Lee, Katie; Yamaoka, Shigeo; Te Pas, Arjan B; Crossley, Kelly J; Wallace, Megan J; Kitchen, Marcus J; Lewis, Robert A; Kerr, Lauren T; DeKoninck, Philip; Dekker, Janneke; Thio, Marta; McDougall, Annie R A; Hooper, Stuart B

    2017-11-01

    Excessive liquid in airways and/or distal lung tissue may underpin the respiratory morbidity associated with transient tachypnea of the newborn (TTN). However, its effects on lung aeration and respiratory function following birth are unknown. We investigated the effect of elevated airway liquid volumes on newborn respiratory function. Near-term rabbit kittens (30 days gestation; term ~32 days) were delivered, had their lung liquid-drained, and either had no liquid replaced (control; n = 7) or 30 ml/kg of liquid re-added to the airways [liquid added (LA); n = 7]. Kittens were mechanically ventilated in a plethysmograph. Measures of chest and lung parameters, uniformity of lung aeration, and airway size were analyzed using phase contrast X-ray imaging. The maximum peak inflation pressure required to recruit a tidal volume of 8 ml/kg was significantly greater in LA compared with control kittens (35.0 ± 0.7 vs. 26.8 ± 0.4 cmH 2 O, P < 0.001). LA kittens required greater time to achieve lung aeration (106 ± 14 vs. 60 ± 6 inflations, P = 0.03) and had expanded chest walls, as evidenced by an increased total chest area (32 ± 9%, P < 0.0001), lung height (17 ± 6%, P = 0.02), and curvature of the diaphragm (19 ± 8%, P = 0.04). LA kittens had lower functional residual capacity during stepwise changes in positive end-expiratory pressures (5, 3, 0, and 5 cmH 2 0). Elevated lung liquid volumes had marked adverse effects on lung structure and function in the immediate neonatal period and reduced the ability of the lung to aerate efficiently. We speculate that elevated airway liquid volumes may underlie the initial morbidity in near-term babies with TTN after birth. NEW & NOTEWORTHY Transient tachypnea of the newborn reduces respiratory function in newborns and is thought to result due to elevated airway liquid volumes following birth. However, the effect of elevated airway liquid volumes on neonatal respiratory function is unknown. Using phase contrast X-ray imaging, we show that elevated airway liquid volumes have adverse effects on lung structure and function in the immediate newborn period, which may underlie the pathology of TTN in near-term babies after birth. Copyright © 2017 the American Physiological Society.

  10. Measurement of lung expansion with computed tomography and comparison with quantitative histology.

    PubMed

    Coxson, H O; Mayo, J R; Behzad, H; Moore, B J; Verburgt, L M; Staples, C A; Paré, P D; Hogg, J C

    1995-11-01

    The total and regional lung volumes were estimated from computed tomography (CT), and the pleural pressure gradient was determined by using the milliliters of gas per gram of tissue estimated from the X-ray attenuation values and the pressure-volume curve of the lung. The data show that CT accurately estimated the volume of the resected lobe but overestimated its weight by 24 +/- 19%. The volume of gas per gram of tissue was less in the gravity-dependent regions due to a pleural pressure gradient of 0.24 +/- 0.08 cmH2O/cm of descent in the thorax. The proportion of tissue to air obtained with CT was similar to that obtained by quantitative histology. We conclude that the CT scan can be used to estimate total and regional lung volumes and that measurements of the proportions of tissue and air within the thorax by CT can be used in conjunction with quantitative histology to evaluate lung structure.

  11. Effects of pleural effusion drainage on oxygenation, respiratory mechanics, and hemodynamics in mechanically ventilated patients.

    PubMed

    Razazi, Keyvan; Thille, Arnaud W; Carteaux, Guillaume; Beji, Olfa; Brun-Buisson, Christian; Brochard, Laurent; Mekontso Dessap, Armand

    2014-09-01

    In mechanically ventilated patients, the effect of draining pleural effusion on oxygenation is controversial. We investigated the effect of large pleural effusion drainage on oxygenation, respiratory function (including lung volumes), and hemodynamics in mechanically ventilated patients after ultrasound-guided drainage. Arterial blood gases, respiratory mechanics (airway, pleural and transpulmonary pressures, end-expiratory lung volume, respiratory system compliance and resistance), and hemodynamics (blood pressure, heart rate, and cardiac output) were recorded before and at 3 and 24 hours (H24) after pleural drainage. The respiratory settings were kept identical during the study period. The mean volume of effusion drained was 1,579 ± 684 ml at H24. Uncomplicated pneumothorax occurred in two patients. Respiratory mechanics significantly improved after drainage, with a decrease in plateau pressure and a large increase in end-expiratory transpulmonary pressure. Respiratory system compliance, end-expiratory lung volume, and PaO2/FiO2 ratio all improved. Hemodynamics were not influenced by drainage. Improvement in the PaO2/FiO2 ratio from baseline to H24 was positively correlated with the increase in end-expiratory lung volume during the same time frame (r = 0.52, P = 0.033), but not with drained volume. A high value of pleural pressure or a highly negative transpulmonary pressure at baseline predicted limited lung expansion following effusion drainage. A lesser improvement in oxygenation occurred in patients with ARDS. Drainage of large (≥500 ml) pleural effusion in mechanically ventilated patients improves oxygenation and end-expiratory lung volume. Oxygenation improvement correlated with an increase in lung volume and a decrease in transpulmonary pressure, but was less so in patients with ARDS.

  12. Periodontitis is related to lung volumes and airflow limitation: a cross-sectional study.

    PubMed

    Holtfreter, Birte; Richter, Stefanie; Kocher, Thomas; Dörr, Marcus; Völzke, Henry; Ittermann, Till; Obst, Anne; Schäper, Christoph; John, Ulrich; Meisel, Peter; Grotevendt, Anne; Felix, Stephan B; Ewert, Ralf; Gläser, Sven

    2013-12-01

    This study aimed to assess the potential association of periodontal diseases with lung volumes and airflow limitation in a general adult population. Based on a representative population sample of the Study of Health in Pomerania (SHIP), 1463 subjects aged 25-86 years were included. Periodontal status was assessed by clinical attachment loss (CAL), probing depth and number of missing teeth. Lung function was measured using spirometry, body plethysmography and diffusing capacity of the lung for carbon monoxide. Linear regression models using fractional polynomials were used to assess associations between periodontal disease and lung function. Fibrinogen and high-sensitivity C-reactive protein (hs-CRP) were evaluated as potential intermediate factors. After full adjustment for potential confounders mean CAL was significantly associated with variables of mobile dynamic and static lung volumes, airflow limitation and hyperinflation (p<0.05). Including fibrinogen and hs-CRP did not change coefficients of mean CAL; associations remained statistically significant. Mean CAL was not associated with total lung capacity and diffusing capacity of the lung for carbon monoxide. Associations were confirmed for mean probing depth, extent measures of CAL/probing depth and number of missing teeth. Periodontal disease was significantly associated with reduced lung volumes and airflow limitation in this general adult population sample. Systemic inflammation did not provide a mechanism linking both diseases.

  13. Respiratory bronchiolitis-associated interstitial lung disease secondary to electronic nicotine delivery system use confirmed with open lung biopsy.

    PubMed

    Flower, Mark; Nandakumar, Lakshmy; Singh, Mahendra; Wyld, David; Windsor, Morgan; Fielding, David

    2017-05-01

    As a modern phenomenon, there is currently limited understanding of the possible toxic effects and broader implications of electronic nicotine delivery systems (ENDS). Large volumes of aerosolized particles are inhaled during "vaping" and there are now an increasing number of case reports demonstrating toxic effects of ENDS, as well as human studies demonstrating impaired lung function in users. This article presents a case of respiratory bronchiolitis interstitial lung disease (RB-ILD) precipitated by vaping in a 33-year-old male with 10 pack years of traditional cigarette and prior treatment for mixed germ cell tumour. The patient had started vaping 10-15 times per day while continuing to smoke 10 traditional cigarettes per day. After 3 months of exposure to e-cigarette vapour, chest computed tomography demonstrated multiple new poorly defined pulmonary nodules with fluffy parenchyma opacification centred along the terminal bronchovascular units. Video-assisted thoracoscopy with lung biopsy of the right upper and right middle lobes was undertaken. The microscopic findings were overall consistent with RB-ILD. This case demonstrates toxicity with use of ENDS on open lung biopsy with resolution of radiographic findings on cessation. We believe that this is the first case where open lung biopsy has demonstrated this and our findings are consistent with RB-ILD.

  14. Volume adjustment of lung density by computed tomography scans in patients with emphysema.

    PubMed

    Shaker, S B; Dirksen, A; Laursen, L C; Skovgaard, L T; Holstein-Rathlou, N H

    2004-07-01

    To determine how to adjust lung density measurements for the volume of the lung calculated from computed tomography (CT) scans in patients with emphysema. Fifty patients with emphysema underwent 3 CT scans at 2-week intervals. The scans were analyzed with a software package that detected the lung in contiguous images and subsequently generated a histogram of the pixel attenuation values. The total lung volume (TLV), lung weight, percentile density (PD), and relative area of emphysema (RA) were calculated from this histogram. RA and PD are commonly applied measures of pulmonary emphysema derived from CT scans. These parameters are markedly influenced by changes in the level of inspiration. The variability of lung density due to within-subject variation in TLV was explored by plotting TLV against PD and RA. The coefficients for volume adjustment for PD were relatively stable over a wide range from the 10th to the 80th percentile, whereas for RA the coefficients showed large variability especially in the lower range, which is the most relevant for quantitation of pulmonary emphysema. Volume adjustment is mandatory in repeated CT densitometry and is more robust for PD than for RA. Therefore, PD seems more suitable for monitoring the progression of emphysema.

  15. Serum Methylarginines and Spirometry-Measured Lung Function in Older Adults

    PubMed Central

    McEvoy, Mark A.; Schofield, Peter W.; Smith, Wayne T.; Agho, Kingsley; Mangoni, Arduino A.; Soiza, Roy L.; Peel, Roseanne; Hancock, Stephen J.; Carru, Ciriaco; Zinellu, Angelo; Attia, John R.

    2013-01-01

    Rationale Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function. PMID:23690915

  16. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study

    PubMed Central

    Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J

    2012-01-01

    Objective To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Design Prospective cohort study. Setting 13 intensive care units at four hospitals in Baltimore, Maryland, USA. Participants 485 consecutive mechanically ventilated patients with acute lung injury. Main outcome measure Two year survival after onset of acute lung injury. Results 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Conclusions Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Trial registration Clinicaltrials.gov NCT00300248. PMID:22491953

  17. Pulmonary compliance and lung volume varies with ecomorphology in anuran amphibians: implications for ventilatory-assisted lymph flux.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2011-10-01

    Vertical movement of lymph from ventral regions to the dorsally located lymph hearts in anurans is accomplished by specialized skeletal muscles working in concert with lung ventilation. We hypothesize that more terrestrial species with greater lymph mobilization capacities and higher lymph flux rates will have larger lung volumes and higher pulmonary compliance than more semi-aquatic or aquatic species. We measured in situ mean and maximal compliance (Δvolume/Δpressure), distensibility (%Δvolume/Δpressure) and lung volume over a range of physiological pressures (1.0 to 4.0 cmH(2)O) for nine species of anurans representing three families (Bufonide, Ranidae and Pipidae) that span a range of body masses and habitats from terrestrial to aquatic. We further examined the relationship between these pulmonary variables and lymph flux for a semi-terrestrial bufonid (Rhinella marina), a semi-aquatic ranid (Lithobates catesbeianus) and an aquatic pipid (Xenopus laevis). Allometric scaling of pulmonary compliance and lung volume with body mass showed significant differences at the family level, with scaling exponents ranging from ∼0.75 in Bufonidae to ∼1.3 in Pipidae. Consistent with our hypothesis, the terrestrial Bufonidae species had significantly greater pulmonary compliance and greater lung volumes compared with semi-aquatic Ranidae and aquatic Pipidae species. Pulmonary distensibility ranged from ∼20 to 35% cmH(2)O(-1) for the three families but did not correlate with ecomorphology. For the three species for which lymph flux data are available, R. marina had a significantly higher (P<0.001) maximal compliance (84.9±2.7 ml cmH(2)O(-1) kg(-1)) and lung volume (242.1±5.5 ml kg(-1)) compared with L. catesbeianus (54.5±0.12 ml cmH(2)O(-1) kg(-1) and 139.3±0.5 ml kg(-1)) and X. laevis (30.8±0.7 ml cmH(2)O(-1) kg(-1) and 61.3±2.5 ml kg(-1)). Lymph flux rates were also highest for R. marina, lowest for X. laevis and intermediate in L. catesbeianus. Thus, there is a strong correlation between pulmonary compliance, lung volume and lymph flux rates, which suggests that lymph mobilization capacity may explain some of the variation in pulmonary compliance and lung volume in anurans.

  18. Use of volumetric-modulated arc therapy for treatment of Hodgkin lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; Bedford, James L.; Taj, Mary

    To evaluate volumetric-modulated arc therapy (VMAT) for treatment of Hodgkin lymphoma (HL) in patients where conventional radiotherapy was not deliverable. A planning computed tomography (CT) scan was acquired for a twelve-year-old boy with Stage IIIB nodular sclerosing HL postchemotherapy with positive positron emission tomography scan. VMAT was used for Phase 1 (19.8 Gy in 11 fractions) and Phase 2 (10.8 Gy in 6 fractions) treatment plans. Single anticlockwise arc plans were constructed using SmartArc (Philips Radiation Oncology Systems, Fitchburg, WI) with control points spaced at 4°. The inverse-planning objectives were to uniformly irradiate the planning target volume (PTV) with themore » prescription dose while keeping the volume of lung receiving greater than 20 Gy (V{sub 20} {sub Gy}) to less than 30% and minimize the dose to the other adjacent organs at risk (OAR). Pretreatment verification was conducted and the treatment delivery was on an MLCi Synergy linear accelerator (Elekta Ltd, Crawley, UK). The planning results were retrospectively confirmed in a further 4 patients using a single PTV with a prescribed dose of 19.8 Gy in 11 fractions. Acceptable dose coverage and homogeneity were achieved for both Phase 1 and 2 plans while keeping the lung V{sub 20} {sub Gy} at 22.5% for the composite plan. The beam-on times for Phase 1 and Phase 2 plans were 109 and 200 seconds, respectively, and the total monitor units were 337.2 MU and 292.5 MU, respectively. The percentage of measured dose points within 3% and 3 mm for Phase 1 and Phase 2 were 92% and 98%, respectively. Both plans were delivered successfully. The retrospective planning study showed that VMAT improved PTV dose uniformity and reduced the irradiated volume of heart and lung, although the volume of lung irradiated to low doses increased. Two-phased VMAT offers an attractive option for large volume sites, such as HL, giving a high level of target coverage and significant OAR sparing together with efficient delivery.« less

  19. Dosimetric comparison of lung stereotactic body radiotherapy treatment plans using averaged computed tomography and end-exhalation computed tomography images: Evaluation of the effect of different dose-calculation algorithms and prescription methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsuyoshi, Takamasa; Nakamura, Mitsuhiro, E-mail: m_nkmr@kuhp.kyoto-u.ac.jp; Matsuo, Yukinori

    The purpose of this article is to quantitatively evaluate differences in dose distributions calculated using various computed tomography (CT) datasets, dose-calculation algorithms, and prescription methods in stereotactic body radiotherapy (SBRT) for patients with early-stage lung cancer. Data on 29 patients with early-stage lung cancer treated with SBRT were retrospectively analyzed. Averaged CT (Ave-CT) and expiratory CT (Ex-CT) images were reconstructed for each patient using 4-dimensional CT data. Dose distributions were initially calculated using the Ave-CT images and recalculated (in the same monitor units [MUs]) by employing Ex-CT images with the same beam arrangements. The dose-volume parameters, including D{sub 95}, D{submore » 90}, D{sub 50}, and D{sub 2} of the planning target volume (PTV), were compared between the 2 image sets. To explore the influence of dose-calculation algorithms and prescription methods on the differences in dose distributions evident between Ave-CT and Ex-CT images, we calculated dose distributions using the following 3 different algorithms: x-ray Voxel Monte Carlo (XVMC), Acuros XB (AXB), and the anisotropic analytical algorithm (AAA). We also used 2 different dose-prescription methods; the isocenter prescription and the PTV periphery prescription methods. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data were within 3 percentage points (%pts) employing the isocenter prescription method, and within 1.5%pts using the PTV periphery prescription method, irrespective of which of the 3 algorithms (XVMC, AXB, and AAA) was employed. The frequencies of dose-volume parameters differing by >1%pt when the XVMC and AXB were used were greater than those associated with the use of the AAA, regardless of the dose-prescription method employed. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data on patients who underwent lung SBRT were within 3%pts, regardless of the dose-calculation algorithm or the dose-prescription method employed.« less

  20. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    PubMed

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  1. Dependent lung opacity at thin-section CT: evaluation by spirometrically-gated CT of the influence of lung volume.

    PubMed

    Lee, Ki Nam; Yoon, Seong Kuk; Sohn, Choon Hee; Choi, Pil Jo; Webb, W Richard

    2002-01-01

    To evaluate the influence of lung volume on dependent lung opacity seen at thin-section CT. In thirteen healthy volunteers, thin-section CT scans were performed at three levels (upper, mid, and lower portion of the lung) and at different lung volumes (10, 30, 50, and 100% vital capacity), using spirometric gated CT. Using a three-point scale, two radiologists determined whether dependent opacity was present, and estimated its degree. Regional lung attenuation at a level 2 cm above the diaphragm was determined using semiautomatic segmentation, and the diameter of a branch of the right lower posterior basal segmental artery was measured at each different vital capacity. At all three anatomic levels, dependent opacity occurred significantly more often at lower vital capacities (10, 30%) than at 100% vital capacity (p = 0.001). Visually estimated dependent opacity was significantly related to regional lung attenuation (p < 0.0001), which in dependent areas progressively increased as vital capacity decreased (p < 0.0001). The presence of dependent opacity and regional lung attenuation of a dependent area correlated significantly with increased diameter of a segmental arterial branch (r = 0.493 and p = 0.0002; r = 0.486 and p = 0.0003, respectively). Visual estimation and CT measurements of dependent opacity obtained by semiautomatic segmentation are significantly influenced by lung volume and are related to vascular diameter.

  2. Tricuspid valve dysplasia with severe tricuspid regurgitation: fetal pulmonary artery size predicts lung viability in the presence of small lung volumes.

    PubMed

    Nathan, A T; Marino, B S; Dominguez, T; Tabbutt, S; Nicolson, S; Donaghue, D D; Spray, T L; Rychik, J

    2010-01-01

    Congenital tricuspid valve disease (Ebstein's anomaly, tricuspid valve dysplasia) with severe tricuspid regurgitation and cardiomegaly is associated with poor prognosis. Fetal echocardiography can accurately measure right atrial enlargement, which is associated with a poor prognosis in the fetus with tricuspid valve disease. Fetal lung volumetric assessments have been used in an attempt to predict viability of fetuses using ultrasonogram and prenatal MRI. We describe a fetus with tricuspid dysplasia, severe tricuspid regurgitation, right atrial enlargement and markedly reduced lung volumes. The early gestational onset of cardiomegaly with bilateral lung compression raised the possibility of severe lung hypoplasia with decreased broncho-alveolar development. Use of fetal echocardiography with measurement of pulmonary artery size combined with prenatal MRI scanning of lung volumes resulted in an improved understanding of this anomaly and directed the management strategy towards a successful Fontan circulation. 2010 S. Karger AG, Basel.

  3. Lung gas volumes and expiratory time constant in immature newborn rabbits treated with natural or synthetic surfactant or detergents.

    PubMed

    Bongrani, S; Fornasier, M; Papotti, M; Razzetti, R; Robertson, B

    1994-01-01

    Immature newborn rabbits delivered at a gestational age of 27 days were tracheotomized and treated, via the tracheal cannula, with clinically recommended doses of natural or synthetic surfactant (Curosurf and Exosurf, respectively). Littermates received 0.1% tyloxapol, 5% Tween 20, or saline. The dose volume of Curosurf was 2.5 ml/kg, that of the other materials 5 ml/kg. Animals were kept in a multiplethysmograph system and ventilated for 30 min with a standardized sequence of insufflation pressures. End-expiratory lung gas volume was calculated at the end of the experiment from measurements of lung weight and total lung volume. Tidal volumes were significantly improved in all groups of animals receiving surfactant or detergents. However, expiratory time constant (determined from the tidal volume tracing) was significantly longer, and end-expiratory gas volume significantly larger, in animals treated with Curosurf than in those receiving Exosurf or detergents. These differences were confirmed by semiquantitative evaluation of alveolar air expansion in histological sections. In addition, airway epithelial necrosis was reduced in animals receiving Curosurf, Exosurf, or Tween 20, but not in animals treated with tyloxapol. The discrepancy between improvements in tidal volume, expiratory time constant, and end-expiratory gas volume reflects failure of lung stabilization in animals treated with Exosurf or detergents, probably due to absence of specific hydrophobic proteins in the synthetic products.

  4. Comprehensive integrated spirometry using raised volume passive and forced expirations and multiple-breath nitrogen washout in infants

    PubMed Central

    Morris, Mohy G.

    2009-01-01

    With the rapid somatic growth and development in infants, simultaneous accurate measurements of lung volume and airway function are essential. Raised volume rapid thoracoabdominal compression (RTC) is widely used to generate forced expiration from an airway opening pressure of 30 cm H2O (V30). The (dynamic) functional residual capacity (FRCdyn) remains the lung volume most routinely measured. The aim of this study was to develop comprehensive integrated spirometry that included all subdivisions of lung volume at V30 or total lung capacity (TLC30). Measurements were performed on seventeen healthy infants aged 8.6–119.7 weeks. A commercial system for multiple-breath nitrogen washout (MBNW) to measure lung volumes and a custom made system to perform RTC were used in unison. A refined automated raised volume RTC and the following two novel single maneuvers with dual volume measurements were performed from V30 during a brief post-hyperventilation apneic pause: (1) the passive expiratory flow was integrated to produce the inspiratory capacity (IC) and the static (passive) FRC (FRCst) was estimated by initiating MBNW after end-passive expiration; (2) RTC was initiated late during passive expiration, flow was integrated to produce the slow vital capacity (jSVC) and the residual volume (RV) was measured by initiating MBNW after end-expiration while the jacket (j) was inflated. Intrasubject FRCdyn and FRCst measurements overlapped (p= 0.6420) but neither did with the RV (p<0.0001). Means (95% confidence interval) of FRCdyn, IC, FRCst, jSVC, RV, forced vital capacity and tidal volume were 21.2 (19.7–22.7), 36.7 (33.0–40.4), 21.2 (19.6–22.8), 40.7 (37.2–44.2), 18.1 (16.6–19.7), 40.7 (37.1–44.2) and 10.2 (9.6–10.7) ml/kg, respectively. Static lung volumes and capacities at V30 and variables from the best forced expiratory flow-volume curve were dependent on age, body length and weight. In conclusion, we developed a comprehensive physiologically-integrated approach for in-depth investigation of lung function at V30 in infants. PMID:19897058

  5. Low level CO2 effects on pulmonary function in humans

    NASA Technical Reports Server (NTRS)

    Sexton, J.; Mueller, K.; Elliott, A.; Gerzer, D.; Strohl, K. P.; West, J. B. (Principal Investigator)

    1998-01-01

    The purpose of the study was to determine whether chamber exposure to low levels of CO2 results in functional alterations in gas mixing and closing volume in humans. Four healthy volunteer subjects were exposed to 0.7% CO2 and to 1.2% CO2. Spirometry, lung volumes, single breath nitrogen washout, diffusing capacity for carbon monoxide (DLCO) by two methods, and cardiac output were measured in triplicate. Values were obtained over two non-consecutive days during the training period (control) and on days 2 or 3, 4, 6, 10, 13, and 23 of exposure to each CO2 level. Measurements were made during the same time of day. There was one day of testing after exposure, while still in the chamber but off carbon dioxide. The order of testing, up until measurements of DLCO and cardiac output, were randomized to avoid presentation effects. The consistent findings were a reduction in diffusing capacity for carbon monoxide and a fall in cardiac output, occurring to a similar degree with both exposures. For the group as a whole, there was no indication of major effects on spirometry, lung volumes, gas mixing or dead space. We conclude that small changes may occur in the function of distal gas exchanging units; however, these effects were not associated with any adverse health effects. The likelihood of pathophysiologic changes in lung function or structure with 0.7 or 1.2% CO2 exposure for this period of time, is therefore, low.

  6. Effect of heterogeneity correction on dosimetric parameters of radiotherapy planning for thoracic esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Masao, E-mail: naka2008@med.kobe-u.ac.jp; Yoshida, Kenji; Nishimura, Hideki

    2014-04-01

    The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose,more » and dose that covers 95% of the PTV between the first and second plans were 1.10 Gy (1.8%), 1.35 Gy (2.2%), 1.10 Gy (1.9%), and 0.56 Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30 Gy (lung V{sub 5}, V{sub 10}, V{sub 20}, and V{sub 30}) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V{sub 5} and V{sub 10}) than on the dosimetric parameters related to the PTV and other OARs.« less

  7. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.

    PubMed

    Ponganis, P J; St Leger, J; Scadeng, M

    2015-03-01

    The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are smaller in these deeper-diving species than in the spheniscid penguin of the morphometry study. If penguins do inhale to this maximum air sac volume prior to their deepest dives, the magnitude and distribution of the body O2 store would change considerably. In emperor penguins, total body O2 would increase by 75%, and the respiratory fraction would increase from 33% to 61%. We emphasize that the maximum pre-dive respiratory air volume is still unknown in penguins. However, even lesser increases in air sac volume prior to a dive would still significantly increase the O2 store. More refined evaluations of the respiratory O2 store and baroprotective mechanisms in penguins await further investigation of species-specific lung morphometry, start-of-dive air volumes and body buoyancy, and the possibility of air exhalation during dives. © 2015. Published by The Company of Biologists Ltd.

  8. Achromobacter xylosoxidans infection in an adult cystic fibrosis unit in Madrid.

    PubMed

    Llorca Otero, Laura; Girón Moreno, Rosa; Buendía Moreno, Buenaventura; Valenzuela, Claudia; Guiu Martínez, Alba; Alarcón Cavero, Teresa

    2016-03-01

    Achromobacter xylosoxidans is an emerging pathogen in cystic fibrosis (CF). Although the rate of colonization by this microorganism is variable, prevalence is increasing in CF units. A microbiological/clinical study was conducted on of adult CF patients harboring A. xylosoxidans. Identification and susceptibility testing were performed using MicroScan (Siemens). Decline in lung function was assessed using the variable, annual percentage loss of FEV1 (forced expiratory volume in 1s). A. xylosoxidans was isolated in 18 (19.8%) of 91 patients over a 14-year period. Mean age was 26.6 years (18-39 years). Nine patients (9.8%) were chronically colonized. Piperacillin/tazobactam and imipenem were the most active antibiotics. Mean annual decline in lung function in chronically colonized patients was 2.49%. A. xylosoxidans is a major pathogen in CF. A decreased lung function was observed among patients who were chronically colonized by A. xylosoxidans. Antibiotic therapy should be started early in order to prevent chronic colonization by this microorganism. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    PubMed

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  10. [Lung volume reduction surgery for severe pulmonary emphysema in Iceland].

    PubMed

    Gunnarsson, Sverrir I; Johannsson, Kristinn B; Guðjónsdóttir, Marta; Jónsson, Steinn; Beck, Hans J; Magnusson, Bjorn; Gudbjartsson, Tomas

    2011-12-01

    Lung volume reduction surgery (LVRS) can benefit patients with severe emphysema. The aim of this study was to evaluate the outcome of LVRS performed in Iceland. A prospective study of 16 consecutive patients who underwent bilateral LVRS through median sternotomy between January 1996 and December 2008. All patients had disabling dyspnea, lung hyperinflation, and emphysema with upper lobe predominance. Preoperatively all patients underwent pulmonary rehabilitation. Spirometry, lung volumes, arterial blood gases and exercise capacity were measured before and after surgery. Mean follow-up time was 8.7 years. Mean age was 59.2 ± 5.9 years. All patients had a history of heavy smoking. There was no perioperative mortality and survival was 100%, 93%, and 63% at 1, 5, and 10 years, respectively. The forced expiratory volume in 1 second (FEV1) and the forced vital capacity (FVC) improved significantly after surgery by 35% (p<0.001) and 14% (p<0.05), respectively. The total lung capacity, residual volume and partial pressure of CO2 also showed statistically significant improvements but exercise capacity, O2 consumption and diffusing capacity of the lung for CO did not change. Prolonged air leak (≥ 7 days) was the most common complication (n=7). Five patients required reoperation, most commonly for sternal dehiscence (n=4). In this small prospective study, FEV1 and FVC increased and lung volumes and PaCO2 improved after LVRS. Long term survival was satisfactory although complications such as reoperations for sternal dehiscence were common and hospital stay therefore often prolonged.

  11. Measurement of absolute lung volumes by imaging techniques.

    PubMed

    Clausen, J

    1997-10-01

    In this paper, the techniques available for estimating total lung capacities from standard chest radiographs in children and infants as well as adults are reviewed. These techniques include manual measurements using ellipsoid and planimetry techniques as well as computerized systems. Techniques are also available for making radiographic lung volume measurements from portable chest radiographs. There are inadequate data in the literature to support recommending one specific technique over another. Though measurements of lung volumes by radiographic, plethysmographic, gas dilution or washout techniques result in remarkably similar mean results when groups of normal subjects are tested, in patients with disease, the results of these different basic measurement techniques can differ significantly. Computed tomographic and magnetic resonance techniques can also be used to measure absolute lung volumes and offer the theoretical advantages that the results in individual subjects are less affected by variances of thoracic shape than are measurements made using conventional chest radiographs.

  12. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    PubMed Central

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency of recruitment maneuvers to help ameloriate ventilator-induced lung injury. PMID:29112971

  13. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oborn, B. M., E-mail: brad.oborn@gmail.com; Ge, Y.; Hardcastle, N.

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, whilemore » the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study indicate that future clinical inline MRI-guided radiotherapy systems will be able to deliver a dosimetrically superior treatment to small (PTV < 15 cm{sup 3}), isolated lung tumors over non-MRI-Linac systems. This increased efficacy coincides with the reimbursement in the United States of lung CT screening and the likely rapid growth in the number of patients with small lung tumors to be treated with radiotherapy.« less

  14. Liquid ventilation.

    PubMed

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  15. Morphometrics of the avian lung. 4. The structural design of the charadriiform lung.

    PubMed

    Maina, J N

    1987-04-01

    The lungs of five charadriiform species of bird, two of which are good divers and three predominantly flyers (soarers and gliders) have been analysed by morphometric techniques. Largely the morphometric structural values in the divers significantly exceeded those of the flyers (gulls). The average weight specific surface area of the blood-gas (tissue) barrier in the divers (28.45 +/- 2.05 cm2 X g-1 SD) surpassed that of the flyers (23.5 +/- 3.61 cm2 X g-1 SD). The divers had a higher volume of the pulmonary capillary blood per unit body weight (4.42 +/- 0.11 cm3 X kg-1 SD) than the flyers (2.84 +/- 0.58 cm3 X kg-1 SD). The weight specific volume of the lung in the divers (34.90 +/- 3.11 cm3 X kg-1 SD) exceeded that of the flyers (26.94 +/- 3.15 cm3 X kg-1 SD). The total morphometric pulmonary diffusing capacity per unit body weight in the divers (4.73 +/- 0.05 ml O2 X (min X mm Hg X kg)-1 SD) was higher than that of the flyers (3.09 +/- 0.47 ml O2 X (min X mm Hg X kg)-1 SD). The divers, however, had a notably thicker blood-gas (tissue) barrier with a harmonic mean thickness of 0.212 +/- 0.03 micron SD compared to that of the flyers (0.138 +/- 0.02 micron SD). The data acquired here commensurate the modes of life exhibited by these two groups of bird. The divers, which are relatively energetic birds, expend a lot of energy to move and stay underwater, concomitantly undergoing prolonged asphyxia during submergence and may hence need to extract as much of the oxygen in the pulmonary air as possible to prolong a dive. These birds appear in general to have structurally better adapted lungs than those of the gulls, birds which to a large extent exhibit relatively less energetic soaring and gliding flights.

  16. Relationship Between State-Level Google Online Search Volume and Cancer Incidence in the United States: Retrospective Study

    PubMed Central

    Barz Leahy, Allison; Li, Yimei; Schapira, Marilyn M; Bailey, L Charles; Merchant, Raina M

    2018-01-01

    Background In the United States, cancer is common, with high morbidity and mortality; cancer incidence varies between states. Online searches reflect public awareness, which could be driven by the underlying regional cancer epidemiology. Objective The objective of our study was to characterize the relationship between cancer incidence and online Google search volumes in the United States for 6 common cancers. A secondary objective was to evaluate the association of search activity with cancer-related public events and celebrity news coverage. Methods We performed a population-based, retrospective study of state-level cancer incidence from 2004 through 2013 reported by the Centers for Disease Control and Prevention for breast, prostate, colon, lung, and uterine cancers and leukemia compared to Google Trends (GT) relative search volume (RSV), a metric designed by Google to allow interest in search topics to be compared between regions. Participants included persons in the United States who searched for cancer terms on Google. The primary measures were the correlation between annual state-level cancer incidence and RSV as determined by Spearman correlation and linear regression with RSV and year as independent variables and cancer incidence as the dependent variable. Temporal associations between search activity and events raising public awareness such as cancer awareness months and cancer-related celebrity news were described. Results At the state level, RSV was significantly correlated to incidence for breast (r=.18, P=.001), prostate (r=–.27, P<.001), lung (r=.33, P<.001), and uterine cancers (r=.39, P<.001) and leukemia (r=.13, P=.003) but not colon cancer (r=–.02, P=.66). After adjusting for time, state-level RSV was positively correlated to cancer incidence for all cancers: breast (P<.001, 95% CI 0.06 to 0.19), prostate (P=.38, 95% CI –0.08 to 0.22), lung (P<.001, 95% CI 0.33 to 0.46), colon (P<.001, 95% CI 0.11 to 0.17), and uterine cancers (P<.001, 95% CI 0.07 to 0.12) and leukemia (P<.001, 95% CI 0.01 to 0.03). Temporal associations in GT were noted with breast cancer awareness month but not with other cancer awareness months and celebrity events. Conclusions Cancer incidence is correlated with online search volume at the state level. Search patterns were temporally associated with cancer awareness months and celebrity announcements. Online searches reflect public awareness. Advancing understanding of online search patterns could augment traditional epidemiologic surveillance, provide opportunities for targeted patient engagement, and allow public information campaigns to be evaluated in ways previously unable to be measured. PMID:29311051

  17. Relationship Between State-Level Google Online Search Volume and Cancer Incidence in the United States: Retrospective Study.

    PubMed

    Phillips, Charles A; Barz Leahy, Allison; Li, Yimei; Schapira, Marilyn M; Bailey, L Charles; Merchant, Raina M

    2018-01-08

    In the United States, cancer is common, with high morbidity and mortality; cancer incidence varies between states. Online searches reflect public awareness, which could be driven by the underlying regional cancer epidemiology. The objective of our study was to characterize the relationship between cancer incidence and online Google search volumes in the United States for 6 common cancers. A secondary objective was to evaluate the association of search activity with cancer-related public events and celebrity news coverage. We performed a population-based, retrospective study of state-level cancer incidence from 2004 through 2013 reported by the Centers for Disease Control and Prevention for breast, prostate, colon, lung, and uterine cancers and leukemia compared to Google Trends (GT) relative search volume (RSV), a metric designed by Google to allow interest in search topics to be compared between regions. Participants included persons in the United States who searched for cancer terms on Google. The primary measures were the correlation between annual state-level cancer incidence and RSV as determined by Spearman correlation and linear regression with RSV and year as independent variables and cancer incidence as the dependent variable. Temporal associations between search activity and events raising public awareness such as cancer awareness months and cancer-related celebrity news were described. At the state level, RSV was significantly correlated to incidence for breast (r=.18, P=.001), prostate (r=-.27, P<.001), lung (r=.33, P<.001), and uterine cancers (r=.39, P<.001) and leukemia (r=.13, P=.003) but not colon cancer (r=-.02, P=.66). After adjusting for time, state-level RSV was positively correlated to cancer incidence for all cancers: breast (P<.001, 95% CI 0.06 to 0.19), prostate (P=.38, 95% CI -0.08 to 0.22), lung (P<.001, 95% CI 0.33 to 0.46), colon (P<.001, 95% CI 0.11 to 0.17), and uterine cancers (P<.001, 95% CI 0.07 to 0.12) and leukemia (P<.001, 95% CI 0.01 to 0.03). Temporal associations in GT were noted with breast cancer awareness month but not with other cancer awareness months and celebrity events. Cancer incidence is correlated with online search volume at the state level. Search patterns were temporally associated with cancer awareness months and celebrity announcements. Online searches reflect public awareness. Advancing understanding of online search patterns could augment traditional epidemiologic surveillance, provide opportunities for targeted patient engagement, and allow public information campaigns to be evaluated in ways previously unable to be measured. ©Charles A. Phillips, Allison Barz Leahy, Yimei Li, Marilyn M. Schapira, L. Charles Bailey, Raina M. Merchant. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 08.01.2018.

  18. Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity.

    PubMed

    Oppenheimer, Beno W; Berger, Kenneth I; Ali, Saleem; Segal, Leopoldo N; Donnino, Robert; Katz, Stuart; Parikh, Manish; Goldring, Roberta M

    2016-01-01

    Obesity is characterized by increased systemic and pulmonary blood volumes (pulmonary vascular congestion). Concomitant abnormal alveolar membrane diffusion suggests subclinical interstitial edema. In this setting, functional abnormalities should encompass the entire distal lung including the airways. We hypothesize that in obesity: 1) pulmonary vascular congestion will affect the distal lung unit with concordant alveolar membrane and distal airway abnormalities; and 2) the degree of pulmonary congestion and membrane dysfunction will relate to the cardiac response. 54 non-smoking obese subjects underwent spirometry, impulse oscillometry (IOS), diffusion capacity (DLCO) with partition into membrane diffusion (DM) and capillary blood volume (VC), and cardiac MRI (n = 24). Alveolar-capillary membrane efficiency was assessed by calculation of DM/VC. Mean age was 45±12 years; mean BMI was 44.8±7 kg/m2. Vital capacity was 88±13% predicted with reduction in functional residual capacity (58±12% predicted). Despite normal DLCO (98±18% predicted), VC was elevated (135±31% predicted) while DM averaged 94±22% predicted. DM/VC varied from 0.4 to 1.4 with high values reflecting recruitment of alveolar membrane and low values indicating alveolar membrane dysfunction. The most abnormal IOS (R5 and X5) occurred in subjects with lowest DM/VC (r2 = 0.31, p<0.001; r2 = 0.34, p<0.001). Cardiac output and index (cardiac output / body surface area) were directly related to DM/VC (r2 = 0.41, p<0.001; r2 = 0.19, p = 0.03). Subjects with lower DM/VC demonstrated a cardiac output that remained in the normal range despite presence of obesity. Global dysfunction of the distal lung (alveolar membrane and distal airway) is associated with pulmonary vascular congestion and failure to achieve the high output state of obesity. Pulmonary vascular congestion and consequent fluid transudation and/or alterations in the structure of the alveolar capillary membrane may be considered often unrecognized causes of airway dysfunction in obesity.

  19. Magnetic resonance imaging in precision radiation therapy for lung cancer

    PubMed Central

    Bainbridge, Hannah; Salem, Ahmed; Tijssen, Rob H. N.; Dubec, Michael; Wetscherek, Andreas; Van Es, Corinne; Belderbos, Jose; Faivre-Finn, Corinne

    2017-01-01

    Radiotherapy remains the cornerstone of curative treatment for inoperable locally advanced lung cancer, given concomitantly with platinum-based chemotherapy. With poor overall survival, research efforts continue to explore whether integration of advanced radiation techniques will assist safe treatment intensification with the potential for improving outcomes. One advance is the integration of magnetic resonance imaging (MRI) in the treatment pathway, providing anatomical and functional information with excellent soft tissue contrast without exposure of the patient to radiation. MRI may complement or improve the diagnostic staging accuracy of F-18 fluorodeoxyglucose position emission tomography and computerized tomography imaging, particularly in assessing local tumour invasion and is also effective for identification of nodal and distant metastatic disease. Incorporating anatomical MRI sequences into lung radiotherapy treatment planning is a novel application and may improve target volume and organs at risk delineation reproducibility. Furthermore, functional MRI may facilitate dose painting for heterogeneous target volumes and prediction of normal tissue toxicity to guide adaptive strategies. MRI sequences are rapidly developing and although the issue of intra-thoracic motion has historically hindered the quality of MRI due to the effect of motion, progress is being made in this field. Four-dimensional MRI has the potential to complement or supersede 4D CT and 4D F-18-FDG PET, by providing superior spatial resolution. A number of MR-guided radiotherapy delivery units are now available, combining a radiotherapy delivery machine (linear accelerator or cobalt-60 unit) with MRI at varying magnetic field strengths. This novel hybrid technology is evolving with many technical challenges to overcome. It is anticipated that the clinical benefits of MR-guided radiotherapy will be derived from the ability to adapt treatment on the fly for each fraction and in real-time, using ‘beam-on’ imaging. The lung tumour site group of the Atlantic MR-Linac consortium is working to generate a challenging MR-guided adaptive workflow for multi-institution treatment intensification trials in this patient group. PMID:29218271

  20. WE-G-BRD-07: Investigation of Distal Lung Atelectasis Following Stereotactic Body Radiation Therapy Using Regional Lung Volume Changes Between Pre- and Post- Treatment CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Q; Kavanagh, B; Miften, M

    2014-06-15

    Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans tomore » guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent atelectasis and limit lung function loss.« less

  1. Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI

    NASA Astrophysics Data System (ADS)

    Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian

    2005-04-01

    Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.

  2. Variation in lung volumes and capacities among young males in relation to height.

    PubMed

    Bhatti, Urooj; Rani, Keenjher; Memon, Muhammad Qasim

    2014-01-01

    Vital Capacity (VC) is defined as a change in volume of lung after maximal inspiration followed by maximal expiration is called Vital Capacity of lungs. It is the sum of tidal volume, inspiratory reserve volume .and expiratory reserve volume. Vital capacity of normal adults ranges between 3 to 5 litres. A number of physiological factors like age, gender, height and ethnicity effect lung volumes. The reference values of lung volume and capacities were calculated previously and those studies played pivotal role in establishing the fact that air volume capacities measured in an individual fall within a wide range among healthy persons of same age, gender and height buit with different ethnicity. The objective of this study was to evaluate the changes in vital capacity in with height and gender. This cross-sectional study included 74 male students in the Department of Physiology, Liaquat University of Medical and Health Sciences, Jamshoro during January-March, 2014. The volunteers were divided into 2 groups of height ≤ 167.4 cm and > 167.4 cm. The volunteers' height was measured in cm. Vital capacity of the subjects was measured using standard protocol. Mean ± SD of age, height and vital capacity were calculated. Mean vital capacity in students with height > 167.4 cm was higher than average vital capacity of students with height ≤ 167.4 cm. It might be due to the increased surface area of the lungs in relation with increasing height. There are variations in vital capacity of individuals in relation to their heights, within the same ethnic and age groups.

  3. Influence of stapling the intersegmental planes on lung volume and function after segmentectomy.

    PubMed

    Tao, Hiroyuki; Tanaka, Toshiki; Hayashi, Tatsuro; Yoshida, Kumiko; Furukawa, Masashi; Yoshiyama, Koichi; Okabe, Kazunori

    2016-10-01

    Dividing the intersegmental planes with a stapler during pulmonary segmentectomy leads to volume loss in the remnant segment. The aim of this study was to assess the influence of segment division methods on preserved lung volume and pulmonary function after segmentectomy. Using image analysis software on computed tomography (CT) images of 41 patients, the ratio of remnant segment and ipsilateral lung volume to their preoperative values (R-seg and R-ips) was calculated. The ratio of postoperative actual forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) per those predicted values based on three-dimensional volumetry (R-FEV1 and R-FVC) was also calculated. Differences in actual/predicted ratios of lung volume and pulmonary function for each of the division methods were analysed. We also investigated the correlations of the actual/predicted ratio of remnant lung volume with that of postoperative pulmonary function. The intersegmental planes were divided by either electrocautery or with a stapler in 22 patients and with a stapler alone in 19 patients. Mean values of R-seg and R-ips were 82.7 (37.9-140.2) and 104.9 (77.5-129.2)%, respectively. The mean values of R-FEV1 and R-FVC were 103.9 (83.7-135.1) and 103.4 (82.2-125.1)%, respectively. There were no correlations between the actual/predicted ratio of remnant lung volume and pulmonary function based on the division method. Both R-FEV1 and R-FVC were correlated not with R-seg, but with R-ips. Stapling does not lead to less preserved volume or function than electrocautery in the division of the intersegmental planes. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Normal Lung Quantification in Usual Interstitial Pneumonia Pattern: The Impact of Threshold-based Volumetric CT Analysis for the Staging of Idiopathic Pulmonary Fibrosis.

    PubMed

    Ohkubo, Hirotsugu; Kanemitsu, Yoshihiro; Uemura, Takehiro; Takakuwa, Osamu; Takemura, Masaya; Maeno, Ken; Ito, Yutaka; Oguri, Tetsuya; Kazawa, Nobutaka; Mikami, Ryuji; Niimi, Akio

    2016-01-01

    Although several computer-aided computed tomography (CT) analysis methods have been reported to objectively assess the disease severity and progression of idiopathic pulmonary fibrosis (IPF), it is unclear which method is most practical. A universal severity classification system has not yet been adopted for IPF. The purpose of this study was to test the correlation between quantitative-CT indices and lung physiology variables and to determine the ability of such indices to predict disease severity in IPF. A total of 27 IPF patients showing radiological UIP pattern on high-resolution (HR) CT were retrospectively enrolled. Staging of IPF was performed according to two classification systems: the Japanese and GAP (gender, age, and physiology) staging systems. CT images were assessed using a commercially available CT imaging analysis workstation, and the whole-lung mean CT value (MCT), the normally attenuated lung volume as defined from -950 HU to -701 Hounsfield unit (NL), the volume of the whole lung (WL), and the percentage of NL to WL (NL%), were calculated. CT indices (MCT, WL, and NL) closely correlated with lung physiology variables. Among them, NL strongly correlated with forced vital capacity (FVC) (r = 0.92, P <0.0001). NL% showed a large area under the receiver operating characteristic curve for detecting patients in the moderate or advanced stages of IPF. Multivariable logistic regression analyses showed that NL% is significantly more useful than the percentages of predicted FVC and predicted diffusing capacity of the lungs for carbon monoxide (Japanese stage II/III/IV [odds ratio, 0.73; 95% confidence intervals (CI), 0.48 to 0.92; P < 0.01]; III/IV [odds ratio. 0.80; 95% CI 0.59 to 0.96; P < 0.01]; GAP stage II/III [odds ratio, 0.79; 95% CI, 0.56 to 0.97; P < 0.05]). The measurement of NL% by threshold-based volumetric CT analysis may help improve IPF staging.

  5. Mechanical Ventilation and Bronchopulmonary Dysplasia.

    PubMed

    Keszler, Martin; Sant'Anna, Guilherme

    2015-12-01

    Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Dosimetric comparison of normal structures associated with accelerated partial breast irradiation and whole breast irradiation delivered by intensity modulated radiotherapy for early breast cancer after breast conserving surgery.

    PubMed

    Wu, S; He, Z; Guo, J; Li, F; Lin, Q; Guan, X

    2014-01-01

    To assess the heart and lung dosimetry results associated with accelerated partial breast irradiation intensity-modulated radiotherapy (APBI-IMRT) and whole breast field-in-field intensity-modulated radiotherapy (WBI-FIF-IMRT). A total of 29 patients with early-stage breast cancer after lumpectomy were included in this study. APBI-IMRT and WBI-FIF-IMRT plans were generated for each patient. The dosimetric parameters of ipsilateral lung and heart in both plans were then compared with and without radiobiological correction. With and without radiobiological correction, the volume of ipsilateral lung showed a substantially lower radiation exposure in APBI-IMRT with moderate to high doses (P < 0.05) but non-significant increases in volume of ipsilateral lung in 2.5 Gy than WBI-FIF-IMRT (P > 0.905).There was no significant difference in volume of ipsilateral lung receiving 1, 2.5, and 5 Gy between APBI-IMRT and WBI (P > 0.05) in patients with medial tumor location, although APBI-IMRT exposed more lung to 2.5 and 5 Gy. APBI-IMRT significantly decreases the volume of heart receiving low to high doses in left-sided breast cancer (P < 0.05). APBI-IMRT can significantly spare the volume of heart and ipsilateral lung receiving moderate and high dose. Non-significant increases in volume of the ipsilateral lung exposed to low doses of radiation were observed for APBI-IMRT in comparison to WBI-FIF-IMRT, particularly in patients with medial tumor location. With the increasing interest in APBI-IMRT, our data may help clinicians individualize patient treatment decisions.

  7. Alveolar edema dispersion and alveolar protein permeability during high volume ventilation: effect of positive end-expiratory pressure.

    PubMed

    de Prost, Nicolas; Roux, Damien; Dreyfuss, Didier; Ricard, Jean-Damien; Le Guludec, Dominique; Saumon, Georges

    2007-04-01

    To evaluate whether PEEP affects intrapulmonary alveolar edema liquid movement and alveolar permeability to proteins during high volume ventilation. Experimental study in an animal research laboratory. 46 male Wistar rats. A (99m)Tc-labeled albumin solution was instilled in a distal airway to produce a zone of alveolar flooding. Conventional ventilation (CV) was applied for 30 min followed by various ventilation strategies for 3 h: CV, spontaneous breathing, and high volume ventilation with different PEEP levels (0, 6, and 8 cmH(2)O) and different tidal volumes. Dispersion of the instilled liquid and systemic leakage of (99m)Tc-albumin from the lungs were studied by scintigraphy. The instillation protocol produced a zone of alveolar flooding that stayed localized during CV or spontaneous breathing. High volume ventilation dispersed alveolar liquid in the lungs. This dispersion was prevented by PEEP even when tidal volume was the same and thus end-inspiratory pressure higher. High volume ventilation resulted in the leakage of instilled (99m)Tc-albumin from the lungs. This increase in alveolar albumin permeability was reduced by PEEP. Albumin permeability was more affected by the amplitude of tidal excursions than by overall lung distension. PEEP prevents the dispersion of alveolar edema liquid in the lungs and lessens the increase in alveolar albumin permeability due to high volume ventilation.

  8. Quantitative computed tomography of lung parenchyma in patients with emphysema: analysis of higher-density lung regions

    NASA Astrophysics Data System (ADS)

    Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David

    2011-03-01

    Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU <= PV < -750HU was -0.43, as compared with a correlation of -0.49 obtained between the post-bronchodilator ratio (FEV1/FVC) measured by the forced expiratory volume in 1 second (FEV1) dividing the forced vital capacity (FVC) and the STD of pixel values in the bin of -1024HU <= PV < -910HU. The results showed an association between the distribution of pixel values in "viable" lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.

  9. Lung-protective ventilation in abdominal surgery.

    PubMed

    Futier, Emmanuel; Jaber, Samir

    2014-08-01

    To provide the most recent and relevant clinical evidence regarding the use of prophylactic lung-protective mechanical ventilation in abdominal surgery. Evidence is accumulating, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary complications in patients undergoing abdominal surgery. Nonprotective ventilator settings, especially high tidal volume (>10-12 ml/kg), very low level of positive end-expiratory pressure (PEEP, <5 cm H2O), or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by the previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung-protective mechanical ventilation. Recent data provide compelling evidence that prophylactic lung-protective mechanical ventilation using lower tidal volume (6-8 ml/kg of predicted body weight), moderate PEEP (6-8 cm H2O), and recruitment maneuvers is associated with improved functional or physiological and clinical postoperative outcome in patients undergoing abdominal surgery. The use of prophylactic lung-protective ventilation can help in improving the postoperative outcome.

  10. Functional capacities of lungs and thorax in beagles after prolonged residence at 3,100 m.

    PubMed

    Johnson, R L; Cassidy, S S; Grover, R F; Schutte, J E; Epstein, R H

    1985-12-01

    Functional capacities of the lungs and thorax in beagles taken to high altitude as adults for 33 mo or in beagles raised from puppies at high altitude were compared with functional capacities in corresponding sets of beagles kept simultaneously at sea level. Comparisons were made after reacclimatization to sea level. Lung volumes, airway pressures, esophageal pressures, CO diffusing capacities (DLCO), pulmonary blood flow, and lung tissue volume (Vt) were measured by a rebreathing technique at inspired volumes ranging from 15 to 90 ml/kg. In beagles raised from puppies we measured anatomical distribution of intrathoracic air and tissue using X-ray computed tomography at transpulmonary pressures of 20 cm H2O. Lung and thoracic distensibility, DLCO, and Vt were not different between beagles that had been kept at high altitude for 33 mo as adults and control subjects kept simultaneously at sea level. Lung distensibility, DLCO, and Vt were significantly greater in beagles raised at high altitude than control subjects raised simultaneously at sea level. Thoracic distensibility was not increased in beagles raised at high altitude; the larger lung volume was accommodated by a lower diaphragm, not a larger rib cage.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirsch, David G., E-mail: david.kirsch@duke.ed; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Departments of Radiation Oncology and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC

    Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology.more » Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.« less

  12. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan geometries, employed as ground truth data. Image similarity between the simulated and ground truth scans was evaluated. The model validation experiments were conducted in a patient cohort of seventeen patients to assess the model robustness and inter-patient variation. The model error averaged over multiple tracked positions from several breathing cycles was found to be on the order of one millimeter. In modeling the density change under free breathing condition, the determinant of Jacobian matrix from the registration-derived deformation vector field yielded volume change information of the lung tissues. Correlation of the Jacobian values to the corresponding voxel Housfield units (HU) reveals that the density variation for the majority of lung tissues can be very well described by mass conservation relationship. Different tissue types were identified and separately modeled. Large trials of validation experiments were performed. The averaged deviation between the modeled and the reference lung density was 30 HU, which was estimated to be the background CT noise level. In characterizing the lung ventilation function, a novel method was developed to determine the extent of lung tissue volume change. Information on volume change was derived from the deformable image registration of the fast helical CT images in terms of Jacobian values with respect to a reference image. Assuming the multiple volume change measurements are independently and identically distributed, statistical formulation was derived to model ventilation distribution of each lung voxels and empirical minimum and maximum probability distribution of the Jacobian values was computed. Ventilation characteristic was evaluated as the difference of the expectation value from these extremal distributions. The resulting ventilation map was compared with an independently obtained ventilation image derived directly from the lung intensities and good correlation was found using statistical test. In addition, dynamic ventilation characterization was investigated by estimating the voxel-specific ventilation distribution. Ventilation maps were generated at different percentile levels using the tissue volume expansion metrics.

  13. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.

    PubMed

    Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M

    2001-11-01

    To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and decreased lung damage. However, in this small-animal model of acute lung injury, an open lung strategy with deliberate hypercapnia was associated with significant hemodynamic instability.

  14. Quantitative computed tomography of pulmonary emphysema and ventricular function in chronic obstructive pulmonary disease patients with pulmonary hypertension.

    PubMed

    Huang, Yu-Sen; Hsu, Hsao-Hsun; Chen, Jo-Yu; Tai, Mei-Hwa; Jaw, Fu-Shan; Chang, Yeun-Chung

    2014-01-01

    This study strived to evaluate the relationship between degree of pulmonary emphysema and cardiac ventricular function in chronic obstructive pulmonary disease (COPD) patients with pulmonary hypertension (PH) using electrocardiographic-gated multidetector computed tomography (CT). Lung transplantation candidates with the diagnosis of COPD and PH were chosen for the study population, and a total of 15 patients were included. The extent of emphysema is defined as the percentage of voxels below -910 Hounsfield units in the lung windows in whole lung CT without intravenous contrast. Heart function parameters were measured by electrocardiographic-gated CT angiography. Linear regression analysis was conducted to examine the associations between percent emphysema and heart function indicators. Significant correlations were found between percent emphysema and right ventricular (RV) measurements, including RV end-diastolic volume (R(2) = 0.340, p = 0.023), RV stroke volume (R(2) = 0.406, p = 0.011), and RV cardiac output (R(2) = 0.382, p = 0.014); the correlations between percent emphysema and left ventricular function indicators were not observed. The study revealed that percent emphysema is correlated with RV dysfunction among COPD patients with PH. Based on our findings, percent emphysema can be considered for use as an indicator to predict the severity of right ventricular dysfunction among COPD patients.

  15. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shulian; Liao Zhongxing; Vaporciyan, Ara A.

    Purpose: To assess the association of clinical and especially dosimetric factors with the incidence of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiation therapy followed by surgery. Method and Materials: Data from 110 esophageal cancer patients treated between January 1998 and December 2003 were analyzed retrospectively. All patients received concurrent chemoradiotherapy followed by surgery; 72 patients also received irinotecan-based induction chemotherapy. Concurrent chemotherapy was 5-fluorouracil-based and in 97 cases included taxanes. Radiotherapy was delivered to a total dose of 41.4-50.4 Gy at 1.8-2.0 Gy per fraction with a three-dimensional conformal technique. Surgery (three-field, Ivor-Lewis, or transhiatal esophagectomy)more » was performed 27-123 days (median, 45 days) after completion of radiotherapy. The following dosimetric parameters were generated from the dose-volume histogram (DVH) for total lung: lung volume, mean dose to lung, relative and absolute volumes of lung receiving more than a threshold dose (relative V{sub dose} and absolute V{sub dose}), and absolute volume of lung receiving less than a threshold dose (volume spared, or VS{sub dose}). Occurrence of postoperative pulmonary complications, defined as pneumonia or acute respiratory distress syndrome (ARDS) within 30 days after surgery, was the endpoint for all analyses. Fisher's exact test was used to investigate the relationship between categorical factors and incidence of postoperative pulmonary complications. Logistic analysis was used to analyze the relationship between continuous factors (e.g., V{sub dose} or VS{sub dose}) and complication rate. Logistic regression with forward stepwise inclusion of factors was used to perform multivariate analysis of those factors having univariate significance (p < 0.05). The Mann-Whitney test was used to compare length of hospital stay in patients with and without lung complications and to compare lung volumes, VS5 values, and absolute and relative V5 values in male vs. female patients. Pearson correlation analysis was used to determine correlations between dosimetric factors. Results: Eighteen (16.4%) of the 110 patients developed postoperative pulmonary complications. Two of these died of progressive pneumonia. Hospitalizations were significantly longer for patients with postoperative pulmonary complications than for those without (median, 15 days vs. 11 days, p = 0.003). On univariate analysis, female gender (p = 0.017), higher mean lung dose (p = 0.036), higher relative volume of lung receiving {>=}5 Gy (V5) (p = 0.023), and smaller volumes of lung spared from doses {>=}5-35 Gy (VS5-VS35) (p < 0.05) were all significantly associated with an increased incidence of postoperative pulmonary complications. No other clinical factors were significantly associated with the incidence of postoperative pulmonary complications in this cohort. On multivariate analysis, the volume of lung spared from doses {>=}5 Gy (VS5) was the only significant independent factor associated with postoperative pulmonary complications (p = 0.005). Conclusions: Dosimetric factors but not clinical factors were found to be strongly associated with the incidence of postoperative pulmonary complications in this cohort of esophageal cancer patients treated with concurrent chemoradiation plus surgery. The volume of the lung spared from doses of {>=}5 Gy was the only independent dosimetric factor in multivariate analysis. This suggests that ensuring an adequate volume of lung unexposed to radiation might reduce the incidence of postoperative pulmonary complications.« less

  17. Investigation of clinical and dosimetric factors associated with postoperative pulmonary complications in esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery.

    PubMed

    Wang, Shu-lian; Liao, Zhongxing; Vaporciyan, Ara A; Tucker, Susan L; Liu, Helen; Wei, Xiong; Swisher, Stephen; Ajani, Jaffer A; Cox, James D; Komaki, Ritsuko

    2006-03-01

    To assess the association of clinical and especially dosimetric factors with the incidence of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiation therapy followed by surgery. Data from 110 esophageal cancer patients treated between January 1998 and December 2003 were analyzed retrospectively. All patients received concurrent chemoradiotherapy followed by surgery; 72 patients also received irinotecan-based induction chemotherapy. Concurrent chemotherapy was 5-fluorouracil-based and in 97 cases included taxanes. Radiotherapy was delivered to a total dose of 41.4-50.4 Gy at 1.8-2.0 Gy per fraction with a three-dimensional conformal technique. Surgery (three-field, Ivor-Lewis, or transhiatal esophagectomy) was performed 27-123 days (median, 45 days) after completion of radiotherapy. The following dosimetric parameters were generated from the dose-volume histogram (DVH) for total lung: lung volume, mean dose to lung, relative and absolute volumes of lung receiving more than a threshold dose (relative V(dose) and absolute V(dose)), and absolute volume of lung receiving less than a threshold dose (volume spared, or VS(dose)). Occurrence of postoperative pulmonary complications, defined as pneumonia or acute respiratory distress syndrome (ARDS) within 30 days after surgery, was the endpoint for all analyses. Fisher's exact test was used to investigate the relationship between categorical factors and incidence of postoperative pulmonary complications. Logistic analysis was used to analyze the relationship between continuous factors (e.g., V(dose) or VS(dose)) and complication rate. Logistic regression with forward stepwise inclusion of factors was used to perform multivariate analysis of those factors having univariate significance (p < 0.05). The Mann-Whitney test was used to compare length of hospital stay in patients with and without lung complications and to compare lung volumes, VS5 values, and absolute and relative V5 values in male vs. female patients. Pearson correlation analysis was used to determine correlations between dosimetric factors. Eighteen (16.4%) of the 110 patients developed postoperative pulmonary complications. Two of these died of progressive pneumonia. Hospitalizations were significantly longer for patients with postoperative pulmonary complications than for those without (median, 15 days vs. 11 days, p = 0.003). On univariate analysis, female gender (p = 0.017), higher mean lung dose (p = 0.036), higher relative volume of lung receiving > or = 5 Gy (V5) (p = 0.023), and smaller volumes of lung spared from doses > or = 5-35 Gy (VS5-VS35) (p < 0.05) were all significantly associated with an increased incidence of postoperative pulmonary complications. No other clinical factors were significantly associated with the incidence of postoperative pulmonary complications in this cohort. On multivariate analysis, the volume of lung spared from doses > or = 5 Gy (VS5) was the only significant independent factor associated with postoperative pulmonary complications (p = 0.005). Dosimetric factors but not clinical factors were found to be strongly associated with the incidence of postoperative pulmonary complications in this cohort of esophageal cancer patients treated with concurrent chemoradiation plus surgery. The volume of the lung spared from doses of > or = 5 Gy was the only independent dosimetric factor in multivariate analysis. This suggests that ensuring an adequate volume of lung unexposed to radiation might reduce the incidence of postoperative pulmonary complications.

  18. Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery.

    PubMed

    Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi

    2013-06-01

    Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function.

  19. Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery

    PubMed Central

    Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi

    2013-01-01

    Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function. PMID:23460599

  20. Development and proof-of-concept of three-dimensional lung histology volumes

    NASA Astrophysics Data System (ADS)

    Mathew, Lindsay; Alabousi, Mostafa; Wheatley, Andrew; Aladl, Usaf; Slipetz, Deborah; Hogg, James C.; Fenster, Aaron; Parraga, Grace

    2012-03-01

    Most medical imaging is inherently three-dimensional (3D) but for validation of pathological findings, histopathology is commonly used and typically histopathology images are acquired as twodimensional slices with quantitative analysis performed in a single dimension. Histopathology is invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is the lack of tools to directly compare 3D macroscopic imaging acquired in patients with histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). To directly address this, we developed methods for 2D histology slice visualization/registration to generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype (WT) (47.1 μm +/- 9.8 μm) and elastase mouse lung (64.5 μm +/- 14.0 μm) was significantly different (p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT mouse lung. The ratio of the airspace-to-lung volume for the entire lung volume was also significantly and strongly correlated with Lm.

  1. Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-09-29

    Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

  2. Function of the Dräger Oxylog ventilator at high altitude.

    PubMed

    Thomas, G; Brimacombe, J

    1994-06-01

    We have assessed the performance of the Dräger Oxylog ventilator at high altitude using a decompression chamber and a lung simulator set to mimic the normal and non-compliant lung. In the normal lung, tidal volume increased by 28% at 2040 metres and by 106% at 9120 metres. A lesser change, but in the opposite direction, occurred in respiratory rate. The net effect was a linear increase in minute volume with altitude. At 2040 and 9144 metres minute volume increased by 13% and by 45%, and rate decreased by 10% and 30% respectively. In the abnormal lung stimulation, similar, but slightly less marked, changes occurred in all variables. These changes are of sufficient magnitude to require frequent observation of tidal volume and respiratory rate during aircraft ascent and descent.

  3. Incidence and distribution of transplantable organs from donors after circulatory determination of death in U.S. intensive care units.

    PubMed

    Halpern, Scott D; Hasz, Richard D; Abt, Peter L

    2013-04-01

    All U.S. acute care hospitals must maintain protocols for recovering organs from donors after circulatory determination of death (DCDD), but the numbers, types, and whereabouts of available organs are unknown. To assess the maximal potential supply and distribution of DCDD organs in U.S. intensive care units. We conducted a population-based cohort study among a randomly selected sample of 50 acute care hospitals in the highest-volume donor service area in the United States. We identified all potentially eligible donors dying within 90 minutes of the withdrawal of life-sustaining therapy from July 1, 2008 to June 30, 2009. Using prespecified criteria, potential donors were categorized as optimal, suboptimal, or ineligible to donate their lungs, kidneys, pancreas, or liver. If only optimal DCDD organs were used, the deceased donor supplies of these organs could increase by up to 22.7, 8.9, 7.4, and 3.3%, respectively. If optimal and suboptimal DCDD organs were used, the corresponding supply increases could be up to 50.0, 19.7, 18.5, and 10.9%. Three-quarters of DCDD organs could be recovered from the 17.2% of hospitals with the highest annual donor volumes-typically those with trauma centers and more than 20 intensive care unit beds. Universal identification and referral of DCDD could increase the supply of transplantable lungs by up to one-half, and would not increase any other organ supply by more than one-fifth. The marked clustering of DCDD among a small number of identifiable hospitals could guide targeted interventions to improve DCDD identification, referral, and management.

  4. Association of adult respiratory distress syndrome (ARDS) with thoracic irradiation (RT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byhardt, R.W.; Abrams, R.; Almagro, U.

    1988-12-01

    The authors report two cases of apparent adult respiratory distress syndrome (ARDS) following limited thoracic irradiation for lung cancer. Respiratory failure followed rapidly after irradiation with diffuse bilateral infiltrates, both in and out of the irradiated volume along with progressive hypoxemia unresponsive to oxygen management. Other potential causes of lung injury such as lymphangitic tumor, cardiac failure, and infections were excluded by both premortem and postmortem examination. Autopsy findings in both irradiated and unirradiated volumes of lung were consistent with hyaline membrane changes. The possible relationship between radiation therapy to limited lung volumes and the development of adult respiratory distressmore » syndrome is discussed.« less

  5. Simple, Inexpensive Model Spirometer for Understanding Ventilation Volumes

    ERIC Educational Resources Information Center

    Giuliodori, Mauricio J.; DiCarlo, Stephen E.

    2004-01-01

    Spirometers are useful for enhancing students' understanding of normal lung volumes, capacities, and flow rates. Spirometers are also excellent for understanding how lung diseases alter ventilation volumes. However, spirometers are expensive, complex, and not appropriate for programs with limited space and budgets. Therefore, we developed a…

  6. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis.

    PubMed

    Serpa Neto, Ary; Cardoso, Sérgio Oliveira; Manetta, José Antônio; Pereira, Victor Galvão Moura; Espósito, Daniel Crepaldi; Pasqualucci, Manoela de Oliveira Prado; Damasceno, Maria Cecília Toledo; Schultz, Marcus J

    2012-10-24

    Lung-protective mechanical ventilation with the use of lower tidal volumes has been found to improve outcomes of patients with acute respiratory distress syndrome (ARDS). It has been suggested that use of lower tidal volumes also benefits patients who do not have ARDS. To determine whether use of lower tidal volumes is associated with improved outcomes of patients receiving ventilation who do not have ARDS. MEDLINE, CINAHL, Web of Science, and Cochrane Central Register of Controlled Trials up to August 2012. Eligible studies evaluated use of lower vs higher tidal volumes in patients without ARDS at onset of mechanical ventilation and reported lung injury development, overall mortality, pulmonary infection, atelectasis, and biochemical alterations. Three reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus. Twenty articles (2822 participants) were included. Meta-analysis using a fixed-effects model showed a decrease in lung injury development (risk ratio [RR], 0.33; 95% CI, 0.23 to 0.47; I2, 0%; number needed to treat [NNT], 11), and mortality (RR, 0.64; 95% CI, 0.46 to 0.89; I2, 0%; NNT, 23) in patients receiving ventilation with lower tidal volumes. The results of lung injury development were similar when stratified by the type of study (randomized vs nonrandomized) and were significant only in randomized trials for pulmonary infection and only in nonrandomized trials for mortality. Meta-analysis using a random-effects model showed, in protective ventilation groups, a lower incidence of pulmonary infection (RR, 0.45; 95% CI, 0.22 to 0.92; I2, 32%; NNT, 26), lower mean (SD) hospital length of stay (6.91 [2.36] vs 8.87 [2.93] days, respectively; standardized mean difference [SMD], 0.51; 95% CI, 0.20 to 0.82; I2, 75%), higher mean (SD) PaCO2 levels (41.05 [3.79] vs 37.90 [4.19] mm Hg, respectively; SMD, -0.51; 95% CI, -0.70 to -0.32; I2, 54%), and lower mean (SD) pH values (7.37 [0.03] vs 7.40 [0.04], respectively; SMD, 1.16; 95% CI, 0.31 to 2.02; I2, 96%) but similar mean (SD) ratios of PaO2 to fraction of inspired oxygen (304.40 [65.7] vs 312.97 [68.13], respectively; SMD, 0.11; 95% CI, -0.06 to 0.27; I2, 60%). Tidal volume gradients between the 2 groups did not influence significantly the final results. Among patients without ARDS, protective ventilation with lower tidal volumes was associated with better clinical outcomes. Some of the limitations of the meta-analysis were the mixed setting of mechanical ventilation (intensive care unit or operating room) and the duration of mechanical ventilation.

  7. Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.

    PubMed

    Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François

    2016-12-01

    Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.

  8. Outpatient Chronic Obstructive Pulmonary Disease Management: Going for the GOLD.

    PubMed

    Bellinger, Christina R; Peters, Stephen P

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States with a burden of $50 billion in direct health care costs. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) defines airflow obstruction as spirometry where the ratio of forced expiratory volume in the first second to forced vital capacity after bronchodilation is less than 0.70. The guidelines also provided graded recommendations on current therapy for COPD. Treatment can be guided based on severity of disease and severity of symptoms. We review the GOLD guidelines to provide an overview of treatment modalities aimed at improving lung function, reducing hospitalization, and reducing mortality. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Comparison of static end-expiratory and effective lung volumes for gas exchange in healthy and surfactant-depleted lungs.

    PubMed

    Albu, Gergely; Wallin, Mats; Hallbäck, Magnus; Emtell, Per; Wolf, Andrew; Lönnqvist, Per-Arne; Göthberg, Sylvia; Peták, Ferenc; Habre, Walid

    2013-07-01

    Effective lung volume (ELV) for gas exchange is a new measure that could be used as a real-time guide during controlled mechanical ventilation. The authors established the relationships of ELV to static end-expiratory lung volume (EELV) with varying levels of positive end-expiratory pressure (PEEP) in healthy and surfactant-depleted rabbit lungs. Nine rabbits were anesthetized and ventilated with a modified volume-controlled mode where periods of five consecutive alterations in inspiratory/expiratory ratio (1:2-1.5:1) were imposed to measure ELV from the corresponding carbon dioxide elimination traces. EELV and the lung clearance index were concomitantly determined by helium wash-out technique. Airway and tissue mechanics were assessed by using low-frequency forced oscillations. Measurements were collected at PEEP 0, 3, 6, and 9 cm H2O levels under control condition and after surfactant depletion by whole-lung lavage. ELV was greater than EELV at all PEEP levels before lavage, whereas there was no evidence for a difference in the lung volume indices after surfactant depletion at PEEP 6 or 9 cm H2O. Increasing PEEP level caused significant parallel increases in both ELV and EELV levels, decreases in ventilation heterogeneity, and improvement in airway and tissue mechanics under control condition and after surfactant depletion. ELV and EELV exhibited strong and statistically significant correlations before (r=0.84) and after lavage (r=0.87). The parallel changes in ELV and EELV with PEEP in healthy and surfactant-depleted lungs support the clinical value of ELV measurement as a bedside tool to estimate dynamic changes in EELV in children and infants.

  10. Measurement of lung fluid volumes and albumin exclusion in sheep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pou, N.A.; Roselli, R.J.; Parker, R.E.

    1989-10-01

    A radioactive tracer technique was used to determine interstitial diethylenetriaminepentaacetic acid (DTPA) and albumin distribution volume in sheep lungs. {sup 125}I- and/or {sup 131}I-labeled albumin were injected intravenously and allowed to equilibrate for 24 h. {sup 99m}Tc-labeled DTPA and {sup 51}Cr-labeled erythrocytes were injected and allowed to equilibrate (2 h and 15 min, respectively) before a lethal dose of thiamylal sodium. Two biopsies (1-3 g) were taken from each lung and the remaining tissue was homogenized for wet-to-dry lung weight and volume calculations. Estimates of distribution volumes from whole lung homogenized samples were statistically smaller than biopsy samples for extravascularmore » water, interstitial {sup 99m}Tc-DTPA, and interstitial albumin. The mean fraction of the interstitium (Fe), which excludes albumin, was 0.68 +/- 0.04 for whole lung samples compared with 0.62 +/- 0.03 for biopsy samples. Hematocrit may explain the consistent difference. To make the Fe for biopsy samples match that for homogenized samples, a mean hematocrit, which was 82% of large vessel hematocrit, was required. Excluded volume fraction for exogenous sheep albumin was compared with that of exogenous human albumin in two sheep, and no difference was found at 24 h.« less

  11. Factors influencing the measurement of closing volume.

    PubMed

    Make, B; Lapp, N L

    1975-06-01

    The various factors influencing closing volume were studied by performing the single-breath N2 test on 9 healthy nonsmokers. Time of day, day of the week, and preceding volume history had no effect on either closing volume or alveolar plateau. Slow inspiratory flow resulted in larger ratio of closing volume to vital capacity, ratio of closing capacity to total lung capacity, and change in N2 concentration than fast inspiratory flow. Voluntary regulation of the expiratory flow resulted in smaller ratios of closing volume to vital capacity and closing capacity to total lung capacity than when flow was regulated by a resistance. Prolonged breath holding of the inspired O2 led to larger ratio of closing volume to vital capacity and ratio of closing capacity to total lung capacity. To obtain uniform, comparable closing volumes, it is suggested that the subject inspire slowly, control expiratory flow (preferably voluntarily), and not pause between inspiration and expiration.

  12. Systems for lung volume standardization during static and dynamic MDCT-based quantitative assessment of pulmonary structure and function.

    PubMed

    Fuld, Matthew K; Grout, Randall W; Guo, Junfeng; Morgan, John H; Hoffman, Eric A

    2012-08-01

    Multidetector-row computed tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics), and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breathhold at a standardized volume. A computer monitored turbine-based flow meter system was developed to control patient breathholds and facilitate static imaging at fixed percentages of the vital capacity. Because of calibration challenges with gas density changes during multibreath xenon CT, an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was -9 mL (-169, 151); for total lung capacity alone 6 mL (-164, 177); for functional residual capacity alone, -23 mL (-172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject noncompliance with verbal instruction and gas leaks around the mouthpiece. We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multibreath wash-in xenon CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon CT method for assessing regional lung function, although not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon CT measures can be validated. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  13. SU-E-I-90: Characterizing Small Animal Lung Properties Using Speckle Observed with An In-Line X-Ray Phase Contrast Benchtop System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garson, A; Gunsten, S; Guan, H

    Purpose: We demonstrate a novel X-ray phase-contrast (XPC) method for lung imaging representing a paradigm shift in the way small animal functional imaging is performed. In our method, information regarding airway microstructure that is encoded within speckle texture of a single XPC radiograph is decoded to produce 2D parametric images that will spatially resolve changes in lung properties such as microstructure sizes and air volumes. Such information cannot be derived from conventional lung radiography or any other 2D imaging modality. By computing these images at different points within a breathing cycle, dynamic functional imaging will be readily achieved without themore » need for tomography. Methods: XPC mouse lung radiographs acquired in situ with an in-line X-ray phase contrast benchtop system. The lung air volume is varied and controlled with a small animal ventilator. XPC radiographs will be acquired for various lung air volume levels representing different phases of the respiratory cycle. Similar data will be acquired of microsphere-based lung phantoms containing hollow glass spheres with known distributions of diameters. Image texture analysis is applied to the data to investigate relationships between texture characteristics and airspace/microsphere physical properties. Results: Correlations between Fourier-based texture descriptors (FBTDs) and regional lung air volume indicate that the texture features in 2D radiographs reveal information on 3D properties of the lungs. For example, we find for a 350 × 350 πm2 lung ROI a linear relationship between injected air volume and FBTD value with slope and intercept of 8.9×10{sup 5} and 7.5, respectively. Conclusion: We demonstrate specific image texture measures related to lung speckle features are correlated with physical characteristics of refracting elements (i.e. lung air spaces). Furthermore, we present results indicating the feasibility of implementing the technique with a simple imaging system design, short exposures, and low dose which provides potential for widespread use in laboratory settings for in vivo studies. This research was supported in part by NSF Award CBET1263988.« less

  14. Comprehensive integrated spirometry using raised volume passive and forced expirations and multiple-breath nitrogen washout in infants.

    PubMed

    Morris, Mohy G

    2010-02-28

    With the rapid somatic growth and development in infants, simultaneous accurate measurements of lung volume and airway function are essential. Raised volume rapid thoracoabdominal compression (RTC) is widely used to generate forced expiration from an airway opening pressure of 30 cmH(2)O (V(30)). The (dynamic) functional residual capacity (FRC(dyn)) remains the lung volume most routinely measured. The aim of this study was to develop comprehensive integrated spirometry that included all subdivisions of lung volume at V(30) or total lung capacity (TLC(30)). Measurements were performed on 17 healthy infants aged 8.6-119.7 weeks. A commercial system for multiple-breath nitrogen washout (MBNW) to measure lung volumes and a custom made system to perform RTC were used in unison. A refined automated raised volume RTC and the following two novel single maneuvers with dual volume measurements were performed from V(30) during a brief post-hyperventilation apneic pause: (1) the passive expiratory flow was integrated to produce the inspiratory capacity (IC) and the static (passive) FRC (FRC(st)) was estimated by initiating MBNW after end-passive expiration; (2) RTC was initiated late during passive expiration, flow was integrated to produce the slow vital capacity ((j)SVC) and the residual volume (RV) was measured by initiating MBNW after end-expiration while the jacket (j) was inflated. Intrasubject FRC(dyn) and FRC(st) measurements overlapped (p=0.6420) but neither did with the RV (p<0.0001). Means (95% confidence interval) of FRC(dyn), IC, FRC(st), (j)SVC, RV, forced vital capacity and tidal volume were 21.2 (19.7-22.7), 36.7 (33.0-40.4), 21.2 (19.6-22.8), 40.7 (37.2-44.2), 18.1 (16.6-19.7), 40.7 (37.1-44.2) and 10.2 (9.6-10.7)ml/kg, respectively. Static lung volumes and capacities at V(30) and variables from the best forced expiratory flow-volume curve were dependent on age, body length and weight. In conclusion, we developed a comprehensive physiologically integrated approach for in-depth investigation of lung function at V(30) in infants. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cella, Laura, E-mail: laura.cella@cnr.it; Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples; Liuzzi, Raffaele

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced asymptomatic heart valvular defects (RVD). Methods and Materials: Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin lymphoma (HL) were retrospectively reviewed for RVD events. Clinical information along with whole heart, cardiac chambers, and lung dose distribution parameters was collected, and the correlations to RVD were analyzed by means of Spearman's rank correlation coefficient (Rs). For the selection of the model order and parameters for NTCP modeling, a multivariate logistic regression method using resampling techniques (bootstrapping) was applied. Model performance was evaluated using the area under themore » receiver operating characteristic curve (AUC). Results: When we analyzed the whole heart, a 3-variable NTCP model including the maximum dose, whole heart volume, and lung volume was shown to be the optimal predictive model for RVD (Rs = 0.573, P<.001, AUC = 0.83). When we analyzed the cardiac chambers individually, for the left atrium and for the left ventricle, an NTCP model based on 3 variables including the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung volume was selected as the most predictive model (Rs = 0.539, P<.001, AUC = 0.83; and Rs = 0.557, P<.001, AUC = 0.82, respectively). The NTCP values increase as heart maximum dose or cardiac chambers V30 increase. They also increase with larger volumes of the heart or cardiac chambers and decrease when lung volume is larger. Conclusions: We propose logistic NTCP models for RVD considering not only heart irradiation dose but also the combined effects of lung and heart volumes. Our study establishes the statistical evidence of the indirect effect of lung size on radio-induced heart toxicity.« less

  16. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury.

    PubMed

    Wolthuis, Esther K; Choi, Goda; Dessing, Mark C; Bresser, Paul; Lutter, Rene; Dzoljic, Misa; van der Poll, Tom; Vroom, Margreeth B; Hollmann, Markus; Schultz, Marcus J

    2008-01-01

    Mechanical ventilation with high tidal volumes aggravates lung injury in patients with acute lung injury or acute respiratory distress syndrome. The authors sought to determine the effects of short-term mechanical ventilation on local inflammatory responses in patients without preexisting lung injury. Patients scheduled to undergo an elective surgical procedure (lasting > or = 5 h) were randomly assigned to mechanical ventilation with either higher tidal volumes of 12 ml/kg ideal body weight and no positive end-expiratory pressure (PEEP) or lower tidal volumes of 6 ml/kg and 10 cm H2O PEEP. After induction of anesthesia and 5 h thereafter, bronchoalveolar lavage fluid and/or blood was investigated for polymorphonuclear cell influx, changes in levels of inflammatory markers, and nucleosomes. Mechanical ventilation with lower tidal volumes and PEEP (n = 21) attenuated the increase of pulmonary levels of interleukin (IL)-8, myeloperoxidase, and elastase as seen with higher tidal volumes and no PEEP (n = 19). Only for myeloperoxidase, a difference was found between the two ventilation strategies after 5 h of mechanical ventilation (P < 0.01). Levels of tumor necrosis factor alpha, IL-1alpha, IL-1beta, IL-6, macrophage inflammatory protein 1alpha, and macrophage inflammatory protein 1beta in the bronchoalveolar lavage fluid were not affected by mechanical ventilation. Plasma levels of IL-6 and IL-8 increased with mechanical ventilation, but there were no differences between the two ventilation groups. The use of lower tidal volumes and PEEP may limit pulmonary inflammation in mechanically ventilated patients without preexisting lung injury. The specific contribution of both lower tidal volumes and PEEP on the protective effects of the lung should be further investigated.

  17. Pulmonary Hyperinflation and Left Ventricular Mass

    PubMed Central

    Smith, Benjamin M; Kawut, Steven M.; Bluemke, David A; Basner, Robert C; Gomes, Antoinette S; Hoffman, Eric; Kalhan, Ravi; Lima, João AC; Liu, Chia-Ying; Michos, Erin D; Prince, Martin R; Rabbani, LeRoy; Rabinowitz, Daniel; Shimbo, Daichi; Shea, Steven; Barr, R Graham

    2013-01-01

    Background Left ventricular (LV) mass is an important predictor of heart failure and cardiovascular mortality, yet determinants of LV mass are incompletely understood. Pulmonary hyperinflation in chronic obstructive pulmonary disease (COPD) may contribute to changes in intrathoracic pressure that increase LV wall stress. We therefore hypothesized that residual lung volume in COPD would be associated with greater LV mass. Methods and results The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited smokers aged 50–79 years who were free of clinical cardiovascular disease. LV mass was measured by cardiac magnetic resonance. Pulmonary function testing was performed according to guidelines. Regression models were used to adjust for age, sex, body size, blood pressure and other cardiac risk factors. Among 119 MESA COPD Study participants, mean age was 69±6 years, 55% were male and 65% had COPD, mostly of mild or moderate severity. Mean LV mass was 128±34 grams. Residual lung volume was independently associated with greater LV mass (7.2 grams per standard deviation increase in residual volume; 95% CI 2.2 to 12; P=0.004), and was similar in magnitude to that of systolic blood pressure (7.6 grams per standard deviation increase in systolic blood pressure, 95% CI 4.3 to 11 grams; p<0.001). Similar results were observed for LV mass to end-diastolic volume ratio (p=0.02) and with hyperinflation measured as residual volume to total lung capacity ratio (P=0.009). Conclusions Pulmonary hyperinflation, as measured by residual lung volume or residual lung volume to total lung capacity ratio, is associated with greater LV mass. PMID:23493320

  18. Dynamic Determination of Oxygenation and Lung Compliance in Murine Pneumonectomy

    PubMed Central

    Gibney, Barry; Lee, Grace S.; Houdek, Jan; Lin, Miao; Miele, Lino; Chamoto, Kenji; Konerding, Moritz A.; Tsuda, Akira; Mentzer, Steven J.

    2012-01-01

    Thoracic surgical procedures in mice have been applied to a wide range of investigations, but little is known about the murine physiologic response to pulmonary surgery. Using continuous arterial oximetry monitoring and the FlexiVent murine ventilator, we investigated the effect of anesthesia and pneumonectomy on mouse oxygen saturation and lung mechanics. Sedation resulted in a dose-dependent decline of oxygen saturation that ranged from 55–82%. Oxygen saturation was restored by mechanical ventilation with increased rate and tidal volumes. In the mouse strain studied, optimal ventilatory rates were a rate of 200/minute and a tidal volume of 10ml/kg. Sustained inflation pressures, referred to as a "recruitment maneuver," improved lung volumes, lung compliance and arterial oxygenation. In contrast, positive end expiratory pressure (PEEP) had a detrimental effect on oxygenation; an effect that was ameliorated after pneumonectomy. Our results confirm that lung volumes in the mouse are dynamically determined and suggest a threshold level of mechanical ventilation to maintain perioperative oxygen saturation. PMID:21574875

  19. Protective mechanical ventilation does not exacerbate lung function impairment or lung inflammation following influenza A infection.

    PubMed

    Zosky, Graeme R; Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D

    2009-11-01

    The degree to which mechanical ventilation induces ventilator-associated lung injury is dependent on the initial acute lung injury (ALI). Viral-induced ALI is poorly studied, and this study aimed to determine whether ALI induced by a clinically relevant infection is exacerbated by protective mechanical ventilation. Adult female BALB/c mice were inoculated with 10(4.5) plaque-forming units of influenza A/Mem/1/71 in 50 microl of medium or medium alone. This study used a protective ventilation strategy, whereby mice were anesthetized, tracheostomized, and mechanically ventilated for 2 h. Lung mechanics were measured periodically throughout the ventilation period using a modification of the forced oscillation technique to obtain measures of airway resistance and coefficients of tissue damping and tissue elastance. Thoracic gas volume was measured and used to obtain specific airway resistance, tissue damping, and tissue elastance. At the end of the ventilation period, a bronchoalveolar lavage sample was collected to measure inflammatory cells, macrophage inflammatory protein-2, IL-6, TNF-alpha, and protein leak. Influenza infection caused significant increases in inflammatory cells, protein leak, and deterioration in lung mechanics that were not exacerbated by mechanical ventilation, in contrast to previous studies using bacterial and mouse-specific viral infection. This study highlighted the importance of type and severity of lung injury in determining outcome following mechanical ventilation.

  20. The influence of inspiratory effort and emphysema on pulmonary nodule volumetry reproducibility.

    PubMed

    Moser, J B; Mak, S M; McNulty, W H; Padley, S; Nair, A; Shah, P L; Devaraj, A

    2017-11-01

    To evaluate the impact of inspiratory effort and emphysema on reproducibility of pulmonary nodule volumetry. Eighty-eight nodules in 24 patients with emphysema were studied retrospectively. All patients had undergone volumetric inspiratory and end-expiratory thoracic computed tomography (CT) for consideration of bronchoscopic lung volume reduction. Inspiratory and expiratory nodule volumes were measured using commercially available software. Local emphysema extent was established by analysing a segmentation area extended circumferentially around each nodule (quantified as percent of lung with density of -950 HU or less). Lung volumes were established using the same software. Differences in inspiratory and expiratory nodule volumes were illustrated using the Bland-Altman test. The influences of percentage reduction in lung volume at expiration, local emphysema extent, and nodule size on nodule volume variability were tested with multiple linear regression. The majority of nodules (59/88 [67%]) showed an increased volume at expiration. Mean difference in nodule volume between expiration and inspiration was +7.5% (95% confidence interval: -24.1, 39.1%). No relationships were demonstrated between nodule volume variability and emphysema extent, degree of expiration, or nodule size. Expiration causes a modest increase in volumetry-derived nodule volumes; however, the effect is unpredictable. Local emphysema extent had no significant effect on volume variability in the present cohort. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, Nathan; Erwin, William; Pan, Tinsu

    2013-12-15

    Purpose: The authors sought to evaluate a simple, semiautomated lung mass estimation method using computed tomography (CT) scans obtained using a variety of acquisition techniques and reconstruction parameters for mass correction of medical internal radiation dose-based internal radionuclide radiation absorbed dose estimates.Methods: CT scans of 27 patients with lung cancer undergoing stereotactic body radiation therapy treatment planning with PET/CT were analyzed retrospectively. For each patient, free-breathing (FB) and respiratory-gated 4DCT scans were acquired. The 4DCT scans were sorted into ten respiratory phases, representing one complete respiratory cycle. An average CT reconstruction was derived from the ten-phase reconstructions. Mid expiration breath-holdmore » CT scans were acquired in the same session for many patients. Deep inspiration breath-hold diagnostic CT scans of many of the patients were obtained from different scanning sessions at similar time points to evaluate the effect of contrast administration and maximum inspiration breath-hold. Lung mass estimates were obtained using all CT scan types, and intercomparisons made to assess lung mass variation according to scan type. Lung mass estimates using the FB CT scans from PET/CT examinations of another group of ten male and ten female patients who were 21–30 years old and did not have lung disease were calculated and compared with reference lung mass values. To evaluate the effect of varying CT acquisition and reconstruction parameters on lung mass estimation, an anthropomorphic chest phantom was scanned and reconstructed with different CT parameters. CT images of the lungs were segmented using the OsiriX MD software program with a seed point of about −850 HU and an interval of 1000. Lung volume, and mean lung, tissue, and air HUs were recorded for each scan. Lung mass was calculated by assuming each voxel was a linear combination of only air and tissue. The specific gravity of lung volume was calculated using the formula (lung HU − air HU)/(tissue HU − air HU), and mass = specific gravity × total volume × 1.04 g/cm{sup 3}.Results: The range of calculated lung masses was 0.51–1.29 kg. The average male and female lung masses during FB CT were 0.80 and 0.71 kg, respectively. The calculated lung mass varied across the respiratory cycle but changed to a lesser degree than did lung volume measurements (7.3% versus 15.4%). Lung masses calculated using deep inspiration breath-hold and average CT were significantly larger (p < 0.05) than were some masses calculated using respiratory-phase and FB CT. Increased voxel size and smooth reconstruction kernels led to high lung mass estimates owing to partial volume effects.Conclusions: Organ mass correction is an important component of patient-specific internal radionuclide dosimetry. Lung mass calculation necessitates scan-based density correction to account for volume changes owing to respiration. The range of lung masses in the authors’ patient population represents lung doses for the same absorbed energy differing from 25% below to 64% above the dose found using reference phantom organ masses. With proper management of acquisition parameters and selection of FB or midexpiration breath hold scans, lung mass estimates with about 10% population precision may be achieved.« less

  2. Transpleural ventilation of explanted human lungs

    PubMed Central

    Choong, Cliff K; Macklem, Peter T; Pierce, John A; Lefrak, Stephen S; Woods, Jason C; Conradi, Mark S; Yablonskiy, Dimitry A; Hogg, James C; Chino, Kimiaki; Cooper, Joel D

    2007-01-01

    Background The hypothesis that ventilation of emphysematous lungs would be enhanced by communication with the parenchyma through holes in the pleural surface was tested. Methods Fresh human lungs were obtained from patients with emphysema undergoing lung transplantation. Control human lungs were obtained from organ donors whose lungs, for technical reasons, were not considered suitable for implantation. Lungs were ventilated through the bronchial tree or transpleurally via a small hole communicating with the underlying parenchyma over which a flanged silicone tube had been cemented to the surface of the lung (spiracle). Measurements included flow‐volume‐time curves during passive deflation via each pathway; volume of trapped gas recovered from lungs via spiracles when no additional gas was obtainable passively from the airways; and magnetic resonance imaging assessment of spatial distribution of hyperpolarised helium (3He) administered through either the airways or spiracles. Results In emphysematous lungs, passively expelled volumes at 20 s were 94% greater through spiracles than via the airways. Following passive deflation from the airways, an average of 1.07 litres of trapped gas volume was recoverable via spiracles. Regions were ventilated by spiracles that were less well ventilated via bronchi. Conclusions Because of the extensive collateral ventilation present in emphysematous lungs, direct communication with the lung parenchyma through non‐anatomical pathways has the potential to improve the mechanics of breathing and hence ventilation. PMID:17412776

  3. Dosimetric comparison of a 6-MV flattening-filter and a flattening-filter-free beam for lung stereotactic ablative radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Kim, Jin-Young; Kang, Sang-Won; Suh, Tae-Suk

    2015-11-01

    The purpose of this study was to test the feasibility of clinical usage of a flattening-filter-free (FFF) beam for treatment with lung stereotactic ablative radiotherapy (SABR). Ten patients were treated with SABR and a 6-MV FFF beam for this study. All plans using volumetric modulated arc therapy (VMAT) were optimized in the Eclipse treatment planning system (TPS) by using the Acuros XB (AXB) dose calculation algorithm and were delivered by using a Varian TrueBeam ™ linear accelerator equipped with a high-definition (HD) multi-leaf collimator. The prescription dose used was 48 Gy in 4 fractions. In order to compare the plan using a conventional 6-MV flattening-filter (FF) beam, the SABR plan was recalculated under the condition of the same beam settings used in the plan employing the 6-MV FFF beam. All dose distributions were calculated by using Acuros XB (AXB, version 11) and a 2.5-mm isotropic dose grid. The cumulative dosevolume histograms (DVH) for the planning target volume (PTV) and all organs at risk (OARs) were analyzed. Technical parameters, such as total monitor units (MUs) and the delivery time, were also recorded and assessed. All plans for target volumes met the planning objectives for the PTV ( i.e., V95% > 95%) and the maximum dose ( i.e., Dmax < 110%) revealing adequate target coverage for the 6-MV FF and FFF beams. Differences in DVH for target volumes (PTV and clinical target volume (CTV)) and OARs on the lung SABR plans from the interchange of the treatment beams were small, but showed a marked reduction (52.97%) in the treatment delivery time. The SABR plan with a FFF beam required a larger number of MUs than the plan with the FF beam, and the mean difference in MUs was 4.65%. This study demonstrated that the use of the FFF beam for lung SABR plan provided better treatment efficiency relative to 6-MV FF beam. This strategy should be particularly beneficial for high dose conformity to the lung and decreased intra-fraction movements because of the shorter treatment delivery time. Future studies are necessary to assess the clinical outcome and the toxicity.

  4. Ventilatory protective strategies during thoracic surgery: effects of alveolar recruitment maneuver and low-tidal volume ventilation on lung density distribution.

    PubMed

    Kozian, Alf; Schilling, Thomas; Schütze, Hartmut; Senturk, Mert; Hachenberg, Thomas; Hedenstierna, Göran

    2011-05-01

    The increased tidal volume (V(T)) applied to the ventilated lung during one-lung ventilation (OLV) enhances cyclic alveolar recruitment and mechanical stress. It is unknown whether alveolar recruitment maneuvers (ARMs) and reduced V(T) may influence tidal recruitment and lung density. Therefore, the effects of ARM and OLV with different V(T) on pulmonary gas/tissue distribution are examined. Eight anesthetized piglets were mechanically ventilated (V(T) = 10 ml/kg). A defined ARM was applied to the whole lung (40 cm H(2)O for 10 s). Spiral computed tomographic lung scans were acquired before and after ARM. Thereafter, the lungs were separated with an endobronchial blocker. The pigs were randomized to receive OLV in the dependent lung with a V(T) of either 5 or 10 ml/kg. Computed tomography was repeated during and after OLV. The voxels were categorized by density intervals (i.e., atelectasis, poorly aerated, normally aerated, or overaerated). Tidal recruitment was defined as the addition of gas to collapsed lung regions. The dependent lung contained atelectatic (56 ± 10 ml), poorly aerated (183 ± 10 ml), and normally aerated (187 ± 29 ml) regions before ARM. After ARM, lung volume and aeration increased (426 ± 35 vs. 526 ± 69 ml). Respiratory compliance enhanced, and tidal recruitment decreased (95% vs. 79% of the whole end-expiratory lung volume). OLV with 10 ml/kg further increased aeration (atelectasis, 15 ± 2 ml; poorly aerated, 94 ± 24 ml; normally aerated, 580 ± 98 ml) and tidal recruitment (81% of the dependent lung). OLV with 5 ml/kg did not affect tidal recruitment or lung density distribution. (Data are given as mean ± SD.) The ARM improves aeration and respiratory mechanics. In contrast to OLV with high V(T), OLV with reduced V(T) does not reinforce tidal recruitment, indicating decreased mechanical stress.

  5. A portable single-sided magnet system for remote NMR measurements of pulmonary function.

    PubMed

    Dabaghyan, Mikayel; Muradyan, Iga; Hrovat, Alan; Butler, James; Frederick, Eric; Zhou, Feng; Kyriazis, Angelos; Hardin, Charles; Patz, Samuel; Hrovat, Mirko

    2014-12-01

    In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). Copyright © 2014 John Wiley & Sons, Ltd.

  6. A portable single-sided magnet system for remote NMR measurements of pulmonary function

    PubMed Central

    Mikayel, Dabaghyan; Iga, Muradyan; James, Butler; Eric, Frederick; Feng, Zhou; Angelos, Kyriazis; Charles, Hardin; Samuel, Patz; Mirko, Hrovat

    2014-01-01

    In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). PMID:24953556

  7. Reference database of lung volumes and capacities in wistar rats from 2 to 24 months.

    PubMed

    Filho, Wilson Jacob; Fontinele, Renata Gabriel; de Souza, Romeu Rodrigues

    2014-01-01

    This study determines the effects of growing and aging on lung physiological volumes and capacities and the incidence of inflammation in the small airways with age in rats. A reference database comprising of body weight gain, lung physiological volumes and capacities and an anatomopathological study of lung lesions over 240 Wistar rats from two to 24 -mo, is described. Tidal volume (TV), minute respiratory volume (MRV), and forced vital capacity (FVC) decreased during the first six months of life and then remain constant until 24 -mo of age. The respiratory frequency (Rf) and dynamical compliance (Cdyn) maintain at constant values from 2 to 24- mo of age; the functional residual capacity (FRC) increases in the first 6 -mo and then remains constant up to 24 -mo. It was verified a less intensive inflammation in the small airways with age, when compared with the median and large airways. This study showed the normal parameters for lung volumes and capacities and the incidence of infections for growing and aging male and female rats. The age-related data on these main respiratory parameters in rats would be useful in studies of aging-related disorders using this model and for safety pharmacology studies necessary for the development of drugs.

  8. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    PubMed

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  9. Planning evaluation of radiotherapy for complex lung cancer cases using helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Grigorov, Grigor; Yu, Edward; Yartsev, Slav; Chen, Jeff Z.; Wong, Eugene; Rodrigues, George; Trenka, Kris; Coad, Terry; Bauman, Glenn; Van Dyk, Jake

    2004-08-01

    Lung cancer treatment is one of the most challenging fields in radiotherapy. The aim of the present study was to investigate what role helical tomotherapy (HT), a novel approach to the delivery of highly conformal dose distributions using intensity-modulated radiation fan beams, can play in difficult cases with large target volumes typical for many of these patients. Tomotherapy plans were developed for 15 patients with stage III inoperable non-small-cell lung cancer. While not necessarily clinically indicated, elective nodal irradiation was included for all cases to create the most challenging scenarios with large target volumes. A 2 cm margin was used around the gross tumour volume (GTV) to generate primary planning target volume (PTV2) and 1 cm margin around elective nodes for secondary planning target volume (PTV1) resulting in PTV1 volumes larger than 1000 cm3 in 13 of the 15 patients. Tomotherapy plans were created using an inverse treatment planning system (TomoTherapy Inc.) based on superposition/convolution dose calculation for a fan beam thickness of 25 mm and a pitch factor between 0.3 and 0.8. For comparison, plans were created using an intensity-modulated radiation therapy (IMRT) approach planned on a commercial treatment planning system (TheraplanPlus, Nucletron). Tomotherapy delivery times for the large target volumes were estimated to be between 4 and 19 min. Using a prescribed dose of 60 Gy to PTV2 and 46 Gy to PTV1, the mean lung dose was 23.8 ± 4.6 Gy. A 'dose quality factor' was introduced to correlate the plan outcome with patient specific parameters. A good correlation was found between the quality of the HT plans and the IMRT plans with HT being slightly better in most cases. The overlap between lung and PTV was found to be a good indicator of plan quality for HT. The mean lung dose was found to increase by approximately 0.9 Gy per percent overlap volume. Helical tomotherapy planning resulted in highly conformal dose distributions. It allowed easy achievement of two different dose levels in the target simultaneously. As the overlap between PTV and lung volume is a major predictor of mean lung dose, future work will be directed to control of margins. Work is underway to investigate the possibility of breath-hold techniques for tomotherapy delivery to facilitate this aim.

  10. Thirteen Week Oral Toxicity Study of WR238605 with a Thirteen Week Recovery Period in Dogs. Volume 1

    DTIC Science & Technology

    1993-06-11

    SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. 63807A PROJECT NO. 30463807 TASK NO. QC WORK UNIT ACCESSION NO. 073 11. TITLE (Include...reversible, except for the lung lesions (subacute inflammation) and the microscopic changes secondary to the observed hemolytic anemia ( hepatic ... hepatic hemosiderosis). Based upon the these findings, the no observed effect level (NOEL) in this study was equivocal, but was considered to be near the

  11. Effect of heterogeneity correction on dosimetric parameters of radiotherapy planning for thoracic esophageal cancer.

    PubMed

    Nakayama, Masao; Yoshida, Kenji; Nishimura, Hideki; Miyawaki, Daisuke; Uehara, Kazuyuki; Okamoto, Yoshiaki; Okayama, Takanobu; Sasaki, Ryohei

    2014-01-01

    The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose, and dose that covers 95% of the PTV between the first and second plans were 1.10Gy (1.8%), 1.35Gy (2.2%), 1.10Gy (1.9%), and 0.56Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30Gy (lung V5, V10, V20, and V30) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V5 and V10) than on the dosimetric parameters related to the PTV and other OARs. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical Dosimetrists.

  12. Impact of computed tomography and {sup 18}F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniaud-Alexandre, Elisabeth; Touboul, Emmanuel; Lerouge, Delphine

    2005-12-01

    Purpose: To report a retrospective study concerning the impact of fused {sup 18}F-fluoro-deoxy-D-glucose (FDG)-hybrid positron emission tomography (PET) and CT images on three-dimensional conformal radiotherapy planning for patients with non-small-cell lung cancer. Methods and Materials: A total of 101 patients consecutively treated for Stage I-III non-small-cell lung cancer were studied. Each patient underwent CT and FDG-hybrid PET for simulation treatment in the same treatment position. Images were coregistered using five fiducial markers. Target volume delineation was initially performed on the CT images, and the corresponding FDG-PET data were subsequently used as an overlay to the CT data to define themore » target volume. Results: {sup 18}F-fluoro-deoxy-D-glucose-PET identified previously undetected distant metastatic disease in 8 patients, making them ineligible for curative conformal radiotherapy (1 patient presented with some positive uptake corresponding to concomitant pulmonary tuberculosis). Another patient was ineligible for curative treatment because the fused PET-CT images demonstrated excessively extensive intrathoracic disease. The gross tumor volume (GTV) was decreased by CT-PET image fusion in 21 patients (23%) and was increased in 24 patients (26%). The GTV reduction was {>=}25% in 7 patients because CT-PET image fusion reduced the pulmonary GTV in 6 patients (3 patients with atelectasis) and the mediastinal nodal GTV in 1 patient. The GTV increase was {>=}25% in 14 patients owing to an increase in the pulmonary GTV in 11 patients (4 patients with atelectasis) and detection of occult mediastinal lymph node involvement in 3 patients. Of 81 patients receiving a total dose of {>=}60 Gy at the International Commission on Radiation Units and Measurements point, after CT-PET image fusion, the percentage of total lung volume receiving >20 Gy increased in 15 cases and decreased in 22. The percentage of total heart volume receiving >36 Gy increased in 8 patients and decreased in 14. The spinal cord volume receiving at least 45 Gy (2 patients) decreased. Multivariate analysis showed that tumor with atelectasis was the single independent factor that resulted in a significant effect on the modification of the size of the GTV by FDG-PET: tumor with atelectasis (with vs. without atelectasis, p = 0.0001). Conclusion: The results of our study have confirmed that integrated hybrid PET/CT in the treatment position and coregistered images have an impact on treatment planning and management of non-small-cell lung cancer. However, FDG images using dedicated PET scanners and respiration-gated acquisition protocols could improve the PET-CT image coregistration. Furthermore, the impact on treatment outcome remains to be demonstrated.« less

  13. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    PubMed

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Lung Volume Reduction in Pulmonary Emphysema from the Radiologist's Perspective.

    PubMed

    Doellinger, F; Huebner, R H; Kuhnigk, J M; Poellinger, A

    2015-08-01

    Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung's radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method's high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of "collateral ventilation" has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results. Today, surgical and various minimal invasive methods of lung volume reduction are in use. Radiological and nuclear medical examinations are helpful in the evaluation of an appropriate lung area. Imaging can detect periinterventional complications. Reduction of lung volume has not yet been conclusively proven to be effective and is a therapeutical option with little scientific evidence. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Feasibility of Pathology-Correlated Lung Imaging for Accurate Target Definition of Lung Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroom, Joep; Blaauwgeers, Hans; Baardwijk, Angela van

    2007-09-01

    Purpose: To accurately define the gross tumor volume (GTV) and clinical target volume (GTV plus microscopic disease spread) for radiotherapy, the pretreatment imaging findings should be correlated with the histopathologic findings. In this pilot study, we investigated the feasibility of pathology-correlated imaging for lung tumors, taking into account lung deformations after surgery. Methods and Materials: High-resolution multislice computed tomography (CT) and positron emission tomography (PET) scans were obtained for 5 patients who had non-small-cell lung cancer (NSCLC) before lobectomy. At the pathologic examination, the involved lung lobes were inflated with formalin, sectioned in parallel slices, and photographed, and microscopic sectionsmore » were obtained. The GTVs were delineated for CT and autocontoured at the 42% PET level, and both were compared with the histopathologic volumes. The CT data were subsequently reformatted in the direction of the macroscopic sections, and the corresponding fiducial points in both images were compared. Hence, the lung deformations were determined to correct the distances of microscopic spread. Results: In 4 of 5 patients, the GTV{sub CT} was, on average, 4 cm{sup 3} ({approx}53%) too large. In contrast, for 1 patient (with lymphangitis carcinomatosa), the GTV{sub CT} was 16 cm{sup 3} ({approx}40%) too small. The GTV{sub PET} was too small for the same patient. Regarding deformations, the volume of the well-inflated lung lobes on pathologic examination was still, on average, only 50% of the lobe volume on CT. Consequently, the observed average maximal distance of microscopic spread (5 mm) might, in vivo, be as large as 9 mm. Conclusions: Our results have shown that pathology-correlated lung imaging is feasible and can be used to improve target definition. Ignoring deformations of the lung might result in underestimation of the microscopic spread.« less

  16. Hydrostatic weighing at residual volume and functional residual capacity.

    PubMed

    Thomas, T R; Etheridge, G L

    1980-07-01

    Hydrostatic weighing (HW) was performed at both residual volume (RV) and functional residual capacity (FRC) to determine if underwater weighing at different lung volumes affected the measurement of body density. Subjects were 43 males, 18-25 yr. Subjects were submerged in the prone position, and the lung volume was measured by helium dilution at the time of the underwater weighing. Underwater weight was first assessed at FRC followed by assessment at RV. Changes in lung volume were accurately reflected in the underwater weight. Body density (D) was not different with the use of the FRC (mean D = 1.0778) or RV (mean D = 1.0781) data. Percent fat values for the FRC and RV data were 9.3 +/- 5.4 and 9.2 +/- 5.1%, respectively, and were not statistically different. The results indicate that the difference between percent fat determinations by HW in the prone position at FRC and RV is negligible. Because measurement of underwater weight at FRC is more comfortable for the subject, this may be the method of choice when the lung volume can be measured during the underwater weighing.

  17. Knowledge-based automated technique for measuring total lung volume from CT

    NASA Astrophysics Data System (ADS)

    Brown, Matthew S.; McNitt-Gray, Michael F.; Mankovich, Nicholas J.; Goldin, Jonathan G.; Aberle, Denise R.

    1996-04-01

    A robust, automated technique has been developed for estimating total lung volumes from chest computed tomography (CT) images. The technique includes a method for segmenting major chest anatomy. A knowledge-based approach automates the calculation of separate volumes of the whole thorax, lungs, and central tracheo-bronchial tree from volumetric CT data sets. A simple, explicit 3D model describes properties such as shape, topology and X-ray attenuation, of the relevant anatomy, which constrain the segmentation of these anatomic structures. Total lung volume is estimated as the sum of the right and left lungs and excludes the central airways. The method requires no operator intervention. In preliminary testing, the system was applied to image data from two healthy subjects and four patients with emphysema who underwent both helical CT and pulmonary function tests. To obtain single breath-hold scans, the healthy subjects were scanned with a collimation of 5 mm and a pitch of 1.5, while the emphysema patients were scanned with collimation of 10 mm at a pitch of 2.0. CT data were reconstructed as contiguous image sets. Automatically calculated volumes were consistent with body plethysmography results (< 10% difference).

  18. Effect of hyperinflation on inspiratory function of the diaphragm.

    PubMed

    Minh, V D; Dolan, G F; Konopka, R F; Moser, K M

    1976-01-01

    The inspiratory efficiency of the diaphragm during unilateral and bilateral phrenic stimulation (UEPS and BEPS) with constant stimulus was studied in seven dogs from FRC to 120% TLC. Alveolar pressures (PAl) were recorded during relaxation, BEPS and UEPS at each lung volume in the closed respiratory system. From the PAl-lung volume curves, tidal volume (VT), and pressure developed by the diaphragm (Pmus) were derived. Results are summarized below. a) Hyperinflation impaired the inspiratory efficiency of the diaphragm which behaved as an expiratory muscle beyond the lung volume of 103.7% TLC (Vinef). b) The diaphragm during UEPS became expiratory at the same Vinef as during (BEPS. C) The VT-lung volume relationship was linear during BEPS, allowing simple quantitation of VT loss with hyperinflation and prediction of Vinef. d) With only one phrenic nerve stimulated, the functional loss is less pronounced in VT than in Pmus, as compared to BEPS, indicating that the respiratory system was more compliant during UEPS than BEPS. This compliance difference from UEPS to BEPS diminished with severe hyperinflation.

  19. Assessment and monitoring of flow limitation and other parameters from flow/volume loops.

    PubMed

    Dueck, R

    2000-01-01

    Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise, thereby reducing airway diameter and inducing expiratory flow limitation.

  20. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J; Eldib, A; Ma, C

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number wasmore » used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.« less

  1. Effect of prolonged bed rest on lung volume in normal individuals

    NASA Technical Reports Server (NTRS)

    Beckett, W. S.; Vroman, N. B.; Nigro, D.; Thompson-Gorman, S.; Wilkerson, J. E.

    1986-01-01

    The effect of prolonged bed rest on the lung function was studied by measuring forced vital capacity (FVC) and total lung capacity (TLC) in normal subjects before, during, and after 11- to 12-day rest periods. It was found that both FVC and TLC increased during bed rest (compared with the ambulatory controls), while residual volume and functional residual capacity of the respiratory system did not change. It is concluded that the increase in TLC by prolonged bed rest is not dependent on alterations in plasma volume.

  2. Should regional ventilation function be considered during radiation treatment planning to prevent radiation-induced complications?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Fujun; Jeudy, Jean; D’Souza, Warren

    Purpose: To investigate the incorporation of pretherapy regional ventilation function in predicting radiation fibrosis (RF) in stage III nonsmall cell lung cancer (NSCLC) patients treated with concurrent thoracic chemoradiotherapy. Methods: Thirty-seven patients with stage III NSCLC were retrospectively studied. Patients received one cycle of cisplatin–gemcitabine, followed by two to three cycles of cisplatin–etoposide concurrently with involved-field thoracic radiotherapy (46–66 Gy; 2 Gy/fraction). Pretherapy regional ventilation images of the lung were derived from 4D computed tomography via a density change–based algorithm with mass correction. In addition to the conventional dose–volume metrics (V{sub 20}, V{sub 30}, V{sub 40}, and mean lung dose),more » dose–function metrics (fV{sub 20}, fV{sub 30}, fV{sub 40}, and functional mean lung dose) were generated by combining regional ventilation and radiation dose. A new class of metrics was derived and referred to as dose–subvolume metrics (sV{sub 20}, sV{sub 30}, sV{sub 40}, and subvolume mean lung dose); these were defined as the conventional dose–volume metrics computed on the functional lung. Area under the receiver operating characteristic curve (AUC) values and logistic regression analyses were used to evaluate these metrics in predicting hallmark characteristics of RF (lung consolidation, volume loss, and airway dilation). Results: AUC values for the dose–volume metrics in predicting lung consolidation, volume loss, and airway dilation were 0.65–0.69, 0.57–0.70, and 0.69–0.76, respectively. The respective ranges for dose–function metrics were 0.63–0.66, 0.61–0.71, and 0.72–0.80 and for dose–subvolume metrics were 0.50–0.65, 0.65–0.75, and 0.73–0.85. Using an AUC value = 0.70 as cutoff value suggested that at least one of each type of metrics (dose–volume, dose–function, dose–subvolume) was predictive for volume loss and airway dilation, whereas lung consolidation cannot be accurately predicted by any of the metrics. Logistic regression analyses showed that dose–function and dose–subvolume metrics were significant (P values ≤ 0.02) in predicting volume airway dilation. Likelihood ratio test showed that when combining dose–function and/or dose–subvolume metrics with dose–volume metrics, the achieved improvements of prediction accuracy on volume loss and airway dilation were significant (P values ≤ 0.04). Conclusions: The authors’ results demonstrated that the inclusion of regional ventilation function improved accuracy in predicting RF. In particular, dose–subvolume metrics provided a promising method for preventing radiation-induced pulmonary complications.« less

  3. Conservative fluid management prevents age-associated ventilator induced mortality.

    PubMed

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Interactive simulator for e-Learning environments: a teaching software for health care professionals.

    PubMed

    De Lazzari, Claudio; Genuini, Igino; Pisanelli, Domenico M; D'Ambrosi, Alessandra; Fedele, Francesco

    2014-12-18

    There is an established tradition of cardiovascular simulation tools, but the application of this kind of technology in the e-Learning arena is a novel approach. This paper presents an e-Learning environment aimed at teaching the interaction of cardiovascular and lung systems to health-care professionals. Heart-lung interaction must be analyzed while assisting patients with severe respiratory problems or with heart failure in intensive care unit. Such patients can be assisted by mechanical ventilatory assistance or by thoracic artificial lung."In silico" cardiovascular simulator was experimented during a training course given to graduate students of the School of Specialization in Cardiology at 'Sapienza' University in Rome.The training course employed CARDIOSIM©: a numerical simulator of the cardiovascular system. Such simulator is able to reproduce pathophysiological conditions of patients affected by cardiovascular and/or lung disease. In order to study the interactions among the cardiovascular system, the natural lung and the thoracic artificial lung (TAL), the numerical model of this device has been implemented. After having reproduced a patient's pathological condition, TAL model was applied in parallel and hybrid model during the training course.Results obtained during the training course show that TAL parallel assistance reduces right ventricular end systolic (diastolic) volume, but increases left ventricular end systolic (diastolic) volume. The percentage changes induced by hybrid TAL assistance on haemodynamic variables are lower than those produced by parallel assistance. Only in the case of the mean pulmonary arterial pressure, there is a percentage reduction which, in case of hybrid assistance, is greater (about 40%) than in case of parallel assistance (20-30%).At the end of the course, a short questionnaire was submitted to students in order to assess the quality of the course. The feedback obtained was positive, showing good results with respect to the degree of students' learning and the ease of use of the software simulator.

  5. Computed tomography lung iodine contrast mapping by image registration and subtraction

    NASA Astrophysics Data System (ADS)

    Goatman, Keith; Plakas, Costas; Schuijf, Joanne; Beveridge, Erin; Prokop, Mathias

    2014-03-01

    Pulmonary embolism (PE) is a relatively common and potentially life threatening disease, affecting around 600,000 people annually in the United States alone. Prompt treatment using anticoagulants is effective and saves lives, but unnecessary treatment risks life threatening haemorrhage. The specificity of any diagnostic test for PE is therefore as important as its sensitivity. Computed tomography (CT) angiography is routinely used to diagnose PE. However, there are concerns it may over-report the condition. Additional information about the severity of an occlusion can be obtained from an iodine contrast map that represents tissue perfusion. Such maps tend to be derived from dual-energy CT acquisitions. However, they may also be calculated by subtracting pre- and post-contrast CT scans. Indeed, there are technical advantages to such a subtraction approach, including better contrast-to-noise ratio for the same radiation dose, and bone suppression. However, subtraction relies on accurate image registration. This paper presents a framework for the automatic alignment of pre- and post-contrast lung volumes prior to subtraction. The registration accuracy is evaluated for seven subjects for whom pre- and post-contrast helical CT scans were acquired using a Toshiba Aquilion ONE scanner. One hundred corresponding points were annotated on the pre- and post-contrast scans, distributed throughout the lung volume. Surface-to-surface error distances were also calculated from lung segmentations. Prior to registration the mean Euclidean landmark alignment error was 2.57mm (range 1.43-4.34 mm), and following registration the mean error was 0.54mm (range 0.44-0.64 mm). The mean surface error distance was 1.89mm before registration and 0.47mm after registration. There was a commensurate reduction in visual artefacts following registration. In conclusion, a framework for pre- and post-contrast lung registration has been developed that is sufficiently accurate for lung subtraction iodine mapping.

  6. Conservative Fluid Management Prevents Age-Associated Ventilator Induced Mortality

    PubMed Central

    Herbert, Joseph A.; Valentine, Michael S.; Saravanan, Nivi; Schneck, Matthew B.; Pidaparti, Ramana; Fowler, Alpha A.; Reynolds, Angela M.; Heise, Rebecca L.

    2017-01-01

    Background Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hosptial mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. Methods 2 month old and 20 month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4 hours with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. Results At 4hrs, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1hr in advanced age HVT subjects. In 4hr ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Conclusion Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. PMID:27188767

  7. Reference values for pulmonary diffusing capacity for adult native Finns.

    PubMed

    Kainu, Annette; Toikka, Jyri; Vanninen, Esko; Timonen, Kirsi L

    2017-04-01

    Measurement standards for pulmonary diffusing capacity were updated in 2005 by the ATS/ERS Task Force. However, in Finland reference values published in 1982 by Viljanen et al. have been used to date. The main aim of this study was to produce updated reference models for single-breath diffusing capacity for carbon monoxide for Finnish adults. Single-breath diffusing capacity for carbon monoxide was measured in 631 healthy non-smoking volunteers (41.5% male). Reference values for diffusing capacity (DLCO), alveolar volume (VA), diffusing capacity per unit of lung volume (DLCO/VA), and lung volumes were calculated using a linear regression model. Previously used Finnish reference values were found to produce too low predicted values, with mean predicted DLCO 111.0 and 104.4%, and DLCO/VA of 103.5 and 102.7% in males and females, respectively. With the European Coalition for Steel and Coal (ECSC) reference values there was a significant sex difference in DLCO/VA with mean predicted 105.4% in males and 92.8% in females (p < .001). New reference values for DLCO, DLCO/VA, VA, vital capacity (VC), inspiratory vital capacity (IVC), and inspiratory capacity (IC) are suggested for clinical use to replace technically outdated reference values for clinical applications.

  8. Four-dimensional multislice computed tomography for determination of respiratory lung tumor motion in conformal radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leter, Edward M.; Cademartiri, Filippo; Levendag, Peter C.

    2005-07-01

    Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient,more » the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical practice in conformal radiotherapy.« less

  9. Ventilatory Management During Normothermic Ex Vivo Lung Perfusion: Effects on Clinical Outcomes.

    PubMed

    Terragni, Pier Paolo; Fanelli, Vito; Boffini, Massimo; Filippini, Claudia; Cappello, Paola; Ricci, Davide; Del Sorbo, Lorenzo; Faggiano, Chiara; Brazzi, Luca; Frati, Giacomo; Venuta, Federico; Mascia, Luciana; Rinaldi, Mauro; Ranieri, V Marco

    2016-05-01

    During ex vivo lung perfusion (EVLP), fixed ventilator settings and monitoring of compliance are used to prevent ventilator-induced lung injury (VILI). Analysis of the airway pressure-time curve (stress index) has been proposed to assess the presence of VILI. We tested whether currently proposed ventilator settings expose lungs to VILI during EVLP and whether the stress index could identify VILI better than compliance. Flow, volume, and airway opening pressure were collected continuously during EVLP. Durations of mechanical ventilation, intensive care unit (ICU) and hospital lengths of stay were recorded in lung recipients. Fourteen lungs underwent EVLP and were transplanted. In 5 lungs, 95 ± 2% of the stress index values were within the 0.95 to 1.05 range (protected); in the remaining nine lungs, 69 ± 1% of the values were greater than 1.05 and 15 ± 3% were less than 0.95 (nonprotected). There was a significant (P < 0.05) increase in cytokine concentrations after 4 hours of EVLP in the nonprotected lungs. Durations of mechanical ventilation, ICU, and hospital lengths of stay were shorter in recipients of protected than that of nonprotected lungs (P < 0.05). There was no correlation between compliance during EVLP and duration of mechanical ventilation or ICU and hospital lengths of stay in recipients, but the stress index during EVLP was significantly correlated with the duration of mechanical ventilation and with ICU and hospital lengths of stay (P < 0.05). This small, preliminary study shows that ventilator settings currently proposed for EVLP may expose lungs to VILI. Use of the stress index to personalize ventilator settings needs to be tested in further clinical studies.

  10. On the contribution of height to predict lung volumes, capacities and diffusion in healthy school children of 10-17 years.

    PubMed

    Gupta, C K; Mishra, G; Mehta, S C; Prasad, J

    1993-01-01

    Lung volumes, capacities, diffusion and alveolar volumes with physical characteristics (age, height and weight) were recorded for 186 healthy school children (96 boys and 90 girls) of 10-17 years age group. The objective was to study the relative importance of physical characteristics as regressor variables in regression models to estimate lung functions. We observed that height is best correlated with all the lung functions. Inclusion of all physical characteristics in the models have little gain compared to the ones having just height as regressor variable. We also find that exponential models were not only statistically valid but fared better compared to the linear ones. We conclude that lung functions covary with height and other physical characteristics but do not depend upon them. The rate of increase in the functions depend upon initial lung functions. Further, we propose models and provide ready reckoners to give estimates of lung functions with 95 per cent confidence limits based on heights from 125 to 170 cm for the age group of 10 to 17 years.

  11. How much work is expended for respiration?

    PubMed

    Johnson, A T

    1993-01-01

    The rate of work expended to move air in the respiratory system has been determined for five different airflow waveshapes, a non-linear respiratory model and five exercise levels. As expected, the rectangular waveshape was the most efficient. Model conditions were then changed one a time: (i) starting lung volume was allowed to vary, (ii) exhalation flow limitation was added, (iii) respiration was considered to be a metabolic burden determining part of the ventilation requirement and (iv) a respirator mask was added. Although there is no direct work advantage to varying initial lung volume, such volume changes appear to be dictated by the asymmetry of lung recoil pressure about the lung relaxation volume; allowing the work of respiration to become a metabolic burden clearly shows why respiratory waveforms change from rest to exercise; and, adding a respirator imposes a severe respiratory burden on the wearer engaging in moderate, heavy and very heavy exercise.

  12. Quantification of idiopathic pulmonary fibrosis using computed tomography and histology.

    PubMed

    Coxson, H O; Hogg, J C; Mayo, J R; Behzad, H; Whittall, K P; Schwartz, D A; Hartley, P G; Galvin, J R; Wilson, J S; Hunninghake, G W

    1997-05-01

    We used computed tomography (CT) and histologic analysis to quantify lung structure in idiopathic pulmonary fibrosis (IPF). CT scans were obtained from IPF and control patients and lung volumes were estimated from measurements of voxel size, and X-ray attenuation values of each voxel. Quantitative estimates of lung structure were obtained from biopsies obtained from diseased and normal CT regions using stereologic methods. CT density was used to calculate the proportion of tissue and air, and this value was used to correct the biopsy specimens to the level of inflation during the CT scan. The data show that IPF is associated with a reduction in airspace volume with no change in tissue volume or weight compared with control lungs. Lung surface area decreased two-thirds (p < 0.001) and mean parenchymal thickness increased tenfold (p < 0.001). An exudate of fluid and cells was present in the airspace of the diseased lung regions and the number of inflammatory cells, collagen, and proteoglycans was increased per 100 g of tissue in IPF. We conclude that IPF reorganized lung tissue content causing a loss of airspace and surface area without increasing the total lung tissue.

  13. Effects of repeated cycles of starvation and refeeding on lungs of growing rats.

    PubMed

    Sahebjami, H; Domino, M

    1992-12-01

    Adult male rats were subjected to four cycles of mild starvation (2 wk) and refeeding (1 wk) and were compared with a fed group. Starvation was induced by giving rats one-third of their measured daily food consumption. During each starvation cycle, rats lost approximately 20% of their body weight. Despite catch-up growth and overall weight gain, starved rats had lower final body weight than fed rats. Lung dry weight and lung volumes were also reduced in the starved group. The mechanical properties of air- and saline-filled lungs did not change significantly with repeated cycles of starvation. Mean linear intercept was similar in the two groups, but alveolar surface area was reduced in the starved rats. Total content of crude connective tissue and concentration per lung dry weight of hydroxyproline and crude connective tissue were reduced in starved rats. We conclude that lung growth is retarded in growing rats subjected to repeated cycles of mild starvation and refeeding, as manifested by smaller lung volume and reduced alveolar surface area. Because alveolar size is unchanged, a reduced number of alveoli is most likely responsible for decreased lung volumes.

  14. Surgeon specialization and operative mortality in United States: retrospective analysis.

    PubMed

    Sahni, Nikhil R; Dalton, Maurice; Cutler, David M; Birkmeyer, John D; Chandra, Amitabh

    2016-07-21

     To measure the association between a surgeon's degree of specialization in a specific procedure and patient mortality.  Retrospective analysis of Medicare data.  US patients aged 66 or older enrolled in traditional fee for service Medicare.  25 152 US surgeons who performed one of eight procedures (carotid endarterectomy, coronary artery bypass grafting, valve replacement, abdominal aortic aneurysm repair, lung resection, cystectomy, pancreatic resection, or esophagectomy) on 695 987 patients in 2008-13.  Relative risk reduction in risk adjusted and volume adjusted 30 day operative mortality between surgeons in the bottom quarter and top quarter of surgeon specialization (defined as the number of times the surgeon performed the specific procedure divided by his/her total operative volume across all procedures).  For all four cardiovascular procedures and two out of four cancer resections, a surgeon's degree of specialization was a significant predictor of operative mortality independent of the number of times he or she performed that procedure: carotid endarterectomy (relative risk reduction between bottom and top quarter of surgeons 28%, 95% confidence interval 0% to 48%); coronary artery bypass grafting (15%, 4% to 25%); valve replacement (46%, 37% to 53%); abdominal aortic aneurysm repair (42%, 29% to 53%); lung resection (28%, 5% to 46%); and cystectomy (41%, 8% to 63%). In five procedures (carotid endarterectomy, valve replacement, lung resection, cystectomy, and esophagectomy), the relative risk reduction from surgeon specialization was greater than that from surgeon volume for that specific procedure. Furthermore, surgeon specialization accounted for 9% (coronary artery bypass grafting) to 100% (cystectomy) of the relative risk reduction otherwise attributable to volume in that specific procedure.  For several common procedures, surgeon specialization was an important predictor of operative mortality independent of volume in that specific procedure. When selecting a surgeon, patients, referring physicians, and administrators assigning operative workload may want to consider a surgeon's procedure specific volume as well as the degree to which a surgeon specializes in that procedure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Systems for Lung Volume Standardization during Static and Dynamic MDCT-based Quantitative Assessment of Pulmonary Structure and Function

    PubMed Central

    Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.

    2013-01-01

    Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon-CT measures can be validated. PMID:22555001

  16. Fetal MRI lung volumes are predictive of perinatal outcomes in fetuses with congenital lung masses.

    PubMed

    Zamora, Irving J; Sheikh, Fariha; Cassady, Christopher I; Olutoye, Oluyinka O; Mehollin-Ray, Amy R; Ruano, Rodrigo; Lee, Timothy C; Welty, Stephen E; Belfort, Michael A; Ethun, Cecilia G; Kim, Michael E; Cass, Darrell L

    2014-06-01

    The purpose of this study was to evaluate fetal magnetic resonance imaging (MRI) as a modality for predicting perinatal outcomes and lung-related morbidity in fetuses with congenital lung masses (CLM). The records of all patients treated for CLM from 2002 to 2012 were reviewed retrospectively. Fetal MRI-derived lung mass volume ratio (LMVR), observed/expected normal fetal lung volume (O/E-NFLV), and lesion-to-lung volume ratio (LLV) were calculated. Multivariate regression and receiver operating characteristic analyses were applied to determine the predictive accuracy of prenatal imaging. Of 128 fetuses with CLM, 93% (n=118) survived. MRI data were available for 113 fetuses. In early gestation (<26weeks), MRI measurements of LMVR and LLV correlated with risk of fetal hydrops, mortality, and/or need for fetal intervention. In later gestation (>26weeks), LMVR, LLV, and O/E-NFLV correlated with neonatal respiratory distress, intubation, NICU admission and need for neonatal surgery. On multivariate regression, LMVR was the strongest predictor for development of fetal hydrops (OR: 6.97, 1.58-30.84; p=0.01) and neonatal respiratory distress (OR: 12.38, 3.52-43.61; p≤0.001). An LMVR >2.0 predicted worse perinatal outcome with 83% sensitivity and 99% specificity (AUC=0.94; p<0.001). Fetal MRI volumetric measurements of lung masses and residual normal lung are predictive of perinatal outcomes in fetuses with CLM. These data may assist in perinatal risk stratification, counseling, and resource utilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effects of manual percussion during postural drainage on lung volumes and metabolic status in healthy subjects.

    PubMed

    Leelarungrayub, Jirakrit; Eungpinichpong, Wichai; Klaphajone, Jakkrit; Prasannarong, Mujalin; Boontha, Kritsana

    2016-04-01

    The aim of this study was to evaluate the influence of manual percussion during three different positions of postural drainage (PD) on lung volumes and metabolic status. Twenty six healthy volunteers (13 women and 13 men), with a mean age of 20.15 ± 1.17 years, participated. They were randomized into three standard positions of PD (upper, middle, or lower lobes) and given manual percussion at a frequency of 240 times per minute for 5 min. Lung volumes, including tidal volume (TV), inspiratory reserve volume (IRV), expiratory reserve volume (ERV) and vital capacity (VC); and metabolic status, such as oxygen consumption (VO2), carbon dioxide (VCO2), respiratory rate (RR), and minute ventilation (VE) were evaluated. The lung volumes showed no statistical difference in VC or IRV from percussion during PD in all positions, except for the lower lobe, where increased TV and decreased ERV were found when compared to PD alone. Furthermore, percussion during PD of the upper and middle lobes did not affect RR or VE, when compared to PD alone. In addition, percussion during PD of the middle and lower lobes increased VO2 and VCO2 significantly, when compared to PD alone, but it did not influence PD of the upper lobe. This study indicated that up to 5 min of manual percussion on PD of the upper and middle lobes is safe mostly for lung volumes, RR, and VE, but it should be given with care in PD conditions of the lower lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The effects of obesity on lung volumes and oxygenation.

    PubMed

    Littleton, Stephen W; Tulaimat, Aiman

    2017-03-01

    Obesity can cause hypoxemia by decreasing lung volumes to where there is closure of lung units during normal breathing. Studies describing this phenomenon are difficult to translate into clinical practice. We wanted to determine the lung volume measurements that are associated with hypoxemia in obese patients, and explore how we could use these measurements to identify them. We collected pulmonary function test results and arterial blood gas data on 118 patients without obstruction on pulmonary function testing. We included only patients with normal chest imaging and cardiac testing within one year of the pulmonary function test, to exclude other causes of hypoxemia. We found that as BMI increases, the mean paO 2 , ERV % predicted, and ERV/TLC decrease (BMI 20-30 kg/m 2 : paO 2 =90±8 mmHg, ERV% predicted 112±50, ERV/TLC (%) 19.7±6.5; BMI 30-40 kg/m 2 : paO 2 =84±10 mmHg, ERV% predicted 84±40 ERV/TLC(%) 13.6±7.6; BMI>40 kg/m 2 : paO 2 78 ±12 mmHg, ERV% predicted 64±27 ERV/TLC(%) 11.4±5.8, ANOVA p<0.001). The A-a gradient increases as BMI increases (r=0.42, p<0.001). This correlation was stronger in men (r=0.54) than in women (r=0.35). The paO 2 is lower in patients with a low ERV than in those with a normal ERV (p<0.001). In a multivariate linear regression, only the ERV/TLC predicted (%), age, and BMI were associated with oxygenation (r 2 for A-a gradient =0.28, p=0.036). In obese patients without cardiopulmonary disease, oxygen levels decrease as BMI increases. This effect is associated with the obesity-related reduction in ERV and is independent of hypoventilation. Published by Elsevier Ltd.

  19. Whole-breast irradiation: a subgroup analysis of criteria to stratify for prone position treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramella, Sara, E-mail: s.ramella@unicampus.it; Trodella, Lucio; Ippolito, Edy

    2012-07-01

    To select among breast cancer patients and according to breast volume size those who may benefit from 3D conformal radiotherapy after conservative surgery applied with prone-position technique. Thirty-eight patients with early-stage breast cancer were grouped according to the target volume (TV) measured in the supine position: small ({<=}400 mL), medium (400-700 mL), and large ({>=}700 ml). An ad-hoc designed and built device was used for prone set-up to displace the contralateral breast away from the tangential field borders. All patients underwent treatment planning computed tomography in both the supine and prone positions. Dosimetric data to explore dose distribution and volumemore » of normal tissue irradiated were calculated for each patient in both positions. Homogeneity index, hot spot areas, the maximum dose, and the lung constraints were significantly reduced in the prone position (p < 0.05). The maximum heart distance and the V{sub 5Gy} did not vary consistently in the 2 positions (p = 0.06 and p = 0.7, respectively). The number of necessary monitor units was significantly higher in the supine position (312 vs. 232, p < 0.0001). The subgroups analysis pointed out the advantage in lung sparing in all TV groups (small, medium and large) for all the evaluated dosimetric constraints (central lung distance, maximum lung distance, and V{sub 5Gy}, p < 0.0001). In the small TV group, a dose reduction in nontarget areas of 22% in the prone position was detected (p = 0.056); in the medium and high TV groups, the difference was of about -10% (p = NS). The decrease in hot spot areas in nontarget tissues was 73%, 47%, and 80% for small, medium, and large TVs in the prone position, respectively. Although prone breast radiotherapy is normally proposed in patients with breasts of large dimensions, this study gives evidence of dosimetric benefit in all patient subgroups irrespective of breast volume size.« less

  20. TU-G-BRA-02: Can We Extract Lung Function Directly From 4D-CT Without Deformable Image Registration?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipritidis, J; Woodruff, H; Counter, W

    Purpose: Dynamic CT ventilation imaging (CT-VI) visualizes air volume changes in the lung by evaluating breathing-induced lung motion using deformable image registration (DIR). Dynamic CT-VI could enable functionally adaptive lung cancer radiation therapy, but its sensitivity to DIR parameters poses challenges for validation. We hypothesize that a direct metric using CT parameters derived from Hounsfield units (HU) alone can provide similar ventilation images without DIR. We compare the accuracy of Direct and Dynamic CT-VIs versus positron emission tomography (PET) images of inhaled {sup 68}Ga-labelled nanoparticles (‘Galligas’). Methods: 25 patients with lung cancer underwent Galligas 4D-PET/CT scans prior to radiation therapy.more » For each patient we produced three CT- VIs. (i) Our novel method, Direct CT-VI, models blood-gas exchange as the product of air and tissue density at each lung voxel based on time-averaged 4D-CT HU values. Dynamic CT-VIs were produced by evaluating: (ii) regional HU changes, and (iii) regional volume changes between the exhale and inhale 4D-CT phase images using a validated B-spline DIR method. We assessed the accuracy of each CT-VI by computing the voxel-wise Spearman correlation with free-breathing Galligas PET, and also performed a visual analysis. Results: Surprisingly, Direct CT-VIs exhibited better global correlation with Galligas PET than either of the dynamic CT-VIs. The (mean ± SD) correlations were (0.55 ± 0.16), (0.41 ± 0.22) and (0.29 ± 0.27) for Direct, Dynamic HU-based and Dynamic volume-based CT-VIs respectively. Visual comparison of Direct CT-VI to PET demonstrated similarity for emphysema defects and ventral-to-dorsal gradients, but inability to identify decreased ventilation distal to tumor-obstruction. Conclusion: Our data supports the hypothesis that Direct CT-VIs are as accurate as Dynamic CT-VIs in terms of global correlation with Galligas PET. Visual analysis, however, demonstrated that different CT-VI algorithms might have varying accuracy depending on the underlying cause of ventilation abnormality. This research was supported by a National Health and Medical Research Council (NHMRC) Australia Fellowship, an Cancer Institute New South Wales Early Career Fellowship 13-ECF-1/15 and NHMRC scholarship APP1038399. No commercial funding was received for this work.« less

  1. Self‐expanding stent effects on radiation dosimetry in esophageal cancer

    PubMed Central

    Francis, Samual R.; Wang, Brian; Williams, Greg V.; Cox, Kristen; Adler, Douglas G.; Shrieve, Dennis C.; Salter, Bill J.

    2013-01-01

    It is the purpose of this study to evaluate how self‐expanding stents (SESs) affect esophageal cancer radiation planning target volumes (PTVs) and dose delivered to surrounding organs at risk (OARs). Ten patients were evaluated, for whom a SES was placed before radiation. A computed tomography (CT) scan obtained before stent placement was fused to the post‐stent CT simulation scan. Three methods were used to represent pre‐stent PTVs: 1) image fusion (IF), 2) volume approximation (VA), and 3) diameter approximation (DA). PTVs and OARs were contoured per RTOG 1010 protocol using Eclipse Treatment Planning software. Post‐stent dosimetry for each patient was compared to approximated pre‐stent dosimetry. For each of the three pre‐stent approximations (IF, VA, and DA), the mean lung and liver doses and the estimated percentages of lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and 30 Gy, and heart volumes receiving 40 Gy were significantly lower (p‐values <0.02) than those estimated in the post‐stent treatment plans. The lung V5, lung V10, and heart V40 constraints were achieved more often using our pre‐stent approximations. Esophageal SES placement increases the dose delivered to the lungs, heart, and liver. This may have clinical importance, especially when the dose‐volume constraints are near the recommended thresholds, as was the case for lung V5, lung V10, and heart V40. While stents have established benefits for treating patients with significant dysphagia, physicians considering stent placement and radiation therapy must realize the effects stents can have on the dosimetry. PACS number: 87.55.dk PMID:23835387

  2. Self-expanding stent effects on radiation dosimetry in esophageal cancer.

    PubMed

    Francis, Samual R; Anker, Christopher J; Wang, Brian; Williams, Greg V; Cox, Kristen; Adler, Douglas G; Shrieve, Dennis C; Salter, Bill J

    2013-07-08

    It is the purpose of this study to evaluate how self-expanding stents (SESs) affect esophageal cancer radiation planning target volumes (PTVs) and dose delivered to surrounding organs at risk (OARs). Ten patients were evaluated, for whom a SES was placed before radiation. A computed tomography (CT) scan obtained before stent placement was fused to the post-stent CT simulation scan. Three methods were used to represent pre-stent PTVs: 1) image fusion (IF), 2) volume approximation (VA), and 3) diameter approximation (DA). PTVs and OARs were contoured per RTOG 1010 protocol using Eclipse Treatment Planning software. Post-stent dosimetry for each patient was compared to approximated pre-stent dosimetry. For each of the three pre-stent approximations (IF, VA, and DA), the mean lung and liver doses and the estimated percentages of lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and 30 Gy, and heart volumes receiving 40 Gy were significantly lower (p-values < 0.02) than those estimated in the post-stent treatment plans. The lung V5, lung V10, and heart V40 constraints were achieved more often using our pre-stent approximations. Esophageal SES placement increases the dose delivered to the lungs, heart, and liver. This may have clinical importance, especially when the dose-volume constraints are near the recommended thresholds, as was the case for lung V5, lung V10, and heart V40. While stents have established benefits for treating patients with significant dysphagia, physicians considering stent placement and radiation therapy must realize the effects stents can have on the dosimetry.

  3. Continuous Positive Airway Pressure for Motion Management in Stereotactic Body Radiation Therapy to the Lung: A Controlled Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Jeffrey D.; Lawrence, Yaacov R.; Sackler School of Medicine, Tel Aviv University, Tel Aviv

    Objective: To determine the effect of continuous positive airway pressure (CPAP) on tumor motion, lung volume, and dose to critical organs in patients receiving stereotactic body radiation therapy (SBRT) for lung tumors. Methods and Materials: After institutional review board approval in December 2013, patients with primary or secondary lung tumors referred for SBRT underwent 4-dimensional computed tomographic simulation twice: with free breathing and with CPAP. Tumor excursion was calculated by subtracting the vector of the greatest dimension of the gross tumor volume (GTV) from the internal target volume (ITV). Volumetric and dosimetric determinations were compared with the Wilcoxon signed-rank test.more » CPAP was used during treatment if judged beneficial. Results: CPAP was tolerated well in 10 of the 11 patients enrolled. Ten patients with 18 lesions were evaluated. The use of CPAP decreased tumor excursion by 0.5 ± 0.8 cm, 0.4 ± 0.7 cm, and 0.6 ± 0.8 cm in the superior–inferior, right–left, and anterior–posterior planes, respectively (P≤.02). Relative to free breathing, the mean ITV reduction was 27% (95% confidence interval [CI] 16%-39%, P<.001). CPAP significantly augmented lung volume, with a mean absolute increase of 915 ± 432 cm{sup 3} and a relative increase of 32% (95% CI 21%-42%, P=.003), contributing to a 22% relative reduction (95% CI 13%-32%, P=.001) in mean lung dose. The use of CPAP was also associated with a relative reduction in mean heart dose by 29% (95% CI 23%-36%, P=.001). Conclusion: In this pilot study, CPAP significantly reduced lung tumor motion compared with free breathing. The smaller ITV, the planning target volume (PTV), and the increase in total lung volume associated with CPAP contributed to a reduction in lung and heart dose. CPAP was well tolerated, reproducible, and simple to implement in the treatment room and should be evaluated further as a novel strategy for motion management in radiation therapy.« less

  4. Accuracy of near-patient vs. inbuilt spirometry for monitoring tidal volumes in an in-vitro paediatric lung model.

    PubMed

    Morgenroth, S; Thomas, J; Cannizzaro, V; Weiss, M; Schmidt, A R

    2018-03-01

    Spirometric monitoring provides precise measurement and delivery of tidal volumes within a narrow range, which is essential for lung-protective strategies that aim to reduce morbidity and mortality in mechanically-ventilated patients. Conventional anaesthesia ventilators include inbuilt spirometry to monitor inspiratory and expiratory tidal volumes. The GE Aisys CS 2 anaesthesia ventilator allows additional near-patient spirometry via a sensor interposed between the proximal end of the tracheal tube and the respiratory tubing. Near-patient and inbuilt spirometry of two different GE Aisys CS 2 anaesthesia ventilators were compared in an in-vitro study. Assessments were made of accuracy and variability in inspiratory and expiratory tidal volume measurements during ventilation of six simulated paediatric lung models using the ASL 5000 test lung. A total of 9240 breaths were recorded and analysed. Differences between inspiratory tidal volumes measured with near-patient and inbuilt spirometry were most significant in the newborn setting (p < 0.001), and became less significant with increasing age and weight. During expiration, tidal volume measurements with near-patient spirometry were consistently more accurate than with inbuilt spirometry for all lung models (p < 0.001). Overall, the variability in measured tidal volumes decreased with increasing tidal volumes, and was smaller with near-patient than with inbuilt spirometry. The variability in measured tidal volumes was higher during expiration, especially with inbuilt spirometry. In conclusion, the present in-vitro study shows that measurements with near-patient spirometry are more accurate and less variable than with inbuilt spirometry. Differences between measurement methods were most significant in the smallest patients. We therefore recommend near-patient spirometry, especially for neonatal and paediatric patients. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  5. Static inflation and deflation pressure–volume curves from excised lungs of marine mammals

    PubMed Central

    Fahlman, Andreas; Loring, Stephen H.; Ferrigno, Massimo; Moore, Colby; Early, Greg; Niemeyer, Misty; Lentell, Betty; Wenzel, Frederic; Joy, Ruth; Moore, Michael J.

    2011-01-01

    SUMMARY Excised lungs from eight marine mammal species [harp seal (Pagophilus groenlandicus), harbor seal (Phoca vitulina), gray seal (Halichoerus grypush), Atlantic white-sided dolphin (Lagenorhynchus acutus), common dolphin (Delphinus delphis), Risso's dolphin (Grampus griseus), long-finned pilot whale (Globicephala melas) and harbor porpoise (Phocoena phocoena)] were used to determine the minimum air volume of the relaxed lung (MAV, N=15), the elastic properties (pressure–volume curves, N=24) of the respiratory system and the total lung capacity (TLC). Our data indicate that mass-specific TLC (sTLC, l kg–1) does not differ between species or groups (odontocete vs phocid) and agree with that estimated (TLCest) from body mass (Mb) by applying the equation: TLCest=0.135 Mb0.92. Measured MAV was on average 7% of TLC, with a range from 0 to 16%. The pressure–volume curves were similar among species on inflation but diverged during deflation in phocids in comparison with odontocetes. These differences provide a structural basis for observed species differences in the depth at which lungs collapse and gas exchange ceases. PMID:22031747

  6. High-resolution three-dimensional magnetic resonance imaging of mouse lung in situ.

    PubMed

    Scadeng, Miriam; Rossiter, Harry B; Dubowitz, David J; Breen, Ellen C

    2007-01-01

    This study establishes a method for high-resolution isotropic magnetic resonance (MR) imaging of mouse lungs using tracheal liquid-instillation to remove MR susceptibility artifacts. C57BL/6J mice were instilled sequentially with perfluorocarbon and phosphate-buffered saline to an airway pressure of 10, 20, or 30 cm H2O. Imaging was performed in a 7T MR scanner using a 2.5-cm Quadrature volume coil and a 3-dimensional (3D) FLASH imaging sequence. Liquid-instillation removed magnetic susceptibility artifacts and allowed lung structure to be viewed at an isotropic resolution of 78-90 microm. Instilled liquid and modeled lung volumes were well correlated (R = 0.92; P < 0.05) and differed by a constant tissue volume (220 +/- 92 microL). 3D image renderings allowed differences in structural dimensions (volumes and areas) to be accurately measured at each inflation pressure. These data demonstrate the efficacy of pulmonary liquid instillation for in situ high-resolution MR imaging of mouse lungs for accurate measurement of pulmonary airway, parenchymal, and vascular structures.

  7. The Effect of Lung Stretch during Sleep on Airway Mechanics in Overweight and Obese Asthma

    PubMed Central

    Campana, L.M.; Malhotra, A.; Suki, B.; Hess, L.; Israel, E.; Smales, E.; DeYoung, P.; Owens, R.L.

    2012-01-01

    Both obesity and sleep reduce lung volume and limit deep breaths, possibly contributing to asthma. We hypothesize that increasing lung volume dynamically during sleep would reduce airway resistance in asthma. Asthma (n=10) and control (n=10) subjects were studied during sleep at baseline and with increased lung volume via bi-level positive airway pressure (BPAP). Using forced oscillations, respiratory system resistance (Rrs) and reactance (Xrs) were measured during sleep and Rrs was partitioned to upper and lower airway resistance (Rup, Rlow) using an epiglottic pressure catheter. Rrs and Rup increased with sleep (p<0.01) and Xrs was decreased in REM (p=0.02) as compared to wake. Rrs, Rup, and Rlow, were larger (p<0.01) and Xrs was decreased (p<0.02) in asthma. On BPAP, Rrs and Rup were decreased (p<0.001) and Xrs increased (p<0.01), but Rlow was unchanged. High Rup was observed in asthma, which reduced with BPAP. We conclude that the upper airway is a major component of Rrs and larger lung volume changes may be required to alter Rlow. PMID:23041446

  8. [Lung dysfunction in patients with severe chronic obstructive bronchitis].

    PubMed

    Nefedov, V B; Popova, L A; Shergina, E A

    2005-01-01

    VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TCL, TGV, RV, Raw, Rin, Rex, DLCO-SS, PaO2, and PaCO2 were determined in 36 patients with severe chronic obstructive lung disease (FEV1 < 50% of the normal value). All the patients were found to have impaired bronchial patency and changes in lung volumes and capacities; 83.3% of the patients had pulmonary gas exchange dysfunction. Impaired bronchial patency mainly appeared as decreased FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, Raw, Rin, Rex; altered lung volumes and capacities manifested by increased RV, TGV, and TLC, and by decreased VC and FVC; pulmonary gas exchange dysfunction showed up as lowered PaO2 and DLCO-SS, as decreased or increased PaCO2. The observed bronchial patency disorders varied from significant to severe; functional changes in lung volumes and capacities were mild to severe.

  9. Short-term effects of stored homologous red blood cell transfusion on cardiorespiratory function and inflammation: an experimental study in a hypovolemia model

    PubMed Central

    Biagini, S.; Dale, C.S.; Real, J.M.; Moreira, E.S.; Carvalho, C.R.R.; Schettino, G.P.P.; Wendel, S.; Azevedo, L.C.P.

    2017-01-01

    The pathophysiological mechanisms associated with the effects of red blood cell (RBC) transfusion on cardiopulmonary function and inflammation are unclear. We developed an experimental model of homologous 14-days stored RBC transfusion in hypovolemic swine to evaluate the short-term effects of transfusion on cardiopulmonary system and inflammation. Sixteen healthy male anesthetized swine (68±3.3 kg) were submitted to controlled hemorrhage (25% of blood volume). Two units of non-filtered RBC from each animal were stored under blood bank conditions for 14 days. After 30 min of hypovolemia, the control group (n=8) received an infusion of lactated Ringer's solution (three times the removed volume). The transfusion group (n=8) received two units of homologous 14-days stored RBC and lactated Ringer's solution in a volume that was three times the difference between blood removed and blood transfusion infused. Both groups were followed up for 6 h after resuscitation with collection of hemodynamic and respiratory data. Cytokines and RNA expression were measured in plasma and lung tissue. Stored RBC transfusion significantly increased mixed oxygen venous saturation and arterial oxygen content. Transfusion was not associated with alterations on pulmonary function. Pulmonary concentrations of cytokines were not different between groups. Gene expression for lung cytokines demonstrated a 2-fold increase in mRNA level for inducible nitric oxide synthase and a 0.5-fold decrease in mRNA content for IL-21 in the transfused group. Thus, stored homologous RBC transfusion in a hypovolemia model improved cardiovascular parameters but did not induce significant effects on microcirculation, pulmonary inflammation and respiratory function up to 6 h after transfusion. PMID:29185590

  10. Increased vital and total lung capacities in Tibetan compared to Han residents of Lhasa (3,658 m).

    PubMed

    Droma, T; McCullough, R G; McCullough, R E; Zhuang, J G; Cymerman, A; Sun, S F; Sutton, J R; Moore, L G

    1991-11-01

    Larger chest dimensions and lung volumes have been reported for Andean high-altitude natives compared with sea-level residents and implicated in raising lung diffusing capacity. Studies conducted in Nepal suggested that lifelong Himalayan residents did not have enlarged chest dimensions. To determine if high-altitude Himalayans (Tibetans) had larger lung volumes than acclimatized newcomers (Han "Chinese"), we studied 38 Tibetan and 43 Han residents of Lhasa, Tibet Autonomous Region, China (elevation 3,658 m) matched for age, height, weight, and smoking history. The Tibetan compared with the Han subjects had a larger total lung capacity [6.80 +/- 0.19 (mean +/- SEM) vs 6.24 +/- 0.18 l BTPS, P less than 0.05], vital capacity (5.00 +/- 0.08 vs 4.51 +/- 0.10 1 BTPS, P less than 0.05), and tended to have a greater residual volume (1.86 +/- 0.12 vs 1.56 +/- 0.09 1 BTPS, P less than 0.06). Chest circumference was greater in the Tibetan than the Han subjects (85 +/- 1 vs 82 +/- 1 cm, P less than 0.05) and correlated with vital capacity in each group as well as in the two groups combined (r = 0.69, P less than 0.05). Han who had migrated to high altitude as children (less than or equal to 5 years old, n = 6) compared to Han adult migrants (greater than or equal to 18 years old, n = 26) were shorter but had similar lung volumes and capacities when normalized for body size. The Tibetans' vital capacity and total lung capacity in relation to body size were similar to values reported previously for lifelong residents of high altitude in South and North America. Thus, Tibetans, like North and South American high-altitude residents, have larger lung volumes. This may be important for raising lung diffusing capacity and preserving arterial oxygen saturation during exercise.

  11. United States Air Force Research Initiation Program. 1985 Technical Report. Volume 3.

    DTIC Science & Technology

    1987-04-01

    miners exposed to airborne radon (7). Thus the major health effect associated with radon is thought to be production of lung cancers by radon decay...Based Instruction: Effect Dr. Linda J. Buehner of Cognitive Style, Instructional Format, and Subject-Matter Content 160-OMG-085 9 Nonlinear Feedback...Instrumentation 760-OMG-042 16 Investigation of the Effects of Dr. David R. Cochran an Applied Electric Field on the InP Melt 760-OMG-014 17 Below-Melt

  12. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography.

    PubMed

    Zhang, Jie; Patterson, Robert

    2010-08-01

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 +/- 13 years, 78 +/- 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC--end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Omega cm to 1583 Omega cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method.

  13. Prediction of distribution volume of vancomycin in critically ill patients using extravascular lung water and pulmonary vascular permeability indices.

    PubMed

    Imaura, Masaharu; Yokoyama, Haruko; Kohyama, Tomoki; Nagafuchi, Hiroyuki; Kohata, Yuji; Takahashi, Hiroyuki; Yamada, Yasuhiko

    2012-11-01

    Alterations in distribution volume affect the concentrations of hydrophilic drugs in plasma and tissues at the time of initial therapy. When the distribution volume of hydrophilic antimicrobials is increased in critically ill patients with a serious infection, antimicrobial concentrations are reduced, which may adversely affect the efficacy of antimicrobial therapy. A transpulmonary thermodilution technique system (PiCCO) enables measurements of pulmonary vascular permeability index (PVPI) and extravascular lung water index (EVLWI), which are related to pulmonary edema and pulmonary vascular permeability, respectively. In addition, those indices may also be related to the distribution volume of hydrophilic antimicrobials. The aim of this study was to investigate the relationships of PVPI and EVLWI with the distribution volume of vancomycin (Vss), as well as to establish a method for estimating Vss for planning an appropriate initial dose for individual patients. Seven patients were administered vancomycin intravenously and underwent extended hemodynamic monitoring with the PiCCO system in the intensive care unit (ICU) from April 2009 to March 2011. Vss was calculated using the Bayesian method, and the relationships of PVPI and EVLWI with Vss were investigated. The relationship between Vss/actual body weight (ABW) and median EVLWI on days when blood levels were measured was significant (r = 0.900, p = 0.0057), whereas the relationship between Vss/ABW and PVPI was not significant (r = 0.649, p = 0.1112). EVLWI determined by the PiCCO system is useful to predict Vss and should lead to more effective vancomycin therapy for critically ill patients at the initial stage.

  14. Synchrotron x-ray imaging of pulmonary alveoli in respiration in live intact mice

    NASA Astrophysics Data System (ADS)

    Chang, Soeun; Kwon, Namseop; Kim, Jinkyung; Kohmura, Yoshiki; Ishikawa, Tetsuya; Rhee, Chin Kook; Je, Jung Ho; Tsuda, Akira

    2015-03-01

    Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray microscopy. Our studies, for the first time, determine the alveolar size of normal mice in respiration without positive end expiratory pressure as 58 +/- 14 (mean +/- s.d.) μm on average, accurately measured in the lung bases as well as the apices. Individual alveoli of normal lungs clearly show heterogeneous inflation from zero to ~25% (6.7 +/- 4.7% (mean +/- s.d.)) in size. The degree of inflation is higher in the lung bases (8.7 +/- 4.3% (mean +/- s.d.)) than in the apices (5.7 +/- 3.2% (mean +/- s.d.)). The fraction of the total tidal volume allocated for alveolar inflation is 34 +/- 3.8% (mean +/- s.e.m). This study contributes to the better understanding of alveolar dynamics and helps to develop potential treatment options for pulmonary diseases.

  15. [Quantification of pulmonary emphysema in multislice-CT using different software tools].

    PubMed

    Heussel, C P; Achenbach, T; Buschsieweke, C; Kuhnigk, J; Weinheimer, O; Hammer, G; Düber, C; Kauczor, H-U

    2006-10-01

    The data records of thin-section MSCT of the lung with approx. 300 images are difficult to use in manual evaluation. A computer-assisted pre-diagnosis can help with reporting. Furthermore, post-processing techniques, for instance, for quantification of emphysema on the basis of three-dimensional anatomical information might be improved and the workflow might be further automated. The results of 4 programs (Pulmo, Volume, YACTA and PulmoFUNC) for the quantitative analysis of emphysema (lung and emphysema volume, mean lung density and emphysema index) of 30 consecutive thin-section MSCT datasets with different emphysema severity levels were compared. The classification result of the YACTA program for different types of emphysema was also analyzed. Pulmo and Volume have a median operating time of 105 and 59 minutes respectively due to the necessity for extensive manual correction of the lung segmentation. The programs PulmoFUNC and YACTA, which are automated to a large extent, have a median runtime of 26 and 16 minutes, respectively. The evaluation with Pulmo and Volume using 2 different datasets resulted in implausible values. PulmoFUNC crashed with 2 other datasets in a reproducible manner. Only with YACTA could all graphic datasets be evaluated. The lung volume, emphysema volume, emphysema index and mean lung density determined by YACTA and PulmoFUNC are significantly larger than the corresponding values of Volume and Pulmo (differences: Volume: 119 cm(3)/65 cm(3)/1 %/17 HU, Pulmo: 60 cm(3)/96 cm(3)/1 %/37 HU). Classification of the emphysema type was in agreement with that of the radiologist in 26 panlobular cases, in 22 paraseptalen cases and in 15 centrilobular emphysema cases. The substantial expenditure of time obstructs the employment of quantitative emphysema analysis in the clinical routine. The results of YACTA and PulmoFUNC are affected by the dedicated exclusion of the tracheobronchial system. These fully automatic tools enable not only fast quantification without manual interaction, but also a reproducible measurement without user dependence.

  16. Blood filling and flow in lungs during change in body position in space

    NASA Technical Reports Server (NTRS)

    Pogodin, A. S.; Mazhbich, B. I.

    1980-01-01

    In the horizontal position (supine and lateral), in the upright position (head up and head down) and during change of the cat body position in space, quantitative responses of regional blood volume and blood flow in the lungs (ml/100 cu cm) revealed presence of the gradient in the gravitation direction. Blood volume and blood flow of different lung portions changed qualitatively and quantitatively in different ways. These changes occurred only in the direction producing the equality of regional hydrostatical and hemodynamic loads in the lungs at either horizontal level.

  17. SU-F-T-498: A Comparative Evaluation of 6MV Flatten Beam and Flattening Filter Free Photon Beam in Carcinoma Breast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamilarasu, Suresh; Saminathan, Madeswaran

    Purpose: Aim of the current study is to look plan quality, treatment beam ON time for IMRT using 6MV FB (Flatten Beam) and FFFB (Flattening Filter Free Beam) in left breast cancer cases. Methods: Ten left breast cancer patients treated with breast conserving surgical (BCS) procedure approach and adjuvant radiotherapy were selected from the department database. Simultaneous Integrated boost (SIB) technique was used to irradiate the total left breast (PTV) to a dose of 50.40Gy with concomitant enhance to the lumpectomy cavity known as gross tumour volume (GTV) to a dose of 59.40Gy in 28 fractions. Plans 6MV FB IMRTmore » and 6MV FFFB IMRT had been generated to achieve dose to 95% target volume (TV) and spare Organ at risks (OAR’s). Homogeneity index (HI), conformity index (CI), treatment monitor unit (MU),normal tissues integral dose (NTID) and low dose volume of normal tissue were compared. Results: There was no statistically huge difference among the plans with respect to target volume coverage, CI HI, Ipsilateral Lung and Breast. But statistically significant difference (p< 0.05) as observed in Heart, V5Gy of Contralateral Lung, MU’s NTID and low dose volume of normal tissue. Conclusion: 6MV FB and FFF beam produce almost equivalent plans in IMRT modality with admire to target volume coverage, HI, CI. Beam on time and NTID was determined to be much less in 6MV FFFB IMRT. FFF beam leads to a time saving treatment delivery and fewer NTID in cancer of left breast cases.« less

  18. Decreased Risk of Radiation Pneumonitis With Incidental Concurrent Use of Angiotensin-Converting Enzyme Inhibitors and Thoracic Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharofa, Jordan; Cohen, Eric P.; Tomic, Rade

    2012-09-01

    Purpose: Angiotensin-converting enzyme (ACE) inhibitors have been shown to mitigate radiation-induced lung injury in preclinical models. The aim of this study was to evaluate whether ACE inhibitors decrease the risk of radiation pneumonitis in lung cancer patients receiving thoracic irradiation. Methods and Materials: Patients with Stage I through III small-cell and non-small-cell lung cancer treated definitively with radiation from 2004-2009 at the Clement J. Zablocki Veterans Affairs Medical Center were retrospectively reviewed. Acute pulmonary toxicity was quantified within 6 months of completion of treatment according to the Common Terminology Criteria for Adverse Events version 4. The use of ACE inhibitors,more » nonsteroidal anti-inflammatory drugs, inhaled glucocorticosteroids, statins, and angiotensin receptor blockers; dose-volume histogram parameters; and patient factors were assessed for association with Grade 2 or higher pneumonitis. Results: A total of 162 patients met the criteria for inclusion. The majority of patients had Stage III disease (64%) and received concurrent chemotherapy (61%). Sixty-two patients were identified as ACE inhibitor users (38%). All patients had acceptable radiation plans based on dose-volume histogram constraints (V20 [volume of lung receiving at least 20 Gy] {<=}37% and mean lung dose {<=}20 Gy) with the exception of 2 patients who did not meet both criteria. Grade 2 or higher pulmonary toxicity occurred in 12 patients (7.4%). The rate of Grade 2 or higher pneumonitis was lower in ACE inhibitor users vs. nonusers (2% vs. 11%, p = 0.032). Rates of Grade 2 or higher pneumonitis were significantly increased in patients aged greater than 70 years (16% vs. 2%, p = 0.005) or in whom V5 (volume of lung receiving at least 5 Gy) was 50% or greater (13% vs. 4%, p = 0.04). V10 (volume of lung receiving at least 10 Gy), V20, V30 (volume of lung receiving at least 30 Gy), and mean lung dose were not independently associated with Grade 2 or higher pneumonitis. Conclusion: ACE inhibitors may decrease the incidence of radiation pneumonitis in patients receiving thoracic radiation for lung cancer. These findings are consistent with preclinical evidence and should be prospectively evaluated.« less

  19. Effectiveness and efficacy of minimally invasive lung volume reduction surgery for emphysema

    PubMed Central

    Pertl, Daniela; Eisenmann, Alexander; Holzer, Ulrike; Renner, Anna-Theresa; Valipour, A.

    2014-01-01

    Lung emphysema is a chronic, progressive and irreversible destruction of the lung tissue. Besides non-medical therapies and the well established medical treatment there are surgical and minimally invasive methods for lung volume reduction (LVR) to treat severe emphysema. This report deals with the effectiveness and cost-effectiveness of minimally invasive methods compared to other treatments for LVR in patients with lung emphysema. Furthermore, legal and ethical aspects are discussed. No clear benefit of minimally invasive methods compared to surgical methods can be demonstrated based on the identified and included evidence. In order to assess the different methods for LVR regarding their relative effectiveness and safety in patients with lung emphysema direct comparative studies are necessary. PMID:25295123

  20. Effectiveness and efficacy of minimally invasive lung volume reduction surgery for emphysema.

    PubMed

    Pertl, Daniela; Eisenmann, Alexander; Holzer, Ulrike; Renner, Anna-Theresa; Valipour, A

    2014-01-01

    Lung emphysema is a chronic, progressive and irreversible destruction of the lung tissue. Besides non-medical therapies and the well established medical treatment there are surgical and minimally invasive methods for lung volume reduction (LVR) to treat severe emphysema. This report deals with the effectiveness and cost-effectiveness of minimally invasive methods compared to other treatments for LVR in patients with lung emphysema. Furthermore, legal and ethical aspects are discussed. No clear benefit of minimally invasive methods compared to surgical methods can be demonstrated based on the identified and included evidence. In order to assess the different methods for LVR regarding their relative effectiveness and safety in patients with lung emphysema direct comparative studies are necessary.

  1. Total lung capacity, residual volume and predicted residual volume in a densitometric study of older men.

    PubMed Central

    Latin, R W; Ruhling, R O

    1986-01-01

    Results of investigations using various lung volumes for hydrostatic weighing determinations (HWD) appear to be inconclusive. Often, these lung volumes are predicted and not clinically determined. For this reason, total lung capacity (TLC), a measured residual volume (RV), and a predicted residual volume (PRV) were used during HWDs to compare the techniques. Twenty-five older men, 56 to 70 years (means +/- 62.1 + 4.2 years) performed HWDs at RV (10 trials) and at TLC (3-5 trials). Values for body density and fat free mass were not significantly different between RV and TLC; both values were, however, significantly different from those derived using PRV. There were statistically significant differences (p less than 0.05) between all 3 per cent body fat values but the 1.1 per cent difference between TLC and RV may not be physiologically important. It was concluded that TLC and RV may be used comparably during HWDs, but a PRV may produce significantly different values. Since HWD at TLC is easily performed and circumvents the difficulties associated with the RV technique, it may be the preferred method for older subjects. PMID:3730758

  2. Comparison of extracorporeal membrane oxygenation versus cardiopulmonary bypass for lung transplantation.

    PubMed

    Biscotti, Mauer; Yang, Jonathan; Sonett, Joshua; Bacchetta, Matthew

    2014-11-01

    This study compared differences in patient outcomes and operative parameters for extracorporeal membrane oxygenation (ECMO) versus cardiopulmonary bypass (CPB) in patients undergoing lung transplants. Between January 1, 2008, and July 13, 2013, 316 patients underwent lung transplants at our institution, 102 requiring intraoperative mechanical cardiopulmonary support (CPB, n=55; ECMO, n=47). We evaluated survival, blood product transfusions, bleeding complications, graft dysfunction, and rejection. Intraoperatively, the CPB group required more cell saver volume (1123±701 vs 814±826 mL; P=.043), fresh-frozen plasma (3.64±5.0 vs 1.51±3.2 units; P=.014), platelets (1.38±1.6 vs 0.43±1.25 units; P=.001), and cryoprecipitate (4.89±6.3 vs 0.85±2.8 units; P<.001) than the ECMO group. Postoperatively, the CPB group received more platelets (1.09±2.6 vs 0.13±0.39 units; P=.013) and was more likely to have bleeding (15 [27.3%] vs 3 [6.4%]; P=.006) and reoperation (21 [38.2%] vs 7 [14.9%]; P=.009]. The CPB group had higher rates of primary graft dysfunction at 24 and 72 hours (41 [74.5%] vs 23 [48.9%]; P=.008; and 42 [76.4%] vs 26 [56.5%]; P=.034; respectively). There were no differences in 30-day and 1-year survivals. Relative to CPB, the ECMO group required fewer transfusions and had less bleeding, fewer reoperations, and less primary graft dysfunction. There were no statistically significant survival differences at 30 days or 1 year. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  3. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    PubMed

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2017-09-01

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Validation of the plain chest radiograph for epidemiologic studies of airflow obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musk, A.W.

    The chest radiographs of 125 industrial workers from rural New South Wales were examined for overinflated lungs, with and without attenuated midzonal vessels. Although the mean values of a comprehensive range of pulmonary function tests in the whole group were within normal limits, the nine subjects whose radiographs showed overinflated lungs and attenuated vessels had significantly impaired pulmonary function in comparison with 85 subjects with normal radiographs. The mean values for these nine subjects, expressed as a percentage of the mean value for subjects with normal radiographs, were: forced expiratory volume in 1 second, 75%; total lung capacity, 107%; residualmore » volume, 143%; transpulmonary pressure at maximum inspiration, 60%; static deflation compliance, 158%; lung volume at transpulmonary pressure 10 cm H/sub 2/O, 132%; transfer factor, 79%; and transfer factor/alveolar volume, 77%. Similar results were obtained by a second observer. Those subjects with overinflation but no vascular attenuation had significantly larger mean values for vital capacity and alveolar volume but no significant difference in total lung capacity or other tests of the mechanical properties of the lungs. Agreement on the presence of a positive sign between the two observers expressed as a percentage of those considered positive by either was 81% for overinflation and 62% for attenuated midzonal vessels. The results indicate that in groups of subjects with normal-average values of pulmonary function, the plain chest radiograph may provide information concerning pulmonary structure that is reflected in tests of function.« less

  5. Atelectasis and survival after bronchoscopic lung volume reduction for COPD.

    PubMed

    Hopkinson, N S; Kemp, S V; Toma, T P; Hansell, D M; Geddes, D M; Shah, P L; Polkey, M I

    2011-06-01

    Bronchoscopic therapies to reduce lung volumes in chronic obstructive pulmonary disease are intended to avoid the risks associated with lung volume reduction surgery (LVRS) or to be used in patient groups in whom LVRS is not appropriate. Bronchoscopic lung volume reduction (BLVR) using endobronchial valves to target unilateral lobar occlusion can improve lung function and exercise capacity in patients with emphysema. The benefit is most pronounced in, though not confined to, patients where lobar atelectasis has occurred. Few data exist on their long-term outcome. 19 patients (16 males; mean±sd forced expiratory volume in 1 s 28.4±11.9% predicted) underwent BLVR between July 2002 and February 2004. Radiological atelectasis was observed in five patients. Survival data was available for all patients up to February 2010. None of the patients in whom atelectasis occurred died during follow-up, whereas eight out of 14 in the nonatelectasis group died (Chi-squared p=0.026). There was no significant difference between the groups at baseline in lung function, quality of life, exacerbation rate, exercise capacity (shuttle walk test or cycle ergometry) or computed tomography appearances, although body mass index was significantly higher in the atelectasis group (21.6±2.9 versus 28.4±2.9 kg·m(-2); p<0.001). The data in the present study suggest that atelectasis following BLVR is associated with a survival benefit that is not explained by baseline differences.

  6. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer.

    PubMed

    Chandra, Anurag; Guerrero, Thomas M; Liu, H Helen; Tucker, Susan L; Liao, Zhongxing; Wang, Xiaochun; Murshed, Hasan; Bonnen, Mark D; Garg, Amit K; Stevens, Craig W; Chang, Joe Y; Jeter, Melinda D; Mohan, Radhe; Cox, James D; Komaki, Ritsuko

    2005-12-01

    To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3 DCRT) in treating distal esophageal malignancies. Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3 DCRT plan used clinically. IMRT and 3 DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V(10)), 20 Gy (V(20)), mean lung dose (MLD), biological effective volume (V(eff)), and lung integral dose (P<0.05). The median absolute improvement with IMRT over 3DCRT was approximately 10% for V(10), 5% for V(20), and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers.

  7. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits.

    PubMed

    Hernandez, L A; Peevy, K J; Moise, A A; Parker, J C

    1989-05-01

    High peak inspiratory pressures (PIP) during mechanical ventilation can induce lung injury. In the present study we compare the respective roles of high tidal volume with high PIP in intact immature rabbits to determine whether the increase in capillary permeability is the result of overdistension of the lung or direct pressure effects. New Zealand White rabbits were assigned to one of three protocols, which produced different degrees of inspiratory volume limitation: intact closed-chest animals (CC), closed-chest animals with a full-body plaster cast (C), and isolated excised lungs (IL). The intact animals were ventilated at 15, 30, or 45 cmH2O PIP for 1 h, and the lungs of the CC and C groups were placed in an isolated lung perfusion system. Microvascular permeability was evaluated using the capillary filtration coefficient (Kfc). Base-line Kfc for isolated lungs before ventilation was 0.33 +/- 0.31 ml.min-1.cmH2O-1.100g-1 and was not different from the Kfc in the CC group ventilated with 15 cmH2O PIP. Kfc increased by 850% after ventilation with only 15 cmH2O PIP in the unrestricted IL group, and in the CC group Kfc increased by 31% after 30 cmH2O PIP and 430% after 45 cmH2O PIP. Inspiratory volume limitation by the plaster cast in the C group prevented any significant increase in Kfc at the PIP values used. These data indicate that volume distension of the lung rather than high PIP per se produces microvascular damage in the immature rabbit lung.

  8. Quantification of asymmetric lung pathophysiology as a guide to the use of simultaneous independent lung ventilation in posttraumatic and septic adult respiratory distress syndrome.

    PubMed Central

    Siegel, J H; Stoklosa, J C; Borg, U; Wiles, C E; Sganga, G; Geisler, F H; Belzberg, H; Wedel, S; Blevins, S; Goh, K C

    1985-01-01

    The management of impaired respiratory gas exchange in patients with nonuniform posttraumatic and septic adult respiratory distress syndrome (ARDS) contains its own therapeutic paradox, since the need for volume-controlled ventilation and PEEP in the lung with the most reduced compliance increases pulmonary barotrauma to the better lung. A computer-based system has been developed by which respiratory pressure-flow-volume relations and gas exchange characteristics can be obtained and respiratory dynamic and static compliance curves computed and displayed for each lung, as a means of evaluating the effectiveness of ventilation therapy in ARDS. Using these techniques, eight patients with asymmetrical posttraumatic or septic ARDS, or both, have been managed using simultaneous independent lung ventilation (SILV). The computer assessment technique allows quantification of the nonuniform ARDS pattern between the two lungs. This enabled SILV to be utilized using two synchronized servo-ventilators at different pressure-flow-volumes, inspiratory/expiratory ratios, and PEEP settings to optimize the ventilatory volumes and gas exchange of each lung, without inducing excess barotrauma in the better lung. In the patients with nonuniform ARDS, conventional ventilation was not effective in reducing shunt (QS/QT) or in permitting a lower FIO2 to be used for maintenance of an acceptable PaO2. SILV reduced per cent v-a shunt and permitted a higher PaO2 at lower FIO2. Also, there was x-ray evidence of ARDS improvement in the poorer lung. While the ultimate outcome was largely dependent on the patient's injury and the adequacy of the septic host defense, by utilizing the SILV technique to match the quantitative aspects of respiratory dysfunction in each lung at specific times in the clinical course, it was possible to optimize gas exchange, to reduce barotrauma, and often to reverse apparently fixed ARDS changes. In some instances, this type of physiologically directed ventilatory therapy appeared to contribute to a successful recovery. Images FIG. 10. PMID:3901940

  9. In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice.

    PubMed

    Ramsey, Kathryn A; Larcombe, Alexander N; Sly, Peter D; Zosky, Graeme R

    2013-02-18

    Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100 μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations.

  10. In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice

    PubMed Central

    2013-01-01

    Background Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Methods Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. Results In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Conclusions Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations. PMID:23419080

  11. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Imad, E-mail: iali@ouhsc.edu; Ahmad, Salahuddin

    2013-10-01

    To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatmentmore » sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.« less

  12. A Novel Quantitative Computed Tomographic Analysis Suggests How Sirolimus Stabilizes Progressive Air Trapping in Lymphangioleiomyomatosis

    PubMed Central

    Kokosi, Maria; Lo, Pechin; Kim, Hyun J.; Ravenel, James G.; Meyer, Cristopher; Goldin, Jonathan; Lee, Hye-Seung; Strange, Charlie; McCormack, Francis X.

    2016-01-01

    Rationale: The Multicenter International Lymphangioleiomyomatosis Efficacy and Safety of Sirolimus (MILES) trial demonstrated that sirolimus stabilized lung function and improved measures of functional performance and quality of life in patients with lymphangioleiomyomatosis. The physiologic mechanisms of these beneficial actions of sirolimus are incompletely understood. Objectives: To prospectively determine the longitudinal computed tomographic lung imaging correlates of lung function change in MILES patients treated with placebo or sirolimus. Methods: We determined the baseline to 12-month change in computed tomographic image–derived lung volumes and the volume of the lung occupied by cysts in the 31 MILES participants (17 in sirolimus group, 14 in placebo group) with baseline and 12-month scans. Measurements and Main Results: There was a trend toward an increase in median expiratory cyst volume percentage in the placebo group and a reduction in the sirolimus group (+2.68% vs. +0.97%, respectively; P = 0.10). The computed tomographic image–derived residual volume and the ratio of residual volume to total lung capacity increased more in the placebo group than in the sirolimus group (+214.4 ml vs. +2.9 ml [P = 0.054] and +0.05 ml vs. −0.01 ml [P = 0.0498], respectively). A Markov transition chain analysis of respiratory cycle cyst volume changes revealed greater dynamic variation in the sirolimus group than in the placebo group at the 12-month time point. Conclusions: Collectively, these data suggest that sirolimus attenuates progressive gas trapping in lymphangioleiomyomatosis, consistent with a beneficial effect of the drug on airflow obstruction. We speculate that a reduction in lymphangioleiomyomatosis cell burden around small airways and cyst walls alleviates progressive airflow limitation and facilitates cyst emptying. PMID:26799509

  13. A Novel Quantitative Computed Tomographic Analysis Suggests How Sirolimus Stabilizes Progressive Air Trapping in Lymphangioleiomyomatosis.

    PubMed

    Argula, Rahul G; Kokosi, Maria; Lo, Pechin; Kim, Hyun J; Ravenel, James G; Meyer, Cristopher; Goldin, Jonathan; Lee, Hye-Seung; Strange, Charlie; McCormack, Francis X

    2016-03-01

    The Multicenter International Lymphangioleiomyomatosis Efficacy and Safety of Sirolimus (MILES) trial demonstrated that sirolimus stabilized lung function and improved measures of functional performance and quality of life in patients with lymphangioleiomyomatosis. The physiologic mechanisms of these beneficial actions of sirolimus are incompletely understood. To prospectively determine the longitudinal computed tomographic lung imaging correlates of lung function change in MILES patients treated with placebo or sirolimus. We determined the baseline to 12-month change in computed tomographic image-derived lung volumes and the volume of the lung occupied by cysts in the 31 MILES participants (17 in sirolimus group, 14 in placebo group) with baseline and 12-month scans. There was a trend toward an increase in median expiratory cyst volume percentage in the placebo group and a reduction in the sirolimus group (+2.68% vs. +0.97%, respectively; P = 0.10). The computed tomographic image-derived residual volume and the ratio of residual volume to total lung capacity increased more in the placebo group than in the sirolimus group (+214.4 ml vs. +2.9 ml [P = 0.054] and +0.05 ml vs. -0.01 ml [P = 0.0498], respectively). A Markov transition chain analysis of respiratory cycle cyst volume changes revealed greater dynamic variation in the sirolimus group than in the placebo group at the 12-month time point. Collectively, these data suggest that sirolimus attenuates progressive gas trapping in lymphangioleiomyomatosis, consistent with a beneficial effect of the drug on airflow obstruction. We speculate that a reduction in lymphangioleiomyomatosis cell burden around small airways and cyst walls alleviates progressive airflow limitation and facilitates cyst emptying.

  14. Upgrade to iterative image reconstruction (IR) in MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR) Part2: The chest.

    PubMed

    Mueck, F G; Michael, L; Deak, Z; Scherr, M K; Maxien, D; Geyer, L L; Reiser, M; Wirth, S

    2013-07-01

    To compare the image quality in dose-reduced 64-row CT of the chest at different levels of adaptive statistical iterative reconstruction (ASIR) to full-dose baseline examinations reconstructed solely with filtered back projection (FBP) in a realistic upgrade scenario. A waiver of consent was granted by the institutional review board (IRB). The noise index (NI) relates to the standard deviation of Hounsfield units in a water phantom. Baseline exams of the chest (NI = 29; LightSpeed VCT XT, GE Healthcare) were intra-individually compared to follow-up studies on a CT with ASIR after system upgrade (NI = 45; Discovery HD750, GE Healthcare), n = 46. Images were calculated in slice and volume mode with ASIR levels of 0 - 100 % in the standard and lung kernel. Three radiologists independently compared the image quality to the corresponding full-dose baseline examinations (-2: diagnostically inferior, -1: inferior, 0: equal, + 1: superior, + 2: diagnostically superior). Statistical analysis used Wilcoxon's test, Mann-Whitney U test and the intraclass correlation coefficient (ICC). The mean CTDIvol decreased by 53 % from the FBP baseline to 8.0 ± 2.3 mGy for ASIR follow-ups; p < 0.001. The ICC was 0.70. Regarding the standard kernel, the image quality in dose-reduced studies was comparable to the baseline at ASIR 70 % in volume mode (-0.07 ± 0.29, p = 0.29). Concerning the lung kernel, every ASIR level outperformed the baseline image quality (p < 0.001), with ASIR 30 % rated best (slice: 0.70 ± 0.6, volume: 0.74 ± 0.61). Vendors' recommendation of 50 % ASIR is fair. In detail, the ASIR 70 % in volume mode for the standard kernel and ASIR 30 % for the lung kernel performed best, allowing for a dose reduction of approximately 50 %. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Individualized Margins in 3D Conformal Radiotherapy Planning for Lung Cancer: Analysis of Physiological Movements and Their Dosimetric Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germain, Francois; Beaulieu, Luc; Fortin, Andre

    2008-04-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generatemore » individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.« less

  16. Poster - Thurs Eve-23: Effect of lung density and geometry variation on inhomogeneity correction algorithms: A Monte Carlo dosimetry evaluation.

    PubMed

    Chow, J; Leung, M; Van Dyk, J

    2008-07-01

    This study provides new information on the evaluation of the lung dose calculation algorithms as a function of the relative electron density of lung, ρ e,lung . Doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) algorithm in lung with the Pinnacle 3 system were compared to those calculated using the Monte Carlo (MC) simulation (EGSnrc-based code). Three groups of lung phantoms, namely, "Slab", "Column" and "Cube" with different ρ e,lung (0.05-0.7), positions, volumes and shapes of lung in water were used. 6 and 18MV photon beams with 4×4 and 10×10cm 2 field sizes produced by a Varian 21EX Linac were used in the MC dose calculations. Results show that the CCC algorithm agrees well with AC to within ±1% for doses calculated in the lung phantoms, indicating that the AC, with 3-4 times less computing time required than CCC, is a good substitute for the CCC method. Comparing the CCC and AC with MC, dose deviations are found when ρ e,lung are ⩽0.1-0.3. The degree of deviation depends on the photon beam energy and field size, and is relatively large when high-energy photon beams with small field are used. For the penumbra widths (20%-80%), the CCC and AC agree well with MC for the "Slab" and "Cube" phantoms with the lung volumes at the central beam axis (CAX). However, deviations >2mm occur in the "Column" phantoms, with two lung volumes separated by a water column along the CAX, using the 18MV (4×4cm 2 ) photon beams with ρ e,lung ⩽0.1. © 2008 American Association of Physicists in Medicine.

  17. Quantitative evaluation of native lung hyperinflation after single lung transplantation for emphysema using three-dimensional computed tomography volumetry.

    PubMed

    Motoyama, H; Chen, F; Ohsumi, A; Hijiya, K; Takahashi, M; Ohata, K; Yamada, T; Sato, M; Aoyama, A; Bando, T; Date, H

    2014-04-01

    Although double lung transplantation is performed more frequently for emphysema, single lung transplantation (SLT) continues to be performed owing to limited donor organ availability. Native lung hyperinflation (NLH) is a unique complication following SLT for emphysema. Three-dimensional computed tomography (3D-CT) volumetry has been introduced into the field of lung transplantation, which we used to assess NLH in emphysema patients undergoing SLT. The primary purpose of this study was to confirm the effectiveness of 3D-CT volumetry in the evaluation of NLH following SLT for emphysema. In 5 emphysema patients undergoing SLT at Kyoto University Hospital, 3D-CT volumetry data, pulmonary function test results, and clinical and radiological findings were retrospectively evaluated. Three patients did not develop a significant mediastinal shift, whereas the other 2 patients developed a mediastinal shift. In the 3 patients without a mediastinal shift, 3D-CT volumetry did not show a significant increase in native lung volume. These patients had a history of sternotomy prior to lung transplantation and firm adhesion on the mediastinal side was detected during lung transplantation. One of 2 patients with a mediastinal shift developed severe dyspnea with significantly decreased pulmonary function, and 3D-CT volumetry showed a significant increase in the native lung volume. However, the other patient did not show any dyspnea and his native lung volume decreased postoperatively (preoperatively to 6 months postoperatively: +981 mL and -348 mL, respectively). Although bilateral lung transplantation has become preferable for emphysema patients owing to postoperative NLH with SLT, patients with a history of sternotomy prior to lung transplantation might be good candidates for SLT. 3D-CT volumetry may be a useful method for detection of NLH. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Low-dose computed tomography volumetry for subtyping chronic lung allograft dysfunction.

    PubMed

    Saito, Tomohito; Horie, Miho; Sato, Masaaki; Nakajima, Daisuke; Shoushtarizadeh, Hassan; Binnie, Matthew; Azad, Sassan; Hwang, David M; Machuca, Tiago N; Waddell, Thomas K; Singer, Lianne G; Cypel, Marcelo; Liu, Mingyao; Paul, Narinder S; Keshavjee, Shaf

    2016-01-01

    The long-term success of lung transplantation is challenged by the development of chronic lung allograft dysfunction (CLAD) and its distinct subtypes of bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). However, the current diagnostic criteria for CLAD subtypes rely on total lung capacity (TLC), which is not always measured during routine post-transplant assessment. Our aim was to investigate the utility of low-dose 3-dimensional computed tomography (CT) lung volumetry for differentiating RAS from BOS. This study was a retrospective evaluation of 63 patients who had developed CLAD after bilateral lung or heart‒lung transplantation between 2006 and 2011, including 44 BOS and 19 RAS cases. Median post-transplant follow-up was 65 months in BOS and 27 months in RAS. The median interval between baseline and the disease-onset time-point for CT volumetry was 11 months in both BOS and RAS. Chronologic changes and diagnostic accuracy of CT lung volume (measured as percent of baseline) were investigated. RAS showed a significant decrease in CT lung volume at disease onset compared with baseline (mean 3,916 ml vs 3,055 ml when excluding opacities, p < 0.0001), whereas BOS showed no significant post-transplant change (mean 4,318 ml vs 4,396 ml, p = 0.214). The area under the receiver operating characteristic curve of CT lung volume for differentiating RAS from BOS was 0.959 (95% confidence interval 0.912 to 1.01, p < 0.0001) and the calculated accuracy was 0.938 at a threshold of 85%. In bilateral lung or heart‒lung transplant patients with CLAD, low-dose CT volumetry is a useful tool to differentiate patients who develop RAS from those who develop BOS. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Changes in lung volumes and gas trapping in patients with large hiatal hernia.

    PubMed

    Naoum, Christopher; Kritharides, Leonard; Ing, Alvin; Falk, Gregory L; Yiannikas, John

    2017-03-01

    Studies assessing hiatal hernia (HH)-related effects on lung volumes derived by body plethysmography are limited. We aimed to evaluate the effect of hernia size on lung volumes (including assessment by body plethysmography) and the relationship to functional capacity, as well as the impact of corrective surgery. Seventy-three patients (70 ± 10 years; 54 female) with large HH [mean ± standard deviation, intra-thoracic stomach (ITS) (%): 63 ± 20%; type III in 65/73] had respiratory function data (spirometry, 73/73; body plethysmography, 64/73; diffusing capacity, 71/73) and underwent HH surgery. Respiratory function was analysed in relation to hernia size (groups I, II and III: ≤50, 50%-75% and ≥75% ITS, respectively) and functional capacity. Post-operative changes were quantified in a subgroup. Total lung capacity (TLC) and vital capacity (VC) correlated inversely with hernia size (TLC: 97 ± 11%, 96 ± 13%, 88 ± 10% predicted in groups I, II and III, respectively, P = 0.01; VC: 110 ± 17%, 111 ± 14%, 98 ± 14% predicted, P = 0.02); however, mean values were normal and only 14% had abnormal lung volumes. Surgery increased TLC (93 ± 11% vs 97 ± 10% predicted) and VC (105 ± 15% vs 116 ± 18%), and decreased residual volume/total lung capacity (RV/TLC) ratio (39 ± 7% vs 37 ± 6%) (P < 0.01 for all). Respiratory changes were modest relative to the marked functional class improvement. Among parameters that improved following HH surgery, decreased TLC and forced expiratory volume in 1 s and increased RV/TLC ratio correlated with poorer functional class pre-operatively. Increasing HH size correlates with reduced TLC and VC. Surgery improves lung volumes and gas trapping; however, the changes are mild and within the normal range. © 2015 John Wiley & Sons Ltd.

  20. Calculation of Lung Cancer Volume of Target Based on Thorax Computed Tomography Images using Active Contour Segmentation Method for Treatment Planning System

    NASA Astrophysics Data System (ADS)

    Patra Yosandha, Fiet; Adi, Kusworo; Edi Widodo, Catur

    2017-06-01

    In this research, calculation process of the lung cancer volume of target based on computed tomography (CT) thorax images was done. Volume of the target calculation was done in purpose to treatment planning system in radiotherapy. The calculation of the target volume consists of gross tumor volume (GTV), clinical target volume (CTV), planning target volume (PTV) and organs at risk (OAR). The calculation of the target volume was done by adding the target area on each slices and then multiply the result with the slice thickness. Calculations of area using of digital image processing techniques with active contour segmentation method. This segmentation for contouring to obtain the target volume. The calculation of volume produced on each of the targets is 577.2 cm3 for GTV, 769.9 cm3 for CTV, 877.8 cm3 for PTV, 618.7 cm3 for OAR 1, 1,162 cm3 for OAR 2 right, and 1,597 cm3 for OAR 2 left. These values indicate that the image processing techniques developed can be implemented to calculate the lung cancer target volume based on CT thorax images. This research expected to help doctors and medical physicists in determining and contouring the target volume quickly and precisely.

  1. Effect of Normal Lung Definition on Lung Dosimetry and Lung Toxicity Prediction in Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weili; Department of Radiation Oncology, the Fourth Affiliated Hospital, China Medical University, Shenyang; Xu, Yaping

    2013-08-01

    Purpose: This study aimed to compare lung dose–volume histogram (DVH) parameters such as mean lung dose (MLD) and the lung volume receiving ≥20 Gy (V20) of commonly used definitions of normal lung in terms of tumor/target subtraction and to determine to what extent they differ in predicting radiation pneumonitis (RP). Methods and Materials: One hundred lung cancer patients treated with definitive radiation therapy were assessed. The gross tumor volume (GTV) and clinical planning target volume (PTV{sub c}) were defined by the treating physician and dosimetrist. For this study, the clinical target volume (CTV) was defined as GTV with 8-mm uniformmore » expansion, and the PTV was defined as CTV with an 8-mm uniform expansion. Lung DVHs were generated with exclusion of targets: (1) GTV (DVH{sub G}); (2) CTV (DVH{sub C}); (3) PTV (DVH{sub P}); and (4) PTV{sub c} (DVH{sub Pc}). The lung DVHs, V20s, and MLDs from each of the 4 methods were compared, as was their significance in predicting radiation pneumonitis of grade 2 or greater (RP2). Results: There are significant differences in dosimetric parameters among the various definition methods (all Ps<.05). The mean and maximum differences in V20 are 4.4% and 12.6% (95% confidence interval 3.6%-5.1%), respectively. The mean and maximum differences in MLD are 3.3 Gy and 7.5 Gy (95% confidence interval, 1.7-4.8 Gy), respectively. MLDs of all methods are highly correlated with each other and significantly correlated with clinical RP2, although V20s are not. For RP2 prediction, on the receiver operating characteristic curve, MLD from DVH{sub G} (MLD{sub G}) has a greater area under curve of than MLD from DVH{sub C} (MLD{sub C}) or DVH{sub P} (MLD{sub P}). Limiting RP2 to 30%, the threshold is 22.4, 20.6, and 18.8 Gy, for MLD{sub G}, MLD{sub C}, and MLD{sub P}, respectively. Conclusions: The differences in MLD and V20 from various lung definitions are significant. MLD from the GTV exclusion method may be more accurate in predicting clinical significant radiation pneumonitis.« less

  2. Impact of endobronchial coiling on segmental bronchial lumen in treated and untreated lung lobes: Correlation with changes in lung volume, clinical and pulmonary function tests.

    PubMed

    Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M

    2016-07-01

    To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p < 0.05) in inspiration and tendency towards enlargement in expiration (p > 0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p < 0.001). Clinical correlation with changes in 6MWT/PFT showed a significant decrease of the inspiratory volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.

  3. Lung volumes and maximal respiratory pressures in collegiate swimmers and runners.

    PubMed

    Cordain, L; Tucker, A; Moon, D; Stager, J M

    1990-03-01

    To determine whether respiratory muscle strength is related to pulmonary volume differences in athletes and nonathletes, 11 intercollegiate female swimmers, 11 female cross-country runners, and two nonathletic control groups, matched to the athletes in height and age, were evaluated for pulmonary parameters including maximal inspiratory pressure (PImax) and maximal expiratory pressure (PEmax). Swimmers exhibited larger (p less than .05) vital capacities (VC), residual lung volumes (RV), inspiratory capacities (IC), and functional residual capacities (FRC) than both the runners or the controls but no difference (p greater than .05) in either PImax or inspiratory flow (FIV 25%-75%). Timed expiratory volumes (FEV 0.5 and FEV 1.0) were significantly (p less than .05) lower in the swimmers than in the controls. These data suggest that an adaptational growth may be responsible, in part, for the augmented static lung volumes demonstrated in swimmers.

  4. Correlation between alveolar ventilation and electrical properties of lung parenchyma.

    PubMed

    Roth, Christian J; Ehrl, Andreas; Becher, Tobias; Frerichs, Inéz; Schittny, Johannes C; Weiler, Norbert; Wall, Wolfgang A

    2015-06-01

    One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.

  5. Optical properties of tissue, experimental results

    NASA Astrophysics Data System (ADS)

    Beek, Johan F.

    1993-08-01

    The effective attenuation coefficient of piglet lung was measured in vitro at 632.8 nm. Interstial fibres with isotropic tips were used to measure the fluence rate as a function of the distance from an isotropic light source. In vitro measurements at 632.8 nm on a lung that was insufflated with oxygen from 50 to 150 ml showed that the effective attenuation coefficient decreases as a function of the volume of air in the lung (at 50 ml /Jeff = 0.297 + 0.011 mnf1, at 100 ml lice 0.150 ± 0.007 mm-1, and at 150 ml /Jeff= 0.1136 + 0.015 mm-1). A single in vitro measurement at 790 nm at an insufflated lung volume of 100 ml gave a comparable result (ii ie = 0.175 + 0.004 mm-1). A ff decrease in effective attenuation coefficient with an ncrease in lung volume was explained by Mie-theory. The effective attenuation coefficient, calculated with 11, and g from Mie-theory, showed a deviation < 22% from the measured in vitro values.

  6. Characteristics of new solid nodules detected in incidence screening rounds of low-dose CT lung cancer screening: the NELSON study.

    PubMed

    Walter, Joan E; Heuvelmans, Marjolein A; Bock, Geertruida H de; Yousaf-Khan, Uraujh; Groen, Harry J M; Aalst, Carlijn M van der; Nackaerts, Kristiaan; Ooijen, Peter M A van; Koning, Harry J de; Vliegenthart, Rozemarijn; Oudkerk, Matthijs

    2018-04-16

    New nodules after baseline are regularly found in low-dose CT lung cancer screening and have a high lung cancer probability. It is unknown whether morphological and location characteristics can improve new nodule risk stratification by size. Solid non-calcified nodules detected during incidence screening rounds of the randomised controlled Dutch-Belgian lung cancer screening (NELSON) trial and registered as new or previously below detection limit (15 mm 3 ) were included. A multivariate logistic regression analysis with lung cancer as outcome was performed, including previously established volume cut-offs (<30 mm 3 , 30-<200 mm 3 and ≥200 mm 3 ) and nodule characteristics (location, distribution, shape, margin and visibility <15 mm 3 in retrospect). Overall, 1280 new nodules were included with 73 (6%) being lung cancer. Of nodules ≥30 mm 3 at detection and visible <15 mm 3 in retrospect, 22% (6/27) were lung cancer. Discrimination based on volume cut-offs (area under the receiver operating characteristic curve (AUC): 0.80, 95% CI 0.75 to 0.84) and continuous volume (AUC: 0.82, 95% CI 0.77 to 0.87) was similar. After adjustment for volume cut-offs, only location in the right upper lobe (OR 2.0, P=0.012), central distribution (OR 2.4, P=0.001) and visibility <15 mm 3 in retrospect (OR 4.7, P=0.003) remained significant predictors for lung cancer. The Hosmer-Lemeshow test (P=0.75) and assessment of bootstrap calibration curves indicated adequate model fit. Discrimination based on the continuous model probability (AUC: 0.85, 95% CI 0.81 to 0.89) was superior to volume cut-offs alone, but when stratified into three risk groups (AUC: 0.82, 95% CI 0.78 to 0.86), discrimination was similar. Contrary to morphological nodule characteristics, growth-independent characteristics may further improve volume-based new nodule lung cancer prediction, but in a three-category stratification approach, this is limited. ISRCTN63545820; pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice

    PubMed Central

    Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan

    2011-01-01

    Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. Methods Mice were ventilated at low tidal volume VT = 8 mL/kg or high tidal volume VT = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cmH2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. Results MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. Conclusions Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and reduce the development of pulmonary inflammation. PMID:21935418

  8. NTCP modelling of lung toxicity after SBRT comparing the universal survival curve and the linear quadratic model for fractionation correction.

    PubMed

    Wennberg, Berit M; Baumann, Pia; Gagliardi, Giovanna; Nyman, Jan; Drugge, Ninni; Hoyer, Morten; Traberg, Anders; Nilsson, Kristina; Morhed, Elisabeth; Ekberg, Lars; Wittgren, Lena; Lund, Jo-Åsmund; Levin, Nina; Sederholm, Christer; Lewensohn, Rolf; Lax, Ingmar

    2011-05-01

    In SBRT of lung tumours no established relationship between dose-volume parameters and the incidence of lung toxicity is found. The aim of this study is to compare the LQ model and the universal survival curve (USC) to calculate biologically equivalent doses in SBRT to see if this will improve knowledge on this relationship. Toxicity data on radiation pneumonitis grade 2 or more (RP2+) from 57 patients were used, 10.5% were diagnosed with RP2+. The lung DVHs were corrected for fractionation (LQ and USC) and analysed with the Lyman- Kutcher-Burman (LKB) model. In the LQ-correction α/β = 3 Gy was used and the USC parameters used were: α/β = 3 Gy, D(0) = 1.0 Gy, [Formula: see text] = 10, α = 0.206 Gy(-1) and d(T) = 5.8 Gy. In order to understand the relative contribution of different dose levels to the calculated NTCP the concept of fractional NTCP was used. This might give an insight to the questions of whether "high doses to small volumes" or "low doses to large volumes" are most important for lung toxicity. NTCP analysis with the LKB-model using parameters m = 0.4, D(50) = 30 Gy resulted for the volume dependence parameter (n) with LQ correction n = 0.87 and with USC correction n = 0.71. Using parameters m = 0.3, D(50) = 20 Gy n = 0.93 with LQ correction and n = 0.83 with USC correction. In SBRT of lung tumours, NTCP modelling of lung toxicity comparing models (LQ,USC) for fractionation correction, shows that low dose contribute less and high dose more to the NTCP when using the USC-model. Comparing NTCP modelling of SBRT data and data from breast cancer, lung cancer and whole lung irradiation implies that the response of the lung is treatment specific. More data are however needed in order to have a more reliable modelling.

  9. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    PubMed

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  10. Analysis of dose-volume parameters predicting radiation pneumonitis in patients with esophageal cancer treated with 3D-conformal radiation therapy or IMRT.

    PubMed

    Kumar, Gaurav; Rawat, Sheh; Puri, Abhishek; Sharma, Manoj Kumar; Chadha, Pranav; Babu, Anand Giri; Yadav, Girigesh

    2012-01-01

    Multimodality therapy for esophageal cancer can cause various kinds of treatment-related sequelae, especially pulmonary toxicities. This prospective study aims to investigate the clinical and dosimetric parameters predicting lung injury in patients undergoing radiation therapy for esophageal cancer. Forty-five esophageal cancer patients were prospectively analyzed. The pulmonary toxicities (or sequelae) were evaluated by comparing chest X-ray films, pulmonary function tests and symptoms caused by pulmonary damage before and after treatment. All patients were treated with either three-dimensional radiotherapy (3DCRT) or with intensity-modulated radiotherapy (IMRT). The planning dose volume histogram was used to compute the lung volumes receiving more than 5, 10, 20 and 30 Gy (V5, V10, V20, V30) and mean lung dose. V20 was larger in the IMRT group than in the 3DCRT group (p = 0.002). V20 (>15%) and V30 (>20%) resulted in a statistically significant increase in the occurrence of chronic pneumonitis (p = 0.03) and acute pneumonitis (p = 0.007), respectively. The study signifies that a larger volume of lung receives lower doses because of multiple beam arrangement and a smaller volume of lung receives higher doses because of better dose conformity in IMRT plans. Acute pneumonitis correlates more with V30 values, whereas chronic pneumonitis was predominantly seen in patients with higher V20 values.

  11. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    PubMed Central

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499

  12. Validation of equations for pleural effusion volume estimation by ultrasonography.

    PubMed

    Hassan, Maged; Rizk, Rana; Essam, Hatem; Abouelnour, Ahmed

    2017-12-01

    To validate the accuracy of previously published equations that estimate pleural effusion volume using ultrasonography. Only equations using simple measurements were tested. Three measurements were taken at the posterior axillary line for each case with effusion: lateral height of effusion ( H ), distance between collapsed lung and chest wall ( C ) and distance between lung and diaphragm ( D ). Cases whose effusion was aspirated to dryness were included and drained volume was recorded. Intra-class correlation coefficient (ICC) was used to determine the predictive accuracy of five equations against the actual volume of aspirated effusion. 46 cases with effusion were included. The most accurate equation in predicting effusion volume was ( H  +  D ) × 70 (ICC 0.83). The simplest and yet accurate equation was H  × 100 (ICC 0.79). Pleural effusion height measured by ultrasonography gives a reasonable estimate of effusion volume. Incorporating distance between lung base and diaphragm into estimation improves accuracy from 79% with the first method to 83% with the latter.

  13. Water Permeability Adjusts Resorption in Lung Epithelia to Increased Apical Surface Liquid Volumes.

    PubMed

    Schmidt, Hanna; Michel, Christiane; Braubach, Peter; Fauler, Michael; Neubauer, Daniel; Thompson, Kristin E; Frick, Manfred; Mizaikoff, Boris; Dietl, Paul; Wittekindt, Oliver H

    2017-03-01

    The apical surface liquid (ASL) layer covers the airways and forms a first line of defense against pathogens. Maintenance of ASL volume by airway epithelia is essential for maintaining lung function. The proteolytic activation of epithelial Na + channels is believed to be the dominating mechanism to cope with increases in ASL volumes. Alternative mechanisms, in particular increases in epithelial osmotic water permeability (P osm ), have so far been regarded as rather less important. However, most studies mainly addressed immediate effects upon apical volume expansion (AVE) and increases in ASL. This study addresses the response of lung epithelia to long-term AVE. NCI-H441 cells and primary human tracheal epithelial cells, both cultivated in air-liquid interface conditions, were used as models for the lung epithelium. AVE was established by adding isotonic solution to the apical surface of differentiated lung epithelia, and time course of ASL volume restoration was assessed by the deuterium oxide dilution method. Concomitant ion transport was investigated in Ussing chambers. We identified a low resorptive state immediately after AVE, which coincided with proteolytic ion transport activation within 10-15 minutes after AVE. The main clearance of excess ASL occurred during a delayed (hours after AVE) high resorptive state, which did not correlate with ion transport activation. Instead, high resorptive state onset coincided with an increase in P osm , which depended on aquaporin up-regulation. In summary, our data demonstrate that, aside from ion transport activation, modulation of P osm is a major mechanism to compensate for long-term AVE in lung epithelia.

  14. Impact of obstructive sleep apnea on lung volumes and mechanical properties of the respiratory system in overweight and obese individuals.

    PubMed

    Abdeyrim, Arikin; Zhang, Yongping; Li, Nanfang; Zhao, Minghua; Wang, Yinchun; Yao, Xiaoguang; Keyoumu, Youledusi; Yin, Ting

    2015-07-25

    Even through narrowing of the upper-airway plays an important role in the generation of obstructive sleep apnea (OSA), the peripheral airways is implicated in pre-obese and obese OSA patients, as a result of decreased lung volume and increased lung elastic recoil pressure, which, in turn, may aggravate upper-airway collapsibility. A total of 263 male (n = 193) and female (n = 70) subjects who were obese to various degrees without a history of lung diseases and an expiratory flow limitation, but troubled with snoring or suspicion of OSA were included in this cross-sectional study. According to nocturnal-polysomnography the subjects were distributed into OSA and non-OSA groups, and were further sub-grouped by gender because of differences between males and females, in term of, lung volume size, airway resistance, and the prevalence of OSA among genders. Lung volume and respiratory mechanical properties at different-frequencies were evaluated by plethysmograph and an impulse oscillation system, respectively. Functional residual capacity (FRC) and expiratory reserve volume were significantly decreased in the OSA group compared to the non-OSA group among males and females. As weight and BMI in males in the OSA group were greater than in the non-OSA group (90 ± 14.8 kg vs. 82 ± 10.4 kg, p < 0.001; 30.5 ± 4.2 kg/m(2) vs. 28.0 ± 3.0 kg/m(2), p < 0.001), multiple regression analysis was required to adjust for BMI or weight and demonstrated that these lung volumes decreases were independent from BMI and associated with the severity of OSA. This result was further confirmed by the female cohort. Significant increases in total respiratory resistance and decreases in respiratory conductance (Grs) were observed with increasing severity of OSA, as defined by the apnea-hypopnea index (AHI) in both genders. The specific Grs (sGrs) stayed relatively constant between the two groups in woman, and there was only a weak association between AHI and sGrs among man. Multiple-stepwise-regression showed that reactance at 5 Hz was highly correlated with AHI in males and females or hypopnea index in females, independently-highly correlated with peripheral-airway resistance and significantly associated with decreasing FRC. Total respiratory resistance and peripheral airway resistance significantly increase, and its inverse Grs decrease, in obese patients with OSA in comparison with those without OSA, and are independently associated with OSA severity. These results might be attributed to the abnormally increased lung elasticity recoil pressure on exhalation, due to increase in lung elasticity and decreased lung volume in obese OSA.

  15. Spirometry (image)

    MedlinePlus

    Spirometry is a painless study of air volume and flow rate within the lungs. Spirometry is frequently used to evaluate lung function in people with obstructive or restrictive lung diseases such as asthma or cystic fibrosis.

  16. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food...

  17. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  18. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  19. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  20. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  1. From the Journal archives: Airway closure and lung volumes in surgical positions.

    PubMed

    Grocott, Hilary P

    2014-04-01

    Douglas B. Craig, W.M. Wahba, Hillary Don Can Anaesth Soc J 1971; 18: 92-9. Surgery and anesthesia expose patients to moderate and sometimes extreme positioning changes that are often unphysiological. The purpose of this article is to highlight and contextualize a seminal study from the Journal archives that explores the effect of several commonly utilized surgical positions (supine, Trendelenburg and lithotomy) and age on basic lung volumes as well as the volume at which small airway closure (AC) (also known as closing volume [CV]) occurs. These factors were examined with the aim of determining which patient position variables could be of clinical significance to gas exchange in the perioperative period. This work showed that supine positioning, when compared with the seated position, results in a decrease of all lung volumes and capacities, including functional residual capacity (FRC) and CV. Trendelenburg positioning further decreases FRC, with no further changes induced by lithotomy positioning. Age is a clinically important factor in AC, occurring within the tidal volume range at a lower age when supine as compared with the seated position. The work of Drs. D. Craig et al. published in the Journal more than 40 years ago was seminal to our understanding of how patient positioning has an important influence on lung volumes and on the age-related relationship between FRC and CV.

  2. Lung densitometry: why, how and when

    PubMed Central

    Camiciottoli, Gianna; Diciotti, Stefano

    2017-01-01

    Lung densitometry assesses with computed tomography (CT) the X-ray attenuation of the pulmonary tissue which reflects both the degree of inflation and the structural lung abnormalities implying decreased attenuation, as in emphysema and cystic diseases, or increased attenuation, as in fibrosis. Five reasons justify replacement with lung densitometry of semi-quantitative visual scales used to measure extent and severity of diffuse lung diseases: (I) improved reproducibility; (II) complete vs. discrete assessment of the lung tissue; (III) shorter computation times; (IV) better correlation with pathology quantification of pulmonary emphysema; (V) better or equal correlation with pulmonary function tests (PFT). Commercially and open platform software are available for lung densitometry. It requires attention to technical and methodological issues including CT scanner calibration, radiation dose, and selection of thickness and filter to be applied to sections reconstructed from whole-lung CT acquisition. Critical is also the lung volume reached by the subject at scanning that can be measured in post-processing and represent valuable information per se. The measurements of lung density include mean and standard deviation, relative area (RA) at −970, −960 or −950 Hounsfield units (HU) and 1st and 15th percentile for emphysema in inspiratory scans, and RA at −856 HU for air trapping in expiratory scans. Kurtosis and skewness are used for evaluating pulmonary fibrosis in inspiratory scans. The main indication for lung densitometry is assessment of emphysema component in the single patient with chronic obstructive pulmonary diseases (COPD). Additional emerging applications include the evaluation of air trapping in COPD patients and in subjects at risk of emphysema and the staging in patients with lymphangioleiomyomatosis (LAM) and with pulmonary fibrosis. It has also been applied to assess prevalence of smoking-related emphysema and to monitor progression of smoking-related emphysema, alpha1 antitrypsin deficiency emphysema, and pulmonary fibrosis. Finally, it is recommended as end-point in pharmacological trials of emphysema and lung fibrosis. PMID:29221318

  3. No effect of artificial gravity on lung function with exercise training during head-down bed rest

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Guo, Yinghua; Wang, Yajuan; Wang, Delong; Liu, Changting

    2016-04-01

    The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.

  4. Optimizing lung aeration at birth using a sustained inflation and positive pressure ventilation in preterm rabbits

    PubMed Central

    te Pas, Arjan B.; Kitchen, Marcus J.; Lee, Katie; Wallace, Megan J.; Fouras, Andreas; Lewis, Robert A.; Yagi, Naoto; Uesugi, Kentaro; Hooper, Stuart B.

    2016-01-01

    Background: A sustained inflation (SI) facilitates lung aeration, but the most effective pressure and duration are unknown. We investigated the effect of gestational age (GA) and airway liquid volume on the required inflation pressure and SI duration. Methods: Rabbit kittens were delivered at 27, 29, and 30 d gestation, intubated and airway liquid was aspirated. Either no liquid (control) or 30 ml/kg of liquid was returned to the airways. Lung gas volumes were measured by plethysmography and phase-contrast X-ray-imaging. Starting at 22 cmH2O, airway pressure was increased until airflow commenced and pressure was then held constant. The SI was truncated when 20 ml/kg air had entered the lung and ventilation continued with intermittent positive pressure ventilation (iPPV). Results: Higher SI pressures and longer durations were required in 27-d kittens compared to 30-d kittens. During iPPV, 27-d kittens needed higher pressures and had lower functional residual capacity (FRC) compared to 30-d kittens. Adding lung liquid increased SI duration, reduced FRC, and increased resistance and pressures during iPPV in 29- and 30-d kittens. Conclusion: Immature kittens required higher starting pressures and longer SI durations to achieve a set inflation volume. Larger airway liquid volumes adversely affected lung function during iPPV in older but not young kittens. PMID:26991259

  5. Bronchoscopic Lung Volume Reduction with Endobronchial Valves in Low-FEV1 Patients.

    PubMed

    Darwiche, Kaid; Karpf-Wissel, Rüdiger; Eisenmann, Stephan; Aigner, Clemens; Welter, Stefan; Zarogoulidis, Paul; Hohenforst-Schmidt, Wolfgang; Freitag, Lutz; Oezkan, Filiz

    2016-01-01

    Bronchoscopic lung volume reduction (BLVR) with valves has been shown to improve lung function, exercise capacity, and quality of life in patients with emphysema, but only few patients with forced expiratory volume in 1 s (FEV1) ≤20% predicted have been included in former studies. Although the procedure can be performed safely, pneumothorax is a frequent complication, which can be critical for these very severely diseased patients. The aim of the study was to assess the safety of BLVR in patients with a very advanced stage of emphysema, as indicated by FEV1 ≤20% predicted. Patients in whom BLVR was performed between January 2013 and August 2015 were included in this analysis if their baseline predicted FEV1 was ≤20%. BLVR, performed only if collateral ventilation was absent, achieved complete occlusion of the target lobe. All patients were closely monitored and were not discharged before the fourth day after BLVR. Twenty patients with FEV1 ≤20% predicted were included in the analysis. Lung volume reduction was achieved in 65% of the cases. Pneumothorax occurred in 4 cases (20%). No patient died. Lung function and exercise tolerance improved after 1 and 3 months, respectively. BLVR with valves can be safely performed in patients with FEV1 ≤20% predicted when close postprocedural monitoring is provided. Improvement in lung function and exercise capacity can be achieved. © 2016 S. Karger AG, Basel.

  6. Computerised lung sound monitoring to assess effectiveness of chest physiotherapy and secretion removal: a feasibility study.

    PubMed

    Ntoumenopoulos, G; Glickman, Y

    2012-09-01

    To explore the feasibility of computerised lung sound monitoring to evaluate secretion removal in intubated and mechanically ventilated adult patients. Before and after observational investigation. Intensive care unit. Fifteen intubated and mechanically ventilated adult patients receiving chest physiotherapy. Chest physiotherapy included combinations of standard closed airway suctioning, saline lavage, postural drainage, chest wall vibrations, manual-assisted cough and/or lung hyperinflation, dependent upon clinical indications. Lung sound amplitude at peak inspiration was assessed using computerised lung sound monitoring. Measurements were performed immediately before and after chest physiotherapy. Data are reported as mean [standard deviation (SD)], mean difference and 95% confidence intervals (CI). Significance testing was not performed due to the small sample size and the exploratory nature of the study. Fifteen patients were included in the study [11 males, four females, mean age 65 (SD 14) years]. The mean total lung sound amplitude at peak inspiration decreased two-fold from 38 (SD 59) units before treatment to 17 (SD 19) units after treatment (mean difference 22, 95% CI of difference -3 to 46). The mean total lung sound amplitude from the lungs of patients with a large amount of secretions (n=9) was over four times 'louder' than the lungs of patients with a moderate or small amount of secretions (n=6) [56 (SD 72) units vs 12 (13) units, respectively; mean difference -44, 95% CI of difference -100 to 11]. The mean total lung sound amplitude decreased in the group of 'loud' right and left lungs (n=15) from 37 (SD 36) units before treatment to 15 (SD 13) units after treatment (mean difference 22, 95% CI of difference 6 to 38). Computerised lung sound monitoring in this small group of patients demonstrated a two-fold decrease in lung sound amplitude following chest physiotherapy. Subgroup analysis also demonstrated decreasing trends in lung sound amplitude in the group of 'loud' lungs following chest physiotherapy. Due to the small sample size and large SDs with high variability in the lung sound amplitude measurements, significance testing was not reported. Further investigation is needed in a larger sample of patients with more accurate measurement of sputum wet weight in order to distinguish between secretion-related effects and changes due to other factors such as airflow rate and pattern. Copyright © 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  7. Anatomical pulmonary magnetic resonance imaging segmentation for regional structure-function measurements of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, F.; Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9; Svenningsen, S.

    Purpose: Pulmonary magnetic-resonance-imaging (MRI) and x-ray computed-tomography have provided strong evidence of spatially and temporally persistent lung structure-function abnormalities in asthmatics. This has generated a shift in their understanding of lung disease and supports the use of imaging biomarkers as intermediate endpoints of asthma severity and control. In particular, pulmonary {sup 1}H MRI can be used to provide quantitative lung structure-function measurements longitudinally and in response to treatment. However, to translate such biomarkers of asthma, robust methods are required to segment the lung from pulmonary {sup 1}H MRI. Therefore, their objective was to develop a pulmonary {sup 1}H MRI segmentationmore » algorithm to provide regional measurements with the precision and speed required to support clinical studies. Methods: The authors developed a method to segment the left and right lung from {sup 1}H MRI acquired in 20 asthmatics including five well-controlled and 15 severe poorly controlled participants who provided written informed consent to a study protocol approved by Health Canada. Same-day spirometry and plethysmography measurements of lung function and volume were acquired as well as {sup 1}H MRI using a whole-body radiofrequency coil and fast spoiled gradient-recalled echo sequence at a fixed lung volume (functional residual capacity + 1 l). We incorporated the left-to-right lung volume proportion prior based on the Potts model and derived a volume-proportion preserved Potts model, which was approximated through convex relaxation and further represented by a dual volume-proportion preserved max-flow model. The max-flow model led to a linear problem with convex and linear equality constraints that implicitly encoded the proportion prior. To implement the algorithm, {sup 1}H MRI was resampled into ∼3 × 3 × 3 mm{sup 3} isotropic voxel space. Two observers placed seeds on each lung and on the background of 20 pulmonary {sup 1}H MR images in a randomized dataset, on five occasions, five consecutive days in a row. Segmentation accuracy was evaluated using the Dice-similarity-coefficient (DSC) of the segmented thoracic cavity with comparison to five-rounds of manual segmentation by an expert observer. The authors also evaluated the root-mean-squared-error (RMSE) of the Euclidean distance between lung surfaces, the absolute, and percent volume error. Reproducibility was measured using the coefficient of variation (CoV) and intraclass correlation coefficient (ICC) for two observers who repeated segmentation measurements five-times. Results: For five well-controlled asthmatics, forced expiratory volume in 1 s (FEV{sub 1})/forced vital capacity (FVC) was 83% ± 7% and FEV{sub 1} was 86 ± 9%{sub pred}. For 15 severe, poorly controlled asthmatics, FEV{sub 1}/FV C = 66% ± 17% and FEV{sub 1} = 72 ± 27%{sub pred}. The DSC for algorithm and manual segmentation was 91% ± 3%, 92% ± 2% and 91% ± 2% for the left, right, and whole lung, respectively. RMSE was 4.0 ± 1.0 mm for each of the left, right, and whole lung. The absolute (percent) volume errors were 0.1 l (∼6%) for each of right and left lung and ∼0.2 l (∼6%) for whole lung. Intra- and inter-CoV (ICC) were <0.5% (>0.91%) for DSC and <4.5% (>0.93%) for RMSE. While segmentation required 10 s including ∼6 s for user interaction, the smallest detectable difference was 0.24 l for algorithm measurements which was similar to manual measurements. Conclusions: This lung segmentation approach provided the necessary and sufficient precision and accuracy required for research and clinical studies.« less

  8. A bench evaluation of fraction of oxygen in air delivery and tidal volume accuracy in home care ventilators available for hospital use

    PubMed Central

    Baboi, Loredana; Subtil, Fabien

    2016-01-01

    Background Turbine-powered ventilators are not only designed for long-term ventilation at home but also for hospital use. It is important to verify their capabilities in delivering fraction of oxygen in air (FIO2) and tidal volume (VT). Methods We assessed the FIO2 accuracy and the VT delivery in four home care ventilators (HCV) on the bench. The four HCV were Astral 150, Elisée 150, Monnal T50 and Trilogy 200 HCV, which were connected to a lung model (ASL 5000). For assessing FIO2 accuracy, lung model was set to mimic an obstructive lung and HCV were set in volume controlled mode (VC). They supplied with air, 3 or 15 L/min oxygen and FIO2 was measured by using a ventilator tester (Citrex H4TM). For the VT accuracy, the lung model was set in a way to mimic three adult configurations (normal, obstructive, or restrictive respiratory disorder) and one pediatric configuration. Each HCV was set in VC. Two VT (300 and 500 mL) in adult lung configuration and one 50 mL VT in pediatric lung configuration, at two positive end expiratory pressures 5 and 10 cmH2O, were tested. VT accuracy was measured as volume error (the relative difference between set and measured VT). Statistical analysis was performed by suing one-factor ANOVA with a Bonferroni correction for multiple tests. Results For Astral 150, Elisée 150, Monnal T50 and Trilogy 200, FIO2 averaged 99.2%, 93.7%, 86.3%, and 62.1%, respectively, at 15 L/min oxygen supplementation rate (P<0.001). Volume error was 0.5%±0%, −38%±0%, −9%±0%, −29%±0% and −36%±0% for pediatric lung condition (P<0.001). In adult lung configurations, Monnal T50 systematically over delivered VT and Trilogy 150 was sensitive to lung configuration when VT was set to 300 mL at either positive end-expiratory pressure (PEEP). Conclusions HCV are different in terms of FIO2 efficiency and VT delivery. PMID:28149559

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Nieto, Beatriz, E-mail: bsanchez@fis.puc.cl; Goset, Karen C.; Caviedes, Ivan

    Purpose: To propose multivariate predictive models for changes in pulmonary function tests ({Delta}PFTs) with respect to preradiotherapy (pre-RT) values in patients undergoing RT for breast cancer and lymphoma. Methods and Materials: A prospective study was designed to measure {Delta}PFTs of patients undergoing RT. Sixty-six patients were included. Spirometry, lung capacity (measured by helium dilution), and diffusing capacity of carbon monoxide tests were used to measure lung function. Two lung definitions were considered: paired lung vs. irradiated lung (IL). Correlation analysis of dosimetric parameters (mean lung dose and the percentage of lung volume receiving more than a threshold dose) and {Delta}PFTsmore » was carried out to find the best dosimetric predictor. Chemotherapy, age, smoking, and the selected dose-volume parameter were considered as single and interaction terms in a multivariate analysis. Stability of results was checked by bootstrapping. Results: Both lung definitions proved to be similar. Modeling was carried out for IL. Acute and late damage showed the highest correlations with volumes irradiated above {approx}20 Gy (maximum R{sup 2} = 0.28) and {approx}40 Gy (maximum R{sup 2} = 0.21), respectively. RT alone induced a minor and transitory restrictive defect (p = 0.013). Doxorubicin-cyclophosphamide-paclitaxel (Taxol), when administered pre-RT, induced a late, large restrictive effect, independent of RT (p = 0.031). Bootstrap values confirmed the results. Conclusions: None of the dose-volume parameters was a perfect predictor of outcome. Thus, different predictor models for {Delta}PFTs were derived for the IL, which incorporated other nondosimetric parameters mainly through interaction terms. Late {Delta}PFTs seem to behave more serially than early ones. Large restrictive defects were demonstrated in patients pretreated with doxorubicin-cyclophosphamide-paclitaxel.« less

  10. Biomarkers for radiation pneumonitis using non-invasive molecular imaging

    PubMed Central

    Medhora, Meetha; Haworth, Steven; Liu, Yu; Narayanan, Jayashree; Gao, Feng; Zhao, Ming; Audi, Said; Jacobs, Elizabeth R.; Fish, Brian L.; Clough, Anne V.

    2016-01-01

    Rationale Our goal is to develop minimally-invasive biomarkers for predicting radiation-induced lung injury before symptoms develop. Currently there are no biomarkers that can predict radiation pneumonitis. Radiation damage to the whole lung is a serious risk in nuclear accidents or in case of radiological terrorism. Our previous studies have shown a single dose of 15 Gy X-rays to the thorax causes severe pneumonitis in rats by 6–8 weeks. We have also developed a mitigator for radiation pneumonitis and fibrosis that can be started as late as 5 weeks after radiation. Methods We used two functional single photon emission computed tomography (SPECT) probes in vivo in irradiated rat lungs. Regional pulmonary perfusion was measured by injection of technetium labeled macroaggregated albumin (99mTc-MAA). Perfused volume was determined by comparing the volume of distribution of 99mTc-MAA to the anatomical lung volume obtained by micro-CT. A second probe, technetium labeled duramycin that binds to apoptotic cells, was used to measure pulmonary cell death in the same rat model. Results Perfused volume of lung was decreased by ~25% at 1, 2 and 3 weeks after 15 Gy and 99mTc-duramycin uptake was more than doubled at 2 and 3 weeks. There was no change in body weight, breathing rate or lung histology between irradiated and non-irradiated rats at these times. Pulmonary vascular resistance and vascular permeability measured in isolated perfused lungs ex vivo increased at 2 weeks after 15 Gy. Principal conclusions Our results suggest the potential for SPECT biomarkers for predicting radiation injury to the lungs before substantial functional or histological damage is observed. Early prediction of radiation pneumonitis will benefit those receiving radiation in the context of therapy, accidents or terrorism in time to initiate mitigation. PMID:27033892

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Susan L.; Liu, H. Helen; Wang, Shulian

    Purpose: The aim of this study was to investigate the effect of radiation dose distribution in the lung on the risk of postoperative pulmonary complications among esophageal cancer patients. Methods and Materials: We analyzed data from 110 patients with esophageal cancer treated with concurrent chemoradiotherapy followed by surgery at our institution from 1998 to 2003. The endpoint for analysis was postsurgical pneumonia or acute respiratory distress syndrome. Dose-volume histograms (DVHs) and dose-mass histograms (DMHs) for the whole lung were used to fit normal-tissue complication probability (NTCP) models, and the quality of fits were compared using bootstrap analysis. Results: Normal-tissue complicationmore » probability modeling identified that the risk of postoperative pulmonary complications was most significantly associated with small absolute volumes of lung spared from doses {>=}5 Gy (VS5), that is, exposed to doses <5 Gy. However, bootstrap analysis found no significant difference between the quality of this model and fits based on other dosimetric parameters, including mean lung dose, effective dose, and relative volume of lung receiving {>=}5 Gy, probably because of correlations among these factors. The choice of DVH vs. DMH or the use of fractionation correction did not significantly affect the results of the NTCP modeling. The parameter values estimated for the Lyman NTCP model were as follows (with 95% confidence intervals in parentheses): n = 1.85 (0.04, {infinity}), m = 0.55 (0.22, 1.02), and D {sub 5} = 17.5 Gy (9.4 Gy, 102 Gy). Conclusions: In this cohort of esophageal cancer patients, several dosimetric parameters including mean lung dose, effective dose, and absolute volume of lung receiving <5 Gy provided similar descriptions of the risk of postoperative pulmonary complications as a function of Radiation dose distribution in the lung.« less

  12. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    PubMed

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-06-01

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Function in patients with chronic fibrocavernous tuberculosis].

    PubMed

    Nefedov, V B; Popova, L A; Shergina, E A

    2008-01-01

    Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/VC%, PEF, MEF25, MEF50, MEF75, TLC, TGV, residual volume (RV), R(aw), R(in), R(ex), DLCO-SB, DLCO-SS, PaO2, and PaCO2 were determined in 62 patients with chronic fibrocavernous tuberculosis. Lung dysfunctions were detected in 96.8% of the patients. Changes in lung volumes and capacities were found in 90.3%, impaired bronchial patency was in 90.3%, and pulmonary gas exchange dysfunction was in 79.0%. The lung volume and capacity changes appeared as decreased VC and FVC, decreased and increased TLC, TGV, RV; impaired bronchial patency presented as decreased PEF, MEF25, MEF50, MEF75, and FEV1/VC%; and increased R(aw), R(in), R(ex); pulmonary gas exchange dysfunction manifested itself as reduced DLCO-SB, DLCO-SS, PaO2, and decreased and increased PaCO2. The magnitude of the observed functional changes ranges from slight to significant and drastic with a predominance of considerable and drastic changes in lung volumes and capacities and mild impairments of bronchial patency and pulmonary gas exchange function.

  14. Mathematics of Ventilator-induced Lung Injury.

    PubMed

    Rahaman, Ubaidur

    2017-08-01

    Ventilator-induced lung injury (VILI) results from mechanical disruption of blood-gas barrier and consequent edema and releases of inflammatory mediators. A transpulmonary pressure (P L ) of 17 cmH 2 O increases baby lung volume to its anatomical limit, predisposing to VILI. Viscoelastic property of lung makes pulmonary mechanics time dependent so that stress (P L ) increases with respiratory rate. Alveolar inhomogeneity in acute respiratory distress syndrome acts as a stress riser, multiplying global stress at regional level experienced by baby lung. Limitation of stress (P L ) rather than strain (tidal volume [V T ]) is the safe strategy of mechanical ventilation to prevent VILI. Driving pressure is the noninvasive surrogate of lung strain, but its relations to P L is dependent on the chest wall compliance. Determinants of lung stress (V T , driving pressure, positive end-expiratory pressure, and inspiratory flow) can be quantified in terms of mechanical power, and a safe threshold can be determined, which can be used in decision-making between safe mechanical ventilation and extracorporeal lung support.

  15. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  16. Linear dimensions and volumes of human lungs

    DOE PAGES

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does notmore » improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.« less

  17. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. K.; Guy, Harold J. B.; Elliott, Ann R.; Deutschman, Robert A., III; West, John B.

    1993-01-01

    We measured pulmonary diffusing capacity (DL), diffusing capacity per unit lung volume, pulmonary capillary blood volume (Vc), membrane diffusing capacity (Dm), pulmonary capillary blood flow or cardiac output (Qc), and cardiac stroke volume (SV) in four subjects exposed to nine days of microgravity. DL in microgravity was elevated compared with preflight standing values and was higher than preflight supine because of the elevation of both Vc and Dm. The elevation in Vc was comparable to that measured supine in 1 G, but the increase in Dm was in sharp contrast to the supine value. We postulate that, in 0 G, pulmonary capillary blood is evenly distributed throughout the lung, providing for uniform capillary filling, leading to an increase in the surface area available for diffusion. By contrast, in the supine 1-G state, the capillaries are less evenly filled, and although a similar increase in blood volume is observed, the corresponding increase in surface area does not occur. DL and its subdivisions showed no adaptive changes from the first measurement 24 h after the start of 0 G to eight days later. Similarly, there were no trends in the postflight data, suggesting that the principal mechanism of these changes was gravitational. The increase in Dm suggests that subclinical pulmonary edema did not result from exposure to 0 G. Qc was modestly increased inflight and decreased postflight compared with preflight standing. Compared with preflight standing, SV was increased 46 percent inflight and decreased 14 percent in the 1st week postflight. There were temporal changes in Qc and SV during 0 G, with the highest values recorded at the first measurement, 24 h into the flight. The lowest values of Qc and SV occurred on the day of return.

  18. Synchrotron X-ray imaging of pulmonary alveoli in respiration in live intact mice.

    PubMed

    Chang, Soeun; Kwon, Namseop; Kim, Jinkyung; Kohmura, Yoshiki; Ishikawa, Tetsuya; Rhee, Chin Kook; Je, Jung Ho; Tsuda, Akira

    2015-03-04

    Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray microscopy. Our studies, for the first time, determine the alveolar size of normal mice in respiration without positive end expiratory pressure as 58 ± 14 (mean ± s.d.) μm on average, accurately measured in the lung bases as well as the apices. Individual alveoli of normal lungs clearly show heterogeneous inflation from zero to ~25% (6.7 ± 4.7% (mean ± s.d.)) in size. The degree of inflation is higher in the lung bases (8.7 ± 4.3% (mean ± s.d.)) than in the apices (5.7 ± 3.2% (mean ± s.d.)). The fraction of the total tidal volume allocated for alveolar inflation is 34 ± 3.8% (mean ± s.e.m). This study contributes to the better understanding of alveolar dynamics and helps to develop potential treatment options for pulmonary diseases.

  19. Dose-mass inverse optimization for minimally moving thoracic lesions

    NASA Astrophysics Data System (ADS)

    Mihaylov, I. B.; Moros, E. G.

    2015-05-01

    In the past decade, several different radiotherapy treatment plan evaluation and optimization schemes have been proposed as viable approaches, aiming for dose escalation or an increase of healthy tissue sparing. In particular, it has been argued that dose-mass plan evaluation and treatment plan optimization might be viable alternatives to the standard of care, which is realized through dose-volume evaluation and optimization. The purpose of this investigation is to apply dose-mass optimization to a cohort of lung cancer patients and compare the achievable healthy tissue sparing to that one achievable through dose-volume optimization. Fourteen non-small cell lung cancer (NSCLC) patient plans were studied retrospectively. The range of tumor motion was less than 0.5 cm and motion management in the treatment planning process was not considered. For each case, dose-volume (DV)-based and dose-mass (DM)-based optimization was performed. Nine-field step-and-shoot IMRT was used, with all of the optimization parameters kept the same between DV and DM optimizations. Commonly used dosimetric indices (DIs) such as dose to 1% the spinal cord volume, dose to 50% of the esophageal volume, and doses to 20 and 30% of healthy lung volumes were used for cross-comparison. Similarly, mass-based indices (MIs), such as doses to 20 and 30% of healthy lung masses, 1% of spinal cord mass, and 33% of heart mass, were also tallied. Statistical equivalence tests were performed to quantify the findings for the entire patient cohort. Both DV and DM plans for each case were normalized such that 95% of the planning target volume received the prescribed dose. DM optimization resulted in more organs at risk (OAR) sparing than DV optimization. The average sparing of cord, heart, and esophagus was 23, 4, and 6%, respectively. For the majority of the DIs, DM optimization resulted in lower lung doses. On average, the doses to 20 and 30% of healthy lung were lower by approximately 3 and 4%, whereas lung volumes receiving 2000 and 3000 cGy were lower by 3 and 2%, respectively. The behavior of MIs was very similar. The statistical analyses of the results again indicated better healthy anatomical structure sparing with DM optimization. The presented findings indicate that dose-mass-based optimization results in statistically significant OAR sparing as compared to dose-volume-based optimization for NSCLC. However, the sparing is case-dependent and it is not observed for all tallied dosimetric endpoints.

  20. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  1. The effect of low level laser therapy on ventilator-induced lung injury in mice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szabari, Margit V.; Miller, Alyssa J.; Hariri, Lida P.; Hamblin, Michael R.; Musch, Guido; Stroh, Helene; Suter, Melissa J.

    2016-03-01

    Although mechanical ventilation (MV) is necessary to support gas exchange in critically ill patients, it can contribute to the development of lung injury and multiple organ dysfunction. It is known that high tidal volume (Vt) MV can cause ventilator-induced lung injury (VILI) in healthy lungs and increase the mortality of patients with Acute Respiratory Distress Syndrome. Low level laser therapy (LLLT) has demonstrated to have anti-inflammatory effects. We investigated whether LLLT could alleviate inflammation from injurious MV in mice. Adult mice were assigned to 2 groups: VILI+LLLT group (3 h of injurious MV: Vt=25-30 ml/kg, respiratory rate (RR)=50/min, positive end-expiratory pressure (PEEP)=0 cmH20, followed by 3 h of protective MV: Vt=9 ml/kg, RR=140/min, PEEP=2 cmH20) and VILI+no LLLT group. LLLT was applied during the first 30 min of the MV (810 nm LED system, 5 J/cm2, 1 cm above the chest). Respiratory impedance was measured in vivo with forced oscillation technique and lung mechanics were calculated by fitting the constant phase model. At the end of the MV, bronchoalveolar lavage (BAL) was performed and inflammatory cells counted. Lungs were removed en-bloc and fixed for histological evaluation. We hypothesize that LLLT can reduce lung injury and inflammation from VILI. This therapy could be translated into clinical practice, where it can potentially improve outcomes in patients requiring mechanical ventilation in the operating room or in the intensive care units.

  2. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed themore » dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late RILD are also due to different pathologies. As such, new radiation techniques reducing irradiated volume might change the dose-limiting toxicity of the radiation therapy treatment.« less

  3. Insights into Ventilatory Inhomogeneity from Respiratory Measurements on Spacelab Mission D-2

    NASA Technical Reports Server (NTRS)

    Paiva, Manuel; Verbanck, Sylvia; Linnarsson, Dag; Prisk, Kim; West, John B.

    1996-01-01

    The relative contributions of inter-regional and intra-regional ventilation inhomogeneities of Spacelab astronauts are studied. The classical theory of ventilation distribution in the lung is that the top-to-bottom (inter-regional) ventilation inhomogeneities are primarily gravity dependent, whereas the peripheral (intra-regional) ventilation distribution is gravity independent. Argon rebreathing tests showed that gravity independent specific ventilation (ventilation per unit volume) inhomogeneities are at least as large as gravity dependent ones. Single breath tests with helium and sulfur hexafluoride showed the different sensitivity of these gases to microgravity.

  4. SU-F-BRD-01: A Novel 4D Robust Optimization Mitigates Interplay Effect in Intensity-Modulated Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Shen, J; Stoker, J

    2015-06-15

    Purpose: To compare the impact of interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans to treat lung cancer. Methods: Two IMPT plans were created for 11 non-small-cell-lung-cancer cases with 6–14 mm spots. 3D robust optimization generated plans on average CTs with the internal gross tumor volume density overridden to deliver 66 CGyE in 33 fractions to the internal target volume (ITV). 4D robust optimization generated plans on 4D CTs with the delivery of prescribed dose to the clinical target volume (CTV). In 4D optimization, the CTV of individual 4D CT phases received non-uniform doses tomore » achieve a uniform cumulative dose. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Indices from dose-volume histograms were used to compare target coverage, dose homogeneity, and normal-tissue sparing. DVH indices were compared using Wilcoxon test. Results: Given the presence of interplay effect, 4D robust optimization produced IMPT plans with better target coverage and homogeneity, but slightly worse normal tissue sparing compared to 3D robust optimization (unit: Gy) [D95% ITV: 63.5 vs 62.0 (p=0.014), D5% - D95% ITV: 6.2 vs 7.3 (p=0.37), D1% spinal cord: 29.0 vs 29.5 (p=0.52), Dmean total lung: 14.8 vs 14.5 (p=0.12), D33% esophagus: 33.6 vs 33.1 (p=0.28)]. The improvement of target coverage (D95%,4D – D95%,3D) was related to the ratio RMA3/(TVx10−4), with RMA and TV being respiratory motion amplitude (RMA) and tumor volume (TV), respectively. Peak benefit was observed at ratios between 2 and 10. This corresponds to 125 – 625 cm3 TV with 0.5-cm RMA. Conclusion: 4D optimization produced more interplay-effect-resistant plans compared to 3D optimization. It is most effective when respiratory motion is modest compared to TV. NIH/NCI K25CA168984; Eagles Cancer Research Career Development; The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research; Mayo ASU Seed Grant; The Kemper Marley Foundation.« less

  5. Microgravity and the lung

    NASA Technical Reports Server (NTRS)

    West, John B.

    1991-01-01

    Results are presented from studies of the effect of microgravity on the lungs of rats flown on the Cosmos 2044 mission, and from relevant laboratory experiments. The effects of microgravity fall into five categories: topographical structure and function, the lung volumes and mechanics, the intrathoracic blood pressures and volumes, the pulmonary deposition of aerosol, and denitrogenaton during EVA. The ultrastructure of the left lungs of rats flown for 14 days on the Cosmos 2044 spacecraft and that of some tail-suspended rats disclosed presence of red blood cells in the alveolar spaces, indicating that pulmonary hemorrhage and pulmonary edema occurred in these rats. Possible causes for this phenomenon are discussed.

  6. Role of Airway Recruitment and Derecruitment in Lung Injury

    PubMed Central

    Ghadiali, S. N.; Huang, Y.

    2011-01-01

    The mechanical forces generated during the ventilation of patients with acute lung injury causes significant lung damage and inflammation. Low-volume ventilation protocols are commonly used to prevent stretch-related injury that occurs at high lung volumes. However, the cyclic closure and reopening of pulmonary airways at low lung volumes, i.e., derecruitment and recruitment, also causes significant lung damage and inflammation. In this review, we provide an overview of how biomedical engineering techniques are being used to elucidate the complex physiological and biomechanical mechanisms responsible for cellular injury during recruitment/derecruitment. We focus on the development of multiscale, multiphysics computational models of cell deformation and injury during airway reopening. These models, and the corresponding in vitro experiments, have been used to both elucidate the basic mechanisms responsible for recruitment/derecruitment injury and to develop alternative therapies that make the epithelium more resistant to injury. For example, models and experiments indicate that fluidization of the cytoskeleton is cytoprotective and that changes in cytoskeletal structure and cell mechanics can be used to mitigate the mechanotransduction of oscillatory pressure into inflammatory signaling. The continued application of biomedical engineering techniques to the problem of recruitment/derecruitment injury may therefore lead to novel and more effective therapies. PMID:22011235

  7. In vivo growth of 60 non-screening detected lung cancers: a computed tomography study.

    PubMed

    Mets, Onno M; Chung, Kaman; Zanen, Pieter; Scholten, Ernst T; Veldhuis, Wouter B; van Ginneken, Bram; Prokop, Mathias; Schaefer-Prokop, Cornelia M; de Jong, Pim A

    2018-04-01

    Current pulmonary nodule management guidelines are based on nodule volume doubling time, which assumes exponential growth behaviour. However, this is a theory that has never been validated in vivo in the routine-care target population. This study evaluates growth patterns of untreated solid and subsolid lung cancers of various histologies in a non-screening setting.Growth behaviour of pathology-proven lung cancers from two academic centres that were imaged at least three times before diagnosis (n=60) was analysed using dedicated software. Random-intercept random-slope mixed-models analysis was applied to test which growth pattern most accurately described lung cancer growth. Individual growth curves were plotted per pathology subgroup and nodule type.We confirmed that growth in both subsolid and solid lung cancers is best explained by an exponential model. However, subsolid lesions generally progress slower than solid ones. Baseline lesion volume was not related to growth, indicating that smaller lesions do not grow slower compared to larger ones.By showing that lung cancer conforms to exponential growth we provide the first experimental basis in the routine-care setting for the assumption made in volume doubling time analysis. Copyright ©ERS 2018.

  8. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction.

    PubMed

    Wang, Jinke; Guo, Haoyan

    2016-01-01

    This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15 ± 69.63 cm 3 , volume overlap error (VOE) 3.5057 ± 1.3719%, average surface distance (ASD) 0.7917 ± 0.2741 mm, root mean square distance (RMSD) 1.6957 ± 0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430 ± 8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

  9. Diffusion Lung Imaging with Hyperpolarized Gas MRI

    PubMed Central

    Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D

    2015-01-01

    Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume, the length of acinar airways, and allows evaluation of lung parenchymal and non-parenchymal tissue. PMID:26676342

  10. Open lung approach versus standard protective strategies: Effects on driving pressure and ventilatory efficiency during anesthesia - A pilot, randomized controlled trial.

    PubMed

    Ferrando, Carlos; Suarez-Sipmann, Fernando; Tusman, Gerardo; León, Irene; Romero, Esther; Gracia, Estefania; Mugarra, Ana; Arocas, Blanca; Pozo, Natividad; Soro, Marina; Belda, Francisco J

    2017-01-01

    Low tidal volume (VT) during anesthesia minimizes lung injury but may be associated to a decrease in functional lung volume impairing lung mechanics and efficiency. Lung recruitment (RM) can restore lung volume but this may critically depend on the post-RM selected PEEP. This study was a randomized, two parallel arm, open study whose primary outcome was to compare the effects on driving pressure of adding a RM to low-VT ventilation, with or without an individualized post-RM PEEP in patients without known previous lung disease during anesthesia. Consecutive patients scheduled for major abdominal surgery were submitted to low-VT ventilation (6 ml·kg-1) and standard PEEP of 5 cmH2O (pre-RM, n = 36). After 30 min estabilization all patients received a RM and were randomly allocated to either continue with the same PEEP (RM-5 group, n = 18) or to an individualized open-lung PEEP (OL-PEEP) (Open Lung Approach, OLA group, n = 18) defined as the level resulting in maximal Cdyn during a decremental PEEP trial. We compared the effects on driving pressure and lung efficiency measured by volumetric capnography. OL-PEEP was found at 8±2 cmH2O. 36 patients were included in the final analysis. When compared with pre-RM, OLA resulted in a 22% increase in compliance and a 28% decrease in driving pressure when compared to pre-RM. These parameters did not improve in the RM-5. The trend of the DP was significantly different between the OLA and RM-5 groups (p = 0.002). VDalv/VTalv was significantly lower in the OLA group after the RM (p = 0.035). Lung recruitment applied during low-VT ventilation improves driving pressure and lung efficiency only when applied as an open-lung strategy with an individualized PEEP in patients without lung diseases undergoing major abdominal surgery. ClinicalTrials.gov NCT02798133.

  11. Pediatric dosimetry for intrapleural lung injections of 32P chromic phosphate

    NASA Astrophysics Data System (ADS)

    Konijnenberg, Mark W.; Olch, Arthur

    2010-10-01

    Intracavitary injections of 32P chromic phosphate are used in the therapy of pleuropulmonary blastoma and pulmonary sarcomas in children. The lung dose, however, has never been calculated despite the potential risk of lung toxicity from treatment. In this work the dosimetry has been calculated in target tissue and lung for pediatric phantoms. Pleural cavities were modeled in the Monte Carlo code MCNP within the pediatric MIRD phantoms. Both the depth-dose curves in the pleural lining and into the lung as well as 3D dose distributions were calculated for either homogeneous or inhomogeneous 32P activity distributions. Dose-volume histograms for the lung tissue and isodose graphs were generated. The results for the 2D depth-dose curve to the pleural lining and tumor around the pleural cavity correspond well with the point kernel model-based recommendations. With a 2 mm thick pleural lining, one-third of the lung parenchyma volume gets a dose more than 30 Gy (V30) for 340 MBq 32P in a 10 year old. This is close to lung tolerance. Younger children will receive a larger dose to the lung when the lung density remains equal to the adult value; the V30 relative lung volume for a 5 year old is 35% at an activity of 256 MBq and for a 1 year old 165 MBq yields a V30 of 43%. At higher densities of the lung tissue V30 stays below 32%. All activities yield a therapeutic dose of at least 225 Gy in the pleural lining. With a more normal pleural lining thickness (0.5 mm instead of 2 mm) the injected activities will have to be reduced by a factor 5 to obtain tolerable lung doses in pediatric patients. Previous dosimetry recommendations for the adult apply well down to lung surface areas of 400 cm2. Monte Carlo dosimetry quantitates the three-dimensional dose distribution, providing a better insight into the maximum tolerable activity for this therapy.

  12. Association of emphysema-like lung on cardiac computed tomography and mortality in persons without airflow obstruction: the Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study

    PubMed Central

    Oelsner, Elizabeth C.; Hoffman, Eric A.; Folsom, Aaron R.; Carr, J. Jeffrey; Enright, Paul L.; Kawut, Steven M.; Kronmal, Richard; Lederer, David; Lima, Joao A. C.; Lovasi, Gina S.; Shea, Steven; Barr, R. Graham

    2015-01-01

    Background Whereas low lung function is known to predict mortality in the general population, the prognostic significance of emphysema on computed tomography (CT) in persons without chronic obstructive pulmonary disease (COPD) remains uncertain. Objective To determine whether greater emphysema-like lung on CT is associated with all-cause mortality among persons without airflow obstruction or COPD in the general population. Design Prospective cohort study. Setting Population-based, multiethnic sample from 6 US communities. Participants 2965 participants ages 45-84 years without airflow obstruction on spirometry. Measurements Emphysema-like lung was defined on cardiac CT as the number of lung voxels less than -950 Hounsfield Units, and was adjusted for the number of total imaged lung voxels. Results Among 2965 participants, 50.9% of whom never smoked, there were 186 deaths over a median of 6.2 years. Greater emphysema-like lung was independently associated with increased mortality (adjusted hazard ratio [HR]1.14 per one-half of the interquartile range, 95% CI 1.04-1.24, P=0.004), adjusting for potential confounders including cardiovascular risk factors and the forced expiratory volume in one second. Generalized additive models supported a linear association between emphysema-like lung and mortality without evidence for a threshold. The association was of greatest magnitude among smokers, although multiplicative interaction terms did not support effect modification by smoking status. Limitations Cardiac CT scans did not include lung apices. The number of deaths was limited among subgroup analyses. Conclusions Emphysema-like lung on CT was associated with all-cause mortality among persons without airflow obstruction or COPD in a general population sample, particularly among smokers. Recognition of the independent prognostic significance of emphysema on CT among patients without COPD on spirometry is warranted. Primary Funding Source NIH/NHLBI. PMID:25506855

  13. Gravitational independence of single-breath washout tests in recumbent dogs

    NASA Technical Reports Server (NTRS)

    Tomioka, Shinichi; Kubo, Susumu; Guy, Harold J. B.; Prisk, G. K.

    1988-01-01

    The effect of gravitational orientation in the mechanism of lung filling and emptying in dogs was examined by conducting simultaneously Ar-bolus and N2 single-breath washout tests (SBWTs) in 10 anesthetized dogs (prone and supine), with three of the dogs subjected to body rotation. Transpulmonary pressure was measured simultaneously, allowing identification of the lung volume above residual volume at which there was an inflection point in the pressure-volume curve. Combined resident gas and bolus SBWTs in recumbent dogs were found to be different from such tests in humans; in dogs, the regional distribution of ventilation was not primarily determined by gravity. The measurements did not make it possible to discern exact mechanisms of filling and emptying, but both processes appear to be related to lung, thorax, and mediastinum interactions and/or differences in regional mechanical properties of the lungs.

  14. [Measurement of air leak volume after lung surgery using web-camera].

    PubMed

    Onuki, Takamasa; Matsumoto, T

    2005-05-01

    Persistent air leak from the lung is one of the major complications after lung operations, especially in the latest thoracic surgery, where a shorter hospital stay tends to be necessary. However, air leak volume has been rarely measured clinically because accustomed tools of gas flow meter were types which needed contact measure, and those were unstable in long-term use and high cost. We tried to measure air leak volume as follows: (1) Bubble was made in the water seal part of a drain bag. (2) The movement of bubbles was recorded with a web-camera. (3) The data from the movie was analyzed by Linux computer on-line. We believe this method is clinically applicable as a routine work after lung surgery because of non-contact type of measurements, its stableness in long-term, easiness to be handled, and reasonable in cost.

  15. SU-G-TeP1-11: Predictors of Cardiac and Lung Dose Sparing in DIBH for Left Breast Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, N; Kalet, A; Fang, L

    Purpose: This retrospective study of left sided whole breast radiation therapy (RT) patients investigates possible predictive parameters correlating to cardiac and left lung dose sparing by deep inspiration breath-hold (DIBH) technique compared to free-breathing (FB). Methods: Thirty-one patients having both DIBH and FB CT scans were included in the study. All patients were planned with a standard step-and-shoot tangential technique using MV photons, with prescription of 50Gy or 50.4Gy. The displacement of the breath hold sternal mark during DIBH, the cardiac contact distances of the axial (CCDax) and parasagittal (CCDps) planes, and lateral-heart-to-chest (LHC) distance on FB CT scans weremore » measured. Lung volumes, mean dose and dose-volume histograms (V5, V10 and V20) were analyzed and compared for heart and left lung for both FB and DIBH techniques. Correlation analysis was performed to identify the predictors for heart and left lung dose sparing. Two-tailed Student’s t-test and linear regression were used for data analysis with significance level of P≤0.05. Results: All dosimetric metrics for the heart and left lung were significantly reduced (P<0.01) with DIBH. Breath hold sternal mark displacement ranged from 0.4–1.8 cm and correlated with mean (P=0.05) and V5 (P=0.02) of heart dose reduction by DIBH. FB lung volume showed correlation with mean lung dose reduction by DIBH (P<0.01). The FB-CCDps and FB-LHC distance had strong positive and negative correlation with FB mean heart dose (P<0.01) and mean heart dose reduction by DIBH (P<0.01), respectively. FB-CCDax showed no correlation with dosimetric changes. Conclusion: DIBH technique has been shown to reduce dose to the heart and left lung. In this patient cohort, FB-CCDps, FB-LHC distance, and FB lung volume served as significant predictors for heart and left lung. These parameters can be further investigated to be used as a tool to better select patients who will benefit from DIBH.« less

  16. Automated measurements of metabolic tumor volume and metabolic parameters in lung PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Orologas, F.; Saitis, P.; Kallergi, M.

    2017-11-01

    Patients with lung tumors or inflammatory lung disease could greatly benefit in terms of treatment and follow-up by PET/CT quantitative imaging, namely measurements of metabolic tumor volume (MTV), standardized uptake values (SUVs) and total lesion glycolysis (TLG). The purpose of this study was the development of an unsupervised or partially supervised algorithm using standard image processing tools for measuring MTV, SUV, and TLG from lung PET/CT scans. Automated metabolic lesion volume and metabolic parameter measurements were achieved through a 5 step algorithm: (i) The segmentation of the lung areas on the CT slices, (ii) the registration of the CT segmented lung regions on the PET images to define the anatomical boundaries of the lungs on the functional data, (iii) the segmentation of the regions of interest (ROIs) on the PET images based on adaptive thresholding and clinical criteria, (iv) the estimation of the number of pixels and pixel intensities in the PET slices of the segmented ROIs, (v) the estimation of MTV, SUVs, and TLG from the previous step and DICOM header data. Whole body PET/CT scans of patients with sarcoidosis were used for training and testing the algorithm. Lung area segmentation on the CT slices was better achieved with semi-supervised techniques that reduced false positive detections significantly. Lung segmentation results agreed with the lung volumes published in the literature while the agreement between experts and algorithm in the segmentation of the lesions was around 88%. Segmentation results depended on the image resolution selected for processing. The clinical parameters, SUV (either mean or max or peak) and TLG estimated by the segmented ROIs and DICOM header data provided a way to correlate imaging data to clinical and demographic data. In conclusion, automated MTV, SUV, and TLG measurements offer powerful analysis tools in PET/CT imaging of the lungs. Custom-made algorithms are often a better approach than the manufacturer’s general analysis software at much lower cost. Relatively simple processing techniques could lead to customized, unsupervised or partially supervised methods that can successfully perform the desirable analysis and adapt to the specific disease requirements.

  17. A comparison of visual and quantitative methods to identify interstitial lung abnormalities.

    PubMed

    Kliment, Corrine R; Araki, Tetsuro; Doyle, Tracy J; Gao, Wei; Dupuis, Josée; Latourelle, Jeanne C; Zazueta, Oscar E; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Ross, James C; Estépar, Raúl San José; Diaz, Alejandro A; Lederer, David J; Schwartz, David A; Silverman, Edwin K; Rosas, Ivan O; Washko, George R; O'Connor, George T; Hatabu, Hiroto; Hunninghake, Gary M

    2015-10-29

    Evidence suggests that individuals with interstitial lung abnormalities (ILA) on a chest computed tomogram (CT) may have an increased risk to develop a clinically significant interstitial lung disease (ILD). Although methods used to identify individuals with ILA on chest CT have included both automated quantitative and qualitative visual inspection methods, there has been not direct comparison between these two methods. To investigate this relationship, we created lung density metrics and compared these to visual assessments of ILA. To provide a comparison between ILA detection methods based on visual assessment we generated measures of high attenuation areas (HAAs, defined by attenuation values between -600 and -250 Hounsfield Units) in >4500 participants from both the COPDGene and Framingham Heart studies (FHS). Linear and logistic regressions were used for analyses. Increased measures of HAAs (in ≥ 10 % of the lung) were significantly associated with ILA defined by visual inspection in both cohorts (P < 0.0001); however, the positive predictive values were not very high (19 % in COPDGene and 13 % in the FHS). In COPDGene, the association between HAAs and ILA defined by visual assessment were modified by the percentage of emphysema and body mass index. Although increased HAAs were associated with reductions in total lung capacity in both cohorts, there was no evidence for an association between measurement of HAAs and MUC5B promoter genotype in the FHS. Our findings demonstrate that increased measures of lung density may be helpful in determining the severity of lung volume reduction, but alone, are not strongly predictive of ILA defined by visual assessment. Moreover, HAAs were not associated with MUC5B promoter genotype.

  18. Improved air trapping evaluation in chest computed tomography in children with cystic fibrosis using real-time spirometric monitoring and biofeedback.

    PubMed

    Kongstad, Thomas; Buchvald, Frederik F; Green, Kent; Lindblad, Anders; Robinson, Terry E; Nielsen, Kim G

    2013-12-01

    The quality of chest Computed Tomography (CT) images in children is dependent upon a sufficient breath hold during CT scanning. This study evaluates the influence of spirometric breath hold monitoring with biofeedback software on inspiratory and expiratory chest CT lung density measures, and on trapped air (TA) scoring in children with cystic fibrosis (CF). This is important because TA is an important component of early and progressive CF lung disease. A cross sectional comparison study was completed for chest CT imaging in two cohorts of CF children with comparable disease severity, using spirometric breath hold monitoring and biofeedback software (Copenhagen (COP)) or unmonitored breath hold manoeuvres (Gothenburg (GOT)). Inspiratory-expiratory lung density differences were calculated, and TA was scored to assess the difference between the two cohorts. Eighty-four chest CTs were evaluated. Mean (95%CI) change in inspiratory-expiratory lung density differences was 436 Hounsfield Units (HU) (408 to 464) in the COP cohort with spirometric breath hold monitoring versus 229 HU (188 to 269) in the GOT cohort with unmonitored breath hold manoeuvres (p<0.0001). The Mean TA (95%CI) score was 6.93 (6.05 to 7.82) in COP patients and 3.81 (2.89 to 4.73) in GOT (p<0.0001) patients. In children with comparable CF lung disease, spirometric breath hold monitoring during examination yielded a large difference in lung volume between inhalation and exhalation, and allowed for a significantly greater measured change in lung density and TA score, compared to unmonitored breath hold maneuvers. This has implications to the clinical use of chest CT, especially in children with early CF lung disease. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  19. The effects of pneumoperitoneum on respiratory mechanics during general anesthesia for bariatric surgery.

    PubMed

    El-Dawlatly, Abdelazeem Ali; Al-Dohayan, Abdullah; Abdel-Meguid, Mohamed Essam; El-Bakry, Abdelkareem; Manaa, Essam M

    2004-02-01

    The effects of pneumoperitoneum (PPM) on respiratory mechanics during bariatric surgery were investigated. 10 patients with BMI 50.5+/-8 kg/m(2) (range 40.9- 66.8) who underwent laparoscopic adjustable gastric banding with the Swedish band under general anesthesia were studied. Besides routine monitoring of vital signs and lung volumes, respiratory mechanics (compliance and resistance) were measured during positive pressure ventilation using an anesthesia delivery unit (Datex Ohmeda type A_Elec). Data were recorded at the following stages: 1). before PPM, 2). during PPM, and 3). after gas deflation. One-way analysis of variance was used for analysis of data. P <0.05 was considered significant. The airway, peak inspiratory and plateau pressures increased significantly during PPM. Dynamic lung compliances were 44.6+/-7.8 SD, 31.8+/-5.5 and 44.5+/-8.3 cm/H(2)O before, during and after PPM respectively with significant differences (P <0.05). Although significant decrease in lung mechanics was found in the present study,these variations were well tolerated in morbidly obese patients with PPM pressure of 15 mmHg.

  20. Effect of atelectasis changes on tissue mass and dose during lung radiotherapy.

    PubMed

    Guy, Christopher L; Weiss, Elisabeth; Jan, Nuzhat; Reshko, Leonid B; Christensen, Gary E; Hugo, Geoffrey D

    2016-11-01

    To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose. Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution. Relative mass and density changes from baseline to midtreatment were calculated based on voxel intensity and volume for each lung lobe. Patients also had clinical treatment plans available which were used to assess changes in normal tissue dose constraints from baseline to midtreatment. The midtreatment image was rigidly aligned with the baseline scan in two ways: (1) bony anatomy and (2) carina. Treatment parameters (beam apertures, weights, angles, monitor units, etc.) were transferred to each image. Then, dose was recalculated. Typical IMRT dose constraints were evaluated on all images, and the changes from baseline to each midtreatment image were investigated. Atelectatic lobes experienced mean (stdev) mass changes of -2.8% (36.6%), -24.4% (33.0%), and -9.2% (17.5%) and density changes of -66.0% (6.4%), -25.6% (13.6%), and -17.0% (21.1%) for full, partial, and no resolution, respectively. Means (stdev) of dose changes to spinal cord D max , esophagus D mean , and lungs D mean were 0.67 (2.99), 0.99 (2.69), and 0.50 Gy (2.05 Gy), respectively, for bone alignment and 0.14 (1.80), 0.77 (2.95), and 0.06 Gy (1.71 Gy) for carina alignment. Dose increases with bone alignment up to 10.93, 7.92, and 5.69 Gy were found for maximum spinal cord, mean esophagus, and mean lung doses, respectively, with carina alignment yielding similar values. 44% and 22% of patients had at least one metric change by at least 5 Gy (dose metrics) or 5% (volume metrics) for bone and carina alignments, respectively. Investigation of GTV coverage showed mean (stdev) changes in V Rx , D max , and D min of -5.5% (13.5%), 2.5% (4.2%), and 0.8% (8.9%), respectively, for bone alignment with similar results for carina alignment. Resolution of atelectasis caused mass and density decreases, on average, and introduced substantial changes in normal tissue dose metrics in a subset of the patient cohort.

  1. Effect of atelectasis changes on tissue mass and dose during lung radiotherapy

    PubMed Central

    Guy, Christopher L.; Weiss, Elisabeth; Jan, Nuzhat; Reshko, Leonid B.; Christensen, Gary E.; Hugo, Geoffrey D.

    2016-01-01

    Purpose: To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose. Methods: Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution. Relative mass and density changes from baseline to midtreatment were calculated based on voxel intensity and volume for each lung lobe. Patients also had clinical treatment plans available which were used to assess changes in normal tissue dose constraints from baseline to midtreatment. The midtreatment image was rigidly aligned with the baseline scan in two ways: (1) bony anatomy and (2) carina. Treatment parameters (beam apertures, weights, angles, monitor units, etc.) were transferred to each image. Then, dose was recalculated. Typical IMRT dose constraints were evaluated on all images, and the changes from baseline to each midtreatment image were investigated. Results: Atelectatic lobes experienced mean (stdev) mass changes of −2.8% (36.6%), −24.4% (33.0%), and −9.2% (17.5%) and density changes of −66.0% (6.4%), −25.6% (13.6%), and −17.0% (21.1%) for full, partial, and no resolution, respectively. Means (stdev) of dose changes to spinal cord Dmax, esophagus Dmean, and lungs Dmean were 0.67 (2.99), 0.99 (2.69), and 0.50 Gy (2.05 Gy), respectively, for bone alignment and 0.14 (1.80), 0.77 (2.95), and 0.06 Gy (1.71 Gy) for carina alignment. Dose increases with bone alignment up to 10.93, 7.92, and 5.69 Gy were found for maximum spinal cord, mean esophagus, and mean lung doses, respectively, with carina alignment yielding similar values. 44% and 22% of patients had at least one metric change by at least 5 Gy (dose metrics) or 5% (volume metrics) for bone and carina alignments, respectively. Investigation of GTV coverage showed mean (stdev) changes in VRx, Dmax, and Dmin of −5.5% (13.5%), 2.5% (4.2%), and 0.8% (8.9%), respectively, for bone alignment with similar results for carina alignment. Conclusions: Resolution of atelectasis caused mass and density decreases, on average, and introduced substantial changes in normal tissue dose metrics in a subset of the patient cohort. PMID:27806593

  2. TU-G-BRA-04: Changes in Regional Lung Function Measured by 4D-CT Ventilation Imaging for Thoracic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Y; Kadoya, N; Kabus, S

    Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients whomore » showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows the known effects of radiotherapy on lung function: radiation-induced ventilation reduction and ventilation increase caused by tumor regression, providing validation for 4D-CT ventilation imaging. This study was supported in part by a National Lung Cancer Partnership Young Investigator Research grant.« less

  3. Cardiac-related changes in lung resistivity as a function of frequency and location obtained from EITS images.

    PubMed

    Nopp, P; Zhao, T X; Brown, B H; Wang, W

    1996-11-01

    ECG-gated electrical impedance tomographic spectroscopy (EITS) measurements of the lungs were taken on seven normal subjects in the frequency range 9.6 kHz to 614.4 kHz. The results show that in late systole the resistivity p' relative to the R-wave (i.e. p' = 1 at the R-wave) decreases consistently within the lung. In addition there arises an increase in p' in early systole towards the periphery of the lung. Frequency behaviour of p' changes with location. At all times after the R-wave, in the centre of the lung p' is higher at higher frequency f whereas in the periphery it is lower at higher f. The principal decrease in p' can be explained by increasing pulmonary blood volume due to cardiac contraction. The early systolic increase is presumably due to venous return to the left atrium locally leading blood output from the right ventricle which is delayed by the windkessel effect. Based on a model taking extracapillary and capillary blood volume increase into account, the change in frequency behaviour of p' is explained by regional variations in extracapillary blood vessel size determining the relative contributions of extracapillary blood volume and capillary blood volume change to p' at a certain frequency.

  4. Factors Affecting Lung Function: A Review of the Literature.

    PubMed

    Talaminos Barroso, Alejandro; Márquez Martín, Eduardo; Roa Romero, Laura María; Ortega Ruiz, Francisco

    2018-06-01

    Lung function reference values are traditionally based on anthropometric factors, such as weight, height, sex, and age. FVC and FEV 1 decline with age, while volumes and capacities, such as RV and FRC, increase. TLC, VC, RV, FVC and FEV 1 are affected by height, since they are proportional to body size. This means that a tall individual will experience greater decrease in lung volumes as they get older. Some variables, such as FRC and ERV, decline exponentially with an increase in weight, to the extent that tidal volume in morbidly obese patients can be close to that of RV. Men have longer airways than women, causing greater specific resistance in the respiratory tract. The increased work of breathing to increase ventilation among women means that their consumption of oxygen is higher than men under similar conditions of physical intensity. Lung volumes are higher when the subject is standing than in other positions. DLCO is significantly higher in supine positions than in sitting or standing positions, but the difference between sitting and standing positions is not significant. Anthropometric characteristics are insufficient to explain differences in lung function between different ethnic groups, underlining the importance of considering other factors in addition to the conventional anthropometric measurements. Copyright © 2018 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. A GPU-based symmetric non-rigid image registration method in human lung.

    PubMed

    Haghighi, Babak; D Ellingwood, Nathan; Yin, Youbing; Hoffman, Eric A; Lin, Ching-Long

    2018-03-01

    Quantitative computed tomography (QCT) of the lungs plays an increasing role in identifying sub-phenotypes of pathologies previously lumped into broad categories such as chronic obstructive pulmonary disease and asthma. Methods for image matching and linking multiple lung volumes have proven useful in linking structure to function and in the identification of regional longitudinal changes. Here, we seek to improve the accuracy of image matching via the use of a symmetric multi-level non-rigid registration employing an inverse consistent (IC) transformation whereby images are registered both in the forward and reverse directions. To develop the symmetric method, two similarity measures, the sum of squared intensity difference (SSD) and the sum of squared tissue volume difference (SSTVD), were used. The method is based on a novel generic mathematical framework to include forward and backward transformations, simultaneously, eliminating the need to compute the inverse transformation. Two implementations were used to assess the proposed method: a two-dimensional (2-D) implementation using synthetic examples with SSD, and a multi-core CPU and graphics processing unit (GPU) implementation with SSTVD for three-dimensional (3-D) human lung datasets (six normal adults studied at total lung capacity (TLC) and functional residual capacity (FRC)). Success was evaluated in terms of the IC transformation consistency serving to link TLC to FRC. 2-D registration on synthetic images, using both symmetric and non-symmetric SSD methods, and comparison of displacement fields showed that the symmetric method gave a symmetrical grid shape and reduced IC errors, with the mean values of IC errors decreased by 37%. Results for both symmetric and non-symmetric transformations of human datasets showed that the symmetric method gave better results for IC errors in all cases, with mean values of IC errors for the symmetric method lower than the non-symmetric methods using both SSD and SSTVD. The GPU version demonstrated an average of 43 times speedup and ~5.2 times speedup over the single-threaded and 12-threaded CPU versions, respectively. Run times with the GPU were as fast as 2 min. The symmetric method improved the inverse consistency, aiding the use of image registration in the QCT-based evaluation of the lung.

  6. SU-F-R-31: Identification of Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induced Lung Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Riyahi, S; Lu, W

    Purpose: Normal lung CT texture features have been used for the prediction of radiation-induced lung disease (radiation pneumonitis and radiation fibrosis). For these features to be clinically useful, they need to be relatively invariant (robust) to tumor size and not correlated with normal lung volume. Methods: The free-breathing CTs of 14 lung SBRT patients were studied. Different sizes of GTVs were simulated with spheres placed at the upper lobe and lower lobe respectively in the normal lung (contralateral to tumor). 27 texture features (9 from intensity histogram, 8 from grey-level co-occurrence matrix [GLCM] and 10 from grey-level run-length matrix [GLRM])more » were extracted from [normal lung-GTV]. To measure the variability of a feature F, the relative difference D=|Fref -Fsim|/Fref*100% was calculated, where Fref was for the entire normal lung and Fsim was for [normal lung-GTV]. A feature was considered as robust if the largest non-outlier (Q3+1.5*IQR) D was less than 5%, and considered as not correlated with normal lung volume when their Pearson correlation was lower than 0.50. Results: Only 11 features were robust. All first-order intensity-histogram features (mean, max, etc.) were robust, while most higher-order features (skewness, kurtosis, etc.) were unrobust. Only two of the GLCM and four of the GLRM features were robust. Larger GTV resulted greater feature variation, this was particularly true for unrobust features. All robust features were not correlated with normal lung volume while three unrobust features showed high correlation. Excessive variations were observed in two low grey-level run features and were later identified to be from one patient with local lung diseases (atelectasis) in the normal lung. There was no dependence on GTV location. Conclusion: We identified 11 robust normal lung CT texture features that can be further examined for the prediction of radiation-induced lung disease. Interestingly, low grey-level run features identified normal lung diseases. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  7. Stereotactic body radiation therapy for early-stage primary lung cancer, is an active breath coordinator necessary? An audit from a tertiary cancer care center.

    PubMed

    Madhavan, R; Renilmon, P S; Nair, H M; Lal, A; Nair, S S; Unnikrishnan, U G; Makuny, D

    2017-01-01

    The hypofractionated stereotactic body radiation therapy (SBRT) has emerged as a safe and effective treatment modality for early-stage nonsmall cell lung carcinoma. An audit SBRT in primary lung cancer treated in our center with and without an active breath coordinator (ABC) was undertaken to evaluate its impact on target volumes and clinical outcomes. This was an observational study. Nine patients with lung carcinoma were treated from January 2014 to August 2016. Five patients were simulated using ABC and four patients with free breathing. Volumetric modulated arc therapy plans were generated using Monaco treatment planning software. Three patients were treated with a dose of 54 Gy in three fractions and six patients with a dose of 48 Gy in four fractions. The statistical analysis was performed using Kaplan-Meier survival. The mean planning target volumes (PTV) in ABC and free breathing groups were 42.19cc and 60.17cc, respectively. The mean volume of lung receiving 20, 10, and 5 Gy (V20, V10and V5) in ABC group were 5.37cc, 10.49cc, and 18.45cc whereas in free breathing 6.63cc, 12.74cc, and 20.64cc, respectively. At a median follow-up of 18 months, there were three local recurrences. No significant toxicity occurred in our series. Our initial results show that SBRT is well tolerated with good local control. Although the PTV volume and irradiated normal lung volume was higher in this group compared to ABC group, this did not translate to any added clinical toxicity.

  8. Involved Node, Site, Field and Residual Volume Radiotherapy for Lymphoma: A Comparison of Organ at Risk Dosimetry and Second Malignancy Risks.

    PubMed

    Murray, L; Sethugavalar, B; Robertshaw, H; Bayman, E; Thomas, E; Gilson, D; Prestwich, R J D

    2015-07-01

    Recent radiotherapy guidelines for lymphoma have included involved site radiotherapy (ISRT), involved node radiotherapy (INRT) and irradiation of residual volume after full-course chemotherapy. In the absence of late toxicity data, we aim to compare organ at risk (OAR) dose-metrics and calculated second malignancy risks. Fifteen consecutive patients who had received mediastinal radiotherapy were included. Four radiotherapy plans were generated for each patient using a parallel pair photon technique: (i) involved field radiotherapy (IFRT), (ii) ISRT, (iii) INRT, (iv) residual post-chemotherapy volume. The radiotherapy dose was 30 Gy in 15 fractions. The OARs evaluated were: breasts, lungs, thyroid, heart, oesophagus. Relative and absolute second malignancy rates were estimated using the concept of organ equivalent dose. Significance was defined as P < 0.005. Compared with ISRT, IFRT significantly increased doses to lung, thyroid, heart and oesophagus, whereas INRT and residual volume techniques significantly reduced doses to all OARs. The relative risks of second cancers were significantly higher with IFRT compared with ISRT for lung, breast and thyroid; INRT and residual volume resulted in significantly lower relative risks compared with ISRT for lung, breast and thyroid. The median excess absolute risks of second cancers were consistently lowest for the residual technique and highest for IFRT in terms of thyroid, lung and breast cancers. The risk of oesophageal cancer was similar for all four techniques. Overall, the absolute risk of second cancers was very similar for ISRT and INRT. Decreasing treatment volumes from IFRT to ISRT, INRT or residual volume reduces radiation exposure to OARs. Second malignancy modelling suggests that this reduction in treatment volumes will lead to a reduction in absolute excess second malignancy. Little difference was observed in second malignancy risks between ISRT and INRT, supporting the use of ISRT in the absence of a pre-chemotherapy positron emission tomography scan in the radiotherapy treatment position. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Effect of PEEP and Tidal Volume on Ventilation Distribution and End-Expiratory Lung Volume: A Prospective Experimental Animal and Pilot Clinical Study

    PubMed Central

    Becher, Tobias; Schädler, Dirk; Pulletz, Sven; Freitag-Wolf, Sandra; Weiler, Norbert; Frerichs, Inéz

    2013-01-01

    Introduction Lung-protective ventilation aims at using low tidal volumes (VT) at optimum positive end-expiratory pressures (PEEP). Optimum PEEP should recruit atelectatic lung regions and avoid tidal recruitment and end-inspiratory overinflation. We examined the effect of VT and PEEP on ventilation distribution, regional respiratory system compliance (CRS), and end-expiratory lung volume (EELV) in an animal model of acute lung injury (ALI) and patients with ARDS by using electrical impedance tomography (EIT) with the aim to assess tidal recruitment and overinflation. Methods EIT examinations were performed in 10 anaesthetized pigs with normal lungs ventilated at 5 and 10 ml/kg body weight VT and 5 cmH2O PEEP. After ALI induction, 10 ml/kg VT and 10 cmH2O PEEP were applied. Afterwards, PEEP was set according to the pressure-volume curve. Animals were randomized to either low or high VT ventilation changed after 30 minutes in a crossover design. Ventilation distribution, regional CRS and changes in EELV were analyzed. The same measures were determined in five ARDS patients examined during low and high VT ventilation (6 and 10 (8) ml/kg) at three PEEP levels. Results In healthy animals, high compared to low VT increased CRS and ventilation in dependent lung regions implying tidal recruitment. ALI reduced CRS and EELV in all regions without changing ventilation distribution. Pressure-volume curve-derived PEEP of 21±4 cmH2O (mean±SD) resulted in comparable increase in CRS in dependent and decrease in non-dependent regions at both VT. This implied that tidal recruitment was avoided but end-inspiratory overinflation was present irrespective of VT. In patients, regional CRS differences between low and high VT revealed high degree of tidal recruitment and low overinflation at 3±1 cmH2O PEEP. Tidal recruitment decreased at 10±1 cmH2O and was further reduced at 15±2 cmH2O PEEP. Conclusions Tidal recruitment and end-inspiratory overinflation can be assessed by EIT-based analysis of regional CRS. PMID:23991138

  10. Dose to mass for evaluation and optimization of lung cancer radiation therapy.

    PubMed

    Tyler Watkins, William; Moore, Joseph A; Hugo, Geoffrey D; Siebers, Jeffrey V

    2017-11-01

    To evaluate potential organ at risk dose-sparing by using dose-mass-histogram (DMH) objective functions compared with dose-volume-histogram (DVH) objective functions. Treatment plans were retrospectively optimized for 10 locally advanced non-small cell lung cancer patients based on DVH and DMH objectives. DMH-objectives were the same as DVH objectives, but with mass replacing volume. Plans were normalized to dose to 95% of the PTV volume (PTV-D95v) or mass (PTV-D95m). For a given optimized dose, DVH and DMH were intercompared to ascertain dose-to-volume vs. dose-to-mass differences. Additionally, the optimized doses were intercompared using DVH and DMH metrics to ascertain differences in optimized plans. Mean dose to volume, D v ‾, mean dose to mass, D M ‾, and fluence maps were intercompared. For a given dose distribution, DVH and DMH differ by >5% in heterogeneous structures. In homogeneous structures including heart and spinal cord, DVH and DMH are nearly equivalent. At fixed PTV-D95v, DMH-optimization did not significantly reduce dose to OARs but reduced PTV-D v ‾ by 0.20±0.2Gy (p=0.02) and PTV-D M ‾ by 0.23±0.3Gy (p=0.02). Plans normalized to PTV-D95m also result in minor PTV dose reductions and esophageal dose sparing (D v ‾ reduced 0.45±0.5Gy, p=0.02 and D M ‾ reduced 0.44±0.5Gy, p=0.02) compared to DVH-optimized plans. Optimized fluence map comparisons indicate that DMH optimization reduces dose in the periphery of lung PTVs. DVH- and DMH-dose indices differ by >5% in lung and lung target volumes for fixed dose distributions, but optimizing DMH did not reduce dose to OARs. The primary difference observed in DVH- and DMH-optimized plans were variations in fluence to the periphery of lung target PTVs, where low density lung surrounds tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Autologous fibrin sealant reduces the incidence of prolonged air leak and duration of chest tube drainage after lung volume reduction surgery: a prospective randomized blinded study.

    PubMed

    Moser, C; Opitz, I; Zhai, W; Rousson, V; Russi, E W; Weder, W; Lardinois, D

    2008-10-01

    Prolonged air leak is reported in up to 50% of patients after lung volume reduction surgery. The effect of an autologous fibrin sealant on the intensity and duration of air leak and on the time to chest drain removal after lung volume reduction surgery was investigated in a randomized prospective clinical trial. Twenty-five patients underwent bilateral thoracoscopic lung volume reduction surgery. In each patient, an autologous fibrin sealant was applied along the staple lines on one side, whereas no additional measure was taken on the other side. Randomization of treatment was performed at the end of the resection on the first side. Air leak was assessed semiquantitatively by use of a severity score (0 = no leak; 4 = continuous severe leak) by two investigators blinded to the treatment. Mean value of the total severity scores for the first 48 hours postoperative was significantly lower in the treated group (4.7 +/- 7.7) than in the control group (16.0 +/- 10.1) (P < .001), independently of the length of the resection. Prolonged air leak and mean duration of drainage were also significantly reduced after application of the sealant (4.5% and 2.8 +/- 1.9 days versus 31.8% and 5.9 +/- 2.9 days) (P = .03 and P < .001). Autologous fibrin sealant for reinforcement of the staple lines after lung volume reduction surgery significantly reduces prolonged air leak and duration of chest tube drainage.

  12. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina

    2014-06-15

    Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractionsS{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less

  13. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data.

    PubMed

    Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina

    2014-06-01

    In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractions S2 can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.

  14. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Huixiao; Lohr, Frank; Fritz, Peter

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculationmore » with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.« less

  15. An Improved Model for Predicting Radiation Pneumonitis Incorporating Clinical and Dosimetric Variables;Lung cancer; Radiation pneumonitis; Dose-volume histogram; Angiotensin converting enzyme inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Peter, E-mail: peter.jenkins@glos.nhs.uk; Watts, Joanne

    2011-07-15

    Purpose: Single dose-volume metrics are of limited value for the prediction of radiation pneumonitis (RP) in day-to-day clinical practice. We investigated whether multiparametric models that incorporate clinical and physiologic factors might have improved accuracy. Methods and Materials: The records of 160 patients who received radiation therapy for non-small-cell lung cancer were reviewed. All patients were treated to the same dose and with an identical technique. Dosimetric, pulmonary function, and clinical parameters were analyzed to determine their ability to predict for the subsequent development of RP. Results: Twenty-seven patients (17%) developed RP. On univariate analysis, the following factors were significantly correlatedmore » with the risk of pneumonitis: fractional volume of lung receiving >5-20 Gy, absolute volume of lung spared from receiving >5-15 Gy, mean lung dose, craniocaudal position of the isocenter, transfer coefficient for carbon monoxide (KCOc), total lung capacity, coadministration of angiotensin converting enzyme inhibitors, and coadministration of angiotensin receptor antagonists. By combining the absolute volume of lung spared from receiving >5 Gy with the KCOc, we defined a new parameter termed Transfer Factor Spared from receiving >5 Gy (TFS{sub 5}). The area under the receiver operator characteristic curve for TFS{sub 5} was 0.778, increasing to 0.846 if patients receiving modulators of the renin-angiotensin system were excluded from the analysis. Patients with a TFS{sub 5} <2.17 mmol/min/kPa had a risk of RP of 30% compared with 5% for the group with a TFS{sub 5} {>=}2.17. Conclusions: TFS{sub 5} represents a simple parameter that can be used in routine clinical practice to more accurately segregate patients into high- and low-risk groups for developing RP.« less

  16. Fan-shaped complete block on helical tomotherapy for esophageal cancer: a phantom study.

    PubMed

    Chang, Chiu-Han; Mok, Greta S P; Shueng, Pei-Wei; Yeh, Hsin-Pei; Shiau, An-Cheng; Tien, Hui-Ju; Lin, Chi-Ta; Wu, Tung-Hsin

    2015-01-01

    Radiation pneumonitis (RP) is a common complication for radiotherapy of esophageal cancer and is associated with the low dose irradiated lung volume. This study aims to reduce the mean lung dose (MLD) and the relative lung volume at 20 Gy (V 20) and at low dose region using various designs of the fan-shaped complete block (FSCB) in helical tomotherapy. Hypothetical esophageal tumor was delineated on an anthropomorphic phantom. The FSCB was defined as the fan-shaped radiation restricted area located in both lungs. Seven treatment plans were performed with nonblock design and FSCB with different fan angles, that is, from 90° to 140°, with increment of 10°. The homogeneous index, conformation number, MLD, and the relative lung volume receiving more than 5, 10, 15, and 20 Gy (V 5, V 10, V 15, and V 20) were determined for each treatment scheme. There was a substantial reduction in the MLD, V 5, V 10, V 15, and V 20 when using different types of FSCB as compared to the nonblock design. The reduction of V 20, V 15, V 10, and V 5 was 6.3%-8.6%, 16%-23%, 42%-57%, and 42%-66% for FSCB 90°-140°, respectively. The use of FSCB in helical tomotherapy is a promising method to reduce the MLD, V 20, and relative lung volume in low dose region, especially in V 5 and V 10 for esophageal cancer.

  17. Are all pulmonary hypoplasias the same? A comparison of pulmonary outcomes in neonates with congenital diaphragmatic hernia, omphalocele and congenital lung malformation.

    PubMed

    Akinkuotu, Adesola C; Sheikh, Fariha; Cass, Darrell L; Zamora, Irving J; Lee, Timothy C; Cassady, Christopher I; Mehollin-Ray, Amy R; Williams, Jennifer L; Ruano, Rodrigo; Welty, Stephen E; Olutoye, Oluyinka O

    2015-01-01

    Patients with congenital diaphragmatic hernias (CDH), omphaloceles, and congenital lung malformations (CLM) may have pulmonary hypoplasia and experience respiratory insufficiency. We hypothesize that given equivalent lung volumes, the degree of respiratory insufficiency will be comparable regardless of the etiology. Records of all fetuses with CDH, omphalocele, and CLM between January 2000 and June 2013 were reviewed. MRI-based observed-to-expected total fetal lung volumes (O/E-TFLV) were calculated. An analysis of outcomes in patients with O/E-TFLV between 40% and 60%, the most inclusive range, was performed. 285 patients were evaluated (161, CDH; 24, omphalocele; 100, CLM). Fetuses with CDH had the smallest mean O/E-TFLV. CDH patients were intubated for longer and had a higher incidence of pulmonary hypertension. Fifty-six patients with the three diagnoses had an O/E-TFLV of 40%-60%. The need for ECMO, supplemental oxygen at 30days of life, and 6-month mortality were similar among groups. CDH patients had a significantly longer duration of intubation and higher incidence of pulmonary hypertension than the other two diagnoses. Given equivalent lung volumes (40%-60% of expected), CDH patients require more pulmonary support initially than omphalocele and CLM patients. In addition to lung volumes, disease-specific factors, such as pulmonary hypertension in CDH, also contribute to pulmonary morbidity and overall outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Breathing pattern and chest wall volumes during exercise in patients with cystic fibrosis, pulmonary fibrosis and COPD before and after lung transplantation.

    PubMed

    Wilkens, H; Weingard, B; Lo Mauro, A; Schena, E; Pedotti, A; Sybrecht, G W; Aliverti, A

    2010-09-01

    Pulmonary fibrosis (PF), cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often cause chronic respiratory failure (CRF). In order to investigate if there are different patterns of adaptation of the ventilatory pump in CRF, in three groups of lung transplant candidates with PF (n=9, forced expiratory volume in 1 s (FEV(1))=37+/-3% predicted, forced vital capacity (FVC)=32+/-2% predicted), CF (n=9, FEV(1)=22+/-3% predicted, FVC=30+/-3% predicted) and COPD (n=21, FEV(1)=21+/-1% predicted, FVC=46+/-2% predicted), 10 healthy controls and 16 transplanted patients, total and compartmental chest wall volumes were measured by opto-electronic plethysmography during rest and exercise. Three different breathing patterns were found during CRF in PF, CF and COPD. Patients with COPD were characterised by a reduced duty cycle at rest and maximal exercise (34+/-1%, p<0.001), while patients with PF and CF showed an increased breathing frequency (49+/-6 and 34+/-2/min, respectively) and decreased tidal volume (0.75+/-0.10 and 0.79+/-0.07 litres) (p<0.05). During exercise, end-expiratory chest wall and rib cage volumes increased significantly in patients with COPD and CF but not in those with PF. End-inspiratory volumes did not increase in CF and PF. The breathing pattern of transplanted patients was similar to that of healthy controls. There are three distinct patterns of CRF in patients with PF, CF and COPD adopted by the ventilatory pump to cope with the underlying lung disease that may explain why patients with PF and CF are prone to respiratory failure earlier than patients with COPD. After lung transplantation the chronic adaptations of the ventilatory pattern to advanced lung diseases are reversible and indicate that the main contributing factor is the lung itself rather than systemic effects of the disease.

  19. Prevalence and features of advanced asbestosis (ILO profusion scores above 2/2). International Labour Office.

    PubMed

    Kilburn, K H

    2000-01-01

    In this study, the author addressed the following question: Do workers with advanced asbestosis have a restrictive pulmonary physiology, and, alternately, do those who have restrictive physiological tests have advanced asbestosis? One group was identified by obvious radiographic measurements, and the other group was defined via physiologic measurements. Total lung capacity, vital capacity, and flows were measured in 12,856 men exposed to asbestos, of whom 3,445 had radiographic signs of asbestosis, as defined by the International Labour Office criteria. Radiographically advanced asbestosis-International Labour Office criteria profusion greater than 2/2 was present in 85 (2.5%) of men. An additional 52 men had physiologically restrictive disease. The author, who compared pulmonary flows and volumes of these two groups, used mean percentage predicted, adjusted for height, age, and duration of cigarette smoking. Men with radiographically advanced asbestosis had normal total lung capacity (i.e., 105.5% predicted), reduced forced vital capacities (i.e., 82.7% predicted), air trapping (i.e., residual volume/total lung capacity increased to 54.4%), and reduced flows (i.e., forced expiratory flow [FEF25-75] = 60.6% predicted, forced expiratory volume in 1 s = 78.0% predicted, and forced expiratory volume in 1 s/forced vital capacity = 65.5%). In contrast, men selected from the same exposed population for restrictive disease (i.e., reduced total lung capacity [72.6% predicted] and forced vital capacity [61.5% predicted]) also had airflow obstruction (i.e., forced expiratory volume in 1 s/forced vital capacity of 74.5% predicted) and air trapping (i.e., residual volume/total lung capacity of 46.7%). Only half of these men had asbestosis--and it was of minimal severity. In summary, advanced asbestosis was characterized by airway obstruction and air trapping, both of which reduced vital capacity but not total lung capacity; therefore, it was not a restrictive disease. In contrast, restrictive disease was rare and was associated with minimal asbestosis.

  20. Spirometry and volumetric capnography in lung function assessment of obese and normal-weight individuals without asthma.

    PubMed

    Ferreira, Mariana S; Mendes, Roberto T; Marson, Fernando A L; Zambon, Mariana P; Antonio, Maria A R G M; Paschoal, Ilma A; Toro, Adyléia A D C; Severino, Silvana D; Ribeiro, Maria A G O; Ribeiro, José D

    To analyze and compare lung function of obese and healthy, normal-weight children and adolescents, without asthma, through spirometry and volumetric capnography. Cross-sectional study including 77 subjects (38 obese) aged 5-17 years. All subjects underwent spirometry and volumetric capnography. The evaluations were repeated in obese subjects after the use of a bronchodilator. At the spirometry assessment, obese individuals, when compared with the control group, showed lower values of forced expiratory volume in the first second by forced vital capacity (FEV 1 /FVC) and expiratory flows at 75% and between 25 and 75% of the FVC (p<0.05). Volumetric capnography showed that obese individuals had a higher volume of produced carbon dioxide and alveolar tidal volume (p<0.05). Additionally, the associations between dead space volume and tidal volume, as well as phase-3 slope normalized by tidal volume, were lower in healthy subjects (p<0.05). These data suggest that obesity does not alter ventilation homogeneity, but flow homogeneity. After subdividing the groups by age, a greater difference in lung function was observed in obese and healthy individuals aged >11 years (p<0.05). Even without the diagnosis of asthma by clinical criteria and without response to bronchodilator use, obese individuals showed lower FEV 1 /FVC values and forced expiratory flow, indicating the presence of an obstructive process. Volumetric capnography showed that obese individuals had higher alveolar tidal volume, with no alterations in ventilation homogeneity, suggesting flow alterations, without affecting lung volumes. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  1. Correlation of 68Ga Ventilation-Perfusion PET/CT with Pulmonary Function Test Indices for Assessing Lung Function.

    PubMed

    Le Roux, Pierre-Yves; Siva, Shankar; Steinfort, Daniel P; Callahan, Jason; Eu, Peter; Irving, Lou B; Hicks, Rodney J; Hofman, Michael S

    2015-11-01

    Pulmonary function tests (PFTs) are routinely used to assess lung function, but they do not provide information about regional pulmonary dysfunction. We aimed to assess correlation of quantitative ventilation-perfusion (V/Q) PET/CT with PFT indices. Thirty patients underwent V/Q PET/CT and PFT. Respiration-gated images were acquired after inhalation of (68)Ga-carbon nanoparticles and administration of (68)Ga-macroaggregated albumin. Functional volumes were calculated by dividing the volume of normal ventilated and perfused (%NVQ), unmatched and matched defects by the total lung volume. These functional volumes were correlated with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and diffusing capacity for carbon monoxide (DLCO). All functional volumes were significantly different in patients with chronic obstructive pulmonary disease (P < 0.05). FEV1/FVC and %NVQ had the highest correlation (r = 0.82). FEV1 was also best correlated with %NVQ (r = 0.64). DLCO was best correlated with the volume of unmatched defects (r = -0.55). Considering %NVQ only, a cutoff value of 90% correctly categorized 28 of 30 patients with or without significant pulmonary function impairment. Our study demonstrates strong correlations between V/Q PET/CT functional volumes and PFT parameters. Because V/Q PET/CT is able to assess regional lung function, these data support the feasibility of its use in radiation therapy and preoperative planning and assessing pulmonary dysfunction in a variety of respiratory diseases. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Correlation of Clinical and Dosimetric Factors With Adverse Pulmonary Outcomes in Children After Lung Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatramani, Rajkumar, E-mail: rvenkatramani@chla.usc.edu; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; Kamath, Sunil

    Purpose: To identify the incidence and the risk factors for pulmonary toxicity in children treated for cancer with contemporary lung irradiation. Methods and Materials: We analyzed clinical features, radiographic findings, pulmonary function tests, and dosimetric parameters of children receiving irradiation to the lung fields over a 10-year period. Results: We identified 109 patients (75 male patients). The median age at irradiation was 13.8 years (range, 0.04-20.9 years). The median follow-up period was 3.4 years. The median prescribed radiation dose was 21 Gy (range, 0.4-64.8 Gy). Pulmonary toxic chemotherapy included bleomycin in 58.7% of patients and cyclophosphamide in 83.5%. The followingmore » pulmonary outcomes were identified and the 5-year cumulative incidence after irradiation was determined: pneumonitis, 6%; chronic cough, 10%; pneumonia, 35%; dyspnea, 11%; supplemental oxygen requirement, 2%; radiographic interstitial lung disease, 40%; and chest wall deformity, 12%. One patient died of progressive respiratory failure. Post-irradiation pulmonary function tests available from 44 patients showed evidence of obstructive lung disease (25%), restrictive disease (11%), hyperinflation (32%), and abnormal diffusion capacity (12%). Thoracic surgery, bleomycin, age, mean lung irradiation dose (MLD), maximum lung dose, prescribed dose, and dosimetric parameters between V{sub 22} (volume of lung exposed to a radiation dose ≥22 Gy) and V{sub 30} (volume of lung exposed to a radiation dose ≥30 Gy) were significant for the development of adverse pulmonary outcomes on univariate analysis. MLD, maximum lung dose, and V{sub dose} (percentage of volume of lung receiving the threshold dose or greater) were highly correlated. On multivariate analysis, MLD was the sole significant predictor of adverse pulmonary outcome (P=.01). Conclusions: Significant pulmonary dysfunction occurs in children receiving lung irradiation by contemporary techniques. MLD rather than prescribed dose should be used to perform risk stratification of patients receiving lung irradiation.« less

  3. Characterization of the Lung Parenchyma Using Ultrasound Multiple Scattering.

    PubMed

    Mohanty, Kaustav; Blackwell, John; Egan, Thomas; Muller, Marie

    2017-05-01

    The purpose of the study described here was to showcase the application of ultrasound to quantitative characterization of the micro-architecture of the lung parenchyma to predict the extent of pulmonary edema. The lung parenchyma is a highly complex and diffusive medium for which ultrasound techniques have remained qualitative. The approach presented here is based on ultrasound multiple scattering and exploits the complexity of ultrasound propagation in the lung structure. The experimental setup consisted of a linear transducer array with an 8-MHz central frequency placed in contact with the lung surface. The diffusion constant D and transport mean free path L* of the lung parenchyma were estimated by separating the incoherent and coherent intensities in the near field and measuring the growth of the incoherent diffusive halo over time. Significant differences were observed between the L* values obtained in healthy and edematous rat lungs in vivo. In the control rat lung, L* was found to be 332 μm (±48.8 μm), whereas in the edematous lung, it was 1040 μm (±90 μm). The reproducibility of the measurements of L* and D was tested in vivo and in phantoms made of melamine sponge with varying air volume fractions. Two-dimensional finite difference time domain numerical simulations were carried out on rabbit lung histology images with varying degrees of lung collapse. Significant correlations were observed between air volume fraction and L* in simulation (r = -0.9542, p < 0.0117) and sponge phantom (r = -0.9932, p < 0.0068) experiments. Ex vivo measurements of a rat lung in which edema was simulated by adding phosphate-buffered saline revealed a linear relationship between the fluid volume fraction and L*. These results illustrate the potential of methods based on ultrasound multiple scattering for the quantitative characterization of the lung parenchyma. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Pulmonary 3He Magnetic Resonance Imaging Biomarkers of Regional Airspace Enlargement in Alpha-1 Antitrypsin Deficiency.

    PubMed

    Lessard, Eric; Young, Heather M; Bhalla, Anurag; Pike, Damien; Sheikh, Khadija; McCormack, David G; Ouriadov, Alexei; Parraga, Grace

    2017-11-01

    Thoracic x-ray computed tomography (CT) and hyperpolarized 3 He magnetic resonance imaging (MRI) provide quantitative measurements of airspace enlargement in patients with emphysema. For patients with panlobular emphysema due to alpha-1 antitrypsin deficiency (AATD), sensitive biomarkers of disease progression and response to therapy have been difficult to develop and exploit, especially those biomarkers that correlate with outcomes like quality of life. Here, our objective was to generate and compare CT and diffusion-weighted inhaled-gas MRI measurements of emphysema including apparent diffusion coefficient (ADC) and MRI-derived mean linear intercept (L m ) in patients with AATD, chronic obstructive pulmonary disease (COPD) ex-smokers, and elderly never-smokers. We enrolled patients with AATD (n = 8; 57 ± 7 years), ex-smokers with COPD (n = 8; 77 ± 6 years), and a control group of never-smokers (n = 5; 64 ± 2 years) who underwent thoracic CT, MRI, spirometry, plethysmography, the St. George's Respiratory Questionnaire, and the 6-minute walk test during a single 2-hour visit. MRI-derived ADC, L m , surface-to-volume ratio, and ventilation defect percent were generated for the apical, basal, and whole lung as was CT lung area ≤-950 Hounsfield units (RA 950 ), low attenuating clusters, and airway count. In patients with AATD, there was a significantly different MRI-derived ADC (P = .03), L m (P < .0001), and surface-to-volume ratio (P < .0001), but not diffusing capacity of carbon monoxide, residual volume or total lung capacity, or CT RA 950 (P > .05) compared to COPD ex-smokers with a significantly different St. George's Respiratory Questionnaire. In this proof-of-concept demonstration, we evaluated CT and MRI lung emphysema measurements and observed significantly worse MRI biomarkers of emphysema in patients with AATD compared to patients with COPD, although CT RA 950 and diffusing capacity of carbon monoxide were not significantly different, underscoring the sensitivity of MRI measurements of AATD emphysema. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Lung function, transfusion, pulmonary capillary blood volume and sickle cell disease.

    PubMed

    Lunt, Alan; McGhee, Emily; Robinson, Polly; Rees, David; Height, Susan; Greenough, Anne

    2016-02-01

    Lung function abnormalities occur in children with sickle cell disease (SCD) and may be associated with elevated pulmonary blood volume. To investigate that association, we determined whether blood transfusion in SCD children acutely increased pulmonary capillary blood volume (PCBV) and increased respiratory system resistance (Rrs5). Measurements of Rrs5 and spirometry were made before and after blood transfusion in 18 children, median age 14.2 (6.6-18.5) years. Diffusing capacity for carbon monoxide and nitric oxide were assessed to calculate the PCBV. Post transfusion, the median Rrs5 had increased from 127.4 to 141.3% predicted (p<0.0001) and pulmonary capillary blood volume from 39.7 to 64.1 ml/m2 (p<0.0001); forced expiratory volume in one second (p=0.0056) and vital capacity (p=0.0008) decreased. The increase in Rrs5 correlated with the increase in PCBV (r=0.50, p=0.0493). Increased pulmonary capillary blood volume may at least partially explain the lung function abnormalities in SCD children. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Delivery of tidal volume from four anaesthesia ventilators during volume-controlled ventilation: a bench study.

    PubMed

    Wallon, G; Bonnet, A; Guérin, C

    2013-06-01

    Tidal volume (V(T)) must be accurately delivered by anaesthesia ventilators in the volume-controlled ventilation mode in order for lung protective ventilation to be effective. However, the impact of fresh gas flow (FGF) and lung mechanics on delivery of V(T) by the newest anaesthesia ventilators has not been reported. We measured delivered V(T) (V(TI)) from four anaesthesia ventilators (Aisys™, Flow-i™, Primus™, and Zeus™) on a pneumatic test lung set with three combinations of lung compliance (C, ml cm H2O(-1)) and resistance (R, cm H2O litre(-1) s(-2)): C60R5, C30R5, C60R20. For each CR, three FGF rates (0.5, 3, 10 litre min(-1)) were investigated at three set V(T)s (300, 500, 800 ml) and two values of PEEP (0 and 10 cm H2O). The volume error = [(V(TI) - V(Tset))/V(Tset)] ×100 was computed in body temperature and pressure-saturated conditions and compared using analysis of variance. For each CR and each set V(T), the absolute value of the volume error significantly declined from Aisys™ to Flow-i™, Zeus™, and Primus™. For C60R5, these values were 12.5% for Aisys™, 5% for Flow-i™ and Zeus™, and 0% for Primus™. With an increase in FGF, absolute values of the volume error increased only for Aisys™ and Zeus™. However, in C30R5, the volume error was minimal at mid-FGF for Aisys™. The results were similar at PEEP 10 cm H2O. Under experimental conditions, the volume error differed significantly between the four new anaesthesia ventilators tested and was influenced by FGF, although this effect may not be clinically relevant.

  7. Stunting and the Prediction of Lung Volumes Among Tibetan Children and Adolescents at High Altitude

    PubMed Central

    Garruto, Ralph M.

    2015-01-01

    Abstract Weitz, Charles A., and Ralph M. Garruto. Stunting and the prediction of lung volumes among Tibetan children and adolescents at high altitude. High Alt Biol Med 16:306–317, 2015.—This study examines the extent to which stunting (height-for-age Z-scores ≤ −2) compromises the use of low altitude prediction equations to gauge the general increase in lung volumes during growth among high altitude populations. The forced vital capacity (FVC) and forced expiratory volume (FEV1) of 208 stunted and 365 non-stunted high-altitude Tibetan children and adolescents between the ages of 6 and 20 years are predicted using the Third National Health and Nutrition Examination Survey (NHANESIII) and the Global Lung Function Initiative (GLF) equations, and compared to observed lung volumes. Stunted Tibetan children show smaller positive deviations from both NHANESIII and GLF prediction equations at most ages than non-stunted children. Deviations from predictions do not correspond to differences in body proportions (sitting heights and chest circumferences relative to stature) between stunted and non-stunted children; but appear compatible with the effects of retarded growth and lung maturation that are likely to exist among stunted children. These results indicate that, before low altitude standards can be used to evaluate the effects of hypoxia, or before high altitude populations can be compared to any other group, it is necessary to assess the relative proportion of stunted children in the samples. If the proportion of stunted children in a high altitude population differs significantly from the proportion in the comparison group, lung function comparisons are unlikely to yield an accurate assessment of the hypoxia effect. The best solution to this problem is to (1) use stature and lung function standards based on the same low altitude population; and (2) assess the hypoxic effect by comparing observed and predicted values among high altitude children whose statures are most like those of children on whom the low altitude spirometric standard is based—preferably high altitude children with HAZ-scores ≥ −1. PMID:26397381

  8. Use of manual alveolar recruitment maneuvers to eliminate atelectasis artifacts identified during thoracic computed tomography of healthy neonatal foals.

    PubMed

    Lascola, Kara M; Clark-Price, Stuart C; Joslyn, Stephen K; Mitchell, Mark A; O'Brien, Robert T; Hartman, Susan K; Kline, Kevin H

    2016-11-01

    OBJECTIVE To evaluate use of single manual alveolar recruitment maneuvers (ARMs) to eliminate atelectasis during CT of anesthetized foals. ANIMALS 6 neonatal Standardbred foals. PROCEDURES Thoracic CT was performed on spontaneously breathing anesthetized foals positioned in sternal (n = 3) or dorsal (3) recumbency when foals were 24 to 36 hours old (time 1), 4 days old (time 2), 7 days old (time 3), and 10 days old (time 4). The CT images were collected without ARMs (all times) and during ARMs with an internal airway pressure of 10, 20, and 30 cm H 2 O (times 2 and 3). Quantitative analysis of CT images measured whole lung and regional changes in attenuation or volume with ARMs. RESULTS Increased attenuation and an alveolar pattern were most prominent in the dependent portion of the lungs. Subjectively, ARMs did not eliminate atelectasis; however, they did incrementally reduce attenuation, particularly in the nondependent portion of the lungs. Quantitative differences in lung attenuation attributable to position of foal were not identified. Lung attenuation decreased significantly (times 2 and 3) and lung volume increased significantly (times 2 and 3) after ARMs. Changes in attenuation and volume were most pronounced in the nondependent portion of the lungs and at ARMs of 20 and 30 cm H 2 O. CONCLUSIONS AND CLINICAL RELEVANCE Manual ARMs did not eliminate atelectasis but reduced attenuation in nondependent portions of the lungs. Positioning of foals in dorsal recumbency for CT may be appropriate when pathological changes in the ventral portion of the lungs are suspected.

  9. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing

    PubMed Central

    Jahani, Nariman; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A.

    2015-01-01

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R2 ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. PMID:26316512

  10. Bronchopulmonary dysplasia: improvement in lung function between 7 and 10 years of age.

    PubMed

    Blayney, M; Kerem, E; Whyte, H; O'Brodovich, H

    1991-02-01

    To evaluate the natural history of bronchopulmonary dysplasia, we studied the same 32 patients at a mean age of 7 and 10 years. The group as a whole had normal height and weight percentiles, and each child grew along his or her established somatic growth curve. Although some children had abnormal values, the group maintained a normal mean total lung capacity and functional residual capacity. The mean residual volume and the residual volume/total lung capacity ratios were elevated at both ages. At age 7 years the 19 patients (59%) who had a forced expiratory volume in 1 second (FEV1) of less than 80% had "catch up" improvement by 10 years of age (65 +/- 11% to 72 +/- 16% of predicted value; p less than 0.05). All the children who had a normal FEV1 at 7 years of age continued to have a normal FEV1 at age 10 years. Resting single-breath carbon monoxide uptake by the lung was normal when measured at age 10 years. The majority of patients had a positive methacholine challenge test result at both ages, although there was a low incidence of clinically diagnosed asthma. This study demonstrates that patients with bronchopulmonary dysplasia who have normal lung function at age 7 have had normal lung growth and that those with evidence of mild to moderate lung disease have continued lung growth or repair, or both, during their school years.

  11. Measurement of xenon diffusing capacity in the rat lung by hyperpolarized 129Xe MRI and dynamic spectroscopy in a single breath-hold.

    PubMed

    Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles

    2006-08-01

    We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.

  12. Aluminium Pneumoconiosis I. In Vitro Comparison of Stamped Aluminium Powders Containing Different Lubricating Agents and a Granular Aluminium Powder

    PubMed Central

    Corrin, B.

    1963-01-01

    The discrepancy in previous reports of the action of aluminium on the lung may be explained by differences between stamped and granular aluminium powders. A stamped powder of the variety causing pulmonary fibrosis showed a brisk reaction with water, but a granular powder was unreactive. This difference is primarily due to the granular particles being covered by inert aluminium oxide, the formation of which is partially prevented in the stamping process by stearine and mineral oil. The reactivity of the flake-like stamped particles is also dependent on their large surface area per unit volume. The appearance of aluminium pneumoconiosis in Britain is explained by the introduction of mineral oil into the stamping industry for, in contrast to stearine, mineral oil permits the powder to react with water. The lung damage is believed to be caused by a soluble form of aluminium. PMID:14072616

  13. Childhood-Onset Asthma in Smokers. Association between CT Measures of Airway Size, Lung Function, and Chronic Airflow Obstruction

    PubMed Central

    Hardin, Megan E.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K.; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K.; Crapo, James D.; Lynch, David A.; Make, Barry; Barr, R. Graham; Hersh, Craig P.; Washko, George R.

    2014-01-01

    Rationale and Objectives: Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. Methods: We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Measurements and Main Results: Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. Conclusion: In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764). PMID:25296268

  14. Childhood-onset asthma in smokers. association between CT measures of airway size, lung function, and chronic airflow obstruction.

    PubMed

    Diaz, Alejandro A; Hardin, Megan E; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K; Crapo, James D; Lynch, David A; Make, Barry; Barr, R Graham; Hersh, Craig P; Washko, George R

    2014-11-01

    Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).

  15. Factors associated with elevated plateau pressure in patients with acute lung injury receiving lower tidal volume ventilation.

    PubMed

    Prescott, Hallie C; Brower, Roy G; Cooke, Colin R; Phillips, Gary; O'Brien, James M

    2013-03-01

    Lung-protective ventilation with lower tidal volume and lower plateau pressure improves mortality in patients with acute lung injury and acute respiratory distress syndrome. We sought to determine the incidence of elevated plateau pressure in acute lung injury /acute respiratory distress syndrome patients receiving lower tidal volume ventilation and to determine the factors that predict elevated plateau pressure in these patients. We used data from 1398 participants in Acute Respiratory Distress Syndrome Network trials, who received lower tidal volume ventilation (≤ 6.5mL/kg predicted body weight). We considered patients with a plateau pressure greater than 30cm H2O and/or a tidal volume less than 5.5mL/kg predicted body weight on study day 1 to have "elevated plateau pressure." We used logistic regression to identify baseline clinical variables associated with elevated plateau pressure and to develop a model to predict elevated plateau pressure using a subset of 1,188 patients. We validated the model in the 210 patients not used for model development. Medical centers participating in Acute Respiratory Distress Syndrome Network clinical trials. None. Of the 1,398 patients in our study, 288 (20.6%) had elevated plateau pressure on day 1. Severity of illness indices and demographic factors (younger age, greater body mass index, and non-white race) were independently associated with elevated plateau pressure. The multivariable logistic regression model for predicting elevated plateau pressure had an area under the receiving operator characteristic curve of 0.71 for both the developmental and the validation subsets. acute lung injury patients receiving lower tidal volume ventilation often have a plateau pressure that exceeds Acute Respiratory Distress Syndrome Network goals. Race, body mass index, and severity of lung injury are each independently associated with elevated plateau pressure. Selecting a smaller initial tidal volume for non-white patients and patients with higher severity of illness may decrease the incidence of elevated plateau pressure. Prospective studies are needed to evaluate this approach.

  16. First-time imaging of effects of inspired oxygen concentration on regional lung volumes and breathing pattern during hypergravity.

    PubMed

    Borges, João Batista; Hedenstierna, Göran; Bergman, Jakob S; Amato, Marcelo B P; Avenel, Jacques; Montmerle-Borgdorff, Stéphanie

    2015-02-01

    Aeroatelectasis can develop in aircrew flying the latest generation high-performance aircraft. Causes alleged are relative hyperoxia, increased gravity in the head-to-foot direction (+Gz), and compression of legs and stomach by anti-G trousers (AGT). We aimed to assess, in real time, the effects of hyperoxia, +Gz accelerations and AGT inflation on changes in regional lung volumes and breathing pattern evaluated in an axial plane by electrical impedance tomography (EIT). The protocol mimicked a routine peacetime flight in combat aircraft. Eight subjects wearing AGT were studied in a human centrifuge during 1 h 15 min exposure of +1 to +3.5Gz. They performed this sequence three times, breathing AIR, 44.5 % O2 or 100 % O2. Continuous recording of functional EIT enabled uninterrupted assessment of regional lung volumes at the 5th intercostal level. Breathing pattern was also monitored. EIT data showed that +3.5Gz, compared with any moment without hypergravity, caused an abrupt decrease in regional tidal volume (VT) and regional end-expiratory lung volume (EELV) measured in the EIT slice, independently of inspired oxygen concentration. Breathing AIR or 44.5 % O2, sub-regional EELV measured in the EIT slice decreased similarly in dorsal and ventral regions, but sub-regional VT measured in the EIT slice decreased significantly more dorsally than ventrally. Breathing 100 % O2, EELV and VT decreased similarly in both regions. Inspired tidal volume increased in hyperoxia, whereas breathing frequency increased in hypergravity and hyperoxia. Our findings suggest that hypergravity and AGT inflation cause airway closure and air trapping in gravity-dependent lung regions, facilitating absorption atelectasis formation, in particular during hyperoxia.

  17. Respiratory mechanics and breathing pattern in the neonatal foal.

    PubMed

    Koterba, A M; Kosch, P C

    1987-01-01

    Breathing pattern, respiratory muscle activation pattern, lung volumes and volume-pressure characteristics of the respiratory system of normal, term, neonatal foals on Days 2 and 7 of age were determined to test the hypothesis that the foal actively maintains end-expiratory lung volume (EEV) greater than the relaxation volume of the respiratory system (Vrx) because of a highly compliant chest wall. Breathing pattern was measured in the awake, unsedated foal during quiet breathing in lateral and standing positions. The typical neonatal foal breathing pattern was characterized by a monophasic inspiratory and expiratory flow pattern. Both inspiration and expiration were active, with onset of Edi activity preceding onset of inspiratory flow, and phasic abdominal muscle activity detectable throughout most of expiration. No evidence was found to support the hypothesis that the normal, term neonatal foal actively maintains EEV greater than Vrx. In the neonatal foal, normalized lung volume and lung compliance values were similar to those reported for neonates of other species, while normalized chest wall compliance was considerably lower. We conclude that the chest wall of the term neonatal foal is sufficiently rigid to prevent a low Vrx. This characteristic probably prevents the foal from having to use a breathing strategy which maintains an EEV greater than Vrx.

  18. SU-E-J-86: Lobar Lung Function Quantification by PET Galligas and CT Ventilation Imaging in Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslick, E; Kipritidis, J; Keall, P

    2014-06-01

    Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images usingmore » deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: −5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.« less

  19. Enhanced ventricular pump function and decreased reservoir backflow sustain rise in pulmonary blood flow after reduction of lung liquid volume in fetal lambs.

    PubMed

    Smolich, Joseph J

    2014-02-15

    Although a reduction in lung liquid volume increases fetal pulmonary blood flow, the changes in central flow patterns that sustain this increased pulmonary perfusion are unknown. To address this issue, eight anesthetized late-gestation fetal sheep were instrumented with pulmonary trunk (PT), ductus arteriosus (DA), and left pulmonary artery (PA) micromanometer catheters and transit-time flow probes, with blood flow profile and wave intensity analyses performed at baseline and after withdrawal of lung liquid via an endotracheal tube. Reducing lung liquid volume by 19 ± 6 ml/kg (mean ± SD) augmented right ventricular power by 34% (P < 0.001), with distribution of an accompanying increase in mean PT blood flow (245 ± 63 ml/min, P < 0.001) to the lungs (169 ± 91 ml/min, P = 0.001) and across the DA (77 ± 92 ml/min, P = 0.04). However, although PT and DA flow increments were confined to systole and were related to an increased magnitude of flow-increasing, forward-running compression waves, the rise in PA flow spanned both systole (108 ± 66 ml/min) and diastole (61 ± 32 ml/min). Flow profile analysis showed that the step-up in PA diastolic flow was associated with diminished PA diastolic backflow and accompanied by a lesser degree of diastolic right-to-left DA shunting. These data suggest that an increased pulmonary blood flow after reduction of lung liquid volume is associated with substantial changes in PT-DA-PA interactions and underpinned by two main factors: 1) enhanced right ventricular pump function that increases PA systolic inflow and 2) decreased PA diastolic backflow that arises from a fundamental change in PA reservoir function, thereby resulting in greater passage of systolic inflow through the lungs.

  20. Multiscale multimodal fusion of histological and MRI volumes for characterization of lung inflammation

    NASA Astrophysics Data System (ADS)

    Rusu, Mirabela; Wang, Haibo; Golden, Thea; Gow, Andrew; Madabhushi, Anant

    2013-03-01

    Mouse lung models facilitate the investigation of conditions such as chronic inflammation which are associated with common lung diseases. The multi-scale manifestation of lung inflammation prompted us to use multi-scale imaging - both in vivo, ex vivo MRI along with ex vivo histology, for its study in a new quantitative way. Some imaging modalities, such as MRI, are non-invasive and capture macroscopic features of the pathology, while others, e.g. ex vivo histology, depict detailed structures. Registering such multi-modal data to the same spatial coordinates will allow the construction of a comprehensive 3D model to enable the multi-scale study of diseases. Moreover, it may facilitate the identification and definition of quantitative of in vivo imaging signatures for diseases and pathologic processes. We introduce a quantitative, image analytic framework to integrate in vivo MR images of the entire mouse with ex vivo histology of the lung alone, using lung ex vivo MRI as conduit to facilitate their co-registration. In our framework, we first align the MR images by registering the in vivo and ex vivo MRI of the lung using an interactive rigid registration approach. Then we reconstruct the 3D volume of the ex vivo histological specimen by efficient group wise registration of the 2D slices. The resulting 3D histologic volume is subsequently registered to the MRI volumes by interactive rigid registration, directly to the ex vivo MRI, and implicitly to in vivo MRI. Qualitative evaluation of the registration framework was performed by comparing airway tree structures in ex vivo MRI and ex vivo histology where airways are visible and may be annotated. We present a use case for evaluation of our co-registration framework in the context of studying chronic inammation in a diseased mouse.

  1. [Combined pulmonary fibrosis and emphysema (CPFE)--limitation of usual lung function test and challenge at practice].

    PubMed

    Takai, Daiya

    2014-12-01

    Spirometry and the flow-volume curve test are commonly performed lung function tests. However, a unique clinical entity occasionally shows almost normal data in these tests, and is therefore missed on screening tests. The clinical entity of combined pulmonary emphysema and pulmdoary fibrosis was recognized and documented in the 90's in Japan, the USA, and Europe. Typical emphysema shows obstructive disorders, and pulmonary fibrosis shows restrictive disorders. Thus, the combination of both should lead to a combined disorder pattern in lung function tests, but this is not the case. In 2005, Cottin reported and redefined this combination of emphysema and fibrosis of the lung as "Combined Pulmonary Fibrosis and Emphysema" (CPFE). The patients are typically heavily smoking males who show an almost normal lung function. The upper lobe of these patients usually shows severe emphysema, which contributes to a static volume and a late phase in the forced volume test. On the other hand their lower lobe shows fibrotic change. The fibrotic portion contributes to early phase flow in the flow-volume curve. These mechanisms are a reason for the normal pattern appearance in lung function tests in CPFE patients. As a matter of course, these patients have damaged upper and lower lobes: their diffusing capacity of the lung shows a low performance, their saturation of blood hemoglobin decreases soon after light exercise, and their KL-6 (a blood marker of pulmonary fibrosis) usually shows a high value. They are considered a high risk group regarding complications of post-surgical treatment. Thus, when medical technologists identify suspicious cases, they should advise doctors to add diffusing capacity and KL-6 tests. (Review).

  2. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial.

    PubMed

    Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo

    2014-05-02

    General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).

  3. 76 FR 20721 - Notice of Permit Applications Received Under the Antarctic Conservation Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Conservation Act AGENCY: National Science Foundation. ACTION: Notice of permit applications received under the... Diego. The volume of the air sacs and lungs are critical to the diving physiology of penguins in at... total body O 2 stores in various species. And second, the ratio of air sac to lung volume is a potential...

  4. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers.

    PubMed

    Güldner, Andreas; Kiss, Thomas; Serpa Neto, Ary; Hemmes, Sabrine N T; Canet, Jaume; Spieth, Peter M; Rocco, Patricia R M; Schultz, Marcus J; Pelosi, Paolo; Gama de Abreu, Marcelo

    2015-09-01

    Postoperative pulmonary complications are associated with increased morbidity, length of hospital stay, and mortality after major surgery. Intraoperative lung-protective mechanical ventilation has the potential to reduce the incidence of postoperative pulmonary complications. This review discusses the relevant literature on definition and methods to predict the occurrence of postoperative pulmonary complication, the pathophysiology of ventilator-induced lung injury with emphasis on the noninjured lung, and protective ventilation strategies, including the respective roles of tidal volumes, positive end-expiratory pressure, and recruitment maneuvers. The authors propose an algorithm for protective intraoperative mechanical ventilation based on evidence from recent randomized controlled trials.

  5. Variable ventilation improves pulmonary function and reduces lung damage without increasing bacterial translocation in a rat model of experimental pneumonia.

    PubMed

    de Magalhães, Raquel F; Samary, Cynthia S; Santos, Raquel S; de Oliveira, Milena V; Rocha, Nazareth N; Santos, Cintia L; Kitoko, Jamil; Silva, Carlos A M; Hildebrandt, Caroline L; Goncalves-de-Albuquerque, Cassiano F; Silva, Adriana R; Faria-Neto, Hugo C; Martins, Vanessa; Capelozzi, Vera L; Huhle, Robert; Morales, Marcelo M; Olsen, Priscilla; Pelosi, Paolo; de Abreu, Marcelo Gama; Rocco, Patricia R M; Silva, Pedro L

    2016-11-25

    Variable ventilation has been shown to improve pulmonary function and reduce lung damage in different models of acute respiratory distress syndrome. Nevertheless, variable ventilation has not been tested during pneumonia. Theoretically, periodic increases in tidal volume (V T ) and airway pressures might worsen the impairment of alveolar barrier function usually seen in pneumonia and could increase bacterial translocation into the bloodstream. We investigated the impact of variable ventilation on lung function and histologic damage, as well as markers of lung inflammation, epithelial and endothelial cell damage, and alveolar stress, and bacterial translocation in experimental pneumonia. Thirty-two Wistar rats were randomly assigned to receive intratracheal of Pseudomonas aeruginosa (PA) or saline (SAL) (n = 16/group). After 24-h, animals were anesthetized and ventilated for 2 h with either conventional volume-controlled (VCV) or variable volume-controlled ventilation (VV), with mean V T  = 6 mL/kg, PEEP = 5cmH 2 O, and FiO 2  = 0.4. During VV, tidal volume varied randomly with a coefficient of variation of 30% and a Gaussian distribution. Additional animals assigned to receive either PA or SAL (n = 8/group) were not ventilated (NV) to serve as controls. In both SAL and PA, VV improved oxygenation and lung elastance compared to VCV. In SAL, VV decreased interleukin (IL)-6 expression compared to VCV (median [interquartile range]: 1.3 [0.3-2.3] vs. 5.3 [3.6-7.0]; p = 0.02) and increased surfactant protein-D expression compared to NV (2.5 [1.9-3.5] vs. 1.2 [0.8-1.2]; p = 0.0005). In PA, compared to VCV, VV reduced perivascular edema (2.5 [2.0-3.75] vs. 6.0 [4.5-6.0]; p < 0.0001), septum neutrophils (2.0 [1.0-4.0] vs. 5.0 [3.3-6.0]; p = 0.0008), necrotizing vasculitis (3.0 [2.0-5.5] vs. 6.0 [6.0-6.0]; p = 0.0003), and ultrastructural lung damage scores (16 [14-17] vs. 24 [14-27], p < 0.0001). Blood colony-forming-unit (CFU) counts were comparable (7 [0-28] vs. 6 [0-26], p = 0.77). Compared to NV, VCV, but not VV, increased expression amphiregulin, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-1 (2.1 [1.6-2.5] vs. 0.9 [0.7-1.2], p = 0.025; 12.3 [7.9-22.0] vs. 0.8 [0.6-1.9], p = 0.006; and 4.4 [2.9-5.6] vs. 0.9 [0.8-1.4], p = 0.003, respectively). Angiopoietin-2 expression was lower in VV compared to NV animals (0.5 [0.3-0.8] vs. 1.3 [1.0-1.5], p = 0.01). In this rat model of pneumonia, VV improved pulmonary function and reduced lung damage as compared to VCV, without increasing bacterial translocation.

  6. Bronchoscopic Lung Volume Reduction.

    PubMed

    Flandes, Javier; Soto, Francisco J; Cordovilla, Rosa; Cases, Enrique; Alfayate, Javier

    2018-03-01

    Since the publication of the National Emphysema Treatment Trial study, lung volume reduction (LVR) has been considered a therapeutic alternative for patients with advanced obstructive lung disease. The high complication rate of surgical LVR has led to the development of bronchoscopic LVR (BLVR). Of the currently available BLVR alternatives, coils and unidirectional endobronchial valves lead the list. The choice of each device depends on emphysema characteristics and presence of collateral ventilation. Evaluation of these patients at centers with expertise in interventional pulmonology and management of BLVR is strongly recommended. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. SU-E-T-551: Monitor Unit Optimization in Stereotactic Body Radiation Therapy for Stage I Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: The study aims to reduce the monitor units (MUs) in the stereotactic body radiation therapy (SBRT) treatment for lung cancer by adjusting the optimizing parameters. Methods: Fourteen patients suffered from stage I Non-Small Cell Lung Cancer (NSCLC) were enrolled. Three groups of parameters were adjusted to investigate their effects on MU numbers and organs at risk (OARs) sparing: (1) the upper objective of planning target volume (UOPTV); (2) strength setting in the MU constraining objective; (3) max MU setting in the MU constraining objective. Results: We found that the parameters in the optimizer influenced the MU numbers in amore » priority, strength and max MU dependent manner. MU numbers showed a decreasing trend with the UOPTV increasing. MU numbers with low, medium and high priority for the UOPTV were 428±54, 312±48 and 258±31 MU/Gy, respectively. High priority for UOPTV also spared the heart, cord and lung while maintaining comparable PTV coverage than the low and medium priority group. It was observed that MU numbers tended to decrease with the strength increasing and max MU setting decreasing. With maximum strength, the MU numbers reached its minimum while maintaining comparable or improved dose to the normal tissues. It was also found that the MU numbers continued to decline at 85% and 75% max MU setting but no longer to decrease at 50% and 25%. Combined with high priority for UOPTV and MU constraining objectives, the MU numbers can be decreased as low as 223±26 MU/Gy. Conclusion:: The priority of UOPTV, MU constraining objective in the optimizer impact on the MU numbers in SBRT treatment for lung cancer. Giving high priority to the UOPTV, setting the strength to maximum value and the max MU to 50% in the MU objective achieves the lowest MU numbers while maintaining comparable or improved OAR sparing.« less

  8. Study for reducing lung dose of upper thoracic esophageal cancer radiotherapy by auto-planning: volumetric-modulated arc therapy vs intensity-modulated radiation therapy.

    PubMed

    Chen, Hua; Wang, Hao; Gu, Hengle; Shao, Yan; Cai, Xuwei; Fu, Xiaolong; Xu, Zhiyong

    2017-10-27

    This study aimed to investigate the dosimetric differences and lung sparing between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of upper thoracic esophageal cancer with T3N0M0 for preoperative radiotherapy by auto-planning (AP). Sixteen patient cases diagnosed with upper thoracic esophageal cancer T3N0M0 for preoperative radiotherapy were retrospectively studied, and 3 plans were generated for each patient: full arc VMAT AP plan with double arcs, partial arc VMAT AP plan with 6 partial arcs, and conventional IMRT AP plan. A simultaneous integrated boost with 2 levels was planned in all patients. Target coverage, organ at risk sparing, treatment parameters including monitor units and treatment time (TT) were evaluated. Wilcoxon signed-rank test was used to check for significant differences (p < 0.05) between datasets. VMAT plans (pVMAT and fVMAT) significantly reduced total lung volume treated above 20 Gy (V 20 ), 25 Gy (V 25 ), 30 Gy (V 30 ), 35 Gy (V 35 ), 40 Gy (V 40 ), and without increasing the value of V 10 , V 13 , and V 15 . For V 5 of total lung value, pVMAT was similar to aIMRT, and it was better than fVMAT. Both pVMAT and fVMAT improved the target dose coverage and significantly decreased maximum dose for the spinal cord, monitor unit, and TT. No significant difference was observed with respect to V 10 and V 15 of body. VMAT AP plan was a good option for treating upper thoracic esophageal cancer with T3N0M0, especially partial arc VMAT AP plan. It had the potential to effectively reduce lung dose in a shorter TT and with superior target coverage and dose homogeneity. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  9. Donor predicted post-operative forced expiratory volume in one second predicts recipients' best forced expiratory volume in one second following size-reduced lung transplantation.

    PubMed

    Inci, Ilhan; Irani, Sarosh; Kestenholz, Peter; Benden, Christian; Boehler, Annette; Weder, Walter

    2011-01-01

    The limited number of available grafts is one of the major obstacles of lung transplantation. Size-reduced lung transplantation allows the use of oversized grafts for small recipients. Optimal lung size matching is vital to achieve best functional outcome and avoid potential problems when using oversized grafts. We hypothesise that donor-predicted postoperative forced expiratory volume in 1s (ppoFEV1) correlates with the recipient best FEV1 after size-reduced lung transplant, being useful for the estimation of function outcome. All patients undergoing size-reduced or standard bilateral lung transplantation were included (1992-2007). Donor ppoFEV1 was calculated and corrected with respect to size reduction and correlated with recipient measured best FEV1 post-transplant. In addition, pre- and postoperative clinical data including surgical complications and outcome of all size-reduced lung transplant recipients were compared with standard lung transplant recipients. A total of 61 size-reduced lung transplant recipients (lobar transplants, n=20; anatomic or non-anatomic resection, n=41) were included and compared to 145 standard transplants. The mean donor-recipient height difference was statistically significant between the two groups (p=0.0001). The mean donor ppoFEV1 was comparable with recipient best FEV1 (2.7±0.6 vs 2.6±0.7 l). There was a statistically significant correlation between donor ppoFEV1 and recipient best FEV1 (p=0.01, r=0.688). The 30-day mortality rate and 3-month, 1- and 5-year survival rates were comparable between the two groups. In size-reduced lung transplantation, postoperative recipient best FEV1 could be predicted from donor-calculated and corrected FEV1 with respect to its size reduction. Compared to standard lung transplantation, equivalent morbidity, mortality and functional results could be obtained after size-reduced lung transplantation. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  10. Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial.

    PubMed

    Walter, Joan E; Heuvelmans, Marjolein A; de Jong, Pim A; Vliegenthart, Rozemarijn; van Ooijen, Peter M A; Peters, Robin B; Ten Haaf, Kevin; Yousaf-Khan, Uraujh; van der Aalst, Carlijn M; de Bock, Geertruida H; Mali, Willem; Groen, Harry J M; de Koning, Harry J; Oudkerk, Matthijs

    2016-07-01

    US guidelines now recommend lung cancer screening with low-dose CT for high-risk individuals. Reports of new nodules after baseline screening have been scarce and are inconsistent because of differences in definitions used. We aimed to identify the occurrence of new solid nodules and their probability of being lung cancer at incidence screening rounds in the Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON). In the ongoing, multicentre, randomised controlled NELSON trial, between Dec 23, 2003, and July 6, 2006, 15 822 participants who had smoked at least 15 cigarettes a day for more than 25 years or ten cigarettes a day for more than 30 years and were current smokers, or had quit smoking less than 10 years ago, were enrolled and randomly assigned to receive either screening with low-dose CT (n=7915) or no screening (n=7907). From Jan 28, 2004, to Dec 18, 2006, 7557 individuals underwent baseline screening with low-dose CT; 7295 participants underwent second and third screening rounds. We included all participants with solid non-calcified nodules, registered by the NELSON radiologists as new or smaller than 15 mm(3) (study detection limit) at previous screens. Nodule volume was generated semiautomatically by software. We calculated the maximum volume doubling time for nodules with an estimated percentage volume change of 25% or more, representing the minimum growth rate for the time since the previous scan. Lung cancer diagnosis was based on histology, and benignity was based on histology or stable size for at least 2 years. The NELSON trial is registered at trialregister.nl, number ISRCTN63545820. We analysed data for participants with at least one solid non-calcified nodule at the second or third screening round. In the two incidence screening rounds, the NELSON radiologists registered 1222 new solid nodules in 787 (11%) participants. A new solid nodule was lung cancer in 49 (6%) participants with new solid nodules and, in total, 50 lung cancers were found, representing 4% of all new solid nodules. 34 (68%) lung cancers were diagnosed at stage I. Nodule volume had a high discriminatory power (area under the receiver operating curve 0·795 [95% CI 0·728-0·862]; p<0·0001). Nodules smaller than 27 mm(3) had a low probability of lung cancer (two [0·5%] of 417 nodules; lung cancer probability 0·5% [95% CI 0·0-1·9]), nodules with a volume of 27 mm(3) up to 206 mm(3) had an intermediate probability (17 [3·1%] of 542 nodules; lung cancer probability 3·1% [1·9-5·0]), and nodules of 206 mm(3) or greater had a high probability (29 [16·9%] of 172 nodules; lung cancer probability 16·9% [12·0-23·2]). A volume cutoff value of 27 mm(3) or greater had more than 95% sensitivity for lung cancer. Our study shows that new solid nodules are detected at each screening round in 5-7% of individuals who undergo screening for lung cancer with low-dose CT. These new nodules have a high probability of malignancy even at a small size. These findings should be considered in future screening guidelines, and new solid nodules should be followed up more aggressively than nodules detected at baseline screening. Zorgonderzoek Nederland Medische Wetenschappen and Koningin Wilhelmina Fonds Kankerbestrijding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A; Schwartz, J; Mayr, N

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less

  12. Chest Fat Quantification via CT Based on Standardized Anatomy Space in Adult Lung Transplant Candidates

    PubMed Central

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.; Odhner, Dewey; Wu, Caiyun; Pednekar, Gargi; Palmer, Scott; Rozenshtein, Anna; Shirk, Melissa A.; Newell, John D.; Porteous, Mary; Diamond, Joshua M.

    2017-01-01

    Purpose Overweight and underweight conditions are considered relative contraindications to lung transplantation due to their association with excess mortality. Yet, recent work suggests that body mass index (BMI) does not accurately reflect adipose tissue mass in adults with advanced lung diseases. Alternative and more accurate measures of adiposity are needed. Chest fat estimation by routine computed tomography (CT) imaging may therefore be important for identifying high-risk lung transplant candidates. In this paper, an approach to chest fat quantification and quality assessment based on a recently formulated concept of standardized anatomic space (SAS) is presented. The goal of the paper is to seek answers to several key questions related to chest fat quantity and quality assessment based on a single slice CT (whether in the chest, abdomen, or thigh) versus a volumetric CT, which have not been addressed in the literature. Methods Unenhanced chest CT image data sets from 40 adult lung transplant candidates (age 58 ± 12 yrs and BMI 26.4 ± 4.3 kg/m2), 16 with chronic obstructive pulmonary disease (COPD), 16 with idiopathic pulmonary fibrosis (IPF), and the remainder with other conditions were analyzed together with a single slice acquired for each patient at the L5 vertebral level and mid-thigh level. The thoracic body region and the interface between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the chest were consistently defined in all patients and delineated using Live Wire tools. The SAT and VAT components of chest were then segmented guided by this interface. The SAS approach was used to identify the corresponding anatomic slices in each chest CT study, and SAT and VAT areas in each slice as well as their whole volumes were quantified. Similarly, the SAT and VAT components were segmented in the abdomen and thigh slices. Key parameters of the attenuation (Hounsfield unit (HU) distributions) were determined from each chest slice and from the whole chest volume separately for SAT and VAT components. The same parameters were also computed from the single abdominal and thigh slices. The ability of the slice at each anatomic location in the chest (and abdomen and thigh) to act as a marker of the measures derived from the whole chest volume was assessed via Pearson correlation coefficient (PCC) analysis. Results The SAS approach correctly identified slice locations in different subjects in terms of vertebral levels. PCC between chest fat volume and chest slice fat area was maximal at the T8 level for SAT (0.97) and at the T7 level for VAT (0.86), and was modest between chest fat volume and abdominal slice fat area for SAT and VAT (0.73 and 0.75, respectively). However, correlation was weak for chest fat volume and thigh slice fat area for SAT and VAT (0.52 and 0.37, respectively), and for chest fat volume for SAT and VAT and BMI (0.65 and 0.28, respectively). These same single slice locations with maximal PCC were found for SAT and VAT within both COPD and IPF groups. Most of the attenuation properties derived from the whole chest volume and single best chest slice for VAT (but not for SAT) were significantly different between COPD and IPF groups. Conclusions This study demonstrates a new way of optimally selecting slices whose measurements may be used as markers of similar measurements made on the whole chest volume. The results suggest that one or two slices imaged at T7 and T8 vertebral levels may be enough to estimate reliably the total SAT and VAT components of chest fat and the quality of chest fat as determined by attenuation distributions in the entire chest volume. PMID:28046024

  13. Chest Fat Quantification via CT Based on Standardized Anatomy Space in Adult Lung Transplant Candidates.

    PubMed

    Tong, Yubing; Udupa, Jayaram K; Torigian, Drew A; Odhner, Dewey; Wu, Caiyun; Pednekar, Gargi; Palmer, Scott; Rozenshtein, Anna; Shirk, Melissa A; Newell, John D; Porteous, Mary; Diamond, Joshua M; Christie, Jason D; Lederer, David J

    2017-01-01

    Overweight and underweight conditions are considered relative contraindications to lung transplantation due to their association with excess mortality. Yet, recent work suggests that body mass index (BMI) does not accurately reflect adipose tissue mass in adults with advanced lung diseases. Alternative and more accurate measures of adiposity are needed. Chest fat estimation by routine computed tomography (CT) imaging may therefore be important for identifying high-risk lung transplant candidates. In this paper, an approach to chest fat quantification and quality assessment based on a recently formulated concept of standardized anatomic space (SAS) is presented. The goal of the paper is to seek answers to several key questions related to chest fat quantity and quality assessment based on a single slice CT (whether in the chest, abdomen, or thigh) versus a volumetric CT, which have not been addressed in the literature. Unenhanced chest CT image data sets from 40 adult lung transplant candidates (age 58 ± 12 yrs and BMI 26.4 ± 4.3 kg/m2), 16 with chronic obstructive pulmonary disease (COPD), 16 with idiopathic pulmonary fibrosis (IPF), and the remainder with other conditions were analyzed together with a single slice acquired for each patient at the L5 vertebral level and mid-thigh level. The thoracic body region and the interface between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the chest were consistently defined in all patients and delineated using Live Wire tools. The SAT and VAT components of chest were then segmented guided by this interface. The SAS approach was used to identify the corresponding anatomic slices in each chest CT study, and SAT and VAT areas in each slice as well as their whole volumes were quantified. Similarly, the SAT and VAT components were segmented in the abdomen and thigh slices. Key parameters of the attenuation (Hounsfield unit (HU) distributions) were determined from each chest slice and from the whole chest volume separately for SAT and VAT components. The same parameters were also computed from the single abdominal and thigh slices. The ability of the slice at each anatomic location in the chest (and abdomen and thigh) to act as a marker of the measures derived from the whole chest volume was assessed via Pearson correlation coefficient (PCC) analysis. The SAS approach correctly identified slice locations in different subjects in terms of vertebral levels. PCC between chest fat volume and chest slice fat area was maximal at the T8 level for SAT (0.97) and at the T7 level for VAT (0.86), and was modest between chest fat volume and abdominal slice fat area for SAT and VAT (0.73 and 0.75, respectively). However, correlation was weak for chest fat volume and thigh slice fat area for SAT and VAT (0.52 and 0.37, respectively), and for chest fat volume for SAT and VAT and BMI (0.65 and 0.28, respectively). These same single slice locations with maximal PCC were found for SAT and VAT within both COPD and IPF groups. Most of the attenuation properties derived from the whole chest volume and single best chest slice for VAT (but not for SAT) were significantly different between COPD and IPF groups. This study demonstrates a new way of optimally selecting slices whose measurements may be used as markers of similar measurements made on the whole chest volume. The results suggest that one or two slices imaged at T7 and T8 vertebral levels may be enough to estimate reliably the total SAT and VAT components of chest fat and the quality of chest fat as determined by attenuation distributions in the entire chest volume.

  14. Comparative analysis of the mechanical signals in lung development and compensatory growth.

    PubMed

    Hsia, Connie C W

    2017-03-01

    This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.

  15. Comparative Analysis of the Mechanical Signals in Lung Development and Compensatory Growth

    PubMed Central

    Hsia, Connie C.W.

    2017-01-01

    This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax, and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships, and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling, may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences, and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs. PMID:28084523

  16. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy

    NASA Astrophysics Data System (ADS)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-10-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, 169Yb and 103Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for 103Pd, 125I, 131Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.

  17. The relation between temperature distribution for lung RFA and electromagnetic wave frequency dependence of electrical conductivity with changing a lung's internal air volumes.

    PubMed

    Yamazaki, Nozomu; Watanabe, Hiroki; Lu, Xiaowei; Isobe, Yosuke; Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, Masakatsu G

    2013-01-01

    Radio frequency ablation (RFA) for lung cancer has increasingly been used over the past few years because it is a minimally invasive treatment. As a feature of RFA for lung cancer, lung contains air during operation. Air is low thermal and electrical conductivity. Therefore, RFA for this cancer has the advantage that only the cancer is coagulated, and it is difficult for operators to control the precise formation of coagulation lesion. In order to overcome this limitation, we previously proposed a model-based robotic ablation system using finite element method. Creating an accurate thermo physical model and constructing thermal control method were a challenging problem because the thermal properties of the organ are complex. In this study, we measured electromagnetic wave frequency dependence of lung's electrical conductivity that was based on lung's internal air volumes dependence with in vitro experiment. In addition, we validated the electromagnetic wave frequency dependence of lung's electrical conductivity using temperature distribution simulator. From the results of this study, it is confirmed that the electromagnetic wave frequency dependence of lung's electrical conductivity effects on heat generation of RFA.

  18. [Factors associated with atelectasis following extubation in very low weight premature newborns].

    PubMed

    Castilla-Castilla, Cristina María Del Carmen; Vidales-Roque, Lydia Beatriz; Pérez-Durán, Juana; Tena-Reyes, Daniel; Tapia-Rombo, Carlos Antonio

    2014-01-01

    Atelectasis is a decrease of lung volume caused by airway obstruction or pressure on the external part of the lung. It is common after surgery and extubation. The purpose of this investigation was to determine factors related with alectasis following extubation in preterm neonates with a weight under 1250 g who were referred to a neonatal intensive care unit. The study was conducted in neonates admitted to a neonatal intensive care unit requiring mechanically assisted ventilation. Preterm neonates born at 28 to 36 weeks' gestation and with 0 to 28 days' extrauterine life, with mechanically assisted ventilation for at least 24 hours, and that when undergoing planned extubation had a weight under 1250 g were included. Two comparative groups were formed: group A, with alectasis after extubation; group B, without alectasis after extubation. As factors associated with alectasis after extubation, reintubation in two or more occasions and cycling higher than 20 per minute, which were statistically relevant, were identified. In addition to previous general measures to prevent alectasis, extubation with ventilation not higher tan 20 cycles per minute should be programmed and reintubation should be avoided as much as possible.

  19. The pattern of early lung parenchymal and air space injury following acute blood loss.

    PubMed

    Younger, J G; Taqi, A S; Jost, P F; Till, G O; Johnson, K J; Stern, S A; Hirschl, R B

    1998-07-01

    Acute lung injury is a frequent clinical occurrence following blood loss and trauma. The nature of this injury remains poorly understood. To examine the relative parenchymal and intra-alveolar distribution of inflammation in a rat model of hemorrhage and resuscitation. Rats were anesthetized and subjected to hemorrhage followed by resuscitation with shed blood and saline. Myeloperoxidase activity of lung homogenates and cytology of bronchoalveolar lavage fluid were used to measure total lung and intra-alveolar neutrophil invasion. Extravasation of i.v.-administered [125I]-albumin was used to determine total lung and alveolar permeability. Permeability results were analyzed using their base-10 logarithmic transformations. 86 animals were studied. Whole-lung myeloperoxidase activity was increased (control = 0.34 +/- 0.16 units, injured = 0.84 +/- 0.43 units, p < 0.01), while there was no difference in intra-alveolar leukocyte counts (injured = 1.85 +/- 1.30 x 10(5)/mL, control = 2.44 +/- 1.75 x 10(5)/mL, p = 0.40), suggesting that the cellular component of the injury was more severe in the intravascular and interstitial spaces. There was a strong trend toward increased permeability in the interstitial compartment, and a significant increase in permeability in the intra-alveolar compartment (whole-lung permeability: control = -0.27 +/- 0.19 units, injured = 0.10 +/- 0.55 units, p = 0.06; alveolar permeability: control = -2.00 +/- 0.47 units, injured = -1.32 +/- 0.49 units, p < 0.01), suggesting that the loss of integrity to macromolecules was not limited to the interstitium. Hemorrhage and resuscitation resulted in an acute lung injury characterized by extravasation of intravascular protein into both the interstitium and the intra-alveolar space. Neutrophil invasion of the lung was demonstrable only in the interstitial compartment.

  20. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants.

    PubMed

    Latzin, Philipp; Roth, Stefan; Thamrin, Cindy; Hutten, Gerard J; Pramana, Isabelle; Kuehni, Claudia E; Casaulta, Carmen; Nelle, Matthias; Riedel, Thomas; Frey, Urs

    2009-01-01

    Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.

  1. Biomarkers for Radiation Pneumonitis Using Noninvasive Molecular Imaging.

    PubMed

    Medhora, Meetha; Haworth, Steven; Liu, Yu; Narayanan, Jayashree; Gao, Feng; Zhao, Ming; Audi, Said; Jacobs, Elizabeth R; Fish, Brian L; Clough, Anne V

    2016-08-01

    Our goal is to develop minimally invasive biomarkers for predicting radiation-induced lung injury before symptoms develop. Currently, there are no biomarkers that can predict radiation pneumonitis. Radiation damage to the whole lung is a serious risk in nuclear accidents or in radiologic terrorism. Our previous studies have shown that a single dose of 15 Gy of x-rays to the thorax causes severe pneumonitis in rats by 6-8 wk. We have also developed a mitigator for radiation pneumonitis and fibrosis that can be started as late as 5 wk after radiation. We used 2 functional SPECT probes in vivo in irradiated rat lungs. Regional pulmonary perfusion was measured by injection of (99m)Tc-macroaggregated albumin. Perfused volume was determined by comparing the volume of distribution of (99m)Tc-macroaggregated albumin to the anatomic lung volume obtained by small-animal CT. A second probe, (99m)Tc-labeled Duramycin, which binds to apoptotic cells, was used to measure pulmonary cell death in the same rat model. The perfused volume of lung was decreased by about 25% at 1, 2, and 3 wk after receipt of 15 Gy, and (99m)Tc-Duramycin uptake was more than doubled at 2 and 3 wk. There was no change in body weight, breathing rate, or lung histology between irradiated and nonirradiated rats at these times. Pulmonary vascular resistance and vascular permeability measured in isolated perfused lungs ex vivo increased at 2 wk after 15 Gy of irradiation. Our results suggest that SPECT biomarkers have the potential to predict radiation injury to the lungs before substantial functional or histologic damage is observed. Early prediction of radiation pneumonitis in time to initiate mitigation will benefit those exposed to radiation in the context of therapy, accidents, or terrorism. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Poster - Thur Eve - 16: Four-dimensional x-ray computed tomography and hyperpolarized 3 He magnetic resonance imaging of gas distribution in lung cancer.

    PubMed

    Mathew, L; Castillo, R; Castillo, E; Yaremko, B; Rodrigues, G; Etemad-Rezai, R; Guerrero, T; Parraga, G

    2012-07-01

    Dynamic imaging methods such as four-dimensional computed tomography (4DCT) and static imaging methods such as noble gas magnetic resonance imaging (MRI) deliver direct and regional measurements of lung function even in lung cancer patients in whom global lung function measurements are dominated by tumour burden. The purpose of this study was to directly compare quantitative measurements of gas distribution from static hyperpolarized 3 He MRI and dynamic 4DCT in a small group of lung cancer patients. MRI and 4DCT were performed in 11 subjects prior to radiation therapy. MRI was performed at 3.0T in breath-hold after inhalation 1L of hyperpolarized 3 He gas. Gas distribution in 3 He MRI was quantified using a semi-automated segmentation algorithm to generate percent-ventilated volume (PVV), reflecting the volume of gas in the lung normalized to the thoracic cavity volume. 4DCT pulmonary function maps were generated using deformable image registration of six expiratory phase images. The correspondence between identical tissue elements at inspiratory and expiratory phases was used to estimate regional gas distribution and PVV was quantified from these images. After accounting for differences in lung volumes between 3 He MRI (1.9±0.5L ipsilateral, 2.3±0.7 contralateral) and 4DCT (1.2±0.3L ipsilateral, 1.3±0.4L contralateral) during image acquisition, there was no statistically significant difference in PVV between 3 He MRI (72±11% ipsilateral, 79±12% contralateral) and 4DCT (74±3% ipsilateral, 75±4% contralateral). Our results indicate quantitative agreement in the regional distribution of inhaled gas in both static and dynamic imaging methods. PVV may be considered as a regional surrogate measurement of lung function or ventilation. © 2012 American Association of Physicists in Medicine.

  3. Evaluating which plan quality metrics are appropriate for use in lung SBRT.

    PubMed

    Yaparpalvi, Ravindra; Garg, Madhur K; Shen, Jin; Bodner, William R; Mynampati, Dinesh K; Gafar, Aleiya; Kuo, Hsiang-Chi; Basavatia, Amar K; Ohri, Nitin; Hong, Linda X; Kalnicki, Shalom; Tome, Wolfgang A

    2018-02-01

    Several dose metrics in the categories-homogeneity, coverage, conformity and gradient have been proposed in literature for evaluating treatment plan quality. In this study, we applied these metrics to characterize and identify the plan quality metrics that would merit plan quality assessment in lung stereotactic body radiation therapy (SBRT) dose distributions. Treatment plans of 90 lung SBRT patients, comprising 91 targets, treated in our institution were retrospectively reviewed. Dose calculations were performed using anisotropic analytical algorithm (AAA) with heterogeneity correction. A literature review on published plan quality metrics in the categories-coverage, homogeneity, conformity and gradient was performed. For each patient, using dose-volume histogram data, plan quality metric values were quantified and analysed. For the study, the radiation therapy oncology group (RTOG) defined plan quality metrics were: coverage (0.90 ± 0.08); homogeneity (1.27 ± 0.07); conformity (1.03 ± 0.07) and gradient (4.40 ± 0.80). Geometric conformity strongly correlated with conformity index (p < 0.0001). Gradient measures strongly correlated with target volume (p < 0.0001). The RTOG lung SBRT protocol advocated conformity guidelines for prescribed dose in all categories were met in ≥94% of cases. The proportion of total lung volume receiving doses of 20 Gy and 5 Gy (V 20 and V 5 ) were mean 4.8% (±3.2) and 16.4% (±9.2), respectively. Based on our study analyses, we recommend the following metrics as appropriate surrogates for establishing SBRT lung plan quality guidelines-coverage % (ICRU 62), conformity (CN or CI Paddick ) and gradient (R 50% ). Furthermore, we strongly recommend that RTOG lung SBRT protocols adopt either CN or CI Padddick in place of prescription isodose to target volume ratio for conformity index evaluation. Advances in knowledge: Our study metrics are valuable tools for establishing lung SBRT plan quality guidelines.

  4. Dosimetric comparison of deep inspiration breath hold and free breathing technique in stereotactic body radiotherapy for localized lung tumor using Flattening Filter Free beam

    NASA Astrophysics Data System (ADS)

    Mani, Karthick Raj; Bhuiyan, Md. Anisuzzaman; Alam, Md. Mahbub; Ahmed, Sharif; Sumon, Mostafa Aziz; Sengupta, Ashim Kumar; Rahman, Md. Shakilur; Azharul Islam, Md. S. M.

    2018-03-01

    Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique. Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation. Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x¯ ± σx¯) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans. Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.

  5. SU-F-T-150: Comparing Normal Tissue Irradiated Volumes for Proton Vs. Photon Treatment Plans On Lung Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A; Mohan, R; Liao, Z

    Purpose: The aim of this work is to compare the “irradiated volume” (IRV) of normal tissues receiving 5, 20, 50, 80 and 90% or higher of the prescription dose with passively scattered proton therapy (PSPT) vs. IMRT of lung cancer patients. The overall goal of this research is to understand the factors affecting outcomes of a randomized PSPT vs. IMRT lung trial. Methods: Thirteen lung cancer patients, selected randomly, were analyzed. Each patient had PSPT and IMRT 74 Gy (RBE) plans meeting the same normal tissue constraints generated. IRVs were created for pairs of IMRT and PSPT plans on eachmore » patient. The volume of iGTV, (respiratory motion-incorporated GTV) was subtracted from each IRV to create normal tissue irradiated volume IRVNT. The average of IRVNT DVHs over all patients was also calculated for both modalities and inter-compared as were the selected dose-volume indices. Probability (p value) curves were calculated based on the Wilcoxon matched-paired signed-rank test to determine the dose regions where the statistically significant differences existed. Results: As expected, the average 5, 20 and 50% IRVNT’s for PSPT was found to be significantly smaller than for IMRT (p < 0.001, 0.01, and 0.001 respectively). However, the average 90% IRVNT for PSPT was greater than for IMRT (p = 0.003) presumably due to larger penumbra of protons and the long range of protons in lower density media. The 80% IRVNT for PSPT was also larger but not statistically distinguishable (p = .224). Conclusion: PSPT modality has smaller irradiated volume at lower doses, but larger volume at high doses. A larger cohort of lung patients will be analyzed in the future and IRVNT of patients treated with PSPT and IMRT will be compared to determine if the irradiated volumes (the magnitude of “dose bath”) correlate with outcomes.« less

  6. Dosimetric benefits of automation in the treatment of lower thoracic esophageal cancer: Is manual planning still an alternative option?

    PubMed

    Li, Xiadong; Wang, Lu; Wang, Jiahao; Han, Xu; Xia, Bing; Wu, Shixiu; Hu, Weigang

    2017-01-01

    This study aimed to design automated volumetric-modulated arc therapy (VMAT) plans in Pinnacle auto-planning and compare it with manual plans for patients with lower thoracic esophageal cancer (EC). Thirty patients with lower thoracic EC were randomly selected for replanning VMAT plans using auto-planning in Pinnacle treatment planning system (TPS) version 9.10. Historical plans of these patients were then compared. Dose-volume histogram (DVH) statistics, dose uniformity, and dose homogeneity were analyzed to evaluate treatment plans. Auto-planning was superior in terms of conformity index (CI) and homogeneity index (HI) for planning target volume (PTV), significantly improving 8.2% (p = 0.013) and 25% (p = 0.007) compared with manual planning, respectively, and decreasing dose of heart and liver irradiated by 20 to 40 Gy and 5 to 30 Gy, respectively (p < 0.05). Meanwhile, auto-planning further reduced the maximum dose (D max ) of spinal cord by 6.9 Gy compared with manual planning (p = 0.000). Additionally, manual planning showed the significantly lower low-dose volume (V 5 ) for the lung (p = 0.005). For auto-planning, the V 5 of the lung was significantly associated with the relative volume index (the volume ratio of PTV to the lung), and the correlation coefficient (R) and p-value were 0.994 and 0.000. Pinnacle auto-planning achieved superior target conformity and homogeneity and similar target coverage compared with historical manual planning. Most of organs at risk (OARs) sparing was significantly improved by auto-planning except for the V 5 of the lung, and the low dose distribution was highly associated with PTV volume and lung volume in auto-planning. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  7. Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function

    PubMed Central

    Larcombe, Alexander N.; Foong, Rachel E.; Boylen, Catherine E.; Zosky, Graeme R.

    2012-01-01

    Please cite this paper as: Larcombe et al. (2012) Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function. Influenza and Other Respiratory Viruses DOI:10.1111/irv.12012. Background  Exposure to diesel exhaust particles (DEP) is thought to exacerbate many pre‐existing respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease, however, there is a paucity of data on whether DEP exacerbates illness due to respiratory viral infection. Objectives  To assess the physiological consequences of an acute DEP exposure during the peak of influenza‐induced illness. Methods  We exposed adult female BALB/c mice to 100 μg DEP (or control) 3·75 days after infection with 104·5 plaque forming units of influenza A/Mem71 (or control). Six hours, 24 hours and 7 days after DEP exposure we measured thoracic gas volume and lung function at functional residual capacity. Bronchoalveolar lavage fluid was taken for analyses of cellular inflammation and cytokines, and whole lungs were taken for measurement of viral titre. Results  Influenza infection resulted in significantly increased inflammation, cytokine influx and impairment to lung function. DEP exposure alone resulted in less inflammation and cytokine influx, and no impairment to lung function. Mice infected with influenza and exposed to DEP had higher viral titres and neutrophilia compared with infected mice, yet they did not have more impaired lung mechanics than mice infected with influenza alone. Conclusions  A single dose of DEP is not sufficient to physiologically exacerbate pre‐existing respiratory disease caused by influenza infection in mice. PMID:22994877

  8. Electrical impedance tomography compared to positron emission tomography for the measurement of regional lung ventilation: an experimental study

    PubMed Central

    Richard, JC; Pouzot, C; Gros, A; Tourevieille, C; Lebars, D; Lavenne, F; Frerichs, I; Guérin, C

    2009-01-01

    Introduction Electrical impedance tomography (EIT), which can assess regional lung ventilation at the bedside, has never been compared with positron-emission tomography (PET), a gold-standard to quantify regional ventilation. This experiment systematically compared both techniques in injured and non-injured lungs. Methods The study was performed in six mechanically ventilated female piglets. In normal lungs, tidal volume (VT) was randomly changed to 6, 8, 10 and 15 ml/kg on zero end-expiratory pressure (ZEEP), then, at VT 10 ml/kg, positive end-expiratory pressure (PEEP) was randomly changed to 5, 10 and 15 cmH2O. Afterwards, acute lung injury (ALI) was subsequently created in three animals by injecting 3 ml/kg hydrochloric acid into the trachea. Then at PEEP 5 cmH2O, VT was randomly changed to 8 and 12 ml/kg and PEEP of 10 and 15 cmH2O applied at VT 10 ml/kg. EIT and PET examinations were performed simultaneously. EIT ventilation (VTEIT) and lung volume (VL) were measured in the anterior and posterior area of each lung. On the same regions of interest, ventilation (VPET) and aerated lung volume (VAatten) were determined with PET. Results On ZEEP, VTEIT and VPET significantly correlated for global (VTEIT = VPET - 2E-13, R2 = 0.95, P < 0.001) and regional (VTEIT = 0.81VPET+7.65, R2 = 0.63, P < 0.001) ventilation over both conditions. For ALI condition, corresponding R2 were 0.91 and 0.73 (P < 0.01). Bias was = 0 and limits of agreement were -37.42 and +37.42 ml/min for global ventilation over both conditions. These values were 0.04 and -29.01 and +29.08 ml/min, respectively, for regional ventilation. Significant correlations were also found between VL and VAatten for global (VL = VAatten+1E-12, R2 = 0.93, P < 0.0001) and regional (VL = 0.99VAatten+0.92, R2 = 0.65, P < 0.001) volume. For ALI condition, corresponding R2 were 0.94 (P < 0.001) and 0.54 (P < 0.05). Bias was = 0 and limits of agreement ranged -38.16 and +38.16 ml for global ventilation over both conditions. These values were -0.24 and -31.96 to +31.48 ml, respectively, for regional ventilation. Conclusions Regional lung ventilation and volume were accurately measured with EIT in healthy and injured lungs and validated by simultaneous PET imaging. PMID:19480694

  9. South African and international reference values for lung function and its relationship with blood pressure in Africans.

    PubMed

    van Rooyen, Yolandi; Huisman, Hugo W; Schutte, Aletta E; Eloff, Fritz C; Du Plessis, Johan L; Kruger, Annamarie; Van Rooyen, Johannes M

    2015-06-01

    In South Africa respiratory diseases are highly prevalent, with cardiovascular disease being a manifestation. However, international reference values for lung function are commonly used, which may not be appropriate to correctly identify reduced lung function. An inverse relationship exists between lung function and blood pressure (BP) but is not investigated extensively in black South Africans. We included 2010 Africans from the PURE (Prospective Urban Rural Epidemiology) study (aged > 35 years) in the North West Province. Spirometry was performed and predicted values for forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were calculated from South African, European and United States prediction equations. With the exception of the European predicted values, all other predicted mean FEV1 and FVC were above 80%. South African reference values displayed the highest percentages of the predicted values for FEV1 and FVC (87.9 and 99.7%, respectively.) BP increased from quintiles five to one for both FEV1 and FVC, (p for trend <0.001). After adjustment the differences remained (p<0.05). South African reference values yielded higher percentages of predicted FEV1 and FVC values than European and US equations suggesting that South African prediction equations may be more useful when investigating lung function in black South Africans. Elevated BP is related to reduced lung function, highlighting the importance in managing both respiratory- and cardiovascular disease. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  10. Morphologic Response of the Pulmonary Vasculature to Endoscopic Lung Volume Reduction.

    PubMed

    Rahaghi, Farbod N; Come, Carolyn E; Ross, James; Harmouche, Rola; Diaz, Alejandro A; Estepar, Raul San Jose; Washko, George

    Endoscopic Lung Volume Reduction has been used to reduce lung hyperinflation in selected patients with severe emphysema. Little is known about the effect of this procedure on the intraparenchymal pulmonary vasculature. In this study we used CT based vascular reconstruction to quantify the effect of the procedure on the pulmonary vasculature. Intraparenchymal vasculature was reconstructed and quantified in 12 patients with CT scans at baseline and 12 weeks following bilateral introduction of sealants in the upper lobes. The volume of each lung and each lobe was measured, and the vascular volume profile was calculated for both lower lobes. The detected vasculature was further labeled manually as arterial or venous in the right lower lobe. There was an increase in the volume of the lower lobes (3.14L to 3.25L, p=0.0005). There was an increase in BV5, defined as the volume of blood vessels with cross sectional area of less than 5mm 2 , (53.2ml to 57.9ml, p=0.03). This was found to be correlated with the increase in lower lobe volumes (R=0.65, p=0.02). The changes appear to be symmetric for veins and arteries with a correlation coefficient of 0.87 and a slope of near identity. In the subjects studied, there was an increase, from baseline, in BV5 in the lower lobes that correlated with the change in the volume of the lower lobes. The change appeared to be symmetric for both arteries and veins. The study illustrates the use of intraparenchymal pulmonary vascular reconstruction to study morphologic changes in response to interventions.

  11. Identification of early-stage usual interstitial pneumonia from low-dose chest CT scans using fractional high-density lung distribution

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Salvatore, Mary; Liu, Shuang; Jirapatnakul, Artit; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2017-03-01

    A fully-automated computer algorithm has been developed to identify early-stage Usual Interstitial Pneumonia (UIP) using features computed from low-dose CT scans. In each scan, the pre-segmented lung region is divided into N subsections (N = 1, 8, 27, 64) by separating the lung from anterior/posterior, left/right and superior/inferior in 3D space. Each subsection has approximately the same volume. In each subsection, a classic density measurement (fractional high-density volume h) is evaluated to characterize the disease severity in that subsection, resulting in a feature vector of length N for each lung. Features are then combined in two different ways: concatenation (2*N features) and taking the maximum in each of the two corresponding subsections in the two lungs (N features). The algorithm was evaluated on a dataset consisting of 51 UIP and 56 normal cases, a combined feature vector was computed for each case and an SVM classifier (RBF kernel) was used to classify them into UIP or normal using ten-fold cross validation. A receiver operating characteristic (ROC) area under the curve (AUC) was used for evaluation. The highest AUC of 0.95 was achieved by using concatenated features and an N of 27. Using lung partition (N = 27, 64) with concatenated features had significantly better result over not using partitions (N = 1) (p-value < 0.05). Therefore this equal-volume partition fractional high-density volume method is useful in distinguishing early-stage UIP from normal cases.

  12. REDUCTION IN INSPIRATORY FLOW ATTENUATES IL-8 RELEASE AND MAPK ACTIVATION OF LUNG OVERSTRETCH

    EPA Science Inventory

    Lung overstretch involves mechanical factors, including large tidal volumes (VT), which induce inflammatory responses. The current authors hypothesised that inspiratory flow contributes to ventilator-induced inflammation. Buffer-perfused rabbit lungs were ventilated for 2 h with ...

  13. pRotective vEntilation with veno-venouS lung assisT in respiratory failure: A protocol for a multicentre randomised controlled trial of extracorporeal carbon dioxide removal in patients with acute hypoxaemic respiratory failure.

    PubMed

    McNamee, J J; Gillies, M A; Barrett, N A; Agus, A M; Beale, R; Bentley, A; Bodenham, A; Brett, S J; Brodie, D; Finney, S J; Gordon, A J; Griffiths, M; Harrison, D; Jackson, C; McDowell, C; McNally, C; Perkins, G D; Tunnicliffe, W; Vuylsteke, A; Walsh, T S; Wise, M P; Young, D; McAuley, D F

    2017-05-01

    One of the few interventions to demonstrate improved outcomes for acute hypoxaemic respiratory failure is reducing tidal volumes when using mechanical ventilation, often termed lung protective ventilation. Veno-venous extracorporeal carbon dioxide removal (vv-ECCO 2 R) can facilitate reducing tidal volumes. pRotective vEntilation with veno-venouS lung assisT (REST) is a randomised, allocation concealed, controlled, open, multicentre pragmatic trial to determine the clinical and cost-effectiveness of lower tidal volume mechanical ventilation facilitated by vv-ECCO 2 R in patients with acute hypoxaemic respiratory failure. Patients requiring intubation and mechanical ventilation for acute hypoxaemic respiratory failure will be randomly allocated to receive either vv-ECCO 2 R and lower tidal volume mechanical ventilation or standard care with stratification by recruitment centre. There is a need for a large randomised controlled trial to establish whether vv-ECCO 2 R in acute hypoxaemic respiratory failure can allow the use of a more protective lung ventilation strategy and is associated with improved patient outcomes.

  14. Cystic Fibrosis Transmembrane Conductance Regulator Potentiation as a Therapeutic Strategy for Pulmonary Edema: A Proof-of-Concept Study in Pigs.

    PubMed

    Li, Xiaopeng; Vargas Buonfiglio, Luis G; Adam, Ryan J; Stoltz, David A; Zabner, Joseph; Comellas, Alejandro P

    2017-12-01

    To determine the feasibility of using a cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770/Kalydeco, Vertex Pharmaceuticals, Boston, MA), as a therapeutic strategy for treating pulmonary edema. Prospective laboratory animal investigation. Animal research laboratory. Newborn and 3 days to 1 week old pigs. Hydrostatic pulmonary edema was induced in pigs by acute volume overload. Ivacaftor was nebulized into the lung immediately after volume overload. Grams of water per grams of dry lung tissue were determined in the lungs harvested 1 hour after volume overload. Ivacaftor significantly improved alveolar liquid clearance in isolated pig lung lobes ex vivo and reduced edema in a volume overload in vivo pig model of hydrostatic pulmonary edema. To model hydrostatic pressure-induced edema in vitro, we developed a method of applied pressure to the basolateral surface of alveolar epithelia. Elevated hydrostatic pressure resulted in decreased cystic fibrosis transmembrane conductance regulator activity and liquid absorption, an effect which was partially reversed by cystic fibrosis transmembrane conductance regulator potentiation with ivacaftor. Cystic fibrosis transmembrane conductance regulator potentiation by ivacaftor is a novel therapeutic approach for pulmonary edema.

  15. Helium-3 MR q-space imaging with radial acquisition and iterative highly constrained back-projection.

    PubMed

    O'Halloran, Rafael L; Holmes, James H; Wu, Yu-Chien; Alexander, Andrew; Fain, Sean B

    2010-01-01

    An undersampled diffusion-weighted stack-of-stars acquisition is combined with iterative highly constrained back-projection to perform hyperpolarized helium-3 MR q-space imaging with combined regional correction of radiofrequency- and T1-related signal loss in a single breath-held scan. The technique is tested in computer simulations and phantom experiments and demonstrated in a healthy human volunteer with whole-lung coverage in a 13-sec breath-hold. Measures of lung microstructure at three different lung volumes are evaluated using inhaled gas volumes of 500 mL, 1000 mL, and 1500 mL to demonstrate feasibility. Phantom results demonstrate that the proposed technique is in agreement with theoretical values, as well as with a fully sampled two-dimensional Cartesian acquisition. Results from the volunteer study demonstrate that the root mean squared diffusion distance increased significantly from the 500-mL volume to the 1000-mL volume. This technique represents the first demonstration of a spatially resolved hyperpolarized helium-3 q-space imaging technique and shows promise for microstructural evaluation of lung disease in three dimensions. Copyright (c) 2009 Wiley-Liss, Inc.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, A; Kingsley, C; Melancon, A

    Purpose: To evaluate the use of post-irradiation changes in respiratory rate and CBCT-based morphology as predictors of survival in mice. Methods: C57L/J mice underwent whole-thorax irradiation with a Co-60 beam to four different doses [0Gy (n=3), 9Gy (n=5), 11Gy (n=7), and 13Gy (n=5)] in order to induce varying levels of pneumonitis. Respiratory rate measurements, breath-hold CBCTs, and free-breathing CBCTs were acquired pre-irradiation and at six time points between two and seven months post-irradiation. For respiratory rate measurements, we developed a novel computer-vision-based technique. We recorded mice sleeping in standard laboratory cages with a 30 fps, 1080p webcam (Logitech C920). Wemore » calculated respiratory rate using corner detection and optical flow to track cyclical motion in the fur in the recorded video. Breath-hold and free-breathing CBCTs were acquired on the X-RAD225Cx system. For breathhold imaging, the mice were intubated and their breath was held at full-inhale for 20 seconds. Healthy lung tissue was delineated in the scans using auto-threshold contouring (0–0.7 g/cm{sup 3}). The volume of healthy lung was measured in each of the scans. Next, lung density was measured in a 6-mm{sup 2} ROI in a fixed anatomic location in each of the scans. Results: Day-to-day variability in respiratory rate with our technique was 13%. All metrics except for breath-hold lung volume were correlated with survival: lung density on free-breathing (r=−0.7482,p<0.01) and breath-hold images (r=−0.5864,p<0.01), free-breathing lung volume (r=0.7179,p<0.01), and respiratory rate (r= 0.6953,p<0.01). Lung density on free-breathing scans was correlated with respiratory rate (r=0.7142,p<0.01) and lung density on breath-hold scans (r=0.5543,p<0.01). One significant practical hurdle in the CBCT measurements was that at least one lobe of the lung was collapsed in 36% of free-breathing scans and 45% of breath-hold scans. Conclusion: Lung density and lung volume on free-breathing CBCTs and respiratory rate outperform breath-hold CBCT measurements as indicators for survival from radiation-induced pneumonitis. This work was partially funded by Elekta.« less

  17. Time-dependent cell disintegration kinetics in lung tumors after irradiation

    NASA Astrophysics Data System (ADS)

    Chvetsov, Alexei V.; Palta, Jatinder J.; Nagata, Yasushi

    2008-05-01

    We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T1/2. The half-life T1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.

  18. Pressure-limited sustained inflation vs. gradual tidal inflations for resuscitation in preterm lambs.

    PubMed

    Tingay, David G; Polglase, Graeme R; Bhatia, Risha; Berry, Clare A; Kopotic, Robert J; Kopotic, Clinton P; Song, Yong; Szyld, Edgardo; Jobe, Alan H; Pillow, J Jane

    2015-04-01

    Support of the mechanically complex preterm lung needs to facilitate aeration while avoiding ventilation heterogeneities: whether to achieve this gradually or quickly remains unclear. We compared the effect of gradual vs. constant tidal inflations and a pressure-limited sustained inflation (SI) at birth on gas exchange, lung mechanics, gravity-dependent lung volume distribution, and lung injury in 131-day gestation preterm lambs. Lambs were resuscitated with either 1) a 20-s, 40-cmH2O pressure-limited SI (PressSI), 2) a gradual increase in tidal volume (Vt) over 5-min from 3 ml/kg to 7 ml/kg (IncrVt), or 3) 7 ml/kg Vt from birth. All lambs were subsequently ventilated for 15 min with 7 ml/kg Vt with the same end-expiratory pressure. Lung mechanics, gas exchange and spatial distribution of end-expiratory volume (EEV), and tidal ventilation (electrical impedance tomography) were recorded regularly. At 15 min, early mRNA tissue markers of lung injury were assessed. The IncrVt group resulted in greater tissue hysteresivity at 5 min (P = 0.017; two-way ANOVA), higher alveolar-arterial oxygen difference from 10 min (P < 0.01), and least uniform gravity-dependent distribution of EEV. There were no other differences in lung mechanics between groups, and the PressSI and 7 ml/kg Vt groups behaved similarly throughout. EEV was more uniformly distributed, but Vt least so, in the PressSI group. There were no differences in mRNA markers of lung injury. A gradual increase in Vt from birth resulted in less recruitment of the gravity-dependent lung with worse oxygenation. There was no benefit of a SI at birth over mechanical ventilation with 7 ml/kg Vt. Copyright © 2015 the American Physiological Society.

  19. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    PubMed Central

    Sbragia, L.; Nassr, A.C.C.; Gonçalves, F.L.L.; Schmidt, A.F.; Zuliani, C.C.; Garcia, P.V.; Gallindo, R.M.; Pereira, L.A.V.

    2014-01-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression. PMID:24519134

  20. Computer-aided pulmonary image analysis in small animal models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J.

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next.more » The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.« less

Top