Sample records for unit potential morphology

  1. Bathymetry, morphology, and lakebed geologic characteristics of potential Kokanee salmon spawning habitat in Lake Pend Oreille, Bayview and Lakeview quadrangles, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Dux, Andrew M.

    2013-01-01

    Kokanee salmon (Oncorhynchus nerka) are a keystone species in Lake Pend Oreille in northern Idaho, historically supporting a high-yield recreational fishery and serving as the primary prey for the threatened native bull trout (Salvelinus confluentus) and the Gerrard-strain rainbow trout (Oncorhynchus mykiss). After 1965, the kokanee population rapidly declined and has remained at a low level of abundance. Lake Pend Oreille is one of the deepest lakes in the United States, the largest lake in Idaho, and home to the U.S. Navy Acoustic Research Detachment Base. The U.S. Geological Survey and Idaho Department of Fish and Game are mapping the bathymetry, morphology, and the lakebed geologic units and embeddedness of potential kokanee salmon spawning habitat in Lake Pend Oreille. Relations between lake morphology, lakebed geologic units, and substrate embeddedness are characterized for the shore zone, rise zone, and open water in bays and the main stem of the lake. This detailed knowledge of physical habitat along the shoreline of Lake Pend Oreille is necessary to better evaluate and develop kokanee recovery actions.

  2. Mechanical catalysis on the centimetre scale

    PubMed Central

    Miyashita, Shuhei; Audretsch, Christof; Nagy, Zoltán; Füchslin, Rudolf M.; Pfeifer, Rolf

    2015-01-01

    Enzymes play important roles in catalysing biochemical transaction paths, acting as logical machines through the morphology of the processes. A key challenge in elucidating the nature of these systems, and for engineering manufacturing methods inspired by biochemical reactions, is to attain a comprehensive understanding of the stereochemical ground rules of enzymatic reactions. Here, we present a model of catalysis that can be performed magnetically by centimetre-sized passive floating units. The designed system, which is equipped with permanent magnets only, passively obeys the local causalities imposed by magnetic interactions, albeit it shows a spatial behaviour and an energy profile analogous to those of biochemical enzymes. In this process, the enzyme units trigger physical conformation changes of the target by levelling out the magnetic potential barrier (activation potential) to a funnel type and, thus, induce cascading conformation changes of the targeted substrate units reacting in parallel. The inhibitor units, conversely, suppress such changes by increasing the potential. Because the model is purely mechanical and established on a physics basis in the absence of turbulence, each performance can be explained by the morphology of the unit, extending the definition of catalysis to systems of alternative scales. PMID:25652461

  3. Mechanical catalysis on the centimetre scale.

    PubMed

    Miyashita, Shuhei; Audretsch, Christof; Nagy, Zoltán; Füchslin, Rudolf M; Pfeifer, Rolf

    2015-03-06

    Enzymes play important roles in catalysing biochemical transaction paths, acting as logical machines through the morphology of the processes. A key challenge in elucidating the nature of these systems, and for engineering manufacturing methods inspired by biochemical reactions, is to attain a comprehensive understanding of the stereochemical ground rules of enzymatic reactions. Here, we present a model of catalysis that can be performed magnetically by centimetre-sized passive floating units. The designed system, which is equipped with permanent magnets only, passively obeys the local causalities imposed by magnetic interactions, albeit it shows a spatial behaviour and an energy profile analogous to those of biochemical enzymes. In this process, the enzyme units trigger physical conformation changes of the target by levelling out the magnetic potential barrier (activation potential) to a funnel type and, thus, induce cascading conformation changes of the targeted substrate units reacting in parallel. The inhibitor units, conversely, suppress such changes by increasing the potential. Because the model is purely mechanical and established on a physics basis in the absence of turbulence, each performance can be explained by the morphology of the unit, extending the definition of catalysis to systems of alternative scales.

  4. Morphological awareness and reading comprehension: Examining mediating factors.

    PubMed

    Levesque, Kyle C; Kieffer, Michael J; Deacon, S Hélène

    2017-08-01

    The relation between morphological awareness-defined as the awareness of and ability to manipulate the smallest units of meaning in language-and reading comprehension remains in need of specification. In this study, we evaluated four potential intervening variables through which morphological awareness may contribute indirectly to reading comprehension. We assessed word reading and vocabulary as well as children's ability to read and analyze the meaning of morphologically complex words (morphological decoding and morphological analysis, respectively). Controls of phonological awareness and nonverbal ability were included in the model. Participants were 221 English-speaking children in Grade 3. Multivariate path analyses revealed evidence of two indirect relations and one direct relation between morphological awareness and reading comprehension. In the first indirect path, morphological awareness contributed to morphological decoding, which then influenced word reading and finally reading comprehension. In a second indirect path, morphological awareness contributed to morphological analysis, which contributed to reading comprehension. Finally, in a direct path, morphological awareness contributed to reading comprehension beyond all other variables. These findings inform as to the potential mechanisms underlying the relation between morphological awareness and reading comprehension in children. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis

    NASA Astrophysics Data System (ADS)

    Loye, A.; Jaboyedoff, M.; Pedrazzini, A.

    2009-10-01

    The availability of high resolution Digital Elevation Models (DEM) at a regional scale enables the analysis of topography with high levels of detail. Hence, a DEM-based geomorphometric approach becomes more accurate for detecting potential rockfall sources. Potential rockfall source areas are identified according to the slope angle distribution deduced from high resolution DEM crossed with other information extracted from geological and topographic maps in GIS format. The slope angle distribution can be decomposed in several Gaussian distributions that can be considered as characteristic of morphological units: rock cliffs, steep slopes, footslopes and plains. A terrain is considered as potential rockfall sources when their slope angles lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit "Rock cliffs" become dominant over the one of "Steep slopes". In addition to this analysis, the cliff outcrops indicated by the topographic maps were added. They contain however "flat areas", so that only the slope angles values above the mode of the Gaussian distribution of the morphological unit "Steep slopes" were considered. An application of this method is presented over the entire Canton of Vaud (3200 km2), Switzerland. The results were compared with rockfall sources observed on the field and orthophotos analysis in order to validate the method. Finally, the influence of the cell size of the DEM is inspected by applying the methodology over six different DEM resolutions.

  6. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    NASA Astrophysics Data System (ADS)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  7. Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields

    NASA Astrophysics Data System (ADS)

    Byrnes, Jeffrey M.; Crown, David A.

    2002-10-01

    Morphologic characteristics, flow stratigraphy, and radar backscatter properties of five lava flow fields on Venus (Turgmam Fluctus, Zipaltonal Fluctus, Tuli Mons/Uilata Fluctus, Var Mons, and Mylitta Fluctus) were examined to understand flow field emplacement mechanisms and relationships to other surface processes. These analyses indicate that the flow fields studied developed through emplacement of numerous, thin flow units, presumably over extended periods of time. Although the Venusian fields display flow morphologies similar to those observed within terrestrial flow fields, the Venusian flow units are significantly larger and have a larger range of radar backscatter coefficients. Both simple and compound flow emplacement appear to have occurred within the flow fields. A potential correlation between flow rheology and radar brightness is suggested by differences in planform morphology, apparent flow thickness, and apparent sensitivity to topography between bright and dark flows. Distributary flow morphologies may result from tube-fed flows, and postemplacement modification by processes such as flow inflation and crustal foundering is consistent with discrete zones of increased radar brightness within individual flow lobes. Mapping of these flow fields does not indicate any simple evolutionary trend in eruptive/resurfacing style within the flow fields, or any consistent temporal sequence relative to other tectonic and volcanic features.

  8. Motor unit potential induced repetitive discharges (MIRDs): description of an unusual iterative discharge.

    PubMed

    So, Noel F; Rubin, Devon I; Jones, Lyell K; Litchy, William J; Sorenson, Eric J

    2013-12-01

    Repetitive discharges may be recorded during nerve conduction studies (NCS) or during needle electromyography in a muscle at rest. Repetitive discharges that occur during voluntary activation and are time-locked to voluntary motor unit potentials (MUP) have not been described. Retrospective review of motor unit potential induced repetitive discharges (MIRDs) identified in the EMG laboratory. Characteristics of each MIRD, patient demographics, other EMG findings in the same muscle, and electrophysiological diagnosis were analyzed. MIRDs were observed in 15 patients. The morphology and number of spikes and duration of MIRDs varied. The discharges fired at rates of 50-200 Hz. All but 2 patients had EMG findings of a chronic neurogenic disorder. MIRDs are rare iterative discharges time-locked to a voluntary MUP. The pathophysiology of MIRDs is unclear, but their presence may indicate a chronic neurogenic process. Copyright © 2013 Wiley Periodicals, Inc.

  9. Genetic diversity in a morphologically conservative invasive taxon: Multiple introductions of swamp eels to the southeastern United States

    USGS Publications Warehouse

    Collins, T.M.; Trexler, J.C.; Nico, L.G.; Rawlings, T.A.

    2002-01-01

    Genetic analysis of introduced populations, especially in morphologically conservative taxa, can clarify introduction histories, identify management units and source populations, provide a more realistic estimate of the frequency of successful invasion, and suggest strategies for preventing further introductions. In the last 7 years, populations of swamp eels, referred to the Asian genus Monopterus (Family Synbranchidae) on the basis of external morphology, have been discovered in aquatic habitats near Atlanta, Georgia; Tampa, Florida; North Miami, Florida; and most recently in close proximity to Everglades National Park in Homestead, Florida. Swamp eels are large predators capable of dispersal over land and have the potential to disrupt already threatened ecosystems. We analyzed mitochondrial DNA sequences from four known populations in the continental United States and samples from Malaysia, Indonesia, Vietnam, and two locations in China to determine introduction histories, source populations, genetic diversity, and relationships among populations. Our results indicate that there have been at least three independent introductions of genetically distinct forms. Introduced populations in close proximity (separated by <40 km) are genetically distinct. The level of sequence difference among introduced populations reaches levels seen among sister families of teleost fishes for the same region of the mitochondrial genome. These genetically distinct introduced populations in all likelihood represent at least two and possibly three species. Regardless of species status, these genetically distinct lineages may be expected to vary in ecological or life-history traits, representing different potential threats to the ecosystems where they have been introduced. Given the success of swamp eels in invading many habitats around the world, further study of these eels is warranted to elucidate the characteristics of successful invaders and invasions.

  10. Different evolutionary pathways underlie the morphology of wrist bones in hominoids

    PubMed Central

    2013-01-01

    Background The hominoid wrist has been a focus of numerous morphological analyses that aim to better understand long-standing questions about the evolution of human and hominoid hand use. However, these same analyses also suggest various scenarios of complex and mosaic patterns of morphological evolution within the wrist and potentially multiple instances of homoplasy that would benefit from require formal analysis within a phylogenetic context. We identify morphological features that principally characterize primate – and, in particular, hominoid (apes, including humans) - wrist evolution and reveal the rate, process and evolutionary timing of patterns of morphological change on individual branches of the primate tree of life. Linear morphological variables of five wrist bones – the scaphoid, lunate, triquetrum, capitate and hamate – are analyzed in a diverse sample of extant hominoids (12 species, 332 specimens), Old World (8 species, 43 specimens) and New World (4 species, 26 specimens) monkeys, fossil Miocene apes (8 species, 20 specimens) and Plio-Pleistocene hominins (8 species, 18 specimens). Result Results reveal a combination of parallel and synapomorphic morphology within haplorrhines, and especially within hominoids, across individual wrist bones. Similar morphology of some wrist bones reflects locomotor behaviour shared between clades (scaphoid, triquetrum and capitate) while others (lunate and hamate) indicate clade-specific synapomorphic morphology. Overall, hominoids show increased variation in wrist bone morphology compared with other primate clades, supporting previous analyses, and demonstrate several occurrences of parallel evolution, particularly between orangutans and hylobatids, and among hominines (extant African apes, humans and fossil hominins). Conclusions Our analyses indicate that different evolutionary processes can underlie the evolution of a single anatomical unit (the wrist) to produce diversity in functional and morphological adaptations across individual wrist bones. These results exemplify a degree of evolutionary and functional independence across different wrist bones, the potential evolvability of skeletal morphology, and help to contextualize the postcranial mosaicism observed in the hominin fossil record. PMID:24148262

  11. Crystal growth, structure and morphology of hydrocortisone methanol solvate

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Wang, Jiangkang; Zhang, Ying; Wu, Hong; Chen, Wei; Guo, Zhichao

    2004-04-01

    Hydrocortisone (HC), an important grucocorticoid, was crystallized from methanol solvent in the form of its methanol solvate. Its crystal structure belongs to orthorhombic, space group P2 12 12 1, with the unit cell parameters a=7.712(3) Å, b=14.392(5) Å, c=18.408(6) Å, Z=4. The methanol takes part in intermolecular hydrogen bonding, so if we change the solvent, the crystal habit of HC maybe different. The long parallelepiped morphology was also predicted by Cerius 2TM simulation program. The influence of intermolecular interaction was taken into account in the attachment energy model. The morphology calculation performed on the potential energy minimized model using a generic DREIDING 2.21 force field and developed minimization protocol with derived partial charges fits the experimental crystal shape well.

  12. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

  13. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    PubMed

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  14. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor

    PubMed Central

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-01-01

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3′-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF. PMID:25431021

  15. Nomenclature for the Nameless: A Proposal for an Integrative Molecular Taxonomy of Cryptic Diversity Exemplified by Planktonic Foraminifera.

    PubMed

    Morard, Raphaël; Escarguel, Gilles; Weiner, Agnes K M; André, Aurore; Douady, Christophe J; Wade, Christopher M; Darling, Kate F; Ujiié, Yurika; Seears, Heidi A; Quillévéré, Frédéric; de Garidel-Thoron, Thibault; de Vargas, Colomban; Kucera, Michal

    2016-09-01

    Investigations of biodiversity, biogeography, and ecological processes rely on the identification of "species" as biologically significant, natural units of evolution. In this context, morphotaxonomy only provides an adequate level of resolution if reproductive isolation matches morphological divergence. In many groups of organisms, morphologically defined species often disguise considerable genetic diversity, which may be indicative of the existence of cryptic species. The diversity hidden by morphological species can be disentangled through genetic surveys, which also provide access to data on the ecological distribution of genetically circumscribed units. These units can be identified by unique DNA sequence motifs and allow studies of evolutionary and ecological processes at different levels of divergence. However, the nomenclature of genetically circumscribed units within morphological species is not regulated and lacks stability. This represents a major obstacle to efforts to synthesize and communicate data on genetic diversity for multiple stakeholders. We have been confronted with such an obstacle in our work on planktonic foraminifera, where the stakeholder community is particularly diverse, involving geochemists, paleoceanographers, paleontologists, and biologists, and the lack of stable nomenclature beyond the level of formal morphospecies prevents effective transfer of knowledge. To circumvent this problem, we have designed a stable, reproducible, and flexible nomenclature system for genetically circumscribed units, analogous to the principles of a formal nomenclature system. Our system is based on the definition of unique DNA sequence motifs collocated within an individual, their typification (in analogy with holotypes), utilization of their hierarchical phylogenetic structure to define levels of divergence below that of the morphospecies, and a set of nomenclature rules assuring stability. The resulting molecular operational taxonomic units remain outside the domain of current nomenclature codes, but are linked to formal morphospecies as regulated by the codes. Subsequently, we show how this system can be applied to classify genetically defined units using the SSU rDNA marker in planktonic foraminifera and we highlight its potential use for other groups of organisms where similarly high levels of connectivity between molecular and formal taxonomies can be achieved. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Control of oleylamine to perovskite ratio in synthesis of MAPbBr3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Wu, Yi-Hua; Zhu, Zhi-Gang; Shih, Wan Y.; Shih, Wei-Heng

    2018-06-01

    Methylammonium lead bromide (CH3NH3PbBr3) nanocrystals have great potentials for lighting and display applications. Previously we synthesized CH3NH3PbBr3 nanocrystals using oleylamine as capping molecule and found that by increasing the oleylamine to CH3NH3PbBr3 perovskite ratio (OPR), the photoluminescence wavelengths and morphology of CH3NH3PbBr3 nanocrystals could be varied from 530 nm (green) platelets to 460 nm (blue) particles. Here we modified the synthesis to direct injection of precursors into toluene and found that increasing OPR not only changes the wavelength and morphology of nanocrystals but also the size of the unit cells.

  17. The ovary structure and oogenesis in the basal crustaceans and hexapods. Possible phylogenetic significance.

    PubMed

    Jaglarz, Mariusz K; Kubrakiewicz, Janusz; Bilinski, Szczepan M

    2014-07-01

    Recent large-scale phylogenetic analyses of exclusively molecular or combined molecular and morphological characters support a close relationship between Crustacea and Hexapoda. The growing consensus on this phylogenetic link is reflected in uniting both taxa under the name Pancrustacea or Tetraconata. Several recent molecular phylogenies have also indicated that the monophyletic hexapods should be nested within paraphyletic crustaceans. However, it is still contentious exactly which crustacean taxon is the sister group to Hexapoda. Among the favored candidates are Branchiopoda, Malacostraca, Remipedia and Xenocarida (Remipedia + Cephalocarida). In this context, we review morphological and ultrastructural features of the ovary architecture and oogenesis in these crustacean groups in search of traits potentially suitable for phylogenetic considerations. We have identified a suite of morphological characters which may prove useful in further comparative studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interactingmore » with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.« less

  19. Delimiting species of Protaphorura (Collembola: Onychiuridae): integrative evidence based on morphology, DNA sequences and geography.

    PubMed

    Sun, Xin; Zhang, Feng; Ding, Yinhuan; Davies, Thomas W; Li, Yu; Wu, Donghui

    2017-08-15

    Species delimitation remains a significant challenge when the diagnostic morphological characters are limited. Integrative taxonomy was applied to the genus Protaphorura (Collembola: Onychiuridae), which is one of most difficult soil animals to distinguish taxonomically. Three delimitation approaches (morphology, molecular markers and geography) were applied providing rigorous species validation criteria with an acceptably low error rate. Multiple molecular approaches, including distance- and evolutionary model-based methods, were used to determine species boundaries based on 144 standard barcode sequences. Twenty-two molecular putative species were consistently recovered across molecular and geographical analyses. Geographic criteria were was proved to be an efficient delimitation method for onychiurids. Further morphological examination, based on the combination of the number of pseudocelli, parapseudocelli and ventral mesothoracic chaetae, confirmed 18 taxa of 22 molecular units, with six of them described as new species. These characters were found to be of high taxonomical value. This study highlights the potential benefits of integrative taxonomy, particularly simultaneous use of molecular/geographical tools, as a powerful way of ascertaining the true diversity of the Onychiuridae. Our study also highlights that discovering new morphological characters remains central to achieving a full understanding of collembolan taxonomy.

  20. Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid

    NASA Astrophysics Data System (ADS)

    Sabeeh, Sabah H.; Hussein, Hashim Abed; Judran, Hadia Kadhim

    Copper sulfate pentahydrate was used as a source of Cu ion with five different molarities (0.02, 0.05, 0.1, 0.15, 2 and 0.25M). XRD, FE-SEM and TEM techniques all showed that CuO samples have polycrystalline monoclinic structure. CuO prolate spheroid is assembled from nanoparticles as building units. It was demonstrated that the purity, morphology, size range of prolate spheroid and density of nano building units are significantly influenced by Cu precursor’s molarity. The pure phase of CuO prolate spheroid was produced via molarity of 0.2M with crystallite size of 15.1565nm while the particle size of building units ranges from 16nm to 21nm. The stability of CuO nanosuspension or nanofluid was evaluated by zeta potential analysis. The obtained properties of specific structure with large surface area of CuO prolate spheroid make it a promising candidate for wide range of potential applications as in nanofluids for cooling purposes.

  1. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    NASA Astrophysics Data System (ADS)

    Al-Ruzouq, R.; Shanableh, A.; Merabtene, T.

    2015-04-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northern part of UAE and assess the contributing factors for exploration of potential groundwater resources. Remote sensing data and geographic information system will be used to locate potential zones for groundwater. Various maps (i.e., base, soil, geological, Hydro-geological, Geomorphologic Map, structural, drainage, slope, land use/land cover and average annual rainfall map) will be prepared based on geospatial techniques. The groundwater availability of the basin will qualitatively classified into different classes based on its hydro-geo-morphological conditions. The land use/land cover map will be also prepared for the different seasons using a digital classification technique with a ground truth based on field investigation.

  2. Bayesian species delimitation in Pleophylla chafers (Coleoptera) - the importance of prior choice and morphology.

    PubMed

    Eberle, Jonas; Warnock, Rachel C M; Ahrens, Dirk

    2016-05-05

    Defining species units can be challenging, especially during the earliest stages of speciation, when phylogenetic inference and delimitation methods may be compromised by incomplete lineage sorting (ILS) or secondary gene flow. Integrative approaches to taxonomy, which combine molecular and morphological evidence, have the potential to be valuable in such cases. In this study we investigated the South African scarab beetle genus Pleophylla using data collected from 110 individuals of eight putative morphospecies. The dataset included four molecular markers (cox1, 16S, rrnL, ITS1) and morphometric data based on male genital morphology. We applied a suite of molecular and morphological approaches to species delimitation, and implemented a novel Bayesian approach in the software iBPP, which enables continuous morphological trait and molecular data to be combined. Traditional morphology-based species assignments were supported quantitatively by morphometric analyses of the male genitalia (eigenshape analysis, CVA, LDA). While the ITS1-based delineation was also broadly congruent with the morphospecies, the cox1 data resulted in over-splitting (GMYC modelling, haplotype networks, PTP, ABGD). In the most extreme case morphospecies shared identical haplotypes, which may be attributable to ILS based on statistical tests performed using the software JML. We found the strongest support for putative morphospecies based on phylogenetic evidence using the combined approach implemented in iBPP. However, support for putative species was sensitive to the use of alternative guide trees and alternative combinations of priors on the population size (θ) and rootage (τ 0 ) parameters, especially when the analysis was based on molecular or morphological data alone. We demonstrate that continuous morphological trait data can be extremely valuable in assessing competing hypotheses to species delimitation. In particular, we show that the inclusion of morphological data in an integrative Bayesian framework can improve the resolution of inferred species units. However, we also demonstrate that this approach is extremely sensitive to guide tree and prior parameter choice. These parameters should be chosen with caution - if possible - based on independent empirical evidence, or careful sensitivity analyses should be performed to assess the robustness of results. Young species provide exemplars for investigating the mechanisms of speciation and for assessing the performance of tools used to delimit species on the basis of molecular and/or morphological evidence.

  3. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States

    Treesearch

    G.A. Bauer; F.A. Bazzaz; R. Minocha; S. Long; A. Magill; J. Aber; G.M. Berntson

    2004-01-01

    Temperate forests are predicted to play a key role as important sinks for atmospheric carbon dioxide, which could be enhanced by nitrogen (N) deposition. However, experimental evidence suggests that the impact of N deposition on temperate forest productivity may not be as great as originally assumed. We investigated how chronic N addition affects needle morphology,...

  4. Assessment of the need for a cardiac morphology curriculum for paediatric cardiology fellows.

    PubMed

    Rogers, Lindsay S; Klein, Melissa; James, Jeanne; FitzGerald, Michael

    2017-07-01

    Expert knowledge of cardiac malformations is essential for paediatric cardiologists. Current cardiac morphology fellowship teaching format, content, and nomenclature are left up to the discretion of the individual fellowship programmes. We aimed to assess practices and barriers in morphology education, perceived effectiveness of current curricula, and preferences for a standardised fellow morphology curriculum. A web-based survey was developed de novo and administered anonymously via e-mail to all paediatric cardiology fellowship programme directors and associate directors in the United States of America; leaders were asked to forward the survey to fellows. A total of 35 directors from 32 programmes (51%) and 66 fellows responded. Curriculum formats varied: 28 (88%) programmes utilised pathological specimens, 25 (78%) invited outside faculty, and 16 (50%) utilised external conferences. Director nomenclature preferences were split - 6 (19%) Andersonian, 8 (25%) Van Praaghian, and 18 (56%) mixed. Barriers to morphology education included time and inconsistent nomenclature. One-third of directors reported that <90% of recent fellow graduates had adequate abilities to apply segmental anatomy, identify associated cardiac lesions, or communicate complex CHD. More structured teaching, protected time, and specimens were suggestions to improve curricula. Almost 75% would likely adopt/utilise an online morphology curriculum. Cardiac morphology training varies in content and format among fellowships. Inconsistent nomenclature exists, and inadequate morphology knowledge is perceived to contribute to communication failures, both have potential patient safety implications. There is an educational need for a common, online cardiac morphology curriculum that could allow for fellow assessment of competency and contribute to more standardised communication in the field of paediatric cardiology.

  5. A Fossilized Energy Distribution of Lightning.

    PubMed

    Pasek, Matthew A; Hurst, Marc

    2016-07-28

    When lightning strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the lightning strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground lightning. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of lightning strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of lightning parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating lightning energy and damage potential of strikes.

  6. A Fossilized Energy Distribution of Lightning

    PubMed Central

    Pasek, Matthew A.; Hurst, Marc

    2016-01-01

    When lightning strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the lightning strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground lightning. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of lightning strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of lightning parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating lightning energy and damage potential of strikes. PMID:27466230

  7. Morphological Analysis of Apo Volcanic Complex in Southern Mindanao, Philippines: implications on volcano-tectonic evolution of different volcanic units

    NASA Astrophysics Data System (ADS)

    Herrero, T. M. L.; van Wyk de Vries, B.; Lagmay, A. M. A.; Eco, R. C.

    2015-12-01

    The Apo Volcanic Complex (AVC) is one of the largest volcanic centers in the Philippines, located in the southern island of Mindanao. It is composed of four edifices and several smaller cones. The youngest volcanic unit, the Apo Dome, is the highest elevation in the Philippines. This unit is classified as potentially active, whereas other units, Talomo, Sibulan and Kitubod, are inactive. The study gives insight to the construction and deformation history of the volcanic units and imparts foresight to subsequent events that can affect populated areas. A morphological analysis integrating high-resolution digital terrain models and public domain satellite data and images was done to recognize and discriminate volcanic units and characterize volcano-tectonic features and processes. Morphological domains were defined based on surface textures, slope variation, degrees and controls of erosion, and lineament density and direction. This establishes the relative ages and extent of volcanic units as well as the volcano-tectonic evolution of the complex. Six edifice building events were recognized, two of which form the elevated base of Apo dome. The geodynamic setting of the region is imprinted in the volcanic units as five morphostructural lineaments. They reveal the changes in maximum regional stress through time such as the N-S extension found across the whole volcanic complex displaying the current stress regime. This has implications on the locality and propagation of geothermal activity, magma ascent, and edifice collapses. One main result of the compounded effects of inherited structures and current stress regime is the Sandawa Collapse Zone. This is a large valley formed by several collapses where NE-SW fractures propagate and the increasing lateral spreading by debuttressing continue to eat away the highest peak. The AVC is surrounded by the major metropolitan area of Davao City to the east and the cities of Kidapawan and Digos to the west and south, respectively. In addition, within 3 km of Apo Dome is a geothermal power plant. With the obvious socio-economic significance of the area, it is imperative to understand these deformations that allow structures to propagate, resulting to instability of the edifice and possibly volcanic unrest, and ultimately for the assessment of hazards and risks to the immediate sectors.

  8. Contour Detection of Leukocyte Cell Nucleus Using Morphological Image

    NASA Astrophysics Data System (ADS)

    Supriyanti, R.; Satrio, G. P.; Ramadhani, Y.; Siswandari, W.

    2017-04-01

    Leukocytes are blood cells that do not contain color pigments. Leukocyte function to the tool body’s defenses. Abnormal forms of leukocytes can be a sign of serious diseases such example is leukemia. Most laboratories still use cell morphology examination to assist the diagnosis of illness associated with white blood cells such example is leukemia because of limited resources, both infrastructure, and human resources as happens in developing nations, such as Indonesia. This examination is less expensive and quicker process. However, morphological review requires the expertise of a specialist clinical pathology were limited. This process is sometimes less valid cause in some cases trying to differentiate morphology blast cells into the type of myoblasts, lymphoblast, monoblast, or erythroblast thus potentially misdiagnosis. The goal of this research is to develop a detection device types of blood cells automatically as lower-priced, easy to use and accurate so that the tool can be distributed across all units in existing health services throughout Indonesia and in particular for remote areas. However, because the variables used in the identification of abnormal leukocytes are very complex, in this paper, we emphasize on the contour detection of leukocyte cell nucleus using the morphological image. The results show that this method is promising for further development.

  9. The Representation of Morphemes in the Russian Lexicon

    ERIC Educational Resources Information Center

    Antic, Eugenia

    2010-01-01

    Different morphological theories assign different status to parts of words, roots and affixes. Models range from accepting both bound roots and affixes to only assigning unit status to standalone words. Some questions that interest researchers are (1) What are the smallest morphological units, words or word parts? (2) How does frequency affect…

  10. Unit Advancement Flap for Lower Lip Reconstruction.

    PubMed

    Ogino, Akihiro; Onishi, Kiyoshi; Okada, Emi; Nakamichi, Miho

    2018-05-01

    Lower lip reconstruction requires consideration of esthetic and functional outcome in selecting a surgical procedure, and reconstruction with local tissue is useful. The authors reconstructed full-thickness defects with a unit advancement flap. Reconstruction was performed using this method in 4 patients with lower lip squamous cell carcinoma in whom tumor resection with preservation of the mouth angle was possible. The lower lip resection width was 30 to 45 mm, accounting for 50% to 68% of the entire width of the lower lip. The flap was prepared by lateral extension from above the mental unit and matched with the potential wrinkle line of the lower lip in order to design a unit morphology surrounded by the anterior margin of the depressor labii inferioris muscle. It was elevated as a full-thickness flap composed of the orbicularis oris muscle, skin, and mucosa of the residual lower lip from the bilateral sides, and advanced to the defect. Flap transfer was adjusted by small triangular resection of the skin on the lateral side of the mental unit. The postoperative scar was inconspicuous in all patients and there was no impairment of the mouth opening-closing or articulation functions. This was a relatively simple surgical procedure. A blood supply of the flap was stable, and continuity of the orbicularis oris muscle was reconstructed by transferred the residual lower lip advancement flap from the bilateral sides. The postoperative mouth opening-closing function was sufficient, and dentures could be placed from an early phase in elderly patients. The postoperative scar was consistent with the lip unit morphology, being esthetically superior. This procedure may be applicable for reconstruction of defects approximately 1/3 to 2/3 the width of the lower lip where the mouth angle is preserved.

  11. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part I. Morphological and crystallographic studies of the variant selection rule

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Nishiura, T.; Kawano, H.; Inamura, T.

    2012-06-01

    The self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Twelve pairs of minimum units consisting of two habit plane variants (HPVs) with V-shaped morphology connected to a ? B19‧ type I variant accommodation twin were observed. Three types of self-accommodation morphologies, based on the V-shaped minimum unit, developed around one of the {111}B2 traces, which were triangular, rhombic and hexangular and consisted of three, four and six HPVs, respectively. In addition, the variant selection rule and the number of possible HPV combinations in each of these self-accommodation morphologies are discussed.

  12. Inverted channel deposits on the floor of Miyamoto crater, Mars

    USGS Publications Warehouse

    Newsom, Horton E.; Lanza, N.L.; Ollila, A.M.; Wiseman, S.M.; Roush, T.L.; Marzo, G.A.; Tornabene, L.L.; Okubo, C.H.; Osterloo, M.M.; Hamilton, V.E.; Crumpler, L.S.

    2010-01-01

    Morphological features on the western floor of Miyamoto crater in southwestern Meridiani Planum, Mars, are suggestive of past fluvial activity. Imagery from the High Resolution Imaging Science Experiment (HiRISE) gives a detailed view of raised curvilinear features that appear to represent inverted paleochannel deposits. The inverted terrain appears to be capped with a resistant, dark-toned deposit that is partially covered by unconsolidated surficial materials. Subsequent to deposition of the capping layer, erosion of the surrounding material has left the capping materials perched on pedestals of uneroded basal unit material. Neither the capping material nor the surrounding terrains show any unambiguous morphological evidence of volcanism or glaciation. The capping deposit may include unconsolidated or cemented stream deposits analogous to terrestrial inverted channels in the Cedar Mountain Formation near Green River, Utah. In addition to this morphological evidence for fluvial activity, phyllosilicates have been identified in the basal material on the floor of Miyamoto crater by orbital spectroscopy, providing mineralogical evidence of past aqueous activity. Based on both the morphological and mineralogical evidence, Miyamoto crater represents an excellent site for in situ examination and sampling of a potentially habitable environment. ?? 2009 Elsevier Inc.

  13. The Relationship of Morphological Analysis and Morphological Decoding to Reading Comprehension

    ERIC Educational Resources Information Center

    Deacon, S. Hélène; Tong, Xiuli; Francis, Kathryn

    2017-01-01

    The ultimate goal of children's reading development is the full and fluid understanding of texts. Morphological structure awareness, or children's awareness of the minimal units of meaning in language, has been identified as a key skill influencing reading comprehension. Here, we evaluate the roles of morphological structure awareness and two…

  14. Un Test contrastif oral pour l'evaluation des difficultes lexicales dans l'apprentissage de l'anglais L2 (An Oral Contrastive Test for the Evaluation of Lexical Difficulties in Learning English as a Second Language).

    ERIC Educational Resources Information Center

    Haeusser, Christiane

    1978-01-01

    The test described here is a particular type of diagnostic test; it is part of a series of tests designed to explore systematically areas of potential lexical difficulty in the English language for French-speaking students of English. The lexical units are considered under their formal, morphological, syntactic and semantic aspects. The test has…

  15. Preliminary analysis of the potential of LANDSAT imagery to study desertification. [Xique-Xique, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Decarvalho, V. C.

    1980-01-01

    The use of LANDSAT imagery to define and delimit areas under process of desertification was investigated. Imagery for two different years (1973 and 1978) and two different seasons (dry and rainy seasons in 1976), were used to identify terrain morphology and vegetation cover. The analysis of LANDSAT interpretation, combined with geological and soil information obtained from published literature, allowed the identification of eleven ecological units which were classified corresponding to the degree of the Xique Xique region of Rio Sao Francisco.

  16. Geometric morphometric analysis of allometric variation in the mandibular morphology of the hominids of Atapuerca, Sima de los Huesos site.

    PubMed

    Rosas, Antonio; Bastir, Markus

    2004-06-01

    Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.

  17. Quaternary geology and geomorphology of the lower Deschutes River Canyon, Oregon.

    Treesearch

    Jim E. O' Connor; Janet H. Curran; Robin A. Beebee; Gordon E. Grant; Andrei Sarna-Wojcicki

    2003-01-01

    The morphology of the Deschutes River canyon downstream of the Pelton-Round Butte dam complex is the product of the regional geologic history, the composition of the geologic units that compose the valley walls, and Quaternary processes and events. Geologic units within the valley walls and regional deformation patterns control overall valley morphology. Valley bottom...

  18. Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics.

    PubMed

    Rubio, Gerardo; Oesterheld, Martín; Alvarez, Carina R; Lavado, Raúl S

    1997-10-01

    Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods.

  19. Combinatorial compatibility as habit-controlling factor in lysozyme crystallization II. Morphological evidence for tetrameric growth units

    NASA Astrophysics Data System (ADS)

    Strom, C. S.; Bennema, P.

    1997-03-01

    This work (Part II) explores the relation between units and morphology. It shows the equivalence in behaviour between the attachment energies and the results of Monte Carlo growth kinetics simulations. The energetically optimal combination of the F slices in 1 1 0, 0 1 1 and 1 1 1 in a monomolecular interpretation leads to unsatisfactory agreement with experimentally observed morphology. In a tetrameric (or octameric) interpretation, the unit cell must be subdivided self-consistently in terms of stable molecular clusters. Thus, the presence or absence of the 1 1 1 form functions as a direct experimental criterion for distinguishing between monomolecular growth layers, and tetrameric (or octameric) growth layers of the same composition, but subjected to the condition of combinatorial compatibility, as the F slices combine to produce the growth habit. When that condition is taken into account, the tetrameric (or octameric) theoretical morphology in the broken bond model is in good agreement with experiment over a wide range. Subjectmatter for future study is summarized.

  20. Genotypic and phenotypic evaluation of off-type grasses in hybrid Bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] putting greens using genotyping-by-sequencing and morphological characterization.

    PubMed

    Reasor, Eric H; Brosnan, James T; Staton, Margaret E; Lane, Thomas; Trigiano, Robert N; Wadl, Phillip A; Conner, Joann A; Schwartz, Brian M

    2018-01-01

    Interspecific hybrid bermudagrass [ Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] is one of the most widely used grasses on golf courses, with cultivars derived from 'Tifgreen' or 'Tifdwarf' particularly used for putting greens. Many bermudagrass cultivars established for putting greens can be genetically unstable and lead to the occurrence of undesirable off-type grasses that vary in phenotype. The objective of this research was to genetically and phenotypically differentiate off-type grasses and hybrid cultivars. Beginning in 2013, off-type and desirable hybrid bermudagrass samples were collected from golf course putting greens in the southeastern United States and genetically and phenotypically characterized using genotyping-by-sequencing and morphology. Genotyping-by-sequencing determined that 11% (5) of off-type and desirable samples from putting greens were genetically divergent from standard cultivars such as Champion, MiniVerde, Tifdwarf, TifEagle, and Tifgreen. In addition, genotyping-by-sequencing was unable to genetically distinguish all standard cultivars from one another due to their similar origin and clonal propagation; however, over 90,000 potentially informative nucleotide variants were identified among the triploid hybrid cultivars. Although few genetic differences were found in this research, samples harvested from golf course putting greens had variable morphology and were clustered into three distinct phenotypic groups. The majority of off-type grasses in hybrid bermudagrass putting greens were genetically similar with variable morphological traits. Off-type grasses within golf course putting greens have the potential to compromise putting surface functionality and aesthetics.

  1. Multidimensional Self-Assembled Structures of Alkylated Cellulose Oligomers Synthesized via in Vitro Enzymatic Reactions.

    PubMed

    Yataka, Yusuke; Sawada, Toshiki; Serizawa, Takeshi

    2016-10-04

    The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.

  2. A reservoir morphology database for the conterminous United States

    USGS Publications Warehouse

    Rodgers, Kirk D.

    2017-09-13

    The U.S. Geological Survey, in cooperation with the Reservoir Fisheries Habitat Partnership, combined multiple national databases to create one comprehensive national reservoir database and to calculate new morphological metrics for 3,828 reservoirs. These new metrics include, but are not limited to, shoreline development index, index of basin permanence, development of volume, and other descriptive metrics based on established morphometric formulas. The new database also contains modeled chemical and physical metrics. Because of the nature of the existing databases used to compile the Reservoir Morphology Database and the inherent missing data, some metrics were not populated. One comprehensive database will assist water-resource managers in their understanding of local reservoir morphology and water chemistry characteristics throughout the continental United States.

  3. Basin Hydrology and Substrate Controls on Mountain Stream Morphology: Highlands of Southeastern West Virginia

    NASA Astrophysics Data System (ADS)

    Burks, T. W.; Springer, G. S.

    2004-12-01

    Evolution of mountain drainage basins across a broad spectrum of geologic, tectonic, and climatic conditions is an active area of investigation in the field of fluvial geomorphology. Mountain streams are typified by steep channel gradients (>0.002), high channel roughness, rapid changes in drainage area, and high spatial and low temporal variability in channel morphology, leading to complexities in landscape modeling relative to their lowland counterparts. Factors driving this recent investigative trend are the refinement and generation of digital topographic data and terrain analysis software, and more importantly, the demand for a multidiscipline approach to the assessment, restoration, and management of entire watersheds. A significant volume of research has been conducted in mountain drainage basins of the western United States, with particular attention paid to tectonically active regions of the Pacific Northwest, which also contain federally listed threatened and endangered salmonid populations. Brook trout (Salvelinus fontinalis), native to the highlands of the eastern margin of the Appalachian Plateau are impacted by acid rain deposition; however, geomorphic research into landscape modeling, applicable to restoration and management of lotic ecosystems of the eastern United States, is comparatively lacking. This current research explores the potential for modeling channel morphology in mountain streams; specifically, how downstream trends in channel substrate resistance and unit stream power effect the partitioning of mountain stream morphology along and downstream of the fluvial/colluvial transition. In order to address this issue, two mountain drainage basins in the headwaters of the Gauley River watershed on the Appalachian Plateau of southeastern West Virginia were chosen. The westerly flowing Cranberry (250 sqkm) and Cherry (429 sqkm) rivers incise gently northwestward dipping Carboniferous-aged strata (shale, minor coal, siltstone, sandstone, and conglomerate), with a large percentage of both drainages managed as the Monongahela National Forest. A total of 68 reach-scale (10-20 channel widths) channel surveys were completed in which reach gradient, average bankfull channel widths, and bed surface grain size data were determined. This information was synthesized with data extracted from 10-meter digital elevation models using both RiverTools v. 2.4 and ArcGIS Desktop 8.3 terrain analysis software packages. Surveyed channel reach gradients range from (0.002-0.150 m/m) and are characterized by pool-riffle to cascade and step-pool morphologies, though observed morphology succession is atypical of an equilibrated system. Partitioning in channel morphology succession correlates with both changes in lithology (e.g. siltstone to conglomerate) and the extent of headwater debris flow activity, which reflects a shift in the balance between driving and resisting forces as stream size increases.

  4. Structure, form, and meaning in the mental lexicon: evidence from Arabic

    PubMed Central

    Boudelaa, Sami; Marslen-Wilson, William D.

    2015-01-01

    Does the organization of the mental lexicon reflect the combination of abstract underlying morphemic units or the concatenation of word-level phonological units? We address these fundamental issues in Arabic, a Semitic language where every surface form is potentially analyzable into abstract morphemic units – the word pattern and the root – and where this view contrasts with stem-based approaches, chiefly driven by linguistic considerations, in which neither roots nor word patterns play independent roles in word formation and lexical representation. Five cross-modal priming experiments examine the processing of morphologically complex forms in the three major subdivisions of the Arabic lexicon – deverbal nouns, verbs, and primitive nouns. The results demonstrate that root and word pattern morphemes function as abstract cognitive entities, operating independently of semantic factors and dissociable from possible phonological confounds, while stem-based approaches consistently fail to accommodate the basic psycholinguistic properties of the Arabic mental lexicon. PMID:26682237

  5. Interest of A Morphological Explanation of The Unit Hydrograph Concept: Case of Urban Catchments

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Cudennec, C.; Cellier, G.; Andrieu, H.

    Expansion of urbanised areas has put emphasis on related water management prob- lems, such as flooding and pollution control, which requires a good knowledge of the hydrological response of urban catchments. Unfortunately, most of urban catchments are ungauged and their hydrological features must be deduced from existent data. A good description of the urban characteristics can give some advances in the field of urban hydrology : the geographical and physical knowledge of the city is made eas- ier by the emergence of urban data banks, introducing a meter-scale morphological description of the city. Linking the hydrological response of a catchment to its geo- morphology has been successfully implemented in natural settings within the concept of GIUH (Geomorphologic Instantaneous Unit Hydrograph). In the same manner, the available description of urban catchments makes it possible to deduce their hydrolog- ical behaviour throughout the Unit Hydrograph concept. We suggest to compare three complementary methods of determination of Unit Hydrographs, with increasing de- grees of description of the catchment morphology. The first method, presenting a high degree of accounting for the catchment morphology, is called MIUH (Morphologi- cal Instantaneous Unit Hydrograph; Rodriguez et al., 2000), and is derived from the analysis of urban databanks allowing an explicit description of the runoff production areas and their downstream flow channels. The second one, called H2U (Duchesne et al., 1997) and corresponding to a moderate degree, is a gamma law whose 2 pa- rameters are based on the Strahler order of the catchment and the mean hydraulic length of water paths through the drainage system. The third method, called FDTF (First Derivative Transfert Function; Duband et al., 1993) and corresponding to a low degree, is a validation method deriving Unit Hydrograph by a deconvolution itera- tive identification technique, from a sample of observed rainfall and flow data. The three methods are shortly summarised, and applied to two urban catchments of the Nantes urban center (60 and 180 ha), Western France. Their comparison is discussed and shows encouraging results. Deriving Unit Hydrographs from the morphology of ungauged catchment appears to be of high interest for hydrology, and the degree of accounting for informations about this morphology can be adapted according to the availability of geographical data on the studied catchment. Duchesne, J., C. Cudennec, and V. Corbierre, 1997. Relevance of the H2U model to 1 predict the discharge of a catchment, Water Science and Technology, 36(5), 169-175. Duband, D., C. Obled, and J. Rodriguez, 1993. Unit hydrograph revisited : an alterna- tive approach to UH and effective precipitation identification. Journal of Hydrology, 150(1): p 115-150. Rodriguez, F., H. Andrieu, J.D. Creutin, and G. Raimbault, 2000. Hydrological anal- ysis using urban data banks, paper presented at Hydroinformatics, IIHR Iowa City, USA. 2

  6. The Origin of Ina: Evidence for Inflated Lava Flows on the Moon

    NASA Technical Reports Server (NTRS)

    Garry, W. B.; Robinson, M. S.; Zimbelman, J. R.; Bleacher, J. E.; Hawke, B. R.; Crumpler, L. S.; Braden, S. E.; Sato, H.

    2012-01-01

    Ina is an enigmatic volcanic feature on the Moon known for its irregularly shaped mounds, the origin of which has been debated since the Apollo Missions. Three main units are observed on the floor of the depression (2.9 km across, < or =64 m deep) located at the summit of a low-shield volcano: irregularly shaped mounds up to 20 m tall, a lower unit 1 to 5 m in relief that surrounds the mounds, and blocky material. Analyses of Lunar Reconnaissance Orbiter Camera images and topography show that features in Ina are morphologically similar to terrestrial inflated lava flows. Comparison of these unusual lunar mounds and possible terrestrial analogs leads us to hypothesize that features in Ina were formed through lava flow inflation processes. While the source of the lava remains unclear, this new model suggests that as the mounds inflated, breakouts along their margins served as sources for surface flows that created the lower morphologic unit. Over time, mass wasting of both morphologic units has exposed fresh surfaces observed in the blocky unit. Ina is different than the terrestrial analogs presented in this study in that the lunar features formed within a depression, no vent sources are observed, and no cracks are observed on the mounds. However, lava flow inflation processes explain many of the morphologic relationships observed in Ina and are proposed to be analogous with inflated lava flows on Earth.

  7. Morphological Features of the Porcine Lacrimal Gland and Its Compatibility for Human Lacrimal Gland Xenografting

    PubMed Central

    Gaffling, Simone; Asano, Nagayoshi; Hampel, Ulrike; Garreis, Fabian; Hornegger, Joachim; Paulsen, Friedrich

    2013-01-01

    In this study, we present first data concerning the anatomical structure, blood supply and location of the lacrimal gland of the pig. Our data indicate that the porcine lacrimal gland may serve as a potential xenograft candidate in humans or as an animal model for engineering of a bioartificial lacrimal gland tissue construct for clinical application. For this purpose, we used different macroscopic preparation techniques and digital reconstruction of the histological gland morphology to gain new insights and important information concerning the feasibility of a lacrimal gland transplantation from pig to humans in general. Our results show that the lacrimal gland of the pig reveals a lot of morphological similarities to the analogous human lacrimal gland and thus might be regarded as a xenograft in the future. This is true for a similar anatomical location within the orbit as well as for the feeding artery supply to the organ. Functional differences concerning the composition of the tear fluid, due to a different secretory unit distribution within the gland tissue will, however, be a challenge in future investigations. PMID:24069265

  8. Morphological features of the porcine lacrimal gland and its compatibility for human lacrimal gland xenografting.

    PubMed

    Henker, Robert; Scholz, Michael; Gaffling, Simone; Asano, Nagayoshi; Hampel, Ulrike; Garreis, Fabian; Hornegger, Joachim; Paulsen, Friedrich

    2013-01-01

    In this study, we present first data concerning the anatomical structure, blood supply and location of the lacrimal gland of the pig. Our data indicate that the porcine lacrimal gland may serve as a potential xenograft candidate in humans or as an animal model for engineering of a bioartificial lacrimal gland tissue construct for clinical application. For this purpose, we used different macroscopic preparation techniques and digital reconstruction of the histological gland morphology to gain new insights and important information concerning the feasibility of a lacrimal gland transplantation from pig to humans in general. Our results show that the lacrimal gland of the pig reveals a lot of morphological similarities to the analogous human lacrimal gland and thus might be regarded as a xenograft in the future. This is true for a similar anatomical location within the orbit as well as for the feeding artery supply to the organ. Functional differences concerning the composition of the tear fluid, due to a different secretory unit distribution within the gland tissue will, however, be a challenge in future investigations.

  9. Geomorphological control on podzolisation - An example from a tropical barrier island

    NASA Astrophysics Data System (ADS)

    Martinez, Pedro; Buurman, Peter; Lopes-Mazzetto, Josiane Millani; Giannini, Paulo César Fonseca; Schellekens, Judith; Vidal-Torrado, Pablo

    2018-05-01

    We investigated how the geomorphology of coastal barrier islands impacts soil hydrology and drainage at the landscape scale. Ilha Comprida is a Holocene barrier island with a 2.5 km-long cliff that is perpendicular to the coastal shore which provides an ideal condition to study the relation between age, relief, hydrology, and podzol morphology. Five geomorphic units were identified that differed in surface morphology and alignment of ridges and swales. Optical stimulated luminescence (OSL) dating showed that these geomorphic units had growth phases that decreased in age from west to east (Units I-V, from 5250 ± 820 to 325 ± 31 years ago, respectively). The geomorphic units were studied in two parallel 3 km transects on the southern part of the island. Along transect A-B, about 1 km from the southern shore, deep augerings were used to study sedimentary sequence and soil development, while on transect C-D on the southern shore, the continuous cliff exposure allowed more detailed morphological investigation. On all geomorphic units excluding the youngest, podzolisation has been the main soil-forming process. Groundwater level was monitored monthly for two years in 14 deep wells along transect A-B. Groundwater level during the formation of the B horizon was ascertained by determination of Fe. Podzol morphology (color of B horizon and its boundary with the E horizon) generally showed correlation to groundwater levels for both transects, except for the podzols in southwestern part of the island (Unit II). The podzols of Unit II showed an extremely thick (3 m) Bhm horizon devoid of Fe, indicating that they were formed under poor drainage conditions. However, soil morphology (undulating EB horizon boundary) and measured groundwater levels (below the B horizons) demonstrated that drainage has been improved. The extremely thick B horizon (3 m) in those podzols, which was formed in approximately 3000 years, and its genesis is explained by concentrated lateral flow of DOM-loaded groundwater due to the converging ridge alignments found in these units, in combination with a gradual uplift of the southwestern part of the island.

  10. Organizing groundwater regimes and response thresholds by soils: A framework for understanding runoff generation in a headwater catchment

    Treesearch

    John P. Gannon; Scott W. Bailey; Kevin J. McGuire

    2014-01-01

    A network of shallow groundwater wells in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire, U.S. was used to investigate the hydrologic behavior of five distinct soil morphological units. The soil morphological units were hypothesized to be indicative of distinct water table regimes. Water table fluctuations in the wells were...

  11. Repeated and Time-Correlated Morphological Convergence in Cave-Dwelling Harvestmen (Opiliones, Laniatores) from Montane Western North America

    PubMed Central

    Derkarabetian, Shahan; Steinmann, David B.; Hedin, Marshal

    2010-01-01

    Background Many cave-dwelling animal species display similar morphologies (troglomorphism) that have evolved convergent within and among lineages under the similar selective pressures imposed by cave habitats. Here we study such ecomorphological evolution in cave-dwelling Sclerobuninae harvestmen (Opiliones) from the western United States, providing general insights into morphological homoplasy, rates of morphological change, and the temporal context of cave evolution. Methodology/Principal Findings We gathered DNA sequence data from three independent gene regions, and combined these data with Bayesian hypothesis testing, morphometrics analysis, study of penis morphology, and relaxed molecular clock analyses. Using multivariate morphometric analysis, we find that phylogenetically unrelated taxa have convergently evolved troglomorphism; alternative phylogenetic hypotheses involving less morphological convergence are not supported by Bayesian hypothesis testing. In one instance, this morphology is found in specimens from a high-elevation stony debris habitat, suggesting that troglomorphism can evolve in non-cave habitats. We discovered a strong positive relationship between troglomorphy index and relative divergence time, making it possible to predict taxon age from morphology. Most of our time estimates for the origin of highly-troglomorphic cave forms predate the Pleistocene. Conclusions/Significance While several regions in the eastern and central United States are well-known hotspots for cave evolution, few modern phylogenetic studies have addressed the evolution of cave-obligate species in the western United States. Our integrative studies reveal the recurrent evolution of troglomorphism in a perhaps unexpected geographic region, at surprisingly deep time depths, and in sometimes surprising habitats. Because some newly discovered troglomorphic populations represent undescribed species, our findings stress the need for further biological exploration, integrative systematic research, and conservation efforts in western US cave habitats. PMID:20479884

  12. The application of DNA sequence data for the identification of benthic nematodes from the North Sea

    NASA Astrophysics Data System (ADS)

    Vogt, Philipp; Miljutina, Maria; Raupach, Michael J.

    2014-12-01

    Nematodes or roundworms represent one of the most diverse and dominant taxon in marine benthic habitats. Whereas a morphological identification of many species is challenging, the application of molecular markers represents a promising approach for species discrimination and identification. In this study, we used an integrative taxonomic approach, combining both molecular and morphological methods, to characterize nematodes of distinct sex and ontogenetic stages from three sampling sites of the North Sea. Morphospecies were discriminated after first visual determination, followed by a molecular analysis of the nuclear 28S rDNA: D2-D3 marker. By linking each sequence to a morphological voucher, discordant morphological identification was subjected to a so-called reverse taxonomic approach. Molecular operational taxonomic units (MOTUs) and morphospecies were compared for all of the three sampling sites to assess concordance of methodology. In total, 32 MOTUs and 26 morphospecies were assigned, of which 12 taxa were identified as described species. Both approaches showed high concordance in taxon assignment (84.4 %) except for a cluster comprising various Sabatieria species. Our study revealed the high potential of the analyzed fragment as a useful molecular marker for the identification of the North Sea nematodes and highlighted the applicability of this combined taxonomic approach in general.

  13. Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces

    PubMed Central

    Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2013-01-01

    We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708

  14. Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior

    NASA Astrophysics Data System (ADS)

    Li, Yang; He, Yongyong; Wang, Wei; Mao, Junyuan; Zhang, Lei; Zhu, Yijie; Ye, Qianwen

    2018-03-01

    In direct current plasma nitriding (DCPN), the treated components are subjected to a high cathodic potential, which brings several inherent shortcomings, e.g., damage by arcing and the edging effect. In active screen plasma nitriding (ASPN) processes, the cathodic potential is applied to a metal screen that surrounds the workload, and the component to be treated is placed in a floating potential. Such an electrical configuration allows plasma to be formed on the metal screen surface rather than on the component surface; thus, the shortcomings of the DCPN are eliminated. In this work, the nitrided experiments were performed using a plasma nitriding unit. Two groups of samples were placed on the table in the cathodic and the floating potential, corresponding to the DCPN and ASPN, respectively. The floating samples and table were surrounded by a steel screen. The DCPN and ASPN of the AISI 304 stainless steels are investigated as a function of the electric potential. The samples were characterized using scanning electron microscopy with energy-dispersive x-ray spectroscopy, x-ray diffraction, atomic force microscopy and transmission electron microscope. Dry sliding ball-on-disk wear tests were conducted on the untreated substrate, DCPN and ASPN samples. The results reveal that all nitrided samples successfully produced similar nitrogen-supersaturated S phase layers on their surfaces. This finding also shows the strong impact of the electric potential of the nitriding process on the morphology, chemical characteristics, hardness and tribological behavior of the DCPN and ASPN samples.

  15. Fast Census of Moth Diversity in the Neotropics: A Comparison of Field-Assigned Morphospecies and DNA Barcoding in Tiger Moths

    PubMed Central

    Zenker, Mauricio M.; Rougerie, Rodolphe; Teston, José A.; Laguerre, Michel; Pie, Marcio R.; Freitas, André V. L.

    2016-01-01

    The morphological species delimitations (i.e. morphospecies) have long been the best way to avoid the taxonomic impediment and compare insect taxa biodiversity in highly diverse tropical and subtropical regions. The development of DNA barcoding, however, has shown great potential to replace (or at least complement) the morphospecies approach, with the advantage of relying on automated methods implemented in computer programs or even online rather than in often subjective morphological features. We sampled moths extensively for two years using light traps in a patch of the highly endangered Atlantic Forest of Brazil to produce a nearly complete census of arctiines (Noctuoidea: Erebidae), whose species richness was compared using different morphological and molecular approaches (DNA barcoding). A total of 1,075 barcode sequences of 286 morphospecies were analyzed. Based on the clustering method Barcode Index Number (BIN) we found a taxonomic bias of approximately 30% in our initial morphological assessment. However, a morphological reassessment revealed that the correspondence between morphospecies and molecular operational taxonomic units (MOTUs) can be up to 94% if differences in genitalia morphology are evaluated in individuals of different MOTUs originated from the same morphospecies (putative cases of cryptic species), and by recording if individuals of different genders in different morphospecies merge together in the same MOTU (putative cases of sexual dimorphism). The results of two other clustering methods (i.e. Automatic Barcode Gap Discovery and 2% threshold) were very similar to those of the BIN approach. Using empirical data we have shown that DNA barcoding performed substantially better than the morphospecies approach, based on superficial morphology, to delimit species of a highly diverse moth taxon, and thus should be used in species inventories. PMID:26859488

  16. Fast Census of Moth Diversity in the Neotropics: A Comparison of Field-Assigned Morphospecies and DNA Barcoding in Tiger Moths.

    PubMed

    Zenker, Mauricio M; Rougerie, Rodolphe; Teston, José A; Laguerre, Michel; Pie, Marcio R; Freitas, André V L

    2016-01-01

    The morphological species delimitations (i.e. morphospecies) have long been the best way to avoid the taxonomic impediment and compare insect taxa biodiversity in highly diverse tropical and subtropical regions. The development of DNA barcoding, however, has shown great potential to replace (or at least complement) the morphospecies approach, with the advantage of relying on automated methods implemented in computer programs or even online rather than in often subjective morphological features. We sampled moths extensively for two years using light traps in a patch of the highly endangered Atlantic Forest of Brazil to produce a nearly complete census of arctiines (Noctuoidea: Erebidae), whose species richness was compared using different morphological and molecular approaches (DNA barcoding). A total of 1,075 barcode sequences of 286 morphospecies were analyzed. Based on the clustering method Barcode Index Number (BIN) we found a taxonomic bias of approximately 30% in our initial morphological assessment. However, a morphological reassessment revealed that the correspondence between morphospecies and molecular operational taxonomic units (MOTUs) can be up to 94% if differences in genitalia morphology are evaluated in individuals of different MOTUs originated from the same morphospecies (putative cases of cryptic species), and by recording if individuals of different genders in different morphospecies merge together in the same MOTU (putative cases of sexual dimorphism). The results of two other clustering methods (i.e. Automatic Barcode Gap Discovery and 2% threshold) were very similar to those of the BIN approach. Using empirical data we have shown that DNA barcoding performed substantially better than the morphospecies approach, based on superficial morphology, to delimit species of a highly diverse moth taxon, and thus should be used in species inventories.

  17. Molecular identification of the fish fauna from the pantanal flood plain area in Brazil.

    PubMed

    Shimabukuro-Dias, Cristiane Kioko; Costa Silva, Guilherme José da; Ashikaga, Fernando Yuldi; Foresti, Fausto; Oliveira, Claudio

    2017-07-01

    The Pantanal is under the influence of the Paraguay River flood regime is considered to be one of the largest wetlands of the world, and has rich biodiversity, including fishes. Until now, the identification of fish species in this biome has only considered the morphological characteristics of individuals, and the present work aimed to identify the fish species of the Pantanal region through the DNA barcode methodology for investigating the biodiversity in this region. The genetic analysis of 638 samples via the GMYC approach identified 137 operational taxonomic units (OTUs) belonging to 127 species that have previously been described according to their morphological characteristics. Data suggest that 10 cases of morphospecies (Eigenmannia trileneata, E. virescens, Pimelodella gracilis, Brachyhypopomus pinnicaudatus, Brachyhypopomus sp., Ancistrus sp., Hyphessobrycon eques, Jupiaba acanthogaster, and Serrapinnus calliurus) represent complexes of cryptic species, and the number of species described in the Pantanal region has thus potentially been underestimated.

  18. Correlation of lattice defects and thermal processing in the crystallization of titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Pegah M.; Yung, Daniel; Panaitescu, Eugen; Heiman, Don; Menon, Latika; Budil, David; Lewis, Laura H.

    2014-12-01

    Titania nanotubes have the potential to be employed in a wide range of energy-related applications such as solar energy-harvesting devices and hydrogen production. As the functionality of titania nanostructures is critically affected by their morphology and crystallinity, it is necessary to understand and control these factors in order to engineer useful materials for green applications. In this study, electrochemically-synthesized titania nanotube arrays were thermally processed in inert and reducing environments to isolate the role of post-synthesis processing conditions on the crystallization behavior, electronic structure and morphology development in titania nanotubes, correlated with the nanotube functionality. Structural and calorimetric studies revealed that as-synthesized amorphous nanotubes crystallize to form the anatase structure in a three-stage process that is facilitated by the creation of structural defects. It is concluded that processing in a reducing gas atmosphere versus in an inert environment provides a larger unit cell volume and a higher concentration of Ti3+ associated with oxygen vacancies, thereby reducing the activation energy of crystallization. Further, post-synthesis annealing in either reducing or inert atmospheres produces pronounced morphological changes, confirming that the nanotube arrays thermally transform into a porous morphology consisting of a fragmented tubular architecture surrounded by a network of connected nanoparticles. This study links explicit data concerning morphology, crystallization and defects, and shows that the annealing gas environment determines the details of the crystal structure, the electronic structure and the morphology of titania nanotubes. These factors, in turn, impact the charge transport and consequently the functionality of these nanotubes as photocatalysts.

  19. Phonetic Pause Unites Phonology and Semantics against Morphology and Syntax

    ERIC Educational Resources Information Center

    Sakarna, Ahmad Khalaf; Mobaideen, Adnan

    2012-01-01

    The present study investigates the phonological effect triggered by the different types of phonetic pause used in Quran on morphology, syntax, and semantics. It argues that Quranic pause provides interesting evidence about the close relation between phonology and semantics, from one side, and semantics, morphology, and syntax, from the other…

  20. Morphological Processing and Learning to Read: The Case of Deaf Children

    ERIC Educational Resources Information Center

    Berthiaume, Rachel; Daigle, Daniel

    2014-01-01

    Many deaf students encounter great difficulty in learning to read. Typically, research has cited deaf students' difficulties to use phonological processing as the source of their reading deficit. However, recent studies have shown that morphological processing also plays an important part in reading. Since morphological units are visually…

  1. Self-assembly behavior of poly(fluorenyl styrene)-block-poly(2-vinyl pyridine) and their blends with single wall carbon nanotubes (SWCNT)

    NASA Astrophysics Data System (ADS)

    Mezzenga, Raffaele; Li, Chaoxu; Hsu, Jung-Ching; Chen, Wen-Chang; Sugiyama, Kenji; Hirao, Akira

    2010-03-01

    We describe a supramolecular strategy to disperse carbon nanotubes in block copolymer matrices. To achieve the desired functions and morphologies, comb-type architectures in which one and two fluorene units attached on the styrene ring of polystyrene-block-poly(2-vinyl pyridine) were studied. Depending on the pendant fluorene units, the block ratio, the casting solvent and thermal annealing history, multiple morphologies were found. The phase diagram, compared to PS-b-P2VP, was interpreted in terms of the conformational asymmetry arising from grafting of fluorene units of variable lengths. Hydrogen bonds between COOH-SWCNT and P2VP favor miscibility of SWCNT within P2VP domains and the blending of these two components is reflected both on the final morphologies and on the electron conductivity of the blends.

  2. Morphological Characteristics of Motor Neurons Do Not Determine Their Relative Susceptibility to Degeneration in a Mouse Model of Severe Spinal Muscular Atrophy

    PubMed Central

    Mutsaers, Chantal A.; Thomson, Derek; Hamilton, Gillian; Parson, Simon H.; Gillingwater, Thomas H.

    2012-01-01

    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA. PMID:23285108

  3. Cell structure and function in the visual cortex of the cat

    PubMed Central

    Kelly, J. P.; Van Essen, D. C.

    1974-01-01

    1. The organization of the visual cortex was studied with a technique that allows one to determine the physiology and morphology of individual cells. Micro-electrodes filled with the fluorescent dye Procion yellow were used to record intracellularly from cells in area 17 of the cat. The visual receptive field of each neurone was classified as simple, complex, or hypercomplex, and the cell was then stained by the iontophoretic injection of dye. 2. Fifty neurones were successfully examined in this way, and their structural features were compared to the varieties of cell types seen in Golgi preparations of area 17. The majority of simple units were stellate cells, whereas the majority of complex and hypercomplex units were pyramidal cells. Several neurones belonged to less common morphological types, such as double bouquet cells. Simple cells were concentrated in layer IV, hypercomplex cells in layer II + III, and complex cells in layers II + III, V and VI. 3. Electrically inexcitable cells that had high resting potentials but no impulse activity were stained and identified as glial cells. Glial cells responded to visual stimuli with slow graded depolarizations, and many of them showed a preference for a stimulus orientation similar to the optimal orientation for adjacent neurones. 4. The results show that there is a clear, but not absolute correlation between the major structural and functional classes of cells in the visual cortex. This approach, linking the physiological properties of a single cell to a given morphological type, will help in furthering our understanding of the cerebral cortex. ImagesPlate 4Plate 1Plate 2Plate 3 PMID:4136579

  4. Is the Red Wolf a Listable Unit Under the US Endangered Species Act?

    PubMed

    Waples, Robin S; Kays, Roland; Fredrickson, Richard J; Pacifici, Krishna; Mills, L Scott

    2018-06-08

    Defining units that can be afforded legal protection is a crucial, albeit challenging, step in conservation planning. As we illustrate with a case study of the red wolf (Canis rufus) from the southeastern United States, this step is especially complex when the evolutionary history of the focal taxon is uncertain. The US Endangered Species Act (ESA) allows listing of species, subspecies, or Distinct Population Segments (DPSs) of vertebrates. Red wolves were listed as an endangered species in 1973, and their status remains precarious. However, some recent genetic studies suggest that red wolves are part of a small wolf species (C. lycaon) specialized for heavily forested habitats of eastern North America, whereas other authors suggest that red wolves arose, perhaps within the last ~400 years, through hybridization between gray wolves (C. lupus) and coyotes (C. latrans). Using published genetic, morphological, behavioral, and ecological data, we evaluated whether each evolutionary hypothesis would lead to a listable unit for red wolves. Although the potential hybrid origin of red wolves, combined with abundant evidence for recent hybridization with coyotes, raises questions about status as a separate species or subspecies, we conclude that under any proposed evolutionary scenario red wolves meet both criteria to be considered a DPS: they are discrete compared with other conspecific populations, and they are Significant to the taxon to which they belong. As population-level units can qualify for legal protection under endangered-species legislation in many countries throughout the world, this general approach could potentially be applied more broadly.

  5. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak.

    PubMed

    Rodríguez-Calcerrada, J; Reich, P B; Rosenqvist, E; Pardos, J A; Cano, F J; Aranda, I

    2008-05-01

    We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.

  6. Investigating the micromorphological differences of the implant-abutment junction and their clinical implications: a pilot study.

    PubMed

    Mattheos, Nikos; Li, Xiaona; Zampelis, Antonios; Ma, Li; Janda, Martin

    2016-11-01

    The aim of this pilot study was to investigate the morphological micro-features of three commercially available implant-abutment joints, using compatible and original prosthetic components. Furthermore, possible correlations between the micromorphology and potential functional complications were investigated with the use of finite element analysis. Three abutments (one original and two compatibles) were torqued on original Straumann RN implants, as according to each of the manufacturer's instructions. The implant-abutment units were sliced in the microtome and photographed under different magnifications (10×-500×) through a scanning electron microscope. Finite element analysis models were reconstructed for each of the implant-abutment units using the precise measurements from the SEM. Differences in stress, strain and deformation for the three different abutments were then calculated using ANSYS Workbench v13. Major dimensional differences were identified between all studied contact areas of the three units. The tight contact in the implant shoulder was similar in all three units, but engagement of the internal connection and, in particular, the anti-rotation elements was seriously compromised in the compatible abutments. One compatible abutment demonstrated compromised engagement of the abutment screw as well. Equivalent stress and strain in the FEA were much higher for the compatible abutments. An evaluation of the sequence of preload application revealed differences in the pattern of deformation between the original and compatible abutments, which can have serious clinical implications. Compatible abutments can present critical morphological differences from the original ones. The differences in the cross-sectional geometry result in large differences in the overall contact areas, both in terms of quality and quantity which could have serious implications for the long-term stability of the prosthesis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP.

    PubMed

    Twig, Gilad; Graf, Solomon A; Wikstrom, Jakob D; Mohamed, Hibo; Haigh, Sarah E; Elorza, Alvaro; Deutsch, Motti; Zurgil, Naomi; Reynolds, Nicole; Shirihai, Orian S

    2006-07-01

    Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units.

  8. Geomorphic Terrains and Evidence for Ancient Volcanism within Northeastern South Pole-Aitken Basin

    NASA Technical Reports Server (NTRS)

    Petro, Noah; Mest, Scott C.; Teich, Yaron

    2010-01-01

    The interior of the enigmatic South Pole-Aitken Basin has long been recognized as being compositionally distinct from its exterior. However, the source of the compositional anomaly has been subject to some debate. Is the source of the iron-enhancement due to lower-crustal/upper-mantle material being exposed at the surface, or was there some volume of ancient volcanism that covered portions of the basin interior? While several obvious mare basalt units are found within the basin and regions that appear to represent the original basin interior, there are several regions that appear to have an uncertain origin. Using a combination of Clementine and Lunar Orbiter images, several morphologic units are defined based on albedo, crater density, and surface roughness. An extensive unit of ancient mare basalt (cryptomare) is defined and, based on the number of superimposed craters, potentially represents the oldest volcanic materials within the basin. Thus, the overall iron-rich interior of the basin is not solely due to deeply derived crustal material, but is, in part due to the presence of ancient volcanic units.

  9. A cryptic new species of Indigo Snake (genus Drymarchon) from the Florida Platform of the United States.

    PubMed

    Krysko, Kenneth L; Granatosky, Michael C; Nuñez, Leroy P; Smith, Daniel J

    2016-07-18

    Indigo Snakes (genus Drymarchon) occur from northern Argentina northward into to the United States, where they inhabit southern Texas and disjunct populations in Mississippi, Florida and Georgia. Based on allopatry and morphological differences Collins (1991) hypothesized that the two United States taxa-the Western Indigo Snake, D. melanurus erebennus (Cope, 1860), and the Eastern Indigo Snake, D. couperi (Holbrook, 1842)-deserved full species recognition. Building upon this hypothesis with molecular and morphological analyses we illustrate that D. couperi is split into two distinct lineages. Based on the General Lineage Concept of Species, we describe the lineage that occurs along the Gulf coast of Florida and Mississippi as a new species, Drymarchon kolpobasileus. The new species is distinguished from D. couperi by a suite of morphological features, including a shorter and shallower head, deeper and shorter 7th infralabial scales, and shorter temporal scales. Overall, the presence of a deep 7th infralabial scale provides the best univariate identifier of D. kolpobasileus sp. nov. This study illustrates the usefulness of using both morphological and genetic data in refining accurate descriptions of geographical distributions.

  10. Application of Geologic Mapping Techniques and Autonomous Feature Detection to Future Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.

    2013-12-01

    Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or disrupted surface morphologies. Areas of high interest include lineaments and chaos margins. The limitations on detecting activity at these locations are approximated by studying similar observed conditions on other bodies. By adapting machine learning and data mining techniques to signatures of plumes and morphology, I have demonstrated autonomous rule-based detection of known features using edge-detection and supervised classification methods. These methods successfully detect ≤94% of known volcanic plumes or jets at Io, Enceladus, and comets. They also allow recognition of multiple feature types. Applying these results to conditions expected for Europa enables a prediction of the potential for detection of similar features and enables recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa. This post-Galileo view of Europa provides a synthesis of the overall history of this unique icy satellite and will be a useful frame of reference for future exploration of the jovian system and other potentially active outer solar system bodies.

  11. Fungicides affect the production of extracellular mucilaginous material (ECMM) and the peripheral growth unit (PGU) in two wood-rotting basidiomycetes.

    PubMed

    Vesentini, Damiano; Dickinson, David J; Murphy, Richard J

    2006-10-01

    This study shows the effect of two fungicides on the production of extracellular mucilaginous material (ECMM) in two wood-rotting basidiomycetes and identifies a mechanism that might be responsible for the variation observed. Increasing concentrations of the fungicides copper sulphate (CuSO4) and cyproconazole in the growth medium increased the proportion of ECMM in the biomass of Trametes versicolor and Gloeophyllum trabeum. These fungicides also caused a reduction in the length of the peripheral growth unit (PGU) of the mycelia leading to a more highly branched morphology and a larger number of hyphal tips, the sites for active secretion of ECMM, per unit length of mycelium. It is postulated that both in T. versicolor and G. trabeum this change in growth leads to the increases observed in the proportion of ECMM in the total biomass. The implications of these results are discussed with a view to a potential protective role of ECMM against stress and toxic environments.

  12. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection.

    PubMed

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-06-28

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  13. The Contribution of Morphological Knowledge to 7th Grade Students' Reading Comprehension Performance

    ERIC Educational Resources Information Center

    Mokhtari, Kouider; Neel, Joanna; Matatall, Abbey; Richards, Andrea

    2015-01-01

    In this study, we examined the role of morphology, an important yet largely understudied source of difficulty, in reading ability among 7th grade students in one junior high school in the southwestern United States. We sought to find out how much variance in reading ability is accounted for by these students' morphological knowledge, and whether…

  14. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties

    PubMed Central

    Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A.

    2015-01-01

    It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell). PMID:28788037

  15. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties.

    PubMed

    Ahmadi, Seyed Mohammad; Yavari, Saber Amin; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A

    2015-04-21

    It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (E s20 -70 ), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of E s20 -70 , the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).

  16. Morphologic Variability of two Adjacent Mass-Transport Deposits: Twin Slides, Gela Basin (Sicily Channel).

    NASA Astrophysics Data System (ADS)

    Minisini, D.; Trincardi, F.; Asioli, A.; Canu, M.; Foglini, F.

    2006-12-01

    Integrating geophysical, sedimentological, structural and paleontological data, we reconstruct the age, size and internal geometry of two adjacent and recent mass-transport deposits (Twin Slides) exposed on the seafloor of Gela Basin (Sicily Channel). Twin Slides are coeval (late-Holocene), and were likely triggered by an earthquake. Twin Slides originated from the mobilization of Pleistocene slope units, are only 6 km apart from each other, have their headscarps in similar water depth (230 m), and have a comparable run out distance (ca. 10 km). Both slides suggest a multistage evolution, but differ in internal organization and morphological expression. The northern slide shows a deposit characterised by pressure ridges in the toe region suggesting a component of plastic deformation, while the southern slide is characterised by large blocks and a reduced thickness of displaced masses. We ascribe the difference in deformation style and resulting morphology to the stratigraphic architecture of the Pleistocene progradational units involved in failure. In the case of the blocky southern slide the units affected by failure are slightly older (Eemian or pre-Emian) and more consolidated; furthermore, in the area where the headscarp is located these units appear affected by shallow faulting likely resulting in the definition of large blocks. The northern slide, instead, affects progradational units of the Last Glacial Maximum in an area where these units are more than 100 m thick and, possibly, underconsolidated.

  17. Identity, reproductive potential, distribution, ecology and management of invasive Pomacea maculata in the southern United States

    USGS Publications Warehouse

    Burks, Romi L.; Bernatis, Jennifer; Byers, James E.; Carter, Jacoby; Martin, Charles M.; McDowell, William G.; Van Dyke, Jess; Joshi, R. C.; Cowie, R. H.; Sebastian, L. S.

    2017-01-01

    evidence. However, the two species are often still confused because of their similar shell morphologies and life history traits. This contribution reviews the distribution, life history, ecology and management of P. maculata introduced to the southern USA. So far the agricultural impacts of P. maculata in the USA fail to match those of non-native applesnails elsewhere, but the invasion of wetlands by this species suggests the need for increased vigilance to prevent further spread and avoid the ecological impacts that have been associated elsewhere with P. canaliculata.

  18. Microwave-Assisted Synthesis and Physicochemical Characterization of Tetrafuranylporphyrin-Grafted Reduced-Graphene Oxide.

    PubMed

    Bosca, Federica; Orio, Laura; Tagliapietra, Silvia; Corazzari, Ingrid; Turci, Francesco; Martina, Katia; Pastero, Linda; Cravotto, Giancarlo; Barge, Alessandro

    2016-01-26

    This work describes the design of a modified porphyrin that bears four furan rings linked by 1,2-bis-(2-aminoethoxy)ethane spacers. This unit is a well-suited scaffold for a Diels-Alder reaction with commercial reduced-graphene oxide, which is also described in this paper. A new hybrid material is obtained, thanks to efficient grafting under microwave irradiation, and fully characterized in terms of structure (UV, TGA, Raman) and morphology (HR-TEM and AFM). Potential applications in photo- and sonodynamic therapy are envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite/limestone sequences to weaker siliciclastic and evaporitic beds (sand-/siltstones, rauhwacken) can be pinpointed on LiDAR shaded relief images of the rock avalanche deposit. Hence, several morphological signatures are clearly related to differences in mechanical behaviour of the involved lithologies, whereas others reflect particular emplacement modes of the same rock unit: e.g. rockslide motion versus rock avalanche spreading. Reference Patzelt G. 2012. The rock avalanches of Tschirgant and Haiming (Upper Inn Valley, Tyrol, Austria), comment on the map supply. (German language only). Jahrbuch der Geologischen Bundesanstalt 152(1-4): 13-24.

  20. Variable partitioning of flow and sediment transfer through a large river diffluence-confluence unit across a monsoonal flood pulse

    NASA Astrophysics Data System (ADS)

    Hackney, C. R.; Aalto, R. E.; Darby, S. E.; Parsons, D. R.; Leyland, J.; Nicholas, A. P.; Best, J.

    2016-12-01

    Bifurcations represent key morphological nodes within the channel networks of anabranching and braided fluvial channels, playing an important role in controlling local bed morphology, the routing of sediment and water, and defining the stability of the downstream reaches. Herein, we detail field observations of the three-dimensional flow structure, bed morphological changes and partitioning of both flow discharge and suspended sediment through a large diffluence-confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13,500 m3 s-1 to 27,000 m3 s-1) over the monsoonal flood-pulse cycle. We show that the discharge asymmetry (a measure of the disparity between discharges distributed down the left and right branches of the bifurcation) varies with flow discharge and that the influence of upstream curvature-induced cross-stream water surface slope and bed morphological changes are first-order controls in modulating the asymmetry in bifurcation discharge. Flow discharge is shown to play a key role in defining the morphodynamics of the diffluence-confluence unit downstream of the bifurcation. Our data show that during peak flows (Q 27,000 m3 s-1), the downstream island complex acts as a net sink of suspended sediment (with 2600 kg s-1 being deposited between the diffluence and confluence), whereas during lower flows, on both the rising and falling limbs of the flood wave, the sediment balance is in quasi-equilibrium. We propose a new conceptual model of bifurcation stability that incorporates varying flood discharge and in which the long term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence-confluence unit, are controlled by the variations in flood discharge.

  1. The influence of flow discharge variations on the morphodynamics of a diffluence-confluence unit on the Mekong River

    NASA Astrophysics Data System (ADS)

    Hackney, Christopher; Darby, Stephen; Parsons, Daniel; Leyland, Julian; Aalto, Rolf; Nicholas, Andrew; Best, Jim

    2017-04-01

    Bifurcations represent key morphological nodes within the channel networks of anabranching and braided fluvial channels, playing an important role in controlling local bed morphology, the routing of sediment and water, and defining the stability of the downstream reaches. Herein, we detail field observations of the three-dimensional flow structure, bed morphological changes and partitioning of both flow discharge and suspended sediment through a large diffluence-confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13,500 m3 s-1 to 27,000 m3 s-1) over the monsoonal flood-pulse cycle. We show that the discharge asymmetry (a measure of the disparity between discharges distributed down the left and right branches of the bifurcation) varies with flow discharge and that the influence of upstream curvature-induced cross-stream water surface slope and bed morphological changes are first-order controls in modulating the asymmetry in bifurcation discharge. Flow discharge is shown to play a key role in defining the morphodynamics of the diffluence-confluence unit downstream of the bifurcation. Our data show that during high flows (Q 27,000 m3 s-1), the downstream island complex acts as a net sink of suspended sediment (with 2600 kg s-1 being deposited between the diffluence and confluence), whereas during lower flows, on both the rising and falling limbs of the flood wave, the sediment balance is in quasi-equilibrium. We propose, therefore, that the long term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence-confluence unit, is therefore controlled by annual monsoonal flood pulses and the associated variations in discharge.

  2. Things Don’t Just Go Back to Normal: The Implications of Antenatal and Postpartum Physiology and Morphology for the Resumption of Fitness Testing

    DTIC Science & Technology

    2015-04-08

    September 2014 - April 2015 Things Don’t Just Go Back to Normal: The Implications of Antenatal and Postpartum Physiology and Morphology for the...physiology; morphology Unclassified Unclassified Unclassified UU 56 Marine Corps University/Command a (703) 784-3330 (Admin Office) United States Marine...MASTER OF MILITARY STUDIES Things Don’t Just Go Back to Normal: The Implications of Antenatal and Postpartum Physiology and Morphology for the

  3. Assessment of Mouse Germinal Vesicle Stage Oocyte Quality by Evaluating the Cumulus Layer, Zona Pellucida, and Perivitelline Space

    PubMed Central

    Liu, Ying-Lei; Chen, Ying; Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Liang, Cheng-Guang

    2014-01-01

    To improve the outcome of assisted reproductive technology (ART) for patients with ovulation problems, it is necessary to retrieve and select germinal vesicle (GV) stage oocytes with high developmental potential. Oocytes with high developmental potential are characterized by their ability to undergo proper maturation, fertilization, and embryo development. In this study, we analyzed morphological traits of GV stage mouse oocytes, including cumulus cell layer thickness, zona pellucida thickness, and perivitelline space width. Then, we assessed the corresponding developmental potential of each of these oocytes and found that it varies across the range measured for each morphological trait. Furthermore, by manipulating these morphological traits in vitro, we were able to determine the influence of morphological variation on oocyte developmental potential. Manually altering the thickness of the cumulus layer showed strong effects on the fertilization and embryo development potentials of oocytes, whereas manipulation of zona pellucida thickness effected the oocyte maturation potential. Our results provide a systematic detailed method for selecting GV stage oocytes based on a morphological assessment approach that would benefit for several downstream ART applications. PMID:25144310

  4. Interspeaker Variability in Hard Palate Morphology and Vowel Production

    ERIC Educational Resources Information Center

    Lammert, Adam; Proctor, Michael; Narayanan, Shrikanth

    2013-01-01

    Purpose: Differences in vocal tract morphology have the potential to explain interspeaker variability in speech production. The potential acoustic impact of hard palate shape was examined in simulation, in addition to the interplay among morphology, articulation, and acoustics in real vowel production data. Method: High-front vowel production from…

  5. SPOKEN CUZCO QUECHUA, UNITS 1-6.

    ERIC Educational Resources Information Center

    SOLA, DONALD F.; AND OTHERS

    THE MATERIALS IN THIS VOLUME COMPRISE SIX UNITS WHICH PRESENT BASIC ASPECTS OF CUZCO QUECHUA PHONOLOGY, MORPHOLOGY, AND SYNTAX FOR THE BEGINNING STUDENT. THE SIX UNITS ARE DESIGNED FOR APPROXIMATELY 120 HOURS OF SUPERVISED CLASS WORK WITH OUTSIDE PREPARATION EXPECTED OF THE STUDENT. EACH UNIT CONSISTS OF A DIALOGUE TO BE MEMORIZED, A DIALOGUE…

  6. A Survey of tooth morphology teaching methods employed in the United Kingdom and Ireland.

    PubMed

    Lone, M; McKenna, J P; Cryan, J F; Downer, E J; Toulouse, A

    2018-01-15

    Tooth morphology is a central component of the dental curriculum and is applicable to all dental specialities. Traditional teaching methods are being supplemented with innovative strategies to tailor teaching and accommodate the learning styles of the recent generation of students. An online survey was compiled and distributed to the staff involved in teaching tooth morphology in the United Kingdom and Ireland to assess the importance of tooth morphology in the dentistry curriculum and the methodologies employed in teaching. The results of the survey show that tooth morphology constitutes a small module in the dental curriculum. It is taught in the first 2 years of the dental curriculum but is applicable in the clinical years and throughout the dental career. Traditional teaching methods, lecture and practical, are being augmented with innovative teaching including e-learning via virtual learning environment, tooth atlas and e-books leading to blended learning. The majority of the schools teach both normal dental anatomy and morphologic variations of dental anatomy and utilise plastic teeth for practical and examination purposes. Learning the 3D aspects of tooth morphology was deemed important by most of the respondents who also agreed that tooth morphology is a difficult topic for the students. Despite being core to the dental curriculum, overall minimal time is dedicated to the delivery of tooth morphology, creating a reliance on the student to learn the material. New forms of delivery including computer-assisted learning tools should help sustain learning and previously acquired knowledge. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Toward Understanding the Mammalian Zygoma: Insights From Comparative Anatomy, Growth and Development, and Morphometric Analysis.

    PubMed

    Márquez, Samuel; Pagano, Anthony S; Schwartz, Jeffrey H; Curtis, Abigail; Delman, Bradley N; Lawson, William; Laitman, Jeffrey T

    2017-01-01

    The zygoma, or jugum, is a cranial element that was present in Mesozoic tetrapods, well before the appearance of mammals. Although as an entity the zygoma is a primitive retention among mammals, it has assumed myriad configurations as this group diversified. As the zygoma is located at the intersection of the visual, respiratory, and masticatory apparatuses, it is potentially of great importance in systematic, phylogenetic, and functional studies focused on this region. For example, the facial component of the zygoma and its contribution to a postorbital bar (POB) appear to be relevant to the systematics of a number of mammalian subclades, and the formation of a bony postorbital septum (POS) that separates the orbit from the infratemporal fossa is unique to, and thus potentially phylogenetically significant for uniting anthropoid primates, while the zygoma itself appears to serve to resist tension and bending forces during mastication. In order to better understand the zygoma in the context of its contributions to the circumorbital region, we documented its morphological expression in specimens representing 10 orders of mammals. Since the presence of a POB and of a POS has long been used to justify uniting extant primates and anthropoid primates as respective clades, and because postorbital closure (POC) is morphologically more complex than a POB, we provide detail necessary to address these claims. Our taxically broad overview also allowed us to provide for the first time definitions of configurations that can be applied to future studies. Using a different, but also taxically broad sample of mammals, and of primates in particular, we performed two geometric morphometric analyses that were geared toward testing long-held interpretations of the functional role of the zygoma, especially with regard to mastication and in the context of orbital frontation (to which the zygoma contributes). Further, overall, zygomatic morphology tends not to scale with allometry, sexual dimorphism, or angle of orbital convergence, but it does contribute to unique patterns of intraspecies variation. Anat Rec, 300:76-151, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.; Head, James W.

    2008-01-01

    As a result of mapping, eleven material stratigraphic units and three structural units have been identified and mapped. The material units include (from older to younger): tessera terrain material (tt), material of densely fractured plains (pdf), material of fractured and ridged plains (pfr), material of shield plains (psh), material of plains with wrinkle ridges (pwr), material of smooth plains of intermediate brightness (psi), material of radardark smooth plains (psd), material of lineated plains (pli) material of lobate plains (plo), material of craters having no radar-dark haloes (c1), and material of craters having clear dark haloes (c2). The morphologies and probably the nature of the material units in the study area are generally similar to those observed in other regions of Venus [2]. The youngest units are lobate plains (plo) which here typically look less lobate than in other areas of the planet. Close to them in age are smooth plains which are indeed smooth and represented by two varieties mentioned above. Lineated plains (pli) are densely fractured in a geometrically regular way. Plains with wrinkle ridges, being morphologically similar to those observed in other regions, here occupy unusually small areas. Shield (psh) plains here are also not abundant. Locally they show wrinkle ridging. Fractured and ridged plains (pfr), which form in other regions, the so called ridge belts, are observed as isolated areas of clusters of ridged plains surrounded by other units. Densely fractured plains (pdf) are present in relatively small areas in association with coronae and corona-like features. Tessera terrain (tt) is dissected by structures oriented in two or more directions. Structures are so densely packed that the morphology (and thus nature) of the precursor terrain is not known. Structural units include tessera transitional terrain (ttt), fracture belts (fb) and rifted terrain (rt). Tessera transitional terrain was first identified and mapped by [4] as areas of fractured and ridged plains (pfr) and densely fractured plains (pdf) deformed by transverse faults that made it formally resemble tessera terrain (tt). The obvious difference between units tt and ttt is the recognizable morphology of precursor terrain of unit ttt. Fracture belts are probably ancient rift zones [3]. Rifted terrain (rt), as in other regions of Venus, is so saturated with faults that according to the recommendation of [1, 5] it should be mapped as a structural unit.

  9. Geologic Stratigraphy, Delta Morphology, and Regional History of Hypanis Delta, Mars

    NASA Astrophysics Data System (ADS)

    Adler, J.; Bell, J. F., III; Warner, N. H.; Fawdon, P.; Gupta, S.; Sefton-Nash, E.; Grindrod, P. M.; Davis, J.

    2016-12-01

    Hypanis is a large Noachian aged fan-shaped deposit that has been interpreted by many as being a delta in Xanthe Terra along the dichotomy boundary. The position of the putative delta at the edge of an open basin and its preserved morphology including potential access to bottomset beds had made Hypanis a compelling candidate future landing site for Mars 2020 and ExoMars. Its topographic location, without a clear local closed basin, may even imply a large northern sea. We further previous studies of Hypanis delta by 1) analyzing the stratigraphy of floor plains materials surrounding ancient deltaic deposits 2) conducting a survey of sedimentary bed strike and dip distribution, and 3) presenting a regional history model that includes a diversity of volcanic, sedimentary, tectonic, and impact processes identified. Hypanis delta has previously been dated at 3.8 Ga based on crater counts in the Hypanis Valles catchment and previous fluvial system analysis estimates 150 km3 of sediment deposited. We utilize 17 HiRISE and 8 CTX DTMs to measure fluvial and stratigraphic quantities, a CTX 5 m/pixel mosaic basemap (USGS), and THEMIS day/night IR images. We determine map unit stratigraphy (relative ages) from superposition and cross cutting relationships supported in our 3D models. We discuss periods of subaqueous sedimentation, fluvial migration, volcanic resurfacing, and multiple periods of erosion throughout the study region to explain the observed morphologies and inferred geologic timeline. Additional work focuses on newly discovered tectonic features prevalent in the low-lying plains unit. These 2 m wide linear features suggest orthogonal jointing and relatively recent faulting. We assess whether these features could be related to the cooling of Hesperian lava plains or isostatic uplift from a removed glacier or eroded landmass.

  10. Neurophysiological evidence for whole form retrieval of complex derived words: a mismatch negativity study

    PubMed Central

    Hanna, Jeff; Pulvermüller, Friedemann

    2014-01-01

    Complex words can be seen as combinations of elementary units, decomposable into stems and affixes according to morphological rules. Alternatively, complex forms may be stored as single lexical entries and accessed as whole forms. This study uses an event-related potential brain response capable of indexing both whole-form retrieval and combinatorial processing, the Mismatch Negativity (MMN), to investigate early brain activity elicited by morphologically complex derived words in German. We presented complex words consisting of stems “sicher” (secure), or “sauber” (clean) combined with abstract nominalizing derivational affixes -heit or -keit, to form either congruent derived words: “Sicherheit” (security) and “Sauberkeit” (cleanliness), or incongruent derived pseudowords: *“Sicherkeit”, and *“Sauberheit”. Using this orthogonal design, it was possible to record brain responses for -heit and -keit in both congruent and incongruent contexts, therefore balancing acoustic variance. Previous research has shown that incongruent combinations of symbols elicit a stronger MMN than congruent combinations, but that single words or constructions stored as whole forms elicit a stronger MMN than pseudowords or non-existent constructions. We found that congruent derived words elicited a stronger MMN than incongruent derived words, beginning about 150 ms after perception of the critical morpheme. This pattern of results is consistent with whole-form storage of morphologically complex derived words as lexical units, or mini-constructions. Using distributed source localization methods, the MMN enhancement for well-formed derivationally complex words appeared to be most prominent in the left inferior anterior-temporal, bilateral superior parietal and bilateral post-central, supra-marginal areas. In addition, neurophysiological results reflected the frequency of derived forms, thus providing further converging evidence for whole form storage and against a combinatorial mechanism. PMID:25414658

  11. Neurophysiological evidence for whole form retrieval of complex derived words: a mismatch negativity study.

    PubMed

    Hanna, Jeff; Pulvermüller, Friedemann

    2014-01-01

    Complex words can be seen as combinations of elementary units, decomposable into stems and affixes according to morphological rules. Alternatively, complex forms may be stored as single lexical entries and accessed as whole forms. This study uses an event-related potential brain response capable of indexing both whole-form retrieval and combinatorial processing, the Mismatch Negativity (MMN), to investigate early brain activity elicited by morphologically complex derived words in German. We presented complex words consisting of stems "sicher" (secure), or "sauber" (clean) combined with abstract nominalizing derivational affixes -heit or -keit, to form either congruent derived words: "Sicherheit" (security) and "Sauberkeit" (cleanliness), or incongruent derived pseudowords: *"Sicherkeit", and *"Sauberheit". Using this orthogonal design, it was possible to record brain responses for -heit and -keit in both congruent and incongruent contexts, therefore balancing acoustic variance. Previous research has shown that incongruent combinations of symbols elicit a stronger MMN than congruent combinations, but that single words or constructions stored as whole forms elicit a stronger MMN than pseudowords or non-existent constructions. We found that congruent derived words elicited a stronger MMN than incongruent derived words, beginning about 150 ms after perception of the critical morpheme. This pattern of results is consistent with whole-form storage of morphologically complex derived words as lexical units, or mini-constructions. Using distributed source localization methods, the MMN enhancement for well-formed derivationally complex words appeared to be most prominent in the left inferior anterior-temporal, bilateral superior parietal and bilateral post-central, supra-marginal areas. In addition, neurophysiological results reflected the frequency of derived forms, thus providing further converging evidence for whole form storage and against a combinatorial mechanism.

  12. Fresh Garlic Extract Induces Growth Arrest and Morphological Differentiation of MCF7 Breast Cancer Cells

    PubMed Central

    DiCarlo, Stephen E.; Reddy, Thipparthi R.

    2012-01-01

    Consumption of diets rich in fruits and vegetables is often associated with a reduced risk of developing cancer, particularly breast cancer. Considering that 1 in 8 women in the United States will develop breast cancer in the course of her lifetime, dietary manipulation could have a major impact on the incidence of breast cancer. We report here that fresh extracts of garlic (not boiled) arrested the growth and altered the morphology of MCF7 breast cancer cells. Deregulated levels of E-cadherin, cytokeratin8/18, and β-catenin correlated with the altered phenotype. We propose that early down-regulation of cyclin D1, reduced phosphorylation of ERK1, and increased phosphorylation of eIF2-α triggered the phenotypical changes. Reduced expression of hsp27 and sam68 and elevated levels of Rb and p21 further contributed to the sustained growth reduction. These findings provide a better understanding of the cellular responses to dietary supplements and provide potential options to treat breast cancer. PMID:23050048

  13. A Botany Unit: Seed Plants.

    ERIC Educational Resources Information Center

    Smythe, Cathy

    1983-01-01

    Presents a botany unit designed to provide understanding of a plant life cycle, plant parts and functions, and variety within the plant world. The unit is organized according to plant morphology (structure). Each section includes concepts fostered, suggestions for focused discussions, experiments, and activities to support concept development.…

  14. Morphology of Southern Hemisphere Riometer Auroral Absorption

    DTIC Science & Technology

    2006-06-01

    Departamento de Geofísica Universidad de Concepción, Concepción CHILE foppiano@udec.cl ABSTRACT A morphology of riometer auroral absorption is...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Departamento de Geofísica Universidad de ...range of frequencies used an inverse -square frequency dependence approximately holds. Morphology of Southern Hemisphere Riometer Auroral Absorption

  15. Geology of central Libya Montes, Mars: Aqueous alteration history from mineralogical and morphological mapping

    NASA Astrophysics Data System (ADS)

    Tirsch, D.; Bishop, J. L.; Voigt, J. R. C.; Tornabene, L. L.; Erkeling, G.; Jaumann, R.

    2018-11-01

    We analyze the emplacement chronology and aqueous alteration history of distinctive mineral assemblages and related geomorphic units near Hashir and Bradbury impact craters located within the Libya Montes, which are part of the southern rim of the Isidis Basin on Mars. We derive our results from a spectro-morphological mapping project that combines spectral detections from CRISM near-infrared imagery with geomorphology and topography from HRSC, CTX, and HiRISE imagery. Through this combination of data sets, we were able to use the morphology associated with specific mineral detections to extrapolate the possible extent of the units hosting these compositions. We characterize multiple units consistent with formation through volcanic, impact, hydrothermal, lacustrine and evaporative processes. Altered pyroxene-bearing basement rocks are unconformably overlain by an olivine-rich unit, which is in turn covered by a pyroxene-bearing capping unit. Aqueously altered outcrops identified here include nontronite, saponite, beidellite, opal, and dolomite. The diversity of mineral assemblages suggests that the nature of aqueous alteration at Libya Montes varied in space and time. This mineralogy together with geologic features shows a transition from Noachian aged impact-induced hydrothermal alteration and the alteration of Noachian bedrock by neutral to slightly basic waters via Hesperian aged volcanic emplacements and evaporative processes in lacustrine environments followed by Amazonian resurfacing in the form of aeolian erosion.

  16. Teaching the Scientific Method: It's All in the Perspective

    ERIC Educational Resources Information Center

    Ayers, James M.; Ayers, Kathleen M.

    2007-01-01

    A three unit module of inquiry, including morphological comparison, cladogram construction, and data mining has been developed to teach students the nature of experimental science. Students generate angiosperm morphological data, form cladistic hypotheses, then mine taxonomic, bioinformatic and historical data from many sources to replicate and…

  17. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar

    PubMed Central

    Smith, M. Alex; Fisher, Brian L; Hebert, Paul D.N

    2005-01-01

    The role of DNA barcoding as a tool to accelerate the inventory and analysis of diversity for hyperdiverse arthropods is tested using ants in Madagascar. We demonstrate how DNA barcoding helps address the failure of current inventory methods to rapidly respond to pressing biodiversity needs, specifically in the assessment of richness and turnover across landscapes with hyperdiverse taxa. In a comparison of inventories at four localities in northern Madagascar, patterns of richness were not significantly different when richness was determined using morphological taxonomy (morphospecies) or sequence divergence thresholds (Molecular Operational Taxonomic Unit(s); MOTU). However, sequence-based methods tended to yield greater richness and significantly lower indices of similarity than morphological taxonomy. MOTU determined using our molecular technique were a remarkably local phenomenon—indicative of highly restricted dispersal and/or long-term isolation. In cases where molecular and morphological methods differed in their assignment of individuals to categories, the morphological estimate was always more conservative than the molecular estimate. In those cases where morphospecies descriptions collapsed distinct molecular groups, sequence divergences of 16% (on average) were contained within the same morphospecies. Such high divergences highlight taxa for further detailed genetic, morphological, life history, and behavioral studies. PMID:16214741

  18. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    PubMed

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.

  19. Identification of morphological biosignatures in Martian analogue field specimens using in situ planetary instrumentation.

    PubMed

    Pullan, Derek; Westall, Frances; Hofmann, Beda A; Parnell, John; Cockell, Charles S; Edwards, Howell G M; Villar, Susana E Jorge; Schröder, Christian; Cressey, Gordon; Marinangeli, Lucia; Richter, Lutz; Klingelhöfer, Göstar

    2008-02-01

    We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics (sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life (fossilized microbial filaments) and of extant life (crypto-chasmoendolithic microorganisms). The materials originated from a variety of topical martian analogue localities on Earth, including impact craters, high-latitude deserts, and hydrothermal deposits. Our in situ payload included a stereo camera, microscope, Mössbauer spectrometer, and sampling device (all space-qualified units from Beagle 2), and an array of commercial instruments, including a multi-spectral imager, an X-ray spectrometer (calibrated to the Beagle 2 instrument), a micro-Raman spectrometer, and a bespoke (custom-designed) X-ray diffractometer. All experiments were conducted within the engineering constraints of in situ operations to generate realistic data and address the practical challenges of measurement. Our results demonstrate the importance of an integrated approach for this type of work. Each technique made a proportionate contribution to the overall effectiveness of our "pseudopayload" for biogenic assessment of samples yet highlighted a number of limitations of current space instrument technology for in situ astrobiology.

  20. Application of a hierarchical habitat unit classification system: stream habitat and salmonid distribution in Ward Creek, southeast Alaska.

    Treesearch

    M.D. Bryant; B.E. Wright; B.J. Davies

    1992-01-01

    A hierarchical classification system separating stream habitat into habitat units defined by stream morphology and hydrology was used in a pre-enhancement stream survey. The system separates habitat units into macrounits, mesounits, and micro- units and includes a separate evaluation of instream cover that also uses the hierarchical scheme. This paper presents an...

  1. [Pilot study of domain-specific terminology adaptation for morphological analysis: research on unknown terms in national examination documents of radiological technologists].

    PubMed

    Tsuji, Shintarou; Nishimoto, Naoki; Ogasawara, Katsuhiko

    2008-07-20

    Although large medical texts are stored in electronic format, they are seldom reused because of the difficulty of processing narrative texts by computer. Morphological analysis is a key technology for extracting medical terms correctly and automatically. This process parses a sentence into its smallest unit, the morpheme. Phrases consisting of two or more technical terms, however, cause morphological analysis software to fail in parsing the sentence and output unprocessed terms as "unknown words." The purpose of this study was to reduce the number of unknown words in medical narrative text processing. The results of parsing the text with additional dictionaries were compared with the analysis of the number of unknown words in the national examination for radiologists. The ratio of unknown words was reduced 1.0% to 0.36% by adding terminologies of radiological technology, MeSH, and ICD-10 labels. The terminology of radiological technology was the most effective resource, being reduced by 0.62%. This result clearly showed the necessity of additional dictionary selection and trends in unknown words. The potential for this investigation is to make available a large body of clinical information that would otherwise be inaccessible for applications other than manual health care review by personnel.

  2. Identification of wood-boring beetles (Cerambycidae and Buprestidae) intercepted in trade-associated solid wood packaging material using DNA barcoding and morphology.

    PubMed

    Wu, Yunke; Trepanowski, Nevada F; Molongoski, John J; Reagel, Peter F; Lingafelter, Steven W; Nadel, Hannah; Myers, Scott W; Ray, Ann M

    2017-01-16

    Global trade facilitates the inadvertent movement of insect pests and subsequent establishment of populations outside their native ranges. Despite phytosanitary measures, nonnative insects arrive at United States (U.S.) ports of entry as larvae in solid wood packaging material (SWPM). Identification of wood-boring larval insects is important for pest risk analysis and management, but is difficult beyond family level due to highly conserved morphology. Therefore, we integrated DNA barcoding and rearing of larvae to identify wood-boring insects in SWPM. From 2012 to 2015, we obtained larvae of 338 longhorned beetles (Cerambycidae) and 38 metallic wood boring beetles (Buprestidae) intercepted in SWPM associated with imported products at six U.S. ports. We identified 265 specimens to species or genus using DNA barcodes. Ninety-three larvae were reared to adults and identified morphologically. No conflict was found between the two approaches, which together identified 275 cerambycids (23 genera) and 16 buprestids (4 genera). Our integrated approach confirmed novel DNA barcodes for seven species (10 specimens) of woodborers not in public databases. This study demonstrates the utility of DNA barcoding as a tool for regulatory agencies. We provide important documentation of potential beetle pests that may cross country borders through the SWPM pathway.

  3. Identification of wood-boring beetles (Cerambycidae and Buprestidae) intercepted in trade-associated solid wood packaging material using DNA barcoding and morphology

    PubMed Central

    Wu, Yunke; Trepanowski, Nevada F.; Molongoski, John J.; Reagel, Peter F.; Lingafelter, Steven W.; Nadel, Hannah; Myers, Scott W.; Ray, Ann M.

    2017-01-01

    Global trade facilitates the inadvertent movement of insect pests and subsequent establishment of populations outside their native ranges. Despite phytosanitary measures, nonnative insects arrive at United States (U.S.) ports of entry as larvae in solid wood packaging material (SWPM). Identification of wood-boring larval insects is important for pest risk analysis and management, but is difficult beyond family level due to highly conserved morphology. Therefore, we integrated DNA barcoding and rearing of larvae to identify wood-boring insects in SWPM. From 2012 to 2015, we obtained larvae of 338 longhorned beetles (Cerambycidae) and 38 metallic wood boring beetles (Buprestidae) intercepted in SWPM associated with imported products at six U.S. ports. We identified 265 specimens to species or genus using DNA barcodes. Ninety-three larvae were reared to adults and identified morphologically. No conflict was found between the two approaches, which together identified 275 cerambycids (23 genera) and 16 buprestids (4 genera). Our integrated approach confirmed novel DNA barcodes for seven species (10 specimens) of woodborers not in public databases. This study demonstrates the utility of DNA barcoding as a tool for regulatory agencies. We provide important documentation of potential beetle pests that may cross country borders through the SWPM pathway. PMID:28091577

  4. Chemocoding as an identification tool where morphological- and DNA-based methods fall short: Inga as a case study.

    PubMed

    Endara, María-José; Coley, Phyllis D; Wiggins, Natasha L; Forrister, Dale L; Younkin, Gordon C; Nicholls, James A; Pennington, R Toby; Dexter, Kyle G; Kidner, Catherine A; Stone, Graham N; Kursar, Thomas A

    2018-04-01

    The need for species identification and taxonomic discovery has led to the development of innovative technologies for large-scale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in species-rich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or 'chemocoding', has great potential for plant identification in challenging tropical biomes. Using untargeted metabolomics in combination with multivariate analysis, we constructed species-level fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to next-generation DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae), both at single study sites and across broad geographic scales. Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continental-scale ranges. Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  5. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions.

    PubMed

    Wong, Chin Ken; Mason, Alexander F; Stenzel, Martina H; Thordarson, Pall

    2017-11-01

    Polymersomes, made up of amphiphilic block copolymers, are emerging as a powerful tool in drug delivery and synthetic biology due to their high stability, chemical versatility, and surface modifiability. The full potential of polymersomes, however, has been hindered by a lack of versatile methods for shape control. Here we show that a range of non-spherical polymersome morphologies with anisotropic membranes can be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure. By controlling the extent of solvation/desolvation of the aromatic side chains through changes in solvent quality, we demonstrate facile access to polymersomes that are either ellipsoidal or tubular-shaped. Our results indicate that perylene aromatic interactions have a great potential in the design of non-spherical polymersomes and other structurally complex self-assembled polymer structures.

  6. [A new herbs traceability method based on DNA barcoding-origin-morphology analysis--an example from an adulterant of 'Heiguogouqi'].

    PubMed

    Gu, Xuan; Zhang, Xiao-qin; Song, Xiao-na; Zang, Yi-mei; Li Yan-peng; Ma, Chang-hua; Zhao, Bai-xiao; Liu, Chun-sheng

    2014-12-01

    The fruit of Lycium ruthenicum is a common folk medicine in China. Now it is popular for its antioxidative effect and other medical functions. The adulterants of the herb confuse consumers. In order to identify a new adulterant of L. ruthenicum, a research was performed based on NCBI Nucleotide Database ITS Sequence, combined analysis of the origin and morphology of the adulterant to traceable varieties. Total genomic DNA was isolated from the materials, and nuclear DNA ITS sequences were amplified and sequenced; DNA fragments were collated and matched by using ContingExpress. Similarity identification of BLAST analysis was performed. Besides, the distribution of plant origin and morphology were considered to further identification and verification. Families and genera were identified by molecular identification method. The adulterant was identified as plant belonging to Berberis. Origin analysis narrowed the range of sample identification. Seven different kinds of plants in Berberis were potential sources of the sample. Adulterants variety was traced by morphological analysis. The united molecular identification-origin-morphology research proves to be a preceding way to medical herbs traceability with time-saving and economic advantages and the results showed the new adulterant of L. ruthenicum was B. kaschgarica. The main differences between B. kaschgarica and L. ruthenicum are as follows: in terms of the traits, the surface of B. kaschgarica is smooth and crispy, and that of L. ruthenicum is shrinkage, solid and hard. In microscopic characteristics, epicarp cells of B. aschgarica thickening like a string of beads, stone cells as the rectangle, and the stone cell walls of L. ruthenicum is wavy, obvious grain layer. In molecular sequences, the length of ITS sequence of B. kaschgarica is 606 bp, L. ruthenicum is 654 bp, the similarity of the two sequences is 53.32%.

  7. Geodiversity of a large meander bend in the Little Belt strait in the inner Danish waters

    NASA Astrophysics Data System (ADS)

    Brandbyge Ernstsen, Verner; Øbro Hansen, Lars; Becker, Marius; Brivio, Lara; Vang, Torben; Lynnerup Trinhammer, Per; Andresen, Katrine Juul; Seidenkrantz, Marit-Solveig; Boldreel, Lars Ole; Bartholdy, Jesper

    2017-04-01

    The Little Belt strait in the inner Danish waters is characterised by a high biodiversity, and continuous monitoring of flora and fauna and the water quality is undertaken by the authorities. However, the surface sedimentology and geomorphology, i.e. elements of the geodiversity, are less well-constrained. The aim of this study is to investigate the surface sediment and morphology of a large meander bend (with a channel width of 1 km) located between the two bridges crossing the strait (a channel reach of 4 km) in order to assess a potential coupling between geodiversity and biodiversity. More specifically, the objectives are 1) to identify and classify morphological units for creating a geomorphological map, 2) to quantify surface material characteristics for creating a surface material map, and 3) to develop a conceptual model of the substrate and the morphology and morphodynamics in the meander bend between the two bridges in the strait. Preliminary results reveal a diverse morphology in the meander bend; and the annual morphological changes reveal complex sediment transport patterns along and across the bend. Likewise significant sediment sorting trends exist along and across the meander bend. Hence, the preliminary results indicate a high geodiversity in the strait. Acknowledgements The data were collected as part of the MSc course Marine Geoscience, a joint MSc course between the Department of Geosciences and Natural Resource Management at the University of Copenhagen and the Department of Geoscience at Aarhus University. Additional data were included from the research project Control in the Danish Straits 1 (CiDS-1) funded by the Danish Centre for Marine Research (PI Morten Holtegaard). Thanks to the crew on board RV Aurora.

  8. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle

    PubMed Central

    Arakha, Manoranjan; Saleem, Mohammed; Mallick, Bairagi C.; Jha, Suman

    2015-01-01

    The work investigates the role of interfacial potential in defining antimicrobial propensity of ZnO nanoparticle (ZnONP) against different Gram positive and Gram negative bacteria. ZnONPs with positive and negative surface potential are tested against different bacteria with varying surface potentials, ranging −14.7 to −23.6 mV. Chemically synthesized ZnONPs with positive surface potential show very high antimicrobial propensity with minimum inhibitory concentration of 50 and 100 μg/mL for Gram negative and positive bacterium, respectively. On other hand, ZnONPs of the same size but with negative surface potential show insignificant antimicrobial propensity against the studied bacteria. Unlike the positively charged nanoparticles, neither Zn2+ ion nor negatively charged ZnONP shows any significant inhibition in growth or morphology of the bacterium. Potential neutralization and colony forming unit studies together proved adverse effect of the resultant nano-bacterial interfacial potential on bacterial viability. Thus, ZnONP with positive surface potential upon interaction with negative surface potential of bacterial membrane enhances production of the reactive oxygen species and exerts mechanical stress on the membrane, resulting in the membrane depolarization. Our results show that the antimicrobial propensity of metal oxide nanoparticle mainly depends upon the interfacial potential, the potential resulting upon interaction of nanoparticle surface with bacterial membrane. PMID:25873247

  9. Influence of technical processing units on chemical composition and antimicrobial activity of carrot (Daucus carrot L.) juice essential oil.

    PubMed

    Ma, Tingting; Luo, Jiyang; Tian, Chengrui; Sun, Xiangyu; Quan, Meiping; Zheng, Cuiping; Kang, Lina; Zhan, Jicheng

    2015-03-01

    The effect of three processing units (blanching, enzyme liquefaction, pasteurisation) on chemical composition and antimicrobial activity of carrot juice essential oil was investigated in this paper. A total of 36 compounds were identified by GC-MS from fresh carrot juice essential oil. The main constituents were carotol (20.20%), sabinene (12.80%), β-caryophyllene (8.04%) and α-pinene (6.05%). Compared with the oil of fresh juice, blanching and pasteurisation could significantly decrease the components of the juice essential oil, whereas enzyme liquefaction had no considerable effect on the composition of juice essential oil. With regard to the antimicrobial activity, carrot juice essential oil could cause physical damage and morphological alteration on microorganisms, while the three different processing units showed noticeable differences on the species of microorganisms, the minimum inhibitory concentration and minimum bactericidal concentration. Results revealed that the carrot juice essential oil has great potential for application as a natural antimicrobial applied in pharmaceutical and food industries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evidence for Early Morphological Decomposition: Combining Masked Priming with Magnetoencephalography

    ERIC Educational Resources Information Center

    Lehtonen, Minna; Monahan, Philip J.; Poeppel, David

    2011-01-01

    Are words stored as morphologically structured representations? If so, when during word recognition are morphological pieces accessed? Recent masked priming studies support models that assume early decomposition of (potentially) morphologically complex words. The electrophysiological evidence, however, is inconsistent. We combined masked…

  11. Reach-scale characterization of large woody debris in a low-gradient, Midwestern U.S.A. river system

    NASA Astrophysics Data System (ADS)

    Martin, Derek J.; Pavlowsky, Robert T.; Harden, Carol P.

    2016-06-01

    Addition of large woody debris (LWD) to rivers has increasingly become a popular stream restoration strategy, particularly in river systems of the Midwestern United States. However, our knowledge of LWD dynamics is mostly limited to high gradient montane river systems, or coastal river systems. The LWD-related management of low-gradient, Midwestern river systems is thus largely based on higher gradient analogs of LWD dynamics. This research characterizes fluvial wood loads and investigates the relationships between fluvial wood, channel morphology, and sediment deposition in a relatively low-gradient, semiconfined, alluvial river. The LWD and channel morphology were surveyed at nine reaches along the Big River in southeastern Missouri to investigate those relationships in comparison to other regions. Wood loads in the Big River are low (3-114 m3/100 m) relative to those of higher gradient river systems of the Pacific Northwest, but high relative to lower-gradient river systems of the Eastern United States. Wood characteristics such as size and orientation suggest that the dominant LWD recruitment mechanism in the Big River is bank erosion. Also, ratios of wood geometry to channel geometry show that the Big River maintains a relatively high wood transport capacity for most of its length. Although LWD creates sites for sediment storage, the overall impact on reach-scale sediment storage in the Big River is low (< 4.2% of total in-channel storage). However, wood loads, and thus opportunities for sediment storage, have the potential to grow in the future as Midwestern riparian forests mature. This study represents the first of its kind within this particular type of river system and within this region and thus serves as a basis for understanding fluvial wood dynamics in low-gradient river systems of the Midwestern United States.

  12. Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain.

    PubMed

    Ahrens, Collin W; Supple, Megan A; Aitken, Nicola C; Cantrill, David J; Borevitz, Justin O; James, Elizabeth A

    2017-06-01

    Species are often used as the unit for conservation, but may not be suitable for species complexes where taxa are difficult to distinguish. Under such circumstances, it may be more appropriate to consider species groups or populations as evolutionarily significant units (ESUs). A population genomic approach was employed to investigate the diversity within and among closely related species to create a more robust, lineage-specific conservation strategy for a nationally endangered terrestrial orchid and its relatives from south-eastern Australia. Four putative species were sampled from a total of 16 populations in the Victorian Volcanic Plain (VVP) bioregion and one population of a sub-alpine outgroup in south-eastern Australia. Morphological measurements were taken in situ along with leaf material for genotyping by sequencing (GBS) and microsatellite analyses. Species could not be differentiated using morphological measurements. Microsatellite and GBS markers confirmed the outgroup as distinct, but only GBS markers provided resolution of population genetic structure. The nationally endangered Diuris basaltica was indistinguishable from two related species ( D. chryseopsis and D. behrii ), while the state-protected D. gregaria showed genomic differentiation. Genomic diversity identified among the four Diuris species suggests that conservation of this taxonomically complex group will be best served by considering them as one ESU rather than separately aligned with species as currently recognized. This approach will maximize evolutionary potential among all species during increased isolation and environmental change. The methods used here can be applied generally to conserve evolutionary processes for groups where taxonomic uncertainty hinders the use of species as conservation units. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Quadriplegic areflexic ICU illness: selective thick filament loss and normal nerve histology.

    PubMed

    Sander, Howard W; Golden, Marianna; Danon, Moris J

    2002-10-01

    Areflexic quadriplegia that occurs in the intensive care unit (ICU) is commonly ascribed to critical illness polyneuropathy based upon electrophysiology or muscle light microscopy. However, electron microscopy often documents a selective thick filament loss myopathy. Eight ICU patients who developed areflexic quadriplegia underwent biopsy. Seven patients had received steroids, and 2 had also received paralytic agents. Electrodiagnostic studies revealed absent or low-amplitude motor responses in 7. Sensory responses were normal in 5 of 6 and absent in 1. Initial electromyography revealed absent (n = 3), small (n = 3), or polyphasic (n = 1) motor unit potentials, and diffuse fibrillation potentials (n = 5). In all 8, light microscopy of muscle revealed numerous atrophic-angulated fibers and corelike lesions, and electron microscopy revealed extensive thick filament loss. Morphology of sural and intramuscular nerves, and, in one autopsied case, of the obturator nerve and multiple nerve roots, was normal. Although clinical, electrodiagnostic, and light microscopic features mimicked denervating disease, muscle electron microscopy revealed thick filament loss, and nerve histology was normal. This suggests that areflexic ICU quadriplegia is a primary myopathy and not an axonal polyneuropathy. Copyright 2002 Wiley Periodicals, Inc. Muscle Nerve 26: 499-505, 2002

  14. Lava flow field emplacement studies of Manua Ulu (Kilauea Volcano, Hawai'i, United States) and Venus, using field and remote sensing analyses

    NASA Astrophysics Data System (ADS)

    Byrnes, Jeffrey Myer

    2002-04-01

    This work examines lava emplacement processes by characterizing surface units using field and remote sensing analyses in order to understand the development of lava flow fields. Specific study areas are the 1969--1974 Mauna Ulu compound flow field, (Kilauea Volcano, Hawai'i, USA), and five lava flow fields on Venus: Turgmam Fluctus, Zipaltonal Fluctus, the Tuli Mons/Uilata Fluctus flow complex, the Var Mons flow field, and Mylitta Fluctus. Lava surface units have been examined in the field and with visible-, thermal-, and radar-wavelength remote sensing datasets for Mauna Ulu, and with radar data for the Venusian study areas. For the Mauna Ulu flow field, visible characteristics are related to color, glass abundance, and dm- to m-scale surface irregularities, which reflect the lava flow regime, cooling, and modification due to processes such as coalescence and inflation. Thermal characteristics are primarily affected by the abundance of glass and small-scale roughness elements (such as vesicles), and reflect the history of cooling, vesiculation and degassing, and crystallization of the lava. Radar characteristics are primarily affected by unit topography and fracturing, which are related to flow inflation, remobilization, and collapse, and reflect the local supply of lava during and after unit emplacement. Mauna Ulu surface units are correlated with pre-eruption topography, lack a simple relationship to the main feeder lava tubes, and are distributed with respect to their position within compound flow lobes and with distance from the vent. The Venusian lava flow fields appear to have developed through emplacement of numerous, thin, simple and compound flows, presumably over extended periods of time, and show a wider range of radar roughness than is observed at Mauna Ulu. A potential correlation is suggested between flow rheology and surface roughness. Distributary flow morphologies may result from tube-fed flows, and flow inflation is consistent with observed surface characteristics. Furthermore, the significance of inflation at Mauna Ulu and comparison of radar characteristics indicates that inflation may, in fact, be more prevalent on Venus than at Mauna Ulu. Although the Venusian flow fields display morphologies similar to those observed within terrestrial flow fields, the Venusian flow units are significantly larger.

  15. Building the oceanic crust: Insights on volcanic emplacement processes at the hotspot-influenced Galápagos Spreading Center, 92°W

    NASA Astrophysics Data System (ADS)

    McClinton, J. T.; White, S. M.; Colman, A.; Sinton, J. M.

    2011-12-01

    The Galápagos Spreading Center (GSC) displays a range of axial morphology due to increased magma supply from the adjacent Galápagos mantle plume. Over 30 years of scientific exploration has also documented the associated variations in volcanic terrain, crustal thickness, and geochemistry of erupted basalts, but until recently the fine-scale ("lava flow scale") volcanic features of the GSC had not been investigated. Using the Alvin submersible and aided by near-bottom photographic surveys by TowCam and sub-meter-scale sonar surveys by AUV Sentry, we mapped and sampled 12 individual eruptive units covering ~16km2 of seafloor on the ridge axis of the GSC at 92°W. Variations in AUV Sentry bathymetry and DSL-120A backscatter enabled us to characterize the fine-scale surface morphology within each eruptive unit. Lava flow morphologies within each unit were identified using a neuro-fuzzy classifier which assigns pixels as pillows, lobates, sheets, or fissures by using attributes derived from high-resolution sonar bathymetry and backscatter (McClinton et al., submitted PE&RS). An accuracy assessment indicates approximately 90% agreement between the lava morphology map and an independent set of visual observations. The result of this classification effort is that we are able to quantitatively examine the spatial distribution of lava flow morphology as it relates to the emplacement of lava flows within each eruptive unit at a mid-ocean ridge. Preliminary analyses show that a large, segment-centered volcanic cone which straddles the axial summit graben (the "Empanada") is constructed mostly of pillow lavas, while volcanism in the rifted center of the cone consists of lobate and sheet flows. Conversely, along the rest of the segment, on-axis eruptions consist mainly of pillow lava with most sheet and lobate flows found outside of a small axial summit graben. At least some of these sheet flows are fed by lava channels, suggesting emplacement over distances up to 1km, while pillow lava within the summit graben form low mounds; we speculate that eruption effusion rates decreased over the eruptive episode, producing changes in lava morphology within the larger eruptive units. Many axial mounds are also cut by the graben faults. The relatively young appearance of the lava surfaces at 92°W argues for a close relationship between volcanism and graben faulting on this part of the ridge.

  16. Building Vocabulary of English Learners with Reading Disabilities through Computer-Assisted Morphology Instruction

    ERIC Educational Resources Information Center

    Lo, Ya-yu; Anderson, Adrienne L.; Bunch-Crump, Kimberly

    2017-01-01

    Many educators in public schools in the United States experience challenges in meeting the unique needs of the growing population of English learners who must simultaneously attain academic skills while acquiring English language proficiency. Such unique needs intensify for English learners with reading disabilities. Morphological awareness is key…

  17. Morphological Structures in Visual Word Recognition: The Case of Arabic

    ERIC Educational Resources Information Center

    Abu-Rabia, Salim; Awwad, Jasmin (Shalhoub)

    2004-01-01

    This research examined the function within lexical access of the main morphemic units from which most Arabic words are assembled, namely roots and word patterns. The present study focused on the derivation of nouns, in particular, whether the lexical representation of Arabic words reflects their morphological structure and whether recognition of a…

  18. Inlet Geomorphology Evolution Work Unit

    DTIC Science & Technology

    2015-10-30

    Research Facility in Duck , North Carolina in coming years. In collaboration with the CMS work unit, an analysis of long-term inlet morphology...the expected behavior and benefits of nearshore placement. Nearshore placement studies have been documented in two journal papers, one technical

  19. Pathology of carcinoma in situ of the urinary bladder and related lesions.

    PubMed

    Farrow, G M

    1992-01-01

    In the United States, nearly all cases of bladder cancer are of the transitional cell type, and epidemiological evidence indicates that among these, approximately 80% present initially as more or less well-differentiated, superficial papillary neoplasms with a tendency for multifocal or diffuse involvement of the urothelial surface and/or recurrent tumor episodes, but with limited potential for invasive growth or a lethal outcome. Bladder tumors with lethal potential generally begin as poorly differentiated, sessile growths that are usually invasive at first diagnosis. Carcinoma in situ is a change that must be elicited among intact surface cells before progressive proliferation results in a tumor mass. Evidence for such an association is both temporal and spatial. Since most transitional cell carcinomas begin as well-differentiated tumors, i.e., resembling normal urothelium, recognition of early neoplastic alteration before a papillary structure forms is unlikely and most of the evidence is spatial based upon urothelial changes adjacent to papillary tumors. The morphologic definition of carcinoma in situ is arbitrary and generally defined as a total replacement of the urothelial surface by cells which bear morphologic features of carcinoma, but which lack architectural alteration other than an increase in the number of cell layers, i.e., a flat lesion. The Union Internationále Contra Cancer/American Joint Committee on Cancer (UICC/AJCC) staging scheme for bladder cancer distinguishes non-invasive papillary growths as Ta and carcinoma in situ as Tis. Because detection of carcinoma in situ, either by cytology or biopsy, depends upon recognizable malignant morphologic characteristics, studies of the lesion tend to be limited to the higher grade or more anaplastic examples.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Concurrent electrophysiology and TPM/OCT imaging of long-term implanted electrodes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Gao, Yu-Rong; Ye, Meijun; Welle, Cristin G.

    2017-02-01

    Microelectrodes implanted in the brain cause mechanical damage to the tissue that mediate neuroinflammation and eventual encapsulation by microglia and astrocytes. Electrophysiological signals recorded from implants used in brain-computer interfaces (BCI) degrade over time, limiting their usefulness, but the precise causes and progression are not fully understood. We are investigating the dynamics of brain morphological changes and neuroinflammation with a multimodal approach to better understand the potential causes of implant failure. We performed weekly optical coherence tomography (OCT)-guided two-photon microscopy (TPM) in the region around microelectrodes inserted under a cranial window concurrent with electrophysiological recordings. Transgenic mouse cohorts studied include Thy1-YFP, Cx3cr1, and GFAP-GFP to image neurons, microglia, and astrocytes, respectively. Single-shank, 16-channel, Michigan-style microelectrodes were inserted under the window at a 15-20° angle with an insertion depth up to cortical layer 5. Single-unit and local field potential (LFP) recordings were collected for 15 minutes while the animals moved freely in their home cages. Cellular and vascular morphology were monitored using TPM and OCT at timepoints matched to the recordings. In preliminary data, we observed a decay of neural firing rates in most of the channels after implantation. The relationship between electrophysiological measures (e.g., neural firing rate, LFP power) and neural/vascular morphological measurements (e.g., cell density, glial migration, blood flow changes) will be quantified. The multimodal approach combining electrophysiology and optical imaging provides a broader picture of the multifactorial nature of the response to implanted electrodes. Understanding and accounting for the response may lead to better BCI designs and approaches.

  1. A Feathered Dinosaur Tail with Primitive Plumage Trapped in Mid-Cretaceous Amber.

    PubMed

    Xing, Lida; McKellar, Ryan C; Xu, Xing; Li, Gang; Bai, Ming; Persons, W Scott; Miyashita, Tetsuto; Benton, Michael J; Zhang, Jianping; Wolfe, Alexander P; Yi, Qiru; Tseng, Kuowei; Ran, Hao; Currie, Philip J

    2016-12-19

    In the two decades since the discovery of feathered dinosaurs [1-3], the range of plumage known from non-avialan theropods has expanded significantly, confirming several features predicted by developmentally informed models of feather evolution [4-10]. However, three-dimensional feather morphology and evolutionary patterns remain difficult to interpret, due to compression in sedimentary rocks [9, 11]. Recent discoveries in Cretaceous amber from Canada, France, Japan, Lebanon, Myanmar, and the United States [12-18] reveal much finer levels of structural detail, but taxonomic placement is uncertain because plumage is rarely associated with identifiable skeletal material [14]. Here we describe the feathered tail of a non-avialan theropod preserved in mid-Cretaceous (∼99 Ma) amber from Kachin State, Myanmar [17], with plumage structure that directly informs the evolutionary developmental pathway of feathers. This specimen provides an opportunity to document pristine feathers in direct association with a putative juvenile coelurosaur, preserving fine morphological details, including the spatial arrangement of follicles and feathers on the body, and micrometer-scale features of the plumage. Many feathers exhibit a short, slender rachis with alternating barbs and a uniform series of contiguous barbules, supporting the developmental hypothesis that barbs already possessed barbules when they fused to form the rachis [19]. Beneath the feathers, carbonized soft tissues offer a glimpse of preservational potential and history for the inclusion; abundant Fe 2+ suggests that vestiges of primary hemoglobin and ferritin remain trapped within the tail. The new finding highlights the unique preservation potential of amber for understanding the morphology and evolution of coelurosaurian integumentary structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hitting rock bottom: morphological responses of bedrock-confined streams to a catastrophic flood

    NASA Astrophysics Data System (ADS)

    Baggs Sargood, M.; Cohen, T. J.; Thompson, C. J.; Croke, J.

    2015-06-01

    The role of extreme events in shaping the Earth's surface is one that has held the interests of Earth scientists for centuries. A catastrophic flood in a tectonically quiescent setting in eastern Australia in 2011 provides valuable insight into how semi-alluvial channels respond to such events. Field survey data (3 reaches) and desktop analyses (10 reaches) with catchment areas ranging from 0.5 to 168 km2 show that the predicted discharge for the 2011 event ranged from 415 to 933 m3 s-1, with unit stream power estimates of up to 1077 W m-2. Estimated entrainment relationships predict the mobility of the entire grain-size population, and field data suggest the localised mobility of boulders up to 4.8 m in diameter. Analysis of repeat lidar data demonstrates that all reaches (field and desktop) were areas of net degradation via extensive scouring of coarse-grained alluvium with a strong positive relationship between catchment area and normalised erosion (R2 = 0.72-0.74). The extensive scouring in the 2011 flood decreased thalweg variance significantly removing previous step pools and other coarse-grained in-channel units, forming lengths of plane-bed (cobble) reach morphology. This was also accompanied by the exposure of planar bedrock surfaces, marginal bedrock straths and bedrock steps. Post-flood field data indicate a slight increase in thalweg variance as a result of the smaller 2013 flood rebuilding the alluvial overprint with pool-riffle formation. However, the current form and distribution of channel morphological units does not conform to previous classifications of bedrock or headwater river systems. This variation in post-flood form indicates that in semi-alluvial systems extreme events are significant for re-setting the morphology of in-channel units and for exposing the underlying lithology to ongoing erosion.

  3. Swahili Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This basic audiolingual course in standard Swahili appears in six volumes, Lesson Units 1-56. Units consist of a "blueprint" prefatory page outlining the phonological, morphological, and syntactic structures and new vocabulary to be presented; perception drills; Swahili dialog with cartoon guides and English translation; pattern and recombination…

  4. Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim.

    PubMed

    Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam

    2016-01-01

    Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.

  5. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  6. Simulation of sediment transport due to dam removal and control of morphological changes

    USDA-ARS?s Scientific Manuscript database

    This paper presents two case studies of post dam removal sedimentation in the United States. Two different one-dimensional channel evolution simulation models were used: CCHE1D and CONCEPTS, respectively. The first case is the application of CCHE1D to assess the long-term (up to 10 years) morphologi...

  7. External Insect Morphology: A Negative Factor in Attitudes toward Insects and Likelihood of Incorporation in Future Science Education Settings

    ERIC Educational Resources Information Center

    Wagler, Ron; Wagler, Amy

    2012-01-01

    This study investigated if the external morphology of an insect had a negative effect on United States (US) preservice elementary teacher's attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. 270 US kindergarten through sixth grade preservice elementary teachers…

  8. Molecular characterization of organic electronic films.

    PubMed

    DeLongchamp, Dean M; Kline, R Joseph; Fischer, Daniel A; Richter, Lee J; Toney, Michael F

    2011-01-18

    Organic electronics have emerged as a viable competitor to amorphous silicon for the active layer in low-cost electronics. The critical performance of organic electronic materials is closely related to their morphology and molecular packing. Unlike their inorganic counterparts, polymers combine complex repeat unit structure and crystalline disorder. This combination prevents any single technique from being able to uniquely solve the packing arrangement of the molecules. Here, a general methodology for combining multiple, complementary techniques that provide accurate unit cell dimensions and molecular orientation is described. The combination of measurements results in a nearly complete picture of the organic film morphology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identification of Lygus hesperus by DNA barcoding reveals insignificant levels of genetic structure among distant and habitat diverse populations.

    PubMed

    Zhou, Changqing; Kandemir, Irfan; Walsh, Douglas B; Zalom, Frank G; Lavine, Laura Corley

    2012-01-01

    The western tarnished plant bug Lygus hesperus is an economically important pest that belongs to a complex of morphologically similar species that makes identification problematic. The present study provides evidence for the use of DNA barcodes from populations of L. hesperus from the western United States of America for accurate identification. This study reports DNA barcodes for 134 individuals of the western tarnished plant bug from alfalfa and strawberry agricultural fields in the western United States of America. Sequence divergence estimates of <3% reveal that morphologically variable individuals presumed to be L. hesperus were accurately identified. Paired estimates of F(st) and subsequent estimates of gene flow show that geographically distinct populations of L. hesperus are genetically similar. Therefore, our results support and reinforce the relatively recent (<100 years) migration of the western tarnished plant bug into agricultural habitats across the western United States. This study reveals that despite wide host plant usage and phenotypically plastic morphological traits, the commonly recognized western tarnished plant bug belongs to a single species, Lygus hesperus. In addition, no significant genetic structure was found for the geographically diverse populations of western tarnished plant bug used in this study.

  10. Modular evolution of the Cetacean vertebral column.

    PubMed

    Buchholtz, Emily A

    2007-01-01

    Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).

  11. The morphological basis of hallucal orientation in extant birds.

    PubMed

    Middleton, K M

    2001-10-01

    The perching foot of living birds is commonly characterized by a reversed or opposable digit I (hallux). Primitively, the hallux of nonavian theropod dinosaurs was unreversed and lay parallel to digits II-IV. Among basal birds, a unique digital innovation evolved in which the hallux opposes digits II-IV. This digital configuration is critical for grasping and perching. I studied skeletons of modern birds with a range of hallucal designs, from unreversed (anteromedially directed) to fully reversed (posteriorly directed). Two primary correlates of hallucal orientation were revealed. First, the fossa into which metatarsal I articulates is oriented slightly more posteriorly on the tarsometatarsus, rotating the digit as a unit. Second, metatarsal I exhibits a distinctive torsion of its distal shaft relative to its proximal articulation with the tarsometatarsus, reorienting the distal condyles and phalanges of digit I. Herein, I present a method that facilitates the re-evaluation of hallucal orientation in fossil avians based on morphology alone. This method also avoids potential misinterpretations of hallucal orientation in fossil birds that could result from preserved appearance alone. Copyright 2001 Wiley-Liss, Inc.

  12. The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the B. anthracis LT toxin.

    PubMed

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-10-30

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  13. The Saccharomyces boulardii CNCM I-745 Strain Shows Protective Effects against the B. anthracis LT Toxin

    PubMed Central

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-01-01

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax. PMID:26529015

  14. Modeling liver physiology: combining fractals, imaging and animation.

    PubMed

    Lin, Debbie W; Johnson, Scott; Hunt, C Anthony

    2004-01-01

    Physiological modeling of vascular and microvascular networks in several key human organ systems is critical for a deeper understanding of pharmacology and the effect of pharmacotherapies on disease. Like the lung and the kidney, the morphology of its vascular and microvascular system plays a major role in its functional capability. To understand liver function in absorption and metabolism of food and drugs, one must examine the morphology and physiology at both higher and lower level liver function. We have developed validated virtualized dynamic three dimensional (3D) models of liver secondary units and primary units by combining a number of different methods: three-dimensional rendering, fractals, and animation. We have simulated particle dynamics in the liver secondary unit. The resulting models are suitable for use in helping researchers easily visualize and gain intuition on results of in silico liver experiments.

  15. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  16. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  17. Comprehensive characterization of mesenchymal stromal cells from patients with Fanconi anaemia.

    PubMed

    Mantelli, Melissa; Avanzini, Maria Antonia; Rosti, Vittorio; Ingo, Daniela M; Conforti, Antonella; Novara, Francesca; Arrigo, Giulia; Boni, Marina; Zappatore, Rita; Lenta, Elisa; Moretta, Antonia; Acquafredda, Gloria; de Silvestri, Annalisa; Cirillo, Valentina; Cicchetti, Elisa; Algeri, Mattia; Strocchio, Luisa; Vinti, Luciana; Starc, Nadia; Biagini, Simone; Sirleto, Pietro; Bernasconi, Paolo; Zuffardi, Orsetta; Maserati, Emanuela; Maccario, Rita; Zecca, Marco; Locatelli, Franco; Bernardo, Maria Ester

    2015-09-01

    Fanconi anaemia (FA) is an inherited disorder characterized by pancytopenia, congenital malformations and a predisposition to develop malignancies. Alterations in the haematopoietic microenvironment of FA patients have been reported, but little is known regarding the components of their bone marrow (BM) stroma. We characterized mesenchymal stromal cells (MSCs) isolated from BM of 18 FA patients both before and after allogeneic haematopoietic stem cell transplantation (HSCT). Morphology, fibroblast colony-forming unit (CFU-F) ability, proliferative capacity, immunophenotype, differentiation potential, ability to support long-term haematopoiesis and immunomodulatory properties of FA-MSCs were analysed and compared with those of MSCs expanded from 15 age-matched healthy donors (HD-MSCs). FA-MSCs were genetically characterized through conventional karyotyping, diepoxybutane-test and array-comparative genomic hybridization. FA-MSCs generated before and after HSCT were compared. Morphology, immunophenotype, differentiation potential, ability in vitro to inhibit mitogen-induced T-cell proliferation and to support long-term haematopoiesis did not differ between FA-MSCs and HD-MSCs. CFU-F ability and proliferative capacity of FA-MSCs isolated after HSCT were significantly lower than those of HD-MSCs. FA-MSCs reached senescence significantly earlier than HD-MSCs and showed spontaneous chromosome fragility. Our findings indicate that FA-MSCs are defective in their ability to survive in vitro and display spontaneous chromosome breakages; whether these defects are involved in pathophysiology of BM failure syndromes deserves further investigation. © 2015 John Wiley & Sons Ltd.

  18. Measurement and significance of sperm morphology

    PubMed Central

    Menkveld, Roelof; Holleboom, Cas AG; Rhemrev, Johann PT

    2011-01-01

    The measurement or evaluation and clinical significance of human sperm morphology has always been and still is a controversial aspect of the semen analysis for the determination of a male's fertility potential. In this review the background of the development of the evaluation criteria for sperm morphology will be discussed. Aspects of criticism on the strict criteria definition and use of the criteria for sperm morphology evaluation will be discussed as well as possible reasons for the decline in normal sperm morphology values and how we can compromise for this phenomenon resulting in the very low normal reference value as published in the 2010 WHO manual for the Examination and Processing of Human Semen. One of the possible solutions may be to give more attention to a limited number of abnormal sperm morphology categories and the inclusion of sperm morphology patterns. It is concluded in this review that if done correctly and with care and with strict application of existing guidelines as outlined in the 2010 WHO manual, sperm morphology measurement still has a very important role to play in the clinical evaluation of male fertility potential. PMID:21076438

  19. Exposures to fine particulate matter (PM2.5) and ozone above USA standards are associated with auditory brainstem dysmorphology and abnormal auditory brainstem evoked potentials in healthy young dogs.

    PubMed

    Calderón-Garcidueñas, Lilian; González-González, Luis O; Kulesza, Randy J; Fech, Tatiana M; Pérez-Guillé, Gabriela; Luna, Miguel Angel Jiménez-Bravo; Soriano-Rosales, Rosa Eugenia; Solorio, Edelmira; Miramontes-Higuera, José de Jesús; Gómez-Maqueo Chew, Aline; Bernal-Morúa, Alexia F; Mukherjee, Partha S; Torres-Jardón, Ricardo; Mills, Paul C; Wilson, Wayne J; Pérez-Guillé, Beatriz; D'Angiulli, Amedeo

    2017-10-01

    Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM 2.5 ) and ozone (O 3 ) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Self-generated morphology in lagoon reefs

    PubMed Central

    Hamblin, Michael G.

    2015-01-01

    The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia’s Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves—specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef. PMID:26175962

  1. Gnathostoma spinigerum in live Asian swamp eels (Monopterus spp.) from food markets and wild populations, United States

    USGS Publications Warehouse

    Cole, Rebecca A.; Choudhury, Anindo; Nico, Leo G.; Griffin, Kathryn M.

    2014-01-01

    In Southeast Asia, swamp eels (Synbranchidae: Monopterus spp.) are a common source of human gnathostomiasis, a foodborne zoonosis caused by advanced third-stage larvae (AL3) of Gnathostoma spp. nematodes. Live Asian swamp eels are imported to US ethnic food markets, and wild populations exist in several states. To determine whether these eels are infected, we examined 47 eels from markets and 67 wild-caught specimens. Nematodes were identified by morphologic features and ribosomal intergenic transcribed spacer–2 gene sequencing. Thirteen (27.7%) M. cuchia eels from markets were infected with 36 live G. spinigerum AL3: 21 (58.3%) in liver; 7 (19.4%) in muscle; 5 (13.8%) in gastrointestinal tract, and 3 (8.3%) in kidneys. Three (4.5%) wild-caught M. albus eels were infected with 5 G. turgidum AL3 in muscle, and 1 G. lamothei AL3 was found in a kidney (both North American spp.). Imported live eels are a potential source of human gnathostomiasis in the United States.

  2. Gnathostoma spinigerum in live Asian swamp eels (Monopterus spp.) from food markets and wild populations, United States.

    PubMed

    Cole, Rebecca A; Choudhury, Anindo; Nico, Leo G; Griffin, Kathryn M

    2014-04-01

    In Southeast Asia, swamp eels (Synbranchidae: Monopterus spp.) are a common source of human gnathostomiasis, a foodborne zoonosis caused by advanced third-stage larvae (AL3) of Gnathostoma spp. nematodes. Live Asian swamp eels are imported to US ethnic food markets, and wild populations exist in several states. To determine whether these eels are infected, we examined 47 eels from markets and 67 wild-caught specimens. Nematodes were identified by morphologic features and ribosomal intergenic transcribed spacer-2 gene sequencing. Thirteen (27.7%) M. cuchia eels from markets were infected with 36 live G. spinigerum AL3: 21 (58.3%) in liver; 7 (19.4%) in muscle; 5 (13.8%) in gastrointestinal tract, and 3 (8.3%) in kidneys. Three (4.5%) wild-caught M. albus eels were infected with 5 G. turgidum AL3 in muscle, and 1 G. lamothei AL3 was found in a kidney (both North American spp.). Imported live eels are a potential source of human gnathostomiasis in the United States.

  3. Challenges of ECG monitoring and ECG interpretation in dialysis units.

    PubMed

    Poulikakos, Dimitrios; Malik, Marek

    Patients on hemodialysis (HD) suffer from high cardiovascular morbidity and mortality due to high rates of coronary artery disease and arrhythmias. Electrocardiography (ECG) is often performed in the dialysis units as part of routine clinical assessment. However, fluid and electrolyte changes have been shown to affect all ECG morphologies and intervals. ECG interpretation thus depends on the time of the recording in relation to the HD session. In addition, arrhythmias during HD are common, and dialysis-related ECG artifacts mimicking arrhythmias have been reported. Studies using advanced ECG analyses have examined the impact of the HD procedure on selected repolarization descriptors and heart rate variability indices. Despite the challenges related to the impact of the fluctuant fluid and electrolyte status on conventional and advanced ECG parameters, further research in ECG monitoring during dialysis has the potential to provide clinically meaningful and practically useful information for diagnostic and risk stratification purposes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. New insights into the phenotypic covariance structure of the anthropoid cranium

    PubMed Central

    Makedonska, Jana

    2014-01-01

    In complex organisms, suites of non-random, highly intercorrelated phenotypic traits, organized according to their developmental history and forming semi-autonomous units (i.e. modules), have the potential to impose constraints on morphological diversification or to improve evolvability. Because of its structural, developmental and functional complexity, the cranium is arguably one of the best models for studying the interplay between developmental history and the need for various parts of a structure to specialize in different functions. This study evaluated the significance of two specific types of developmental imprints in the adult anthropoid cranium, those imposed by ossification pattern (i.e. ossification with and without a pre-existing cartilaginous phase) and those imposed by tissue origin (i.e. tissues derived principally from neural-crest vs. those derived from paraxial mesoderm). Specifically, this study tests the hypothesis that the face and the basicranium form two distinct modules with higher within-unit trait integration magnitudes compared with the cranium as a whole. Data on 12 anthropoid primate species were collected in the form of 23-dimensional landmarks digitized on cranial surface models that sample the basicranium as well as regions of functional importance during feeding. The presence of a significant modularity imprint in the adult cranium was assessed using a between-region within-species comparison of multivariate correlations (RV coefficients) obtained with partial least-squares, using within-module within-species eigenvalue variance (EV), and using cluster analyses and non-metric multidimensional scaling. In addition to addressing the validity of the cranial modularity hypothesis in anthropoids, this study addressed methodological aspects of the interspecific comparison of morphological integration, namely the effect of sample size and the effect of landmark number on integration magnitudes. Two methodological findings that are of significance to research in morphological integration are that: (i) a smaller sample size increases integration magnitude, but preserves the pattern of variation of integration magnitudes from block to block within species; and that (ii) the number of landmarks per cranial block does not significantly impact block integration magnitude measured as EV. Results from the analyses testing for cranial modularity imprints in the adult anthropoid cranium show that some facial landmarks covary more strongly with basicranial landmarks than with other facial landmarks. Cluster methods, non-metric multidimensional scaling and, to an extent, RV results show that the rostral and the zygomatic landmarks covary more strongly with the basicranial landmarks than they do with the molar landmarks. However, the rostral–zygomatic–basicranial block, the molar block, the facial block, the basicranial block and the other analyzed cranial and facial blocks are not more integrated than the cranium. Thus, the morphological variation in the adult anthropoid cranium is not significantly constrained by at least two of the potential developmental sources of its covariance structure. PMID:25406861

  5. Electrophysiological evidence of doubly innervated branched muscle fibers in the human brachioradialis muscle.

    PubMed

    Lateva, Zoia C; McGill, Kevin C

    2007-12-01

    Motor-unit action potentials (MUAPs) with unstable satellite (late-latency) components are found in EMG signals from the brachioradialis muscles of normal subjects. We analyzed the morphology and blocking behavior of these MUAPs to determine their anatomical origin. EMG signals were recorded from the brachioradialis muscles of 5 normal subjects during moderate-level isometric contractions. MUAP waveforms, discharge patterns, and blocking were determined using computer-aided EMG decomposition. Twelve MUAPs with unstable satellite potentials were detected, always two together in the same signal. Each MUAP also had a second unstable component associated with its main spike. The blocking behavior of the unstable components depended on how close together the two MUAPs were when they discharged. The latencies and blocking behavior indicate that the unstable components came from branched muscle fibers innervated by two different motoneurons. The satellite potentials were due to action potentials that traveled to the branching point along one branch and back along the other. The blockings were due to action-potential collisions when both motoneurons discharged close together in time. Animal studies suggest that branched muscle fibers may be a normal characteristic of series-fibered muscles. This study adds to our understanding of these muscles in humans.

  6. Two species within Dedroctonus frontalis (Coleoptera: Curculionidae): evidence from morphological, karyological, molecular, and crossing studies.

    Treesearch

    Francisco Armendariz-Toledano; Alicia Nino; Brian Sullivan; Jorge Macias-Samano; Javier Victor; Stephen R. Clarke; Gerardo Zuniga

    2014-01-01

    Dendroctonus frontalis Zimmermann is considered one of the most important economic and ecological forest pests in the United States, Mexico, and Central America. Recently, two apparent morphological variants of this species were discovered occurring syntopically in Central America and southern Mexico. Morphotype A beetles lack a series of Þne parallel ridges on the...

  7. Video rate morphological processor based on a redundant number representation

    NASA Astrophysics Data System (ADS)

    Kuczborski, Wojciech; Attikiouzel, Yianni; Crebbin, Gregory A.

    1992-03-01

    This paper presents a video rate morphological processor for automated visual inspection of printed circuit boards, integrated circuit masks, and other complex objects. Inspection algorithms are based on gray-scale mathematical morphology. Hardware complexity of the known methods of real-time implementation of gray-scale morphology--the umbra transform and the threshold decomposition--has prompted us to propose a novel technique which applied an arithmetic system without carrying propagation. After considering several arithmetic systems, a redundant number representation has been selected for implementation. Two options are analyzed here. The first is a pure signed digit number representation (SDNR) with the base of 4. The second option is a combination of the base-2 SDNR (to represent gray levels of images) and the conventional twos complement code (to represent gray levels of structuring elements). Operation principle of the morphological processor is based on the concept of the digit level systolic array. Individual processing units and small memory elements create a pipeline. The memory elements store current image windows (kernels). All operation primitives of processing units apply a unified direction of digit processing: most significant digit first (MSDF). The implementation technology is based on the field programmable gate arrays by Xilinx. This paper justified the rationality of a new approach to logic design, which is the decomposition of Boolean functions instead of Boolean minimization.

  8. Analysis of very-high-resolution Galileo images of Europa: Implications for small-scale structure and surface evolution

    NASA Astrophysics Data System (ADS)

    Leonard, E. J.; Pappalardo, R. T.; Yin, A.; Prockter, L. M.; Patthoff, D. A.

    2014-12-01

    The Galileo Solid State Imager (SSI) recorded nine very high-resolution frames (8 at 12 m/pixel and 1 at 6 m/pixel) during the E12 flyby of Europa in Dec. 1997. To understand the implications for the small-scale structure and evolution of Europa, we mosaicked these frames (observations 12ESMOTTLE01 and 02, incidence ≈18°, emission ≈77°) into their regional context (part of observation 11ESREGMAP01, 220 m/pixel, incidence ≈74°, emission ≈23°), despite their very different viewing and lighting conditions. We created a map of geological units based on morphology, structure, and albedo along with stereoscopic images where the frames overlapped. The highly diverse units range from: high albedo sub-parallel ridge and grooved terrain; to variegated-albedo hummocky terrain; to low albedo and relatively smooth terrain. We classified and analyzed the diverse units solely based on the high-resolution image mosaic, prior to comparison to the context image, to obtain an in-depth look at possible surface evolution and underlying formational processes. We infer that some of these units represent different stages and forms of resurfacing, including cryovolcanic and tectonic resurfacing. However, significant morphological variation among units in the region indicates that there are different degrees of resurfacing at work. We have created candidate morphological sequences that provide insight into the conversion of ridged plains to chaotic terrain—generally, a process of subduing formerly sharp features through tectonic modification and/or cryovolcanism. When the map of the high-resolution area is compared to the regional context, features that appear to be one unit at regional resolution are comprised of several distinct units at high resolution, and features that appear to be smooth in the context image are found to show distinct textures. Moreover, in the context image, transitions from ridged units to disrupted units appear to be gradual; however the high-resolution image reveals them to be abrupt, suggesting tectonic control of these boundaries. These discrepancies could have important implications for a future landed exploration.

  9. Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foston, Marcus B; Hubbell, Christopher A; Samuel, Reichel

    2011-01-01

    Biomass is one of the most abundant potential sustainable sources for fuel and material production, however to fully realize this potential an improved understanding of lignocellulosic recalcitrance must be developed. In an effort to appreciate the underlying phenotypic, biochemical and morphological properties associated with the reduced recalcitrance observed in tension stress-induced reaction wood, we report the increased enzymatic sugar yield and corresponding chemical and ultrastructural properties of Populus tension wood. Populus tremula x alba (PTA) was grown under tension and stem segments containing three different wood types: normal wood (NW), tension wood (TW) from the elongated stem side and oppositemore » wood (OW) from the compressed stem side were collected. A variety of analytical techniques were used to describe changes occurring as a result of the tension stress-induced formation of a gelatinous cell wall layer (G-layer). For example, gel permeation chromatography (GPC) and 13C solid-state nuclear magnetic resonance (NMR) revealed that the molecular weight and crystallinity of cellulose in TW is greater than that of cellulose acquired from NW. Whole cell ionic liquid and other solid-state NMR analysis detailed the structure of lignin and hemicellulose in the samples, detecting the presence of variations in lignin and hemicellulose sub-units, linkages and semi-quantitatively estimating the relative amounts of syringyl (S), guaiacyl (G) and p-hydroxybenzoate (PB) monolignol units. It was confirmed that TW displayed an increase in PB or H-like lignin and S to G ratio from 1.25 to 1.50 when compared to the NW sample. Scanning electron microscopy (SEM) and coherent anti-Stokes Raman scattering (CARS) were also used to evaluate the morphology and corresponding spatial distribution of the major lignocellulosic components. We found changes in a combination of cell wall properties appear to influence recalcitrance more than any single factor alone.« less

  10. Marine Flora and Fauna of the Northeastern United States. Echinodermata: Holothuroidea.

    ERIC Educational Resources Information Center

    Pawson, David L.

    This report is part of a subseries entitled "Marine Flora and Fauna of the Northeastern United States" which is designed for use by biology students, biologists, biological oceanographers and informed laymen. Contents of this report include: (1) Introduction; (2) Morphology; (3) Systematic Characters; (4) Examination Procedures; (5)…

  11. Assessment of Change in Green Infrastructure Components Using Morphological Spatial Pattern Analysis for the Conterminous United States

    EPA Science Inventory

    Green infrastructure is a widely used framework for conservation planning in the United States and elsewhere. The main components of green infrastructure are hubs and corridors. Hubs are large areas of natural vegetation, and corridors are linear features that connect hubs. W...

  12. Morphological Encoding in German Children's Language Production: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Jessen, Anna; Fleischhauer, Elisabeth; Clahsen, Harald

    2017-01-01

    This study reports developmental changes in morphological encoding across late childhood. We examined event-related brain potentials (ERPs) during the silent production of regularly vs. irregularly inflected verb forms (viz. "-t" vs. "-n" participles of German) in groups of eight- to ten-year-olds, eleven- to…

  13. DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity

    PubMed Central

    Dincă, Vlad; Montagud, Sergio; Talavera, Gerard; Hernández-Roldán, Juan; Munguira, Miguel L.; García-Barros, Enrique; Hebert, Paul D. N.; Vila, Roger

    2015-01-01

    How common are cryptic species - those overlooked because of their morphological similarity? Despite its wide-ranging implications for biology and conservation, the answer remains open to debate. Butterflies constitute the best-studied invertebrates, playing a similar role as birds do in providing models for vertebrate biology. An accurate assessment of cryptic diversity in this emblematic group requires meticulous case-by-case assessments, but a preview to highlight cases of particular interest will help to direct future studies. We present a survey of mitochondrial genetic diversity for the butterfly fauna of the Iberian Peninsula with unprecedented resolution (3502 DNA barcodes for all 228 species), creating a reliable system for DNA-based identification and for the detection of overlooked diversity. After compiling available data for European butterflies (5782 sequences, 299 species), we applied the Generalized Mixed Yule-Coalescent model to explore potential cryptic diversity at a continental scale. The results indicate that 27.7% of these species include from two to four evolutionary significant units (ESUs), suggesting that cryptic biodiversity may be higher than expected for one of the best-studied invertebrate groups and regions. The ESUs represent important units for conservation, models for studies of evolutionary and speciation processes, and sentinels for future research to unveil hidden diversity. PMID:26205828

  14. Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.

    1997-01-01

    Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.

  15. Surface-potential undulation of Alq3 thin films prepared on ITO, Au, and n-Si.

    PubMed

    Ozasa, Kazunari; Ito, Hiromi; Maeda, Mizuo; Hara, Masahiko

    2012-01-01

    The surface potential (SP) morphology on thin films of tris(8-hydroxyquinolinato) aluminum (Alq3) was investigated with Kelvin probe force microscopy. Thin Alq3 films of 100 nm were prepared on ITO/glass substrates, Au/mica substrates, and n-Si substrates. Cloud-like morphologies of the SP undulation with 200-400 nm in lateral size were observed for all three types of the substrates. New larger peaks were observed in the cloud-like morphologies when the surfaces were exposed shortly to a light, while the SP average was reduced monotonically. The nonuniform distribution of charged traps and mobility was deduced from the SP undulation morphology and its photoexposure dependences.

  16. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    PubMed

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  17. The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets.

    PubMed

    Fraeman, A A; Ehlmann, B L; Arvidson, R E; Edwards, C S; Grotzinger, J P; Milliken, R E; Quinn, D P; Rice, M S

    2016-09-01

    We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1-3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate-bearing unit, (5) a hematite-capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near-infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late-stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases.

  18. Anabolic agents and bone quality.

    PubMed

    Sibai, Tarek; Morgan, Elise F; Einhorn, Thomas A

    2011-08-01

    The definition of bone quality is evolving particularly from the perspective of anabolic agents that can enhance not only bone mineral density but also bone microarchitecture, composition, morphology, amount of microdamage, and remodeling dynamics. This review summarizes the molecular pathways and physiologic effects of current and potential anabolic drugs. From a MEDLINE search (1996-2010), articles were identified by the search terms "bone quality" (1851 articles), "anabolic agent" (5044 articles), "PTH or parathyroid hormone" (32,229 articles), "strontium" or "strontium ranelate" (283 articles), "prostaglandin" (77,539 articles), and "statin" or "statins" (14,233 articles). The search strategy included combining each with the phrase "bone quality." Another more limited search aimed at finding more novel potential agents. Parathyroid hormone is the only US Food and Drug Administration-approved bone anabolic agent in the United States and has been the most extensively studied in in vitro animal and human trials. Strontium ranelate is approved in Europe but has not undergone Food and Drug Administration trials in the United States. All the studies on prostaglandin agonists have used in vivo animal models and there are no human trials examining prostaglandin agonist effects. The advantages of statins include the long-established advantages and safety profile, but they are limited by their bioavailability in bone. Other potential pathways include proline-rich tyrosine kinase 2 (PYK2) and sclerostin (SOST) inhibition, among others. The ongoing research to enhance the anabolic potential of current agents, identify new agents, and develop better delivery systems will greatly enhance the management of bone quality-related injuries and diseases in the future.

  19. [Effects of glucagon-like peptide 2 on the adaptation of residual small bowel in a rat model of short bowel syndrome].

    PubMed

    Wu, Guo-Hao; Chen, Ji; Li, Hang; Wu, Zhao-Han

    2006-09-01

    To investigate the effects of glucagon-like peptide 2 (GLP-2) on the morphology and functional adaptation of the residual small bowel in rat model of short bowel syndrome. Twenty rats with 75% of the midjejunoileum removed were randomly divided into two groups, and received intra-peritoneal injection of GLP-2(250 micro*gd*kg-1*d-1) or subcutaneous injection saline(0.5 ml, twice one day) after operation. On postoperative day 6, the morphological changes of the residual jejunum and ileum, the expression of proliferating cell nuclear antigen(PCNA), and the mRNA expressions of Na-D-glucose cotransporters (SGLT1) and peptide cotransporters (PEPT1) were determined. The intestinal glucose absorption data per unit length as well as per unit weight of ileum were measured by in vivo circulatory perfusion experiment. The morphological parameters of the residual gut such as the thickness of mucosa, height of villus, depth of crypt, and PCNA positive index were significantly higher, while the apoptosis rate per unit of mucosal square was significantly lower in GLP-2 treatment group than those in the control group. The expressions of mRNA SGTLl and PEPT1 in the residual ileum were significantly higher than those in the control group. There was no significant difference in glucose absorption rate per gram of mucosal wet weight between the two groups (P > 0.05). GLP-2 could improve morphological and functional adaptation of the residual small bowel by stimulating enterocyte proliferation and decreasing enterocyte apoptosis in short bowel syndrome.

  20. Influence of container size on Wyoming big sagebrush seedling morphology and cold hardiness

    Treesearch

    Kayla R. Herriman; Anthony S. Davis; R. Kasten Dumroese

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata) is a key component of sagebrush steppe ecosystems and is a dominant shrub throughout the western United States. Our objective was to identify the effect of container size on plant morphology of Wyoming big sagebrush. We used three different stocktypes (45/340 ml [20 in3], 60/250 ml [15 in3], 112/105 ml [6....

  1. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    PubMed

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  2. The diatom genus Actinocyclus in the Western United States

    USGS Publications Warehouse

    Bradbury, J. Platt; Krebs, William N.; Bradbury, J. Platt; Krebs, William N.

    1995-01-01

    Ten new and four known taxa of the diatom genus Actinocyclus are described, illustrated, and (or) noted from middle Miocene lake deposits in the Western United States. A key is presented to help separate the taxa based on morphological criteria visible in the light microscope. The geologic ranges of Actinocyclus species in the Western United States are discussed based on examination of over 100 localities of diatomaceous lacustrine deposits.

  3. Boosting electrical conductivity in a gel-derived material by nanostructuring with trace carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Canevet, David; Pérez Del Pino, Angel; Amabilino, David B.; Sallé, Marc

    2011-07-01

    An organogelator with two distinct π-functional units is able to incorporate carbon nanotubes into its mesh of fibres in the gel state. The morphology of the material derived from this nanocomposite after evaporation of the solvent is a complex mesh of fibres which is clearly different from the pure gelator. This feature indicates a role of the nanotubes in assisting the formation of a fibre structure in the gel thanks to their interaction with the pyrene units in the organogelator. The nanocomposite conducts electricity once the p-type gelator is doped with iodine vapour. The change in morphology caused by the carbon material increases the conductivity of the material compared with the purely organic conducting system. It is remarkable that this improvement in the physical property is caused by an extremely small proportion of the carbon material (only present at a ratio of 0.1% w/w). The practically unique properties of TTF unit allow measurements with both doped and undoped materials with conducting atomic force microscopy which have demonstrated that the carbon nanotubes are not directly responsible for the increased conductivity.An organogelator with two distinct π-functional units is able to incorporate carbon nanotubes into its mesh of fibres in the gel state. The morphology of the material derived from this nanocomposite after evaporation of the solvent is a complex mesh of fibres which is clearly different from the pure gelator. This feature indicates a role of the nanotubes in assisting the formation of a fibre structure in the gel thanks to their interaction with the pyrene units in the organogelator. The nanocomposite conducts electricity once the p-type gelator is doped with iodine vapour. The change in morphology caused by the carbon material increases the conductivity of the material compared with the purely organic conducting system. It is remarkable that this improvement in the physical property is caused by an extremely small proportion of the carbon material (only present at a ratio of 0.1% w/w). The practically unique properties of TTF unit allow measurements with both doped and undoped materials with conducting atomic force microscopy which have demonstrated that the carbon nanotubes are not directly responsible for the increased conductivity. Electronic supplementary information (ESI) available: Details concerning the preparation of 1-SWCNTs composite. See DOI: 10.1039/c1nr10235d

  4. Genetic divergence between two phenotypically distinct bottlenose dolphin ecotypes suggests separate evolutionary trajectories.

    PubMed

    Fruet, Pedro F; Secchi, Eduardo R; Di Tullio, Juliana C; Simões-Lopes, Paulo César; Daura-Jorge, Fábio; Costa, Ana P B; Vermeulen, Els; Flores, Paulo A C; Genoves, Rodrigo Cezar; Laporta, Paula; Beheregaray, Luciano B; Möller, Luciana M

    2017-11-01

    Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal-offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal ( n  = 127) and offshore ( n  = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites F ST  = 0.385, p  < .001; mtDNA F ST  =  0.183, p  < .001; Φ ST  = 0.385, p  < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential "contact zones", we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed.

  5. Near-census Delineation of Laterally Organized Geomorphic Zones and Associated Sub-width Fluvial Landforms

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Hopkins, C.

    2017-12-01

    A river channel and its associated riparian corridor exhibit a pattern of nested, geomorphically imprinted, lateral inundation zones (IZs). Each zone plays a key role in fluvial geomorphic processes and ecological functions. Within each zone, distinct landforms (aka geomorphic or morphological units, MUs) reside at the 0.1-10 channel width scale. These features are basic units linking river corridor morphology with local ecosystem services. Objective, automated delineation of nested inundation zones and morphological units remains a significant scientific challenge. This study describes and demonstrates new, objective methods for solving this problem, using the 35-km alluvial lower Yuba River as a testbed. A detrended, high-resolution digital elevation model constructed from near-census topographic and bathymetric data was produced and used in a hypsograph analysis, a commonly used method in oceanographic studies capable of identifying slope breaks at IZ transitions. Geomorphic interpretation mindful of the river's setting was required to properly describe each IZ identified by the hypsograph analysis. Then, a 2D hydrodynamic model was used to determine what flow yields the wetted area that most closely matches each IZ domain. The model also provided meter-scale rasters of depth and velocity useful for MU mapping. Even though MUs are discharge-independent landforms, they can be revealed by analyzing their overlying hydraulics at low flows. Baseflow depth and velocity rasters are used along with a hydraulic landform classification system to quantitatively delineate in-channel bed MU types. In-channel bar and off-channel flood and valley MUs are delineated using a combination of hydraulic and geomorphic indicators, such as depth and velocity rasters for different discharges, topographic contours, NAIP imagery, and a raster of vegetation. The ability to objectively delineate inundation zones and morphological units in tandem allows for better informed river management and restoration strategies as well as scientific studies about abiotic-biotic linkages.

  6. Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    PubMed Central

    Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.

    2012-01-01

    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225

  7. A National Assessment of Green Infrastructure and Change for the Conterminous United States Using Morphological Image Processing

    EPA Science Inventory

    Green infrastructure is a popular framework for conservation planning. The main elements of green infrastructure are hubs and links. Hubs tend to be large areas of ‘natural’ vegetation and links tend to be linear features (e.g., streams) that connect hubs. Within the United State...

  8. Processed Meat Intake Is Unfavorably and Fish Intake Favorably Associated with Semen Quality Indicators among Men Attending a Fertility Clinic123

    PubMed Central

    Afeiche, Myriam C.; Gaskins, Audrey J.; Williams, Paige L.; Toth, Thomas L.; Wright, Diane L.; Tanrikut, Cigdem; Hauser, Russ; Chavarro, Jorge E.

    2014-01-01

    Emerging literature suggests that men’s diets may affect spermatogenesis as reflected in semen quality indicators, but literature on the relation between meat intake and semen quality is limited. Our objective was to prospectively examine the relation between meat intake and indicators of semen quality. Men in subfertile couples presenting for evaluation at the Massachusetts General Hospital Fertility Center were invited to participate in an ongoing study of environmental factors and fertility. A total of 155 men completed a validated food-frequency questionnaire and subsequently provided 338 semen samples over an 18-mo period from 2007–2012. We used linear mixed regression models to examine the relation between meat intake and semen quality indicators (total sperm count, sperm concentration, progressive motility, morphology, and semen volume) while adjusting for potential confounders and accounting for within-person variability across repeat semen samples. Among the 155 men (median age: 36.1 y; 83% white, non-Hispanic), processed meat intake was inversely related to sperm morphology. Men in the highest quartile of processed meat intake had, on average, 1.7 percentage units (95% CI: −3.3, −0.04) fewer morphologically normal sperm than men in the lowest quartile of intake (P-trend = 0.02). Fish intake was related to higher sperm count and percentage of morphologically normal sperm. The adjusted mean total sperm count increased from 102 million (95% CI: 80, 131) in the lowest quartile to 168 million (95% CI: 136, 207) sperm in the highest quartile of fish intake (P-trend = 0.005). Similarly, the adjusted mean percentages of morphologically normal sperm for men in increasing quartiles of fish intake were 5.9 (95% CI: 5.0, 6.8), 5.3 (95% CI: 4.4, 6.3), 6.3 (95% CI: 5.2, 7.4), and 7.5 (95% CI: 6.5, 8.5) (P-trend = 0.01). Consuming fish may have a positive impact on sperm counts and morphology, particularly when consumed instead of processed red meats. PMID:24850626

  9. Processed meat intake is unfavorably and fish intake favorably associated with semen quality indicators among men attending a fertility clinic.

    PubMed

    Afeiche, Myriam C; Gaskins, Audrey J; Williams, Paige L; Toth, Thomas L; Wright, Diane L; Tanrikut, Cigdem; Hauser, Russ; Chavarro, Jorge E

    2014-07-01

    Emerging literature suggests that men's diets may affect spermatogenesis as reflected in semen quality indicators, but literature on the relation between meat intake and semen quality is limited. Our objective was to prospectively examine the relation between meat intake and indicators of semen quality. Men in subfertile couples presenting for evaluation at the Massachusetts General Hospital Fertility Center were invited to participate in an ongoing study of environmental factors and fertility. A total of 155 men completed a validated food-frequency questionnaire and subsequently provided 338 semen samples over an 18-mo period from 2007-2012. We used linear mixed regression models to examine the relation between meat intake and semen quality indicators (total sperm count, sperm concentration, progressive motility, morphology, and semen volume) while adjusting for potential confounders and accounting for within-person variability across repeat semen samples. Among the 155 men (median age: 36.1 y; 83% white, non-Hispanic), processed meat intake was inversely related to sperm morphology. Men in the highest quartile of processed meat intake had, on average, 1.7 percentage units (95% CI: -3.3, -0.04) fewer morphologically normal sperm than men in the lowest quartile of intake (P-trend = 0.02). Fish intake was related to higher sperm count and percentage of morphologically normal sperm. The adjusted mean total sperm count increased from 102 million (95% CI: 80, 131) in the lowest quartile to 168 million (95% CI: 136, 207) sperm in the highest quartile of fish intake (P-trend = 0.005). Similarly, the adjusted mean percentages of morphologically normal sperm for men in increasing quartiles of fish intake were 5.9 (95% CI: 5.0, 6.8), 5.3 (95% CI: 4.4, 6.3), 6.3 (95% CI: 5.2, 7.4), and 7.5 (95% CI: 6.5, 8.5) (P-trend = 0.01). Consuming fish may have a positive impact on sperm counts and morphology, particularly when consumed instead of processed red meats. © 2014 American Society for Nutrition.

  10. The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).

    PubMed

    Penney, Heather D; Hassall, Christopher; Skevington, Jeffrey H; Lamborn, Brent; Sherratt, Thomas N

    2014-02-01

    Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated or to augment an already close morphological resemblance. We evaluated these contrasting predictions by assaying the behavior of 57 field-caught species of mimetic hover flies (Diptera: Syrphidae) and quantifying their morphological similarity to a range of potential hymenopteran models. A purpose-built phylogeny for the hover flies was used to control for potential lack of independence due to shared evolutionary history. Those hover fly species that engage in behavioral mimicry (mock stinging, leg waving, wing wagging) were all large wasp mimics within the genera Spilomyia and Temnostoma. While the behavioral mimics assayed were good morphological mimics, not all good mimics were behavioral mimics. Therefore, while the behaviors may have evolved to augment good morphological mimicry, they do not advantage all good mimics.

  11. The surface stability and morphology of tobermorite 11 Å from first principles

    NASA Astrophysics Data System (ADS)

    Mutisya, Sylvia M.; Miranda, Caetano R.

    2018-06-01

    Tobermorite minerals are important in many industrial processes typically occurring in hydrous environment. Their functionality is therefore governed in various aspects by their morphology and surface stability/reactivity. Here, we present the results of the surface energies and morphology of normal tobermorite 11 Å in a water vapor environment investigated by employing first principles atomistic thermodynamic calculations. For the low index tobermorite surfaces studied, the calculated surface energies fall within a narrow range (0.41-0.97 J/m2) with the (0 0 4) surface being the most stable. The equilibrium morphology is a thin pseudohexagonal plate elongated along the b axis. The hydrated surfaces are more stable at high water vapor chemical potentials with the stability enhanced as the water partial pressures are varied from ambient to supercritical hydrothermal conditions. Increasing the water vapor chemical potential gives rise to a smaller size of the tobermorite crystal, with the equilibrium morphology remaining unaltered.

  12. On the influence of substrate morphology and surface area on phytofauna

    USGS Publications Warehouse

    Becerra-Munoz, S.; Schramm, H.L.

    2007-01-01

    The independent effects and interactions between substrate morphology and substrate surface area on invertebrate density or biomass colonizing artificial plant beds were assessed in a clear-water and a turbid playa lake in Castro County, Texas, USA. Total invertebrate density and biomass were consistently greater on filiform substrates than on laminar substrates with equivalent substrate surface areas. The relationship among treatments (substrates with different morphologies and surface areas) and response (invertebrate density or biomass) was assessed with equally spaced surface areas. Few statistically significant interactions between substrate morphology and surface area were detected, indicating that these factors were mostly independent from each other in their effect on colonizing invertebrates. Although infrequently, when substrate morphology and surface area were not independent, the effects of equally spaced changes in substrate surface area on the rate of change of phytofauna density or biomass per unit of substrate surface area were dependent upon substrate morphology. The absence of three-way interactions indicated that effects of substrate morphology and substrate area on phytofauna density or biomass were independent of environmental conditions outside and inside exclosures. ?? 2006 Springer Science+Business Media B.V.

  13. The aging neuromuscular system and motor performance

    PubMed Central

    Keenan, Kevin G.

    2016-01-01

    Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults. PMID:27516536

  14. Rapid evolution in lekking grouse: Implications for taxonomic definitions

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; St. John, Judy; Quinn, Thomas W.

    2010-01-01

    Species and subspecies delineations were traditionally defined by morphological and behavioral traits, as well as by plumage characteristics. Molecular genetic data have more recently been used to assess these classifications and, in many cases, to redefine them. The recent practice of utilizing molecular genetic data to examine taxonomic questions has led some to suggest that molecular genetic methods are more appropriate than traditional methods for addressing taxonomic uncertainty and management units. We compared the North American Tetraoninae—which have been defined using plumage, morphology, and behavior—and considered the effects of redefinition using only neutral molecular genetic data (mitochondrial control region and cytochrome oxidase subunit 1). Using the criterion of reciprocal monophyly, we failed to recognize the five species whose mating system is highly polygynous, with males displaying on leks. In lek-breeding species, sexual selection can act to influence morphological and behavioral traits at a rate much faster than can be tracked genetically. Thus, we suggest that at least for lek-breeding species, it is important to recognize the possibility that morphological and behavioral changes may occur at an accelerated rate compared with the processes that led to reciprocal monophyly of putatively neutral genetic markers. Therefore, it is particularly important to consider the possible disconnect between such lines of evidence when making taxonomic revisions and definitions of management units.

  15. Geographic variation in the black bear (Ursus americanus) in the eastern United States and Canada

    USGS Publications Warehouse

    Kennedy, M.L.; Kennedy, P.K.; Bogan, M.A.; Waits, J.L.

    2002-01-01

    The pattern of geographic variation in morphologic characters of the black bear (Ursus americanus) was assessed at 13 sites in the eastern United States and Canada. Thirty measurements from 206 males and 207 females were recorded to the nearest 0.01 mm using digital calipers and subjected to principal components analysis. A matrix of correlations among skull characters was computed, and the first 3 principal components were extracted. These accounted for 90.5% of the variation in the character set for males and 87.1% for females. Three-dimensional projection of localities onto principal components showed that, for males and females, largest individuals occurred in the more southern localities (e.g., males--Louisiana-Mississippi, eastern Texas; females--Louisiana-eastern Texas) and the smallest animals occurred in the northernmost locality (Quebec). Generally, bears were similar morphologically to those in nearby geographic areas. For males, correlations between morphologic variation and environmental factors indicated a significant relationship between size variation and mean January temperature, mean July temperature, mean annual precipitation, latitude, and actual evapotranspiration; for females, a significant relationship was observed between morphologic variation and mean annual temperature, mean January temperature, mean July temperature, latitude, and actual evapotranspiration. There was no significant correlation for either sex between environmental factors and projections onto components II and III.

  16. Candida konsanensis sp. nov., a new yeast species isolated from Jasminum adenophyllum in Thailand with potentially carboxymethyl cellulase-producing capability.

    PubMed

    Sarawan, Somporn; Mahakhan, Polson; Jindamorakot, Sasitorn; Vichitphan, Kanit; Vichitphan, Sukanda; Sawaengkaew, Jutaporn

    2013-08-01

    A new yeast species (KKU-FW10) belonging to the Candida genus was isolated from Jasminum adenophyllum in the Plant Genetic Conservation Project under The Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn area, Chulabhorn Dam, Konsan district within Chaiyaphum province in Thailand. The strain was identified via analysis of nucleotide sequences from the D1/D2 domain of 26S ribosomal DNA and based on its morphological, physiological and biochemical characteristics. The sequence obtained from yeast isolate KKU-FW10 was 97 percent identical to that of Candida chanthaburiensis (GenBank accession number AB500861.1), with 506/517 (nucleotides identity/total nucleotides) matching nucleotides, nine substitutions and two gaps being detected. This species belonged to the Candida clade. Regarding morphological characteristics, isolate KKU-FW10 presents cream-colored butyrous colonies, vegetative reproduction through budding and, round cells without filaments or ascospores. The major ubiquinone detected was Q-9. The above results suggest that isolate KKU-FW10 is a new member of the genus Candida, and the name Candida konsanensis is proposed for this yeast. The type strain of the new species is KKU-FW10(T) (= BCC 52588(T), = NBRC 109082(T), = CBS 12666(T)). In addition, this KKU-FW10 could potentially produce 58.24 Units/ml of carboxymethyl cellulase when it was cultured in YP broth containing 1.0 % carboxymethyl cellulose for 24 h.

  17. The role of large predators in maintaining riparian plant communities and river morphology

    NASA Astrophysics Data System (ADS)

    Beschta, Robert L.; Ripple, William J.

    2012-07-01

    Studies assessing the potential for large predators to affect, via trophic cascades, the dynamics of riparian plant communities and the morphology of river channels have been largely absent in the scientific literature. Herein, we consider the results of recent studies involving three national parks in the western United States: Yellowstone, Olympic, and Zion. Within each park, key large predators were extirpated or displaced in the early 1900s and subsequent browsing pressure by native ungulates initiated long-term declines in recruitment (i.e., growth of seedlings/sprouts into tall saplings and trees) of palatable woody species and impairment of other resources. Channel responses to browsing-suppressed riparian vegetation included increased widths of active channels via accelerated bank erosion, erosion of floodplains and erraces, increased area of unvegetated alluvium, channel incision, and increased braiding. A reduced frequency of overbank flows indicated these rivers have become increasingly disconnected from historical floodplains because of channel widening/incision. Results from Zion National Park also identified major biodiversity affects (e.g., reduced abundance of plant and animal species). Although these studies were conducted in national parks, results may have implications concerning riparian plant communities, biodiversity, and channel morphology for streams and rivers draining other public lands in the western US. It is on these lands that native and introduced ungulates have often heavily utilized riparian areas, largely in the absence of key predators, with significant consequences to plant communities and channels.

  18. Interspecific variation in the tetradactyl manus of modern tapirs (Perissodactyla: Tapirus) exposed using geometric morphometrics.

    PubMed

    MacLaren, Jamie A; Nauwelaerts, Sandra

    2017-11-01

    The distal forelimb (autopodium) of quadrupedal mammals is a key morphological unit involved in locomotion, body support, and interaction with the substrate. The manus of the tapir (Perissodactyla: Tapirus) is unique within modern perissodactyls, as it retains the plesiomorphic tetradactyl (four-toed) condition also exhibited by basal equids and rhinoceroses. Tapirs are known to exhibit anatomical mesaxonic symmetry in the manus, although interspecific differences and biomechanical mesaxony have yet to be rigorously tested. Here, we investigate variation in the manus morphology of four modern tapir species (Tapirus indicus, Tapirus bairdii, Tapirus pinchaque, and Tapirus terrestris) using a geometric morphometric approach. Autopodial bones were laser scanned to capture surface shape and morphology was quantified using 3D-landmark analysis. Landmarks were aligned using Generalised Procrustes Analysis, with discriminant function and partial least square analyses performed on aligned coordinate data to identify features that significantly separate tapir species. Overall, our results support the previously held hypothesis that T. indicus is morphologically separate from neotropical tapirs; however, previous conclusions regarding function from morphological differences are shown to require reassessment. We find evidence indicating that T. bairdii exhibits reduced reliance on the lateral fifth digit compared to other tapirs. Morphometric assessment of the metacarpophalangeal joint and the morphology of the distal facets of the lunate lend evidence toward high loading on the lateral digits of both the large T. indicus (large body mass) and the small, long limbed T. pinchaque (ground impact). Our results support other recent studies on T. pinchaque, suggesting subtle but important adaptations to a compliant but inclined habitat. In conclusion, we demonstrate further evidence that the modern tapir forelimb is a variable locomotor unit with a range of interspecific features tailored to habitual and biomechanical needs of each species. © 2017 Wiley Periodicals, Inc.

  19. Remote sensing of potential lunar resources. 2: High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2 content`

    NASA Technical Reports Server (NTRS)

    Melendrez, David E.; Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1994-01-01

    High spatial resolution maps illustrating variations in spectral reflectance 400/560 nm ratio values have been generated for the following mare regions: (1) the border between southern Mare Serenitatis and northern Mare Tranquillitatis (including the MS-2 standard area and Apollo 17 landing site), (2) central Mare Tranquillitatis, (3) Oceanus Procellarum near Seleucus, and (4) southern Oceanus Procellarum and Flamsteed. We have also obtained 320-1000 nm reflectance spectra of several sites relative to MS-2 to facilitate scaling of the images and provide additional information on surface composition. Inferred TiO2 abundances for these mare regions have been determined using an empirical calibration which relates the weight percent TiO2 in mature mare regolith to the observed 400/560 nm ratio. Mare areas with high TiO2 abundances are probably rich in ilmenite (FeTiO3) a potential lunar resource. The highest potential TiO2 concentrations we have identified in the nearside maria occur in central Mare Tranquillitatis. Inferred TiO2 contents for these areas are greater than 9 wt% and are spatially consistent with the highest-TiO2 regions mapped previously at lower spatial resolution. We note that the morphology of surface units with high 400/560 nm ratio values increases in complexity at higher spatial resolutions. Comparisons have been made with previously published geologic maps, Lunar Orbiter IV, and ground-based images, and some possible morphologic correlatins have been found between our mapped 400/560 nm ratio values and volcanic landforms such as lava flows, mare domes, and collapse pits.

  20. Urban morphological determinants of temperature regulating ecosystem services in African cities: the case of Dar es Salaam, Tanzania

    NASA Astrophysics Data System (ADS)

    Cavan, Gina; Lindley, Sarah; Kibassa, Deusdedit; Shemdoe, Riziki; Capuano, Paolo; De Paola, Francesco; Renner, Florian; Pauleit, Stephan

    2013-04-01

    Urban green structure provides important regulating ecosystem services, such as temperature and flood regulation, and thus, has the potential to increase the resilience of African cities to climate change. Green structures within urban areas are not only limited to discrete units associated with recreational parks, agricultural areas and open spaces: they also exist within zones which have other primary functions, such as church yards, along transport routes, and within residential areas. Differing characteristics of urban areas can be conceptualised and subsequently mapped through the idea of urban morphology types. Urban morphology types are classifications which combine facets of urban form and function. When mapped, UMT units provide biophysically relevant meso-scale geographical zones which can be used as the basis for understanding climate-related impacts and adaptations. For example, they support the assessment of urban temperature patterns and the temperature regulating services provided by urban green structures. There are some examples of the use of UMTs for assessing regulating ecosystem services in European cities but little similar knowledge is available in an African context. This paper outlines the concept of urban morphology types (UMTs) and how they were applied to African case study cities (Cavan et al., 2012). It then presents the methods used to understand temperature regulating ecosystem services across an example African case study city, including (i) a GIS-based assessment of urban green structures, and (ii) applying an energy balance model to estimate current and future surface temperatures under climate change projections. The assessment is carried out for Dar es Salaam, Tanzania. Existing evidence suggests increases in both mean and extreme temperatures in the city. Historical analysis of the number of hot days per year suggests a rise from a maximum of 47 days per year in the period 1961-87 to 72 days per year in 2003-2011 (Giugni et al., 2012). Mean temperatures in the climate zone are estimated to increase by at least 1°C between 1971-2000 and 2021-2050(CSIR, 2012). Dar es Salaam is represented using around 1700 UMT units mapped across 43 UMT categories for the year 2008. Modelled surface temperature profiles for the city are presented, including an assessment of the potential impact of changing green structure cover within selected UMT categories. Provisional recommendations are made concerning the potential contribution of green structures as a climate adaptation response to the increasing temperatures in Dar es Salaam, which could be relevant for other African cities in similar climate zones. References Cavan, G., Lindley, S., Yeshitela, K., Nebebe, A., Woldegerima, T., Shemdoe, R., Kibassa, D., Pauleit, S., Renner, R., Printz, A., Buchta, K., Coly, A., Sall, F., Ndour, N. M., Ouédraogo, Y., Samari, B. S., Sankara, B. T., Feumba, R. A., Ngapgue, J. N., Ngoumo, M. T., Tsalefac, M., Tonye, E. (2012) CLUVA deliverable D2.7 Green infrastructure maps for selected case studies and a report with an urban green infrastructure mapping methodology adapted to African cities. http://www.cluva.eu/deliverables/CLUVA_D2.7.pdf. Accessed 18/12/12. CSIR (2012) CLUVA deliverable D1.5 Regional climate change simulations available for the selected areas http://www.cluva.eu/deliverables/CLUVA_D1.5.pdf. Accessed 8/1/13. Giugni, M., Adamo, P., Capuano, P., De Paola, F., Di Ruocco, A., Giordano, S., Iavazzo, P., Sellerino, M., Terracciano, S., Topa, M. E. (2012) CLUVA deliverable D.1.2 Hazard scenarios for test cities using available data. http://www.cluva.eu/deliverables/CLUVA_D1.2.pdf. Accessed 8/1/13

  1. On the nature of species: insights from Paramecium and other ciliates

    PubMed Central

    Hall, Meaghan S.; Katz, Laura A.

    2011-01-01

    The multiple species concepts currently in use by the scientific community (e.g. Morphological, Biological, Phylogenetic) are united in that they all aim to capture the process of divergence between populations. For example, the Biological Species Concept (BSC) defines a species as a natural group of organisms that is reproductively isolated from other such groups. Here we synthesize nearly a century of research on the ciliate genus Paramecium that highlights the shortcomings of our prevailing notions on the nature of species. In this lineage, there is discordance between morphology, mating behavior, and genetics, features assumed to be correlated, at least after sufficient time has passed, under all species concepts. Intriguingly, epigenetic phenomena are well documented in ciliates where they influence features such as germline/soma differentiation and mating type determination. Consequently, we hypothesize that divergence within ciliate populations is due to a dynamic interaction between genetic and epigenetic factors. The growing list of examples of epigenetic phenomena that potentially impact speciation (i.e. by influencing the dynamics of sex chromosomes, fate of hybrids, zygotic drive and genomic conflicts) suggests that interactions between genetics and epigenetics may also drive divergence in other eukaryotic lineages. PMID:21505762

  2. Stromatolites in the approximately 3400 Ma Strelley Pool Formation, Western Australia: examining biogenicity from the macro- to the nano-scale.

    PubMed

    Wacey, David

    2010-05-01

    The 3426-3350 Ma Strelley Pool Formation (SPF) is a silicified, dominantly sedimentary unit within the Pilbara Supergroup, Western Australia. It is found widely across the East Pilbara Terrane, and it forms a prominent marker horizon and separates the largely volcanic 3520-3427 Ma Warrawoona and 3350-3315 Ma Kelly groups. It has become one of the key formations for study by astrobiologists, following reports of some of the world's oldest stromatolites. Abundant contextural and morphological evidence has been presented over the last decade in support of a biological role in SPF stromatolite formation. This evidence is reviewed here, and additional data are presented from recent fieldwork carried out across the approximately 25 km of SPF outcrops in the East Strelley greenstone belt of the East Pilbara Terrane. In addition to contextural and morphological evidence, a compelling claim for early life requires geochemical evidence for biological cycling. A potential avenue of approach to obtain such evidence for the SPF stromatolites (and other ancient examples) is discussed in the context of a pilot study in which nano-scale secondary ion mass spectrometry (NanoSIMS) was used.

  3. Property Morphology Correlations of Organic Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    McFarland, Frederick Marshall

    Chemically doped and non-doped P3HT nanoaggregates are studied to establish a comprehensive understanding of the interplay between their morphology and various optoelectronic properties. One-dimensional nanoaggregates of P3HT are chosen as the model systems here due to their high surface/volume ratio and suitability for microscopic investigations. Atomic force microscopy (AFM) and kelvin probe force microscopy (KPFM) are used to correlate property/morphology characteristics of non-doped P3HT nanowhiskers. Topographical measurements indicate that individually folded P3HT motifs stack via interfacial interactions to form nanowhiskers in solution. Further aging leads to multi-layered nanowhiskers with greater stability and less instances of ?-? sliding of interfacial edge-on oriented motifs. KPFM measurements show higher surface potentials on portions of nanowhiskers containing local defects and stacking faults due to overlapping, and nanowhiskers that are at least triple-layered. Simultaneous UV-Vis and AFM characterizations compare the aggregation rates and morphologies of doped and non-doped P3HT nanowhiskers. Allowing fully solubilized P3HT to age without doping may produce high aspect ratio nanowhiskers containing disordered segments protruding out from the edges of the nanowhiskers. These protruding segments could also serve as "tie-molecules" between adjacent nanowhiskers. Doping fully solubilized P3HT will lead to substantially higher rates of P3HT aggregation. Doped nanowhiskers also display different morphologies. They pack tighter, are smoother, and are thicker and higher versus non-doped nanowhiskers, indicating a different aggregation mechanism. Stopped flow-kinetics was employed to investigate the reactivity of two distinctively different morphological forms of P3HT towards dopants. Fully solubilized P3HT undergoes a slow doping mechanism whereas pre-aggregated P3HT undergoes a fast doping mechanism. Pseudo-single reactant rate fittings indicate that both mechanisms appear to be 1st order in P3HT, whereby pre-aggregated P3HT mixtures will produce more doped products per P3HT monomer unit than fully solubilized P3HT. This study highlights the impact of conjugated polymer's morphology on their doping efficiency. Density functional theory was used to investigate the charge transfer (CT) states between oligothiophene and F4-TCNQ. CT of several unreported complexes that feature two oligomers stacked in a sandwich or layered configuration is investigated. Our preliminary results suggest that these new complexes can generate substantially more charge per F4-TCNQ than previously reported.

  4. The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets

    PubMed Central

    Ehlmann, B. L.; Arvidson, R. E.; Edwards, C. S.; Grotzinger, J. P.; Milliken, R. E.; Quinn, D. P.; Rice, M. S.

    2016-01-01

    Abstract We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1–3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate‐bearing unit, (5) a hematite‐capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near‐infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late‐stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases. PMID:27867788

  5. Morphological change in cranial shape following the transition to agriculture across western Eurasia.

    PubMed

    Cheronet, Olivia; Finarelli, John A; Pinhasi, Ron

    2016-09-13

    The Neolithic transition brought about fundamental social, dietary and behavioural changes in human populations, which, in turn, impacted skeletal morphology. Crania are shaped through diverse genetic, ontogenetic and environmental factors, reflecting various elements of an individual's life. To determine the transition's effect on cranial morphology, we investigated its potential impact on the face and vault, two elements potentially responding to different influences. Three datasets from geographically distant regions (Ukraine, Iberia, and the Levant plus Anatolia) were analysed. Craniometric measurements were used to compare the morphology of pre-transition populations with that of agricultural populations. The Neolithic transition corresponds to a statistically significant increase only in cranial breadth of the Ukrainian vaults, while facial morphology shows no consistent transformations, despite expected changes related to the modification of masticatory behaviour. The broadening of Ukrainian vaults may be attributable to dietary and/or social changes. However, the lack of change observed in the other geographical regions and the lack of consistent change in facial morphology are surprising. Although the transition from foraging to farming is a process that took place repeatedly across the globe, different characteristics of transitions seem responsible for idiosyncratic responses in cranial morphology.

  6. Morphological integration in the forelimb of musteloid carnivorans

    PubMed Central

    Fabre, Anne-Claire; Goswami, Anjali; Peigné, Stéphane; Cornette, Raphaël

    2014-01-01

    The forelimb forms a functional unit that allows a variety of behaviours and needs to be mobile, yet at the same time stable. Both mobility and stability are controlled, amongst others, at the level of the elbow joint. This joint is composed of the humero-ulnar articulation, mainly involved during parasagittal movements; and the radio-ulnar articulation, mainly allowing rotation. In contrast, the humero-radial articulation allows both movements of flexion–extension and rotation. Here, we study the morphological integration between each bone of the forelimb at the level of the entire arm, as well as at the elbow joint, in musteloid carnivorans. To do so, we quantitatively test shape co-variation using surface 3D geometric morphometric data. Our results show that morphological integration is stronger for bones that form functional units. Different results are obtained depending on the level of investigation: for the entire arm, results show a greater degree of shape co-variation between long bones of the lower arm than between the humerus and either bone of the lower arm. Thus, at this level the functional unit of the lower arm is comprised of the radius and ulna, permitting rotational movements of the lower arm. At the level of the elbow, results display a stronger shape co-variation between bones allowing flexion and stability (humerus and ulna) than between bones allowing mobility (ulna and radius and humerus and radius). Thus, the critical functional unit appears to be the articulation between the humerus and ulna providing the stability of the joint. PMID:24836555

  7. The Training of Morphological Decomposition in Word Processing and Its Effects on Literacy Skills.

    PubMed

    Bar-Kochva, Irit; Hasselhorn, Marcus

    2017-01-01

    This study set out to examine the effects of a morpheme-based training on reading and spelling in fifth and sixth graders ( N = 47), who present poor literacy skills and speak German as a second language. A computerized training, consisting of a visual lexical decision task (comprising 2,880 items, presented in 12 sessions), was designed to encourage fast morphological analysis in word processing. The children were divided between two groups: the one underwent a morpheme-based training, in which word-stems of inflections and derivations were presented for a limited duration, while their pre- and suffixes remained on screen until response. Another group received a control training consisting of the same task, except that the duration of presentation of a non-morphological unit was restricted. In a Word Disruption Task, participants read words under three conditions: morphological separation (with symbols separating between the words' morphemes), non-morphological separation (with symbols separating between non-morphological units of words), and no-separation (with symbols presented at the beginning and end of each word). The group receiving the morpheme-based program improved more than the control group in terms of word reading fluency in the morphological condition. The former group also presented similar word reading fluency after training in the morphological condition and in the no-separation condition, thereby suggesting that the morpheme-based training contributed to the integration of morphological decomposition into the process of word recognition. At the same time, both groups similarly improved in other measures of word reading fluency. With regard to spelling, the morpheme-based training group showed a larger improvement than the control group in spelling of trained items, and a unique improvement in spelling of untrained items (untrained word-stems integrated into trained pre- and suffixes). The results further suggest some contribution of the morpheme-based training to performance in a standardized spelling task. The morpheme-based training did not, however, show any unique effect on comprehension. These results suggest that the morpheme-based training is effective in enhancing some basic literacy skill in the population examined, i.e., morphological analysis in word processing and the access to orthographic representations in spelling, with no specific effects on reading fluency and comprehension.

  8. The Training of Morphological Decomposition in Word Processing and Its Effects on Literacy Skills

    PubMed Central

    Bar-Kochva, Irit; Hasselhorn, Marcus

    2017-01-01

    This study set out to examine the effects of a morpheme-based training on reading and spelling in fifth and sixth graders (N = 47), who present poor literacy skills and speak German as a second language. A computerized training, consisting of a visual lexical decision task (comprising 2,880 items, presented in 12 sessions), was designed to encourage fast morphological analysis in word processing. The children were divided between two groups: the one underwent a morpheme-based training, in which word-stems of inflections and derivations were presented for a limited duration, while their pre- and suffixes remained on screen until response. Another group received a control training consisting of the same task, except that the duration of presentation of a non-morphological unit was restricted. In a Word Disruption Task, participants read words under three conditions: morphological separation (with symbols separating between the words’ morphemes), non-morphological separation (with symbols separating between non-morphological units of words), and no-separation (with symbols presented at the beginning and end of each word). The group receiving the morpheme-based program improved more than the control group in terms of word reading fluency in the morphological condition. The former group also presented similar word reading fluency after training in the morphological condition and in the no-separation condition, thereby suggesting that the morpheme-based training contributed to the integration of morphological decomposition into the process of word recognition. At the same time, both groups similarly improved in other measures of word reading fluency. With regard to spelling, the morpheme-based training group showed a larger improvement than the control group in spelling of trained items, and a unique improvement in spelling of untrained items (untrained word-stems integrated into trained pre- and suffixes). The results further suggest some contribution of the morpheme-based training to performance in a standardized spelling task. The morpheme-based training did not, however, show any unique effect on comprehension. These results suggest that the morpheme-based training is effective in enhancing some basic literacy skill in the population examined, i.e., morphological analysis in word processing and the access to orthographic representations in spelling, with no specific effects on reading fluency and comprehension. PMID:29163245

  9. The external morphology of the mouthparts, and observations on feeding and behavior of Tuckerella japonica on Camellia sinensis in the continental United States

    USDA-ARS?s Scientific Manuscript database

    Tuckerella japonica Ehara (Acari: Tetranychoidea: Tuckerellidae) is found where longitudinal splitting occurs on exposed green periderm tissue of shoots on certain varieties or seedling plants of Camellia sinensis (L.) O. Kuntze (Theales: Theaceae) in the continental United States. The mite is able ...

  10. Mapping of hydropedologic spatial patterns in a steep headwater catchment

    Treesearch

    Cody P. Gillin; Scott W. Bailey; Kevin J. McGuire; John P. Gannon

    2015-01-01

    A hydropedologic approach can be used to describe soil units affected by distinct hydrologic regimes. We used field observations of soil morphology and geospatial information technology to map the distribution of five hydropedologic soil units across a 42-ha forested headwater catchment. Soils were described and characterized at 172 locations within Watershed 3, the...

  11. Sediment data collected in 2014 and 2015 from around Breton and Gosier Islands, Breton National Wildlife Refuge, Louisiana

    USGS Publications Warehouse

    Bernier, Julie C.; Kelso, Kyle W.; Tuten, Thomas M.; Stalk, Chelsea A.; Flocks, James G.

    2017-03-08

    Breton Island, located at the southern end of the Chandeleur Islands, supports one of Louisiana’s largest historical brown pelican (Pelecanus occidentalis) nesting colonies. Although the brown pelican was delisted as an endangered species in 2009, nesting areas are threatened by continued land loss and are extremely vulnerable to storm impacts. The U.S. Fish and Wildlife Service proposed to restore Breton Island to pre-Hurricane Katrina conditions through rebuilding the shoreface, dune, and back-barrier marsh environments. Prior to restoration, scientists from the U.S. Geological Survey’s (USGS) St. Petersburg Coastal and Marine Science Center Geologic and Morphologic Evolution of Coastal Margins project collected high-resolution geophysical (topography, bathymetry, and sub-bottom profiles) and sedimentologic data from around Breton Island to characterize the geologic framework of the island platform, nearshore, and shelf environments. These data will be used to characterize the geologic framework around Breton Island, identify potential borrow areas for restoration efforts, quantify seafloor change, and provide information for sediment transport and morphologic change models to assess island response to restoration and natural processes.This report, along with the accompanying USGS data release, serves as an archive of sediment data from vibracores, push cores, and submerged grab samples collected from around Breton and Gosier Islands, Louisiana, during two surveys conducted in July 2014 and January 2015 (USGS Field Activity Numbers 2014–314–FA and 2014–336–FA, respectively). Sedimentologic and stratigraphic metrics (for example, sediment texture or unit thicknesses) derived from these data can be used to ground-truth the geophysical data and characterize potential sand resources or can be incorporated into sediment transport or morphologic change models. Data products, including sample location tables, descriptive core logs, core photographs and x-radiographs, results of sediment grain-size analyses, and geographic information system data files with accompanying formal Federal Geographic Data Committee metadata can be downloaded from the accompanying data release.

  12. Geologic map of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  13. Induction of temporally dissociated morphological and physiological differentiation of N1E-115 cells.

    PubMed

    Cosgrove, C; Cobbett, P

    1991-07-01

    Clonal cells derived from neural tumors have been widely used to study the processes of neuronal differentiation in vitro. The murine neuroblastoma clone N1E-115 has recently been shown to differentiate morphologically in response to removal of serum from the culture medium. In the present study, the nature and time course of electrophysiological differentiation of N1E-115 cells maintained in serum-free medium was examined. Differentiated cells had a higher resting potential and lower input conductance than nondifferentiated cells. Differentiated but not nondifferentiated cells generated current evoked action potentials, and differentiated cells fired spontaneous, repetitive action potentials after 13 days in serum-free medium. The rate of potential change during the depolarizing and repolarizing phases of the action potential became faster as the duration of maintenance of cells in serum-free medium increased. Remarkably, morphological differentiation appeared to be complete after exposure to serum-free medium for 5 days but electrophysiological differentiation was not complete until 13 days in this medium.

  14. Low temperature–scanning electron microscopy to evaluate morphology and predation of Scolothrips sexmaculatus Pergande (Thysanoptera: Thripidae) against spider mites (Acari: Tetranychidae: Tetranychus species)

    USDA-ARS?s Scientific Manuscript database

    This paper evaluates the potential usefulness of low temperature-scanning electron microscopy (LT-SEM) to evaluate morphology and predation behavior of the six-spotted thrips (Scolothrips sexmaculatus Pergande) against the two-spotted spider mite (Tetranychus urticae (Koch)). Morphological features...

  15. Geology of the Venus equatorial region from Pioneer Venus radar imaging

    NASA Technical Reports Server (NTRS)

    Senske, D. A.; Head, James W.

    1989-01-01

    The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae.

  16. Detection of Theileria orientalis in mosquito blood meals in the United Kingdom.

    PubMed

    Fernández de Marco, M; Brugman, V A; Hernández-Triana, L M; Thorne, L; Phipps, L P; Nikolova, N I; Fooks, A R; Johnson, N

    2016-10-15

    Theileria spp. are tick-borne protozoan parasites that infect a wide range of wild and domestic animals. In this study, the utility of xenosurveillance of blood-fed specimens of Culiseta annulata for detecting the presence of piroplasms in livestock was investigated. Blood-fed mosquitoes were collected at Elmley National Nature Reserve, Kent, United Kingdom. All specimens were morphologically identified, and DNA barcoding was used to confirm the morphological identification. Both the vertebrate host species and Theileria genome was detected within the bloodmeal by real-time PCR. Sequencing was used to confirm the identity of all amplicons. In total, 105 blood-fed mosquitoes morphologically identified as Cs. annulata were collected. DNA barcoding revealed that 102 specimens were Cs. annulata (99%), while a single specimen was identified as Anopheles messeae. Two specimens could not be identified molecularly due to PCR amplification failure. Blood meal analysis revealed that Cs. annulata fed almost exclusively on cattle at the collection site (n=100). The application of a pan-piroplasm PCR detected 16 positive samples (15.2%) and sequence analysis of the amplicons demonstrated that the piroplasms present in the blood meal belonged to the Theileria orientalis group. This study demonstrates how xenosurveillance can be applied to detecting pathogens in livestock and confirms the presence of Theileria species in livestock from the United Kingdom. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. [Clinical value of MRI united-sequences examination in diagnosis and differentiation of morphological sub-type of hilar and extrahepatic big bile duct cholangiocarcinoma].

    PubMed

    Yin, Long-Lin; Song, Bin; Guan, Ying; Li, Ying-Chun; Chen, Guang-Wen; Zhao, Li-Ming; Lai, Li

    2014-09-01

    To investigate MRI features and associated histological and pathological changes of hilar and extrahepatic big bile duct cholangiocarcinoma with different morphological sub-types, and its value in differentiating between nodular cholangiocarcinoma (NCC) and intraductal growing cholangiocarcinoma (IDCC). Imaging data of 152 patients with pathologically confirmed hilar and extrahepatic big bile duct cholangiocarcinoma were reviewed, which included 86 periductal infiltrating cholangiocarcinoma (PDCC), 55 NCC, and 11 IDCC. Imaging features of the three morphological sub-types were compared. Each of the subtypes demonstrated its unique imaging features. Significant differences (P < 0.05) were found between NCC and IDCC in tumor shape, dynamic enhanced pattern, enhancement degree during equilibrium phase, multiplicity or singleness of tumor, changes in wall and lumen of bile duct at the tumor-bearing segment, dilatation of tumor upstream or downstream bile duct, and invasion of adjacent organs. Imaging features reveal tumor growth patterns of hilar and extrahepatic big bile duct cholangiocarcinoma. MRI united-sequences examination can accurately describe those imaging features for differentiation diagnosis.

  18. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest.

    PubMed

    Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi

    2006-07-01

    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.

  19. Growth of elaborate microbial pinnacles in Lake Vanda, Antarctica.

    PubMed

    Sumner, D Y; Jungblut, A D; Hawes, I; Andersen, D T; Mackey, T J; Wall, K

    2016-11-01

    Microbial pinnacles in ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica, extend from the base of the ice to more than 50 m water depth. The distribution of microbial communities, their photosynthetic potential, and pinnacle morphology affects the local accumulation of biomass, which in turn shapes pinnacle morphology. This feedback, plus environmental stability, promotes the growth of elaborate microbial structures. In Lake Vanda, all mats sampled from greater than 10 m water depth contained pinnacles with a gradation in size from <1-mm-tall tufts to pinnacles that were centimeters tall. Small pinnacles were cuspate, whereas larger ones had variable morphology. The largest pinnacles were up to ~30 cm tall and had cylindrical bases and cuspate tops. Pinnacle biomass was dominated by cyanobacteria from the morphological and genomic groups Leptolyngbya, Phormidium, and Tychonema. The photosynthetic potential of these cyanobacterial communities was high to depths of several millimeters into the mat based on PAM fluorometry, and sufficient light for photosynthesis penetrated ~5 mm into pinnacles. The distribution of photosynthetic potential and its correlation to pinnacle morphology suggests a working model for pinnacle growth. First, small tufts initiate from random irregularities in prostrate mat. Some tufts grow into pinnacles over the course of ~3 years. As pinnacles increase in size and age, their interiors become colonized by a more diverse community of cyanobacteria with high photosynthetic potential. Biomass accumulation within this subsurface community causes pinnacles to swell, expanding laminae thickness and creating distinctive cylindrical bases and cuspate tops. This change in shape suggests that pinnacle morphology emerges from a specific distribution of biomass accumulation that depends on multiple microbial communities fixing carbon in different parts of pinnacles. Similarly, complex patterns of biomass accumulation may be reflected in the morphology of elaborate ancient stromatolites. © 2016 John Wiley & Sons Ltd.

  20. Gnathostoma spinigerum in Live Asian Swamp Eels (Monopterus spp.) from Food Markets and Wild Populations, United States

    PubMed Central

    Choudhury, Anindo; Nico, Leo G.; Griffin, Kathryn M.

    2014-01-01

    In Southeast Asia, swamp eels (Synbranchidae: Monopterus spp.) are a common source of human gnathostomiasis, a foodborne zoonosis caused by advanced third-stage larvae (AL3) of Gnathostoma spp. nematodes. Live Asian swamp eels are imported to US ethnic food markets, and wild populations exist in several states. To determine whether these eels are infected, we examined 47 eels from markets and 67 wild-caught specimens. Nematodes were identified by morphologic features and ribosomal intergenic transcribed spacer–2 gene sequencing. Thirteen (27.7%) M. cuchia eels from markets were infected with 36 live G. spinigerum AL3: 21 (58.3%) in liver; 7 (19.4%) in muscle; 5 (13.8%) in gastrointestinal tract, and 3 (8.3%) in kidneys. Three (4.5%) wild-caught M. albus eels were infected with 5 G. turgidum AL3 in muscle, and 1 G. lamothei AL3 was found in a kidney (both North American spp.). Imported live eels are a potential source of human gnathostomiasis in the United States. PMID:24661441

  1. An inventory of continental U.S. terrestrial candidate ecological restoration areas based on landscape context.

    PubMed

    Wickham, James; Riitters, Kurt; Vogt, Peter; Costanza, Jennifer; Neale, Anne

    2017-11-01

    Landscape context is an important factor in restoration ecology, but the use of landscape context for site prioritization has not been as fully developed. We used morphological image processing to identify candidate ecological restoration areas based on their proximity to existing natural vegetation. We identified 1,102,720 candidate ecological restoration areas across the continental United States. Candidate ecological restoration areas were concentrated in the Great Plains and eastern United States. We populated the database of candidate ecological restoration areas with 17 attributes related to site content and context, including factors such as soil fertility and roads (site content), and number and area of potentially conjoined vegetated regions (site context) to facilitate its use for site prioritization. We demonstrate the utility of the database in the state of North Carolina, U.S.A. for a restoration objective related to restoration of water quality (mandated by the U.S. Clean Water Act), wetlands, and forest. The database will be made publicly available on the U.S. Environmental Protection Agency's EnviroAtlas website (http://enviroatlas.epa.gov) for stakeholders interested in ecological restoration.

  2. An inventory of continental U.S. terrestrial candidate ecological restoration areas based on landscape context

    PubMed Central

    Wickham, James; Riitters, Kurt; Vogt, Peter; Costanza, Jennifer; Neale, Anne

    2018-01-01

    Landscape context is an important factor in restoration ecology, but the use of landscape context for site prioritization has not been as fully developed. We used morphological image processing to identify candidate ecological restoration areas based on their proximity to existing natural vegetation. We identified 1,102,720 candidate ecological restoration areas across the continental United States. Candidate ecological restoration areas were concentrated in the Great Plains and eastern United States. We populated the database of candidate ecological restoration areas with 17 attributes related to site content and context, including factors such as soil fertility and roads (site content), and number and area of potentially conjoined vegetated regions (site context) to facilitate its use for site prioritization. We demonstrate the utility of the database in the state of North Carolina, U.S.A. for a restoration objective related to restoration of water quality (mandated by the U.S. Clean Water Act), wetlands, and forest. The database will be made publicly available on the U.S. Environmental Protection Agency's EnviroAtlas website (http://enviroatlas.epa.gov) for stakeholders interested in ecological restoration. PMID:29683130

  3. The nature of terrains of different types on the surface of Venus and selection of potential landing sites for a descent probe of the Venera-D Mission

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Zasova, L. V.; Gerasimov, M. V.; Korablev, O. I.; Marov, M. Ya.; Zelenyi, L. M.; Ignat'ev, N. I.; Tuchin, A. G.

    2017-01-01

    We discuss a change in the resurfacing regimes of Venus and probable ways of forming the terrain types that make up the surface of the planet. The interpretation of the nature of the terrain types and their morphologic features allows us to characterize their scientific priority and the risk of landing on their surface to be estimated. From the scientific point of view, two terrain types are of special interest and represent easily achievable targets: the lower unit of regional plains and the smooth plains associated with impact craters. Regional plains are probably a melting from the upper fertile mantle. The material of smooth plains of impact origin is a well-mixed and representative sample of the Venusian crust. The lower unit of regional plains is the most widespread one on the surface of Venus, and it occurs within the boundaries of all of the precalculated approach trajectories of the lander. Smooth plains of impact origin are crossed by the approach trajectories precalculated for 2018 and 2026.

  4. High-crystalline medium-band-gap polymers consisting of benzodithiophene and benzotriazole derivatives for organic photovoltaic cells.

    PubMed

    Kim, Ji-Hoon; Song, Chang Eun; Shin, Nara; Kang, Hyunbum; Wood, Sebastian; Kang, In-Nam; Kim, Bumjoon J; Kim, Bongsoo; Kim, Ji-Seon; Shin, Won Suk; Hwang, Do-Hoon

    2013-12-26

    Two semiconducting conjugated polymers were synthesized via Stille polymerization. The structures combined unsubstituted or (triisopropylsilyl)ethynyl (TIPS)-substituted 2,6-bis(trimethylstannyl)benzo[1,2-b:4.5-b']dithiophene (BDT) as a donor unit and benzotriazole with a symmetrically branched alkyl side chain (DTBTz) as an acceptor unit. We investigated the effects of the different BDT moieties on the optical, electrochemical, and photovoltaic properties of the polymers and the film crystallinities and carrier mobilities. The optical-band-gap energies were measured to be 1.97 and 1.95 eV for PBDT-DTBTz and PTIPSBDT-DTBTz, respectively. Bulk heterojunction photovoltaic devices were fabricated and power conversion efficiencies of 5.5% and 2.9% were found for the PTIPSBDT-DTBTz- and PBDT-DTBTz-based devices, respectively. This difference was explained by the more optimal morphology and higher carrier mobility in the PTIPSBDT-DTBTz-based devices. This work demonstrates that, under the appropriate processing conditions, TIPS groups can change the molecular ordering and lower the highest occupied molecular orbital level, providing the potential for improved solar cell performance.

  5. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes.

    PubMed

    Wu, Chang-Mou; Chou, Min-Hui; Zeng, Wun-Yuan

    2018-06-10

    Polyvinylidene fluoride (PVDF) shows piezoelectricity related to its β-phase content and mechanical and electrical properties influenced by its morphology and crystallinity. Electrospinning (ES) can produce ultrafine and well-aligned PVDF nanofibers. In this study, the effects of the presence of carbon nanotubes (CNT) and optimized ES parameters on the crystal structures and piezoelectric properties of aligned PVDF/CNT nanofibrous membranes were examined. The optimal β content and piezoelectric coefficient (d 33 ) of the aligned electrospun PVDF reached 88% and 27.4 pC/N; CNT addition increased the β-phase content to 89% and d 33 to 31.3 pC/N. The output voltages of piezoelectric units with aligned electrospun PVDF/CNT membranes increased linearly with applied loading and showed good stability during cyclic dynamic compression and tension. The sensitivities of the piezoelectric units with the membranes under dynamic compression and tension were 2.26 mV/N and 4.29 mV/%, respectively. In bending tests, the output voltage increased nonlinearly with bending angle because complicated forces were involved. The output of the aligned membrane-based piezoelectric unit with CNT was 1.89 V at the bending angle of 100°. The high electric outputs indicate that the aligned electrospun PVDF/CNT membranes are potentially effective for flexible wearable sensor application with high sensitivity.

  6. Preparation and analysis of fetal liver extracts.

    PubMed

    Zwicky, C; Gerber, S; Gasparini, D; Forestier, F; Hohlfeld, P; Tissot, J D; Schneider, P

    2000-09-01

    The aim of this work is to describe the techniques that have been used for preparation and analysis of whole fetal liver extracts destined for in utero transplantation. Nine fetal livers between 12 and 17 weeks of gestation were prepared: cell counts and assessment of the hematopoietic cell viability were performed on cell suspensions. Hepatocytes represented 40 to 80% of the whole cell population. The remaining cells were constituted by hematopoietic cells (mainly erythroblasts), as well as by endothelial cells. The latter expressed CD34 on their surface, interfering with the assessment of CD34+ hematopoietic cells by flow cytometry. Direct visual morphologic control using alkaline phosphatase anti-alkaline phosphatase techniques was needed to differentiate hematopoietic from extra-hematopoietic CD34+ cells. Between 3.0 and 34.6 x 10(6) CD34+ viable hematopoietic cells were collected per fetal liver. Adequate differentiation of these cells into burst-forming units erythroid (BFU-E), colony-forming units granulocyte-macrophage (CFU-GM), and colony-forming units granulocyte erythroid macrophage megakaryocyte (CFU-GEMM) has been shown for each sample in clonogeneic cultures. In conclusion, fetal liver is a potential source of hematopoietic stem cells. Their numeration, based on the presence of CD34, is hampered by the expression of this antigen on other cells contained in the liver cell extract, in particular endothelial cells.

  7. [Microbiological study of sanitary feature of Perinatal Center of Makhachkala City].

    PubMed

    Omarova, S M; Alieva, A I; Abserkhanova, D U; Medzhidova, D Sh; Isaeva, R I; Gorelova, V G

    2010-01-01

    Evaluation of bacterial contamination of six hospital environment of Perinatal Center of Makhachkala as part of epidemiologic surveillance for nosocomial infections. One hundred twenty-eight air samples from different hospital units and 344 swabs from hospital equipment, instruments, and inventory were tested. Dry nutrient media manufactured by Scientific Manufacturing Organization "Pitatelnye Sredy" were used for isolation and identification of microorganisms. Species of microorganisms was determined on the basis of complex of tinctorial, morphological, biochemical, and serologic tests. Significant species diversity of opportunistic microorganisms was established. Cultures of Staphylococcus epidermidis (46; 18.5%) and Staphylococcus saprophyticus (44; 17.7%) were significantly more frequently isolated from swabs from environment. Microbiological monitoring of sanitary conditions of perinatal center assists sanitary-epidemiologic control for circulation of microorganisms--potential agents of nosocomial infections.

  8. Electrodeposition of Rhodium Nanowires Arrays and Their Morphology-Dependent Hydrogen Evolution Activity

    PubMed Central

    Zhang, Liqiu; Liu, Lichun; Wang, Hongdan; Shen, Hongxia; Cheng, Qiong; Yan, Chao; Park, Sungho

    2017-01-01

    This work reports on the electrodeposition of rhodium (Rh) nanowires with a controlled surface morphology synthesized using an anodic aluminum oxide (AAO) template. Vertically aligned Rh nanowires with a smooth and coarse morphology were successfully deposited by adjusting the electrode potential and the concentration of precursor ions and by involving a complexing reagent in the electrolyte solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were used to follow the morphological evolution of Rh nanowires. As a heterogeneous electrocatalyst for hydrogen evolution reactions (HER), the coarse Rh nanowire array exhibited an enhanced catalytic performance respect to smooth ones due to the larger surface area to mass ratio and the higher density of catalytically active defects, as evidenced by voltammetric measurements and TEM. Results suggest that the morphology of metallic nanomaterials could be readily engineered by electrodeposition. The controlled electrodeposition offers great potential for the development of an effective synthesis tool for heterogeneous catalysts with a superior performance for wide applications. PMID:28467375

  9. Effect of Students' Term and Educational Institution on the Arising of Indonesian Morphology-Syntactical Interference in ELLT

    ERIC Educational Resources Information Center

    Nurhayati, Dwi Astuti Wahyu; Djatmika; Santosa, Riyadi; Wiratno, Tri

    2017-01-01

    This research examines the two factors which effect on the raising of Indonesian morphology-syntactical interference. It aimed at delineating the potential effect of these two factors on the arising of Indonesian morphology-syntactical interference of undergraduate students majoring in English department of State Islamic Institute of Tulungagung…

  10. Grammatical Theory in the United States from Bloomfield to Chomsky. Cambridge Studies in Linguistics: 67.

    ERIC Educational Resources Information Center

    Matthews, P. H.

    A survey of the history of linguistic theory concerning grammar in the United States traces the development of theory since 1910. It begins with a general historical review of American linguistics. The subsequent three chapters focus on grammar. The first of these deals with morphology, beginning with Leonard Bloomfield's ideas in both his early…

  11. Acquisition of English Grammatical Morphology by Native Mandarin-Speaking Children and Adolescents: Age-Related Differences

    ERIC Educational Resources Information Center

    Jia, Gisela; Fuse, Akiko

    2007-01-01

    Purpose: This 5-year longitudinal study investigated the acquisition of 6 English grammatical morphemes (i.e., regular and irregular past tense, 3rd person singular, progressive aspect-"ing", copula BE, and auxiliary DO) by 10 native Mandarin-speaking children and adolescents in the United States (arrived in the United States between 5…

  12. Correlation between Hox code and vertebral morphology in archosaurs.

    PubMed

    Böhmer, Christine; Rauhut, Oliver W M; Wörheide, Gert

    2015-07-07

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns.

  13. Correlation between Hox code and vertebral morphology in archosaurs

    PubMed Central

    Böhmer, Christine; Rauhut, Oliver W. M.; Wörheide, Gert

    2015-01-01

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns. PMID:26085583

  14. Brain Bases of Morphological Processing in Young Children

    PubMed Central

    Arredondo, Maria M.; Ip, Ka I; Hsu, Lucy Shih-Ju; Tardif, Twila; Kovelman, Ioulia

    2017-01-01

    How does the developing brain support the transition from spoken language to print? Two spoken language abilities form the initial base of child literacy across languages: knowledge of language sounds (phonology) and knowledge of the smallest units that carry meaning (morphology). While phonology has received much attention from the field, the brain mechanisms that support morphological competence for learning to read remain largely unknown. In the present study, young English-speaking children completed an auditory morphological awareness task behaviorally (n = 69, ages 6–12) and in fMRI (n = 16). The data revealed two findings: First, children with better morphological abilities showed greater activation in left temporo-parietal regions previously thought to be important for supporting phonological reading skills, suggesting that this region supports multiple language abilities for successful reading acquisition. Second, children showed activation in left frontal regions previously found active in young Chinese readers, suggesting morphological processes for reading acquisition might be similar across languages. These findings offer new insights for developing a comprehensive model of how spoken language abilities support children’s reading acquisition across languages. PMID:25930011

  15. Developing a national stream morphology data exchange: needs, challenges, and opportunities

    USGS Publications Warehouse

    Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.

    2012-01-01

    Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.

  16. Developing a national stream morphology data exchange: Needs, challenges, and opportunities

    NASA Astrophysics Data System (ADS)

    Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.

    2012-05-01

    Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.

  17. Morphology design of porous coordination polymer crystals by coordination modulation.

    PubMed

    Umemura, Ayako; Diring, Stéphane; Furukawa, Shuhei; Uehara, Hiromitsu; Tsuruoka, Takaaki; Kitagawa, Susumu

    2011-10-05

    The design of crystal morphology, or exposed crystal facets, has enabled the development (e.g., catalytic activities, material attributes, and oriented film formation) of porous coordination polymers (PCPs) without changing material compositions. However, because crystal growth mechanisms are not fully understood, control of crystal morphology still remains challenging. Herein, we report the morphology design of [Cu(3)(btc)(2)](n) (btc = benzene-1,3,5-tricarboxylate) by the coordination modulation method (modulator = n-dodecanoic acid or lauric acid). A morphological transition (octahedron-cuboctahedron-cube) in the [Cu(3)(btc)(2)](n) crystal was observed with an increase in concentration of the modulator. By suitably defining a coarse-grained standard unit of [Cu(3)(btc)(2)](n) as its cuboctahedron main pore and determining its attachment energy on crystal surfaces, Monte Carlo coarse-grain modeling revealed the population and orientation of carboxylates and elucidated an important role of the modulator in determining the <100>- and <111>-growth throughout the crystal growth process. This comprehension, in fact, successfully led to designed crystal morphologies with oriented growth on bare substrates. Because selective crystal orientations on the bare substrates were governed by crystal morphology, this contribution also casts a new light on the unexplored issue of the significance of morphology design of PCPs.

  18. Cranial and mandibular shape variation in the genus Carollia (Mammalia: Chiroptera) from Colombia: biogeographic patterns and morphological modularity.

    PubMed

    López-Aguirre, Camilo; Pérez-Torres, Jairo; Wilson, Laura A B

    2015-01-01

    Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations.

  19. Cranial and mandibular shape variation in the genus Carollia (Mammalia: Chiroptera) from Colombia: biogeographic patterns and morphological modularity

    PubMed Central

    Pérez-Torres, Jairo; Wilson, Laura A. B.

    2015-01-01

    Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations. PMID:26413433

  20. [The 40th anniversary of RAMS institute of human morphology].

    PubMed

    Kakturskiĭ, L V; Shakhlamov, V A

    2002-01-01

    Institute of Human Morphology of Russian Academy of Medical Sciences was established in 1961 and united efforts of morphologists of various profile--pathologists, cytologists, embryologists. The role of outstanding Russian morphologists and the first Institute heads is shown. Basic achievements in four research fields are characterized: in geographic pathology; structural basis of immune homeostasis in health and pathology; pathologic anatomy and pathogenesis of basic human diseases; human morpho- and embriogenesis in health and disease.

  1. Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus.

    PubMed

    Roldán; Perrotta; Cortey; Pla

    2000-10-05

    The systematic status and the evolutionary biology of chub mackerel (Scomber japonicus) in the South West Atlantic Ocean is confusing with an unknown degree of genetic differentiation and reproductive isolation between units. Simultaneous genetic and morphologic analyses were made on 227 fish collected from two areas of the South West Atlantic Ocean and one from the Mediterranean Sea. The genetic analysis was based on 36 protein-coding loci, 16 of which were variable. The morphologic analyses include six morphometric length measurements and a meristic character. Correspondence between genetic and morphologic variability patterns indicates isolated Mediterranean and Southwest Atlantic subgroups of S. japonicus and, less clearly, possible additional divergence in two regional stocks within the latter group. The most conservative approach to management is to manage the stocks independently of one another.

  2. Comparison of SAM and OBIA as Tools for Lava Morphology Classification - A Case Study in Krafla, NE Iceland

    NASA Astrophysics Data System (ADS)

    Aufaristama, Muhammad; Hölbling, Daniel; Höskuldsson, Ármann; Jónsdóttir, Ingibjörg

    2017-04-01

    The Krafla volcanic system is part of the Icelandic North Volcanic Zone (NVZ). During Holocene, two eruptive events occurred in Krafla, 1724-1729 and 1975-1984. The last eruptive episode (1975-1984), known as the "Krafla Fires", resulted in nine volcanic eruption episodes. The total area covered by the lavas from this eruptive episode is 36 km2 and the volume is about 0.25-0.3 km3. Lava morphology is related to the characteristics of the surface morphology of a lava flow after solidification. The typical morphology of lava can be used as primary basis for the classification of lava flows when rheological properties cannot be directly observed during emplacement, and also for better understanding the behavior of lava flow models. Although mapping of lava flows in the field is relatively accurate such traditional methods are time consuming, especially when the lava covers large areas such as it is the case in Krafla. Semi-automatic mapping methods that make use of satellite remote sensing data allow for an efficient and fast mapping of lava morphology. In this study, two semi-automatic methods for lava morphology classification are presented and compared using Landsat 8 (30 m spatial resolution) and SPOT-5 (10 m spatial resolution) satellite images. For assessing the classification accuracy, the results from semi-automatic mapping were compared to the respective results from visual interpretation. On the one hand, the Spectral Angle Mapper (SAM) classification method was used. With this method an image is classified according to the spectral similarity between the image reflectance spectrums and the reference reflectance spectra. SAM successfully produced detailed lava surface morphology maps. However, the pixel-based approach partly leads to a salt-and-pepper effect. On the other hand, we applied the Random Forest (RF) classification method within an object-based image analysis (OBIA) framework. This statistical classifier uses a randomly selected subset of training samples to produce multiple decision trees. For final classification of pixels or - in the present case - image objects, the average of the class assignments probability predicted by the different decision trees is used. While the resulting OBIA classification of lava morphology types shows a high coincidence with the reference data, the approach is sensitive to the segmentation-derived image objects that constitute the base units for classification. Both semi-automatic methods produce reasonable results in the Krafla lava field, even if the identification of different pahoehoe and aa types of lava appeared to be difficult. The use of satellite remote sensing data shows a high potential for fast and efficient classification of lava morphology, particularly over large and inaccessible areas.

  3. The potential influence of morphology on the evolutionary divergence of an acoustic signal

    PubMed Central

    Pitchers, W. R.; Klingenberg, C.P.; Tregenza, Tom; Hunt, J.; Dworkin, I.

    2014-01-01

    The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterise the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild-caught and common-garden reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species. PMID:25223712

  4. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats.

    PubMed

    Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2018-01-01

    To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.

  5. Crater-based dating of geological units on Mars: methods and application for the new global geological map

    USGS Publications Warehouse

    Platz, Thomas; Michael, Gregory; Tanaka, Kenneth L.; Skinner, James A.; Fortezzo, Corey M.

    2013-01-01

    The new, post-Viking generation of Mars orbital imaging and topographical data provide significant higher-resolution details of surface morphologies, which induced a new effort to photo-geologically map the surface of Mars at 1:20,000,000 scale. Although from unit superposition relations a relative stratigraphical framework can be compiled, it was the ambition of this mapping project to provide absolute unit age constraints through crater statistics. In this study, the crater counting method is described in detail, starting with the selection of image data, type locations (both from the mapper’s and crater counter’s perspectives) and the identification of impact craters. We describe the criteria used to validate and analyse measured crater populations, and to derive and interpret crater model ages. We provide examples of how geological information about the unit’s resurfacing history can be retrieved from crater size–frequency distributions. Three cases illustrate short-, intermediate, and long-term resurfacing histories. In addition, we introduce an interpretation-independent visualisation of the crater resurfacing history that uses the reduction of the crater population in a given size range relative to the expected population given the observed crater density at larger sizes. From a set of potential type locations, 48 areas from 22 globally mapped units were deemed suitable for crater counting. Because resurfacing ages were derived from crater statistics, these secondary ages were used to define the unit age rather than the base age. Using the methods described herein, we modelled ages that are consistent with the interpreted stratigraphy. Our derived model ages allow age assignments to be included in unit names. We discuss the limitations of using the crater dating technique for global-scale geological mapping. Finally, we present recommendations for the documentation and presentation of crater statistics in publications.

  6. Jezero Crater, Mars, as a Compelling Site for Future In Situ Exploration

    NASA Technical Reports Server (NTRS)

    Goudge, T. A.; Ehlmann, B. L.; Fassett, C. I.; Head, J. W.; Mustard, J. F.; Mangold, N.; Gupta, S.; Milliken, R. E.; Brown, A. J.

    2017-01-01

    Jezero is a approximately 45 km diameter impact crater located in the Nili Fossae region of Mars. Jezero is an outstanding site to address key questions of ancient Mars climate, habitability, and volcanic history because: (a) It hosted an open-basin lake during the era of valley network formation [1,2], which ceased at approximately the Noachian-Hesperian boundary [3]. (b) It contains two delta deposits [1,4] with Fe/Mg-smectite and Mg-carbonate sediment [4-7] (the only exposure of lacus-trine shoreline carbonates seen so far on Mars). (c) The depositional environment and mineral assemblage of the delta are promising for the concentration and preservation of organic matter [5,8]. (d) The diverse geologic units in Jezero are in clear stratigraphic context [7]. The Jezero paleolake system has been thoroughly investigated at a variety of scales, including work on: the mineralogy of the delta deposits [4-6] and watershed [7], as well as the morphology and sedimentology of the basin [9] and delta deposits [1,4]. The geologic context of Jezero is also well-studied given the broad suite of alteration minerals exposed in the ancient stratigraphies of the Nili Fossae region [e.g., 6,10-13]. Here we present an overview of the units accessible for exploration in the Jezero basin, including questions and hypotheses that can be tested through analysis in situ and of returned samples. This is particularly timely given the upcoming Mars 2020 mission, for which Jezero is one of the final eight landing sites [14]. Primary science objectives for Mars 2020 are to: (1) characterize the geologic history of a site with "evidence of an astrobiologically-relevant ancient environment and geologic diversity"; (2) assess the habitability and "potential evidence of past life" in units with "high biosignature preservation potential"; and (3) cache scientifically compelling samples for potential return to Earth [15].

  7. Relationship between increasing concentrations of two carcinogens and statistical image descriptors of foci morphology in the cell transformation assay.

    PubMed

    Callegaro, Giulia; Corvi, Raffaella; Salovaara, Susan; Urani, Chiara; Stefanini, Federico M

    2017-06-01

    Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl 2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Integrated Hydro-geomorphological Monitoring System of the Upper Bussento river basin (Cilento and Vallo Diano Geopark, S-Italy)

    NASA Astrophysics Data System (ADS)

    Guida, D.; Cuomo, A.; Longobardi, A.; Villani, P.; Guida, M.; Guadagnuolo, D.; Cestari, A.; Siervo, V.; Benevento, G.; Sorvino, S.; Doto, R.; Verrone, M.; De Vita, A.; Aloia, A.; Positano, P.

    2012-04-01

    The Mediterranean river ecosystem functionings are supported by river-aquifer interactions. The assessment of their ecological services requires interdisciplinary scientific approaches, integrate monitoring systems and inter-institutional planning and management. This poster illustrates the Hydro-geomorphological Monitoring System build-up in the Upper Bussento river basin by the University of Salerno, in agreement with the local Basin Autorities and in extension to the other river basins located in the Cilento and Vallo Diano National Park (southern Italy), recently accepted in the European Geopark Network. The Monitoring System is based on a hierarchical Hydro-geomorphological Model (HGM), improved in a multiscale, nested and object-oriented Hydro-geomorphological Informative System (HGIS, Figure 1). Hydro-objects are topologically linked and functionally bounded by Hydro-elements at various levels of homogeneity (Table 1). Spatial Hydro-geomorpho-system, HG-complex and HG-unit support respectively areal Hydro-objects, as basin, sector and catchment and linear Hydro-objects, as river, segment, reach and section. Runoff initiation points, springs, disappearing points, junctions, gaining and water losing points complete the Hydro-systems. An automatic procedure use the Pfafstetter coding to hierarchically divide a terrain into arbitrarily small hydro-geomorphological units (basin, interfluve, headwater and no-contribution areas, each with a unique label with hierarchical topological properties. To obtain a hierarchy of hydro-geomorphological units, the method is then applied recursively on each basin and interbasin, and labels of the subdivided regions are appended to the existing label of the original region. The monitoring stations are ranked consequently in main, secondary, temporary and random and located progressively at the points or sections representative for the hydro-geomorphological responses by validation control and modeling calibration. The datasets are organized into a relational geodatabase supporting tracer testings, space-time analysis and hydrological modeling. At the moment, three main station for hourly streamflow measurements are located at the terminal sections of the main basin and the two main sub-basin; secondary stations for weekly discharge measurements are located along the Upper Bussento river segment, upstream and downstream of each river reach or tributary catchments or karst spring inflow. Temporary stations are located in the representative sections of the catchments to detect stream flow losses into alluvial beds or experimental parcels in the bare karst and forested sandstone headwaters. Streamflow measurements are combined with geochemical survey and water sampling for Radon activity concentration measurements. Results of measurement campains in Radon space-time distribution within the basin are given in other contribution of same EGU session. Monitoring results confirm the hourly, daily, weekly and monthly hydrological data and validate outcomes of semi-distributed hydrological models based on previously time series, allowing both academic consultants and institutional subject to extend the Integrated Hydro-geomorphological Monitoring System to the surrounding drainage areas of the Cilento and Vallo di Diano Geopark. Keywords: River-aquifer interaction, Upper Bussento river basin, monitoring system, hydro-geomorphology, semi-distributed hydrological model. Table 1: Comparative, hierarchical Hydro-morpho-climate entities Hierarchy levelArea (Km2) Scale Orography Entity Climate Entity Morfological Entity Areal Drainage Entity Linear Drainage Entity VIII 106 1:15E6 Orogen Macroscale α Morphological Region Hydrological Region VII 105 1:10E6 Chain Sistem Macroscale β Morphological Province Hydrological Province VI 104 1:5E5 Chain Mesoscale α Morphological Sistem Basin River V 103 1:2,5E5Chain Segment Mesoscale β Morphological Sub-systemSub-Basin Torrent IV 100 1:1,0E5Orographic Group Mesoscale γ Morphological Complex Basin Sector Mid Order Channel/ Segment III 10 1: 5E4 Orographic System Microscale αMorphological Unit Watershed Low Order Channel/ Reach II 1 1:2,5E3Orographic ComplexMicroscale βMorphological ComponentCatchment Transient Channel/ Pool I 10-2 1:5E3 Orographic Unit Microscale γMorphological Element Hollow Zero Order Channel PIC

  9. Characterization of expressed sequence tag-derived simple sequence repeat markers for Aspergillus flavus: emphasis on variability of isolates from the southern United States.

    PubMed

    Wang, Xinwang; Wadl, Phillip A; Wood-Jones, Alicia; Windham, Gary; Trigiano, Robert N; Scruggs, Mary; Pilgrim, Candace; Baird, Richard

    2012-12-01

    Simple sequence repeat (SSR) markers were developed from Aspergillus flavus expressed sequence tag (EST) database to conduct an analysis of genetic relationships of Aspergillus isolates from numerous host species and geographical regions, but primarily from the United States. Twenty-nine primers were designed from 362 tri-nucleotide EST-SSR sequences. Eighteen polymorphic loci were used to genotype 96 Aspergillus species isolates. The number of alleles detected per locus ranged from 2 to 24 with a mean of 8.2 alleles. Haploid diversity ranged from 0.28 to 0.91. Genetic distance matrix was used to perform principal coordinates analysis (PCA) and to generate dendrograms using unweighted pair group method with arithmetic mean (UPGMA). Two principal coordinates explained more than 75 % of the total variation among the isolates. One clade was identified for A. flavus isolates (n = 87) with the other Aspergillus species (n = 7) using PCA, but five distinct clusters were present when the others taxa were excluded from the analysis. Six groups were noted when the EST-SSR data were compared using UPGMA. However, the latter PCA or UPGMA comparison resulted in no direct associations with host species, geographical region or aflatoxin production. Furthermore, there was no direct correlation to visible morphological features such as sclerotial types. The isolates from Mississippi Delta region, which contained the largest percentage of isolates, did not show any unusual clustering except for isolates K32, K55, and 199. Further studies of these three isolates are warranted to evaluate their pathogenicity, aflatoxin production potential, additional gene sequences (e.g., RPB2), and morphological comparisons.

  10. Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture.

    PubMed

    Johnston, Danielle B; Cooper, David J; Hobbs, N Thompson

    2007-12-01

    In the northern elk wintering range of Yellowstone National Park, USA, wolf (Canis lupus) removal allowed elk (Cervus elaphus) to overbrowse riparian woody plants, leading to the exclusion of beaver (Castor canadensis) and a subsequent water table decline in many small stream valleys. Reduced elk browsing following wolf reintroduction may or may not facilitate willow (Salix sp.) recovery in these areas. To determine if the effect of elk browsing on willow interacts with that of beaver abandonment, we manipulated elk browsing and the water table in a factorial experiment. Under the condition of an ambient (low) water table, elk browsing increased shoot water potential (Psis), photosynthesis per unit leaf area (A), stomatal conductance per unit leaf area (gs), and aboveground current annual growth (CAG) by 50%. Elk browsing occurred entirely during dormancy and did not affect total plant leaf area (L). Improved water balance, photosynthetic rate, and annual aboveground productivity in browsed willows appeared to be due to morphological changes, such as increased shoot diameter and decreased branching, which typically increase plant hydraulic conductivity. An elevated water table increased Psis, A, gs, CAG, and L, and eliminated or lessened the positive effect of browsing on CAG for most species. Because low water tables create conditions whereby high willow productivity depends on the morphological effects of annual elk browsing, removing elk browsing in areas of water table decline is unlikely to result in vigorous willow stands. As large willow standing crops are required by beaver, a positive feedback between water-stressed willow and beaver absence may preclude the reestablishment of historical conditions. In areas with low water table, willow restoration may depend on actions to promote the re-establishment of beaver in addition to reducing elk browsing.

  11. Morphological Variability in Second Language Learners: An Examination of Electrophysiological and Production Data

    ERIC Educational Resources Information Center

    Alemán Bañón, José; Miller, David; Rothman, Jason

    2017-01-01

    We examined sources of morphological variability in second language (L2) learners of Spanish whose native language (L1) is English, with a focus on L1-L2 similarity, morphological markedness, and knowledge type (receptive vs. expressive). Experiment 1 uses event-related potentials to examine noun-adjective number (present in L1) and gender…

  12. The Epoch of Disk Formation: z is Approximately l to Today

    NASA Technical Reports Server (NTRS)

    Kassin, Susan; Gardner, Jonathan; Weiner, Ben; Faber, Sandra

    2012-01-01

    We present data on galaxy kinematics, morphologies, and star-formation rates over 0.1 less than z less than 1.2 for approximately 500 blue galaxies. These data show how systems like our own Milky-Way have come into being. At redshifts around 1, about half the age of the Universe ago, Milky-Way mass galaxies were different beasts than today. They had a significant amount of disturbed motions, disturbed morphologies, shallower potential wells, higher specific star-formation rates, and likely higher gas fractions. Since redshift approximately 1, galaxies have decreased in disturbed motions, increased in rotation velocity and potential well depth, become more well-ordered morphologically, and decreased in specific star-formation rate. We find interrelationships between these measurements. Galaxy kinematics are correlated with morphology and specific star-formation rate such that galaxies with the fastest rotation velocities and the least amounts of disturbed motions have the most well-ordered morphologies and the lowest specific star-formation rates. The converse is true. Moreover, we find that the rate at which galaxies become more well-ordered kinematically (i.e., increased rotation velocity, decreased disturbed motions) and morphologically is directly proportional to their stellar mass.

  13. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species.

    PubMed

    Gilchrist, Anthony Stuart; Shearman, Deborah C A; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-12-20

    The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despite distinct morphologies and behaviours, can be force-mated in the laboratory to produce fertile hybrid offspring. To exploit the opportunities offered by genomics, such as the efficient identification of genetic loci central to pest behaviour and to the earliest stages of speciation, investigators require genomic resources for future investigations. We produced a draft de novo genome assembly of Australia's major tephritid pest species, Bactrocera tryoni. The male genome (650-700 Mbp) includes approximately 150 Mb of interspersed repetitive DNA sequences and 60 Mb of satellite DNA. Assessment using conserved core eukaryotic sequences indicated 98% completeness. Over 16,000 MAKER-derived gene models showed a large degree of overlap with other Dipteran reference genomes. The sequence of the ribosomal RNA transcribed unit was also determined. Unscaffolded assemblies of B. neohumeralis and B. jarvisi were then produced; comparison with B. tryoni showed that the species are more closely related than any Drosophila species pair. The similarity of the genomes was exploited to identify 4924 potentially diagnostic indels between the species, all of which occur in non-coding regions. This first draft B. tryoni genome resembles other dipteran genomes in terms of size and putative coding sequences. For all three species included in this study, we have identified a comprehensive set of non-redundant repetitive sequences, including the ribosomal RNA unit, and have quantified the major satellite DNA families. These genetic resources will facilitate the further investigations of genetic mechanisms responsible for the behavioural and morphological differences between these three species and other tephritids. We have also shown how whole genome sequence data can be used to generate simple diagnostic tests between very closely-related species where only one of the species is scaffolded.

  14. The Effects of Tissue-Nonspecific Alkaline Phosphatase Gene Therapy on Craniosynostosis and Craniofacial Morphology in the FGFR2C342Y/+ Mouse Model of Crouzon Craniosynostosis

    PubMed Central

    Wang, E; Nam, HK; Liu, J; Hatch, NE

    2015-01-01

    Objectives Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-nonspecific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Material & Methods Neonatal Crouzon (FGFRC342Y/+) and wild type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at four weeks post-natal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology was assessed by micro-computed tomography. Results Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphologic analysis revealed craniofacial form differences for inferior surface (p=.023) and cranial height (p=.014) regions between TNAP lentivirus injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=.068). Conclusion These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. PMID:25865549

  15. A review of basin morphology and pool hydrology of isolated ponded wetlands: implications for seasonal forest pools of the northeastern United States

    Treesearch

    Robert T. Brooks; Robert T. Brooks

    2005-01-01

    Seasonal forest pools (SFPs) are geographically- and hydrologically- isolated ponded wetlands, in that they are topographically isolated from other surface waters. SFPs occur commonly throughout the temperate forests of the eastern United States and adjacent Canada. SFPs are ephemeral in occurrence, typically drying annually. The regular drying of SFPs excludes fish...

  16. Differentiating School-Aged Children with and without Language Impairment Using Tense and Grammaticality Measures from a Narrative Task

    ERIC Educational Resources Information Center

    Guo, Ling-Yu; Schneider, Phyllis

    2016-01-01

    Purpose: To determine the diagnostic accuracy of the finite verb morphology composite (FVMC), number of errors per C-unit (Errors/CU), and percent grammatical C-units (PGCUs) in differentiating school-aged children with language impairment (LI) and those with typical language development (TL). Method: Participants were 61 six-year-olds (50 TL, 11…

  17. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing

    Treesearch

    J.D Wickham; Kurt H. Riitters; T.G. Wade; P. Vogt

    2010-01-01

    Green infrastructure is a popular framework for conservation planning. The main elements of green infrastructure are hubs and links. Hubs tend to be large areas of ‘natural’ vegetation and links tend to be linear features (e.g., streams) that connect hubs. Within the United States, green infrastructure projects can be characterized as: (...

  18. Method for forming cooperative binary ionic solids

    DOEpatents

    Shelnutt, John A.; Martin, Kathleen E.; Wang, Zhongchun; Medforth, Craig J.

    2013-03-05

    A nanostructured molecular unit and method for forming is described where a cationic porphyrin having an ethanolic substituent species and a metal in the porphyrin cavity is combined with an anionic porphyrin having a sulfonate substituent species and a metal in the porphyrin cavity to form by self-assembly a nanostructured molecular unit with a morphology comprising four dendritic elements connected at a central node.

  19. Method for forming cooperative binary ionic solids

    DOEpatents

    Shelnutt, John A.; Martin, Kathleen E.; Wang, Zhongchun; Medforth, Craig J.

    2014-09-09

    A nanostructured molecular unit and method for forming is described where a cationic porphyrin having an ethanolic substituent species and a metal in the porphyrin cavity is combined with an anionic porphyrin having a sulfonate substituent species and a metal in the porphyrin cavity to form by self-assembly a nanostructured molecular unit with a morphology comprising four dendritic elements connected at a central node.

  20. Systematics and biogeography of Orconectes, subgenus Trisellescens, in the southeastern United States, a test of morphology-based classification

    Treesearch

    Christopher A. Taylor; Susan B. Adams; Guenter A. Schuster

    2014-01-01

    Diagnosable taxonomic units are fundamental to conservation biology and management of resources and the need for sound science in both fields is more pressing for aquatic ecosystems. Within freshwater crayfishes, the North American genus Orconectes is one of the most diverse in the World. Accurate assessments of species level relationships and species boundaries within...

  1. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes.

    PubMed

    Mohamed Mahmoud, Fadila; Krimi, Zoulikha; Maciá-Vicente, Jose G; Brahim Errahmani, Mohamed; Lopez-Llorca, Luis V

    Symbiotic interactions with fungal endophytes are argued to be responsible for the tolerance of plants to some stresses and for their adaptation to natural conditions. In this study we aimed to examine the endophytic fungal diversity associated with roots of date palms growing in coastal dune systems, and to screen this collection of endophytes for potential use as biocontrol agents, for antagonistic activity and mycoparasitism, and as producers of antifungal compounds with potential efficacy against root diseases of date palm. Roots of nine individual date palms growing in three coastal locations in the South-East of Spain (Guardamar, El Carabassí, and San Juan) were selected to isolate endophytic fungi. Isolates were identified on the basis of morphological and/or molecular characters. Five hundred and fifty two endophytic fungi were isolated and assigned to thirty morphological taxa or molecular operational taxonomic units. Most isolates belonged to Ascomycota, and the dominant order was Hypocreales. Fusarium and Clonostachys were the most frequently isolated genera and were present at all sampling sites. Comparisons of the endophytic diversity with previous studies, and their importance in the management of the date palm crops are discussed. This is the first study on the diversity of endophytic fungi associated with roots of date palm. The isolates obtained might constitute a source of biological control agents and biofertilizers for use in crops of this plant. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Quantifying the Number of Discriminable Coincident Dendritic Input Patterns through Dendritic Tree Morphology

    PubMed Central

    Zippo, Antonio G.; Biella, Gabriele E. M.

    2015-01-01

    Current developments in neuronal physiology are unveiling novel roles for dendrites. Experiments have shown mechanisms of non-linear synaptic NMDA dependent activations, able to discriminate input patterns through the waveforms of the excitatory postsynaptic potentials. Contextually, the synaptic clustering of inputs is the principal cellular strategy to separate groups of common correlated inputs. Dendritic branches appear to work as independent discriminating units of inputs potentially reflecting an extraordinary repertoire of pattern memories. However, it is unclear how these observations could impact our comprehension of the structural correlates of memory at the cellular level. This work investigates the discrimination capabilities of neurons through computational biophysical models to extract a predicting law for the dendritic input discrimination capability (M). By this rule we compared neurons from a neuron reconstruction repository (neuromorpho.org). Comparisons showed that primate neurons were not supported by an equivalent M preeminence and that M is not uniformly distributed among neuron types. Remarkably, neocortical neurons had substantially less memory capacity in comparison to those from non-cortical regions. In conclusion, the proposed rule predicts the inherent neuronal spatial memory gathering potentially relevant anatomical and evolutionary considerations about the brain cytoarchitecture. PMID:26100354

  3. Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes

    PubMed Central

    Odedina, Grace Fiyinfoluwa; Vongkamjan, Kitiya; Voravuthikunchai, Supayang Piyawan

    2015-01-01

    Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination. PMID:26371033

  4. Spiral-Wave Dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Fibroblasts

    PubMed Central

    Nayak, Alok Ranjan; Shajahan, T. K.; Panfilov, A. V.; Pandit, Rahul

    2013-01-01

    Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as , the fibroblast resting-membrane potential, the fibroblast conductance , and the MF gap-junctional coupling . Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as , and , and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity decreases as a function of , for zero-sided and one-sided couplings; however, for two-sided coupling, decreases initially and then increases as a function of , and, eventually, we observe that conduction failure occurs for low values of . In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling or . Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities. PMID:24023798

  5. PA-GFP: a window into the subcellular adventures of the individual mitochondrion.

    PubMed

    Haigh, Sarah E; Twig, Gilad; Molina, Anthony A J; Wikstrom, Jakob D; Deutsch, Motti; Shirihai, Orian S

    2007-01-01

    Mitochondrial connectivity is characterized by matrix lumen continuity and by dynamic rewiring through fusion and fission events. While these mechanisms homogenize the mitochondrial population, a number of studies looking at mitochondrial membrane potential have demonstrated that mitochondria exist as a heterogeneous population within individual cells. To address the relationship between mitochondrial dynamics and heterogeneity, we tagged and tracked individual mitochondria over time while monitoring their mitochondrial membrane potential (deltapsi(m)). By utilizing photoactivatible-GFP (PA-GFP), targeted to the mitochondrial matrix, we determined the boundaries of the individual mitochondrion. A single mitochondrion is defined by the continuity of its matrix lumen. The boundaries set by luminal continuity matched those set by electrical coupling, indicating that the individual mitochondrion is equipotential throughout the entire organelle. Similar results were obtained with PA-GFP targeted to the inner membrane indicating that matrix continuity parallels inner membrane continuity. Sequential photoconversion of matrix PA-GFP in multiple locations within the mitochondrial web reveals that each ramified mitochondrial structure is composed of juxtaposed but discontinuous units. Moreover, as many as half of the events in which mitochondria come into contact, do not result in fusion. While all fission events generated two electrically uncoupled discontinuous matrices, the two daughter mitochondria frequently remained juxtaposed, keeping the tubular appearance unchanged. These morphologically invisible fission events illustrate the difference between mitochondrial fission and fragmentation; the latter representing the movement and separation of disconnected units. Simultaneous monitoring of deltapsi(m) of up to four individual mitochondria within the same cell revealed that subcellular heterogeneity in deltapsi(m) does not represent multiple unstable mitochondria that appear 'heterogeneous' at any given point, but rather multiple stable, but heterogeneous units.

  6. Design and operation specifications of an active monitoring system for detecting southern resident killer whales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Carlson, Thomas J.; Xu, Jinshan

    2011-09-30

    Before final approval is given to the Snohomish County Public Utility District No. 1 for deploying the first tidal power devices in the United States in an open water environment, a system to manage the potential risk of injury to killer whales due to collision with moving turbine blades must be demonstrated. The Pacific Northwest National Laboratory (PNNL) is tasked with establishing the performance requirements for, constructing, and testing a prototype marine animal alert system for triggering temporary turbine shutdown when there is risk of collision with a killer whale. To develop a system that relies on active sonar twomore » critical areas must be investigated - the target strength of killer whales and the frequency content of commercially available active sonar units. PNNL studied three target strength models: a simple model, the Fourier matching model, and the Kirchoff-ray mode model. Using target strength measurements of bottlenose dolphins obtained by previous researchers and assuming killer whales share similar morphology and structure, PNNL extrapolated the target strength of an adult killer whale 7.5 m in length at a frequency of 67 kHz. To study the frequency content of a commercially available sonar unit, direct measurements of the signal transmitted by the sonar were obtained by using a hydrophone connected to a data acquisition system in both laboratory and field conditions. The measurements revealed that in addition to the primary frequency of 200 kHz, there is a secondary frequency component at 90 kHz, which is within the hearing range of killer whales. The amplitude of the 90-kHz frequency component is above the hearing threshold of killer whales but below the threshold for potential injuries.« less

  7. Aquatic Plant Control Research Program: Effects of Salinity and Irradiance Conditions on the Growth, Morphology and Chemical Composition of Submersed Aquatic Macrophytes

    DTIC Science & Technology

    1990-07-01

    L , AQUATIC PLANT CONTROL RESEARCH PROGRAM * * TECHNICAL REPORT A-90-5 EFFECTS OF SALINITY AND IRRADIANCE CONDITIONS ON THE GROWTH, MORPHOLOGY AND...UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Indude Security Classification) Effects of Salinity and Irradiance Conditions on the Growth...Dr. Robert W. Whalin. This report should be cited as follows: Twilley, Robert R., and Barko, John W. 1990. " Effects of Salinity and Irradiance

  8. Towards an ontogenetic understanding of inflorescence diversity

    PubMed Central

    Claßen-Bockhoff, Regine; Bull-Hereñu, Kester

    2013-01-01

    Backgrounds and Aims Conceptual and terminological conflicts in inflorescence morphology indicate a lack of understanding of the phenotypic diversity of inflorescences. In this study, an ontogeny-based inflorescence concept is presented considering different meristem types and developmental pathways. By going back to the ontogenetic origin, diversity is reduced to a limited number of types and terms. Methods Species from 105 genera in 52 angiosperm families are investigated to identify their specific reproductive meristems and developmental pathways. Based on these studies, long-term experience with inflorescences and literature research, a conceptual framework for the understanding of inflorescences is presented. Key Results Ontogeny reveals that reproductive systems traditionally called inflorescences fall into three groups, i.e. ‘flowering shoot systems’ (FSS), ‘inflorescences’ sensu stricto and ‘floral units’ (FUs). Our concept is, first, based on the identification of reproductive meristem position and developmental potential. The FSS, defined as a seasonal growth unit, is used as a reference framework. As the FSS is a leafy shoot system bearing reproductive units, foliage and flowering sequence play an important role. Second, the identification of two different flower-producing meristems is essential. While ‘inflorescence meristems’ (IMs) share acropetal primordia production with vegetative meristems, ‘floral unit meristems’ (FUMs) resemble flower meristems in being indeterminate. IMs produce the basic inflorescence types, i.e. compound and simple racemes, panicles and botryoids. FUMs give rise to dense, often flower-like units (e.g. heads). They occur solitarily at the FSS or occupy flower positions in inflorescences, rendering the latter thyrses in the case of cymose branching. Conclusions The ontogenetic concept differs from all existing inflorescence concepts in being based on meristems and developmental processes. It includes clear terms and allows homology statements. Transitional forms are an explicit part of the concept, illustrating the ontogenetic potential for character transformation in evolution. PMID:23445936

  9. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening

    NASA Astrophysics Data System (ADS)

    Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong

    2015-09-01

    Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c

  10. Three-dimensional echocardiography of congenital abnormalities of the left atrioventricular valve.

    PubMed

    Rice, Kathryn; Simpson, John

    2015-03-01

    Congenital abnormalities of the left atrioventricular (AV) valve are a significant diagnostic challenge. Traditionally, reliance has been placed on two-dimensional echocardiographic (2DE) imaging to guide recognition of the specific morphological features. Real-time 3DE can provide unique views of the left AV valve with the potential to improve understanding of valve morphology and function to facilitate surgical planning. This review illustrates the features of congenital abnormalities of the left AV valve assessed by 3DE. The similarities and differences in morphology between different lesions are described, both with respect to the valve itself and supporting chordal apparatus. The potential advantages as well as limitations of this technique in clinical practice are outlined.

  11. The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny and comprehensive morphological data

    PubMed Central

    Wieczorek, Karina; Lachowska-Cierlik, Dorota; Kajtoch, Łukasz; Kanturski, Mariusz

    2017-01-01

    The Chaitophorinae is a bionomically diverse Holarctic subfamily of Aphididae. The current classification includes two tribes: the Chaitophorini associated with deciduous trees and shrubs, and Siphini that feed on monocotyledonous plants. We present the first phylogenetic hypothesis for the subfamily, based on molecular and morphological datasets. Molecular analyses were based on the mitochondrial gene cytochrome oxidase subunit I (COI) and the nuclear gene elongation factor-1α (EF-1α). Phylogenetic inferences were obtained individually on each of genes and joined alignments using Bayesian inference (BI) and Maximum likelihood (ML). In phylogenetic trees reconstructed on the basis of nuclear and mitochondrial genes as well as a morphological dataset, the monophyly of Siphini and the genus Chaitophorus was supported. Periphyllus forms independent lineages from Chaitophorus and Siphini. Within this genus two clades comprising European and Asiatic species, respectively, were indicated. Concerning relationships within the subfamily, EF-1α and joined COI and EF-1α genes analysis strongly supports the hypothesis that Chaitophorini do not form a monophyletic clade. Periphyllus is a sister group to a clade containing Chaitophorus and Siphini. The Asiatic unit of Periphyllus also includes Trichaitophorus koyaensis. The analysis of morphological dataset under equally weighted parsimony also supports the view that Chaitophorini is an artificial taxon, as Lambersaphis pruinosae and Pseudopterocomma hughi, both traditionally included in the Chaitophorini, formed independent lineages. COI analyses support consistent groups within the subfamily, but relationships between groups are poorly resolved. These analyses were extended to include the species of closely related and phylogenetically unstudied subfamily Drepanosiphinae, which produced congruent results. Genera Drepanosiphum and Depanaphis are monophyletic and sister. The position of Yamatocallis tokyoensis differs in the molecular and morphological analyses, i.e. it is either an independent lineage (EF-1α, COI, joined COI and EF-1α genes) or is nested inside this unit (morphology). Our data also support separation of Chaitophorinae from Drepanosiphinae. PMID:28288166

  12. Reconstructing recent volcanic histories from high-resolution AUV sidescan sonar imagery

    NASA Astrophysics Data System (ADS)

    Yeo, I. A.

    2016-12-01

    Detecting high-resolution differences in age between young basaltic lava flows on the seafloor is notoriously difficult. However, using sediment thickness as a proxy for age it is possible to derive information on spatial extents, surface morphologies and lava flow age simultaneously using high-resolution sidescan sonar imagery. Ground truthing of this new method on cruise POS502 (July 2016) using photogrammetry from ROV cameras has provided constraints on the method allowing the detailed morphological changes and sediment cover thicknesses to be calibrated to produce reliable, quantitative ages for individual flow units. Sediment thickness is shown to be the primary controlling factor in backscatter intensity in most cases, although sediment redistribution by different flow morphologies can also affect the recorded reflection amplitudes. Seafloor lava flows were found to be very morphologically complicated on small scales, which may explain their relative unimportance when amplitude values are averaged over several tens of meters.

  13. An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses.

    PubMed

    Patterson-Kane, J C; Parry, D A; Birch, H L; Goodship, A E; Firth, E C

    1997-01-01

    The superficial digital flexor tendon is the most commonly injured tendon in the racing Thoroughbred. Despite the clinical significance of this structure, only limited data exist regarding normal age-related morphology of the tensile units, the collagen fibrils. The age at which these collagen fibrils become mature in composition and structure may be of importance. Consequently, the association of age and collagen fibril crosslink composition, diameter distribution and crimp morphology in the superficial and deep digital flexor tendons of Thoroughbreds up to and including three years of age has been studied. Replacement of immature crosslinks, peaking of the collagen fibril mass-average diameter and collagen fibril index, and stabilization of collagen crimp morphology changes supported the hypothesis that both digital flexor tendons become mature in structure by two years of age.

  14. Changes in very fine root respiration and morphology with time since last fire in a boreal forest

    NASA Astrophysics Data System (ADS)

    Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank

    2016-04-01

    We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5-1.0, and 1.0-2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire. Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74%, 38%, and 31% higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands. Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.

  15. Synthesis, electronic structure, molecular packing/morphology evolution, and carrier mobilities of pure oligo-/poly(alkylthiophenes).

    PubMed

    Zhang, Lei; Colella, Nicholas S; Liu, Feng; Trahan, Stephan; Baral, Jayanta K; Winter, H Henning; Mannsfeld, Stefan C B; Briseno, Alejandro L

    2013-01-16

    Monodispersed conjugated oligothiophenes are receiving attention in fundamental and applied science due to their interesting optical, optoelectronic, and charge transport properties. These "low molecular weight" polymers serve as model structures for the corresponding polymer analogues, which are inherently polydispersed. Here we report the synthesis, electronic structure, molecular packing/morphology, and charge transport properties of monodispersed oligothiophenes with up to six didodecylquaterthiophene (DDQT) building block repeat units (i.e., 24 thiophene units). At the point where the effective conjugation length is reached, the electronic structure showed convergence behavior to the corresponding polymer, poly(3,3"-didodecyl-quaterthiophene) (PQT-12). X-ray crystal structure analysis of the dimer (DDQT-2) showed that terminal thiophenes exhibit syn-conformations, similar to the terminal syn-conformations observed in the trimer (DDQT-3). The dimer also exhibits a rare bending of the terminal alkyl side chains in order to prevent steric hindrance with neighboring hydrogens attached to core thiophenes. Grazing incidence X-ray scattering measurements revealed a morphology evolution from small molecule-like packing to polymer-like packing in thin films, with a morphology transition occurring near the effective conjugation length. Charge transport measurements showed a mobility increase with decreasing chain length. We correlated the molecular packing and morphology to charge transport and determined that carrier mobilities are most sensitive to crystallinity and crystal grain misorientation. This indicates that molecular weight is not a decisive factor for improved carrier mobility in the low molecular weight region, but rather the degree in crystallinity and in-plane crystal orientation. These results represent a fundamental advancement in understanding the relationship between conjugation length and carrier mobilities in oligothiophene semiconductors.

  16. Influence of light curing units and fluoride mouthrinse on morphological surface and color stability of a nanofilled composite resin.

    PubMed

    De Oliveira, Ana Luísa Botta Martins; Botta, Ana Carolina; Campos, Juliana Álvares Duarte Bonini; Garcia, Patrícia Petromilli Nordi Sasso

    2014-11-01

    Composite resin is a dental material susceptible to color change over time which limits the longevity of restorations made with this material. The influence of light curing units and different fluoride mouthrinses on superficial morphology and color stability of a nanofilled composite resin was evaluated. Specimens (N = 150) were prepared and polished. The experimental groups were divided according to the type of light source (halogen and LED) and immersion media (artificial saliva, 0.05% sodium fluoride solution-manipulated, Fluordent Reach, Oral B, Fluorgard). Specimens remained in artificial saliva for 24-h baseline. For 60 days, they were immersed in solutions for 1 min. Color readout was taken at baseline and after 60 days of immersion. Surface morphology was analyzed by Scanning Electron Microscopy (SEM) after 60 days of immersion. Color change data were submitted to two-way Analysis of Variance and Tukey tests (α = 0.05). Surface morphology was qualitatively analyzed. The factor light source presented no significant variability (P = 0.281), the immersion media, significant variability (P < 0.001) and interaction between factors, no significant variability (P = 0.050). According to SEM observations, no difference was noted in the surface of the specimens polymerized by different light sources, irrespective of the immersion medium. It was concluded that the light source did not influence the color stability of composite, irrespective of the immersion media, and among the fluoride solutions analyzed, Fluorgard was the one that promoted the greatest color change, however, this was not clinically perceptible. The immersion media did not influence the morphology of the studied resin. © 2014 Wiley Periodicals, Inc.

  17. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    PubMed Central

    Bucksch, Alexander; Atta-Boateng, Acheampong; Azihou, Akomian F.; Battogtokh, Dorjsuren; Baumgartner, Aly; Binder, Brad M.; Braybrook, Siobhan A.; Chang, Cynthia; Coneva, Viktoirya; DeWitt, Thomas J.; Fletcher, Alexander G.; Gehan, Malia A.; Diaz-Martinez, Diego Hernan; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Klein, Laura L.; Leiboff, Samuel; Li, Mao; Lynch, Jonathan P.; Maizel, Alexis; Maloof, Julin N.; Markelz, R. J. Cody; Martinez, Ciera C.; Miller, Laura A.; Mio, Washington; Palubicki, Wojtek; Poorter, Hendrik; Pradal, Christophe; Price, Charles A.; Puttonen, Eetu; Reese, John B.; Rellán-Álvarez, Rubén; Spalding, Edgar P.; Sparks, Erin E.; Topp, Christopher N.; Williams, Joseph H.; Chitwood, Daniel H.

    2017-01-01

    The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics. PMID:28659934

  18. Associations between sperm abnormalities, breed, age, and scrotal circumference in beef bulls

    PubMed Central

    Menon, Ajitkumar G.; Barkema, Herman W.; Wilde, Randy; Kastelic, John P.; Thundathil, Jacob C.

    2011-01-01

    The objectives of this study were to determine the associations of breed, age, and scrotal circumference (SC), and their interaction, on the prevalence of sperm abnormalities in beef bulls in Alberta, Canada, and the percentage of satisfactory potential breeders identified during breeding soundness examination solely due to normal sperm morphology. Eosin-nigrosin stained semen smears and evaluation reports of 1642 bull breeding soundness evaluations were procured from 6 veterinary clinics in Alberta. Sperm morphology was determined for at least 100 sperm per bull. The most common defects were detached head [4.86% ± 5.71%; mean ± standard deviation (s)], distal midpiece reflex (6.19% ± 9.13%), and bent tail (1.01% ± 1.54%). Although breed, age, and SC did not significantly affect the prevalence of head or midpiece defects, morphologically normal or abnormal sperm, tail defects were more prevalent in Angus and Hereford bulls compared with other breeds. Overall, solely on the basis of sperm morphology, 1363 (83.0%) bulls were classified as satisfactory potential breeders and the remainder 279 (17.0%) as unsatisfactory (> 30% abnormal sperm, > 20% defective heads, or both). Although not significantly different, the breed with the highest percentage of satisfactory potential breeders was Limousin (90.6%) and the lowest was Hereford (78.8%). That 17% of bulls subjected to breeding soundness evaluation were designated as unsatisfactory solely on the basis of sperm morphology highlights its importance. PMID:22468020

  19. Stasis and convergence characterize morphological evolution in eupolypod II ferns.

    PubMed

    Sundue, Michael A; Rothfels, Carl J

    2014-01-01

    Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional 'athyrioid' ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species. The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae - a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation.

  20. Stasis and convergence characterize morphological evolution in eupolypod II ferns

    PubMed Central

    Sundue, Michael A.; Rothfels, Carl J.

    2014-01-01

    Background and Aims Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional ‘athyrioid’ ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Methods Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. Key Results The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species. Conclusions The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae – a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation. PMID:24197753

  1. A hybrid positron and OCT intraoperative probe for ovarian cancer detection and characterization

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Biswal, Nrusingh C.; Wang, Tianheng; Kumavor, Patrick; Karimeddini, Mozafareddin; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2011-03-01

    Ovarian cancer has the lowest survival rate of the gynecologic cancers with a 5-year survival of about 50% in the United States. With current screening and diagnostic abilities for ovarian cancers, most of the diagnosed patients are already with advanced stages and the majority of them will die of this deadly disease. In this paper, we report a multimodal imaging approach which combines optical coherence tomography (OCT) and positron detection for early ovarian cancer detection. The dual modality system has the capability of providing both functional and morphological images simultaneously. While the positron detection provides the metabolism activity of the ovary due to the uptake of radiotracer, the OCT provides the high resolution (25μm X 25μm X 12μm - longitudinal X lateral X axial in air) structural imaging at 20k A-lines per second. Total 18 ovaries obtained from 10 patients classified as normal, abnormal and malignant ovarian tissues were characterized ex vivo. Positron counts of 1.2-fold higher was found between abnormal and normal ovaries and 3~30-fold higher was found between malignant and normal ovaries. OCT imaging of malignant and abnormal ovaries revealed many detailed morphologic features that could be potentially valuable for detecting early malignant changes in the ovary.

  2. Control of Geminate Recombination by the Material Composition and Processing Conditions in Novel Polymer: Nonfullerene Acceptor Photovoltaic Devices.

    PubMed

    Zhang, Jiangbin; Gu, Qinying; Do, Thu Trang; Rundel, Kira; Sonar, Prashant; Friend, Richard H; McNeill, Christopher R; Bakulin, Artem A

    2018-02-08

    Herein, we report on the charge dynamics of photovoltaic devices based on two novel small-molecule nonfullerene acceptors featuring a central ketone unit. Using ultrafast near-infrared spectroscopy with optical and photocurrent detection methods, we identify one of the key loss channels in the devices as geminate recombination (GR) of interfacial charge transfer states (CTSs). We find that the magnitude of GR is highly sensitive to the choice of solvent and annealing conditions. Interestingly, regardless of these processing conditions, the same lifetime for GR (∼130 ps) is obtained by both detection methods upon decomposing the complex broadband transient optical spectra, suggesting this time scale is inherent and independent of morphology. These observations suggest that the CTSs in the studied material blends are mostly strongly bound, and that charge generation from these states is highly inefficient. We further rationalize our results by considering the impact of the processing on the morphology of the mixed donor and acceptor domains and discuss the potential consequences of the early charge dynamics on the performance of emerging nonfullerene photovoltaic devices. Our results demonstrate that careful choice of processing conditions enables enhanced exciton harvesting and suppression of GR by more than 3 orders of magnitude.

  3. The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii.

    PubMed

    Cochis, A; Azzimonti, B; Della Valle, C; De Giglio, E; Bloise, N; Visai, L; Cometa, S; Rimondini, L; Chiesa, R

    2016-02-01

    Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties. The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay. The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties. This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Potential Market for New Meniscus Repair Strategies: Evaluation of the MOON Cohort

    PubMed Central

    Fetzer, Gary B.; Spindler, Kurt P.; Amendola, Annunziato; Andrish, Jack T.; Bergfeld, John A.; Dunn, Warren R.; Flanigan, David C.; Jones, Morgan; Kaeding, Christopher C.; Marx, Robert G.; Matava, Matthew J.; McCarty, Eric C.; Parker, Richard D.; Wolcott, Michelle; Vidal, Armando; Wolf, Brian R.; Wright, Rick W.

    2013-01-01

    Background An estimated 200,000 ACL reconstructions are performed each year in the United States. The presence of concomitant meniscus tears and subsequent treatment at the time of ACL reconstruction may determine long-term outcomes of these knees. The authors contend that a substantial number of these meniscal tears are treated in a fashion that reduces meniscal function and that new technologies are needed to treat meniscal tears in a fashion that preserves function. A large cohort of patients with meniscal tears is needed to demonstrate this need. The purpose of this study is to determine the incidence of meniscal tears, describe tear morphology, and selected treatment in the MOON prospective longitudinal cohort of ACL reconstruction. We also will demonstrate based on national statistics the large potential market that exists for future tissue engineering aimed at preserving meniscal function. Methods A multicenter cohort of 1014 patients undergoing ACL reconstruction between January 2002 and December 2003 were evaluated. All procedures were performed by nine fellowship trained sports medicine orthopaedic surgeons. Data on patient demographics, presence of a meniscus tear at time of ACL reconstruction, tear morphology, and meniscal treatment were collected prospectively. Meniscal tears were categorized into three potential tissue engineering treatment strategies: all-biologic repair, advanced repair, and scaffold replacement. Results 1014 ACL reconstructions were performed over the two year period. The median age at the time of surgery was 24 years. Thirty-six percent of the knees had medial meniscal tears and 44% of the knees had lateral meniscal tears. Longitudinal tears were the most common tear morphology. The most frequent treatment modality was partial meniscectomy (60%). Thirty percent of medial meniscal tears and 10% of lateral meniscal tears could be treated with all-biologic repair, 32% of medial meniscal tears and 28% of lateral meniscal tears could be treated with an advanced repair technique, and 35% of medial meniscal tears and 62% of lateral meniscal tears could be treated with scaffold replacement. Conclusions Although meniscal preservation is a generally accepted concept in the treatment of meniscal tears, the majority of tears in this young cohort undergoing ACL reconstruction were either not repairable types (radial) and/or in the avascular zone. Even with contemporary approaches to meniscal tear repair, we found significant limitations faced by the treating surgeon. The majority of tears in this population are currently treated by partial meniscectomy. The results of this cohort will hopefully, stimulate and focus future research and development of new tissue engineering strategies for a large potential market for meniscal function in an ACL reconstructed cohort. PMID:19634719

  5. Growth Inhibition and Morphological Alteration of Fusarium sporotrichioides by Mentha piperita Essential Oil

    PubMed Central

    Rachitha, P.; Krupashree, K.; Jayashree, G. V.; Gopalan, Natarajan; Khanum, Farhath

    2017-01-01

    Objective: The aim of this study is to determine the phytochemical composition, antifungal activity of Mentha piperita essential oil (MPE) against Fusarium sporotrichioides. Methods: The phytochemical composition was conducted by gas chromatography mass spectrometry (GC MS) analysis and mycelia growth inhibition was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), the morphological characterization was observed by scanning electron microscopy. Finally, the membrane permeability was determined by the release of extracellular constituents, pH, and total lipid content. Result: In GC MS analysis, 22 metabolites were identified such as menthol, l menthone, pulegone, piperitone, caryophyllene, menthol acetate, etc. The antifungal activity against targeted pathogen, with MIC and MFC 500 μg/mL and 1000 μg/mL, respectively. The MPE altered the morphology of F. sporotrichoides hyphae with the loss of cytoplasm content and contorted the mycelia. The increasing concentration of MPE showed increase in membrane permeability of F. sporotrichoides as evidenced by the release of extracellular constituents and pH with the disruption of cell membrane indicating decrease in lipid content of F. sporotrichoides. Conclusion: The observed results showed that MPE exhibited promising new antifungal agent against Fusarium sporotrichioides. SUMMARY F. sporotrichioides, filamentous fungi contaminate to corn and corn--based productsF. sporotrichioides mainly responsible for the production of T-2 toxinPhytochemical composition was conducted by gas chromatography--mass spectrometry analysisMentha piperita essential oil (MPE) is commonly known as peppermintThe F. sporotrichioides growth was inhibited by MPE (minimum inhibitory concentration, minimum fungicidal concentration)Morphological observation by scanning electron microscope. Abbreviations Used: Cfu: Colony forming unit; DMSO: Dimethyl sulfoxide, °C: Degree celsius; F. Sporotrichoides: Fusarium sporotrichioides; EOs: Essential oils; M: Molar, g: Gram/gravity, mg: Milligram; μg: Microgram, ml: Milliliter; mm: Millimeter, min: Minutes; M. piperita: Mentha piperita, MIC: Minimum inhibitory concentration; MFC: Minimum fungicidal concentration; MAE: Mentha arvensis essential oil; Na2SO4: Sodium sulfate; pH: Potential Hydrogen; PDB: Potato Dextrose Broth; SEM: Scanning electron microscope PMID:28250658

  6. Mineralogy of Huygens Basin, Mars: A Transect of Noachian Highlands Crust

    NASA Astrophysics Data System (ADS)

    Seelos, K. D.; Ackiss, S. E.; Seelos, F. P.; McBeck, J. A.; Buczkowski, D. L.; Hash, C. D.; Viviano, C. E.; Murchie, S. L.

    2018-06-01

    Huygens crater represents a unique probe of the Noachain crust in the Hellas rim region. We have identified four mineralogic units within a morphologic context to understand the ancient martian highlands.

  7. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances.

    PubMed

    Maseda, Pablo H; Fernández, Roberto J

    2016-02-01

    Water stress modifies plant above- vs belowground biomass allocation, i.e., morphological plasticity. It is known that all species and genotypes reduce their growth rate in response to stress, but in the case of water stress it is unclear whether the magnitude of such reduction is linked to the genotype's growth potential, and whether the reduction can be largely attributed to morphological adjustments such as plant allocation and leaf and root anatomy. We subjected seedlings of six seed sources, three from each of Eucalyptus camaldulensis (potentially fast growing) and E. globulus (inherently slow growing), to three experimental water regimes. Biomass, leaf area and root length were measured in a 6-month glasshouse experiment. We then performed functional growth analysis of relative growth rate (RGR), and aboveground (leaf area ratio (LAR), specific leaf area (SLA) and leaf mass ratio (LMR)) and belowground (root length ratio (RLR), specific root length (SRL) and root mass ratio (RMR)) morphological components. Total biomass, root biomass and leaf area were reduced for all Eucalyptus provenances according to drought intensity. All populations exhibited drought plasticity, while those of greater growth potential (RGRmax) had a larger reduction in growth (discounting the effect of size). A positive correlation was observed between drought sensitivity and RGRmax. Aboveground, drought reduced LAR and LMR; under severe drought a negative correlation was found between LMR and RGRmax. Belowground, drought reduced SRL but increased RMR, resulting in no change in RLR. Under severe drought, a negative correlation was found between RLR, SRL and RGRmax. Our evidence strongly supports the classic ecophysiological trade-off between growth potential and drought tolerance for woody seedlings. It also suggests that slow growers would have a low capacity to adjust their morphology. For shoots, this constraint on plasticity was best observed in partition (i.e., LMR) whereas for roots it was clearest in morphology/anatomy (i.e., SRL). Thus, a low RGRmax would limit plastic response to drought not only at the whole plant level but also at the organ and even the tissue level. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Effect of morphology on the non-ohmic conduction in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Jayakumar, K.

    2016-05-01

    Nanostructures of ZnO is synthesized with nanoflower like morphology by simple wet chemical method. The structural, morphological and electrical characterization have been carried out. The temperature dependent electrical characterization of ZnO pellets of thickness 1150 µm is made by the application of 925MPa pressure. The morphological dependence of non-ohmic conduction beyond some arbitrary tunneling potential and grain boundary barrier thickness is compared with the commercially available bulk ZnO. Our results show the suitability of nano-flower like ZnO for the devices like sensors, rectifiers etc.

  9. FIB-tomographic studies on chemical vapor deposition grown SnO2 nanowire arrays on TiO2 (001)

    NASA Astrophysics Data System (ADS)

    Chen, Haoyun; Liu, Yi; Wu, Hong; Xiong, Xiang; Pan, Jun

    2016-12-01

    Tin oxide nanowire arrays on titania (001) have been successfully fabricated by chemical vapor deposition of Sn(O t Bu)4 precursor. The morphologies and structures of ordered SnO2 nanowires (NWs) were analyzed by cross-sectional SEM, HR-TEM and AFM. An FIB-tomography technique was applied in order to reconstruct a 3D presentation of ordered SnO2 nanowires. The achieved 3D analysis showed the spatial orientation and angles of ordered SnO2 NWs can be obtained in a one-shot experiment, and the distribution of Au catalysts showed the competition between 1D and 2D growth. The SnO2 nanowire arrays can be potentially used as a diameter- and surface-dependent sensing unit for the detection of gas- and bio-molecules.

  10. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    PubMed

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit.

  11. Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas

    NASA Astrophysics Data System (ADS)

    Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.

    2018-02-01

    Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.

  12. Orthographic units in the absence of visual processing: Evidence from sublexical structure in braille.

    PubMed

    Fischer-Baum, Simon; Englebretson, Robert

    2016-08-01

    Reading relies on the recognition of units larger than single letters and smaller than whole words. Previous research has linked sublexical structures in reading to properties of the visual system, specifically on the parallel processing of letters that the visual system enables. But whether the visual system is essential for this to happen, or whether the recognition of sublexical structures may emerge by other means, is an open question. To address this question, we investigate braille, a writing system that relies exclusively on the tactile rather than the visual modality. We provide experimental evidence demonstrating that adult readers of (English) braille are sensitive to sublexical units. Contrary to prior assumptions in the braille research literature, we find strong evidence that braille readers do indeed access sublexical structure, namely the processing of multi-cell contractions as single orthographic units and the recognition of morphemes within morphologically-complex words. Therefore, we conclude that the recognition of sublexical structure is not exclusively tied to the visual system. However, our findings also suggest that there are aspects of morphological processing on which braille and print readers differ, and that these differences may, crucially, be related to reading using the tactile rather than the visual sensory modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Linking hydro-morphology with invertebrate ecology in diverse morphological units of a large river-floodplain system

    NASA Astrophysics Data System (ADS)

    Blettler, Martín. C. M.; Amsler, Mario L.; Eberle, Eliana G.; Szupiany, Ricardo; Latosinski, Francisco G.; Abrial, Elie; Oberholster, Paul J.; Espinola, Luis A.; Paira, Aldo; Poza, Ailen; Rodrigues Capítulo, Alberto

    2016-12-01

    Interdisciplinary research in the fields of ecohydrology and ecogeomorphology is becoming increasingly important as a way to understand how biological and physical processes interact with each other in river systems. The objectives of the current study were 1) to determine changes in invertebrate community due to hydrological stages, 2) to link local physical features [flow configuration, sediment composition and morphological feature) with the ecological structure between and within dissimilar morphological units (meander and confluence), and 3) to determine the existence and the origin of bed hydro-geomorphic patches, determining their ecological structure. Results were discussed in the frame of prevailing ecological models and concepts. The study site extends over a floodplain area of the large Paraná River (Argentina), including minor and major secondary channels as well as the main channel. Overall results suggested that hydrodynamics was the driving force determining distribution patterns of benthic assemblages in the floodplain. However, while the invertebrates living in minor secondary channels seem to benefit from flooding, this hydrological phase had the opposite effect on organisms from the main and major secondary channels. We also found a clear linkage between physical features and invertebrate ecology, which caused a dissimilar fauna structure between and within the meander and the confluence. Furthermore, several sandy-patches were recorded in the confluence. These patches were colonized by the particular benthic assemblage recorded in the main channel, supported the view of rivers as patchy discontinua, under uncertain ecological equilibrium.

  14. Full three-dimensional morphology evolution of amorphous thin films for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jin, Lingpeng; Li, Yawei; Hu, Zhigao; Chu, Junhao

    2018-04-01

    We introduce a Monte Carlo model based on random deposition and diffusion limited aggregation in order to study the morphological evolution of deposition of nanofilm, which is difficult to carry out by the experimental methods. The instantaneous evolution of morphology and the corresponding parameters are observed when employing a novel perspective, modeling the aggregation of nanoscale units. Despite simplifying the chemical details, the simulation results qualitatively describe experiments with bulky precursors, and the strong dependence of growth rate on steric hindrance is obtained. Moreover, the well know behavior that the delay before steady growth is accurately predicted and analyzed based solely on modeling. Through this work, the great influence of steric hindrance on the initial stage of ALD is described.

  15. Influence of surface morphology on adsorption of potassium stearate molecules on diamond-like carbon substrate: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang

    2018-05-01

    Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.

  16. Headless spermatozoa in infertile men.

    PubMed

    Sha, Y-W; Ding, L; Wu, J-X; Lin, S-B; Wang, X; Ji, Z-Y; Li, P

    2017-10-01

    Spermatozoa morphology, an important parameter in a semen specimen's potential fertility evaluation, is a significant factor for in vitro fertilisation in assisted reproductive technology. Eleven sterile men with headless spermatozoa, a type of human teratozoospermia, are presented. Their ejaculates' headless spermatozoa percentages were high with rare normal spermatozoa forms. Additionally, abnormal morphology (e.g. round-headed or microcephalic spermatozoa) was also found. Spermatozoa motility was somewhat affected, potentially because of the missing mitochondrial sheath at the sperm tail base. Patients who underwent assisted reproductive technology treatment experienced adverse pregnancy outcomes. Work types and corresponding environments seemed irrelevant, but specific family history may have prompted its genetic origin. Computer-assisted semen analysis systems easily mistake headless spermatozoa as oligozoospermia because of nonrecognition of the loose head. However, morphological testing, especially with an electronic microscope, clearly identifies abnormal spermatozoa. Future exploration requires more methods investigating the frequency and percentage of this morphological abnormality in different populations with varied fertility levels. Such research would estimate the probable correlation of the abnormality with other semen parameters and examine the potential developmental or genetic origins. During clinical work, medical staff should detect these cases, avoid misdiagnosis and provide proper consultation about diagnosis and assisted reproductive technology treatment. © 2016 Blackwell Verlag GmbH.

  17. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats

    PubMed Central

    Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2018-01-01

    AIM To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. METHODS The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies. PMID:29862172

  18. Method for estimating the morphological significance of simple forms of crystals from X-ray data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treivus, E. B., E-mail: sbobr1@bk.ru

    2010-09-15

    When developing V.I. Mikheev and I.I. Shafranovskii's method for estimating the morphological significance of faces of different simple forms from X-ray reflection intensities, a way to approximately evaluate the morphological significance of simple forms on crystals from the structure amplitudes of the corresponding atomic planes is proposed. The potential for this approach is demonstrated by the examples of marcasite and zircon.

  19. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE PAGES

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; ...

    2015-07-03

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less

  20. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less

  1. Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use

    PubMed Central

    Brandl, Simon J.; Robbins, William D.; Bellwood, David R.

    2015-01-01

    Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant–pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats. PMID:26354935

  2. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology.

    PubMed

    Rabey, Karyne N; Green, David J; Taylor, Andrea B; Begun, David R; Richmond, Brian G; McFarlin, Shannon C

    2015-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual's past behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Parallel Evolution of Larval Feeding Behavior, Morphology, and Habitat in the Snail-Kiling fly Genus Tetanocera

    NASA Astrophysics Data System (ADS)

    Chapman, E. G.; Foote, B. A.; Malukiewicz, J.; Hoeh, W. R.

    2005-05-01

    Sciomyzid larvae (Diptera: Acalyptratae) display a wide range of feeding behaviors, typically preying on a wide variety of gastropods. The genus Tetanocera is particularly interesting because its species occupy five larval feeding groups with each species' larvae living in one of two habitat types (aquatic or terrestrial). We constructed a molecular phylogeny for Tetanocera, estimated evolutionary transitions in larval feeding behaviors and habitats that occurred during Tetanocera phylogenesis, and investigated potential correlations among larval habitat and morphological characteristics. Approximately 3800 base pairs (both mitochondrial and nuclear) of sequence data were used to build the phylogeny. Larval feeding groups and habitat type were mapped onto the phylogeny and pair-wise comparisons were used to evaluate potential associations between habitat and morphology. Feeding and habitat groups within Tetanocera were usually not monophyletic and it was estimated that Tetanocera lineages made at least three independent aquatic to terrestrial transitions. These parallel habitat shifts were typically accompanied by parallel character state changes in four morphological characteristics (larval color and three posterior spiracular disc characters). These larval habitat-morphology associations were statistically significant and consistent with the action of natural selection in facilitating the morphological changes that occurred during aquatic to terrestrial habitat transitions in Tetanocera.

  4. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology

    PubMed Central

    Rabey, Karyne N.; Green, David J.; Taylor, Andrea B.; Begun, David R.; Richmond, Brian G.; McFarlin, Shannon C.

    2014-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual’s past behaviour. PMID:25467113

  5. Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use.

    PubMed

    Brandl, Simon J; Robbins, William D; Bellwood, David R

    2015-09-22

    Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant-pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats. © 2015 The Author(s).

  6. Morphological studies of Hyphoderma cremeoalbum and Radulomyces roseolus

    Treesearch

    Karen K. Nakasone

    2010-01-01

    Type studies reveal that Radulomyces roseolus is conspecific with Hyphoderma cremeoalbum (Basidiomycota, Polyporales). Embedded, fusoid cystidia and haplohyphidia are critical diagnostic features of H. cremeoalbum. Known from Europe, United States, Argentina, and New Zealand, its preferred...

  7. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

    PubMed Central

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461

  8. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    PubMed

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  9. A review of the North American genus Epimartyria (Lepidoptera, Micropterigidae) with a discussion of the larval plastron

    PubMed Central

    Davis, Donald R.; Landry, Jean-François

    2012-01-01

    Abstract The indigenous North American micropterigid genus Epimartyria Walsingham,1898 is revised. Three species are recognized, including Epimartyria auricrinella Walsingham, 1898 which occurs widely over much of the northeastern United States and Canada, a new species, Epimartyria bimaculella Davis & Landry from northwestern United States and Canada, and Epimartyria pardella (Walsingham, 1880) from northern California to northern Oregon. The larva of Epimartyria auricrinella is described in detail, supplemented with illustrations of the external structure of the larval integument. The larval plastron is described and illustrated for Epimartyria, and this is compared with the plastrons of Neomicropteryx Issiki, 1931 and Micropterix Hübner, 1825. COI barcode sequences show that the three species are genetically distinct, congruent with morphological differences. Marked haplotype divergence within some Epimartyria auricrinella populations appears to be unrelated to morphology, geography or phenology. PMID:22573948

  10. Three-dimensional echocardiography of congenital abnormalities of the left atrioventricular valve

    PubMed Central

    Rice, Kathryn

    2015-01-01

    Congenital abnormalities of the left atrioventricular (AV) valve are a significant diagnostic challenge. Traditionally, reliance has been placed on two-dimensional echocardiographic (2DE) imaging to guide recognition of the specific morphological features. Real-time 3DE can provide unique views of the left AV valve with the potential to improve understanding of valve morphology and function to facilitate surgical planning. This review illustrates the features of congenital abnormalities of the left AV valve assessed by 3DE. The similarities and differences in morphology between different lesions are described, both with respect to the valve itself and supporting chordal apparatus. The potential advantages as well as limitations of this technique in clinical practice are outlined. PMID:26693328

  11. Influence of morphology on survival for non-Hodgkin lymphoma in Europe and the United States.

    PubMed

    Sant, Milena; Allemani, Claudia; De Angelis, Roberta; Carbone, Antonino; de Sanjosè, Silvia; Gianni, Alessandro M; Giraldo, Pilar; Marchesi, Francesca; Marcos-Gragera, Rafael; Martos-Jiménez, Carmen; Maynadié, Marc; Raphael, Martine; Berrino, Franco

    2008-03-01

    We explored the influence of morphology on geographic differences in 5-year survival for non-Hodgkin lymphoma (NHL) diagnosed in 1990-1994 and followed for 5years: 16,955 cases from 27 EUROCARE-3 cancer registries, and 22,713 cases from 9 US SEER registries. Overall 5-year relative survival was 56.1% in EUROCARE west, 47.1% in EUROCARE east and 56.3% in SEER. Relative excess risk (RER) of death was 1.05 (95% confidence interval (CI) 1.01-1.10) in EUROCARE west, 1.52 (95% CI 1.44-1.60) in EUROCARE east (SEER reference). Excess risk of death was significantly above reference (diffuse B lymphoma) for Burkitt's and NOS lymphoma; not different for lymphoblastic and other T-cell; significantly below reference (in the order of decreasing relative excess risk) for NHL NOS, mantle cell/centrocytic, lymphoplasmacytic, follicular, small lymphocytic/chronic lymphocytic leukaemia, other specified NHL and cutaneous morphologies. Interpretation of marked variation in survival with morphology is complicated by classification inconsistencies. The completeness and standardisation of cancer registry morphology data needs to be improved.

  12. The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties

    PubMed Central

    Lv, Xin; Li, Shuang; Wang, Qingji

    2017-01-01

    Semiconductor oxide chemoresistive gas sensors are widely used for detecting deleterious gases due to low cost, simple preparation, rapid response and high sensitivity. The performance of gas sensor is greatly affected by the morphology of the semiconductor oxide. There are many semiconductor oxide morphologies, including zero-dimensional, one-dimensional, two-dimensional and three-dimensional ones. The semiconductor oxides with different morphologies significantly enhance the gas-sensing performance. Among the various morphologies, hollow nanostructures and core-shell nanostructures are always the focus of research in the field of gas sensors due to their distinctive structural characteristics and superior performance. Herein the morphologies of semiconductor oxides and their gas-sensing properties are reviewed. This review also proposes a potential strategy for the enhancement of gas-sensing performance in the future. PMID:29189714

  13. Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Stacey L.; Neuroscience Program, Loyola University Medical Center, Maywood, IL; Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL

    Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes,more » a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells.« less

  14. The Butterflies of Principal Components: A Case of Ultrafine-Grained Polyphase Units

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.

    1996-03-01

    Dusts in the accretion regions of chondritic interplanetary dust particles [IDPs] consisted of three principal components: carbonaceous units [CUs], carbon-bearing chondritic units [GUs] and carbon-free silicate units [PUs]. Among others, differences among chondritic IDP morphologies and variable bulk C/Si ratios reflect variable mixtures of principal components. The spherical shapes of the initially amorphous principal components remain visible in many chondritic porous IDPs but fusion was documented for CUs, GUs and PUs. The PUs occur as coarse- and ultrafine-grained units that include so called GEMS. Spherical principal components preserved in an IDP as recognisable textural units have unique proporties with important implications for their petrological evolution from pre-accretion processing to protoplanet alteration and dynamic pyrometamorphism. Throughout their lifetime the units behaved as closed-systems without chemical exchange with other units. This behaviour is reflected in their mineralogies while the bulk compositions of principal components define the environments wherein they were formed.

  15. Nuclear markers reveal that inter-lake cichlids' similar morphologies do not reflect similar genealogy.

    PubMed

    Kassam, Daud; Seki, Shingo; Horic, Michio; Yamaoka, Kosaku

    2006-08-01

    The apparent inter-lake morphological similarity among East African Great Lakes' cichlid species/genera has left evolutionary biologists asking whether such similarity is due to sharing of common ancestor or mere convergent evolution. In order to answer such question, we first used Geometric Morphometrics, GM, to quantify morphological similarity and then subsequently used Amplified Fragment Length Polymorphism, AFLP, to determine if similar morphologies imply shared ancestry or convergent evolution. GM revealed that not all presumed morphological similar pairs were indeed similar, and the dendrogram generated from AFLP data indicated distinct clusters corresponding to each lake and not inter-lake morphological similar pairs. Such results imply that the morphological similarity is due to convergent evolution and not shared ancestry. The congruency of GM and AFLP generated dendrograms imply that GM is capable of picking up phylogenetic signal, and thus GM can be potential tool in phylogenetic systematics.

  16. Effect of captivity on morphology: negligible changes in external morphology mask significant changes in internal morphology

    PubMed Central

    Munn, Adam J.; Byrne, Phillip G.

    2018-01-01

    Captive breeding programmes are increasingly relied upon for threatened species management. Changes in morphology can occur in captivity, often with unknown consequences for reintroductions. Few studies have examined the morphological changes that occur in captive animals compared with wild animals. Further, the effect of multiple generations being maintained in captivity, and the potential effects of captivity on sexual dimorphism remain poorly understood. We compared external and internal morphology of captive and wild animals using house mouse (Mus musculus) as a model species. In addition, we looked at morphology across two captive generations, and compared morphology between sexes. We found no statistically significant differences in external morphology, but after one generation in captivity there was evidence for a shift in the internal morphology of captive-reared mice; captive-reared mice (two generations bred) had lighter combined kidney and spleen masses compared with wild-caught mice. Sexual dimorphism was maintained in captivity. Our findings demonstrate that captive breeding can alter internal morphology. Given that these morphological changes may impact organismal functioning and viability following release, further investigation is warranted. If the morphological change is shown to be maladaptive, these changes would have significant implications for captive-source populations that are used for reintroduction, including reduced survivorship.

  17. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.

    PubMed

    Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi

    2012-07-01

    Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.

  18. Recent Insights into the Cell Biology of Thyroid Angiofollicular Units

    PubMed Central

    Denef, Jean-François; Lengelé, Benoit; Many, Marie-Christine; Gérard, Anne-Catherine

    2013-01-01

    In thyrocytes, cell polarity is of crucial importance for proper thyroid function. Many intrinsic mechanisms of self-regulation control how the key players involved in thyroid hormone (TH) biosynthesis interact in apical microvilli, so that hazardous biochemical processes may occur without detriment to the cell. In some pathological conditions, this enzymatic complex is disrupted, with some components abnormally activated into the cytoplasm, which can lead to further morphological and functional breakdown. When iodine intake is altered, autoregulatory mechanisms outside the thyrocytes are activated. They involve adjacent capillaries that, together with thyrocytes, form the angiofollicular units (AFUs) that can be considered as the functional and morphological units of the thyroid. In response to iodine shortage, a rapid expansion of the microvasculature occurs, which, in addition to nutrients and oxygen, optimizes iodide supply. These changes are triggered by angiogenic signals released from thyrocytes via a reactive oxygen species/hypoxia-inducible factor/vascular endothelial growth factor pathway. When intra- and extrathyrocyte autoregulation fails, other forms of adaptation arise, such as euthyroid goiters. From onset, goiters are morphologically and functionally heterogeneous due to the polyclonal nature of the cells, with nodules distributed around areas of quiescent AFUs containing globules of compact thyroglobulin (Tg) and surrounded by a hypotrophic microvasculature. Upon TSH stimulation, quiescent AFUs are activated with Tg globules undergoing fragmentation into soluble Tg, proteins involved in TH biosynthesis being expressed and the local microvascular network extending. Over time and depending on physiological needs, AFUs may undergo repetitive phases of high, moderate, or low cell and tissue activity, which may ultimately culminate in multinodular goiters. PMID:23349248

  19. Geomorphology of comet 67P/Churyumov–Gerasimenko

    USGS Publications Warehouse

    Birch, Samuel P. D.; Tang, Y.; Hayes, A. G.; Kirk, Randolph L.; Bodewitz, D.; Campins, H.; Fernandez, Y.; de Freitas Bart, R.; Kutsop, N. W.; Sierks, H.; Soderblom, J. M.; Squyres, S. W.; Vincent, J.-B.

    2017-01-01

    We present a global geomorphological map of comet 67P/Churyumov–Gerasimenko (67P/C-G) using data acquired by the Rosetta Orbiter’s OSIRIS Narrow Angle Camera. The images used in our study were acquired between 2014 August and 2015 May, before 67P/C-G passed through perihelion. Imagery of the Southern hemisphere was included in our study, allowing us to compare the contrasting hemispheres of 67P/C-G in a single study. Our work also puts into greater context the morphologies studied in previous works, and also the morphologies observed on previously visited cometary nuclei. Relative to other nuclei, 67P/C-G appears most similar to 81P/Wild 2, with a topographically heterogeneous surface dominated by smooth-floored pits. Our mapping describes the landscapes of 67P/C-G when they were first observed by Rosetta, and our map can be used to detect changes in surface morphologies after its perihelion passage. Our mapping reveals strong latitudinal dependences for emplaced units and a highly heterogeneous surface. Layered bedrock units that represent the exposed nucleus of 67P/C-G are dominant at southern latitudes, while topographically smooth, dust covered regions dominate the Northern hemisphere. Equatorial latitudes are dominated by smooth terrain units that show evidence for flow structures. We observe no obvious differences between the comet’s two lobes, with the only longitudinal variations being the Imhotep and Hatmehit basins. These correlations suggest a strong seasonal forcing on the surface evolution of 67P/C-G, where materials are transported from the Southern hemisphere to Northern hemisphere basins over multiple orbital time-scales.

  20. Semantic processing during morphological priming: an ERP study.

    PubMed

    Beyersmann, Elisabeth; Iakimova, Galina; Ziegler, Johannes C; Colé, Pascale

    2014-09-04

    Previous research has yielded conflicting results regarding the onset of semantic processing during morphological priming. The present study was designed to further explore the time-course of morphological processing using event-related potentials (ERPs). We conducted a primed lexical decision study comparing a morphological (LAVAGE - laver [washing - wash]), a semantic (LINGE - laver [laundry - wash]), an orthographic (LAVANDE - laver [lavender - wash]), and an unrelated control condition (HOSPICE - laver [nursing home - wash]), using the same targets across the four priming conditions. The behavioral data showed significant effects of morphological and semantic priming, with the magnitude of morphological priming being significantly larger than the magnitude of semantic priming. The ERP data revealed significant morphological but no semantic priming at 100-250 ms. Furthermore, a reduction of the N400 amplitude in the morphological condition compared to the semantic and orthographic condition demonstrates that the morphological priming effect was not entirely due to the semantic or orthographic overlap between the prime and the target. The present data reflect an early process of semantically blind morphological decomposition, and a later process of morpho-semantic decomposition, which we discuss in the context of recent morphological processing theories. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Small scale analogs of the Cayley Formation and Descarts Mountains in impact associated deposits, part C

    NASA Technical Reports Server (NTRS)

    Head, J. W.

    1972-01-01

    The exploration of the Cayley Formation and material of the Descartes Mountains and an understanding of the origin and evolution of these units were primary objectives of the Apollo 16 lunar mission. This section examines several areas associated with impact crater deposits that show small-scale features similar in morphology to the regional characteristics of the Cayley and Descartes units shown in the Apollo 16 photography.

  2. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.

    PubMed

    Marti-Figueroa, Carlos R; Ashton, Randolph S

    2017-05-01

    Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology. Human PSC-derived 3-D organoids are revolutionizing the biomedical sciences. They enable the study of development and disease within patient-specific genetic backgrounds and unprecedented biomimetic tissue microenvironments. However, their uncontrolled, spontaneous morphogenesis at the microscale yields inconsistences in macroscale organoid morphology, cytoarchitecture, and cellular composition that limits their standardization and application. Integration of tissue engineering methods with organoid derivation protocols could allow us to harness their potential by instructing standardized in vitro morphogenesis to generate organoids with biomimicry at all scales. Such advancements would enable the use of organoids as a basis for 'next-generation' tissue engineering of functional, anatomically mimetic human tissues and potentially novel organ transplants. Here, we discuss critical aspects of organoid morphogenesis where application of innovative tissue engineering methodologies would yield significant advancement towards this goal. Copyright © 2017. Published by Elsevier Ltd.

  3. Ignition and Combustion Characteristics of Nanoscale Al/AgIO3: A Potential Energetic Biocidal System

    DTIC Science & Technology

    2011-01-01

    the actual particle morphology consists of thin platelets , roughly 1 mm in diam- eter. Silver iodide was purchased from Sigma Aldrich, and the size was...2008), and shows that mixing is limited by clumping of both ingredients. The AgIO3 has a platelet -like morphology, and could potentially mix...in this study is 80 nm from NanoTechnologies. The CuO in this study is 45 nm from Technanogy. Each sample was fuel rich in this study with equivalency

  4. Simultaneous formation of multiscale hierarchical surface morphologies through sequential wrinkling and folding

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, Qingyang; Xiao, Jianliang

    2018-02-01

    Highly organized hierarchical surface morphologies possess various intriguing properties that could find important potential applications. In this paper, we demonstrate a facile approach to simultaneously form multiscale hierarchical surface morphologies through sequential wrinkling. This method combines surface wrinkling induced by thermal expansion and mechanical strain on a three-layer structure composed of an aluminum film, a hard Polydimethylsiloxane (PDMS) film, and a soft PDMS substrate. Deposition of the aluminum film on hard PDMS induces biaxial wrinkling due to thermal expansion mismatch, and recovering the prestrain in the soft PDMS substrate leads to wrinkling of the hard PDMS film. In total, three orders of wrinkling patterns form in this process, with wavelength and amplitude spanning 3 orders of magnitude in length scale. By increasing the prestrain in the soft PDMS substrate, a hierarchical wrinkling-folding structure was also obtained. This approach can be easily extended to other thin films for fabrication of multiscale hierarchical surface morphologies with potential applications in different areas.

  5. Trace metal partitioning in Thalassia testudinum and sediments in the Lower Laguna Madre, Texas.

    PubMed

    Whelan, Thomas; Espinoza, Jorge; Villarreal, Xiomara; Cottagoma, Maria

    2005-01-01

    Seagrass communities dominate the Laguna Madre, which accounts for 25% of the coastal region of Texas. Seagrasses are essential to the health of the Laguna Madre (LM) and have experienced an overall decline in coverage in the Lower Laguna Madre (LLM) since 1967. Little is known on the existing environmental status of the LLM. This study focuses on the trace metal chemistry of four micronutrient metals, Fe, Mn, Cu, and Zn, and two non-essential metals, Pb and As, in the globally important seagrass Thalassia testudinum. Seasonal trends show that concentrations of most essential trace metals increase in the tissue during the summer months. With the exception of (1) Cu in the vertical shoot and root, and (2) Mn in the roots, no significant positive correlation exists between the rhizosphere sediment and T. testudinum tissue. Iron indicates a negative correlation between the morphological units and the rhizosphere sediments. No other significant relationship was found between the sediments and the T. testudinum tissue. Mn was enriched up to 10-fold in the leaf tissue relative to the other morphological units and also enriched relative to the rhizosphere sediments. Both Cu and Mn appear to be enriched in leaf tissue compared to other morphological units and also enriched relative to the Cu and Mn in the rhizoshpere sediments. Sediments cores taken in barren areas were slightly elevated in Zn relative to the rhizosphere sediments, whereas no other metals showed statistical differences between barren sediment cores and rhizosphere sediments. However, no correlation was measured in T. testudinum tissue and Zn in rhizosphere sediments. Previous studies suggested that Fe/Mn ratios could indicate differences between seagrass environments. Our results indicate that there is an influence from the Rio Grande in the Fe/Mn signature in sediments, and that ratio is not reflected in the T. testudinum tissue. The results from this study show that the LLM contains trace metal concentrations less than or equal to values for uncontaminated locations worldwide. In addition, there appears to be a complex partitioning in the trace metals in the morphological units of T. testudinum tissue and that analysis only of the leaf may not be indicative of the trace metal levels in this important seagrass species.

  6. A Link No Longer Missing: New Evidence for the Cetotheriid Affinities of Caperea.

    PubMed

    Marx, Felix G; Fordyce, R Ewan

    2016-01-01

    The origins of the enigmatic pygmy right whale Caperea marginata, the only living member of its subfamily (Neobalaeninae), are an outstanding mystery of cetacean evolution. Its strikingly disparate morphology sets Caperea apart from all other whales, and has turned it into a wildcard taxon that holds the key to understanding modern baleen whale diversity. Morphological cladistics generally ally this species with right whales, whereas molecular analyses consistently cluster it with rorquals and grey whales (Balaenopteroidea). A recent study potentially resolved this conflict by proposing that Caperea belongs with the otherwise extinct Cetotheriidae, but has been strongly criticised on morphological grounds. Evidence from the neobalaenine fossil record could potentially give direct insights into morphological transitions, but is currently limited to just a single species: the Late Miocene Miocaperea pulchra, from Peru. We show that Miocaperea has a highly unusual morphology of the auditory region, resulting from a-presumably feeding-related-strengthening of the articulation of the hyoid apparatus with the skull. This distinctive arrangement is otherwise only found in the extinct Cetotheriidae, which makes Miocaperea a "missing link" that demonstrates the origin of pygmy right whales from cetotheriids, and confirms the latter's resurrection from the dead.

  7. A Link No Longer Missing: New Evidence for the Cetotheriid Affinities of Caperea

    PubMed Central

    Marx, Felix G.; Fordyce, R. Ewan

    2016-01-01

    The origins of the enigmatic pygmy right whale Caperea marginata, the only living member of its subfamily (Neobalaeninae), are an outstanding mystery of cetacean evolution. Its strikingly disparate morphology sets Caperea apart from all other whales, and has turned it into a wildcard taxon that holds the key to understanding modern baleen whale diversity. Morphological cladistics generally ally this species with right whales, whereas molecular analyses consistently cluster it with rorquals and grey whales (Balaenopteroidea). A recent study potentially resolved this conflict by proposing that Caperea belongs with the otherwise extinct Cetotheriidae, but has been strongly criticised on morphological grounds. Evidence from the neobalaenine fossil record could potentially give direct insights into morphological transitions, but is currently limited to just a single species: the Late Miocene Miocaperea pulchra, from Peru. We show that Miocaperea has a highly unusual morphology of the auditory region, resulting from a–presumably feeding-related–strengthening of the articulation of the hyoid apparatus with the skull. This distinctive arrangement is otherwise only found in the extinct Cetotheriidae, which makes Miocaperea a “missing link” that demonstrates the origin of pygmy right whales from cetotheriids, and confirms the latter’s resurrection from the dead. PMID:27711216

  8. Morphology and texture of particles along the Spirit rover traverse from sol 450 to sol 745

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Crumpler, L.; Farrand, W. H.; Li, R.; Cabrol, N. A.; Neakrase, L. D.

    2008-12-01

    We quantified and classified the shape, roundness, size, and texture of 935 loose surface particles along the Spirit rover traverse from sols 450-745 to assess origin, transport, and other alteration mechanisms that altered particles during and after formation. Variation in particle morphologic parameters along traverse is consistent with crossing mapped geologic unit boundaries. Texture is divided into four types: vesicular, smooth and flat-faceted, rough and flat-faceted, and very rough. Sphericity and roundness are intermediate and low, respectively, comparable to particles moved by high-energy transport or to crushed particles. This indicates intermittent, high-energy emplacement or modification of a single lithology, rather than systematic, continuous low-energy abrasion or wear over time. Comparison with particle morphology at other Mars landing sites is consistent with the hypothesis that no secondary systematic transport or wide-scale chemical alteration was active at a significant enough level to alter macromorphology. In particular, particle morphology at the Mars Pathfinder site shows stronger evidence of abrasion than along the Spirit traverse, suggesting Mars Pathfinder particles have undergone abrasion processes that particles in this study area have not. Additionally, morphology indices have correlation coefficients near zero, indicating that a fluvial transport mechanism is likely not responsible for morphology. Morphology and texture are instead related to origin and composition rather than subsequent modification. Morphology and texture support a volcanic origin, possibly without modification, but most likely altered primarily by ballistic impact, implying that the Spirit landing site and traverse may be utilized in the future as a standard site for characterization of impact-derived morphology.

  9. The effects of tissue-non-specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosis.

    PubMed

    Wang, E; Nam, H K; Liu, J; Hatch, N E

    2015-04-01

    Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-non-specific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Neonatal Crouzon (FGFRC342Y/+) and wild-type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at 4 weeks postnatal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology were assessed by micro-computed tomography. Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphological analysis revealed craniofacial form differences for inferior surface (p=0.023) and cranial height (p=0.014) regions between TNAP lentivirus-injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=0.068). These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand.

    PubMed

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch ( Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N 2 O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.

  11. A taxonomic review of the centipede genus Scolopendra Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland Southeast Asia, with description of a new species from Laos

    PubMed Central

    Siriwut, Warut; Edgecombe, Gregory D.; Sutcharit, Chirasak; Tongkerd, Piyoros; Panha, Somsak

    2016-01-01

    Abstract The centipede genus Scolopendra in mainland Southeast Asia is reviewed taxonomically based on morphological characters, informed by a molecular phylogenetic analysis using sequences from three mitochondrial and nuclear genes (COI, 16S rRNA and 28S rRNA). Eight nominal species of Scolopendra, namely Scolopendra morsitans Linnaeus, 1758, Scolopendra subspinipes Leach, 1816, Scolopendra dehaani Brandt, 1840, Scolopendra multidens Newport, 1844, Scolopendra calcarata Porat, 1876, Scolopendra japonica Koch, 1878, Scolopendra pinguis Pocock, 1891, and Scolopendra dawydoffi Kronmüller, 2012, are redescribed together with some revision of type materials. Geographical variation in each species has been compiled with reference to samples that span their distribution ranges in Southeast Asia and some parts of neighbouring areas such as East Asia, the Indian Ocean, and Africa. Comparative study of traditional taxonomic characters from external morphology provides further information to distinguish some closely related species. Scolopendra cataracta Siriwut, Edgecombe & Panha, sp. n., is described from the southern part of Laos, with additional records in Thailand and Vietnam. The phylogenetic framework for Southeast Asian Scolopendra recognizes Scolopendra calcarata + Scolopendra pinguis, Scolopendra morsitans, and a Scolopendra subspinipes group that unites the other six species as the main clades. Within the Scolopendra subspinipes group, two monophyletic groups can be distinguished by having either slender or short, thick ultimate leg prefemora and different numbers of apical spines on the coxopleuron. Scolopendra arborea Lewis, 1982, is placed in subjective synonymy with Scolopendra dehaani. A survey of external morphology of the genital segments confirms its potential for improving species identification in Scolopendra. Some observations on biology and behaviour are recorded based on field surveys in this area. PMID:27408540

  12. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand

    PubMed Central

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity. PMID:28421053

  13. The size prediction of potential inclusions embedded in the sub-surface of fused silica by damage morphology

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Qiu, Rong; Wang, Kunpeng; Zhang, Jiangmei; Zhou, Guorui; Yao, Ke; Jiang, Yong; Zhou, Qiang

    2017-04-01

    A model for predicting the size ranges of different potential inclusions initiating damage on the surface of fused silica has been presented. This accounts for the heating of nanometric inclusions whose absorptivity is described based on Mie Theory. The depth profile of impurities has been measured by ICP-OES. By the measured temporal pulse profile on the surface of fused silica, the temperature and thermal stress has been calculated. Furthermore, considering the limit conditions of temperature and thermal stress strength for different damage morphologies, the size range of potential inclusions for fused silica is discussed.

  14. Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection

    NASA Astrophysics Data System (ADS)

    Li, W. Q.; Wang, G.; Zhang, X. N.; Geng, H. P.; Shen, J. L.; Wang, L. S.; Zhao, J.; Xu, L. F.; Zhang, L. J.; Wu, Y. Q.; Tai, R. Z.; Chen, G.

    2015-09-01

    Here we present an in-depth and comprehensive study of the effect of the geometry and morphology of nanoarray (NA) substrates on their surface-enhanced Raman scattering (SERS) performance. The high-quality SERS-active NA substrates of various unit shapes and pitches are assembled through electron beam lithography and fabricated by electron beam physical vapor deposition. Good agreement is found on comparing the Raman scattering results with the integrals of the fourth power of local electric fields from the three-dimensional numerical simulations. A novel type of hybrid NA substrate composed of disordered nanoparticles and a periodic NA is fabricated and characterized. The morphology of NAs has little influence on the SERS performance of hybrid NA substrates and they perform better than both their counterparts pure NA and disordered nanoparticle substrates.

  15. Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection.

    PubMed

    Li, W Q; Wang, G; Zhang, X N; Geng, H P; Shen, J L; Wang, L S; Zhao, J; Xu, L F; Zhang, L J; Wu, Y Q; Tai, R Z; Chen, G

    2015-10-07

    Here we present an in-depth and comprehensive study of the effect of the geometry and morphology of nanoarray (NA) substrates on their surface-enhanced Raman scattering (SERS) performance. The high-quality SERS-active NA substrates of various unit shapes and pitches are assembled through electron beam lithography and fabricated by electron beam physical vapor deposition. Good agreement is found on comparing the Raman scattering results with the integrals of the fourth power of local electric fields from the three-dimensional numerical simulations. A novel type of hybrid NA substrate composed of disordered nanoparticles and a periodic NA is fabricated and characterized. The morphology of NAs has little influence on the SERS performance of hybrid NA substrates and they perform better than both their counterparts pure NA and disordered nanoparticle substrates.

  16. pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: A step-by-step structural analysis.

    PubMed

    Pica, Andrea; Leone, Serena; Di Girolamo, Rocco; Donnarumma, Federica; Emendato, Alessandro; Rega, Michele Fortunato; Merlino, Antonello; Picone, Delia

    2018-04-01

    MNEI and its variant Y65R-MNEI are sweet proteins with potential applications as sweeteners in food industry. Also, they are often used as model systems for folding and aggregation studies. X-ray crystallography was used to structurally characterize Y65R-MNEI at five different pHs, while circular dichroism and fluorescence spectroscopy were used to study their thermal and chemical stability. ThT assay and AFM were used for studying the kinetics of aggregation and morphology of the aggregates. Crystal structures of Y65R-MNEI revealed the existence of a dimer in the asymmetric unit, which, depending on the pH, assumes either an open or a closed conformation. The pH dramatically affects kinetics of formation and morphology of the aggregates: both MNEI and Y65R-MNEI form fibrils at acidic pH while amorphous aggregates are observed at neutral pH. The mutation Y65R induces structural modifications at the C-terminal region of the protein, which account for the decreased stability of the mutant when compared to MNEI. Furthermore, the pH-dependent conformation of the Y65R-MNEI dimer may explain the different type of aggregates formed as a function of pH. The investigation of the structural bases of aggregation gets us closer to the possibility of controlling such process, either by tuning the physicochemical environmental parameters or by site directed mutagenesis. This knowledge is helpful to expand the range of stability of proteins with potential industrial applications, such as MNEI and its mutant Y65R-MNEI, which should ideally preserve their structure and soluble state through a wide array of conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris

    USGS Publications Warehouse

    Roach, L.H.; Mustard, J.F.; Swayze, G.; Milliken, R.E.; Bishop, J.L.; Murchie, S.L.; Lichtenberg, K.

    2010-01-01

    New high-resolution spectral and morphologic imaging of deposits on walls and floor of Ius Chasma extend previous geomorphic mapping, and permit a new interpretation of aqueous processes that occurred during the development of Valles Marineris. We identify hydrated mineralogy based on visible-near infrared (VNIR) absorptions. We map the extents of these units with CRISM spectral data as well as morphologies in CTX and HiRISE imagery. Three cross-sections across Ius Chasma illustrate the interpreted mineral stratigraphy. Multiple episodes formed and transported hydrated minerals within Ius Chasma. Polyhydrated sulfate and kieserite are found within a closed basin at the lowest elevations in the chasma. They may have been precipitates in a closed basin or diagenetically altered after deposition. Fluvial or aeolian processes then deposited layered Fe/Mg smectite and hydrated silicate on the chasma floor, postdating the sulfates. The smectite apparently was weathered out of Noachian-age wallrock and transported to the depositional sites. The overlying hydrated silicate is interpreted to be an acid-leached phyllosilicate transformed from the underlying smectite unit, or a smectite/jarosite mixture. The finely layered smectite and massive hydrated silicate units have an erosional unconformity between them, that marks a change in surface water chemistry. Landslides transported large blocks of wallrock, some altered to contain Fe/Mg smectite, to the chasma floor. After the last episode of normal faulting and subsequent landslides, opal was transported short distances into the chasma from a few m-thick light-toned layer near the top of the wallrock, by sapping channels in Louros Valles. Alternatively, the material was transported into the chasma and then altered to opal. The superposition of different types of hydrated minerals and the different fluvial morphologies of the units containing them indicate sequential, distinct aqueous environments, characterized by alkaline, then circum-neutral, and finally very acidic surface or groundwater chemistry. ?? 2009 Elsevier Inc. All rights reserved.

  18. Geological Mapping of Impact Melt Deposits at Lunar Complex Craters: New Insights into Morphological Diversity, Distribution and the Cratering Process

    NASA Astrophysics Data System (ADS)

    Dhingra, D.; Head, J. W., III; Pieters, C. M.

    2014-12-01

    We have completed high resolution geological mapping of impact melt deposits at the young lunar complex craters (<1 billion years) Copernicus, Jackson and Tycho using data from recent missions. Crater floors being the largest repository of impact melt, we have mapped their morphological diversity expressed in terms of varied surface texture, albedo, character and occurrence of boulder units as well as relative differences in floor elevation. Examples of wall and rim impact melt units and their relation to floor units have also been mapped. Among the distinctive features of these impact melt deposits are: 1) Impact Melt Wave Fronts: These are extensive (sometimes several kilometers in length) and we have documented their occurrence and distribution in different parts of the crater floor at Jackson and Tycho. These features emphasize melt mobility and style of emplacement during the modification stage of the craters. 2) Variations in Floor Elevations: Spatially extensive and coherent sections of crater floors have different elevations at all the three craters. The observed elevation differences could be caused by subsidence due to cooling of melt and/or structural failure, together with a contribution from regional slope. 3) Melt-Covered Megablocks: We also observe large blocks/rock-fragments (megablocks) covered in impact melt, which could be sections of collapsed wall or in some cases, subdued sections of central peaks. 4) Melt-Covered Central Peaks: Impact melt has also been mapped on the central peaks but varies in spatial extent among the craters. The presence of melt on peaks must be taken into account when interpreting peak mineralogy as exposures of deeper crust. 5) Boulder Distribution: Interesting trends are observed in the distribution of boulder units of various sizes; some impact melt units have spatially extensive boulders, while boulder distribution is very scarce in other units on the floor. We interpret these distributions to be influenced by a) the differential collapse of the crater walls during the modification stage, and b) the amount of relative melt volume retained in different parts of the crater floor. These observations provide important documentation of the morphological diversity and better understanding of the emplacement and final distribution of impact melt deposits.

  19. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant.

    PubMed

    Lachenbruch, Barbara; McCulloh, Katherine A

    2014-12-01

    This review presents a framework for evaluating how cells, tissues, organs, and whole plants perform both hydraulic and mechanical functions. The morphological alterations that affect dual functionality are varied: individual cells can have altered morphology; tissues can have altered partitioning to functions or altered cell alignment; and organs and whole plants can differ in their allocation to different tissues, or in the geometric distribution of the tissues they have. A hierarchical model emphasizes that morphological traits influence the hydraulic or mechanical properties; the properties, combined with the plant unit's environment, then influence the performance of that plant unit. As a special case, we discuss the mechanisms by which the proxy property wood density has strong correlations to performance but without direct causality. Traits and properties influence multiple aspects of performance, and there can be mutual compensations such that similar performance occurs. This compensation emphasizes that natural selection acts on, and a plant's viability is determined by, its performance, rather than its contributing traits and properties. Continued research on the relationships among traits, and on their effects on multiple aspects of performance, will help us better predict, manage, and select plant material for success under multiple stresses in the future. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Systematics of spiny predatory katydids (Tettigoniidae: Listroscelidinae) from the Brazilian Atlantic Forest based on morphology and molecular data.

    PubMed

    Fialho, Verônica Saraiva; Chamorro-Rengifo, Juliana; Lopes-Andrade, Cristiano; Yotoko, Karla Suemy Clemente

    2014-01-01

    Listroscelidinae (Orthoptera: Tettigoniidae) are insectivorous Pantropical katydids whose taxonomy presents a long history of controversy, with several genera incertae sedis. This work focused on species occurring in the Brazilian Atlantic Forest, one of the world's most threatened biomes. We examined material deposited in scientific collections and visited 15 conservation units from Rio de Janeiro to southern Bahia between November 2011 and January 2012, catching 104 specimens from 10 conservation units. Based on morphological and molecular data we redefined Listroscelidini, adding a new tribe, new genus and eight new species to the subfamily. Using morphological analysis, we redescribed and added new geographic records for six species, synonymized two species and built a provisional identification key for the Atlantic Forest Listroscelidinae. Molecular results suggest two new species and a new genus to be described, possibly by the fission of the genus Hamayulus. We also proposed a 500 bp region in the final portion of the COI to be used as a molecular barcode. Our data suggest that the Atlantic Forest Listroscelidinae are seriously endangered, because they occur in highly preserved forest remnants, show high rates of endemism and have a narrow geographic distribution. Based on our results, we suggest future collection efforts must take into account the molecular barcode data to accelerate species recognition.

  1. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated.more » It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.« less

  2. Cerebral morphology and dopamine D2/D3receptor distribution in humans: A combined [18F]fallypride and voxel-based morphometry study

    PubMed Central

    Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.

    2009-01-01

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373

  3. Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study.

    PubMed

    Woodward, Neil D; Zald, David H; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M Sib; Baldwin, Ronald M; Cowan, Ronald L; Li, Rui; Kessler, Robert M

    2009-05-15

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.

  4. The Morphological Diversity of DIG in Halos of Edge-on Spirals as Revealed by HST/ACS

    NASA Astrophysics Data System (ADS)

    Rossa, J.; Dahlem, M.; Dettmar, R.-J.; van der Marel, R. P.

    2012-09-01

    We present new results on extraplanar DIG (eDIG), based on high spatial resolution narrowband imaging observations of four late-type, actively star-forming edge-on spirals, obtained with ACS on-board HST. Our Hα observations reveal a multitude of structures on both small and large scales. Whereas all four galaxies have been studied with ground-based telescopes before, here the small scale structure of the extended emission line gas is presented for the very first time at a spatial resolution of 0.05'', corresponding to 5 pc at the mean distance to our galaxies. The eDIG morphology is very different for all four targets, as a result of their different star formation activity and galaxy mass. There is a very smooth DIG morphology observed in two of the galaxies (NGC 4634 and NGC 5775), whereas the other two (NGC 4700 and NGC 7090) show a much more complex morphology with intricate filaments, and bubbles and supershells. We find that the morphology of the eDIG, in particular the break-up of diffuse emission into filaments in galaxy halos, shows a strong dependence on the level of star formation activity per unit area, and eDIG can be arranged into a morphological sequence.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ruixue; Chen, Kezheng, E-mail: dxb@sdu.edu.cn; Liao, Zhongmiao

    Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed ofmore » one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.« less

  6. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis

    PubMed Central

    Yoshida, Aiko; Sakai, Nobuaki; Uekusa, Yoshitsugu; Imaoka, Yuka; Itagaki, Yoshitsuna; Suzuki, Yuki

    2018-01-01

    Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. PMID:29723197

  7. Volitional Weight-Lifting in Rats Promotes Adaptation via Performance and Muscle Morphology prior to Gains in Muscle Mass

    PubMed Central

    Rader, Erik P; Miller, G Roger; Chetlin, Robert D; Wirth, Oliver; Baker, Brent A

    2014-01-01

    Investigation of volitional animal models of resistance training has been instrumental in our understanding of adaptive training. However, these studies have lacked reactive force measurements, a precise performance measure, and morphological analysis at a distinct phase of training – when initial strength gains precede muscle hypertrophy. Our aim was to expose rats to one month of training (70 or 700 g load) on a custom-designed weight-lifting apparatus for analysis of reactive forces and muscle morphology prior to muscle hypertrophy. Exclusively following 700 g load training, forces increased by 21% whereas muscle masses remained unaltered. For soleus (SOL) and tibialis anterior (TA) muscles, 700 g load training increased muscle fiber number per unit area by ∼20% and decreased muscle fiber area by ∼20%. Additionally, number of muscle fibers per section increased by 18% for SOL muscles. These results establish that distinct morphological alterations accompany early strength gains in a volitional animal model of load-dependent adaptive resistance training. PMID:25392697

  8. Monitoring the change of mitochondrial morphology and its metabolism of the breast cancer cells with the treatment of Hsp70 inhibitor during heat shock by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Yu, Biying; Yang, Hongqin; Zhang, Xiaoman; Li, Hui

    2016-10-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses, and all cellular compartments and metabolic processes are involved in HS response. The heat shock proteins (Hsps) expression enhanced during HS mainly localized in subcellular compartments, such as cytosol, endoplasmic reticulum and mitochandria. The major inducible heat shock protein 70 (Hsp70) modulate cellular homeostasis and promote cellular survival by blocking a caspase independent cell death through its association with apoptosis inducing factor. Mitochondria as the critical elements of HS response that participate in key metabolic reactions, and the changes in mitochonrial morphology may impact on mitochondrial metabolism. In this paper, the changes of mitorchondrial morphology in breast cancer cell have been monitored in real time after heat shock (43 °) by the fluorescence imaging, and the influence of Hsp70 inhibitor on mitochandrial structures have also been investigated. Then the information of mitochondrial metabolism which can be characterized by the level of the mitochondrial membrane potential has also been obtained wihout/with the treatment of Hsp70 inhibitor. Our data indicated that the mitochandrial morphology were related with the mitochandrial membrane potential, and the mitochandrial membrane potential was influenced significantly with the treatment of Hsp70 inhibitor during HS.

  9. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled model was run to predict the effects of Sandy-like and Irene-like hurricanes with different storm tracks and wind intensities on wetland morphology in Jamaica Bay. Model results indicate that, in Jamaica Bay salt marshes, the morphological changes (greater than 5 millimeters [mm] determined by the long-term marsh accretion rate) caused by Hurricane Sandy were complex and spatially heterogeneous. Most of the erosion (5–40 mm) and deposition (5–30 mm) were mainly characterized by fine sand for channels and bay bottoms and by mud for marsh areas. Hurricane Sandy-generated deposition and erosion were generated locally. The storm-induced net sediment input through Rockaway Inlet was only about 1 percent of the total amount of the sediment reworked by the hurricane. Salt marshes inside the western part of the bay showed erosion overall while marshes inside the eastern part showed deposition from Hurricane Sandy. Model results indicated that most of the marshes could recover from Hurricane Sandy-induced erosion after 1 year and demonstrated continued marsh accretion after the hurricane over the course of long simulation periods although the effect (accretion) was diminished. Local waves and currents generated by Hurricane Sandy appeared to play a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Hypothetical hurricanes, depending on their track and intensity, cause variable responses in spatial patterns of sediment deposition and erosion compared to simulations without the hurricane. In general, hurricanes passing west of the Jamaica Bay estuary appear to be more destructive to the salt marshes than those passing the east. Consequently, marshes inside the western part of the bay were likely to be more vulnerable to hurricanes than marshes inside the eastern part of the bay. 

  10. The effects of target characteristics on fresh crater morphology - Preliminary results for the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Cintala, M. J.; Wood, C. A.; Head, J. W.

    1977-01-01

    The results are reported of an analysis of the characteristics of fresh crater samples occurring on the two major geologic units on the moon (maria and highlands) and on Mercury (smooth plains and cratered terrain). In particular, the onset diameters and abundances of central peaks and terraces are examined and compared for both geologic units on each planet in order to detect any variations that might be due to geologic unit characteristics. The analysis of lunar crater characteristics is based on information provided in the LPL Catalog of Lunar Craters of Wood and Andersson (1977). The Mercurian data set utilized is related to a program involving the cataloguing of Mercurian craters visible in Mariner 10 photography. It is concluded that the characteristics of the substrate have exerted a measurable influence on the occurrence of central peaks, terraces, and scallops in flash crater samples. Therefore, in order to compare the morphologic characteristics of fresh crater populations between planets, an analysis of possible substrate-related differences must first be undertaken for each planet under consideration. It is suggested that large variations in gravity do not produce major variations in crater wall failure.

  11. The relevance of morphology for habitat use and locomotion in two species of wall lizards

    NASA Astrophysics Data System (ADS)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2016-01-01

    Understanding if morphological differences between organisms that occupy different environments are associated to differences in functional performance can suggest a functional link between environmental and morphological variation. In this study we examined three components of the ecomorphological paradigm - morphology, locomotor performance and habitat use - using two syntopic wall lizards endemic to the Iberian Peninsula as a case study to establish whether morphological variation is associated with habitat use and determine the potential relevance of locomotor performance for such an association. Differences in habitat use between both lizards matched patterns of morphological variation. Indeed, individuals of Podarcis guadarramae lusitanicus, which are more flattened, used more rocky environments, whereas Podarcis bocagei, which have higher heads, used more vegetation than rocks. These patterns translated into a significant association between morphology and habitat use. Nevertheless, the two species were only differentiated in some of the functional traits quantified, and locomotor performance did not exhibit an association with morphological traits. Our results suggest that the link between morphology and habitat use is mediated by refuge use, rather than locomotor performance, in this system, and advise caution when extrapolating morphology-performance-environment associations across organisms.

  12. Tectonic signatures on active margins

    NASA Astrophysics Data System (ADS)

    Hogarth, Leah Jolynn

    High-resolution Compressed High-Intensity Radar Pulse (CHIRP) surveys offshore of La Jolla in southern California and the Eel River in northern California provide the opportunity to investigate the role of tectonics in the formation of stratigraphic architecture and margin morphology. Both study sites are characterized by shore-parallel tectonic deformation, which is largely observed in the structure of the prominent angular unconformity interpreted as the transgressive surface. Based on stratal geometry and acoustic character, we identify three sedimentary sequences offshore of La Jolla: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. The estuarine unit is confined to the canyon edges in what may have been embayments during the last sea-level rise. The healing-phase unit appears to infill rough areas on the transgressive surface that may be related to relict fault structures. The upper transparent unit is largely controlled by long-wavelength tectonic deformation due to the Rose Canyon Fault. This unit is also characterized by a mid-shelf (˜40 m water depth) thickness high, which is likely a result of hydrodynamic forces and sediment grain size. On the Eel margin, we observe three distinct facies: a seaward-thinning unit truncated by the transgressive surface, a healing-phase unit confined to the edges of a broad structural high, and a highly laminated upper unit. The seaward-thinning wedge of sediment below the transgressive surface is marked by a number of channels that we interpret as distributary channels based on their morphology. Regional divergence of the sequence boundary and transgressive surface with up to ˜8 m of sediment preserved across the interfluves suggests the formation of subaerial accommodation during the lowstand. The healing-phase, much like that in southern California, appears to infill rough areas in the transgressive surface. Reflectors within the laminated upper unit exhibit divergence towards the Eel River Syncline, which suggests that deposition in the syncline is syntectonic. The transgressive surface is offset across the Eureka Anticline indicating deformation has occurred since ˜10 ka. The relief observed along the transgressive surface is consistent with deformation rates measured onshore.

  13. Quantitative techniques for musculoskeletal MRI at 7 Tesla.

    PubMed

    Bangerter, Neal K; Taylor, Meredith D; Tarbox, Grayson J; Palmer, Antony J; Park, Daniel J

    2016-12-01

    Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems.

  14. Observation of shift in band gap with annealing in hydrothermally synthesized TiO2-thin films

    NASA Astrophysics Data System (ADS)

    Pawar, Vani; Jha, Pardeep K.; Singh, Prabhakar

    2018-05-01

    Anatase TiO2 thin films were synthesized by hydrothermal method. The films were fabricated on a glass substrate by spin coating unit and annealed at 500 °C for 2 hours in ambient atmosphere. The effect of annealing on microstructure and optical properties of TiO2 thin films namely, just deposited and annealed thin film were investigated. The XRD data confirms the tetragonal crystalline structure of the films with space group I41/amd. The surface morphology suggests that TiO2 particles are almost homogeneous in size and annealing of the film affect the grain growth of the particles. The band gap energy increases from 2.81 to 3.34 eV. On the basis of our observation, it can be concluded that the annealing of TiO2 thin films enhances the absorption range and it may find potential application in the field of solar cells.

  15. Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive.

    PubMed

    Tingirikari, Jagan Mohan Rao; Kothari, Damini; Shukla, Rishikesh; Goyal, Arun

    2014-09-01

    Dextran produced from Weissella cibaria JAG8 was purified and characterized. The molecular mass of dextran as determined by the gel filtration and copper bicinchoninate method was approximately, 800 kDa. Monosaccharide analysis revealed that the polysaccharide comprised only glucose units. Dynamic light scattering study confirmed the mono-disperse nature of dextran with hydrodynamic radius of 900 nm. Surface morphology study of dextran by scanning electron microscopy showed the porous web like structure. Cytotoxicity studies on human cervical cancer (HeLa) cell line showed non-toxic and biocompatible nature of dextran. The relative browning for dextran from W. cibaria JAG8 was similar to commercial prebiotic Nutraflora P-95 and 3-fold lower than Raftilose P-95. Synthesis of dextran by dextransucrase treated, sucrose-supplemented skimmed milk revealed the promising potential of dextran as a food additive.

  16. Coastal Environment, Bathymetry and Physical Oceanography along the Beaufort, Chukchi and Bering Seas.

    DTIC Science & Technology

    1980-01-01

    Unit No. 347 , Vol. III, Chukchi-Beaufort Sea, 409 pp. 3. Hopkins, D.M. and R.W. Hartz, 1978, Coastal morphology, coastal erosion, and barrier islands of...U.S. Department of Commerce, Alaska Outer Continental Shelf Environmental Assessment Program Final Report, Research Unit No. 347 , vol. III, Chukchi...Assessment Program Final Report, Research Univ No. 347 , vol. II, Bering Sea, 443 pp. 3. U.S. Department of Commerce, 1964, Pacific and Arctic Coasts

  17. Changes in channel morphology over human time scales [Chapter 32

    Treesearch

    John M. Buffington

    2012-01-01

    Rivers are exposed to changing environmental conditions over multiple spatial and temporal scales, with the imposed environmental conditions and response potential of the river modulated to varying degrees by human activity and our exploitation of natural resources. Watershed features that control river morphology include topography (valley slope and channel...

  18. Characterization of the Morphology of RDX Particles Formed by Laser Ablation

    DTIC Science & Technology

    2012-02-01

    military-grade RDX can contain significant amounts of HMX (up to 5% for type-I RDX produced by direct nitration with the Woolwich process and up to...potentially produce RDX particles with specific morphologies in support of microstructural experiments for the Multiscale Response of Energetic

  19. Tracking Hierarchical Processing in Morphological Decomposition with Brain Potentials

    ERIC Educational Resources Information Center

    Lavric, Aureliu; Elchlepp, Heike; Rastle, Kathleen

    2012-01-01

    One important debate in psycholinguistics concerns the nature of morphological decomposition processes in visual word recognition (e.g., darkness = {dark} + {-ness}). One theory claims that these processes arise during orthographic analysis and prior to accessing meaning (Rastle & Davis, 2008), and another argues that these processes arise through…

  20. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles.

    PubMed

    Tan, Li Huey; Xing, Hang; Lu, Yi

    2014-06-17

    CONSPECTUS: Several properties of nanomaterials, such as morphologies (e.g., shapes and surface structures) and distance dependent properties (e.g., plasmonic and quantum confinement effects), make nanomaterials uniquely qualified as potential choices for future applications from catalysis to biomedicine. To realize the full potential of these nanomaterials, it is important to demonstrate fine control of the morphology of individual nanoparticles, as well as precise spatial control of the position, orientation, and distances between multiple nanoparticles. In addition, dynamic control of nanomaterial assembly in response to multiple stimuli, with minimal or no error, and the reversibility of the assemblies are also required. In this Account, we summarize recent progress of using DNA as a powerful programmable tool to realize the above goals. First, inspired by the discovery of genetic codes in biology, we have discovered DNA sequence combinations to control different morphologies of nanoparticles during their growth process and have shown that these effects are synergistic or competitive, depending on the sequence combination. The DNA, which guides the growth of the nanomaterial, is stable and retains its biorecognition ability. Second, by taking advantage of different reactivities of phosphorothioate and phosphodiester backbone, we have placed phosphorothioate at selective positions on different DNA nanostructures including DNA tetrahedrons. Bifunctional linkers have been used to conjugate phosphorothioate on one end and bind nanoparticles or proteins on the other end. In doing so, precise control of distances between two or more nanoparticles or proteins with nanometer resolution can be achieved. Furthermore, by developing facile methods to functionalize two hemispheres of Janus nanoparticles with two different DNA sequences regioselectively, we have demonstrated directional control of nanomaterial assembly, where DNA strands with specific hybridization serve as orthogonal linkers. Third, by using functional DNA that includes DNAzyme, aptamer, and aptazyme, dynamic control of assemblies of gold nanoparticles, quantum dots, carbon nanotubes, and iron oxide nanoparticles in response to one or more stimuli cooperatively have been achieved, resulting in colorimetric, fluorescent, electrochemical, and magnetic resonance signals for a wide range of targets, such as metal ions, small molecules, proteins, and intact cells. Fourth, by mimicking biology, we have employed DNAzymes as proofreading units to remove errors in nanoparticle assembly and further used DNAzyme cascade reactions to modify or repair DNA sequences involved in the assembly. Finally, by taking advantage of different affinities of biotin and desthiobiotin toward streptavidin, we have demonstrated reversible assembly of proteins on DNA origami.

  1. Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Lysakowski, A.; Minor, L. B.; Fernandez, C.; Goldberg, J. M.

    1995-01-01

    1. Semicircular-canal afferents in the squirrel monkey were characterized by their resting discharge, discharge regularity, sensitivity to galvanic currents delivered to the ear (beta *), the gain (g2Hz), and phase lead (phi 2Hz) of their response to 2-Hz sinusoidal head rotations, and their antidromic conduction velocity. Discharge regularity was measured by a normalized coefficient of variation (CV*); the higher the CV*, the more irregular the discharge. g2Hz and phi 2Hz were expressed relative to angular head velocity. 2. These physiological measures were used in an attempt to discern the discharge properties of the three morphological classes of afferents innervating the crista. Presumed bouton (B) fibers were identified as slowly conducting afferents. Presumed calyx (C) fibers were recognized by their irregular discharge and low rotational gains. The remaining fibers were considered to be dimorphic (D) units. Single letters (B, C, and D) are used to emphasize that the classification is based on circumstantial evidence and may be wrong for individual fibers. Of the 125 identified fibers, 13 (10%) were B units, 36 (29%) were C units, and 76 (61%) were D units. 3. B units were regularly discharging D units ranged from regularly to irregularly discharging. C units were the most irregularly discharging afferents encountered. The mean resting discharge for the entire sample was 74 spikes/s. Resting rates were similar for regularly discharging B and D units and higher than those for irregularly discharging C and D units. 4. Except for their lower conduction velocities, the discharge properties of B units are indistinguishable from those of regularly discharging D units. Many of the discharge properties of B and D units vary with discharge regularity. There is a strong, positive relation when beta *, g2Hz, or phi 2Hz is plotted against CV*. For beta * or phi 2Hz, C units conform to the relation for B and D units. In contrast, values of g2Hz for C units are three to four times lower than predicted from the relation for the other two classes. 5. Internal (axon) diameters (dp) of peripheral vestibular-nerve fibers were estimated from central antidromic conduction velocities. Thick fibers (dp > or = 49 microns) were irregularly discharging, mostly C units. Medium-sized fibers (dp = 1.5-4 microns) included regular, intermediate, and irregular D units, as well as C units. Thin fibers (dp < or = 1.5 microns) were defined as B units.(ABSTRACT TRUNCATED AT 400 WORDS).

  2. Floral ontogeny and gene protein localization rules out euanthial interpretation of reproductive units in Lepironia (Cyperaceae, Mapanioideae, Chrysitricheae)

    PubMed Central

    Prychid, C. J.; Bruhl, J. J.

    2013-01-01

    Background and Aims In the sedge subfamily Mapanioideae there are considerable discrepancies between the standard trimerous monocot floral architecture expected and the complex floral and inflorescence morphologies seen. Decades of debate about whether the basic reproductive units are single flowers or pseudanthia have not resolved the question. This paper evaluates current knowledge about Mapaniid reproductive structures and presents an ontogenetic study of the Mapaniid genus Lepironia with the first floral protein expression maps for the family, localizing the products of the APETALA1/FRUITFULL-like (AP1/FUL) MADS-box genes with the aim of shedding light on this conundrum. Methods A range of reproductive developmental stages, from spikelet primordia through to infructescence material, were processed for anatomical and immunohistochemical analyses. Key Results The basic reproductive unit is subtended by a bract and possesses two prophyll-like structures, the first organs to be initiated on the primordium, which grow rapidly, enclosing two whorls of initiating leaf-like structures with intervening stamens and a central gynoecium, formed from an annular primordium. The subtending bract and prophyll-like structures possess very different morphologies from that of the internal leaf-like structures and do not show AP1/FUL-like protein localization, which is otherwise strongly localized in the internal leaf-like structures, stamens and gynoecia. Conclusions Results support the synanthial hypothesis as the evolutionary origin of the reproductive unit. Thus, the basic reproductive unit in Lepironia is an extremely condensed pseudanthium, of staminate flowers surrounding a central terminal pistillate female flower. Early in development the reproductive unit becomes enclosed by a split-prophyll, with the whole structure subtended by a bract. PMID:23723258

  3. The Potential of Computational Fluid Dynamics Simulation on Serial Monitoring of Hemodynamic Change in Type B Aortic Dissection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Simon C. H., E-mail: simonyu@cuhk.edu.hk; Liu, Wen; Wong, Randolph H. L.

    PurposeWe aimed to assess the potential of computational fluid dynamics simulation (CFD) in detecting changes in pressure and flow velocity in response to morphological changes in type B aortic dissection.Materials and MethodsPressure and velocity in four morphological models of type B aortic dissection before and after closure of the entry tear were calculated with CFD and analyzed for changes among the different scenarios. The control model (Model 1) was patient specific and built from the DICOM data of CTA, which bore one entry tear and three re-entry tears. Models 2–4 were modifications of Model 1, with two re-entry tears lessmore » in Model 2, one re-entry tear more in Model 3, and a larger entry tear in Model 4.ResultsThe pressure and velocity pertaining to each of the morphological models were unique. Changes in pressure and velocity findings were accountable by the changes in morphological features of the different models. There was no blood flow in the false lumen across the entry tear after its closure, the blood flow direction across the re-entry tears was reversed after closure of the entry tear.ConclusionCFD simulation is probably useful to detect hemodynamic changes in the true and false lumens of type B aortic dissection in response to morphological changes, it may potentially be developed into a non-invasive and patient-specific tool for serial monitoring of hemodynamic changes of type B aortic dissection before and after treatment.« less

  4. Assessment of the effects of multiple extreme floods on flow and transport processes under competing flood protection and environmental management strategies.

    PubMed

    Tu, Tongbi; Carr, Kara J; Ercan, Ali; Trinh, Toan; Kavvas, M Levent; Nosacka, John

    2017-12-31

    Extreme floods are regarded as one of the most catastrophic natural hazards and can result in significant morphological changes induced by pronounced sediment erosion and deposition processes over the landscape. However, the effects of extreme floods of different return intervals on the floodplain and river channel morphological evolution with the associated sediment transport processes are not well explored. Furthermore, different basin management action plans, such as engineering structure modifications, may also greatly affect the flood inundation, sediment transport, solute transport and morphological processes within extreme flood events. In this study, a coupled two-dimensional hydrodynamic, sediment transport and morphological model is applied to evaluate the impact of different river and basin management strategies on the flood inundation, sediment transport dynamics and morphological changes within extreme flood events of different magnitudes. The 10-year, 50-year, 100-year and 200-year floods are evaluated for the Lower Cache Creek system in California under existing condition and a potential future modification scenario. Modeling results showed that select locations of flood inundation within the study area tend to experience larger inundation depth and more sediment is likely to be trapped in the study area under potential modification scenario. The proposed two dimensional flow and sediment transport modeling approach implemented with a variety of inflow conditions can provide guidance to decision-makers when considering implementation of potential modification plans, especially as they relate to competing management strategies of large water bodies, such as the modeling area in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The impact of long-term water stress on relative growth rate and morphology of needles and shoots of Metasequoia glyptostroboides seedlings: research toward identifying mechanistic models.

    PubMed

    Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T

    2011-09-01

    Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.

  6. [Contribution of endogenous potentials to the study of cognitive development in children: review of the literature].

    PubMed

    Robaey, P

    1987-09-01

    A review of the studies concerning age-related changes of the cognitive event-related potentials is presented. Graded changes (with little or no difference in waveform morphology but shifts in component latency or amplitude) draw to continuous developmental models, but morphological waveform differences are assumed to reflect fundamental differences in modes of cognitive processing. The authors equally present an experimental paradigm indicating that a multifactorial model of amplitude variations is able to reflect the passing from one cognitive stage to the next one, according to Piaget's theory.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oohama, N.; Okamura, S.; Fukugita, M.

    A bulge-disk decomposition is made for 737 spiral and lenticular galaxies drawn from a Sloan Digital Sky Survey galaxy sample for which morphological types are estimated. We carry out the bulge-disk decomposition using the growth curve fitting method. It is found that bulge properties, effective radius, effective surface brightness, and also absolute magnitude, change systematically with the morphological sequence; from early to late types, the size becomes somewhat larger, and surface brightness and luminosity fainter. In contrast, disks are nearly universal, their properties remaining similar among disk galaxies irrespective of detailed morphologies from S0 to Sc. While these tendencies weremore » often discussed in previous studies, the present study confirms them based on a large homogeneous magnitude-limited field galaxy sample with morphological types estimated. The systematic change of bulge-to-total luminosity ratio, B/T, along the morphological sequence is therefore not caused by disks but mostly by bulges. It is also shown that elliptical galaxies and bulges of spiral galaxies are unlikely to be in a single sequence. We infer the stellar mass density (in units of the critical mass density) to be OMEGA = 0.0021 for spheroids, i.e., elliptical galaxies plus bulges of spiral galaxies, and OMEGA = 0.00081 for disks.« less

  8. Psorodonotus venosus group (Orthoptera, Tettigoniidae; Tettigoniinae): geometric morphometry revealed two new species in the group.

    PubMed

    Kaya, Sarp; Korkmaz, E Mahir; Ciplak, Battal

    2013-12-17

    Psorodonotus (Orthoptera, Tettigoniidae) includes 11 species distributed in Caucasus, Anatolia and Balkans. Although its present taxonomy is problematic, mainly three species groups can be distinguished; (i) The Specularis Group, (ii) The Caucasicus Group and (iii) The Venosus Group. Our recent studies on the genus have revealed presence of two new species in the last species group. Morphology of the species group studied both qualitatively and quantitatively using linear metric data of pronotum, tegmina and hind femur, and geometric data of male cerci and ovipositor. Morphological data were accompanied by data obtained from male calling song. Morphological and song data were produced from six different populations from North and Eastern part of Turkey: (1) Hakkari, (2) Tendürek, (3) Giresun, (4) Artvin, (5) Kars and (6) Ağrı. Qualitative and quantitative morphology, either linear-metric or geometric, suggest last three population as members of the same unit, but each of other three as different units. Song data are also largely in support of the morphological results. Necessary illustrations were provided to document results visually. Following conclusions were made: (1) the Artvin, Kars and Ağrı populations represent typical P. venosus and the Giresun population P. rugulosus, (2) each of the Hakkari and Tendürek populations represents a new species and P. hakkari sp. n. and P. tendurek sp. n. described by comparing with other members of P. venosus group, (3) P. rugulosus, P. hakkari sp. n. and P. tendurek sp. n. differ from P. venosus mainly by the longer cerci (extend to or beyond end of abdomen) and indistinct tubercles on surface of pronotal disc in female. P. rugulosus and P. tendurek sp. n. are also similar by sharing presence of two loud elements in a syllable (one in P. venosus, song of P. hakkari sp. n. is not available). But, similarities in phenotype are in conflict with relationships suggested by genetic data. 

  9. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    NASA Technical Reports Server (NTRS)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  10. Longitudinal Stream Profile Morphology and Patterns of Knickpoint Propagation in the Bighorn Range

    NASA Astrophysics Data System (ADS)

    Safran, E. B.; Anderson, R. S.; Riihimaki, C. A.; Armstrong, J.

    2005-12-01

    The northern U. S. Rocky Mountains and the adjacent sedimentary basins are in a transient state of response to regional, Late Cenozoic exhumation. Assembling the history of landscape change there requires interpreting the morphology and genesis of transient landforms such as knickpoints in longitudinal stream profiles. We used concavity and normalized channel steepness indices to quantify the longitudinal profile morphology of >75 streams draining the east side of the Bighorn Range and the adjacent Powder River Basin. Our analyses show that individual units in the range-margin sedimentary cover rock exert a strong influence on longitudinal profile morphology. In the Tongue River and Crazy Woman Creek drainages, more than 50% of the streams examined had knickpoints localized within a resistant, siliceous dolomite. Knickpoints on most streams with drainage areas greater than ~100 km2 at the range front have migrated headward into the gneissic and plutonic core of the range. In the Clear Creek drainage, where the lateral extent of sedimentary cover rock is more restricted than in the adjacent drainages, knickpoints do not align with any particular unit. River profiles in the Powder River Basin beyond 10-20 km from the range front exhibit concavities of ~0.3-0.6 and normalized channel steepness indices of 40-60 (using 0.45 as a reference concavity). All profiles analyzed that extend into the mountain range exhibit at least one reach with exceptionally high (>2) concavity and relatively high (100-600) normalized channel steepness index, highlighting zones of transient adjustment to local base-level drop in the basin. Headwater reaches of range-draining streams exhibit variable but moderate values of concavity (0.15-0.9) and normalized channel steepness index (20-100). The varied morphology of these reaches reflects their passage across a relict surface of low relief but also the effects of glaciation and/or the signature of the narrow summit spine that caps the range.

  11. A Sub-microsecond Pulsed Plasma Jet for Endodontic Biofilm Disinfection

    NASA Astrophysics Data System (ADS)

    Jiang, Chunqi; Schaudinn, Christoph; Jaramillo, David E.; Gundersen, Martin A.; Costerton, J. William

    A pulsed, tapered cylindrical plasma jet, several centimeter long and <2 mm in diameter, has been generated by a concentric tubular device for root canal disinfection. This plasma dental probe is typically powered with ˜100 ns, 1 kHz, multi-kilovolt electric pulses and filled with 5 SLPM (standard liter per minute) He/(1%)O2 flow. We report here an in vitro study of the antimicrobial effect of the room temperature plasma jet against monolayer Enterococcus faecalis biofilms on bovine dentins. Resultant colony-forming unit counts were associated with changes in bacterial cell morphology observed using scanning electron microscopy (SEM) following the treatment and control. Treatment of dentin discs cultivated with E. faecalis monolayer biofilms with the plasma (average power ≈ 1 W) for 5 min resulted in 92.4% kill (P < 0.0001). Severe disruption of the cell membranes was observed for the plasma treatment group, while the morphology of the cells remained intact for the negative control group. In addition, a pilot ex vivo test was conducted to examine the bactericidal effect of the plasma against saliva-derived biofilms cultivated in human root canals. Conspicuous biofilm disruption and cleared dentinal surfaces were observed in the canal after the plasma treatment for 5 min. We ­conclude that this non-thermal pulsed plasma-based technology is a potential ­alternative or supplement to existing protocols for root canal disinfection.

  12. Synthesis and morphology of Ba1-xRE2x/3Nb2O6 nanocrystals with tungsten bronze structure in RE2O3-BaO-Nb2O5-B2O3 glasses (RE: Sm, Eu, Gd, Dy, Er)

    NASA Astrophysics Data System (ADS)

    Ida, H.; Shinozaki, K.; Honma, T.; Oh-ishi, K.; Komatsu, T.

    2012-12-01

    Ba1-xRE2x/3Nb2O6 nanocrystals with a tetragonal tungsten bronze (TTB) structure are synthesized using a conventional glass crystallization technique in 2.3RE2O3-27.4BaO-34.3Nb2O5-36B2O3 (mol%) (RE=Sm, Eu, Gd, Dy, and Er) glasses. One sharp crystallization peak is observed at ∼670 °C in both powdered and bulk glasses, and the formation of Ba1-xRE2x/3Nb2O6 nanocrystals with unit cell parameters of a∼1.24 nm and c∼0.39 nm was confirmed. It is found from high resolution transmission electron microscope observations that the morphology of Ba1-xRE2x/3Nb2O6 nanocrystals is ellipsoidal. Their average particle size is in the range of 15-60 nm and decreases with decreasing ionic radius of RE3+ being present in the precursor glasses. The optical transparent crystallized glass (bulk) shows the total photoluminescence (PL) quantum yield of 53% in the visible region of Eu3+ ions, suggesting a high potential of Ba1-xRE2x/3Nb2O6 nanocrystals as PL materials.

  13. Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.

    PubMed

    Chien, Karen B; Shah, Ramille N

    2012-02-01

    Soy protein modified with heat treatment and enzyme crosslinking using transglutaminase in maltodextrin was used to fabricate novel, porous three-dimensional scaffolds through lyophilization. Physical properties of scaffolds were characterized using scanning electron microscopy, mercury intrusion porosimetry, moisture content analysis and mechanical testing. Human mesenchymal stem cells (hMSC) were seeded and cultured in vitro on the scaffolds for up to 2 weeks, and changes in stem cell growth and morphology were examined. The resulting scaffolds had rough surfaces, irregular pores with size distributions between 10 and 125 μm, <5% moisture content and compressive moduli ranging between 50 and 100 Pa. Enzyme treatment significantly lowered the moisture content. Increasing amounts of applied enzyme units lowered the median pore size. Although enzyme treatment did not affect the mechanical properties of the scaffolds, it did increase the degradation time by at least 1 week. These changes in scaffold degradation altered the growth and morphology of seeded hMSC. Cell proliferation was observed in scaffolds containing 3% soy protein isolate treated with 1 U of transglutaminase. These results demonstrate that controlling scaffold degradation rates is crucial for optimizing hMSC growth on soy protein scaffolds and that soy protein scaffolds have the potential to be used in tissue engineering applications. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Diversity of Ktedonobacteria with Actinomycetes-Like Morphology in Terrestrial Environments

    PubMed Central

    Yabe, Shuhei; Sakai, Yasuteru; Abe, Keietsu; Yokota, Akira

    2017-01-01

    Bacteria with an actinomycetes-like morphology have recently been discovered, and the class Ktedonobacteria was created for these bacteria in the phylum Chloroflexi. They may prove to be a valuable resource with the potential to produce unprecedented secondary metabolites. However, our understanding of their diversity, richness, habitat, and ecological significance is very limited. We herein developed a 16S rRNA gene-targeted, Ktedonobacteria-specific primer and analyzed ktedonobacterial amplicons. We investigated abundance, diversity, and community structure in forest and garden soils, sand, bark, geothermal sediment, and compost. Forest soils had the highest diversity among the samples tested (1181–2934 operational taxonomic units [OTUs]; Chao 1 estimate, 2503–5613; Shannon index, 4.21–6.42). A phylogenetic analysis of representative OTUs revealed at least eight groups within unclassified Ktedonobacterales, expanding the known diversity of this order. Ktedonobacterial communities markedly varied among our samples. The common mesic environments (soil, sand, and bark) were dominated by diverse phylotypes within the eight groups. In contrast, compost and geothermal sediment samples were dominated by known ktedonobacterial families (Thermosporotrichaceae and Thermogemmatisporaceae, respectively). The relative abundance of Ktedonobacteria in the communities, based on universal primers, was ≤0.8%, but was 12.9% in the geothermal sediment. These results suggest that unknown diverse Ktedonobacteria inhabit common environments including forests, gardens, and sand at low abundances, as well as extreme environments such as geothermal areas. PMID:28321007

  15. Should we isolate human preantral follicles before or after cryopreservation of ovarian tissue?

    PubMed

    Vanacker, Julie; Luyckx, Valérie; Amorim, Christiani; Dolmans, Marie-Madeleine; Van Langendonckt, Anne; Donnez, Jacques; Camboni, Alessandra

    2013-04-01

    To evaluate the survival and growth potential of human preantral follicles isolated before and after cryopreservation. Pilot study. Gynecology research unit in a university hospital. Six women aged 27 to 32 years. Six ovarian biopsy samples were cut into two equal parts, half subjected to slow-freezing followed by follicle isolation (cryo-iso group) and alginate-matrigel embedding, and half immediately processed for follicle isolation and alginate-matrigel embedding followed by slow-freezing (iso-cryo group) or used as fresh controls (fresh group). Follicle number, viability, diameter, and morphology. After 1,134 preantral follicles had been isolated from fresh biopsy samples and 1,132 from frozen specimens, the three groups were compared before and after 7 days of in vitro culture (IVC) in alginate-matrigel beads. No statistically significant differences in viability were found between the three groups before or after IVC, but follicle diameter increased in all three groups after IVC. Morphology analysis revealed well-preserved follicles in both the iso-cryo and cryo-iso groups after IVC. Human preantral follicles can be successfully cryopreserved before or after isolation without impairing their ability to survive and grow in vitro. This could lead to development of new protocols for follicle cryopreservation, IVC, and grafting in clinical and research settings for fertility preservation. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Morphological plasticity of bacteria—Open questions

    PubMed Central

    Shen, Jie-Pan

    2016-01-01

    Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812

  17. Polygonal ridge networks on Mars: Diversity of morphologies and the special case of the Eastern Medusae Fossae Formation

    NASA Astrophysics Data System (ADS)

    Kerber, Laura; Dickson, James L.; Head, James W.; Grosfils, Eric B.

    2017-01-01

    Polygonal ridge networks, also known as boxwork or reticulate ridges, are found in numerous locations and geological contexts across Mars. Distinguishing the morphologies and geological context of the ridge networks sheds light on their potential as astrobiological and mineral resource sites of interest. The most widespread type of ridge morphology is characteristic of the Nili Fossae and Nilosyrtis region and consists of thin, criss-crossing ridges with a variety of heights, widths, and intersection angles. They are found in ancient Noachian terrains at a variety of altitudes (between -2500 and 2200 m) and geographic locations and are likely to be chemically altered fracture planes or mineral veins. They occur in the same general areas as valley networks and ancient lake basins, but they are not more numerous where these water-related features are concentrated, and can appear in places where th morphologies are absent. Similarly, some of the ridge networks are located near hydrated mineral detections, but there is not a one-to-one correlation. Smaller, light-toned ridges of variable widths have been found in Gale Crater and other rover sites and are interpreted to be smaller versions of the Nili-like ridges, mostly formed by the mineralization of fractures. This type of ridge is likely to be found in many other places on Mars as more high-resolution data become available. Sinus Meridiani contains many flat-topped ridges arranged into quasi-circular patterns. The ridges are eroding from a clay-rich unit, and could be formed by a similar process as the Nili-type ridges, but at a much larger scale and controlled by fractures made through a different process. Hellas Basin is host to a fourth type of ridge morphology consisting of large, thick, light-toned ridges forming regular polygons at several superimposed scales. While still enigmatic, these are most likely to be the result of sediment-filled fractures. The Eastern Medusae Fossae Formation contains large swaths of a fifth, previously undocumented, ridge network type. The dark ridges, reaching up to 50 m in height, enclose regular polygons and erode into dark boulders. These ridge networks are interpreted to form as a result of lava flow embayment of deeply fractured Medusae Fossae Formation outcrops.

  18. [Physical, chemical and morphological urine examination guidelines for the Analytical Phase from the Intersociety Urinalysis Group].

    PubMed

    Manoni, Fabio; Gessoni, Gianluca; Fogazzi, Giovanni Battista; Alessio, Maria Grazia; Caleffi, Alberta; Gambaro, Giovanni; Epifani, Maria Grazia; Pieretti, Barbara; Perego, Angelo; Ottomano, Cosimo; Saccani, Graziella; Valverde, Sara; Secchiero, Sandra

    2016-01-01

    With these guidelines the Intersociety Urinalysis Group (GIAU) aims to stimulate the following aspects: Improvement and standardization of the analytical approach to physical, chemical and morphological urine examination (ECMU). Improvement of the chemical analysis of urine with particular regard to the reconsideration of the diagnostic significance of the parameters that are traditionally evaluated in dipstick analysis together with an increasing awareness of the limits of sensitivity and specificity of this analytical method. Increase the awareness of the importance of professional skills in the field of urinary morphology and the relationship with the clinicians. Implement a policy of evaluation of the analytical quality by using, in addition to traditional internal and external controls, a program for the evaluation of morphological competence. Stimulate the diagnostics industry to focus research efforts and development methodology and instrumental catering on the needs of clinical diagnosis. The hope is to revalue the enormous diagnostic potential of 'ECMU, implementing a urinalysis on personalized diagnostic needs for each patient. Emphasize the value added to ECMU by automated analyzers for the study of the morphology of the corpuscular fraction urine. The hope is to revalue the enormous potential diagnostic of 'ECMU, implementing a urinalysis on personalized diagnostic needs that each patient brings with it.

  19. Role of motor unit structure in defining function

    NASA Technical Reports Server (NTRS)

    Monti, R. J.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Motor units, defined as a motoneuron and all of its associated muscle fibers, are the basic functional units of skeletal muscle. Their activity represents the final output of the central nervous system, and their role in motor control has been widely studied. However, there has been relatively little work focused on the mechanical significance of recruiting variable numbers of motor units during different motor tasks. This review focuses on factors ranging from molecular to macroanatomical components that influence the mechanical output of a motor unit in the context of the whole muscle. These factors range from the mechanical properties of different muscle fiber types to the unique morphology of the muscle fibers constituting a motor unit of a given type and to the arrangement of those motor unit fibers in three dimensions within the muscle. We suggest that as a result of the integration of multiple levels of structural and physiological levels of organization, unique mechanical properties of motor units are likely to emerge. Copyright 2001 John Wiley & Sons, Inc.

  20. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  1. The Effect of Semantic Transparency on the Processing of Morphologically Derived Words: Evidence from Decision Latencies and Event-Related Potentials

    ERIC Educational Resources Information Center

    Jared, Debra; Jouravlev, Olessia; Joanisse, Marc F.

    2017-01-01

    Decomposition theories of morphological processing in visual word recognition posit an early morpho-orthographic parser that is blind to semantic information, whereas parallel distributed processing (PDP) theories assume that the transparency of orthographic-semantic relationships influences processing from the beginning. To test these…

  2. Are insular populations of the Philippine falconet (Microhierax erythrogenys) steps in a cline?

    Treesearch

    Todd E. Katzner; Nigel J. Collar

    2013-01-01

    Founder effects, new environments, and competition often produce changes in species colonizing islands, although the resulting endemism sometimes requires molecular identification. One method to identify fruitful areas for more detailed genetic study is through comparative morphological analyses. We measured 210 museum specimens to evaluate the potential morphological...

  3. Geomorphology of Triton's polar materials

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    One of Triton's most debated puzzles is the nature, distribution, and transport of its atmospheric volatiles. The full potential of constraints provided by detailed observations of the morphology and distribution of the polar deposits has not been realized. The objective of this study is characterization of the morphology, distribution, stratigraphy, and geologic setting of Triton's polar materials.

  4. Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    PubMed Central

    Lakshmanan, Anupama; Hauser, Charlotte A.E.

    2011-01-01

    In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures. PMID:22016623

  5. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization

    PubMed Central

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-01

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986

  6. Pathologic Criteria to Estimate the State of the Liver in Potential Donors.

    PubMed

    Shaimardanova, Caliya; Fedotovskikh, Galina; Savchuk, Aleksandr; Doszhan, Ainura; Smagulova, Aigerim; Gaipov, Abduzhappar

    2015-11-01

    The pathologic evaluation of the liver is one of the most important issues in liver transplants. We evaluated the histopathological condition of livers in potential donors. After liver biopsy, 37 potential donor livers were histologically studied. Liver tissue was stained by hematoxylin and eosin as well as Masson Trichrome. The results of the study showed the morphologic criteria used to estimate the state of the liver in potential donors is not only steatosis and fibrosis, but other important histologic criteria, such as proteinosis, necrosis of hepatocytes, endotheliitis of central veins, inflammatory infiltration, endarteritis in portal tracts and phlebitis in portal tracts, proliferation of the bile ducts, and cholestasis. Results of the study showed that the morphologic criteria to estimate the state of the liver in potential donors includes not only steatosis and fibrosis, but other important histologic criteria as well.

  7. Association of abnormal morphology and altered gene expression in human preimplantation embryos.

    PubMed

    Wells, Dagan; Bermúdez, Mercedes G; Steuerwald, Nury; Malter, Henry E; Thornhill, Alan R; Cohen, Jacques

    2005-08-01

    We set out to characterize the expression of nine genes in human preimplantation embryos and determine whether abnormal morphology is associated with altered gene activity. Reverse transcription and real-time polymerase chain reaction were used to quantify the expression of multiple genes in each embryo. The genes studied have various important cellular roles (e.g., cell cycle regulation, DNA repair, and apoptosis). Research laboratory working closely with a clinical IVF practice. Over 50 embryos were donated by infertile patients (various etiologies). Among these, all major stages of preimplantation development and a variety of common morphologic abnormalities were represented. None. Quantification of mRNA transcripts. We detected an association between certain forms of abnormal morphology and disturbances of gene activity. Cellular fragmentation was associated with altered expression of several genes, including TP53, suggesting that fragmenting blastomeres are suffering stress of a type monitored by p53, possibly as a consequence of suboptimal culture conditions. Appropriate gene expression is vital for the regulation of metabolic pathways and key developmental events. Our data indicates a possible causal relationship between changes in gene expression and the formation of clinically relevant abnormal embryo morphologies. We hypothesize that embryos with expression profiles characteristic of good morphology and appropriate for their developmental stage have the greatest potential for implantation. If confirmed, this could lead to a new generation of preimplantation genetic diagnosis (PGD) tests for assessing embryo viability and predicting implantation potential.

  8. Systematics of Thysanoptera, pear thrips and other economic species

    Treesearch

    Sueo Nakahara

    1991-01-01

    The systematics of the Thysanoptera, and several economic species in the United States and Canada (North America) are discussed briefly. Morphological characters to distinguish the six families in North America and the following economic species, pear thrips (Taeniothrips inconsequens (Uzel)), basswood thrips (Thrips calcaratus...

  9. Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica.

    PubMed

    Baker, Robert L; Yarkhunova, Yulia; Vidal, Katherine; Ewers, Brent E; Weinig, Cynthia

    2017-01-05

    Polyploidy is well studied from a genetic and genomic perspective, but the morphological, anatomical, and physiological consequences of polyploidy remain relatively uncharacterized. Whether these potential changes bear on functional integration or are idiosyncratic remains an open question. Repeated allotetraploid events and multiple genomic combinations as well as overlapping targets of artificial selection make the Brassica triangle an excellent system for exploring variation in the connection between plant structure (anatomy and morphology) and function (physiology). We examine phenotypic integration among structural aspects of leaves including external morphology and internal anatomy with leaf-level physiology among several species of Brassica. We compare diploid and allotetraploid species to ascertain patterns of phenotypic correlations among structural and functional traits and test the hypothesis that allotetraploidy results in trait disintegration allowing for transgressive phenotypes and additional evolutionary and crop improvement potential. Among six Brassica species, we found significant effects of species and ploidy level for morphological, anatomical and physiological traits. We identified three suites of intercorrelated traits in both diploid parents and allotetraploids: Morphological traits (such as leaf area and perimeter) anatomic traits (including ab- and ad- axial epidermis) and aspects of physiology. In general, there were more correlations between structural and functional traits for allotetraploid hybrids than diploid parents. Parents and hybrids did not have any significant structure-function correlations in common. Of particular note, there were no significant correlations between morphological structure and physiological function in the diploid parents. Increased phenotypic integration in the allotetraploid hybrids may be due, in part, to increased trait ranges or simply different structure-function relationships. Genomic and chromosomal instability in early generation allotetraploids may allow Brassica species to explore new trait space and potentially reach higher adaptive peaks than their progenitor species could, despite temporary fitness costs associated with unstable genomes. The trait correlations that disappear after hybridization as well as the novel trait correlations observed in allotetraploid hybrids may represent relatively evolutionarily labile associations and therefore could be ideal targets for artificial selection and crop improvement.

  10. Morphological, Cultural, Biochemical, and Serological Comparison of Japanese Strains of Vibrio parahemolyticus with Related Cultures Isolated in the United States

    PubMed Central

    Twedt, Robert M.; Spaulding, Procter L.; Hall, Herbert E.

    1969-01-01

    Morphological, cultural, biochemical, and serological characteristics of 79 strains of Vibrio parahemolyticus isolated from patients suffering from gastroenteric disease in Japan were compared with 17 suspected V. parahemolyticus cultures isolated from wound infections and 14 nonpathogenic vibrios isolated from an estuarine environment in the United States. These groups were differentiated on the basis of several key reactions which included: the range of growth temperature and salt tolerance; the production of catalase and acetoin; the hydrolysis of starch; the fermentation and utilization as single carbon source of sucrose, cellobiose, and arabinose; and the ability to swarm on 1% agar. The separation of the groups on the basis of cultural and biochemical analyses was confirmed by means of slide agglutinations with specific anti-K antisera. The results of this study strongly suggest that the wound infection isolates are V. parahemolyticus species which are easily distinguished from the nonpathogenic estuarine vibrios. PMID:5784207

  11. Morphological, cultural, biochemical, and serological comparison of Japanese strains of Vibrio parahemolyticus with related cultures isolated in the United States.

    PubMed

    Twedt, R M; Spaulding, P L; Hall, H E

    1969-05-01

    Morphological, cultural, biochemical, and serological characteristics of 79 strains of Vibrio parahemolyticus isolated from patients suffering from gastroenteric disease in Japan were compared with 17 suspected V. parahemolyticus cultures isolated from wound infections and 14 nonpathogenic vibrios isolated from an estuarine environment in the United States. These groups were differentiated on the basis of several key reactions which included: the range of growth temperature and salt tolerance; the production of catalase and acetoin; the hydrolysis of starch; the fermentation and utilization as single carbon source of sucrose, cellobiose, and arabinose; and the ability to swarm on 1% agar. The separation of the groups on the basis of cultural and biochemical analyses was confirmed by means of slide agglutinations with specific anti-K antisera. The results of this study strongly suggest that the wound infection isolates are V. parahemolyticus species which are easily distinguished from the nonpathogenic estuarine vibrios.

  12. Strain-specific Fibril Propagation by an Aβ Dodecamer

    NASA Astrophysics Data System (ADS)

    Dean, Dexter N.; Das, Pradipta K.; Rana, Pratip; Burg, Franklin; Levites, Yona; Morgan, Sarah E.; Ghosh, Preetam; Rangachari, Vijayaraghavan

    2017-01-01

    Low molecular weight oligomers of amyloid-β (Aβ) have emerged as the primary toxic agents in the etiology of Alzheimer disease (AD). Polymorphism observed within the aggregation end products of fibrils are known to arise due to microstructural differences among the oligomers. Diversity in aggregate morphology correlates with the differences in AD, cementing the idea that conformational strains of oligomers could be significant in phenotypic outcomes. Therefore, it is imperative to determine the ability of strains to faithfully propagate their structure. Here we report fibril propagation of an Aβ42 dodecamer called large fatty acid-derived oligomers (LFAOs). The LFAO oligomeric strain selectively induces acute cerebral amyloid angiopathy (CAA) in neonatally-injected transgenic CRND8 mice. Propagation in-vitro occurs as a three-step process involving the association of LFAO units. LFAO-seeded fibrils possess distinct morphology made of repeating LFAO units that could be regenerated upon sonication. Overall, these data bring forth an important mechanistic perspective into strain-specific propagation of oligomers that has remained elusive thus far.

  13. Branch and foliage morphological plasticity in old-growth Thuja plicata.

    PubMed

    Edelstein, Zoe R; Ford, E David

    2003-07-01

    At the Wind River Canopy Crane Facility in southeastern Washington State, USA, we examined phenotypic variation between upper- and lower-canopy branches of old-growth Thuja plicata J. Donn ex D. Don (western red cedar). Lower-canopy branches were longer, sprouted fewer daughter branches per unit stem length and were more horizontal than upper-canopy branches. Thuja plicata holds its foliage in fronds, and these had less projected area per unit mass, measured by specific frond area, and less overlap, measured by silhouette to projected area ratio (SPARmax), in the lower canopy than in the upper canopy. The value of SPARmax, used as an indicator of sun and shade foliage in needle-bearing species, did not differ greatly between upper- and lower-canopy branches. We suggest that branching patterns, as well as frond structure, are important components of morphological plasticity in T. plicata. Our results imply that branches of old-growth T. plicata trees have a guerilla growth pattern, responding to changes in solar irradiance in a localized manner.

  14. Morphological differences in Macoma balthica (Bivalvia, Tellinacea) from a Dutch and three southeastern United States estuaries

    NASA Astrophysics Data System (ADS)

    Kamermans, Pauline; Van der Veer, Henk W.; Witte, Johannes IJ.; Adriaans, Ewout J.

    1999-05-01

    Field collections of the bivalve Macoma balthica in the Dutch Wadden Sea and three southeastern United States estuaries revealed morphological differences between populations of the two sides of the Atlantic Ocean. Individuals of the same age showed much larger shell lengths at the American stations. In addition, bivalves of the same body weight had higher siphon weights at the American stations than at the Dutch stations. This difference in siphon size was related to their burying depths. The American population, which invested more in heavier siphons, was able to burrow much deeper into the sediment (up to 30 cm). Deep burial may be an adaptation to avoid exposure to the high southern temperatures. Furthermore, it may serve as a refuge from blue crab predation. The results of our comparison between the southern American population and the European support the suggestion that populations of M. balthica living in these two regions should be considered separate and sibling species.

  15. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  16. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  17. The necessity of DNA taxonomy to reveal cryptic diversity and spatial distribution of meiofauna, with a focus on Nemertea.

    PubMed

    Leasi, Francesca; Norenburg, Jon L

    2014-01-01

    Meiofauna represent one of the most abundant and diverse communities in marine benthic ecosystems. However, an accurate assessment of diversity at the level of species has been and remains challenging for these microscopic organisms. Therefore, for many taxa, especially the soft body forms such as nemerteans, which often lack clear diagnostic morphological traits, DNA taxonomy is an effective means to assess species diversity. Morphological taxonomy of Nemertea is well documented as complicated by scarcity of unambiguous character states and compromised by diagnoses of a majority of species (and higher clades) being inadequate or based on ambiguous characters and character states. Therefore, recent studies have advocated for the primacy of molecular tools to solve the taxonomy of this group. DNA taxonomy uncovers possible hidden cryptic species, provides a coherent means to systematize taxa in definite clades, and also reveals possible biogeographic patterns. Here, we analyze diversity of nemertean species by considering the barcode region of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and different species delineation approaches in order to infer evolutionarily significant units. In the aim to uncover actual diversity of meiofaunal nemerteans across different sites in Central America, COI sequences were obtained for specimens assigned here to the genera Cephalothrix, Ototyphlonemertes, and Tetrastemma-like worms, each commonly encountered in our sampling. Additional genetic, taxonomic, and geographic data of other specimens belonging to these genera were added from GenBank. Results are consistent across different DNA taxonomy approaches, and revealed (i) the presence of several hidden cryptic species and (ii) numerous potential misidentifications due to traditional taxonomy. (iii) We additionally test a possible biogeographic pattern of taxonomic units revealed by this study, and, except for a few cases, the putative species seem not to be widely distributed, in contrast to what traditional taxonomy would suggest for the recognized morphotypes.

  18. Ancient Martian Lakestands and Fluvial Processes in Iani Chaos: Geology of Light-Toned Layered Deposits and their Relationship to Ares Vallis Outflow Channels

    NASA Astrophysics Data System (ADS)

    Guallini, Luca; Gilmore, Martha; Marinangeli, Lucia; Thomas, Nicolas

    2015-04-01

    Iani Chaos is a ~30,000 square kilometers region that lies at the head of the Ares Vallis outflow channel system. Mapping of Ares Vallis reveals multiple episodes of erosion, probably linked to several discharge events from the Iani Chaos aquifer. We present the first detailed geomorphological map of the Iani region. Five chaos units have been distinguished with varying degrees of modification (primarily by erosion and fracturing), starting from a common terrain (Noachian highlands). We observe a general progressive decrease of their mean elevation from the Mesas, Mesas & Knobs and Hummocky (Hy) terrains to the Knobs and Knobby morphologies. This trend is consistent with an initial collapse of the original surface with an increase of the fracturing and/or of the erosion. Light-toned Layered Deposits (LLD) have been also mapped and described in Iani Chaos. These terrains are clearly distinguished by a marked light-toned albedo, high thermal inertia and a pervasively fractured morphology. LLD both fill the basins made by the collapsed chaotic terrains and are found to be partially modified by the chaos formation. LLD also overlap chaos mounds or are themselves eroded into mounds after deposition. These stratigraphic relationships demonstrate that LLD deposition occurred episodically in the Iani region and throughout the history of the development of the chaos. Water seems to have had an active role in the geological history of Iani. The composition and morphologies of the LLD are consistent with deposition in an evaporitic environment and with erosion by outflows, requiring stable water on the surface. For the first time, we have also mapped and analyzed potential fluvial features (i.e., channels, streamlined islands, terraces, grooved surfaces) on the surface of the LLD. These landforms describe a fluvial system that can be traced from central Iani and linked northward to Ares Vallis. Using topographic data, we have compared the elevation of the LLD and channel units and find that their altitudes are remarkably similar to the altitude of the floors of the major Ares Vallis channels. This is decisive evidence of 1) a possible fluvial system within Iani linked to the Ares Vallis outflow system, characterized by five episodes of outflow at least (S1 to S5), and 2) of the existence of the LLD within Iani during the occurrence of the outflows (i.e., the LLD are coeval with or postdate the Ares Vallis outflow channels). On the basis of our analysis, we propose the following formation model for Iani Chaos: 1) Initial fracturing and tectonic subsidence of the pristine Noachian materials and subsequent outflow erosion of the bedrock (Ares Vallis S1 channel origin); 2) Evaporitic deposition of older LLD units on top and between chaotic terrains. Layering suggests cyclic wetting and drying; 3) Tectonic subsidence and fluvial erosion of chaos and LLD (Ares Vallis S2 to S3 channels); 4) Deposition of younger LLD units in central and northern Iani; 5) Tectonic subsidence and outflows, erosion of chaos and LLD (Ares Vallis S4 to S5 channel origin and subsequent downdropping of NW and N(e) Iani).

  19. Computer analysis of three-dimensional morphological characteristics of the bile duct

    NASA Astrophysics Data System (ADS)

    Ma, Jinyuan; Chen, Houjin; Peng, Yahui; Shang, Hua

    2017-01-01

    In this paper, a computer image-processing algorithm for analyzing the morphological characteristics of bile ducts in Magnetic Resonance Cholangiopancreatography (MRCP) images was proposed. The algorithm consisted of mathematical morphology methods including erosion, closing and skeletonization, and a spline curve fitting method to obtain the length and curvature of the center line of the bile duct. Of 10 cases, the average length of the bile duct was 14.56 cm. The maximum curvature was in the range of 0.111 2.339. These experimental results show that using the computer image-processing algorithm to assess the morphological characteristics of the bile duct is feasible and further research is needed to evaluate its potential clinical values.

  20. Morphologic and seismic evidence of rapid submergence offshore Cide-Sinop in the southern Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Ocakoğlu, Neslihan; İşcan, Yeliz; Kılıç, Fatmagül; Özel, Oğuz

    2018-06-01

    Multi-beam bathymetric and multi-channel seismic reflection data obtained offshore Cide-Sinop have revealed important records on the latest transgression of the Black Sea for the first time. A relatively large shelf plain within the narrow southern continental shelf characterized by a flat seafloor morphology at -100 water depth followed by a steep continental slope leading to -500 m depth. This area is widely covered by submerged morphological features such as dunes, lagoons, possible aeolianites, an eroded anticline and small channels that developed by aeolian and fluvial processes. These morphological features sit upon an erosional surface that truncates the top of all seismic units and constitutes the seafloor over the whole shelf. The recent prograded delta deposits around the shelf break are also truncated by the similar erosional surface. These results indicate that offshore Cide-Sinop was once a terrestrial landscape that was then submerged. The interpreted paleoshoreline varies from -100 to -120 m. This variation can be explained by not only sea level changes but also the active faults observed on the seismic section. The effective protection of morphological features on the seafloor is the evidence of abrupt submergence rather than gradual. In addition, the absence of coastal onlaps suggests that these morphological features should have developed at low sea level before the latest sea level rise in the Black Sea.

  1. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM.

    PubMed

    Rao, Komal; Imran, Muhammad; Jabri, Tooba; Ali, Imdad; Perveen, Samina; Shafiullah; Ahmed, Shakil; Shah, Muhammad Raza

    2017-10-15

    Gold nanoparticles (AuNPs) have attracted greater scientific interests for the construction of drugs loading cargos due to their biocompatibility, safety and facile surface modifications. This study deals with the fabrication of gum tragacanth (GT) green AuNPs as carrier for Naringin, a less water soluble therapeutic molecule. The optimized AuNPs were characterized through UV-vis spectroscopy, FT-IR and atomic force microscope (AFM). Naringin loaded nanoparticles were investigated for their bactericidal potentials using Tetrazolium Microplate assay. Morphological studies conducted via AFM revealed spherical shape for AuNPs with nano-range size and stabilized by GT multi-functional groups. The AuNPs acted as carrier for increased amount of Naringin. Upon loading in AuNPs, Naringin An increased in the bactericidal potentials of Naringin was observed after loading on AuNPs against various tested bacterial strains. This was further authenticated by the surface morphological analysis, showing enhanced membrane destabilizing effects of loaded Naringin. The results suggest that GT stabilized green AuNPs can act as effective delivery vehicles for enhancing bactericidal potentials of Naringin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Non-invasive metabolomic profiling of embryo culture media and morphology grading to predict implantation outcome in frozen-thawed embryo transfer cycles.

    PubMed

    Li, Xiong; Xu, Yan; Fu, Jing; Zhang, Wen-Bi; Liu, Su-Ying; Sun, Xiao-Xi

    2015-11-01

    Assessment of embryo viability is a crucial component of in vitro fertilization and currently relies largely on embryo morphology and cleavage rate. Because morphological assessment remains highly subjective, it can be unreliable in predicting embryo viability. This study investigated the metabolomic profiling of embryo culture media using near-infrared (NIR) spectroscopy for predicting the implantation potential of human embryos in frozen-thawed embryo transfer (FET) cycles. Spent embryo culture media was collected on day 4 after thawed embryo transfer (n = 621) and analysed using NIR spectroscopy. Viability scores were calculated using a predictive multivariate algorithm of fresh embryos with known pregnancy outcomes. The mean viability indices of embryos resulting in clinical pregnancy following FET were significantly higher than those of non-implanted embryos and differed between the 0, 50, and 100 % implantation groups. Notably, the 0 % group index was significantly lower than the 100 % implantation group index (-0.787 ± 0.382 vs. 1.064 ± 0.331, P < 0.01). To predict implantation outcomes, we examined the area under the ROC curve (AUCROC), which was significantly higher for the viability than for the morphology score (0.94 vs. 0.55; P < 0.01); however, the AUCROCs for the composite and viability scores did not differ significantly (0.92 vs. 0.94; P > 0.05). NIR metabolomic profiling of thawed embryo culture media is independent of morphology and correlates with embryo implantation potential in FET cycles. The viability score alone or in conjunction with morphologic grading is a more objective marker for implantation outcome in FET cycles than morphology alone.

  3. A morphological and functional basis for maximum prey size in piscivorous fishes

    PubMed Central

    Bellwood, David R.

    2017-01-01

    Fish predation is important in shaping populations and community structure in aquatic systems. These predator-prey interactions can be influenced by environmental, behavioural and morphological factors. Morphological constraints influence the feeding performance of species, and interspecific differences can thus affect patterns of resource use. For piscivorous fishes that swallow prey whole, feeding performance has traditionally been linked to three key morphological constraints: oral gape, pharyngeal gape, and the cleithral gape. However, other constraints may be important. We therefore examine 18 potential morphological constraints related to prey capture and processing, on four predatory species (Cephalopholis urodeta, Paracirrhites forsteri, Pterois volitans, Lates calcarifer). Aquarium-based experiments were then carried out to determine capture and processing behaviour and maximum prey size in two focal species, C. urodeta and P. forsteri. All four species showed a progressive decrease in gape measurements from anterior to posterior with oral gape ≥ buccal ≥ pharyngeal ≥ pectoral girdle ≥ esophagus ≥ stomach. C. urodeta was able to process prey with a maximum depth of 27% of the predators’ standard length; for P. forsteri it was 20%. C. urodeta captured prey head-first in 79% of successful strikes. In P. forsteri head-first was 16.6%, mid-body 44.4%, and tail-first 38.8%. Regardless of capture mode, prey were almost always swallowed head first and horizontally in both focal species. Most internal measurements appeared too small for prey to pass through. This may reflect the compressibility of prey, i.e. their ability to be dorsoventrally compressed during swallowing movements. Despite examining all known potential morphological constraints on prey size, horizontal maxillary oral gape in a mechanically stretched position appears to be the main morphological variable that is likely to affect maximum prey size and resource use by these predatory species. PMID:28886161

  4. A disk asymmetry in motion around the B[e] star MWC158

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Benisty, M.; Soulez, F.; Berger, J.-P.; Le Bouquin, J.-B.; Malbet, F.; Lazareff, B.; Thiébaut, E.

    2016-06-01

    Context. MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previous interferometric, spectropolarimetric and spectro-interferometric studies suggest a disk morphology for its environment. Aims: We investigate the origin of the variability within the inner astronomical unit of the central star using near-infrared interferometric observations with PIONIER at the VLTI over a two-year period. Methods: We performed an image reconstruction of the circumstellar environment using the SPARCO method. We discovered that the morphology of the circumstellar environment could vary on timescales of weeks or days. We carried out a parametric fit of the data with a model consisting of a star, a disk and a bright spot that represents a brighter emission in the disk. Results: We detect strong morphological changes in the first astronomical unit around the star, that happen on a timescale of few months. We cannot account for such variability well with a binary model. Our parametric model fits the data well and allows us to extract the location of the asymmetry for different epochs. Conclusions: For the first time, we detect a morphological variability in the environment of MWC158. This variability is reproduced by a model of a disk and a bright spot. The locations of the bright spot suggest that it is located in the disk, but its precise motion is not determined. The origin of the asymmetry in the disk is complex and may be related to asymmetric shell ejections. Based on observations performed with PIONIER mounted on the ESO Very Large Telescope interferometer (programmes: 089.C-0211, 190.C-0963).

  5. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and fibroblasts.

    PubMed

    Nayak, Alok Ranjan; Shajahan, T K; Panfilov, A V; Pandit, Rahul

    2013-01-01

    Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as [Formula: see text], the fibroblast resting-membrane potential, the fibroblast conductance [Formula: see text], and the MF gap-junctional coupling [Formula: see text]. Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as [Formula: see text], and [Formula: see text], and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity [Formula: see text] decreases as a function of [Formula: see text], for zero-sided and one-sided couplings; however, for two-sided coupling, [Formula: see text] decreases initially and then increases as a function of [Formula: see text], and, eventually, we observe that conduction failure occurs for low values of [Formula: see text]. In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling [Formula: see text] or [Formula: see text]. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.

  6. Evaluating the use of drone photogrammetry for measurement of stream channel morphology and response to high flow events

    NASA Astrophysics Data System (ADS)

    Price, Katie; Ballow, William

    2015-04-01

    Traditional high-precision survey methods for stream channel measurement are labor-intensive and require wadeability or boat access to streams. These conditions limit the number of sites researchers are able to study and generally prohibit the possibility of repeat channel surveys to evaluate short-term fluctuations in channel morphology. In recent years, unmanned aerial vehicles (drones) equipped with photo and video capabilities have become widely available and affordable. Concurrently, developments in photogrammetric software offer unprecedented mapping and 3D rendering capabilities of drone-captured photography. In this study, we evaluate the potential use of drone-mounted cameras for detailed stream channel morphometric analysis. We used a relatively low-cost drone (DJI Phantom 2+ Vision) and commercially available, user friendly software (Agisoft Photscan) for photogrammetric analysis of drone-captured stream channel photography. Our test study was conducted on Proctor Creek, a highly responsive urban stream in Atlanta, Georgia, within the crystalline Piedmont region of the southeastern United States. As a baseline, we performed traditional high-precision survey methods to collect morphological measurements (e.g., bankfull and wetted width, bankfull and wetted thalweg depth) at 11 evenly-spaced transects, following USGS protocols along reaches of 20 times average channel width. We additionally used the drone to capture 200+ photos along the same reaches, concurrent with the channel survey. Using the photogrammetry software, we generated georeferenced 3D models of the stream channel, from which morphological measurements were derived from the 11 transects and compared with measurements from the traditional survey method. We additionally explored possibilities for novel morphometric characterization available from the continuous 3D surface, as an improvement on the limited number of detailed cross-sections available from standard methods. These results showed great promise for the drone photogrammetry methods, which encouraged the exploration of the possibility of repeat aerial surveys to evaluate channel response to high flow events. Repeat drone surveys were performed following a sequence of high-flow events in Proctor Creek to evaluate the possibility of using these methods for assessment of stream channel response to flooding.

  7. Salix alba and Populus nigra seedlings resistance to physical hydro-sedimentary stresses: nursery experimental approach compared to in situ measurements

    NASA Astrophysics Data System (ADS)

    Wintenberger, Coraline; Rodrigues, Stephane; Breheret, Jean-Gabriel; Jugé, Philippe; Villar, Marc

    2014-05-01

    In Europe, riparian Salicaceae is declining following the loss of potential germination areas associated with river management. Nevertheless, as an exception for lowland rivers, the Loire River (France) shows in its middle reaches an efficient sexual regeneration of Populus nigra and Salix alba species on bare sediments deposited during flood events. The study focuses on the influence of flow, sediment dynamics and fluvial maintenance operations on the establishment and survival of black poplar and white willow seedlings during the first year of development in a lowland sandy-gravel river, the Middle Loire. Main questions are: what is the influence of morphological and sedimentary features on seedlings recruitment and how do they withstand the hydro-sedimentary stresses occurring during high flow periods? How fluvial management works, and induced morphology and sedimentary features, modify the sediment dynamics and subsequent establishment and maintenance of seedlings? To answer these questions, we developed an ex-situ approach which allowed, under controlled conditions, to determine the influence of the sedimentological characteristics of the substrate on the development and maintenance of seedlings with a specific focus on the root system. Three experiments were carried out for three sedimentary mixtures from the river (sand, sand-gravel and 0.2 m of sand superimposed on sand-gravel mixture) that correspond to grain size and stratigraphy conditions often observed on bars and secondary channels in the Loire. The experimental design includes 108 plots of 1 m3, with 400 seeds per plot (corresponding to the Loire density measurements) and combining seeds from two species, three sedimentary mixtures, four replicates and three experiments. Experiment 1 (control) is based on the architecture of root systems using the WinRHIZO image analysis software. Experiment 2 is relative to the evaluation of constraints leading to "uprooting" of seedlings. Experiment 3 provides data on the seedlings survival once buried during a flood event. Genetic diversity of the seed lots will be investigated via biomass and shoot / root ratio. Results reveal that willow seedlings have a higher density of roots compared to poplar. In sand mixture, poplar has a taproot system; in sand-gravel mixture, taproot is divided into several roots which leads to a branched root system. The required forces to uprooting are twice much important for sand-gravel mixture. In situ measurements detail the sediment dynamics and morphological evolution during and after floods (topography, scour/fill processes, grain size surveys, flow velocity, sediment transport rates) on a managed alluvial bar. Results associated with floods occurring after fluvial management works highlight the rapid regeneration of bedforms associated with sedimentary and hydraulics constraints. This leads to the development of new morphological and sedimentological units, suitable for seedlings recruitment. Thirty plots measurements of seedlings (densities and species) established were associated with these news physical conditions over the bar. Black poplar and white willow appeared for a wide range of grain sizes and on specific morphological units. Seedlings survival will be analyzed with regard to physical constraints determined for each plot from measurements of hydro-sedimentary dynamics and then compared to ex situ results.

  8. Landslide Hazard Map of The Upper Tiber River Basin, Central Italy

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Carrara, A.; Guzzetti, F.; Reichenbach, P.

    For the Upper Tiber River basin, which extends over 4000 km2 in Central Italy, a landslide hazard map was derived from a statistical model based on a mix of morpho- logical, lithological, structural and land use data. All these data were obtained from the analysis of different sets of aerial photographs, ranging in scale from 1:33,000 to 1:13,000, systematic field surveys and bibliographical information. Rock types were grouped in 37 units on the basis of the hard vs. soft rock percentage, as as- certained from photo-geological interpretation and field surveys. During the photo- interpretation, the spatial relations between bedding plane attitude and slope aspect were also systematically determined. The landslide inventory map recognised 17,600 slope-failures that cover nearly 12.5% of the basin area. Landslides, which are mainly slide flow slide earth-flow and compound or complex movements, were classified and mapped as shallow or deep seated. A DTM, with a grid resolution of 25x25 m, was derived from digitised contour lines of base topographic maps, 1:25,000.in scale. The basin was then automatically partitioned into nearly 16,000 main slope-units through a specifically-designed software module that, starting from a high quality DTM gen- erates fully connected and complementary drainage and divide networks and a wide spectrum of morphometric parameters. Main slope-units were then subdivided accord- ing to the major rock types cropping out in the basin generating over 28,700 hydro- morphological-lithological terrain-units. Using the presence/absence of landslide in each terrain unit, as the grouping variable, a stepwise discriminant function was ap- plied to the terrain units. of the 50 variables entered into the discriminant function, 15 are lithological, 15 morphological, 11 express the structural setting or bedding plane attitude, 7 refer to land use and the last 2 reflect local climatic conditions. The model proved to be capable of correctly classifying as stable or unstable over 75% of the terrain units.

  9. On domain symmetry and its use in homogenization

    DOE PAGES

    Barbarosie, Cristian A.; Tortorelli, Daniel A.; Watts, Seth E.

    2017-03-08

    The present study focuses on solving partial differential equations in domains exhibiting symmetries and periodic boundary conditions for the purpose of homogenization. We show in a systematic manner how the symmetry can be exploited to significantly reduce the complexity of the problem and the computational burden. This is especially relevant in inverse problems, when one needs to solve the partial differential equation (the primal problem) many times in an optimization algorithm. The main motivation of our study is inverse homogenization used to design architected composite materials with novel properties which are being fabricated at ever increasing rates thanks to recentmore » advances in additive manufacturing. For example, one may optimize the morphology of a two-phase composite unit cell to achieve isotropic homogenized properties with maximal bulk modulus and minimal Poisson ratio. Typically, the isotropy is enforced by applying constraints to the optimization problem. However, in two dimensions, one can alternatively optimize the morphology of an equilateral triangle and then rotate and reflect the triangle to form a space filling D 3 symmetric hexagonal unit cell that necessarily exhibits isotropic homogenized properties. One can further use this D 3 symmetry to reduce the computational expense by performing the “unit strain” periodic boundary condition simulations on the single triangle symmetry sector rather than the six fold larger hexagon. In this paper we use group representation theory to derive the necessary periodic boundary conditions on the symmetry sectors of unit cells. The developments are done in a general setting, and specialized to the two-dimensional dihedral symmetries of the abelian D 2, i.e. orthotropic, square unit cell and nonabelian D 3, i.e. trigonal, hexagon unit cell. We then demonstrate how this theory can be applied by evaluating the homogenized properties of a two-phase planar composite over the triangle symmetry sector of a D 3 symmetric hexagonal unit cell.« less

  10. In vitro storage characteristics of platelet concentrates suspended in 70% SSP+(TM) additive solution versus plasma over a 14-day storage period.

    PubMed

    Saunders, C; Rowe, G; Wilkins, K; Holme, S; Collins, P

    2011-08-01

    The non-paired two-arm study compared the in vitro storage characteristics of platelets suspended as concentrates in either 100% plasma or a mixture of additive solution (SSP+™, MacoPharma, Mouveaux, France) and autologous plasma in a 70:30 ratio over a 14-day storage period. The buffy coat-derived pooled platelet concentrates were sampled on days 1, 2, 3, 6, 8, 10 and 14 and tests performed to determine platelet morphology, function, metabolism, activation and apoptosis-like activity. Swirling remained strong (score=3) in SSP+™, whilst scores of 1 and 0 were noted for plasma units by end of storage. In contrast to units in plasma, pH levels remained above seven in SSP+™ units, increasing after day 10. Percent positive expression of CD62P was similar in both groups on day 1 (median of 54% and 56% for plasma (n=13) and SSP+™ (n=12), respectively), with SSP+™ units showing a more moderate increase in activation after day 10. A progressive decrease in mitochondrial membrane potential was evident in both groups from day 1, whilst annexin V binding was relatively stable from days 1 to 3, with median values remaining below 6%. Subsequent to this, the percentage of platelets binding annexin V increased to approximately 30% by day 14. Platelets suspended in a medium of 70:30 SSP+™ to plasma ratio performed at least as well as platelets in 100% autologous plasma for up to 10 days of storage. Further, results are suggestive of an apoptosis-like process being involved in the platelet storage lesion. © 2011 The Author(s). Vox Sanguinis © 2011 International Society of Blood Transfusion.

  11. A unified theory of bone healing and nonunion: BHN theory.

    PubMed

    Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G

    2016-07-01

    This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91. ©2016 The British Editorial Society of Bone & Joint Surgery.

  12. Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering.

    PubMed

    Arán-Ais, Rosa M; Yu, Yingchao; Hovden, Robert; Solla-Gullón, Jose; Herrero, Enrique; Feliu, Juan M; Abruña, Héctor D

    2015-12-02

    We have employed identical location transmission electron microscopy (IL-TEM) to study changes in the shape and morphology of faceted Pt nanoparticles as a result of electrochemical cycling; a procedure typically employed for activating platinum surfaces. We find that the shape and morphology of the as-prepared hexagonal nanoparticles are rapidly degraded as a result of potential cycling up to +1.3 V. As few as 25 potential cycles are sufficient to cause significant degradation, and after about 500-1000 cycles the particles are dramatically degraded. We also see clear evidence of particle migration during potential cycling. These finding suggest that great care must be exercised in the use and study of shaped Pt nanoparticles (and related systems) as electrocatlysts, especially for the oxygen reduction reaction where high positive potentials are typically employed.

  13. Plant traits and decomposition: are the relationships for roots comparable to those for leaves?

    PubMed Central

    Birouste, Marine; Kazakou, Elena; Blanchard, Alain; Roumet, Catherine

    2012-01-01

    Background and Aims Fine root decomposition is an important determinant of nutrient and carbon cycling in grasslands; however, little is known about the factors controlling root decomposition among species. Our aim was to investigate whether interspecific variation in the potential decomposition rate of fine roots could be accounted for by root chemical and morphological traits, life history and taxonomic affiliation. We also investigated the co-ordinated variation in root and leaf traits and potential decomposition rates. Methods We analysed potential decomposition rates and the chemical and morphological traits of fine roots on 18 Mediterranean herbaceous species grown in controlled conditions. The results were compared with those obtained for leaves in a previous study conducted on similar species. Key Results Differences in the potential decomposition rates of fine roots between species were accounted for by root chemical composition, but not by morphological traits. The root potential decomposition rate varied with taxonomy, but not with life history. Poaceae, with high cellulose concentration and low concentrations of soluble compounds and phosphorus, decomposed more slowly than Asteraceae and Fabaceae. Patterns of root traits, including decomposition rate, mirrored those of leaf traits, resulting in a similar species clustering. Conclusions The highly co-ordinated variation of roots and leaves in terms of traits and potential decomposition rate suggests that changes in the functional composition of communities in response to anthropogenic changes will strongly affect biogeochemical cycles at the ecosystem level. PMID:22143881

  14. Monolayer to MTS: using SEM, HIM, TEM and SERS to compare morphology, nanosensor uptake and redox potential in MCF7 cells

    NASA Astrophysics Data System (ADS)

    Jamieson, L. E.; Bell, A. P.; Harrison, D. J.; Campbell, C. J.

    2015-06-01

    Cellular redox potential is important for the control and regulation of a vast number of processes occurring in cells. When the fine redox potential balance within cells is disturbed it can have serious consequences such as the initiation or progression of disease. It is thought that a redox gradient develops in cancer tumours where the peripheral regions are well oxygenated and internal regions, further from vascular blood supply, become starved of oxygen and hypoxic. This makes treatment of these areas more challenging as, for example, radiotherapy relies on the presence of oxygen. Currently techniques for quantitative analysis of redox gradients are limited. Surface enhanced Raman scattering (SERS) nanosensors (NS) have been used to detect redox potential in a quantitative manner in monolayer cultured cells with many advantages over other techniques. This technique has considerable potential for use in multicellular tumour spheroids (MTS) - a three dimensional (3D) cell model which better mimics the tumour environment and gradients that develop. MTS are a more realistic model of the in vivo cellular morphology and environment and are becoming an increasingly popular in vitro model, replacing traditional monolayer culture. Imaging techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM) and helium ion microscopy (HIM) were used to investigate differences in morphology and NS uptake in monolayer culture compared to MTS. After confirming NS uptake, the first SERS measurements revealing quantitative information on redox potential in MTS were performed.

  15. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan

    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactionsmore » between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.« less

  16. Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae.

    PubMed

    Avio, Luciano; Cristani, Caterina; Strani, Patrizia; Giovannetti, Manuela

    2009-03-01

    In this work, we combined morphological taxonomy and molecular methods to investigate the intraspecific diversity of Glomus mosseae, whose global distribution has been reviewed by a survey of scientific literature and Web-available records from international germplasm collections (International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi and International Bank of Glomeromycota). We surveyed 186 publications reporting the occurrence of G. mosseae from at least 474 different sites from 55 countries throughout all continents, producing a geographical map of their distribution. The relationships among G. mosseae isolates originating from Europe (United Kingdom), the United States (Arizona, Florida, and Indiana), Africa (Namibia), and West Asia (Syria) were analyzed. The level of resolution of internal transcribed spacer (ITS) sequences strongly supports the morphological species definition of G. mosseae. An ITS - restriction fragment length polymorphism assay with the enzyme HinfI yielded a unique profile for all G. mosseae isolates, allowing a straightforward identification of this morphospecies. Genetic variability among G. mosseae isolates was revealed by the inter-simple-sequence repeat (ISSR) - polymerase chain reaction: the magnitude of genetic divergence shown by the investigated geographical isolates was higher than 50%, consistent with previous data on vegetative compatibility and functional diversity. The variability of ISSR patterns suggests that intraspecific diversity is much higher than that foreseen by morphology and rDNA regions, and should be further investigated by using other genes, such as those related to functional diversity.

  17. Photophysical and morphological implications of single-strand conjugated polymer folding in solution

    DOE PAGES

    Fauvell, Thomas J.; Zheng, Tianyue; Jackson, Nicholas E.; ...

    2016-04-08

    Organic semiconductors have garnered substantial interest in optoelectronics, but their device performances exhibit strong dependencies on material crystallinity and packing. In an effort to understand the interactions dictating the morphological and photophysical properties of a high-performing photovoltaic polymer, PTB7, a series of short oligomers and low molecular weight polymers of PTB7 were synthesized. Chain-length dependent optical studies of these oligomers demonstrate that PTB7’s low-energy visible absorption is largely due to self-aggregation-induced ordering, rather than in-chain charge transfer, as previously thought. By examining molecular weight and concentration dependent optical properties, supplemented by molecular dynamics simulations, we attribute polymeric PTB7’s unique midgapmore » fluorescence and concentration independent absorption spectrum to an interplay between low molecular weight unaggregated strands and high-molecular weight self-aggregated (folded) strands. Specifically, we propose that the onset of PTB7 self-folding occurs between 7 and 13 repeat units, but the aggregates characteristic of polymeric PTB7 only develop at lengths of ~30 repeat units. Atomistic molecular dynamics simulations of PTB7 corroborate these conclusions, and a simple relation is proposed which quantifies the free-energy of conjugated polymer folding. Lastly, this study provides detailed guidance in the design of intra- and interchain contributions to the photophysical and morphological properties of polymeric semiconductors.« less

  18. Modeling fractal cities using the correlated percolation model.

    NASA Astrophysics Data System (ADS)

    Makse, Hernán A.; Havlin, Shlomo; Stanley, H. Eugene

    1996-03-01

    Cities grow in a way that might be expected to resemble the growth of two-dimensional aggregates of particles, and this has led to recent attempts to model urban growth using ideas from the statistical physics of clusters. In particular, the model of diffusion limited aggregation (DLA) has been invoked to rationalize the apparently fractal nature of urban morphologies(M. Batty and P. Longley, Fractal Cities) (Academic, San Diego, 1994). The DLA model predicts that there should exist only one large fractal cluster, which is almost perfectly screened from incoming 'development units' (representing, for example, people, capital or resources), so that almost all of the cluster growth takes place at the tips of the cluster's branches. We show that an alternative model(H. A. Makse, S. Havlin, H. E. Stanley, Nature 377), 608 (1995), in which development units are correlated rather than being added to the cluster at random, is better able to reproduce the observed morphology of cities and the area distribution of sub-clusters ('towns') in an urban system, and can also describe urban growth dynamics. Our physical model, which corresponds to the correlated percolation model in the presence of a density gradient, is motivated by the fact that in urban areas development attracts further development. The model offers the possibility of predicting the global properties (such as scaling behavior) of urban morphologies.

  19. Meter-scale slopes of candidate MER landing sites from point photoclinometry

    USGS Publications Warehouse

    Beyer, R.A.; McEwen, A.S.; Kirk, R.L.

    2003-01-01

    Photoclinometry was used to analyze the small-scale roughness of areas that fall within the proposed Mars Exploration Rover (MER) 2003 landing ellipses. The landing ellipses presented in this study were those in Athabasca Valles, Elysium Planitia, Eos Chasma, Gusev Crater, Isidis Planitia, Melas Chasma, and Meridiani Planum. We were able to constrain surface slopes on length scales comparable to the image resolution (1.5 to 12 m/pixel). The MER 2003 mission has various engineering constraints that each candidate landing ellipse must satisfy. These constraints indicate that the statistical slope values at 5 m baselines are an important criterion. We used our technique to constrain maximum surface slopes across large swaths of each image, and built up slope statistics for the images in each landing ellipse. We are confident that all MER 2003 landing site ellipses in this study, with the exception of the Melas Chasma ellipse, are within the small-scale roughness constraints. Our results have provided input into the landing hazard assessment process. In addition to evaluating the safety of the landing sites, our mapping of small-scale roughnesses can also be used to better define and map morphologic units. The morphology of a surface is characterized by the slope distribution and magnitude of slopes. In looking at how slopes are distributed, we can better define landforms and determine the boundaries of morphologic units. Copyright 2003 by the American Geophysical Union.

  20. Systematics of Spiny Predatory Katydids (Tettigoniidae: Listroscelidinae) from the Brazilian Atlantic Forest Based on Morphology and Molecular Data

    PubMed Central

    Fialho, Verônica Saraiva; Chamorro-Rengifo, Juliana; Lopes-Andrade, Cristiano; Yotoko, Karla Suemy Clemente

    2014-01-01

    Listroscelidinae (Orthoptera: Tettigoniidae) are insectivorous Pantropical katydids whose taxonomy presents a long history of controversy, with several genera incertae sedis. This work focused on species occurring in the Brazilian Atlantic Forest, one of the world's most threatened biomes. We examined material deposited in scientific collections and visited 15 conservation units from Rio de Janeiro to southern Bahia between November 2011 and January 2012, catching 104 specimens from 10 conservation units. Based on morphological and molecular data we redefined Listroscelidini, adding a new tribe, new genus and eight new species to the subfamily. Using morphological analysis, we redescribed and added new geographic records for six species, synonymized two species and built a provisional identification key for the Atlantic Forest Listroscelidinae. Molecular results suggest two new species and a new genus to be described, possibly by the fission of the genus Hamayulus. We also proposed a 500 bp region in the final portion of the COI to be used as a molecular barcode. Our data suggest that the Atlantic Forest Listroscelidinae are seriously endangered, because they occur in highly preserved forest remnants, show high rates of endemism and have a narrow geographic distribution. Based on our results, we suggest future collection efforts must take into account the molecular barcode data to accelerate species recognition. PMID:25118712

  1. Morphological variation and zoogeography of racers (Coluber constrictor) in the central Rocky Mountains

    USGS Publications Warehouse

    Corn, Paul Stephen; Bury, R. Bruce

    1986-01-01

    We examined 63 specimens of Coluber constrictor from Colorado and Utah using eight external morphological characters that have been used to distinguish C. c. mormon from C. c. flaviventris. We grouped the snakes into three Operational Taxonomic Units (OTU's) in a transect across the Rocky Mountains: the eastern Front Range foothills in Colorado; the inter-mountain region (western slope of Colorado and northeastern Utah); and the western foothills of the Wasatch Mountains in Utah. Statistically significant variation among the OTU's was discovered for ration of tail length to total length, number of central and subcaudal scales, and number of dentary teeth. However, variation is clinal with nearly complete overlap from one end f the transect to the other for each character, suggesting a wide zone of intergradiation in the inter-mountain region. We do not believe reported differences in reproductive parameters between Great Plains and Great Basin racers are sufficient grounds for recognition of species, because clutch size is both geographically variable and dependent on the environment. The distribution of C. constrictor is similar to that of other reptiles with transmontane distributions in the western United States, and we suggest two possible routes of dispersal across the Continental Divide in southwestern Wyoming. Thus, elevation of C. c. mormon to species status is not supported by morphological, reproductive, or zoogeographic evidence.

  2. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  3. Development of a Human Neurovascular Unit Organotypic Systems Model of Early Brain Development

    EPA Science Inventory

    The inability to model human brain and blood-brain barrier development in vitro poses a major challenge in studies of how chemicals impact early neurogenic periods. During human development, disruption of thyroid hormone (TH) signaling is related to adverse morphological effects ...

  4. Fall armyworm (Spodoptera frugiperda) migration pathways in the United States

    USDA-ARS?s Scientific Manuscript database

    Spodoptera frugiperda (J.E. Smith; Lepidoptera: Noctuidae) or fall armyworm is an important agricultural pest of a number of crops in the western hemisphere. Two morphologically identical host strains of fall armyworm exist, the rice-strain and corn-strain, with the latter inflicting substantial ec...

  5. Identification of Exophiala mesophila Isolated from Treated Dental Unit Waterlines

    PubMed Central

    Porteous, N. B.; Grooters, A. M.; Redding, S. W.; Thompson, E. H.; Rinaldi, M. G.; De Hoog, G. S.; Sutton, D. A.

    2003-01-01

    Members of the genus Exophiala are often difficult to identify to the species level because of their variable morphological appearances. This paper describes the methods used to identify Exophiala mesophila and provides salient differential features for distinguishing other mesophilic members of the genus. PMID:12904410

  6. Resolving cryptic species with morphology and DNA; thrips as a potential biocontrol agent of Brazilian peppertree, with a new species and overview of Pseudophilothrips (Thysanoptera)

    USDA-ARS?s Scientific Manuscript database

    Molecular and morphological evidence is presented to support the description of a second species of Pseudophilothrips in Brazil in association with Schinus terebinthifolius, an invasive weedy tree in North America. Pseudophilothrips is here recognized as a weakly defined genus comprising 13 describe...

  7. Morphological and genetic variation among four high desert Sphaeralcea species

    Treesearch

    Chalita Sriladda; Heidi A. Kratsch; Steven R. Larson; Roger K. Kjelgren

    2012-01-01

    The herbaceous perennial species in the genus Sphaeralcea have desirable drought tolerance and aesthetics with potential for low-water use landscapes in the Intermountain West. However, taxonomy of these species is ambiguous, which leads to decreased consumer confidence in the native plant nursery industry. The goal of this study was to test and clarify morphological...

  8. Relating adaptive genetic traits to climate for Sandberg bluegrass from the intermountain western United States.

    PubMed

    Johnson, Richard C; Horning, Matthew E; Espeland, Erin K; Vance-Borland, Ken

    2015-02-01

    Genetic variation for potentially adaptive traits of the key restoration species Sandberg bluegrass (Poa secunda J. Presl) was assessed over the intermountain western United States in relation to source population climate. Common gardens were established at two intermountain west sites with progeny from two maternal parents from each of 130 wild populations. Data were collected over 2 years at each site on fifteen plant traits associated with production, phenology, and morphology. Analyses of variance revealed strong population differences for all plant traits (P < 0.0001), indicating genetic variation. Both the canonical correlation and linear correlation established associations between source populations and climate variability. Populations from warmer, more arid climates had generally lower dry weight, earlier phenology, and smaller, narrower leaves than those from cooler, moister climates. The first three canonical variates were regressed with climate variables resulting in significant models (P < 0.0001) used to map 12 seed zones. Of the 700 981 km(2) mapped, four seed zones represented 92% of the area in typically semi-arid and arid regions. The association of genetic variation with source climates in the intermountain west suggested climate driven natural selection and evolution. We recommend seed transfer zones and population movement guidelines to enhance adaptation and diversity for large-scale restoration projects.

  9. Complex patterns of multivariate selection on the ejaculate of a broadcast spawning marine invertebrate.

    PubMed

    Fitzpatrick, John L; Simmons, Leigh W; Evans, Jonathan P

    2012-08-01

    Assessing how selection operates on several, potentially interacting, components of the ejaculate is a challenging endeavor. Ejaculates can be subject to natural and/or sexual selection, which can impose both linear (directional) and nonlinear (stabilizing, disruptive, and correlational) selection on different ejaculate components. Most previous studies have examined linear selection of ejaculate components and, consequently, we know very little about patterns of nonlinear selection on the ejaculate. Even less is known about how selection acts on the ejaculate as a functionally integrated unit, despite evidence of covariance among ejaculate components. Here, we assess how selection acts on multiple ejaculate components simultaneously in the broadcast spawning sessile invertebrate Mytilus galloprovincialis using the statistical tools of multivariate selection analyses. Our analyses of relative fertilization rates revealed complex patterns of selection on sperm velocity, motility, and morphology. Interestingly, the most successful ejaculates were made up of slower swimming sperm with relatively low percentages of motile cells, and sperm with smaller head volumes that swam in highly pronounced curved swimming trajectories. These results are consistent with an emerging body of literature on fertilization kinetics in broadcast spawners, and shed light on the fundamental nature of selection acting on the ejaculate as a functionally integrated unit. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  10. Orthographic Transparency Enhances Morphological Segmentation in Children Reading Hebrew Words.

    PubMed

    Haddad, Laurice; Weiss, Yael; Katzir, Tami; Bitan, Tali

    2017-01-01

    Morphological processing of derived words develops simultaneously with reading acquisition. However, the reader's engagement in morphological segmentation may depend on the language morphological richness and orthographic transparency, and the readers' reading skills. The current study tested the common idea that morphological segmentation is enhanced in non-transparent orthographies to compensate for the absence of phonological information. Hebrew's rich morphology and the dual version of the Hebrew script (with and without diacritic marks) provides an opportunity to study the interaction of orthographic transparency and morphological segmentation on the development of reading skills in a within-language design. Hebrew speaking 2nd ( N = 27) and 5th ( N = 29) grade children read aloud 96 noun words. Half of the words were simple mono-morphemic words and half were bi-morphemic derivations composed of a productive root and a morphemic pattern. In each list half of the words were presented in the transparent version of the script (with diacritic marks), and half in the non-transparent version (without diacritic marks). Our results show that in both groups, derived bi-morphemic words were identified more accurately than mono-morphemic words, but only for the transparent, pointed, script. For the un-pointed script the reverse was found, namely, that bi-morphemic words were read less accurately than mono-morphemic words, especially in second grade. Second grade children also read mono-morphemic words faster than bi-morphemic words. Finally, correlations with a standardized measure of morphological awareness were found only for second grade children, and only in bi-morphemic words. These results, showing greater morphological effects in second grade compared to fifth grade children suggest that for children raised in a language with a rich morphology, common and easily segmented morphemic units may be more beneficial for younger compared to older readers. Moreover, in contrast to the common hypothesis, our results show that morphemic segmentation does not compensate for the missing phonological information in a non-transparent orthography, but rather that morphological segmentation is most beneficial in the highly transparent script. These results are consistent with the idea that morphological and phonological segmentation processes occur simultaneously and do not constitute alternative pathways to visual word recognition.

  11. Orthographic Transparency Enhances Morphological Segmentation in Children Reading Hebrew Words

    PubMed Central

    Haddad, Laurice; Weiss, Yael; Katzir, Tami; Bitan, Tali

    2018-01-01

    Morphological processing of derived words develops simultaneously with reading acquisition. However, the reader’s engagement in morphological segmentation may depend on the language morphological richness and orthographic transparency, and the readers’ reading skills. The current study tested the common idea that morphological segmentation is enhanced in non-transparent orthographies to compensate for the absence of phonological information. Hebrew’s rich morphology and the dual version of the Hebrew script (with and without diacritic marks) provides an opportunity to study the interaction of orthographic transparency and morphological segmentation on the development of reading skills in a within-language design. Hebrew speaking 2nd (N = 27) and 5th (N = 29) grade children read aloud 96 noun words. Half of the words were simple mono-morphemic words and half were bi-morphemic derivations composed of a productive root and a morphemic pattern. In each list half of the words were presented in the transparent version of the script (with diacritic marks), and half in the non-transparent version (without diacritic marks). Our results show that in both groups, derived bi-morphemic words were identified more accurately than mono-morphemic words, but only for the transparent, pointed, script. For the un-pointed script the reverse was found, namely, that bi-morphemic words were read less accurately than mono-morphemic words, especially in second grade. Second grade children also read mono-morphemic words faster than bi-morphemic words. Finally, correlations with a standardized measure of morphological awareness were found only for second grade children, and only in bi-morphemic words. These results, showing greater morphological effects in second grade compared to fifth grade children suggest that for children raised in a language with a rich morphology, common and easily segmented morphemic units may be more beneficial for younger compared to older readers. Moreover, in contrast to the common hypothesis, our results show that morphemic segmentation does not compensate for the missing phonological information in a non-transparent orthography, but rather that morphological segmentation is most beneficial in the highly transparent script. These results are consistent with the idea that morphological and phonological segmentation processes occur simultaneously and do not constitute alternative pathways to visual word recognition. PMID:29403413

  12. Divergence of Lutzomyia (Psathyromyia) shannoni (Diptera: Psychodidae: Phlebotominae) is indicated by morphometric and molecular analyses when examined between taxa from the southeastern United States and southern Mexico.

    PubMed

    Florin, David A; Rebollar-Téllez, Eduardo A

    2013-11-01

    The medically important sand fly Lutzomyia shannoni (Dyar 1929) was collected at eight different sites: seven within the southeastern United States and one in the state of Quintana Roo, Mexico. A canonical discriminant analysis was conducted on 40 female L. shannoni specimens from each of the eight collection sites (n = 320) using 49 morphological characters. Four L. shannoni specimens from each of the eight collection sites (n = 32) were sent to the Barcode of Life Data systems where a 654-base pair segment of the cytochrome c oxidase subunit 1 (CO1) genetic marker was sequenced from each sand fly. Phylogeny estimation based on the COI segments, in addition to genetic distance, divergence, and differentiation values were calculated. Results of both the morphometric and molecular analyses indicate that the species has undergone divergence when examined between the taxa of the United States and Quintana Roo, Mexico. Although purely speculative, the arid or semiarid expanse from southern Texas to Mexico City could be an allopatric barrier that has impeded migration and hence gene flow, resulting in different morphology and genetic makeup between the two purported populations. A high degree of intragroup variability was noted in the Quintana Roo sand flies.

  13. Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment

    NASA Astrophysics Data System (ADS)

    Pakharukova, V. P.; Shalygin, A. S.; Gerasimov, E. Yu.; Tsybulya, S. V.; Martyanov, O. N.

    2016-01-01

    Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol-gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, including anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor.

  14. The best of both worlds: A combined approach for analyzing microalgal diversity via metabarcoding and morphology-based methods

    PubMed Central

    Kahlert, Maria; Fink, Patrick

    2017-01-01

    An increasing number of studies use next generation sequencing (NGS) to analyze complex communities, but is the method sensitive enough when it comes to identification and quantification of species? We compared NGS with morphology-based identification methods in an analysis of microalgal (periphyton) communities. We conducted a mesocosm experiment in which we allowed two benthic grazer species to feed upon benthic biofilms, which resulted in altered periphyton communities. Morphology-based identification and 454 (Roche) pyrosequencing of the V4 region in the small ribosomal unit (18S) rDNA gene were used to investigate the community change caused by grazing. Both the NGS-based data and the morphology-based method detected a marked shift in the biofilm composition, though the two methods varied strongly in their abilities to detect and quantify specific taxa, and neither method was able to detect all species in the biofilms. For quantitative analysis, we therefore recommend using both metabarcoding and microscopic identification when assessing the community composition of eukaryotic microorganisms. PMID:28234997

  15. The correlation of sperm morphology with unexplained recurrent spontaneous abortion: A systematic review and meta-analysis

    PubMed Central

    Cao, Xiaodan; Cui, Yun; Zhang, Xiaoxia; Lou, Jiangtao; Zhou, Jun; Wei, Renxiong

    2017-01-01

    Sperm morphology displays a potential impact on sperm function and may ultimately impact reproductive function. Current studies have investigated the correlation between sperm morphology with unexplained recurrent spontaneous abortion (RSA) but have shown inconsistent results. Hence, we systematically searched MEDLINE, EMBASE, CNKI databases, as well as the Cochrane Library for studies that examined the association between sperm morphology and unexplained RSA. Fifteen studies were identified, including 883 cases and 530 controls. Our meta-analysis results indicated that the percentage of normal sperm morphology from men with RSA partners was significantly lower than those from normal controls(SMD [95% CI]: − 0.60 [−0.81, −0.40]; P<0.00001) and the percentage of sperm morphologic alterations was significantly higher in patients with RSA compared with the control group (SMD [95% CI]: 0.92 [0.42, 1.43]; P=0.0004). The present study suggested that the percentage of normal sperm morphology may indeed decrease in men from RSA group compared with controls. However, there were some limitations in the study such as the differences in stain techniques and classification criteria. Further evidences are needed to better elucidate the relationship between sperm morphology and unexplained RSA. PMID:28903451

  16. Mass movement on Vesta at steep scarps and crater rims

    NASA Astrophysics Data System (ADS)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.

    2014-12-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  17. Diversity of marine planktonic ostracods in South China Sea: a DNA taxonomy approach.

    PubMed

    Xu, Lei; Wang, Lianggen; Ning, Jiajia; Li, Hong; Ji, Yingying; Du, Feiyan

    2018-04-19

    Ostracods (Crustacea, Ostracoda) are small bivalved crustaceans, contributing over 200 described species to the marine zooplankton community. They are widely distributed and are relatively abundant components of the mesozooplankton, playing an important role in the transport of organic matter to deep layers. However, identification of ostracods based on micro-morphological characters is extremely difficult and time-consuming. Previous fragmentary taxonomic studies of ostracods in the South China Sea (SCA), were based solely on morphology. Here, by analysing the mitochondrial COI gene, we explore the taxa across the SCA using molecular tools for the first time. Our results show that sequence divergence among species varies within a large range, from 12.93% to 35.82%. Sixteen of the taxonomic units recovered by DNA taxonomy agree well with morphology, but Paraconchoecia oblonga, Conchoecia magna and Halocypris brevirostris split into two clades each, each of which contains cryptic species.

  18. Mass Movement on Vesta at Steep Scarps and Crater Rims

    NASA Technical Reports Server (NTRS)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; hide

    2014-01-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  19. Genetic and morphologic differentiation of Bolbophorus confusus and B. levantinus (Digenea: Diplostomatidae), based on rDNA SSU polymorphism and SEM.

    PubMed

    Dzikowski, R; Levy, M G; Poore, M F; Flowers, J R; Paperna, I

    2003-12-29

    Metacercariae of Bolbophorus species are serious pathogens of farmed fish. Molecular diagnostic tools, capable of identifying and differentiating these parasites, may assist in the development of rationale control strategies. The rDNA 18S (small sub-unit: SSU) genes of adult B. confusus and B. levantinus obtained from a pelican, Pelecanus onocrotalus, and a night heron, Nycticorax nycticorax, respectively, were amplified, sequenced, and aligned. Based on this alignment, we developed a genetic differentiation assay between B. confusus and B. levantinus. These 2 species were compared genetically with the North American species B. damnificus and Bolbophorus sp. ('Type 2'). The relationship between species is outlined and discussed. In addition to the molecular study, specimens of B. confusus and B. levantinus were compared morphologically, using scanning electron microscopy. Morphologic analysis revealed interspecific differences in details of the holdfast organ and the position of the acetabulum.

  20. Mercury Wet Scavenging and Deposition Differences by Precipitation Type.

    PubMed

    Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M

    2017-03-07

    We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.

  1. Effects of annealing temperature on morphology and thickness of samarium electrodeposited thin films

    DOE PAGES

    Sims, Nathan J.; Stracener, Daniel W.; Boll, Rose Ann; ...

    2016-05-17

    Electroplated depositions of Sm were prepared using a vertical well-type electrodeposition unit with an aqueous ammonium acetate electrolyte system, with an average deposition yield just over 87%. The depositions were analyzed for morphology and thickness by scanning electron microscopy (SEM) and chemical composition by energy dispersion X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) before and after firing. The depositions were fired at 125–700 °C, while varying the heating rate from 0.5 to 10 °C/min in either an oxidizing or reducing atmosphere. A heating rate of 10 °C/min was slow enough to prevent disruption of the deposition morphology during firing.more » Furthermore, a gas sweep enhanced the removal of any organic substituents, with an oxidizing environment being more advantageous than a reducing environment.« less

  2. Analysis of umbu (Spondias tuberosa Arruda (Anacardiaceae)) in different landscape management regimes: a process of incipient domestication?

    PubMed

    Lins Neto, Ernani Machado de Freitas; Peroni, Nivaldo; Maranhão, Christine Maria Carneiro; Maciel, Maria Inês Sucupira; de Albuquerque, Ulysses Paulino

    2012-07-01

    Plant domestication is an evolutionary process guided by human groups who modify the landscape for their needs. The objective of this study was to evaluate the phenotypic variations between populations of Spondias tuberosa Arruda (umbuzeiro) when subjected to different local landscape management strategies. The influence of the landscape management system on these populations was evaluated in five identified regional units (mountains, base of mountains, pastures, cultivated areas and home gardens). Ten individuals were randomly selected from each region and subjected to morphological and chemical fruit analysis. The diversity index, based on Simpson's index, was determined for the different populations. We then evaluated the morphological differences between the individual fruits from the distinct landscape areas. We observed no significant differences in morphological diversity between the areas studied. Our data suggest that the umbuzeiro specimens in this region may be in the process of incipient domestication.

  3. Late Quaternary Alluvial Fans of Southern Baja California, Mexico: Relation to Eastern Pacific Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Antinao, J.; McDonald, E.

    2009-12-01

    In the arid, non-glaciated regions of the Southwestern USA and Northwestern Mexico, aggradation in alluvial fan systems has been traditionally linked to cold and humid periods (e.g., Last Glacial Maximum) or to the transition to warm periods (e.g., the Pleistocene-Holocene transition, PHT). However, major intervals of sediment transport and aggradation have also occurred during climatically warm periods in these regions. These periods have also been identified as portraying enhanced humidity or “monsoonal’ conditions. Investigations on the weather systems able to perform geomorphic work during predominantly warm periods, i.e. the North American Monsoon (NAM) and Eastern Pacific (EP) Tropical Cyclones (TCs), have concentrated mainly in the USA. To understand the relative contribution of these systems to sediment transport over millennial timescales, we have mapped and characterized preliminarily the alluvial fans in four different areas of the Southern Baja California peninsula, Mexico. This region is dominated by EPTC precipitation, which in turn is driving the sediment transport along alluvial channels. Detailed geomorphologic mapping shows that a distinct Late Quaternary chronostratigraphy of alluvial fan units can be developed using geochronological and pedological tools. Specifically, a soil chronosequence can be compared to sequences in the SW USA, allowing a correlation to Late Pleistocene - Holocene events in the region. At least five alluvial units can be identified. Older units have well defined gravel pediments, Av and B horizons and pervasive pedogenic carbonate morphology, with alluvial terraces that rise tens of meters above the present channel. Intermediate age units have developed B horizons and carbonate morphology at different stages. The younger units have thin soil horizons, no carbonate morphology in the soil profile, and some of them are subject to episodic flooding during TC activity. The chronosequence developed is the first step towards establishing a linkage of the alluvial fan deposition in the area to the Late Pleistocene-Holocene changes in EPTC activity, which in turn is tied to changes in large scale climate systems like El Niño-Southern Oscillation (ENSO), or the Pacific Decadal Oscillation (PDO). Investigation of these linkages will provide insight into EPTC climatology, which is currently restricted due to a short record of direct observations.

  4. Channel morphology effect on water transport through graphene bilayers.

    PubMed

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-12-08

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.

  5. Channel morphology effect on water transport through graphene bilayers

    PubMed Central

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-01-01

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology. PMID:27929106

  6. Intra-Trackway Morphological Variations Due to Substrate Consistency: The El Frontal Dinosaur Tracksite (Lower Cretaceous, Spain)

    PubMed Central

    Razzolini, Novella L.; Vila, Bernat; Castanera, Diego; Falkingham, Peter L.; Barco, José Luis; Canudo, José Ignacio; Manning, Phillip L.; Galobart, Àngel

    2014-01-01

    An ichnological and sedimentological study of the El Frontal dinosaur tracksite (Early Cretaceous, Cameros basin, Soria, Spain) highlights the pronounced intra-trackway variation found in track morphologies of four theropod trackways. Photogrammetric 3D digital models revealed various and distinct intra-trackway morphotypes, which reflect changes in footprint parameters such as the pace length, the track length, depth, and height of displacement rims. Sedimentological analyses suggest that the original substrate was non-homogenous due to lateral changes in adjoining microfacies. Multidata analyses indicate that morphological differences in these deep and shallow tracks represent a part of a continuum of track morphologies and geometries produced by a gradient of substrate consistencies across the site. This implies that the large range of track morphologies at this site resulted from similar trackmakers crossing variable facies. The trackways at the El Frontal site present an exemplary case of how track morphology, and consequently potential ichnotaxa, can vary, even when produced by a single trackmaker. PMID:24699696

  7. Microcraters formed in glass by low density projectiles

    NASA Technical Reports Server (NTRS)

    Mandeville, J.-C.; Vedder, J. F.

    1971-01-01

    Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene with masses between 0.7 and 62 picograms and velocities between 2 and 14 kilometers per second. The morphology of the craters depends on the velocity and angle of incidence of the projectiles. The transitions in morphology of the craters formed by polystyrene spheres occur at higher velocities than they do for more dense projectiles. For oblique impact, the craters are elongated and shallow with the spallation threshold occuring at higher velocity. For normal incidence, the total displaced mass of the target material per unit of projectile kinetic energy increases slowly with the energy.

  8. Characterisation of corrosion layers formed under burial environment of copper-based Greek and Roman coins from Pompeii

    NASA Astrophysics Data System (ADS)

    Pronti, Lucilla; Felici, Anna Candida; Alesiani, Marcella; Tarquini, Ombretta; Bracciale, Maria Paola; Santarelli, Maria Laura; Pardini, Giacomo; Piacentini, Mario

    2015-10-01

    This paper reports on a study carried out on patinas covering copper-based Greek and Roman coins found in the archaeological excavation of Regio VIII.7.1-15 in Pompeii (Italy). Since in cultural heritage ancient artefacts should not be damaged, non-destructive and micro-destructive techniques have been used to identify typical and uncommon compounds and to characterize the surface morphology. The chlorine content of light green patinas and the presence of typical minerals allowed us to identify the bronze disease. Coins from the same stratigraphic unit have shown different morphologies of corrosion, probably due to different micro-environmental conditions.

  9. Influence of long-term treatment of the rat with clebopride on the morphology of the mammary gland.

    PubMed

    de Lima, T C; Morato, G S; Loch, S; Tames, D R

    1990-01-01

    The substituted benzamides or orthopramides are used to treat gastrointestinal and psychotic disorders. The orthopramide clebopride, a potent dopaminergic antagonist, blocks emesis in dogs and stereotyped behavior in rodents. Since the release of prolactin is inhibited by dopamine, antidopaminergic drugs may be useful to increase lactation in nursing mothers. The present work examines the morphological and histological alterations produced by long-term treatment of puerperal and virgin female rats with clebopride. Clebopride induced significant hyperplasia of parenchymal secretory units and stimulated milk secretion in both groups of rats. However, only in virgin rats was mammary weight significantly increased.

  10. Forested wetlands of the Southern United States: a bibliography

    Treesearch

    William H. Conner; Nicole L. Hill; Evander M. Whitehead; William S. Busbee; Marceau A. Ratard; Mehmet Ozalp; Darrel L. Smith; James P. Marshall

    2001-01-01

    The term forested wetland covers a variety of forest types including mangroves, cypress/tupelo swamps, bottomland hardwoods, pocosins and Carolina bays, flatwoods, and mountain fens. These forests are dominated by woody species that have morphological features, physiological adaptations, and/or reproductive strategies enabling them to achieve maturity and reproduce in...

  11. Starvation-induced morphological responses of the boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae)

    USDA-ARS?s Scientific Manuscript database

    Status of the boll weevil, Anthonomus grandis grandis Boheman, as a pest of cotton (Gossypium spp.) in the United States has diminished because of progress by eradication programs. However, this pest remains of critical importance in South America, and intractable populations in extreme South Texas ...

  12. A National Assessment of Change in Green Infrastructure Using Mathematical Morphology

    EPA Science Inventory

    Green infrastructure is a popular framework for conservation planning. The main elements of green infrastructure are hubs and links. Hubs tend to be large areas of natural vegetation and links tend to be linear features (e.g., streams) that connect hubs. Within the United States...

  13. An Automated Approach to Extracting River Bank Locations from Aerial Imagery Using Image Texture

    DTIC Science & Technology

    2013-01-01

    Atchafalaya River, LA. Map Data: Google, United States Department of Agriculture Farm Ser- vice Agency, Europa Technologies AUTOMATED RIVER BANK...traverse morphologically smooth landscapes including rivers in sand or ice . Within these limitations, we hold that this technique rep- resents a valuable

  14. Stylet bundle morphology and trophically related enzymes of the hemlock woolly adelgid (Hemiptera: Adelgidae)

    Treesearch

    Kelly L.F. Oten; Allen C. Cohen; Fred P. Hain

    2014-01-01

    The hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), is a pest of eastern and Carolina hemlocks (Tsuga canadensis (L.) Carriere and Tsuga caroliniana Engelmann, respectively) in the eastern United States and has already caused catastrophic changes to eastern forests. As one of the significant...

  15. Brain signatures of early lexical and morphological learning of a new language.

    PubMed

    Havas, Viktória; Laine, Matti; Rodríguez Fornells, Antoni

    2017-07-01

    Morphology is an important part of language processing but little is known about how adult second language learners acquire morphological rules. Using a word-picture associative learning task, we have previously shown that a brief exposure to novel words with embedded morphological structure (suffix for natural gender) is enough for language learners to acquire the hidden morphological rule. Here we used this paradigm to study the brain signatures of early morphological learning in a novel language in adults. Behavioural measures indicated successful lexical (word stem) and morphological (gender suffix) learning. A day after the learning phase, event-related brain potentials registered during a recognition memory task revealed enhanced N400 and P600 components for stem and suffix violations, respectively. An additional effect observed with combined suffix and stem violations was an enhancement of an early N2 component, most probably related to conflict-detection processes. Successful morphological learning was also evident in the ERP responses to the subsequent rule-generalization task with new stems, where violation of the morphological rule was associated with an early (250-400ms) and late positivity (750-900ms). Overall, these findings tend to converge with lexical and morphosyntactic violation effects observed in L1 processing, suggesting that even after a short exposure, adult language learners can acquire both novel words and novel morphological rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nance-Horan syndrome-The oral perspective on a rare disease.

    PubMed

    Gjørup, Hans; Haubek, Dorte; Jacobsen, Pernille; Ostergaard, John R

    2017-01-01

    The present study describes seven patients with Nance-Horan syndrome, all referred to a specialized oral care unit in the Central Denmark Region. A literature search on "Nance Horan Syndrome" resulted in 53 publications among which 29 reported on dental findings. Findings reported in these papers have been systematized to obtain an overview of the reported findings and the terminology on dental morphology. All seven patients included in the present study showed deviations of crown morphology on incisors and/or molars. The only consistent and very clear dental aberration was alterations in the tooth morphology that is screwdriver-shaped incisors and bud molars being most pronounced in the permanent dentition, but were also present in the primary dentition. In addition, three patients had supernumerary teeth, and three had dental agenesis. In conclusion, a dental examination as a part of the diagnostic process may reveal distinct characteristics of the dental morphology, which could be of diagnostic value and facilitate an early diagnosis. In the description of molar morphology in NHS patients, it is recommended to use the term "bud molar." The combination of congenital cataract, screwdriwer-shaped incisors and bud-shaped molars is a strong clinical indication of Nance-Horan syndrome. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. The earliest bird-line archosaurs and the assembly of the dinosaur body plan.

    PubMed

    Nesbitt, Sterling J; Butler, Richard J; Ezcurra, Martín D; Barrett, Paul M; Stocker, Michelle R; Angielczyk, Kenneth D; Smith, Roger M H; Sidor, Christian A; Niedźwiedzki, Grzegorz; Sennikov, Andrey G; Charig, Alan J

    2017-04-27

    The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.

  18. Influences of Probe’s Morphology for Metal Ion Detection Based on Light-Addressable Potentiometric Sensors

    PubMed Central

    Shao, Chen; Zhou, Shuang; Yin, Xuebo; Gu, Yajun; Jia, Yunfang

    2016-01-01

    The sensing mechanism of binding Hg2+ into thymine-thymine (T-T) mismatched base pairs was introduced into a light-addressable potentiometric sensor (LAPS) with anti-Hg2+ aptamer as the sensing units. Three kinds of T-rich single-strand DNA (ssDNA) chains with different spacer lengths, from 0 to 12 –CH2 groups, were designed to investigate surface charge and morphological effects on the LAPS’ output. First, by comparing the responding of LAPS modified with three kinds of ssDNA, it was found that the best performance for Hg2+ sensing was exhibited by the probe without –CH2 groups. The detection limit of Hg2+ ion was 1 ppt under the optimal condition. Second, the cooperative effects of surface charge and morphology on the output were observed by the controlled experiments. The two effects were the negative charge balanced by metal cations and the morphological changing caused by the formation of T-Hg2+-T structure. In conclusion, not only the influences of the aptamer probe’s morphology and surface charge was investigated on the platform of LAPS, but also sensing Hg2+ ions was achieved for the first time by the presented aptamer LAPS. PMID:27187412

  19. Improving the diffraction of apoA-IV crystals through extreme dehydration.

    PubMed

    Deng, Xiaodi; Davidson, W Sean; Thompson, Thomas B

    2012-01-01

    Apolipoproteins are the protein component of high-density lipoproteins (HDL), which are necessary for mobilizing lipid-like molecules throughout the body. Apolipoproteins undergo self-association, especially at higher concentrations, making them difficult to crystallize. Here, the crystallization and diffraction of the core fragment of apolipoprotein A-IV (apoA-IV), consisting of residues 64-335, is presented. ApoA-IV(64-335) crystallized readily in a variety of hexagonal (P6) morphologies with similar unit-cell parameters, all containing a long axis of nearly 550 Å in length. Preliminary diffraction experiments with the different crystal morphologies all resulted in limited streaky diffraction to 3.5 Å resolution. Crystal dehydration was applied to the different morphologies with variable success and was also used as a quality indicator of crystal-growth conditions. The results show that the morphologies that withstood the most extreme dehydration conditions showed the greatest improvement in diffraction. One morphology in particular was able to withstand dehydration in 60% PEG 3350 for over 12 h, which resulted in well defined intensities to 2.7 Å resolution. These results suggest that the approach of integrating dehydration with variation in crystal-growth conditions might be a general technique to optimize diffraction. © 2012 International Union of Crystallography. All rights reserved.

  20. Accurate diagnosis of thyroid follicular lesions from nuclear morphology using supervised learning.

    PubMed

    Ozolek, John A; Tosun, Akif Burak; Wang, Wei; Chen, Cheng; Kolouri, Soheil; Basu, Saurav; Huang, Hu; Rohde, Gustavo K

    2014-07-01

    Follicular lesions of the thyroid remain significant diagnostic challenges in surgical pathology and cytology. The diagnosis often requires considerable resources and ancillary tests including immunohistochemistry, molecular studies, and expert consultation. Visual analyses of nuclear morphological features, generally speaking, have not been helpful in distinguishing this group of lesions. Here we describe a method for distinguishing between follicular lesions of the thyroid based on nuclear morphology. The method utilizes an optimal transport-based linear embedding for segmented nuclei, together with an adaptation of existing classification methods. We show the method outputs assignments (classification results) which are near perfectly correlated with the clinical diagnosis of several lesion types' lesions utilizing a database of 94 patients in total. Experimental comparisons also show the new method can significantly outperform standard numerical feature-type methods in terms of agreement with the clinical diagnosis gold standard. In addition, the new method could potentially be used to derive insights into biologically meaningful nuclear morphology differences in these lesions. Our methods could be incorporated into a tool for pathologists to aid in distinguishing between follicular lesions of the thyroid. In addition, these results could potentially provide nuclear morphological correlates of biological behavior and reduce health care costs by decreasing histotechnician and pathologist time and obviating the need for ancillary testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.

    PubMed

    Shang, J K; Combes, S A; Finio, B M; Wood, R J

    2009-09-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  2. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children.

    PubMed

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5-7, 8-10, and 11-15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance.

  3. Rapid genetic and morphologic divergence between captive and wild populations of the endangered Leon Springs pupfish, Cyprinodon bovinus.

    PubMed

    Black, Andrew N; Seears, Heidi A; Hollenbeck, Christopher M; Samollow, Paul B

    2017-04-01

    The Leon Springs pupfish (Cyprinodon bovinus) is an endangered species currently restricted to a single desert spring and a separate captive habitat in southwestern North America. Following establishment of the captive population from wild stock in 1976, the wild population has undergone natural population size fluctuations, intentional culling to purge genetic contamination from an invasive congener (Cyprinodon variegatus) and augmentation/replacement of wild fish from the captive stock. A severe population decline following the most recent introduction of captive fish prompted us to examine whether the captive and wild populations have differentiated during the short time they have been isolated from one another. If so, the development of divergent genetic and/or morphologic traits between populations could contribute to a diminished ability of fish from one location to thrive in the other. Examination of genomewide single nucleotide polymorphisms and morphologic variation revealed no evidence of residual C. variegatus characteristics in contemporary C. bovinus samples. However, significant genetic and morphologic differentiation was detected between the wild and captive populations, some of which might reflect local adaptation. Our results indicate that genetic and physical characteristics can diverge rapidly between isolated subdivisions of managed populations, potentially compromising the value of captive stock for future supplementation efforts. In the case of C. bovinus, our findings underscore the need to periodically inoculate the captive population with wild genetic material to help mitigate genetic, and potentially morphologic, divergence between them and also highlight the utility of parallel morphologic and genomic evaluation to inform conservation management planning. © 2017 John Wiley & Sons Ltd.

  4. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children

    PubMed Central

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5–7, 8–10, and 11–15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance. PMID:27445738

  5. Deaf college students' mathematical skills relative to morphological knowledge, reading level, and language proficiency.

    PubMed

    Kelly, Ronald R; Gaustad, Martha G

    2007-01-01

    This study of deaf college students examined specific relationships between their mathematics performance and their assessed skills in reading, language, and English morphology. Simple regression analyses showed that deaf college students' language proficiency scores, reading grade level, and morphological knowledge regarding word segmentation and meaning were all significantly correlated with both the ACT Mathematics Subtest and National Technical Institute for the Deaf (NTID) Mathematics Placement Test scores. Multiple regression analyses identified the best combination from among these potential independent predictors of students' performance on both the ACT and NTID mathematics tests. Additionally, the participating deaf students' grades in their college mathematics courses were significantly and positively associated with their reading grade level and their knowledge of morphological components of words.

  6. Planned residential units: New development trajectories

    NASA Astrophysics Data System (ADS)

    Fedchenko, Irina

    2017-01-01

    The paper summarizes the transformation patterns of functional, morphological, social, and administrative structures of planned residential units - district (Russia, Eastern Europe), neighborhood (USA), community (UK, Europe), as the smallest structural and planning elements of the settlements. The study is based on the author's own on-site survey of the existing and new planned residential units, as well as on the analysis of theoretical sources. The multidisciplinary analysis of the theoretical concepts and on-site survey results showed that planned residential units formed in the early twentieth century retain their social and planning importance and identity, evolve and acquire new features and forms. At the same time, according to the current regulatory and legal instruments they remain basic planning elements of urban structure in the early twenty-first century. This paper also includes experimental analysis of the theoretical concepts of planned residential units' transformation, their conceptual planning model and formation principles in the early twenty-first century.

  7. The fretted terrain of the Nilosyrtis Mensae region of Mars: Clues to the timing of dichotomy formation and the emplacement of the northern plains

    NASA Technical Reports Server (NTRS)

    Detroye, Jeff E.; Williams, Steven H.

    1994-01-01

    Geologic mapping of the fretted terrain of the Nilosyrtis Mensae region of Mars has revealed geomorphic evidence that the breakup of the plateau units to the south of Nilosyrtis occurred well before the plains units to the north were emplaced in the late Hesperian time. The plains units were deposited against the fretted terrain which has undergone some modification by mass wasting but not significant backwasting. The morphology observed at the contact between plains and the fretted terrain is consistent with that expected where the edge of a pile of sedimentary debris has undergone mass wasting and other erosion.

  8. Morphological, molecular and phylogenetic analyses of Diplotriaena bargusinica Skrjabin, 1917 (Nematoda: Diplotriaenidae).

    PubMed

    Dutra Vieira, Thainá; Pegoraro de Macedo, Marcia Raquel; Fedatto Bernardon, Fabiana; Müller, Gertrud

    2017-10-01

    The nematode Diplotriaena bargusinica is a bird air sac parasite, and its taxonomy is based mainly on morphological and morphometric characteristics. Increasing knowledge of genetic information variability has spurred the use of DNA markers in conjunction with morphological data for inferring phylogenetic relationships in different taxa. Considering the potential of molecular biology in taxonomy, this study presents the morphological and molecular characterization of D. bargusinica, and establishes the phylogenetic position of the nematode in Spirurina. Twenty partial sequences of the 18S region of D. bargusinica rDNA were generated. Phylogenetic trees were obtained through the Maximum Likelihood and Bayesian Inference methods where both had similar topology. The group Diplotriaenoidea is monophyletic and the topologies generated corroborate the phylogenetic studies based on traditional and previously performed molecular taxonomy. This study is the first to generate molecular data associated with the morphology of the species. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Do molecules matter more than morphology? Promises and pitfalls in parasites.

    PubMed

    Perkins, S L; Martinsen, E S; Falk, B G

    2011-11-01

    Systematics involves resolving both the taxonomy and phylogenetic placement of organisms. We review the advantages and disadvantages of the two kinds of information commonly used for such inferences--morphological and molecular data--as applied to the systematics of metazoan parasites generally, with special attention to the malaria parasites. The problems that potentially confound the use of morphology in parasites include challenges to consistent specimen preservation, plasticity of features depending on hosts or other environmental factors, and morphological convergence. Molecular characters such as DNA sequences present an alternative data source and are particularly useful when not all the parasite's life stages are present or when parasitaemia is low. Nonetheless, molecular data can bring challenges that include troublesome DNA isolation, paralogous gene copies, difficulty in developing molecular markers, and preferential amplification in mixed species infections. Given the differential benefits and shortcomings of both molecular and morphological characters, both should be implemented in parasite taxonomy and phylogenetics.

  10. To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes

    PubMed Central

    Hoey, Andrew S.; Bellwood, David R.; Barnett, Adam

    2012-01-01

    Functionally coupled biomechanical systems are widespread in nature and are viewed as major constraints on evolutionary diversification, yet there have been few attempts to explore the implications of performing multiple functions within a single anatomical structure. Paternally mouthbrooding cardinalfishes present an ideal system to investigate the constraints of functional coupling as the oral jaws of male fishes are directly responsible for both feeding and reproductive functions. To test the effects of (i) mouthbrooding on feeding and (ii) feeding on reproductive potential we compared the feeding apparatus between sexes of nine species of cardinalfish and compared brood characteristics among species from different trophic groups, respectively. Mouthbrooding was strongly associated with the morphology of the feeding apparatus in males. Male cardinalfishes possessed longer heads, snouts and jaws than female conspecifics irrespective of body size, trophic group or evolutionary history. Conversely, reproductive potential also appeared to be related to trophic morphology. Piscivorous cardinalfishes produced larger, but fewer eggs, and had smaller brood volumes than species from the two invertebrate feeding groups. These interrelationships suggest that feeding and reproduction in the mouth of cardinalfishes may be tightly coupled. If so this may, in part, have contributed to the limited morphological diversification exhibited by cardinalfishes. PMID:22319124

  11. A Novel Approach To Improve the Efficiency of Block Freeze Concentration Using Ice Nucleation Proteins with Altered Ice Morphology.

    PubMed

    Jin, Jue; Yurkow, Edward J; Adler, Derek; Lee, Tung-Ching

    2017-03-22

    Freeze concentration is a separation process with high success in product quality. The remaining challenge is to achieve high efficiency with low cost. This study aims to evaluate the potential of using ice nucleation proteins (INPs) as an effective method to improve the efficiency of block freeze concentration while also exploring the related mechanism of ice morphology. Our results show that INPs are able to significantly improve the efficiency of block freeze concentration in a desalination model. Using this experimental system, we estimate that approximately 50% of the energy cost can be saved by the inclusion of INPs in desalination cycles while still meeting the EPA standard of drinking water (<500 ppm). Our investigative tools for ice morphology include optical microscopy and X-ray computed tomography imaging analysis. Their use indicates that INPs promote the development of a lamellar structured ice matrix with larger hydraulic diameters, which facilitates brine drainage and contains less brine entrapment as compared to control samples. These results suggest great potential for applying INPs to develop an energy-saving freeze concentration method via the alteration of ice morphology.

  12. Influence of channel morphology and flow regime on larval drift of pallid sturgeon in the Lower Missouri River

    USGS Publications Warehouse

    Erwin, Susannah O.; Jacobson, Robert B.

    2015-01-01

    The transition from drifting free embryo to exogenously feeding larvae has been identified as a potential life-stage bottleneck for the endangered Missouri River pallid sturgeon. Previous studies have indicated that river regulation and fragmentation may contribute to the mortality of larval pallid sturgeon by reducing the extent of free-flowing river available to free embryos to complete ontogenetic development. Calculations of total drift distance based on mean velocity, however, do not address the potential for complex channels and flow patterns to increase retention or longitudinal dispersion of free embryos. We use a one-dimensional advection–dispersion model to estimate total drift distance and employ the longitudinal dispersion coefficient as a metric to quantify the tendency towards dispersion or retention of passively drifting larvae. We describe the effects of different styles of channel morphology on larval dispersion and consider the implications of flow regime modifications on retention of free embryos within the Lower Missouri River. The results illustrate the complex interactions of local morphology, engineered structures, and hydraulics that determine patterns of dispersion in riverine environments and inform how changes to channel morphology and flow regime may alter dispersion of drifting organisms.

  13. To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes.

    PubMed

    Hoey, Andrew S; Bellwood, David R; Barnett, Adam

    2012-06-22

    Functionally coupled biomechanical systems are widespread in nature and are viewed as major constraints on evolutionary diversification, yet there have been few attempts to explore the implications of performing multiple functions within a single anatomical structure. Paternally mouthbrooding cardinalfishes present an ideal system to investigate the constraints of functional coupling as the oral jaws of male fishes are directly responsible for both feeding and reproductive functions. To test the effects of (i) mouthbrooding on feeding and (ii) feeding on reproductive potential we compared the feeding apparatus between sexes of nine species of cardinalfish and compared brood characteristics among species from different trophic groups, respectively. Mouthbrooding was strongly associated with the morphology of the feeding apparatus in males. Male cardinalfishes possessed longer heads, snouts and jaws than female conspecifics irrespective of body size, trophic group or evolutionary history. Conversely, reproductive potential also appeared to be related to trophic morphology. Piscivorous cardinalfishes produced larger, but fewer eggs, and had smaller brood volumes than species from the two invertebrate feeding groups. These interrelationships suggest that feeding and reproduction in the mouth of cardinalfishes may be tightly coupled. If so this may, in part, have contributed to the limited morphological diversification exhibited by cardinalfishes.

  14. Geology of the Sklodowska Region, Lunar Farside. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kauffman, J. D.

    1974-01-01

    Investigation of an area on the lunar farside has resulted in a geologic map, development of a regional stratigraphic sequence, and interpretation of surface materials. Apollo 15 metric photographs were used in conjunction with photogrammetric techniques to produce a base map to which geologic units were later added. Geologic units were first delineated on the metric photographs and then transferred to the base map. Materials were defined and described from selected Lunar Orbiter and Apollo 15 metric, panoramic, and Hasselblad photographs on the basis of distinctive morphologic characteristics.

  15. Stratigraphy and Geochemistry of a Fond St. Jean Cinder Cone, Dominica

    NASA Astrophysics Data System (ADS)

    Isenburg, T.; Frey, H. M.; Waters, L. E.; Dunn, S.; Manon, M. R. F.

    2017-12-01

    Current geologic maps of Dominica generally classify the south-eastern portion of the island surrounding the Foundland stratovolcano as "mafic breccias and thin lava flows of Foundland center" (Smith et al. 2013). A detailed survey of the stratigraphy of a road cut at Fond St. Jean provides evidence for a mafic cinder cone on the flanks of Foundland. The 39 m thick stratigraphic sequence, dipping 60˚ north, includes a basal unit of scoria overlain by a meter of basaltic breccia and repeating layers of massive and rubbly flows, which range from 1 to 10 m in thickness. These flows transition into an additional, 2 m thick scoria deposit capped by a meter of massive basalt, which sits beneath another 3-4 m scoria deposit. Another layer of massive flow then transitions to three units of alternating air fall and ash lenses. Air fall units are 0.5 m in thickness but pinch and swell regularly, and ash lenses are roughly 10 cm thick. All units contain plagioclase + olivine + clinopyroxene + orthopyroxene + titanomagnetite. Though the phase assemblage is consistent between basaltic units, different crystal morphologies serve to define individual massive flows. Variations in the texture of materials deposited by the cinder cone provides evidence for cyclic explosive and effusive episodes. Massive samples at the bottom of the stratigraphic section contain abundant, large olivine and tabular, elongate plagioclase. Plagioclase compositions between individual stratigraphic units span a similar range in composition. Massive flows throughout the column contain similar, weakly zoned plagioclase cores (An84-94) with 10-30 µm sodic rims (An58-78; most rims are 68). Plagioclase microlites (long axes ≤100µm) span a wide range of compositions (An50-90). Three different air fall units contain plagioclase rims ranging in composition from An58-86 and cores ranging from An84-92, with the exception of a single core that has a composition of An61. Olivine in most units ranges in composition from Fo55-70. Spinels are ubiquitous throughout each of the units in the section and are consistently titanomagnetites. The potential genetic relationship between the cinder cone and Foundland is unclear, as the Foundland basalts are olivine-poor and contain amphibole, suggesting a wetter source magma for Foundland.

  16. In-Situ through-Plane Measurements of Ionic Potential Distributions in Non-Precious Metal Catalyst Electrode for PEFC

    DOE PAGES

    Komini Babu, S.; Chung, H. T.; Zelenay, P.; ...

    2015-09-14

    This manuscript presents micro-scale experimental diagnostics and nano-scale resolution X-ray imaging applied to the study of proton conduction in non-precious metal catalyst (NPMC) fuel cell cathodes. NPMC’s have the potential to reduce the cost of the fuel cell for multiple applications. But, NPMC electrodes are inherently thick compared to the convention Pt/C electrode due to the lower volumetric activity. Thus, the electric potential drop through the Nafion across the electrode thickness can yield significant performance loss. Ionomer distributions in the NPMC electrodes with different ionomer loading are extracted from morphological data using nanoscale X-ray computed tomography (nano-XCT) imaging of themore » cathode. Microstructured electrode scaffold (MES) diagnostics are used to measure the electrolyte potential at discrete points across the thickness of the catalyst layer. When using that apparatus, the electrolyte potential drop, the through-thickness reaction distribution, and the proton conductivity are measured and correlated with the corresponding Nafion morphology and cell performance.« less

  17. Functional TASK-3-Like Channels in Mitochondria of Aldosterone-Producing Zona Glomerulosa Cells.

    PubMed

    Yao, Junlan; McHedlishvili, David; McIntire, William E; Guagliardo, Nick A; Erisir, Alev; Coburn, Craig A; Santarelli, Vincent P; Bayliss, Douglas A; Barrett, Paula Q

    2017-08-01

    Ca 2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca 2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K + channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K + channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells. © 2017 American Heart Association, Inc.

  18. Bone morphologies and histories: Life course approaches in bioarchaeology.

    PubMed

    Agarwal, Sabrina C

    2016-01-01

    The duality of the skeleton as both a biological and cultural entity has formed the theoretical basis of bioarchaeology. In recent years bioarchaeological studies have stretched the early biocultural concept with the adoption of life course approaches in their study design and analyses, making a significant contribution to how we think about the role of postnatal plasticity. Life course theory is a conceptual framework used in several scientific fields of biology and the social sciences. Studies that emphasize life course approaches in the examination of bone morphology in the past are united in their interrogation of human life as a result of interrelated and cumulative events over not only the timeframe of individuals, but also over generations at the community level. This article provides an overview of the theoretical constructs that utilize the life course concept, and a discussion of the different ways these theories have been applied to thinking about trajectories of bone morphology in the past, specifically highlighting key recent studies that have used life course approaches to understand the influence of growth, stress, diet, activity, and aging on the skeleton. The goal of this article is to demonstrate the scope of contemporary bioarchaeological studies that illuminate the importance of environmental and behavioral influence on bone morphology. Understanding how trajectories of bone growth and morphology can be altered and shaped over the life course is critical not only for bioarchaeologists, but also researchers studying bone morphology in living nonhuman primates and fossil primate skeletons. © 2016 Wiley Periodicals, Inc.

  19. Controls on morphological variability and role of stream power distribution pattern, Yamuna River, western India

    NASA Astrophysics Data System (ADS)

    Bawa, Nupur; Jain, Vikrant; Shekhar, Shashank; Kumar, Niraj; Jyani, Vikas

    2014-12-01

    Understanding the controls on the morphological variability of river systems constitutes one of the fundamental questions in geomorphic investigation. Channel morphology is an important indicator of river processes and is of significance for mapping the hydrology-ecologic connectivity in a river system and for predicting the future trajectory of river health in response to external forcings. This paper documents the spatial morphological variability and its natural and anthropogenic controls for the Yamuna River, a major tributary of the Ganga River, India. The Yamuna River runs through a major urban centre i.e. Delhi National Capital Region. The Yamuna River was divided into eight geomorphically distinct reaches on the basis of the assemblages of geomorphic units and the association of landscape, valley and floodplain settings. The morphological variability was analysed through stream power distribution and sediment load data at various stations. Stream power distribution of the Yamuna River basin is characterised by a non-linear pattern that was used to distinguish (a) high energy ‘natural' upstream reaches, (b) ‘anthropogenically altered', low energy middle stream reaches, and (c) ‘rejuvenated' downstream reaches again with higher stream power. The relationship between stream power and channel morphology in these reaches was integrated with sediment load data to define the maximum flow efficiency (MFE) as the threshold for geomorphic transition. This analysis supports the continuity of river processes and the significance of a holistic, basin-scale approach rather than isolated local scale analysis in river studies.

  20. Large-scale controls on potential respiration and denitrification in riverine floodplains

    PubMed Central

    Welti, Nina; Bondar-Kunze, Elisabeth; Singer, Gabriel; Tritthart, Michael; Zechmeister-Boltenstern, Sophie; Hein, Thomas; Pinay, Gilles

    2012-01-01

    Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems. PMID:23565037

  1. Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Carrozzo, F. G.; Di Achille, G.; Salese, F.; Altieri, F.; Bellucci, G.

    2017-01-01

    A variety of hydrothermal environments have been documented in terrestrial impact structures. Due to both past water interactions and meteoritic bombardment on the surface of Mars, several authors have predicted various scenarios that include the formation of hydrothermal systems. Geological and mineralogical evidence of past hydrothermal activity have only recently been found on Mars. Here, we present a geological and mineralogical study of the Auki Crater using the spectral and visible imagery data acquired by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars), CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) instruments on board the NASA MRO mission. The Auki Crater is a complex crater that is ∼38 km in diameter located in Tyrrhena Terra (96.8°E and 15.7°S) and shows a correlation between its mineralogy and morphology. The presence of minerals, such as smectite, silica, zeolite, serpentine, carbonate and chlorite, associated with morphological structures, such as mounds, polygonal terrains, fractures and veins, suggests that the Auki Crater may have hosted a post impact-induced hydrothermal system. Although the distribution of hydrated minerals in and around the central uplift and the stratigraphic relationships of some morphological units could also be explained by the excavation and exhumation of carbonate-rich bedrock units as a consequence of crater formation, we favor the hypothesis of impact-induced hydrothermal circulation within fractures and subsequent mineral deposition. The hydrothermal system could have been active for a relatively long period of time after the impact, thus producing a potential transient habitable environment. It must be a spectrally neutral component to emphasize the spectral features; It is an average of spectra taken in the same column of the numerator spectra to correct the residual instrument artifacts and reduce detector noise that changes from column to column; It must be taken in the neighborhood of the area of interest to reduce most of the common mineral component. It is not always possible to satisfy all of the criteria listed above and this must be taken into account in the interpretation of the ratioed spectra. Moreover, this procedure works well if the denominator spectra have a phase similar to that of numerator spectra, but, as we will see, that is not always the case. The ratioed spectra may continue to have multiple phases that contribute to the spectrum with its spectral features (Wiseman et al., 2013). For this reason, when we compare a ratioed spectrum with those from the laboratory, it must be taken into account that more phases may continue to affect the band positions.For the geological and morphometric analyses, we used high-resolution imagery and topography from ESA Mars Express and NASA MRO (Mars Reconnaissance Orbiter) missions. In particular, HRSC (High Resolution Stereo Camera, Neukum et al., 2004) data (visible nadir image at 12.5 m/pixel and stereo-derived topography at 100 m/pixel) were used for the overall crater context, while CTX (ConTeXt, Malin et al., 2007) and HiRISE (High Resolution Imaging Science Experiment, McEwen et al., 2007) images supported the detailed analysis of the floor and central part of the crater. The latter two datasets were also used to derive high-resolution topography (down to 7 m/pixel from CTX and 1 m/pixel from HiRISE) through the NASA Stereo Pipeline software (Moratto et al., 2010). All of the data were georeferenced and co-registered using the equirectangular projection and the Mars IAU2000 reference ellipsoid. Finally, the imagery, spectral data and topography were imported into the GIS (Geographic Information System, ArcGIS v.10.2.2) environment to obtain a multitemporal/multisensor/multiscale view of the studied crater. We delineated the map units, taking into account their morphology/morphometry, surface properties, texture at different scales (e.g., relative tonal differences from visible imagery, thermal inertia, rough or smooth texture), and their internal sedimentary structure when possible (from erosional windows, crater walls or scarps). The latter approach allowed us to i) identify the main geological/geomorphological units and to ii) correlate the defined units with the mineralogical observations from CRISM (Figs. 1 and 4).

  2. Recording of the Holocene sediment infilling in a confined tide-dominated estuary: the bay of Brest (Britanny, France)

    NASA Astrophysics Data System (ADS)

    Gregoire, Gwendoline; Le Roy, Pascal; Ehrhold, Axel; Jouet, Gwenael; Garlan, Thierry

    2016-04-01

    Modern estuaries constitute key areas for the preservation of sedimentary deposits related to the Holocene period. Several previous studies using stratigraphic reconstructions in such environments allowed to characterise the major parameters controlling the Holocene transgressive sequence and to decipher their respective role in the sedimentary infill: (1) the evolution of main hydrologic factors (wave or tide-dominated environment), (2) the sea level fluctuation and (3) the morphologies of the bedrock and the coastline. Nevertheless, the timing of the transgressive deposits and the detailed facies need to be precise in regard to the stratigraphic schemes. The Bay of Brest (Western Brittany, France) offers the opportunity to examine these points and to compare with previous studies. It constitutes an original tide-dominated estuary that communicates to the open sea (Iroise Sea) by a narrow strait. Two main rivers (Aulne and Elorn) are connected to a submerged paleovalleys network that was incised in the Paleozoic basement during lowstands and still preserved in the present morphology. It delineates the central basin surrounded by tidal flat located in sheltered area. The analysis of high and very-high resolution seismic lines recorded through the whole bay combined with sediment cores (up to 4.5 m long) and radiocarbon dating allow to precise the architecture and the timing of the thick Holocene coastal wedge. It is preserved from the valley network to the shore and presents a longitudinal variability (downstream-upstream evolution). The infill is divided into two successive stages (corresponding to the transgressive and highstand system tracts) which laterally evolve from the paleo-valley to the coast. Two units constitute the transgressive system tract. The oldest, dated from 8200 to 7000 cal B.P. is composed of fine-grained, organic-rich tidal flat deposits located in the sheltered area and organised in levees on the terrace bordering the paleo-valley. A tidal ravinement surface (about 7000 cal B.P.) creates a major erosion of the levees and forms gullies on the tidal flat. The second unit is topped by the maximum flooding surface (MFS) and is characterised by shelly coarser sediments. It represents an episode of condensed sedimentation from about 4800 to 4000 cal B.P in the sheltered area, while tidal banks grew in the preserved paleo-channels. The high system tract (HST), dated from 2800 cal B.P to the present day, is formed by a muddy facies laminated with maerl bed (calcareous algae) and mixed with invasive fauna. Draping the previous units, it is interpreted as a prograding system that reflected an increasing fluvial influx potentially linked with the human activities. Our results support that the rate of sea-level rise, the tidal hydrodynamic and bedrock/coastal morphology are the main key-factors that control the infilling architecture of the bay of Brest in the Holocene time scale.

  3. Study on mycoflora of poultry feed ingredients and finished feed in Iran

    PubMed Central

    Ghaemmaghami, Seyed Soheil; Modirsaneii, Mehrdad; Khosravi, Ali Reza; Razzaghi-Abyaneh, Mehdi

    2016-01-01

    Background and Objectives: Unhygienic poultry feedstuffs can lead to nutrient losses and detrimental effect on poultry production and public health. In the present study, mycobiota and colony-forming units per gram in ingredients and finish poultry feed was evaluated with special reference to potentially mycotoxigenic fungi. Materials and Methods: Eighty five samples of corn, soybean meal and poultry finished feed were collected from nine poultry feed factories located in three provinces i.e. Tehran, Alborz and Qom in Iran from October 2014 to January 2015. Samples were cultured on Sabouraud dextrose agar (SDA), Aspergillus flavus and parasiticus agar (AFPA) and dichloran rosebengal chloramphenicol agar (DRBC) and incubated at 28 °C for 7–10 days. Purified fungal colonies were identified by a combination of macro- and microscopic morphological criteria. For determining the rate of fungal contamination, samples were cultured on SDA and colony forming units (CFUs) were calculated. Results: A total of 384 fungal isolates belonging to 7 genera of filamentous fungi and yeasts were obtained from corn (124 isolates), soybean meal (92 isolates), and feed before (72 isolates), and after pelleting (96 isolates). The most prominent fungal isolate in corn, soybean meal and feed before pelleting (feed as mash form) was Fusarium but in feed after pelleting was Aspergillus. Among 5 Aspergillus species isolated, potentially aflatoxigenic A. flavus isolates was predominant in corn (46.6%), soybean meal (72.7%) and poultry finished feed (75%). CFUs results indicated that 9/22 corn samples (40.9%), none of 22 soybean meal samples, 19/41 finished feed (46.3%) were contaminated higher than the standard limit. Conclusions: Our results indicated that corn, soybean meal and finished feed of poultry feed mill are contaminated with various fungal genera by different levels sometimes higher that the standard limits. Contamination with potentially mycotoxigenic fungi especially Aspergillus species may be considered as a human public health hazard. PMID:27092224

  4. Study on mycoflora of poultry feed ingredients and finished feed in Iran.

    PubMed

    Ghaemmaghami, Seyed Soheil; Modirsaneii, Mehrdad; Khosravi, Ali Reza; Razzaghi-Abyaneh, Mehdi

    2016-02-01

    Unhygienic poultry feedstuffs can lead to nutrient losses and detrimental effect on poultry production and public health. In the present study, mycobiota and colony-forming units per gram in ingredients and finish poultry feed was evaluated with special reference to potentially mycotoxigenic fungi. Eighty five samples of corn, soybean meal and poultry finished feed were collected from nine poultry feed factories located in three provinces i.e. Tehran, Alborz and Qom in Iran from October 2014 to January 2015. Samples were cultured on Sabouraud dextrose agar (SDA), Aspergillus flavus and parasiticus agar (AFPA) and dichloran rosebengal chloramphenicol agar (DRBC) and incubated at 28 °C for 7-10 days. Purified fungal colonies were identified by a combination of macro- and microscopic morphological criteria. For determining the rate of fungal contamination, samples were cultured on SDA and colony forming units (CFUs) were calculated. A total of 384 fungal isolates belonging to 7 genera of filamentous fungi and yeasts were obtained from corn (124 isolates), soybean meal (92 isolates), and feed before (72 isolates), and after pelleting (96 isolates). The most prominent fungal isolate in corn, soybean meal and feed before pelleting (feed as mash form) was Fusarium but in feed after pelleting was Aspergillus. Among 5 Aspergillus species isolated, potentially aflatoxigenic A. flavus isolates was predominant in corn (46.6%), soybean meal (72.7%) and poultry finished feed (75%). CFUs results indicated that 9/22 corn samples (40.9%), none of 22 soybean meal samples, 19/41 finished feed (46.3%) were contaminated higher than the standard limit. Our results indicated that corn, soybean meal and finished feed of poultry feed mill are contaminated with various fungal genera by different levels sometimes higher that the standard limits. Contamination with potentially mycotoxigenic fungi especially Aspergillus species may be considered as a human public health hazard.

  5. River network and watershed morphology analysis with potential implications towards basin classification

    NASA Astrophysics Data System (ADS)

    Bugaets, Andrey; Gartsman, Boris; Bugaets, Nadezhda

    2013-04-01

    Generally, the investigation of river network composition and watersheds morphology (fluvial geomorphology), constituting one of the key patterns of land surface, is a fundamental question of Earth Sciences. Recent ideas in this research field are the equilibrium and optimal, in the sense of minimum energy expenditure, river network evolution under constant or slowly varying conditions (Rodriguez-Iturbe, Rinaldo, 1997). It follows to such network behavior as self-similarity, self-affinity and self-organization. That is to say, under relatively stable conditions the river systems tend to some "good composed" form and vice-versa. Lately appearing global free available detailed DEM covers involve new possibilities in this research field. We develop new methodology and program package for river network structure and watershed morphology detailed analysis on the base of ArcMap tools. Different characteristics of river network (e.g. ordering, coefficients of Horton's laws, Shannon entropy, fractal dimension) and basin morphology (e.g. diagrams of average elevation, slope, width and energy index against distance to outlet along streams) could be calculated to find a good indicators of intensity and non-equilibrium of watershed evolution. Watersheds are non-conservative systems in which energy is dissipated by transporting water and sediment in geomorphic adjustment of the slopes and channels. The problem of estimating the amount of energy expenditure associated with overcoming surface and system resistance is extremely complicated to solve. A simplification on a river network scale is to consider energy expenditure to be primarily associated with friction of the fluid. We propose a new technique to analyze the catchment landforms based on so-called "energy function" that is a distribution of total energy index against distance from outlet. As potential energy of water on the hillslopes is transformed into kinetic energy of the flowing fluid-sediment mixture in the runoff process, the energy is dissipated from the system. The rate of energy dissipation is defined as the work that a fluid element needs to perform to overcome friction at the unit area. Appling the product of local slope and watershed area, i.e. calculating the total energy index at the different distance from outlet, one gets the watershed "energy function" E(x). Application results indicate that the proposed method could be used for watersheds classification, regionalization and paleoreconstructions. NASA-SRTM DEM of 3" resolution has been employed to analyze the 24 watersheds within Amur River Basin with area 20-70 thousand km2 (7-8 order). The study was carried out, in particular, to assess the limitation of SRTM DEM data, especially in flat terrains. The study also revealed that some of regularities investigated are described satisfactorily by well-known simplest model of drainage networks, so-called Peano's basin.

  6. Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1 °C.

    PubMed

    Hoang, V; Delatolla, R; Abujamel, T; Mottawea, W; Gadbois, A; Laflamme, E; Stintzi, A

    2014-02-01

    This study aims to investigate moving bed biofilm reactor (MBBR) nitrification rates, nitrifying biofilm morphology, biomass viability as well as bacterial community shifts during long-term exposure to 1 °C. Long-term exposure to 1 °C is the key operational condition for potential ammonia removal upgrade units to numerous northern region treatment systems. The average laboratory MBBR ammonia removal rate after long-term exposure to 1 °C was measured to be 18 ± 5.1% as compared to the average removal rate at 20 °C. Biofilm morphology and specifically the thickness along with biomass viability at various depths in the biofilm were investigated using variable pressure electron scanning microscope (VPSEM) imaging and confocal laser scanning microscope (CLSM) imaging in combination with viability live/dead staining. The biofilm thickness along with the number of viable cells showed significant increases after long-term exposure to 1 °C. Hence, this study observed nitrifying bacteria with higher activities at warm temperatures and a slightly greater quantity of nitrifying bacteria with lower activities at cold temperatures in nitrifying MBBR biofilms. Using DNA sequencing analysis, Nitrosomonas and Nitrosospira (ammonia oxidizers) as well as Nitrospira (nitrite oxidizer) were identified and no population shift was observed between 20 °C and after long-term exposure to 1 °C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Modalities for Visualization of Cortical Bone Remodeling: The Past, Present, and Future

    PubMed Central

    Harrison, Kimberly D.; Cooper, David M. L.

    2015-01-01

    Bone’s ability to respond to load-related phenomena and repair microdamage is achieved through the remodeling process, which renews bone by activating groups of cells known as basic multicellular units (BMUs). The products of BMUs, secondary osteons, have been extensively studied via classic two-dimensional techniques, which have provided a wealth of information on how histomorphology relates to skeletal structure and function. Remodeling is critical in maintaining healthy bone tissue; however, in osteoporotic bone, imbalanced resorption results in increased bone fragility and fracture. With increasing life expectancy, such degenerative bone diseases are a growing concern. The three-dimensional (3D) morphology of BMUs and their correlation to function, however, are not well-characterized and little is known about the specific mechanisms that initiate and regulate their activity within cortical bone. We believe a key limitation has been the lack of 3D information about BMU morphology and activity. Thus, this paper reviews methodologies for 3D investigation of cortical bone remodeling and, specifically, structures associated with BMU activity (resorption spaces) and the structures they create (secondary osteons), spanning from histology to modern ex vivo imaging modalities, culminating with the growing potential of in vivo imaging. This collection of papers focuses on the theme of “putting the ‘why’ back into bone architecture.” Remodeling is one of two mechanisms “how” bone structure is dynamically modified and thus an improved 3D understanding of this fundamental process is crucial to ultimately understanding the “why.” PMID:26322017

  8. Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity.

    PubMed

    Chéreau, Ronan; Saraceno, G Ezequiel; Angibaud, Julie; Cattaert, Daniel; Nägerl, U Valentin

    2017-02-07

    Axons convey information to nearby and distant cells, and the time it takes for action potentials (APs) to reach their targets governs the timing of information transfer in neural circuits. In the unmyelinated axons of hippocampus, the conduction speed of APs depends crucially on axon diameters, which vary widely. However, it is not known whether axon diameters are dynamic and regulated by activity-dependent mechanisms. Using time-lapse superresolution microscopy in brain slices, we report that axons grow wider after high-frequency AP firing: synaptic boutons undergo a rapid enlargement, which is mostly transient, whereas axon shafts show a more delayed and progressive increase in diameter. Simulations of AP propagation incorporating these morphological dynamics predicted bidirectional effects on AP conduction speed. The predictions were confirmed by electrophysiological experiments, revealing a phase of slowed down AP conduction, which is linked to the transient enlargement of the synaptic boutons, followed by a sustained increase in conduction speed that accompanies the axon shaft widening induced by high-frequency AP firing. Taken together, our study outlines a morphological plasticity mechanism for dynamically fine-tuning AP conduction velocity, which potentially has wide implications for the temporal transfer of information in the brain.

  9. Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Salant, N.; Miller, S. W.

    2009-12-01

    The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi-scale, process-based approach evaluates whether a commonly used restoration strategy creates geomorphic heterogeneity at scales relevant to fish diversity and microhabitat utilization, an understanding that will improve the efficiency and success of future restoration projects.

  10. Lower shoreface seismic stratigraphy and morphology off Fire Island, New York: Evidence for lobate progradation and linear erosion

    NASA Astrophysics Data System (ADS)

    Liu, Shihao; Goff, John A.

    2018-07-01

    Under rising sea level conditions, barrier islands are largely ephemeral features, eroded on the seaward side by the transgressing shoreline and reformed by overwash to a more landward position. Locally, however, and over shorter time scales, shorelines can either advance or retreat, even in an overall transgressive environment, and the stratigraphy and morphology of the shoreface can be significantly impacted by the evolution of shoreface-attached bedforms. Fire Island, New York, is a well-studied example of such variability, with a stable-to-accreting shoreline at the western end and a retreating shoreline on the eastern end. In this study, we seek to better understand these differences by investigating the lower-shoreface stratigraphy at both stable/accreting (Fire Island West, or FIW) and retreating (Fire Island East, or FIE) shorefaces, using ultra-high resolution chirp seismic reflection data. Within the barrier/marine sands (the seismic unit between seafloor and shoreface ravinement), we identify six seismic units (WSUs 1-6 from bottom to top) in the FIW survey and two units (ESU1 and ESU2 from bottom to top) in the FIE survey; these units constitute the modern lower shoreface wedge. The barrier shoreface in the FIW survey is dominated by discrete and spatially-confined lobes. Isopach maps indicate that the lobe shifting was an episodic process with westward-migrating depocenters. The prograding shoreface was constructed by this lobate deposition; we speculate that these are related to ebb deposition from ephemeral barrier breaches/inlets. In the FIE survey, ESU2 accounts for the majority accumulation of the barrier shoreface and it is more linear than the lobate structure observed within the FIW survey, possibly derived from eroded shoreface sediments. Portions of this unit are absent however, exposing lower Pleistocene units to the erosive forces.

  11. Adaptation of a Simple Microfluidic Platform for High-Dimensional Quantitative Morphological Analysis of Human Mesenchymal Stromal Cells on Polystyrene-Based Substrates.

    PubMed

    Lam, Johnny; Marklein, Ross A; Jimenez-Torres, Jose A; Beebe, David J; Bauer, Steven R; Sung, Kyung E

    2017-12-01

    Multipotent stromal cells (MSCs, often called mesenchymal stem cells) have garnered significant attention within the field of regenerative medicine because of their purported ability to differentiate down musculoskeletal lineages. Given the inherent heterogeneity of MSC populations, recent studies have suggested that cell morphology may be indicative of MSC differentiation potential. Toward improving current methods and developing simple yet effective approaches for the morphological evaluation of MSCs, we combined passive pumping microfluidic technology with high-dimensional morphological characterization to produce robust tools for standardized high-throughput analysis. Using ultraviolet (UV) light as a modality for reproducible polystyrene substrate modification, we show that MSCs seeded on microfluidic straight channel devices incorporating UV-exposed substrates exhibited morphological changes that responded accordingly to the degree of substrate modification. Substrate modification also effected greater morphological changes in MSCs seeded at a lower rather than higher density within microfluidic channels. Despite largely comparable trends in morphology, MSCs seeded in microscale as opposed to traditional macroscale platforms displayed much higher sensitivity to changes in substrate properties. In summary, we adapted and qualified microfluidic cell culture platforms comprising simple straight channel arrays as a viable and robust tool for high-throughput quantitative morphological analysis to study cell-material interactions.

  12. Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to Vero cell morphological change.

    PubMed

    Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong

    2014-01-01

    Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.

  13. Differential morphology and image processing.

    PubMed

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  14. Morphology control in polymer blend fibers—a high throughput computing approach

    NASA Astrophysics Data System (ADS)

    Sesha Sarath Pokuri, Balaji; Ganapathysubramanian, Baskar

    2016-08-01

    Fibers made from polymer blends have conventionally enjoyed wide use, particularly in textiles. This wide applicability is primarily aided by the ease of manufacturing such fibers. More recently, the ability to tailor the internal morphology of polymer blend fibers by carefully designing processing conditions has enabled such fibers to be used in technologically relevant applications. Some examples include anisotropic insulating properties for heat and anisotropic wicking of moisture, coaxial morphologies for optical applications as well as fibers with high internal surface area for filtration and catalysis applications. However, identifying the appropriate processing conditions from the large space of possibilities using conventional trial-and-error approaches is a tedious and resource-intensive process. Here, we illustrate a high throughput computational approach to rapidly explore and characterize how processing conditions (specifically blend ratio and evaporation rates) affect the internal morphology of polymer blends during solvent based fabrication. We focus on a PS: PMMA system and identify two distinct classes of morphologies formed due to variations in the processing conditions. We subsequently map the processing conditions to the morphology class, thus constructing a ‘phase diagram’ that enables rapid identification of processing parameters for specific morphology class. We finally demonstrate the potential for time dependent processing conditions to get desired features of the morphology. This opens up the possibility of rational stage-wise design of processing pathways for tailored fiber morphology using high throughput computing.

  15. Morphological and molecular identification of free living amoeba isolated from hospital water in Tunisia.

    PubMed

    Trabelsi, Houaida; Dendana, F; Neji, S; Sellami, H; Cheikhrouhou, F; Makni, F; Ayadi, A

    2016-01-01

    Free-living amoebae (FLA) are opportunistic and ubiquitous protozoa that are widely found in various environmental sources. They are known to cause serious human infections. The aim of our study was to detect FLA and Acanthamoeba spp. in hospital water circuits. Eighty-four water samples were collected over a period of 4 months (September-December 2011) from different wards of the Sfax University Hospital (surgical services, intensive care unit, operating theater, and water storage tanks). FLA were detected in 53.5 % of samples as follows: surgical services (80 %), operating theater and surgical intensive care unit (13.3 %), medical intensive care unit (0 %), water storage tanks (6.6 %). The predominant morphotype was the acanthopodial (89 %). The others morphotypes were as follows: monopodial (40 %), dactylopodial (22 %), rugosa (62 %), eruptive (24 %), fan shaped (18 %), and polypodial (18 %). Acanthamoeba was found in 40 samples (47.6 %). 64.2 % of isolates were identified as Acanthamoeba spp. by PCR, using primers to amplify a region of 18S rDNA which showed variation in the product length. Sequence analysis of five PCR products identified Acanthamoeba sp. These isolates belong to T4, T10, and T11 genotypes, and to our knowledge this is the first report of the T10 and T11 genotype in Tunisia.The occurrence of potentially pathogenic FLA in the hospital environment may represent a health risk for patients, since these organisms can cause severe opportunistic illness and also can harbor pathogenic agents. Thus, increased awareness regarding these parasites and recognition of their importance, particularly in immunocompromised patients is crucial.

  16. Morphological tricks and blessed genitalia: rectifying the family placement of Fijicolana tuberculata (Opiliones: Laniatores: Zalmoxidae).

    PubMed

    Pérez-González, Abel; Sharma, Prashant P; Proud, Daniel N

    2016-01-07

    The type specimens of Fijicolana tuberculata Roewer, 1963 were re-examined and the male genital morphology is illustrated and described for the first time. Despite the presence of several morphological features that are typical of Samoidae, such as the presence of scopulae on legs III and IV, genital morphology unambiguously indicates that this species belongs to the Zalmoxidae rather than to the Samoidae. Fijicolana Roewer, 1963 is newly synonymized with Zalmoxis Sørensen, 1886. However, the newly implied combination is preoccupied by Z. tuberculatus Goodnight & Goodnight, 1948 thus the replacement name Zalmoxis roeweri nom. nov. is proposed to avoid secondary homonymy. The definition of Z. roeweri nom. nov. is amended, and the morphology of this species is compared with other representatives of Zalmoxidae and Samoidae. We conclude that the presence of scopulae alone is not a sufficiently diagnostic characteristic for Samoidae and, therefore, correctly placing taxa into families within Samooidea + Zalmoxoidea requires additional morphological evidence (e.g. genital morphology). In light of this result, we point out that the "scopulated" Australasian samoids Badessania metatarsalis Roewer, 1949, Sawaiellus berlandi Roewer, 1949 and Parasamoa gressitti Goodnight & Goodnight, 1957 require re-examination in order to detect potential errors in their family placement.

  17. ZnO nanostructures with different morphology for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Peter, I. John; Praveen, E.; Vignesh, G.; Nithiananthi, P.

    2017-12-01

    ZnO nanomaterials of different morphologies have been synthesized and the effect of morphology on Photocatalytic activity on natural dye has been investigated. Crystalline size and lattice strain of the synthesized particles are determined by XRD analysis and Williamson-Hall (W-H) method respectively. All other important physical parameters such as strain, stress and energy density values are also calculated using W-H analysis using different models such as uniform deformation model, uniform deformation stress model and uniform deformation energy density model. A shift in the peak of FTIR spectrum of ZnO is observed due to morphology effects. The SEM analysis reveals that the synthesized ZnO nanoparticles appear as flake, rod and dot. ZnO quantum dot exhibits higher photocatalytic activity comparing to the other morphologies. Larger surface area, high adsorption rate, large charge separation and the slow recombination of electrons/holes in ZnO dots establish dots as favorable morphology for good photocatalysis. Among the three, ZnO quantum dot shows three-times enhancement in the kinetic rate constants of photocatalysis. The results confirm that availability of specific (active) surface area, photocatalytic potential and quantum confinement of photo-induced carriers differ with morphology.

  18. Yield, morphological characteristics, and chemical composition of European- and Mediterranean-derived birdsfoot trefoil cultivars grown in the colder continental United States

    USDA-ARS?s Scientific Manuscript database

    Commonly grown North American birdsfoot trefoil (BFT, Lotus corniculatus L.) varieties, such as Norcen,0 produce forage with insufficient condensed tannin (CT) concentrations to maximize ruminant livestock performance. Our objective was to identify European and Mediterranean genotypes with higher CT...

  19. Evolution of invading forest pathogens via interspecific hybridization

    Treesearch

    Clive Brasier

    2003-01-01

    Traditional morphologically-based fungal species concepts have tended to go hand in-hand with a perception that fungal species are genetically 'firewalled' units between which almost no gene flow occurs. Also, prior to 1990, known examples of interspecific hybridization in fungi were very rare. However, observations on the internationally invading Dutch elm...

  20. Pinus ponderosa: a taxonomic review with five subspecies in the United States

    Treesearch

    Robert Z. Callaham

    2013-01-01

    Various forms of Pinus ponderosa Douglas ex C. Lawson are found from British Columbia southward and eastward through 16 states and, perhaps, into Mexico. The status of many names previously associated with this species, but excluded here, has been clarified. Accumulated evidence based on variation in morphology and xylem monoterpenes,...

  1. Seeing Cells on the Web

    ERIC Educational Resources Information Center

    Liu, Dennis

    2007-01-01

    Cells are the fundamental unit of life and disease; therefore, many avenues of research converge on cells, making images of cells prominent in research and teaching. Much of the progress of modern biomedical science can be tied to advances in our ability to better visualize the functional morphology of cells, including higher resolution imaging,…

  2. Phenotypic variation among Phytophthora ramorum isolates from California and Oregon

    Treesearch

    Daniel Hüberli; Tamar Harnik; Matthew Meshriy; Lori Miles; Matteo Garbelotto

    2006-01-01

    To manage and control Phytophthora ramorum successfully, it is important to know the amount of phenotypic variation within a given pathogen population. Because the pathogen has only recently been described, there are few studies on morphological and pathological variation of isolates from the United States. One study has compared growth rate on agar...

  3. Simulation and control of sediment transport due to dam removal

    USDA-ARS?s Scientific Manuscript database

    This paper presents two case studies of post dam removal sedimentation in the United States. Two different one-dimensional channel evolution simulation models were used: CCHE1D and CONCEPTS, respectively. The first case is the application of CCHE1D to assess a long-term morphological response to the...

  4. Tracing sediment movement on semi-arid watershed using Rare Earth Elements 1988

    USDA-ARS?s Scientific Manuscript database

    A multi-tracer method employing rare earth elements (REE) was used to determine sediment yield and to track sediment movement in a small semiarid watershed. A 0.33 ha watershed near Tombstone, AZ was divided into five morphological units, each tagged with one of five REE oxides. Relative contributi...

  5. Influences of photosynthetically active radiation on cladode orientation, stem tilting, and height of cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    1981-08-01

    Stem orientation and morphology were investigated for 14 species of cacti in Chile, Ecuador, Mexico, and the United States. The interception of photosynthetically active radiation (PAR) was specifically considered for cladodes (flattened stems) of platyopuntias, for tilted cylindrical stems, and in the presence of surrounding vegetation.

  6. Development, fatty acid composition, and storage of drupes and seeds from the endangered pondberry (Lindera melissifolia)

    Treesearch

    Kristina Connor; Gretchen Schaefer; Jillian Donahoo; Margaret Devall; Emile Gardiner; Tracy Hawkins; A. Dan Wilson; Nathan Schiff; Paul Hamel; Ted Leininger

    2007-01-01

    Pondberry (Lindera melissifolia [Walt.] Blume: Lauraceae) is an endangered, dioecious, clonal shrub that grows in bottomland hardwood forests in the southeastern United States. Prior work has emphasized vegetative reproduction associated with the clonal nature of this species. Little has been published about the early morphological and biochemical...

  7. Surviving Blind Decomposition: A Distributional Analysis of the Time-Course of Complex Word Recognition

    ERIC Educational Resources Information Center

    Schmidtke, Daniel; Matsuki, Kazunaga; Kuperman, Victor

    2017-01-01

    The current study addresses a discrepancy in the psycholinguistic literature about the chronology of information processing during the visual recognition of morphologically complex words. "Form-then-meaning" accounts of complex word recognition claim that morphemes are processed as units of form prior to any influence of their meanings,…

  8. Multiple nuclear loci reveal the distinctiveness of the threatened, Neotropical Pinus chiapensis

    Treesearch

    John Syring; Rafael F. del Castillo; Richard Cronn; Aaron Liston

    2007-01-01

    Pinus chiapensis is a threatened species of pine from southern Mexico and Guatemala. It was first described as a disjunct variety of P. strobus from the eastern United States and Canada. Subsequent morphological work indicates that P. chinpensis is a distinct species, but this interpretation is controversial. To...

  9. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons

    NASA Astrophysics Data System (ADS)

    Twichell, David C.; Roberts, David G.

    1982-08-01

    The distribution and morphology of submarine canyons off the eastern United States between Hudson and Baltimore Canyons have been mapped by long-range sidescan sonar. In this area canyons are numerous, and their spacing correlates with overall slope gradient; they are absent where the gradient is less than 3°, are 2 to 10 km apart where the gradient is 3° to 5°, and are 1.5 to 4 km apart where the gradient exceeds 6°. Canyons range from straight to sinuous; those having sinuous axes indent the edge of the continental shelf and appear to be older than those that head on the upper slope and have straighter axes. A difference in canyon age would suggest that canyons are initiated on the continental slope and only with greater age erode headward to indent the shelf. Shallow gullies on the middle and upper slope parts of the canyon walls suggest that submarine erosion has been a major process in a recent phase of canyon development. *Present address: British Petroleum, Moorgate, London EC2Y 9BU, England

  10. Effect of surface morphology on drag and roughness sublayer in flows over regular roughness elements

    NASA Astrophysics Data System (ADS)

    Placidi, Marco; Ganapathisubramani, Bharathram

    2014-11-01

    The effects of systematically varied roughness morphology on bulk drag and on the spatial structure of turbulent boundary layers are examined by performing a series of wind tunnel experiments. In this study, rough surfaces consisting of regularly and uniformly distributed LEGO™ bricks are employed. Twelve different patterns are adopted in order to methodically examine the individual effects of frontal solidity (λF, frontal area of the roughness elements per unit wall-parallel area) and plan solidity (λP, plan area of roughness elements per unit wall-parallel area), on both the bulk drag and the turbulence structure. A floating element friction balance based on Krogstad & Efros (2010) was designed and manufactured to measure the drag generated by the different surfaces. In parallel, high resolution planar and stereoscopic Particle Image Velocimetry (PIV) was applied to investigate the flow features. This talk will focus on the effects of each solidity parameter on the bulk drag and attempt to relate the observed trends to the flow structures in the roughness sublayer. Currently at City University London.

  11. Structural, morphological and optical investigations on electron-beam irradiated PbF2-TeO2-B2O3-Eu2O3 glasses

    NASA Astrophysics Data System (ADS)

    Wagh, Akshatha; Petwal, Vikash; Dwivedi, Jishnu; Upadhyaya, V.; Raviprakash, Y.; Kamath, Sudha D.

    2016-09-01

    Combined structural, optical and morphological studies were carried out on Eu2O3 doped PbF2-TeO2-B2O3 glass samples, before and after being subjected to electron beam of energy 7.5 MeV. XRD confirmed the amorphous nature of the glasses even after 150 kGy electron beam irradiation. Densities of the irradiated samples showed slightly greater values when compared to their respective values before irradiation, which proved the increase in the compaction of the network. The intensities of the three prominent bands; B-O-B linkages, BO4 units and BO3 units of FT-IR spectra, of the titled glasses, showed slight decrease after electron beam irradiation. The decrement in the values of energy band gap and shift in cut-off wavelength towards red edge, proved the formation of color centers in the glass network after irradiation. The change in Hunter L values, through color measurement was a proof for the Farbe/color/absorption centers created in the glass sites after irradiation.

  12. Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits

    NASA Astrophysics Data System (ADS)

    Krüger, T.; van der Bogert, C. H.; Hiesinger, H.

    2016-07-01

    Using SELENE/Kaguya Terrain Camera and Lunar Reconnaissance Orbiter Camera (LROC) data, we produced a new, high-resolution (10 m/pixel), geomorphological and impact melt distribution map for the lunar crater Tycho. The distal ejecta blanket and crater rays were investigated using LROC wide-angle camera (WAC) data (100 m/pixel), while the fine-scale morphologies of individual units were documented using high resolution (∼0.5 m/pixel) LROC narrow-angle camera (NAC) frames. In particular, Tycho shows a large coherent melt sheet on the crater floor, melt pools and flows along the terraced walls, and melt pools on the continuous ejecta blanket. The crater floor of Tycho exhibits three distinct units, distinguishable by their elevation and hummocky surface morphology. The distribution of impact melt pools and ejecta, as well as topographic asymmetries, support the formation of Tycho as an oblique impact from the W-SW. The asymmetric ejecta blanket, significantly reduced melt emplacement uprange, and the depressed uprange crater rim at Tycho suggest an impact angle of ∼25-45°.

  13. Changes in nuclear morphology and chromatin texture of basal keratinocytes in melasma.

    PubMed

    Brianezi, G; Handel, A C; Schmitt, J V; Miot, L D B; Miot, H A

    2015-04-01

    The pathogenesis of melasma and the role of keratinocytes in disease development and maintenance are not completely understood. Dermal abnormalities, the expression of inflammatory mediators, growth factors, epithelial expression of melanocortin and sexual hormones receptors suggest that not only melanocytes, but entire epidermal melanin unit is involved in melasma physiopathology. To compare nuclear morphological features and chromatin texture between basal keratinocytes in facial melasma and adjacent normal skin. We took facial skin biopsies (2 mm melasma and adjacent normal skin) from women processed for haematoxylin and eosin. Thirty non-overlapping basal keratinocyte nuclei were segmented and descriptors of area, highest diameter, perimeter, circularity, pixel intensity, profilometric index (Ra) and fractal dimension were extracted using ImageJ software. Basal keratinocyte nuclei from facial melasma epidermis displayed larger size, irregular shape, hyperpigmentation and chromatin heterogeneity by fractal dimension than perilesional skin. Basal keratinocytes from facial melasma display changes in nuclear form and chromatin texture, suggesting that the phenotype differences between melasma and adjacent facial skin can result from complete epidermal melanin unit alterations, not just hypertrophic melanocytes. © 2014 European Academy of Dermatology and Venereology.

  14. Scedosporium inflatum, an emerging pathogen.

    PubMed Central

    Salkin, I F; McGinnis, M R; Dykstra, M J; Rinaldi, M G

    1988-01-01

    The salient morphologic and physiologic characteristics of 18 isolates of Scedosporium inflatum, a newly reported human pathogen, were compared with those of the morphologically similar fungi Scedosporium apiospermum, Scopulariopsis brevicaulis, and Scopulariopsis brumptii. The formation by S. inflatum of annelloconidia in wet clumps at the apices of annellides with swollen bases was found to be the most useful characteristic in differentiating this potential pathogen. Images PMID:3356789

  15. A sequential approach using genetic and morphological analyses to test species status: the case of United States federally endangered Agalinis acuta (Orobanchaceae).

    PubMed

    Pettengill, James B; Neel, Maile C

    2011-05-01

    Given that inaccurate taxonomy can have negative consequences for species of conservation concern and result in erroneous conclusions regarding macroecological patterns, efficient methods for resolving taxonomic uncertainty are essential. The primary objective of this study was to assess the evolutionary distinctiveness of the federally endangered plant species Agalinis acuta (Orobanchaceae) to ensure it represents a distinct taxon warranting protection under the United States Endangered Species Act. We describe and implement a sequential approach that begins with the most restrictive criteria of genealogical exclusivity within which we first conducted a phylogenetic analysis based on six chloroplast DNA loci assayed from multiple representatives of five putative species. Because of the possibility that incomplete lineage sorting is responsible for the lack of genealogical exclusivity among A. acuta individuals, we then conducted intensive population level analyses based on 21 microsatellite loci and 61 morphological traits. The distinctiveness of A. acuta from Agalinis decemloba and Agalinis tenella was not supported under the genealogical species concept. The results from the analyses of microsatellite loci and morphological characters evaluated under alternative species concepts also did not support the distinctiveness of A. acuta from A. decemloba . Through this successive approach, we found insufficient evidence to support the evolutionary distinctiveness of the listed taxon A. acuta . We recommend that it be synonymized under A. decemloba and also conclude that the taxon that would now include A. acuta is deserving of protection under the Endangered Species Act.

  16. The First Comprehensive Phylogeny of Coptis (Ranunculaceae) and Its Implications for Character Evolution and Classification

    PubMed Central

    Xiang, Kun-Li; Wu, Sheng-Dan; Yu, Sheng-Xian; Liu, Yang; Jabbour, Florian; Erst, Andrey S.; Zhao, Liang; Wang, Wei; Chen, Zhi-Duan

    2016-01-01

    Coptis (Ranunculaceae) contains 15 species and is one of the pharmaceutically most important plant genera in eastern Asia. Understanding of the evolution of morphological characters and phylogenetic relationships within the genus is very limited. Here, we present the first comprehensive phylogenetic analysis of the genus based on two plastid and one nuclear markers. The phylogeny was reconstructed using Bayesian inference, as well as maximum parsimony and maximum likelihood methods. The Swofford-Olsen-Waddell-Hillis and Bayesian tests were used to assess the strength of the conflicts between traditional taxonomic units and those suggested by the phylogenetic inferences. Evolution of morphological characters was inferred using Bayesian method to identify synapomorphies for the infrageneric lineages. Our data recognize two strongly supported clades within Coptis. The first clade contains subgenus Coptis and section Japonocoptis of subgenus Metacoptis, supported by morphological characters, such as traits of the central leaflet base, petal color, and petal shape. The second clade consists of section Japonocoptis of subgenus Metacoptis. Coptis morii is not united with C. quinquefolia, in contrast with the view that C. morii is a synonym of C. quinquefolia. Two varieties of C. chinensis do not cluster together. Coptis groenlandica and C. lutescens are reduced to C. trifolia and C. japonica, respectively. Central leaflet base, sepal shape, and petal blade carry a strong phylogenetic signal in Coptis, while leaf type, sepal and petal color, and petal shape exhibit relatively higher levels of evolutionary flexibility. PMID:27044035

  17. Morphological evolution through integration: a quantitative study of cranial integration in Homo, Pan, Gorilla and Pongo.

    PubMed

    Singh, Nandini; Harvati, Katerina; Hublin, Jean-Jacques; Klingenberg, Christian P

    2012-01-01

    Morphological integration refers to coordinated variation among traits that are closely related in development and/or function. Patterns of integration can offer important insight into the structural relationship between phenotypic units, providing a framework to address questions about phenotypic evolvability and constraints. Integrative features of the primate cranium have recently become a popular subject of study. However, an important question that still remains under-investigated is: what is the pattern of cranial shape integration among closely related hominoids? To address this question, we conducted a Procrustes-based geometric morphometrics study to quantify and analyze shape covariation patterns between different cranial regions in Homo, Pan, Gorilla and Pongo. A total of fifty-six 3D landmarks were collected on 407 adult individuals. We then sub-divided the landmarks corresponding to cranial units as outlined in the 'functional matrix hypothesis.' Sub-dividing the cranium in this manner allowed us to explore patterns of covariation between the face, basicranium and cranial vault, using the two-block partial least squares approach. Our results suggest that integrated shape changes in the hominoid cranium are complex, but that the overall pattern of integration is similar among human and non-human apes. Thus, despite having very distinct morphologies the way in which the face, basicranium and cranial vault covary is shared among these taxa. These results imply that the pattern of cranial integration among hominoids is conserved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Morphology Control of Carbon-Free Spinel NiCo 2 O 4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaguptapu, Surya V.; Hwang, Sooyeon; Karakalos, Stavros

    Spinel NiCo 2O 4 is considered a promising precious metal-free catalyst that is also carbon-free for oxygen electrocatalysis. Current efforts mainly focus on optimal chemical doping and substituent to tune its electronic structures for enhanced activity. Here, we study its morphology control and elucidate the morphology-dependent catalyst performance for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Three types of NiCo 2O 4 catalysts with significantly distinct morphologies were prepared using temple-free, Pluronic-123 (P-123) soft, and SiO 2 hard templates, respectively, via hydrothermal methods following by a calcination. While the hard-template yields sphere-like dense structures, soft-template assists themore » formation of a unique nano-needle cluster assembly containing abundant meso- and macro pores. Furthermore, the effect of morphology of NiCo 2O 4 on their corresponding bifunctional catalytic performance was systematically investigated. The flower-like nano-needle assembly NiCo 2O 4 catalyst via the soft template method exhibited the highest catalytic activity and stability for both ORR and OER. In particular, it exhibited an onset and half-wave potentials of 0.94 and 0.82 V vs. RHE, respectively, for the ORR in alkaline media. Although it is still inferior to Pt, the NiCo 2O 4 represents one of the best ORR catalyst compared to other reported carbon-free oxides. Meanwhile, remarkable OER activity and stability were achieved with an onset potential of 1.48 V and a current density of 15 mA/cm 2 at 1.6 V, showing no activity loss after 20,000 potential cycles (0 to 1.9 V). The demonstrated stability is even superior to Ir for the OER. The morphology-controlled approach provides an effective solution to create a robust 3D architecture with increased surface areas and enhanced mass transfer. More importantly, the soft template can yield high degree of spinel crystallinity with ideal stoichiometric ratios between Ni and Co, thus promoting structural integrity with enhanced electrical conductivity and catalytic properties.« less

  19. Morphology Control of Carbon-Free Spinel NiCo 2 O 4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media

    DOE PAGES

    Devaguptapu, Surya V.; Hwang, Sooyeon; Karakalos, Stavros; ...

    2017-12-06

    Spinel NiCo 2O 4 is considered a promising precious metal-free catalyst that is also carbon-free for oxygen electrocatalysis. Current efforts mainly focus on optimal chemical doping and substituent to tune its electronic structures for enhanced activity. Here, we study its morphology control and elucidate the morphology-dependent catalyst performance for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Three types of NiCo 2O 4 catalysts with significantly distinct morphologies were prepared using temple-free, Pluronic-123 (P-123) soft, and SiO 2 hard templates, respectively, via hydrothermal methods following by a calcination. While the hard-template yields sphere-like dense structures, soft-template assists themore » formation of a unique nano-needle cluster assembly containing abundant meso- and macro pores. Furthermore, the effect of morphology of NiCo 2O 4 on their corresponding bifunctional catalytic performance was systematically investigated. The flower-like nano-needle assembly NiCo 2O 4 catalyst via the soft template method exhibited the highest catalytic activity and stability for both ORR and OER. In particular, it exhibited an onset and half-wave potentials of 0.94 and 0.82 V vs. RHE, respectively, for the ORR in alkaline media. Although it is still inferior to Pt, the NiCo 2O 4 represents one of the best ORR catalyst compared to other reported carbon-free oxides. Meanwhile, remarkable OER activity and stability were achieved with an onset potential of 1.48 V and a current density of 15 mA/cm 2 at 1.6 V, showing no activity loss after 20,000 potential cycles (0 to 1.9 V). The demonstrated stability is even superior to Ir for the OER. The morphology-controlled approach provides an effective solution to create a robust 3D architecture with increased surface areas and enhanced mass transfer. More importantly, the soft template can yield high degree of spinel crystallinity with ideal stoichiometric ratios between Ni and Co, thus promoting structural integrity with enhanced electrical conductivity and catalytic properties.« less

  20. Flight Morphology, Compound Eye Structure and Dispersal in the Bog and the Cranberry Fritillary Butterflies: An Inter- and Intraspecific Comparison.

    PubMed

    Turlure, Camille; Schtickzelle, Nicolas; Van Dyck, Hans; Seymoure, Brett; Rutowski, Ronald

    2016-01-01

    Understanding dispersal is of prime importance in conservation and population biology. Individual traits related to motion and navigation during dispersal may differ: (1) among species differing in habitat distribution, which in turn, may lead to interspecific differences in the potential for and costs of dispersal, (2) among populations of a species that experiences different levels of habitat fragmentation; (3) among individuals differing in their dispersal strategy and (4) between the sexes due to sexual differences in behaviour and dispersal tendencies. In butterflies, the visual system plays a central role in dispersal, but exactly how the visual system is related to dispersal has received far less attention than flight morphology. We studied two butterfly species to explore the relationships between flight and eye morphology, and dispersal. We predicted interspecific, intraspecific and intersexual differences for both flight and eye morphology relative to i) species-specific habitat distribution, ii) variation in dispersal strategy within each species and iii) behavioural differences between sexes. However, we did not investigate for potential population differences. We found: (1) sexual differences that presumably reflect different demands on both male and female visual and flight systems, (2) a higher wing loading (i.e. a proxy for flight performance), larger eyes and larger facet sizes in the frontal and lateral region of the eye (i.e. better navigation capacities) in the species inhabiting naturally fragmented habitat compared to the species inhabiting rather continuous habitat, and (3) larger facets in the frontal region in dispersers compared to residents within a species. Hence, dispersers may have similar locomotory capacity but potentially better navigation capacity. Dispersal ecology and evolution have attracted much attention, but there are still significant gaps in our understanding of the mechanisms of dispersal. Unfortunately, for many species we lack detailed information on the role of behavioural, morphological and physiological traits for dispersal. Our novel study supports the existence of inter- and intra-specific evolutionary responses in both motion and navigation capacities (i.e. flight and eye morphology) linked to dispersal.

Top