Sample records for unitary dalitz plot

  1. Dalitz plot distributions in presence of triangle singularities

    DOE PAGES

    Szczepaniak, Adam P.

    2016-03-25

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  2. Dalitz plot distributions in presence of triangle singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczepaniak, Adam P.

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  3. Dalitz Plot Analyses of B- to D+ Pi- Pi-, B+ to Pi+ Pi- Pi+ and D(S)+ to Pi+ Pi- Pi+ at BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Liaoyuan; /Iowa State U.

    We report on the Dalitz plot analyses of B{sup -} {yields} D{sup +}{pi}{sup -}{pi}{sup -}, B{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +} and D{sub s}{sup +} {yields} {pi}{sup +}{pi}{sup -}{sup +}. The Dalitz plot method and the most recent BABAR results are discussed.

  4. Dalitz plot analysis of the D+→K-π+π+ decay in the FOCUS experiment

    NASA Astrophysics Data System (ADS)

    Link, J. M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; Dicorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Lopes Pegna, D.; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Göbel, C.; Otalora, J.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.; Pennington, M. R.; Focus Collaboration

    2007-09-01

    Using data collected by the high-energy photoproduction experiment FOCUS at Fermilab we performed a Dalitz plot analysis of the Cabibbo favored decay D+ →K-π+π+. This study uses 53653 Dalitz-plot events with a signal fraction of ∼ 97%, and represents the highest statistics, most complete Dalitz plot analysis for this channel. Results are presented and discussed using two different formalisms. The first is a simple sum of Breit-Wigner functions with freely fitted masses and widths. It is the model traditionally adopted and serves as comparison with the already published analyses. The second uses a K-matrix approach for the dominant S-wave, in which the parameters are fixed by first fitting Kπ scattering data and continued to threshold by Chiral Perturbation Theory. We show that the Dalitz plot distribution for this decay is consistent with the assumption of two-body dominance of the final state interactions and the description of these interactions is in agreement with other data on the Kπ final state.

  5. Measurement of the ω → π+π-π0 Dalitz plot distribution

    NASA Astrophysics Data System (ADS)

    Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bhatt, H.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Czerwiński, E.; Demmich, K.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Heijkenskjöld, L.; Hejny, V.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khan, F. A.; Khatri, G.; Khoukaz, A.; Khreptak, O.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Perez del Rio, E.; Piskunov, N. M.; Prasuhn, D.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Rundel, O.; Sawant, S.; Schadmand, S.; Schätti-Ozerianska, I.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Sitterberg, K.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Trzciński, A.; Varma, R.; Wolke, M.; Wrońska, A.; Wüstner, P.; Yamamoto, A.; Zabierowski, J.; Zieliński, M. J.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; Kubis, B.; Leupold, S.

    2017-07-01

    Using the production reactions pd →3He ω and pp → ppω, the Dalitz plot distribution for the ω →π+π-π0 decay is studied with the WASA detector at COSY, based on a combined data sample of (4.408 ± 0.042) ×104 events. The Dalitz plot density is parametrised by a product of the P-wave phase space and a polynomial expansion in the normalised polar Dalitz plot variables Z and ϕ. For the first time, a deviation from pure P-wave phase space is observed with a significance of 4.1σ. The deviation is parametrised by a linear term 1 + 2 αZ, with α determined to be + 0.147 ± 0.036, consistent with the expectations of ρ-meson-type final-state interactions of the P-wave pion pairs.

  6. On the role of final-state interactions in Dalitz plot studies

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian; Niecknig, Franz; Schneider, Sebastian P.

    2012-04-01

    The study of Dalitz plots of heavy-meson decays to multi-hadron final states has received intensified interest by the possibility to gain access to precision investigations of CP violation. A thorough understanding of the hadronic final-state interactions is a prerequisite to achieve a highly sensitive, model-independent study of such Dalitz plots. We illustrate some of the theoretical tools, predominantly taken from dispersion theory, available for these and related purposes, and discuss the low-energy decays ω,ϕ→3π in some more detail.

  7. Dispersion-theoretical analysis of the D + → K - π + π + Dalitz plot

    NASA Astrophysics Data System (ADS)

    Niecknig, Franz; Kubis, Bastian

    2015-10-01

    We study the Dalitz plot of the Cabibbo-favored charmed-meson decay D + → K -π+π+ using dispersion theory. The formalism respects all constraints from analyticity and unitarity, and consistently describes final-state interactions between all three decay products. We employ pion-pion and pion-kaon phase shifts as input, and fit the pertinent subtraction constants to Dalitz plot data by the CLEO and FOCUS collaborations. Phase motions of resonant as well as nonresonant amplitudes are discussed, which should provide crucial input for future studies of CP violation in similar three-body charm decays.

  8. New bounds on the Cabibbo-Kobayashi-Maskawa matrix from B{yields}K{pi}{pi} Dalitz plot analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciuchini, M.; Pierini, M.; Silvestrini, L.

    2006-09-01

    We present a new technique to extract information on the unitarity triangle from the study of B{yields}K{pi}{pi} Dalitz plots. Using the sensitivity of Dalitz analyses to the absolute values and the phases of decay amplitudes and isospin symmetry, we obtain a new constraint on the elements of the CKM matrix. We discuss in detail the role of electroweak penguin contributions and outline future prospects.

  9. Three-body final state interaction in η → 3π updated

    DOE PAGES

    Guo, P.; Danilkin, I. V.; Fernandez-Ramirez, C.; ...

    2017-06-07

    In view of the recent high-statistic KLOE-2 data for themore » $$\\eta \\to \\pi^+ \\pi^- \\pi^0$$ decay, a new determination of the quark mass double ratio has been done. Our approach relies on a unitary dispersive model that takes into account rescattering effects between three pions. The latter is essential to reproduce the Dalitz plot distribution. A simultaneous description of the KLOE-2 and WASA-at-COSY data is achieved in terms of just two real parameters. From a global fit, we determine $$Q=21.6 \\pm 0.4$$. Here, the predicted slope parameter for the neutral channel $$\\alpha=-0.025\\pm 0.004$$ is in a reasonable agreement with the PDG average value.« less

  10. Precision measurement of the η → π + π - π 0 Dalitz plot distribution with the KLOE detector

    NASA Astrophysics Data System (ADS)

    Anastasi, A.; Babusci, D.; Bencivenni, G.; Berlowski, M.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Cao, B.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwinski, E.; D'Agostini, G.; Danè, E.; De Leo, V.; De Lucia, E.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Salvo, R.; Domenici, D.; D'Uffizi, A.; Fantini, A.; Felici, G.; Fiore, S.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Ikegami Andersson, W.; Johansson, T.; Kaminska, D.; Krzemien, W.; Kupsc, A.; Loffredo, S.; Mandaglio, G.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Papenbrock, M.; Passeri, A.; Patera, V.; Perez del Rio, E.; Ranieri, A.; Santangelo, P.; Sarra, I.; Schioppa, M.; Silarski, M.; Sirghi, F.; Tortora, L.; Venanzoni, G.; Wislicki, W.; Wolke, M.

    2016-05-01

    Using 1.6 fb-1 of e + e - → ϕ → ηγ data collected with the KLOE detector at DAΦNE, the Dalitz plot distribution for the η → π + π - π 0 decay is studied with the world's largest sample of ˜ 4 .7 · 106 events. The Dalitz plot density is parametrized as a polynomial expansion up to cubic terms in the normalized dimensionless variables X and Y . The experiment is sensitive to all charge conjugation conserving terms of the expansion, including a gX 2 Y term. The statistical uncertainty of all parameters is improved by a factor two with respect to earlier measurements.

  11. Dispersive analysis of ω→3 π and ϕ→3 π decays

    NASA Astrophysics Data System (ADS)

    Niecknig, Franz; Kubis, Bastian; Schneider, Sebastian P.

    2012-05-01

    We study the three-pion decays of the lightest isoscalar vector mesons, ω and ϕ, in a dispersive framework that allows for a consistent description of final-state interactions between all three pions. Our results are solely dependent on the phenomenological input for the pion-pion P-wave scattering phase shift. We predict the Dalitz plot distributions for both decays and compare our findings to recent measurements of the ϕ→3 π Dalitz plot by the KLOE and CMD-2 collaborations. Dalitz plot parameters for future precision measurements of ω→3 π are predicted. We also calculate the ππ P-wave inelasticity contribution from ωπ intermediate states.

  12. Consistent Dalitz plot analysis of Cabibbo-favored D+ → K bar ππ+ decays

    NASA Astrophysics Data System (ADS)

    Niecknig, Franz; Kubis, Bastian

    2018-05-01

    We resume the study of the Cabibbo-favored charmed-meson decays D+ → K bar ππ+ in a dispersive framework that satisfies unitarity, analyticity, and crossing symmetry by construction. The formalism explicitly describes the strong final-state interactions between all three decay products and relies on pion-pion and pion-kaon phase shift input. For the first time, we show that the D+ →KSπ0π+ Dalitz plot obtained by the BESIII collaboration as well as the D+ →K-π+π+ Dalitz plot data by CLEO and FOCUS can be described consistently, exploiting the isospin relation between the two coupled decay channels that provides better constraints on the subtraction constants.

  13. Amplitude Analysis of the Decay $$D_s^+ \\to \\pi^+ \\pi^- \\pi^+$$ in the Experiment E831/FOCUS (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilithz, Anderson Correa; /Rio de Janeiro, CBPF

    We present in this thesis the Dalitz Plot analysis of the D{sub s}{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +} decay, with the data of the E831/FOCUS, that took data in 1996 and 1997. The masses and widhts of f{sub 0}(980) and f{sub 0}(1370) are free parametres of the fit on Dalitz Plot, objectiving to study in detail these resonances. After this analysis we present the Spectator Model study on the S wave in this decay. For this study we used the formalism developed by M. Svec [2] for scattering. We present the comparison between the Isobar Model, frequently used inmore » Dalitz Plot analysis, and this formalism.« less

  14. η → 3 π : Study of the Dalitz plot and extraction of the Quark Mass Ratio Q [The decay η → 3 π : Study of the Dalitz plot and extraction of the quark mass ratio Q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich

    Themore » $$\\eta\\to 3\\pi$$ amplitude is sensitive to the quark mass difference $$m_u-m_d$$ and offers a unique way to determine the quark mass ratio $$Q^2\\equiv (m_s^2-m_{ud}^2)/(m_d^2-m_u^2)$$ from experiment. We calculate the amplitude dispersively and fit the KLOE data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Lastly, our representation of the transition amplitude implies $$Q = 22.0 \\pm 0.7$$.« less

  15. η → 3 π : Study of the Dalitz plot and extraction of the Quark Mass Ratio Q [The decay η → 3 π : Study of the Dalitz plot and extraction of the quark mass ratio Q

    DOE PAGES

    Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich; ...

    2017-01-09

    Themore » $$\\eta\\to 3\\pi$$ amplitude is sensitive to the quark mass difference $$m_u-m_d$$ and offers a unique way to determine the quark mass ratio $$Q^2\\equiv (m_s^2-m_{ud}^2)/(m_d^2-m_u^2)$$ from experiment. We calculate the amplitude dispersively and fit the KLOE data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Lastly, our representation of the transition amplitude implies $$Q = 22.0 \\pm 0.7$$.« less

  16. Dalitz plot analysis of three-body charmonium decays at BABAR

    NASA Astrophysics Data System (ADS)

    Palano, Antimo

    2016-05-01

    We present preliminary results on the measurement of the I=1/2 Kπ S-wave through a model independent partial wave analysis of ηc decays to KS0 K+π- and K+ K-π0 produced in two-photon interactions. We also perform a Dalitz plot analysis of the J/ψ decays to π+π-π0 and K+ K-π0 produced in the initial state radiation process.

  17. Three-body Final State Interaction in η→3π

    DOE PAGES

    Guo, Peng; Danilkin, Igor V.; Schott, Diane; ...

    2015-09-11

    We present an unitary dispersive model for themore » $$\\eta \\to 3 \\pi$$ decay process based upon the Khuri-Treiman equations which are solved by means of the Pasquier inversion method. The description of the hadronic final-state interactions for the $$\\eta \\to 3\\pi$$ decay is essential to reproduce the available data and to understand the existing discrepancies between Dalitz plot parameters from experiment and chiral perturbation theory. Our approach incorporates substraction constants that are fixed by fitting the recent high-statistics WASA-at-COSY data for $$\\eta \\to \\pi^+ \\pi^- \\pi^0$$. Based on the parameters obtained we predict the slope parameter for the neutral channel to be $$\\alpha=-0.022\\pm 0.004$$. Through matching to next-to-leading order chiral perturbation theory we estimate the quark mass double ratio to be $$Q=21.4 \\pm 0.4$$.« less

  18. Dalitz plot analysis of Ds+→K+K-π+

    NASA Astrophysics Data System (ADS)

    Del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Karbach, T. M.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Pennington, M. R.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-03-01

    We perform a Dalitz plot analysis of about 100 000 Ds+ decays to K+K-π+ and measure the complex amplitudes of the intermediate resonances which contribute to this decay mode. We also measure the relative branching fractions of Ds+→K+K+π- and Ds+→K+K+K-. For this analysis we use a 384 fb-1 data sample, recorded by the BABAR detector at the PEP-II asymmetric-energy e+e- collider running at center-of-mass energies near 10.58 GeV.

  19. Dalitz plot analyses of charmless b-hadron decays at LHCb

    NASA Astrophysics Data System (ADS)

    Perazzini, Stefano; LHCb Collaboration

    2016-04-01

    Charmless b-hadron decays are suppressed in the Standard Model by tiny CKM matrix elements which brings the tree amplitudes to levels comparable with loop amplitudes, and potentially New Physics amplitudes. CP violation measurements using Dalitz plot analyses in multi-body decays allow to disentangle these various contributions. In this document we report about the most recent measurements from LHCb in this sector. Firstly, the study of direct CP asymmetries over the Dalitz plane of the B+ →π+h+h- decays and the B+ →K+h+h- decays (where h = π , K), will be presented (through this document the inclusion of charge conjugate is always implied, unless explicitly stated). Then the results obtained studying the B+ → p p ‾h+ decays will be shown. The measurements of the branching ratio of the B+ → Λ ‾ (1520) p (with Λ ‾ (1520) → p ‾K+), of the forward-backward asymmetry of the light meson (π or K) in the p p ‾ rest frame and of the direct CP asymmetry over the B+ → p p ‾h+ Dalitz plane will be discussed.

  20. The Scientific Publications of Richard H. Dalitz, FRS (1925-2006)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitchison, Ian J.R.; Close, Frank E.; Gal, Avraham

    2006-03-29

    Professor Richard H. Dalitz passed away on January 13, 2006. He was almost 81 years old and his outstanding contributions are intimately connected to some of the major breakthroughs of the 20th century in particle and nuclear physics. These outstanding contributions go beyond the Dalitz Plot, Dalitz Pair and CDD poles that bear his name. He pioneered the theoretical study of strange baryon resonances, of baryon spectroscopy in the quark model, and of hypernuclei, to all of which he made lasting contributions. His formulation of the ''{theta} - {tau} puzzle'' led to the discovery that parity is not a symmetrymore » of the weak interactions. A brief scientific evaluation of Dalitz's major contributions to particle and nuclear physics is hereby presented, followed by the first comprehensive list of his scientific publications, as assembled from several sources. The list is divided into two categories: the first, main part comprises Dalitz's research papers and reviews, including topics in the history of particle physics, biographies and reminescences; the second part lists book reviews, public lectures and obituaries authored by Dalitz, and books edited by him. This provides the first necessary step towards a more systematic research of the Dalitz heritage in modern physics.« less

  1. Radiative corrections to the η(') Dalitz decays

    NASA Astrophysics Data System (ADS)

    Husek, Tomáš; Kampf, Karol; Novotný, Jiří; Leupold, Stefan

    2018-05-01

    We provide the complete set of radiative corrections to the Dalitz decays η(')→ℓ+ℓ-γ beyond the soft-photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the η(')→ γ*γ(*) transition form factors. For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the η -η' mixing.

  2. Second generation of ``Miranda procedure'' for CP violation in Dalitz studies of B (and D and τ) decays

    NASA Astrophysics Data System (ADS)

    Bediaga, I.; Miranda, J.; dos Reis, A. C.; Bigi, I. I.; Gomes, A.; Otalora Goicochea, J. M.; Veiga, A.

    2012-08-01

    The “Miranda procedure” proposed for analyzing Dalitz plots for CP asymmetries in charged B and D decays in a model-independent manner is extended and refined in this paper. The complexity of Cabibbo-Kobayashi-Maskawa CP phenomenology through order λ6 is needed in searches for new dynamics (ND). Detailed analyses of three-body final states offer great advantages: (i) They give us more powerful tools for deciding whether an observed CP asymmetry represents the manifestation of ND and its features. (ii) Many advantages can already be obtained by the Miranda procedure without construction of a detailed Dalitz plot description. (iii) One studies CP asymmetries independent of production asymmetries. We illustrate the power of a second generation Miranda procedure with examples with time integrated rates for Bd/B¯d decays to final states KSπ+π- as trial runs, with comments on B±→K±π+π-/K±K+K-.

  3. η→3π: Study of the Dalitz Plot and Extraction of the Quark Mass Ratio Q.

    PubMed

    Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich; Passemar, Emilie

    2017-01-13

    The η→3π amplitude is sensitive to the quark mass difference m_{u}-m_{d} and offers a unique way to determine the quark mass ratio Q^{2}≡(m_{s}^{2}-m_{ud}^{2})/(m_{d}^{2}-m_{u}^{2}) from experiment. We calculate the amplitude dispersively and fit the KLOE Collaboration data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. The parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Our representation of the transition amplitude implies Q=22.0±0.7.

  4. Dalitz plot analysis of the D+→π-π+π+ decay

    NASA Astrophysics Data System (ADS)

    Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Aquines, O.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Butt, J.; Horwitz, N.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.

    2007-07-01

    Using 281pb-1 of data recorded by the CLEO-c detector in e+e- collisions at the ψ(3770), corresponding to 0.78×106 D+D- pairs, we investigate the substructure of the decay D+→π-π+π+ using the Dalitz plot technique. We find that our data are consistent with the following intermediate states: ρ(770)π+, f2(1270)π+, f0(1370)π+, f0(1500)π+, f0(980)π+, and σπ+. We confirm large S wave contributions at low ππ mass. We set upper limits on contributions of other possible intermediate states. We consider three models of the ππ S wave and find that all of them adequately describe our data.

  5. Expected accuracy in a measurement of the CKM angle alpha using a Dalitz plot analysis of B0 ---> rho pi decays in the BTeV project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shestermanov, K.E.; Vasiliev, A.N; /Serpukhov, IHEP

    2005-12-01

    A precise measurement of the angle {alpha} in the CKM triangle is very important for a complete test of Standard Model. A theoretically clean method to extract {alpha} is provided by B{sup 0} {yields} {rho}{pi} decays. Monte Carlo simulations to obtain the BTeV reconstruction efficiency and to estimate the signal to background ratio for these decays were performed. Finally the time-dependent Dalitz plot analysis, using the isospin amplitude formalism for tre and penguin contributions, was carried out. It was shown that in one year of data taking BTeV could achieve an accuracy on {alpha} better than 5{sup o}.

  6. Light Meson Decays at BESIII

    NASA Astrophysics Data System (ADS)

    Fang, Shuangshi

    2017-04-01

    At present the world's largest sample of 1.3 billion J/ψ events was accumulated at the BESIII detector, which offers a unique place to study light meson decays. The recent results on the light meson decays are reviewed in this talk. An emphasis is put on the significant progresses on the study of η/η' decays, including Dalitz plot analysis of η/η' → πππ, observation of new decay modes (η' → π+π-π+(0)π-(0), η' → ρ±π∓, η' → γe+e- and η' → e+e-ω), study of η' → γπ+π- and search for the rare decay of η' → Kπ. In addition, a prospect on the Dalitz plot analysis of ω → π+π-π0 is presented.

  7. Extracting the quark mixing phase γ from B±→K±π+π-, B0→Ksπ+π-, and B¯0→Ksπ+π-

    NASA Astrophysics Data System (ADS)

    Bediaga, Ignacio; Guerrer, Gabriel; de Miranda, Jussara M.

    2007-10-01

    We discuss some aspects of the search for CP asymmetry in the three body B decays, revealed through the interference among neighbor resonances in the Dalitz plot. We propose a competitive method to extract the CKM γ angle combining Dalitz plot amplitude analysis of B±→K±π+π- and untagged B0, B¯0→Ksπ+π-. The method also obtains the ratio and phase difference between the tree and penguin contributions from B0 and B¯0→K*±π∓ decays and the CP asymmetry between B0 and B¯0. From Monte Carlo studies of 100 K events for the neutral mesons, we show the possibility of measuring γ.

  8. Optimizing sensitivity to γ with B0→D K+π-, D →KS0π+π- double Dalitz plot analysis

    NASA Astrophysics Data System (ADS)

    Craik, D.; Gershon, T.; Poluektov, A.

    2018-03-01

    Two of the most powerful methods currently used to determine the angle γ of the CKM Unitarity Triangle exploit B+→D K+, D →KS0π+π- decays and B0→D K+π-, D →K+K-, π+π- decays. It is possible to combine the strengths of both approaches in a "double Dalitz plot" analysis of B0→D K+π-, D →KS0π+π- decays. The potential sensitivity of such an analysis is investigated in the light of recently published experimental information on the B0→D K+π- decay. The formalism is also expanded, compared to previous discussions in the literature, to allow B0→D K+π- with any subsequent D decay to be included.

  9. Parametrizations of three-body hadronic B - and D -decay amplitudes in terms of analytic and unitary meson-meson form factors

    NASA Astrophysics Data System (ADS)

    Boito, D.; Dedonder, J.-P.; El-Bennich, B.; Escribano, R.; Kamiński, R.; Leśniak, L.; Loiseau, B.

    2017-12-01

    We introduce parametrizations of hadronic three-body B and D weak decay amplitudes that can be readily implemented in experimental analyses and are a sound alternative to the simplistic and widely used sum of Breit-Wigner type amplitudes, also known as the isobar model. These parametrizations can be particularly useful in the interpretation of C P asymmetries in the Dalitz plots. They are derived from previous calculations based on a quasi-two-body factorization approach in which two-body hadronic final-state interactions are fully taken into account in terms of unitary S - and P -wave π π , π K , and K K ¯ form factors. These form factors can be determined rigorously, fulfilling fundamental properties of quantum field-theory amplitudes such as analyticity and unitarity, and are in agreement with the low-energy behavior predicted by effective theories of QCD. They are derived from sets of coupled-channel equations using T -matrix elements constrained by experimental meson-meson phase shifts and inelasticities, chiral symmetry, and asymptotic QCD. We provide explicit amplitude expressions for the decays B±→π+π-π±, B →K π+π-, B±→K+K-K±, D+→π-π+π+, D+→K-π+π+, and D0→KS0π+π-, for which we have shown in previous studies that this approach is phenomenologically successful; in addition, we provide expressions for the D0→KS0K+K- decay. Other three-body hadronic channels can be parametrized likewise.

  10. Charm Mixing and D Dalitz Analysis at BESIII

    NASA Astrophysics Data System (ADS)

    Sun, Shengsen; BESIII Collaboration

    2016-04-01

    We study D0D‾0 pairs produced in e+e- collisions at √{ s} = 3.773GeV using a data sample of 2.92 fb-1 collected with the BESIII detector. Using world-average values of external parameters, we obtain cosδKπ = 1.02 ± 0.11 ± 0.06 ± 0.01, δKπ is the strong phase difference between the doubly Cabibbo-suppressed process D‾0 →K-π+ and the Cabibbo-favored process D0 →K-π+. A measurement of the parameter yCP in D0 -D‾0 oscillations is performed by taking advantage of quantum coherence between pair-produced D0 and D‾0 mesons near threshold, the preliminary result is yCP = (- 1.6 ± 1.3 ± 0.6)%. An analysis of the D+ → KS0 π+π0 Dalitz plot is performed, the Dalitz plot is found to be well presented by a combination of six quasi-two-body decay channels [KS0 ρ+, KS0 ρ(1450) +, K ‾ * 0π+, K‾0(1430) 0π+, K ‾(1680) 0π+, κ‾0π+] plus a small nonresonant component. Using the fit fractions from this analysis, partial branching ratios are updated with higher precision than previous measurements.

  11. Role of the a0(980), f0(980) resonances in η → 3π from the Khuri-Treiman formalism

    NASA Astrophysics Data System (ADS)

    Moussallam, B.; Albaladejo, M.

    2016-11-01

    The chiral expansion of the η → 3π decay amplitude at NLO fails to reproduce the recent high accuracy measurements of the Dalitz plot parameters. We reconsider the idea of employing the chiral expansion in an unphysical region surrounding the Adler zero and then deducing the amplitude in the physical region using the Khuri-Treiman dispersive formalism. We further present an extension of this formalism which takes into account KK¯ inelastic rescattering effects and thus provides a realistic description of the double a0(980), f0(980) resonance effect. We evaluate how the influence of these resonances propagates down to the low-energy decay region and show that it is significant, in particular for the η → 3π0 decay, and improve the agreement of the predicted Dalitz plot parameters with experiment.

  12. Double-regge exchange limit for the γp→ K⁺K⁻p reaction

    DOE PAGES

    Shi, M.; Danilkin, I. V.; Fernández-Ramírez, C.; ...

    2015-02-01

    We apply the generalized Veneziano model (B₅ model) in the double-Regge exchange limit to the γp→K⁺K⁻p reaction. Four different cases defined by the possible combinations of the signature factors of leading Regge exchanges ((K *,a₂/f₂), (K *,ρ/ω), (K *₂,a₂/f₂), and (K *₂,ρ/ω)) have been simulated through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the K⁺K⁻p Dalitz plot. In this way we predict and analyze the double-Regge contribution to the K⁺K⁻p Dalitz plot, which constitutes one of the major backgrounds inmore » the search for strangeonia, hybrids and exotics using γp→K⁺K⁻p reaction. We expect that data currently under analysis, and that to come in the future, will allow verification of the double-Regge behavior and a better assessment of this component of the amplitude.« less

  13. Scalar resonances in a unitary {pi}{pi} S-wave model for D{sup +} {r_arrow} {pi}{sup+}{pi}{sup-}{pi}{sup+}.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boito, D. R.; Dedonder, J.-P.; El-Bennich, B.

    We propose a model for D{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +} decays following experimental results which indicate that the two-pion interaction in the S wave is dominated by the scalar resonances f{sub 0}(600)/{sigma} and f{sub 0}(980). The weak decay amplitude for D{sup +} {yields} R{pi}{sup +}, where R is a resonance that subsequently decays into {pi}{sup +}{pi}{sup -}, is constructed in a factorization approach. In the S wave, we implement the strong decay R {yields} {pi}{sup +}{pi}{sup -} by means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire kinematically allowedmore » mass range m{sub {pi}{pi}}{sup 2} from threshold to about 3 GeV{sup 2}. In order to reproduce the experimental Dalitz plot for D{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +}, we include contributions beyond the S wave. For the P wave, dominated by the {rho}(770){sup 0}, we use a Breit-Wigner description. Higher waves are accounted for by using the usual isobar prescription for the f{sub 2}(1270) and {rho}(1450){sup 0}. The major achievement is a good reproduction of the experimental m{sub {pi}{pi}}{sup 2} distribution, and of the partial as well as the total D{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +} branching ratios. Our values are generally smaller than the experimental ones. We discuss this shortcoming and, as a by-product, we predict a value for the poorly known D {yields} {sigma} transition form factor at q{sup 2} = m{sub {pi}}{sup 2}.« less

  14. Scalar resonances in a unitary {pi}{pi} S-wave model for D{sup +}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boito, D. R.; Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970, Sao Paulo, SP; Dedonder, J.-P.

    We propose a model for D{sup +}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup +} decays following experimental results which indicate that the two-pion interaction in the S wave is dominated by the scalar resonances f{sub 0}(600)/{sigma} and f{sub 0}(980). The weak decay amplitude for D{sup +}{yields}R{pi}{sup +}, where R is a resonance that subsequently decays into {pi}{sup +}{pi}{sup -}, is constructed in a factorization approach. In the S wave, we implement the strong decay R{yields}{pi}{sup +}{pi}{sup -} by means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire kinematically allowed mass range m{sub {pi}}{sub {pi}}{sup 2}more » from threshold to about 3 GeV{sup 2}. In order to reproduce the experimental Dalitz plot for D{sup +}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup +}, we include contributions beyond the S wave. For the P wave, dominated by the {rho}(770){sup 0}, we use a Breit-Wigner description. Higher waves are accounted for by using the usual isobar prescription for the f{sub 2}(1270) and {rho}(1450){sup 0}. The major achievement is a good reproduction of the experimental m{sub {pi}}{sub {pi}}{sup 2} distribution, and of the partial as well as the total D{sup +}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup +} branching ratios. Our values are generally smaller than the experimental ones. We discuss this shortcoming and, as a by-product, we predict a value for the poorly known D{yields}{sigma} transition form factor at q{sup 2}=m{sub {pi}}{sup 2}.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J.P.

    We present the first results on the Dalitz-plot structure and improved measurements of the time-dependent CP-violation parameters of the process B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0} obtained using 468 x 10{sup 6} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The Dalitz-plot structure is probed by a time-integrated amplitude analysis that does not distinguish between B{sup 0} and {bar B}{sup 0} decays. We measure the total inclusive branching fraction {Beta}(B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}) = (6.19 {+-} 0.48 {+-} 0.15 {+-} 0.12) xmore » 10{sup -6}, where the first uncertainty is statistical, the second is systematic, and the third represents the Dalitz-plot signal model dependence. We also observe evidence for the intermediate resonant states f{sub 0}(980), f{sub 0}(1710), and f{sub 2}(2010). Their respective product branching fractions are measured to be (2.70{sub -1.19}{sup +1.25} {+-} 0.36 {+-} 1.17) x 10{sup -6}, (0.50{sub -0.24}{sup +0.46} {+-} 0.04 {+-} 0.10) x 10{sup -6}, and (0.54{sub -0.20}{sup +0.21} {+-} 0.03 {+-} 0.52) x 10{sup -6}. Additionally, we determine the mixing-induced CP-violation parameters to be S = -0.94{sub -0.21}{sup +0.24} {+-} 0.06 and C = -0.17 {+-} 0.18 {+-} 0.04, where the first uncertainty is statistical and the second is systematic. These values are in agreement with the standard model expectation.« less

  16. Dalitz plot analysis of the decay D(+)-->K(-)pi(+)pi(+) and indication of a low-mass scalar Kpi resonance.

    PubMed

    Aitala, E M; Amato, S; Anjos, J C; Appel, J A; Ashery, D; Banerjee, S; Bediaga, I; Blaylock, G; Bracker, S B; Burchat, P R; Burnstein, R A; Carter, T; Carvalho, H S; Copty, N K; Cremaldi, L M; Darling, C; Denisenko, K; Devmal, S; Fernandez, A; Fox, G F; Gagnon, P; Göbel, C; Gounder, K; Halling, A M; Herrera, G; Hurvits, G; James, C; Kasper, P A; Kwan, S; Langs, D C; Leslie, J; Lundberg, B; Magnin, J; Massafferri, A; MayTal-Beck, S; Meadows, B; de Mello Neto, J R T; Mihalcea, D; Milburn, R H; de Miranda, J M; Napier, A; Nguyen, A; d'Oliveira, A B; O'Shaughnessy, K; Peng, K C; Perera, L P; Purohit, M V; Quinn, B; Radeztsky, S; Rafatian, A; Reay, N W; Reidy, J J; dos Reis, A C; Rubin, H A; Sanders, D A; Santha, A K S; Santoro, A F S; Schwartz, A J; Sheaff, M; Sidwell, R A; Slaughter, A J; Sokoloff, M D; Solano Salinas, C J; Stanton, N R; Stefanski, R J; Stenson, K; Summers, D J; Takach, S; Thorne, K; Tripathi, A K; Watanabe, S; Weiss-Babai, R; Wiener, J; Witchey, N; Wolin, E; Yang, S M; Yi, D; Yoshida, S; Zaliznyak, R; Zhang, C

    2002-09-16

    We study the Dalitz plot of the decay D(+)-->K(-)pi(+)pi(+) with a sample of 15090 events from Fermilab experiment E791. Modeling the decay amplitude as the coherent sum of known Kpi resonances and a uniform nonresonant term, we do not obtain an acceptable fit. If we allow the mass and width of the K(*)(0)(1430) to float, we obtain values consistent with those from PDG but the chi(2) per degree of freedom of the fit is still unsatisfactory. A good fit is found when we allow for the presence of an additional scalar resonance, with mass 797+/-19+/-43 MeV/c(2) and width 410+/-43+/-87 MeV/c(2). The mass and width of the K(*)(0)(1430) become 1459+/-7+/-5 MeV/c(2) and 175+/-12+/-12 MeV/c(2), respectively. Our results provide new information on the scalar sector in hadron spectroscopy.

  17. Dalitz plot analysis of the D+→K-π+π+ decay

    NASA Astrophysics Data System (ADS)

    Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Reed, J.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Hunt, J. M.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.

    2008-09-01

    We perform a Dalitz plot analysis of D+→K-π+π+ decay with the CLEO-c data set of 572pb-1 of e+e- collisions accumulated at the ψ(3770). This corresponds to 1.6×106 D+D- pairs from which we select 140 793 candidate events with a small background of 1.1%. We compare our results with previous measurements using the isobar model. We modify the isobar model with an improved description of some of the contributing resonances and get better agreement with our data. We also consider a quasi-model-independent approach and measure the magnitude and phase of the contributing Kπ S wave in the range of invariant masses from the threshold to the maximum in this decay. This gives an improved description of our data over the isobar model. Finally we allow for an isospin-two π+π+ S wave contribution and find that adding this to both the isobar model and the quasi-model-independent approach gives the best description of our data.

  18. Dalitz analyses with B → Dh(h) decays at LHCb

    NASA Astrophysics Data System (ADS)

    Qian, Wenbin; LHCb Collaboration

    2016-04-01

    We present studies performed by the LHCb experiment with beauty to open charmed meson decays B → Dh (h (‧)), h (‧) = π , K. Using the 1 fb-1 results of B± →(hh (‧)) Dh±, 1 fb-1 results of B± →(K∓π±π+π-)Dh± and 1 fb-1 + 2 fb-1 results of model-independent Dalitz plot analysis of B± →(KShh)DK± modes, γ is constrained to be (67 ± 12) °. Further LHCb measurements with multi-body B or D decays are presented in the proceeding. The results include the model-dependent measurements of B± →(KShh)DK± and the CP violation measurements of B± →(KSKπ)Dh± and B →(hh (‧)) DK*0.

  19. REACTION $pi$$sup -$ + p $Yields$ $pi$$sup -$ + $pi$$sup +$ + n FROM 360 TO 800 Mev

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirz, J.; Schwartz, J.; Tripp, R.D.

    1963-10-31

    The reaction ceramic materia /sup -/ + p ons in pyrolyti ceramic materia /sup -/ + ceramic materia /sup +/ + n is sLLawrence Radiation Laboratory's 72-in. hydrogen bubble chamber. Events are located by scanning the pictures for ceramic materia /sup +/ tracks. Cross sections, Dalitz plots, and ceramic materia /sup +/ ceramic materia /sup -/ d please delete abstract 26339

  20. Measurement of the I = 1 / 2 K π S -wave amplitude from Dalitz plot analyses of η c → K K ¯ π in two-photon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    Here we study the processes γγ→Kmore » $$0\\atop{S}$$K ±π ∓ and γγ→K +K -π 0 using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ(nS) (n=2, 3, 4) resonances. We observe ηc decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the I=1/2 Kπ S-wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behavior for the phase up to a mass of 1.5 GeV/c 2. In contrast, the amplitudes show very marked differences. Lastly, the data require the presence of a new a 0(1950) resonance with parameters m=1931±14±22 MeV/c 2 and Γ=271±22±29 MeV.« less

  1. Measurement of the I = 1 / 2 K π S -wave amplitude from Dalitz plot analyses of η c → K K ¯ π in two-photon interactions

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2016-01-20

    Here we study the processes γγ→Kmore » $$0\\atop{S}$$K ±π ∓ and γγ→K +K -π 0 using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ(nS) (n=2, 3, 4) resonances. We observe ηc decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the I=1/2 Kπ S-wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behavior for the phase up to a mass of 1.5 GeV/c 2. In contrast, the amplitudes show very marked differences. Lastly, the data require the presence of a new a 0(1950) resonance with parameters m=1931±14±22 MeV/c 2 and Γ=271±22±29 MeV.« less

  2. Some Comments on the Decays of eta (550)

    DOE R&D Accomplishments Database

    Veltman, M.; Yellin, J.

    1966-07-01

    Various decay modes of the {eta}(500) are discussed. The relations, through SU{sub 3} and the Gell-Mann, Sharp, Wagner model, between the {eta}-decay modes and the modes {eta} {yields} {pi}{pi}{gamma), {pi}{sup 0} {yields} {gamma}{gamma} are investigated taking into account {eta}-{eta}{sup *} mixing. The present experimental values for the neutral branching ratios plus the shape of the {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} Dalitz plot are shown to require a 25% {vert_bar}{Delta}{rvec I}{vert_bar} = 3 contribution to the {eta} {yields} 3{pi} amplitude. The connection between a possible charge asymmetry in {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} and the branching ratio {Gamma}{sub {eta} {yields} {pi}{sup 0}e{sup +}e{sup {minus}}}/{Gamma}{sub {eta}}{sup all} is investigated in the framework of a model proposed earlier by several authors. It is shown that there is no conflict between the existing data and this model. The Dalitz plot distribution of {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} is discussed under various assumptions about the properties of the interaction responsible for the decay. (auth)

  3. Convergence properties of η → 3π decays in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Kolesár, Marián; Novotný, Jiří

    2017-01-01

    The convergence of the decay widths and some of the Dalitz plot parameters of the decay η → 3π seems problematic in low energy QCD. In the framework of resummed chiral perturbation theory, we explore the question of compatibility of experimental data with a reasonable convergence of a carefully defined chiral series. By treating the uncertainties in the higher orders statistically, we numerically generate a large set of theoretical predictions, which are then confronted with experimental information. In the case of the decay widths, the experimental values can be reconstructed for a reasonable range of the free parameters and thus no tension is observed, in spite of what some of the traditional calculations suggest. The Dalitz plot parameters a and d can be described very well too. When the parameters b and α are concerned, we find a mild tension for the whole range of the free parameters, at less than 2σ C.L. This can be interpreted in two ways - either some of the higher order corrections are indeed unexpectedly large or there is a specific configuration of the remainders, which is, however, not completely improbable.

  4. Measurement of D0-D0 mixing parameters in D0 --> Ks pi+ pi- decays.

    PubMed

    Zhang, L M; Zhang, Z P; Adachi, I; Aihara, H; Aulchenko, V; Aushev, T; Bakich, A M; Balagura, V; Barberio, E; Bay, A; Belous, K; Bitenc, U; Bondar, A; Bozek, A; Bracko, M; Brodzicka, J; Browder, T E; Chang, P; Chao, Y; Chen, A; Chen, K-F; Chen, W T; Cheon, B G; Chiang, C-C; Cho, I-S; Choi, Y; Choi, Y K; Dalseno, J; Danilov, M; Dash, M; Drutskoy, A; Eidelman, S; Epifanov, D; Fratina, S; Gabyshev, N; Gokhroo, G; Golob, B; Ha, H; Haba, J; Hara, T; Hastings, N C; Hayasaka, K; Hayashii, H; Hazumi, M; Heffernan, D; Hokuue, T; Hoshi, Y; Hou, W-S; Hsiung, Y B; Hyun, H J; Iijima, T; Ikado, K; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwasaki, M; Iwasaki, Y; Joshi, N J; Kah, D H; Kaji, H; Kajiwara, S; Kang, J H; Kawai, H; Kawasaki, T; Kichimi, H; Kim, H J; Kim, H O; Kim, S K; Kim, Y J; Kinoshita, K; Korpar, S; Krizan, P; Krokovny, P; Kumar, R; Kuo, C C; Kuzmin, A; Kwon, Y-J; Lee, J S; Lee, M J; Lee, S E; Lesiak, T; Li, J; Limosani, A; Lin, S-W; Liu, Y; Liventsev, D; Matsumoto, T; Matyja, A; McOnie, S; Medvedeva, T; Mitaroff, W; Miyake, H; Miyata, H; Miyazaki, Y; Mizuk, R; Nagasaka, Y; Nakamura, I; Nakano, E; Nakao, M; Natkaniec, Z; Nishida, S; Nitoh, O; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Ostrowicz, W; Ozaki, H; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Peak, L S; Pestotnik, R; Piilonen, L E; Poluektov, A; Sahoo, H; Sakai, Y; Schneider, O; Schümann, J; Schwanda, C; Schwartz, A J; Seidl, R; Senyo, K; Sevior, M E; Shapkin, M; Shibuya, H; Shinomiya, S; Shiu, J-G; Shwartz, B; Singh, J B; Sokolov, A; Somov, A; Soni, N; Stanic, S; Staric, M; Stoeck, H; Sumisawa, K; Sumiyoshi, T; Suzuki, S; Tajima, O; Takasaki, F; Tamai, K; Tamura, N; Tanaka, M; Taylor, G N; Teramoto, Y; Tian, X C; Tikhomirov, I; Tsuboyama, T; Uehara, S; Ueno, K; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Usov, Y; Varner, G; Vervink, K; Villa, S; Vinokurova, A; Wang, C H; Wang, M-Z; Wang, P; Watanabe, Y; Won, E; Yabsley, B D; Yamaguchi, A; Yamashita, Y; Yamauchi, M; Yuan, C Z; Zhang, C C; Zhilich, V; Zupanc, A

    2007-09-28

    We report a measurement of D0-D(0) mixing parameters in D(0) --> K(s)(0) pi(+) pi(-) decays using a time-dependent Dalitz-plot analysis. We first assume CP conservation and subsequently allow for CP violation. The results are based on 540 fb(-1) of data accumulated with the Belle detector at the KEKB e(+)e(-) collider. Assuming negligible CP violation, we measure the mixing parameters x = (0.80 +/- 0.29(-0.07-0.14)(+0.09+0.10))% and y = (0.33+/-0.24(-0.12-0.08)(+0.08+0.06))%, where the errors are statistical, experimental systematic, and systematic due to the Dalitz decay model, respectively. Allowing for CP violation, we obtain the CP-violating parameters |q / p| = 0.86(-0.29-0.03)(+0.30+0.06) +/- 0.08 and arg(q/p) = (-14(-18-3-4)(+16+5+2)) degrees .

  5. Disentangling weak and strong interactions in B→ K^{*}(→ Kπ )π Dalitz-plot analyses

    NASA Astrophysics Data System (ADS)

    Charles, Jérôme; Descotes-Genon, Sébastien; Ocariz, José; Pérez Pérez, Alejandro

    2017-08-01

    Dalitz-plot analyses of B→ Kπ π decays provide direct access to decay amplitudes, and thereby weak and strong phases can be disentangled by resolving the interference patterns in phase space between intermediate resonant states. A phenomenological isospin analysis of B→ K^*(→ Kπ )π decay amplitudes is presented exploiting available amplitude analyses performed at the BaBar, Belle and LHCb experiments. A first application consists in constraining the CKM parameters thanks to an external hadronic input. A method, proposed some time ago by two different groups and relying on a bound on the electroweak penguin contribution, is shown to lack the desired robustness and accuracy, and we propose a more alluring alternative using a bound on the annihilation contribution. A second application consists in extracting information on hadronic amplitudes assuming the values of the CKM parameters from a global fit to quark flavour data. The current data yields several solutions, which do not fully support the hierarchy of hadronic amplitudes usually expected from theoretical arguments (colour suppression, suppression of electroweak penguins), as illustrated from computations within QCD factorisation. Some prospects concerning the impact of future measurements at LHCb and Belle II are also presented. Results are obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using the Rfit scheme to handle theoretical uncertainties.

  6. Evidence for C P violation in B+→K*(892)+ π0 from a Dalitz plot analysis of B+→KS0 π+π0 decays

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Dey, B.; Gary, J. W.; Long, O.; Franco Sevilla, M.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Schumm, B. A.; Seiden, A.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Bernard, D.; Verderi, M.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Bhuyan, B.; Prasad, V.; Adametz, A.; Uwer, U.; Lacker, H. M.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Cheaib, R.; Patel, P. M.; Robertson, S. H.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Summers, D. J.; Simard, M.; Taras, P.; De Nardo, G.; Onorato, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Olsen, J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Hess, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.; Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.; BaBar Collaboration

    2017-10-01

    We report a Dalitz plot analysis of charmless hadronic decays of charged B mesons to the final state KS0π+π0 using the full BABAR data set of 470.9 ±2.8 million B B ¯ events collected at the Υ (4 S ) resonance. We measure the overall branching fraction and C P asymmetry to be B (B+→K0π+π0) =(31.8 ±1.8 ±2. 1-0.0+6.0 ) ×10-6 and AC P(B+→K0π+π0) =0.07 ±0.05 ±0.0 3-0.03+0.02 , where the uncertainties are statistical, systematic, and due to the signal model, respectively. This is the first measurement of the branching fraction for B+→K0π+π0. We find first evidence of a C P asymmetry in B+→K*(892 )+π0decays: AC P(B+→K*(892 )+π0) =-0.52 ±0.14 ±0.0 4-0.02+0.04 . The significance of this asymmetry, including systematic and model uncertainties, is 3.4 standard deviations. We also measure the branching fractions and C P asymmetries for three other intermediate decay modes.

  7. Study of CP Violation in Dalitz-Plot Analyses of B-Meson Decays to Three Kaons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindquist, Brian

    The Standard Model (SM) explains CP violation in terms of the CKM matrix. The BABAR experiment was designed mainly to test the CKM model in B decays. B decays that proceed through b → s loop diagrams, of which B {yields} KKK decays are an example, are sensitive to new physics effects that could lead to deviations from the CKM predictions for CP violation. We present studies of CP violation in the decays B + → K +K -K +, B + → K S 0K S 0K +, and B 0 → K +K -K S 0, using a Dalitz plot amplitude analysis. These studies are based on approximately 470 million Bmore » $$\\bar{B}$$ decays collected by BABAR at the PEP-II collider at SLAC. We perform measurements of time-dependent CP violation in B 0 → K +K -K S 0, including B 0 → ΦK S 0. We measure a CP-violating phase β eff (ΦK S 0) = 0.36 ± 0.11 ± 0.04 rad., in agreement with the SM. This is the world's most precise measurement of this quantity. We also measure direct CP asymmetries in all three decay modes, including the direct CP asymmetry A CP (ΦK +) = (12.8 ± 4.4 ± 1.3)%, which is 2.8 sigma away from zero. This measurement is in tension with the SM, which predicts an asymmetry of a few percent. We also study the resonant and nonresonant features in the B → KKK Dalitz plots. We find that the hypothetical scalar f X(1500) resonance, introduced by prior analyses to explain an unknown peak in the m KK spectrum, cannot adequately describe the data. We conclude instead that the f X(1500) can be explained as the sum of the f 0(1500), f' 2(1525), and f 0(1710) resonances, removing the need for the hypothetical f X(1500). We also find that an exponential nonresonant model, used by previous analyses to describe the broad nonresonant feature seen in B → KKK decays, cannot fully model the data. We introduce a new nonresonant model that contains more free parameters, allows for phase motion, and contains both S-wave and P-wave components.« less

  8. Recent Results from KLOE-2

    NASA Astrophysics Data System (ADS)

    Krzemien, Wojciech

    The most recent results from the KLOE experiment are presented, covering: the measurement of the running fine-structure constant αem, the Dalitz plot measurement of η → π+π‑π0, the search of a U boson, tests of discrete symmetries and quantum coherence. The KLOE-2 Collaboration will take data until mid 2018 aiming to collect 5 fb1 increasing the data set, in order to produce new precision measurements and continue studies of fundamental symmetries and New Physics.

  9. Evidence for C P violation in B + → K * ( 892 ) + π 0 from a Dalitz plot analysis of B + → K S 0 π + π 0 decays

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-10-02

    We report a Dalitz plot analysis of charmless hadronic decays of charged B mesons to the final state K 0 Sπ +π 0 using the full BABAR data set of 470.9 ± 2.8 million B¯B events collected at the Υ(4S) resonance. We measure the overall branching fraction and CP asymmetry to be B(B + → K 0π +π 0) = (31.8 ± 1.8 ± 2.1 +6.0 –0.0) × 10 –6 and ACP(B + → K 0π +π 0) = 0.07 ± 0.05 ± 0.03 +0.02 –0.03, where the uncertainties are statistical, systematic, and due to the signal model, respectively. Thismore » is the first measurement of the branching fraction for B + → K 0π +π 0. We find first evidence of a CP asymmetry in B + → K*(892) +π 0 decays: ACP(B + → K*(892) +π 0) = –0.52 ± 0.14 ± 0.04 +0.04 –0.02. The significance of this asymmetry, including systematic and model uncertainties, is 3.4 standard deviations. As a result, we also measure the branching fractions and CP asymmetries for three other intermediate decay modes.« less

  10. Evidence for C P violation in B + → K * ( 892 ) + π 0 from a Dalitz plot analysis of B + → K S 0 π + π 0 decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    We report a Dalitz plot analysis of charmless hadronic decays of charged B mesons to the final state K 0 Sπ +π 0 using the full BABAR data set of 470.9 ± 2.8 million B¯B events collected at the Υ(4S) resonance. We measure the overall branching fraction and CP asymmetry to be B(B + → K 0π +π 0) = (31.8 ± 1.8 ± 2.1 +6.0 –0.0) × 10 –6 and ACP(B + → K 0π +π 0) = 0.07 ± 0.05 ± 0.03 +0.02 –0.03, where the uncertainties are statistical, systematic, and due to the signal model, respectively. Thismore » is the first measurement of the branching fraction for B + → K 0π +π 0. We find first evidence of a CP asymmetry in B + → K*(892) +π 0 decays: ACP(B + → K*(892) +π 0) = –0.52 ± 0.14 ± 0.04 +0.04 –0.02. The significance of this asymmetry, including systematic and model uncertainties, is 3.4 standard deviations. As a result, we also measure the branching fractions and CP asymmetries for three other intermediate decay modes.« less

  11. Dalitz plot analyses of J /ψ →π+π-π0, J /ψ →K+K-π0, and J /ψ →Ks0K±π∓ produced via e+e- annihilation with initial-state radiation

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Fritsch, M.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Lacker, H. M.; Bhuyan, B.; Szczepaniak, A. P.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Pennington, M. R.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cheaib, R.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.; BaBar Collaboration

    2017-04-01

    We study the processes e+e- →γISRJ /ψ , where J /ψ →π+π-π0, J /ψ →K+K-π0, and J /ψ →KS0K±π∓ using a data sample of 519 fb-1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e+e- collider at center-of-mass energies at and near the Υ (n S ) (n =2 ,3 ,4 ) resonances. We measure the ratio of branching fractions R1=B/(J /ψ →K+K-π0) B (J /ψ →π+π-π0) and R2=B/(J /ψ →KS0K±π∓) B (J /ψ →π+π-π0) . We perform Dalitz plot analyses of the three J /ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J /ψ →π+π-π0 decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450 ) in all three J /ψ decay modes and measure the relative branching fraction: R (ρ (1450 ))=B/(ρ (1450 )→K+K-) B (ρ (1450 )→π+π-) =0.307 ±0.084 (stat)±0.082 (sys).

  12. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    Here, we study the processes e +e - → γ ISR J/ψ , where J/ψ → π +π -π 0, J/ψ → K +K -π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ (nS) (n = 2 , 3 , 4) resonances. We measure the ratio of branching fractions R 1 = $$B(J/ψ →K^+K^- π^0)\\atop{B(J/ψ →π^+π^- π^0)}$$ and R 2= $$B(J/ψ →K^0_SK^±π^∓)\\atop{B(J/ψ →π^+π^- π^0)}$$. We perform Dalitz plot analyses of the three J/ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J/ψ → $π^+π^- π^0$ decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450) in all three J/ψ decay modes and measure the relative branching fraction: R (p(1450)) = $$Bp(1450)→K^+K^-)\\atop{B(p(1450)→π^+π^-)}$$ +0.307 ± 0.084 (stat) ± 0.082 (sys).« less

  13. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-04-10

    Here, we study the processes e +e - → γ ISR J/ψ , where J/ψ → π +π -π 0, J/ψ → K +K -π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ (nS) (n = 2 , 3 , 4) resonances. We measure the ratio of branching fractions R 1 = $$B(J/ψ →K^+K^- π^0)\\atop{B(J/ψ →π^+π^- π^0)}$$ and R 2= $$B(J/ψ →K^0_SK^±π^∓)\\atop{B(J/ψ →π^+π^- π^0)}$$. We perform Dalitz plot analyses of the three J/ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J/ψ → $π^+π^- π^0$ decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450) in all three J/ψ decay modes and measure the relative branching fraction: R (p(1450)) = $$Bp(1450)→K^+K^-)\\atop{B(p(1450)→π^+π^-)}$$ +0.307 ± 0.084 (stat) ± 0.082 (sys).« less

  14. Dispersive analysis of ω/Φ → 3π, πγ*

    DOE PAGES

    Danilkin, Igor V.; Fernandez Ramirez, Cesar; Guo, Peng; ...

    2015-05-01

    The decays ω/Φ → 3π are considered in the dispersive framework that is based on the isobar decomposition and subenergy unitarity. The inelastic contributions are parametrized by the power series in a suitably chosen conformal variable that properly accounts for the analytic properties of the amplitude. The Dalitz plot distributions and integrated decay widths are presented. Our results indicate that the final- state interactions may be sizable. As a further application of the formalism we also compute the electromagnetic transition form factors of ω/Φ → π⁰γ*.

  15. Addendum to Radiative corrections to the Dalitz plot of semileptonic decays of neutral baryons with light or charm quarks''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; Tun, D.M.; Garcia, A.

    1994-08-01

    We show that the radiative corrections containing terms up to order [alpha][ital q]/[pi][ital M][sub 1] for unpolarized semileptonic decays of baryons with positron emission can be obtained by simply reversing the sign of the axial-vector form factors in the corresponding final expressions of such decays with electron emission. This rule is valid regardless of the final kinematical variables chosen and of the particular Lorentz frame in which the final results are required.

  16. Dalitz plot analysis of the decay B 0 ( B ¯ 0 ) → K ± π ∓ π 0

    DOE PAGES

    Aubert, B.; Bona, M.; Karyotakis, Y.; ...

    2008-09-12

    Here, we report a Dalitz-plot analysis of the charmless hadronic decays of neutral B mesons to K ± π ∓ π 0 . With a sample of ( 231.8 ± 2.6 ) × 10 6 Υ ( 4 S ) → Bmore » $$\\bar{B}$$ decays collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, we measure the magnitudes and phases of the intermediate resonant and nonresonant amplitudes for B 0 and $$\\bar{B}$$ 0 decays and determine the corresponding C P -averaged branching fractions and charge asymmetries. Furthermore, we measure the inclusive branching fraction and C P -violating charge asymmetry and found it to be B ( B 0 → K + π - π 0 ) = ( 35.7$$+2.6\\atop{-1.5}$$ + 2.6 - 1.5 ± 2.2 ) × 10 - 6 and A C P = - 0.030 $$+ 0.045\\atop{- 0.051}$$ ± 0.055 where the first errors are statistical and the second systematic. We observe the decay B 0 → K * 0 ( 892 ) π 0 with the branching fraction B ( B 0 → K * 0 ( 892 ) π 0 ) = ( 3.6 $$+ 0.7\\atop- {0.8}$$ ± 0.4 ) × 10 - 6 . This measurement differs from zero by 5.6 standard deviations (including the systematic uncertainties). The selected sample also contains B 0 → $$\\bar{D}$$ 0 π 0 decays where $$\\bar{D}$$ 0 → K + π - , and we measure B ( B 0 → $$\\bar{D}$$ 0π 0 ) = ( 2.93 ± 0.17 ± 0.18 ) × 10 - 4 .« less

  17. Impact on photon/phi 3 meson measurement from CLEO-c binned neutral D meson decaying to neutral kaon(short,long) positive pion negative pion Dalitz analysis

    NASA Astrophysics Data System (ADS)

    He, Qing

    The Dalitz plot analysis of the three-body decay D˜0 → K0S pi+pi-- (D0 or D0) from the B+/- → DK+/- process provides today the best measurement of the CKM angle gamma/φ3. However, the unbinned D˜0 → K0S Dalitz analysis is sensitive to the choice of the model used to describe the three-body decay, which introduces 7° ˜ 10° uncertainty on gamma determination. For LHCb and future Super-B factories, this uncertainty will become a major limitation. A model independent approach has been proposed and the quantum correlated D0/ D0 data produced at the resonance psi(3770) can provide important information on the strong phase difference between D 0 → K0S pi+pi-- and D 0 → K0S pi+pi-- processes. Using the 818 pb-1 data collected by the CLEO-c detector at the Cornell Electron Storage Ring, we measure the strong phase parameters, c i, si, using fully reconstructed D0 D0 pairs with K0S pi+pi-- vs. flavor states, CP eigenstates and double K0S pi+pi-- samples. We also include K0L pi+pi-- data to further improve the determination of ci and si in a global fit. The ci and si results for the 8 phase bin case are shown in the following table. With the ci, si measurements from CLEO, the uncertainty of gamma determination can be lowered down to about 2° if one assumes plenty of B+/- → D˜K +/- decays.* *Please refer to dissertation for diagrams.

  18. Selected Topics on Hadronic B Decays From BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, K.; /SLAC

    Recent measurements of branching fractions and decay-rate asymmetries in charmless hadronic B decays at the BaBar experiment are presented. The selected topics include Dalitz plot analyses of B {yields} K{sup +} {pi}{sup -}{pi} and signal searches in B {yields} PP and PV, where isoscalar mesons are involved, and in B {yields} b{sub 1}P, P and V denote a pseudoscalar and vector meson, respectively. Several measurements in charmless hadronic B decays have indicated possible deviations from the theoretical predictions within the Standard Model. The measurements presented would contribute to searching for and resolving such puzzles.

  19. Extended chiral Khuri-Treiman formalism for η → 3π and the role of the a_0(980), f_0(980) resonances

    NASA Astrophysics Data System (ADS)

    Albaladejo, M.; Moussallam, B.

    2017-08-01

    Recent experiments on η → 3π decays have provided an extremely precise knowledge of the amplitudes across the Dalitz region which represent stringent constraints on theoretical descriptions. We reconsider an approach in which the low-energy chiral expansion is assumed to be optimally convergent in an unphysical region surrounding the Adler zero, and the amplitude in the physical region is uniquely deduced by an analyticity-based extrapolation using the Khuri-Treiman dispersive formalism. We present an extension of the usual formalism which implements the leading inelastic effects from the K\\bar{K} channel in the final-state π π interaction as well as in the initial-state η π interaction. The constructed amplitude has an enlarged region of validity and accounts in a realistic way for the influence of the two light scalar resonances f_0(980) and a_0(980) in the dispersive integrals. It is shown that the effect of these resonances in the low-energy region of the η → 3π decay is not negligible, in particular for the 3π ^0 mode, and improves the description of the energy variation across the Dalitz plot. Some remarks are made on the scale dependence and the value of the double quark mass ratio Q.

  20. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    We study the processes e + e - → γ ISR J / ψ , where J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb - 1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e + e - collider at center-of-mass energies at and near the Υ ( n S ) ( n = 2 , 3 , 4 ) resonances.« less

  1. Quark-mass dependence of the H dibaryon in Λ Λ scattering

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yasuhiro; Hyodo, Tetsuo

    2016-12-01

    We study the quark mass dependence of the H dibaryon in the strangeness S =-2 baryon-baryon scattering. A low-energy effective field theory is used to describe the coupled-channel scattering, in which the quark mass dependence is incorporated so as to reproduce the lattice QCD data by the HAL QCD collaboration in the SU(3) limit. We point out the existence of the Castillejo-Dalitz-Dyson pole in the Λ Λ scattering amplitude below the threshold in the SU(3) limit, which may cause the Ramsauer-Townsend effect near the N Ξ threshold at the physical point. The H dibaryon is unbound at the physical point, and a resonance appears just below the N Ξ threshold. As a consequence of the coupled-channel dynamics, the pole associated with the resonance is not continuously connected to the bound state in the SU(3) limit. Through the extrapolation in quark masses, we show that the unitary limit of the Λ Λ scattering is achieved between the physical point and the SU(3) limit. We discuss the possible realization of the "H matter" in the unphysical quark mass region.

  2. Measured Correlated Motion of theThree Body Coulomb Interacting System H^+ + H^+ + H^-

    NASA Astrophysics Data System (ADS)

    Wiese, L. M.

    1998-05-01

    The problem of three bodies interacting through a 1/r potential is a fundamental problem of physics. While its longstanding fame stems from its application to celestial mechanics, in atomic physics its importance arises from application to Coulomb-interacting systems, in which all three bodies carry some net charge. Because the three bodies interact through long range Coulomb forces over their entire path, their motion can be highly correlated. The effect of the interaction among the three bodies and any resulting correlated motion is reflected in how the available energy is ultimately shared among the three particles. By experimentally determining the energy sharing in a three body system, we can gain insight into the interactions governing the system. For the three body Coulomb interacting system of H^+ + H^+ + H^-, we have measured the partitioning of available center of mass (c.m.) energy among the particles when the system is in a near collinear configuration. By colliding 4 keV H_3^+ with a He target gas cell, we produce the H^+ + H^+ + H^- system a few eV above the dissociative limit. All three fragments are laboratory energy and angle resolved. By detecting all three in triple coincidence, we determine unambiguously the final state dynamics for each triply coincident event. Transforming our results to the c.m. frame, we determine the partitioning of available energy among the three particles. We have modified the Dalitz plot of high energy physics to elucidate correlations in the motion of any three body atomic system. Correlated motion in the H^+ + H^+ + H^- system is indicated by a nonuniform distribution on the Dalitz plot. For the near collinear breakup of H_3^+, we have observed the H^- to reside anywhere between the two H^+, from the Coulomb saddle point to the near vicinity of a proton. This work is supported by NSF Grant Number 9419505.

  3. Measurement of CP-Violating Asymmetries in B0 to (rho pi)0 Using a Time-Dependent Dalitz Plot Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.

    We present the preliminary measurement of CP-violating asymmetries in B{sup 0} {yields} ({rho}{pi}){sup 0} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} decays using a time-dependent Dalitz plot analysis. The results are obtained from a data sample of 213 million {Upsilon}(4S) {yields} B{bar B} decays, collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. This analysis extends the narrow-rho quasi-two-body approximation used in the previous analysis, by taking into account the interference between the rho resonances of the three charges. We measure 16 coefficients of the bilinear form factor terms occurring in the time-dependent decay rate of the B{supmore » 0} meson with the use of a maximum-likelihood fit. We derive the physically relevant quantities from these coefficients. We measure the direct CP-violation parameters A{sub {rho}{pi}} = -0.088 {+-} 0.049 {+-} 0.013 and C = 0.34 {+-} 0.11 {+-} 0.05, where the first errors are statistical and the second systematic. For the mixing-induced CP-violation parameter we find S = -0.10 {+-} 0.14 {+-} 0.04, and for the dilution and strong phase shift parameters respectively, we obtain {Delta}C = 0.15 {+-} 0.11 {+-} 0.03 and {Delta}S = 0.22 {+-} 0.15 {+-} 0.03. For the angle alpha of the Unitarity Triangle we measure (113{sub -17}{sup +27} {+-} 6){sup o}, while only a weak constraint is achieved at the significance level of more than two standard deviations. Finally, for the relative strong phase {delta}{sub {+-}} between the B{sup 0} {yields} {rho}{sup -}{pi}{sup +} and B{sup 0} {yields} {rho}{sup +}{pi}{sup -} transitions we find (-67{sub -31}{sup +28} {+-} 7) deg, with a similarly weak constraint at two standard deviations and beyond.« less

  4. Dispersion relations for η '→ η π π

    NASA Astrophysics Data System (ADS)

    Isken, Tobias; Kubis, Bastian; Schneider, Sebastian P.; Stoffer, Peter

    2017-07-01

    We present a dispersive analysis of the decay amplitude for η '→ η π π that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representation relies only on input for the {π π } and {π }η scattering phase shifts. Isospin symmetry allows us to describe both the charged and neutral decay channel in terms of the same function. The dispersion relation contains subtraction constants that cannot be fixed by unitarity. We determine these parameters by a fit to Dalitz-plot data from the VES and BES-III experiments. We study the prediction of a low-energy theorem and compare the dispersive fit to variants of chiral perturbation theory.

  5. Highlights on Hadronic Physics at KLOE

    NASA Astrophysics Data System (ADS)

    Giovannella, S.

    2006-11-01

    The KLOE experiment has just collected 2.5 fb-1 of e+e- collisions at center of mass energy around the φ mass. Radiative decays are used to produce large statistical samples of light scala and pseudoscalar mesons. The analysis of the first 450 pb-1 is almost completed. For the scala sector we have investigated the properties of these particles by studying their invariant mass shapes or the event density in the Dalitz plot. With the same data set, the η mass and the ratio BR(φ → η'γ)/BR(φ → ηγ) have been measured. From this last quantity we extract the most precise determination of the η/η' mixing angle, which is strictly related to the η' gluon content.

  6. High-statistics measurement of the η →3 π0 decay at the Mainz Microtron

    NASA Astrophysics Data System (ADS)

    Prakhov, S.; Abt, S.; Achenbach, P.; Adlarson, P.; Afzal, F.; Aguar-Bartolomé, P.; Ahmed, Z.; Ahrens, J.; Annand, J. R. M.; Arends, H. J.; Bantawa, K.; Bashkanov, M.; Beck, R.; Biroth, M.; Borisov, N. S.; Braghieri, A.; Briscoe, W. J.; Cherepnya, S.; Cividini, F.; Collicott, C.; Costanza, S.; Denig, A.; Dieterle, M.; Downie, E. J.; Drexler, P.; Ferretti Bondy, M. I.; Fil'kov, L. V.; Fix, A.; Gardner, S.; Garni, S.; Glazier, D. I.; Gorodnov, I.; Gradl, W.; Gurevich, G. M.; Hamill, C. B.; Heijkenskjöld, L.; Hornidge, D.; Huber, G. M.; Käser, A.; Kashevarov, V. L.; Kay, S.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lazarev, A.; Lisin, V.; Livingston, K.; Lutterer, S.; MacGregor, I. J. D.; Manley, D. M.; Martel, P. P.; McGeorge, J. C.; Middleton, D. G.; Miskimen, R.; Mornacchi, E.; Mushkarenkov, A.; Neganov, A.; Neiser, A.; Oberle, M.; Ostrick, M.; Otte, P. B.; Paudyal, D.; Pedroni, P.; Polonski, A.; Ron, G.; Rostomyan, T.; Sarty, A.; Sfienti, C.; Sokhoyan, V.; Spieker, K.; Steffen, O.; Strakovsky, I. I.; Strandberg, B.; Strub, Th.; Supek, I.; Thiel, A.; Thiel, M.; Thomas, A.; Unverzagt, M.; Usov, Yu. A.; Wagner, S.; Walford, N. K.; Watts, D. P.; Werthmüller, D.; Wettig, J.; Witthauer, L.; Wolfes, M.; Zana, L. A.; A2 Collaboration at MAMI

    2018-06-01

    The largest, at the moment, statistics of 7 ×106η →3 π0 decays, based on 6.2 ×107η mesons produced in the γ p →η p reaction, has been accumulated by the A2 Collaboration at the Mainz Microtron, MAMI. It allowed a detailed study of the η →3 π0 dynamics beyond its conventional parametrization with just the quadratic slope parameter α and enabled, for the first time, a measurement of the second-order term and a better understanding of the cusp structure in the neutral decay. The present data are also compared to recent theoretical calculations that predict a nonlinear dependence along the quadratic distance from the Dalitz-plot center.

  7. High-statistics measurement of the η → 3 π 0 decay at the Mainz Microtron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakhov, S.; Abt, S.; Achenbach, P.

    Here, the largest, at the moment, statistics of 7 × 10 6 η → 3π 0 decays, based on 6.2 × 10 7 η mesons produced in the γp → ηp reaction, has been accumulated by the A2 Collaboration at the Mainz Microtron, MAMI. It allowed a detailed study of the η → 3π 0 dynamics beyond its conventional parametrization with just the quadratic slope parameter α and enabled, for the first time, a mea- surement of the second-order term and a better understanding of the cusp structure in the neutral decay. The present data are also compared to recentmore » theoretical calculations that predict a nonlinear dependence along the quadratic distance from the Dalitz-plot center.« less

  8. Hadronic three-body decays of B mesons

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang

    2016-04-01

    Hadronic three-body decays of B mesons receive both resonant and nonresonant contributions. Dominant nonresonant contributions to tree-dominated three-body decays arise from the b → u tree transition which can be evaluated using heavy meson chiral perturbation theory valid in the soft meson limit. For penguin-dominated decays, nonresonant signals come mainly from the penguin amplitude governed by the matrix elements of scalar densities . The intermediate vector meson contributions to three-body decays are identified through the vector current, while the scalar meson resonances are mainly associated with the scalar density. We discuss inclusive and regional direct CP asymmetries. In the low mass regions of the Dalitz plot, we find that the regional CP violation is indeed largely enhanced with respect to the inclusive one.

  9. Dispersion relations for $$\\eta '\\rightarrow \\eta \\pi \\pi $$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isken, Tobias; Kubis, Bastian; Schneider, Sebastian P.

    Here, we present a dispersive analysis of the decay amplitude for η' → ηππ that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representation relies only on input for the ππ and πη scattering phase shifts. Isospin symmetry allows us to describe both the charged and neutral decay channel in terms of the same function. The dispersion relation contains subtraction constants that cannot be fixed by unitarity.We determine these parameters by a fit to Dalitz-plot data from the VES and BES-III experiments. We study the predictionmore » of a low-energy theorem and compare the dispersive fit to variants of chiral perturbation theory.« less

  10. High-statistics measurement of the η → 3 π 0 decay at the Mainz Microtron

    DOE PAGES

    Prakhov, S.; Abt, S.; Achenbach, P.; ...

    2018-06-07

    Here, the largest, at the moment, statistics of 7 × 10 6 η → 3π 0 decays, based on 6.2 × 10 7 η mesons produced in the γp → ηp reaction, has been accumulated by the A2 Collaboration at the Mainz Microtron, MAMI. It allowed a detailed study of the η → 3π 0 dynamics beyond its conventional parametrization with just the quadratic slope parameter α and enabled, for the first time, a mea- surement of the second-order term and a better understanding of the cusp structure in the neutral decay. The present data are also compared to recentmore » theoretical calculations that predict a nonlinear dependence along the quadratic distance from the Dalitz-plot center.« less

  11. Dispersion relations for $$\\eta '\\rightarrow \\eta \\pi \\pi $$

    DOE PAGES

    Isken, Tobias; Kubis, Bastian; Schneider, Sebastian P.; ...

    2017-07-21

    Here, we present a dispersive analysis of the decay amplitude for η' → ηππ that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representation relies only on input for the ππ and πη scattering phase shifts. Isospin symmetry allows us to describe both the charged and neutral decay channel in terms of the same function. The dispersion relation contains subtraction constants that cannot be fixed by unitarity.We determine these parameters by a fit to Dalitz-plot data from the VES and BES-III experiments. We study the predictionmore » of a low-energy theorem and compare the dispersive fit to variants of chiral perturbation theory.« less

  12. Radiative corrections to double-Dalitz decays revisited

    NASA Astrophysics Data System (ADS)

    Kampf, Karol; Novotný, Jiři; Sanchez-Puertas, Pablo

    2018-03-01

    In this study, we revisit and complete the full next-to-leading order corrections to pseudoscalar double-Dalitz decays within the soft-photon approximation. Comparing to the previous study, we find small differences, which are nevertheless relevant for extracting information about the pseudoscalar transition form factors. Concerning the latter, these processes could offer the opportunity to test them—for the first time—in their double-virtual regime.

  13. May a unitary autonomic index help assess autonomic cardiac regulation in elite athletes? Preliminary observations on the national Italian Olympic committee team.

    PubMed

    Sala, Roberto; Malacarne, Mara; Tosi, Fabio; Benzi, Manuela; Solaro, Nadia; Tamorri, Stefano; Spataro, Antonio; Pagani, Massimo; Lucini, Daniela

    2017-12-01

    Long term endurance training, as occurring in elite athletes, is associated to cardiac neural remodeling in favor of cardioprotective vagal mechanisms, resulting in resting bradycardia and augmented contribution of cardiac parasympathetic nerve activity. Autonomic assessment can be performed by way of heart rate variability. This technique however provides multiple indices, and there is not yet complete agreement on their specific significance. Purpose of the study was to assess whether a rank transformation and radar plot could provide a unitary autonomic index, capable to show a correlation between intensity of individual work and quality of autonomic regulation. We studied 711 (23.6±6.2 years) elite athletes that took part in the selection procedure for the 2016 Rio Olympic Games for the National Italian Olympic Committee (CONI). Indices from Heart Rate Variability HRV obtained at rest, during standing up and during recovery from an exercise test were used to compute a percent ranked unitary autonomic index for sport (ANSIs), taken as proxy of quality of autonomic regulation. Within the observed wide range of energy expenditure, the unitary autonomic index ANSIs appears significantly correlated to individual and discipline specific training workloads (r=0.25, P<0.001 and r=0.78, P<0.001, respectively), correcting for possible age and gender bias. ANSIs also positively correlates to lipid profile. Estimated intensity of physical activity correlates with quality of cardiac autonomic regulation, as expressed by a novel unitary index of cardiac autonomic regulation. ANSIs could provide a novel and convenient approach to individual autonomic evaluation in athletes.

  14. Measurement of the matrix elements for the decays η'→η π+π- and η'→η π0π0

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Magnoni, A. S.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-01-01

    Based on a sample of 1.31 ×109 J /ψ events collected with the BESIII detector, the matrix elements for the decays η'→η π+π- and η'→η π0π0 are determined using 351,016 η'→(η →γ γ )π+π- and 56,249 η'→(η →γ γ )π0π0 events with background levels less than 1%. Two commonly used representations are used to describe the Dalitz plot density. We find that an assumption of a linear amplitude does not describe the data well. A small deviation of the obtained matrix elements between η'→η π+π- and η'→η π0π0 is probably caused by the mass difference between charged and neutral pions or radiative corrections. No cusp structure in η'→η π0π0 is observed.

  15. The End Point Tagger physics program at A2@MAMI

    NASA Astrophysics Data System (ADS)

    Steffen, Oliver

    2017-04-01

    The A2-Collaboration uses a beam of real photons from the tagged photon facility at the electron accelerator MAMI in Mainz, Germany, to study photo-produced mesons. A new tagging device allows access to the higher photon beam energy range of 1.4 to 1.6 GeV. A large dataset containing more than 6 million η' and roughly 29 million ω decays has been obtained. Analyses are ongoing, including a study of the cusp effect and Dalitz plot in η' → ηπ0π0, giving insight to the ππ scattering length and the structure of the ηππ system, as well as the measurement of the electromagnetic transition form factor in η' → e+e-γ, a cross section measurement of γp → 3π0, and branching ratio analyses of η' → ωγ and ω → ηγ.

  16. Measurement of the π 0 → e + e - γ Dalitz decay at the Mainz Microtron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adlarson, P.; Afzal, F.; Aguar-Bartolomé, P.

    The Dalitz decay π 0 → e +e -γ has been measured in the γp → π 0p reaction with the A2 tagged-photon facility at the Mainz Microtron, MAMI. The value obtained for the slope parameter of the π 0 electromagnetic transition form factor, a π= 0.030 ± 0.010 tot, is in agreement with existing measurements of this decay and with recent theoretical calculations. The uncertainty obtained in the value of a π is lower than in previous results based on the π 0 → e +e -γ decay.

  17. Measurement of the π 0 → e + e - γ Dalitz decay at the Mainz Microtron

    DOE PAGES

    Adlarson, P.; Afzal, F.; Aguar-Bartolomé, P.; ...

    2017-02-09

    The Dalitz decay π 0 → e +e -γ has been measured in the γp → π 0p reaction with the A2 tagged-photon facility at the Mainz Microtron, MAMI. The value obtained for the slope parameter of the π 0 electromagnetic transition form factor, a π= 0.030 ± 0.010 tot, is in agreement with existing measurements of this decay and with recent theoretical calculations. The uncertainty obtained in the value of a π is lower than in previous results based on the π 0 → e +e -γ decay.

  18. Measurement of e+e-→π0π0ψ (3686 ) at √{s } from 4.009 to 4.600 GeV and observation of a neutral charmoniumlike structure

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Kiese, P.; Kliemt, R.; Kloss, B.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, J. J.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-03-01

    Using e+e- collision data collected with the BESIII detector at the BEPCII collider corresponding to an integrated luminosity of 5.2 fb-1 at center-of-mass energies (√{s }) from 4.009 to 4.600 GeV, the process e+e-→π0π0ψ (3686 ) is studied for the first time. The corresponding Born cross sections are measured and found to be half of those of the reaction e+e-→π+π-ψ (3686 ). This is consistent with the expectation from isospin symmetry. Furthermore, the Dalitz plots for π0π0ψ (3686 ) are accordant with those of π+π-ψ (3686 ) at all energy points, and a neutral analog to the structure in π±ψ (3686 ) around 4040 MeV /c2 first observed at √{s }=4.416 GeV is observed in the isospin neutral mode at the same energy.

  19. Symmetry relations in charmless B{yields}PPP decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gronau, Michael; Rosner, Jonathan L.; Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

    2005-11-01

    Strangeness-changing decays of B mesons to three-body final states of pions and kaons are studied, assuming that they are dominated by a {delta}I=0 penguin amplitude with flavor structure b{yields}s. Numerous isospin relations for B{yields}K{pi}{pi} and for underlying quasi-two-body decays are compared successfully with experiment, in some cases resolving ambiguities in fitting resonance parameters. The only exception is a somewhat small branching ratio noted in B{sup 0}{yields}K*{sup 0}{pi}{sup 0}, interpreted in terms of destructive interference between a penguin amplitude and an enhanced electroweak penguin contribution. Relations for B decays into three kaons are derived in terms of final states involving K{submore » S} or K{sub L}, assuming that {phi}K-subtracted decay amplitudes are symmetric in K and K, as has been observed experimentally. Rates due to nonresonant backgrounds are studied using a simple model, which may reduce discrete ambiguities in Dalitz plot analyses.« less

  20. Neutral D →K K* Decays as Discovery Channels for Charm C P Violation

    NASA Astrophysics Data System (ADS)

    Nierste, Ulrich; Schacht, Stefan

    2017-12-01

    We point out that the C P asymmetries in the decays D0→KSK*0 and D0→KSK¯ *0 are potential discovery channels for charm C P violation in the standard model. We stress that no flavor tagging is necessary, the untagged C P asymmetry aCP dir(D (-) →KSK*0) is essentially equal to the tagged one, so that the untagged measurement comes with a significant statistical gain. Depending on the relevant strong phase, |aCP dir ,untag| can be as large as 0.003. The C P asymmetry is dominantly generated by exchange diagrams and does not require nonvanishing penguin amplitudes. While the C P asymmetry is smaller than in the case of D0→KSKS, the experimental analysis is more efficient due to the prompt decay K*0→K+π-. One may further search for favorable strong phases in the Dalitz plot in the vicinity of the K*0 peak.

  1. Measurement of the matrix elements for the decays η ' → η π + π - and η ' → η π 0 π 0

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...

    2018-01-10

    Based on a sample of 1.31 × 10 9 J/ψ events collected with the BESIII detector, the matrix elements for the decays η' → ηπ +π - and η' → ηπ 0π 0 are determined using 351,016 η' → (η → γγ)π +π - and 56,249 η' → (η → γγ)π 0π 0 events with background levels less than 1%. Two commonly used representations are used to describe the Dalitz plot density. We find that an assumption of a linear amplitude does not describe the data well. A small deviation of the obtained matrix elements between η' → ηπ +πmore » - and η' → ηπ 0π 0 is probably caused by the mass difference between charged and neutral pions or radiative corrections. No cusp structure in η' → ηπ 0π 0 is observed.« less

  2. Measurement of e + e - → π 0 π 0 ψ ( 3686 ) at s from 4.009 to 4.600 GeV and observation of a neutral charmoniumlike structure

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...

    2018-03-07

    Using e +e - collision data collected with the BESIII detector at the BEPCII collider corresponding to an integrated luminosity of 5.2 fb -1 at center-of-mass energies (ps) from 4.009 to 4.600 GeV, the process e +e - →π 0π 0ψ (3686) is studied for the first time. The corresponding Born cross sections are measured and found to be half of those of the reaction e +e - π +π -ψ (3686). This is consistent with the expectation from isospin symmetry. Furthermore, the Dalitz plots for π 0π 0ψ (3686) are accordant with those of π +π -ψ (3686) at all energy points, and a neutral analogue to the structure in π ±ψ (3686) around 4040 MeV/c 2 first observed atmore » $$\\sqrt{s}$$ = 4.416 GeV is observed in the isospin neutral mode at the same energy.« less

  3. Amplitude analysis of B0→K+π-π0 and evidence of direct CP violation in B→K*π decays

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-06-01

    We analyze the decay B0→K+π-π0 with a sample of 4.54×108 BB¯ events collected by the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, and extract the complex amplitudes of seven interfering resonances over the Dalitz plot. These results are combined with amplitudes measured in B0→KS0π+π- decays to construct isospin amplitudes from B0→K*π and B0→ρK decays. We measure the phase of the isospin amplitude Φ3/2, useful in constraining the Cabibbo-Kobayashi-Maskawa unitarity triangle angle γ and evaluate a CP rate asymmetry sum rule sensitive to the presence of new physics operators. We measure direct CP violation in B0→K*+π- decays at the level of 3σ when measurements from both B0→K+π-π0 and B0→KS0π+π- decays are combined.

  4. Invariant mass reconstruction of the η meson in the decay channel π + π - π 0 with the REDTOP experiment

    NASA Astrophysics Data System (ADS)

    Escobar Martínez, S. D.; Fabela Enríquez, B.; Pedraza Morales, M. I.; REDTOP Collaboration

    2017-10-01

    REDTOP is a novel experiment proposed at the Delivery Ring of Fermilab with the intent of producing more than 1013 η mesons per year to detect possible rare η decays which can be a clear evidence of the existence of Physics Beyond the Standard Model. Such statistics are sufficient for investigating several discrete symmetry violations, searching for new particles and interactions and to perform precision studies. One of the golden processes to study is the η → π + π - π 0 decay [7], where π 0 decays promptly into two photons. In the context of the Standard Model, the dynamics of the charged pions is symmetric in this process. Thus, any mirror asymmetry in the Dalitz plot would be a direct indication of C and CP violation. We present a study on the performance of the REDTOP experiment detector by reconstructing the invariant mass of the final state π + π - γγ using Monte Carlo samples.

  5. Measurement of e + e - → π 0 π 0 ψ ( 3686 ) at s from 4.009 to 4.600 GeV and observation of a neutral charmoniumlike structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.

    Using e +e - collision data collected with the BESIII detector at the BEPCII collider corresponding to an integrated luminosity of 5.2 fb -1 at center-of-mass energies (ps) from 4.009 to 4.600 GeV, the process e +e - →π 0π 0ψ (3686) is studied for the first time. The corresponding Born cross sections are measured and found to be half of those of the reaction e +e - π +π -ψ (3686). This is consistent with the expectation from isospin symmetry. Furthermore, the Dalitz plots for π 0π 0ψ (3686) are accordant with those of π +π -ψ (3686) at all energy points, and a neutral analogue to the structure in π ±ψ (3686) around 4040 MeV/c 2 first observed atmore » $$\\sqrt{s}$$ = 4.416 GeV is observed in the isospin neutral mode at the same energy.« less

  6. Neutral D→KK^{*} Decays as Discovery Channels for Charm CP Violation.

    PubMed

    Nierste, Ulrich; Schacht, Stefan

    2017-12-22

    We point out that the CP asymmetries in the decays D^{0}→K_{S}K^{*0} and D^{0}→K_{S}K[over ¯]^{*0} are potential discovery channels for charm CP violation in the standard model. We stress that no flavor tagging is necessary, the untagged CP asymmetry a_{CP}^{dir}(D[over (-)]→K_{S}K^{*0}) is essentially equal to the tagged one, so that the untagged measurement comes with a significant statistical gain. Depending on the relevant strong phase, |a_{CP}^{dir,untag}| can be as large as 0.003. The CP asymmetry is dominantly generated by exchange diagrams and does not require nonvanishing penguin amplitudes. While the CP asymmetry is smaller than in the case of D^{0}→K_{S}K_{S}, the experimental analysis is more efficient due to the prompt decay K^{*0}→K^{+}π^{-}. One may further search for favorable strong phases in the Dalitz plot in the vicinity of the K^{*0} peak.

  7. Dynamics of C2H 2 3 +→H++H++C 2 + investigated by 50-keV/u Ne8 + impact

    NASA Astrophysics Data System (ADS)

    Xu, S.; Zhu, X. L.; Feng, W. T.; Guo, D. L.; Zhao, Q.; Yan, S.; Zhang, P.; Zhao, D. M.; Gao, Y.; Zhang, S. F.; Yang, J.; Ma, X.

    2018-06-01

    Breakup dynamics of C2H 2 3 + → H++H++C 2 + induced by 50-keV/u Ne8 + ion impact is investigated employing a reaction microscope. All three ionic fragments in the final state are detected in coincidence, and their momentum vectors as well as the kinetic energies are determined. The kinetic-energy correlation spectrum of the two protons displays very rich structures. Utilizing the Newton diagrams and the Dalitz plots, different dissociation mechanisms corresponding to these structures are identified. It was found that, besides the concerted and sequential breakup, fragmentation mechanisms associated with different vibration modes including molecular bending and asymmetric stretching also make significant contributions. We analyzed the correlation between different fragmentation mechanisms and the kinetic-energy release (KER) and found that the sequential process occurs with higher KER while, in contrast, the concerted process mainly contributes to the lower KER. This behavior is entirely opposite to the breakup of the CO2 molecule.

  8. Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaryan, M; Pal, Bilas

    This volume is a short summary of talks given at the PKI2018 Workshop organized to discuss current status and future prospects of pi -K interactions. The precise data on pi K interaction will have a strong impact on strange meson spectroscopy and form factors that are important ingredients in the Dalitz plot analysis of a decays of heavy mesons as well as precision measurement of Vus matrix element and therefore on a test of unitarity in the first raw of the CKM matrix. The workshop has combined the efforts of experimentalists, Lattice QCD, and phenomenology communities. Experimental data relevant tomore » the topic of the workshop were presented from the broad range of different collaborations like CLAS, GlueX, COMPASS, BaBar, BELLE, BESIII, VEPP-2000, and LHCb. One of the main goals of this workshop was to outline a need for a new high intensity and high precision secondary KL beam facility at JLab produced with the 12 GeV electron beam of CEBAF accelerator.« less

  9. First observation and Dalitz analysis of the D0-->K(0)Setapi(0) decay.

    PubMed

    Rubin, P; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Eckhart, E; Gan, K K; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Rosner, J L; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J

    2004-09-10

    Using 9.0 fb(-1) of integrated luminosity in e(+)e(-) collisions near the Upsilon(4S) mass collected with the CLEO II.V detector we report the first observation of the decay D0-->K(0)(S)etapi(0). We measure the ratio of branching fractions, BR(D0-->K(0)(S)etapi(0))BR / (D0-->K(0)(S)pi(0))=0.46+/-0.07+/-0.06. We perform a Dalitz analysis of 155 selected D0-->K(0)(S)etapi(0) candidates and find leading contributions from a(0)(980)K(0)(S) and K(*)(892)eta intermediate states.

  10. Measurement of the Cabibbo-Kobayashi-Maskawa Angle {gamma} in B{sup {+-}}{yields}D{sup (*)}K{sup {+-}} Decays with a Dalitz Analysis of D{yields}K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Barate, R.; Boutigny, D.

    2005-09-16

    We report on a measurement of the Cabibbo-Kobayashi-Maskawa CP-violating phase {gamma} through a Dalitz analysis of neutral D decays to K{sub S}{sup 0}{pi}{sup -}{pi}{sup +} in the processes B{sup {+-}}{yields}D{sup (*)}K{sup {+-}}, D*{yields}D{pi}{sup 0}, D{gamma}. Using a sample of 227x10{sup 6} BB pairs collected by the BABAR detector, we measure the amplitude ratios r{sub B}=0.12{+-}0.08{+-}0.03{+-}0.04 and r{sub B}*=0.17{+-}0.10{+-}0.03{+-}0.03, the relative strong phases {delta}{sub B}=(104{+-}45{sub -21-24}{sup +17+16}) deg. and {delta}{sub B}*=(-64{+-}41{sub -12}{sup +14}{+-}15) deg. between the amplitudes A(B{sup -}{yields}D{sup (*)0}K{sup -}) and A(B{sup -}{yields}D{sup (*)0}K{sup -}), and {gamma}=(70{+-}31{sub -10-11}{sup +12+14}) deg. The first error is statistical, the second is the experimentalmore » systematic uncertainty, and the third reflects the Dalitz model uncertainty. The results for the strong and weak phases have a twofold ambiguity.« less

  11. High-statistics study of the reaction γp → p2π0

    NASA Astrophysics Data System (ADS)

    Sokhoyan, V.; Gutz, E.; Crede, V.; van Pee, H.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, B.; Bartholomy, O.; Bayadilov, D.; Beck, R.; Beloglazov, Y. A.; Castelijns, R.; Dutz, H.; Elsner, D.; Ewald, R.; Frommberger, F.; Fuchs, M.; Funke, Ch.; Gregor, R.; Gridnev, A. B.; Hillert, W.; Hoffmeister, Ph.; Horn, I.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Kammer, S.; Kleber, V.; Klein, Frank; Klein, Friedrich; Klempt, E.; Kotulla, M.; Krusche, B.; Lang, M.; Löhner, H.; Lopatin, I. V.; Lugert, S.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Metsch, B.; Nanova, M.; Nikonov, V. A.; Novinsky, D.; Novotny, R.; Ostrick, M.; Pant, L.; Pfeiffer, M.; Piontek, D.; Roy, A.; Sarantsev, A. V.; Schmidt, Ch.; Schmieden, H.; Seifen, T.; Shende, S.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thiel, A.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Wendel, Ch.; Wilson, A.

    2015-08-01

    The photoproduction of 2 π 0 mesons off protons was studied with the Crystal Barrel/TAPS experiment at the electron accelerator ELSA in Bonn. The energy of photons produced in a radiator was tagged in the energy range from 600 MeV to 2.5 GeV. Differential and total cross sections and pπ 0 π 0 Dalitz plots are presented. Part of the data was taken with a diamond radiator producing linearly polarized photons, and beam asymmetries were derived. Properties of nucleon and Δ resonances contributing to the pπ 0 π 0 final state were determined within the Bonn-Gatchina (BnGa) partial-wave analysis. The data presented here allow us to determine branching ratios of nucleon and Δ resonances for their decays into pπ 0 π 0 via several intermediate states. Most prominent are decays proceeding via Δ(1232) π, N(1440)1/2+ π, N(1520)3/2- π, N(1680)5/2+ π, but also pf 0(500), pf 0(980), and pf 2(1270) contribute to the reaction.

  12. Evidence for Direct CP Violation in the Measurement of the Cabbibo-Kobayashi-Maskawa Angle {gamma} with B{sup {+-}}{yields}D(*)K{sup (*){+-}} Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amo Sanchez, P. del; Lees, J. P.; Poireau, V.

    2010-09-17

    We report the measurement of the Cabibbo-Kobayashi-Maskawa CP-violating angle {gamma} through a Dalitz plot analysis of neutral D-meson decays to K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} and K{sub S}{sup 0}K{sup +}K{sup -} produced in the processes B{sup {+-}}{yields}DK{sup {+-}}, B{sup {+-}}{yields}D*K{sup {+-}} with D*{yields}D{pi}{sup 0}, D{gamma}, and B{sup {+-}}{yields}DK*{sup {+-}} with K*{sup {+-}}{yields}K{sub S}{sup 0}{pi}{+-}, using 468 million BB pairs collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. We measure {gamma}=(68{+-}14{+-}4{+-}3) deg. (modulo 180 deg.), where the first error is statistical, the second is the experimental systematic uncertainty, and the third reflects the uncertaintymore » in the description of the neutral D decay amplitudes. This result is inconsistent with {gamma}=0 (no direct CP violation) with a significance of 3.5 standard deviations.« less

  13. Evidence for Direct CP Violation in the Measurement of the Cabibbo-Kobayashi-Maskawa Angle gamma with B-+ to D(*) K(*)-+ Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.

    2011-08-19

    We report the measurement of the Cabibbo-Kobayashi-Maskawa CP-violating angle {gamma} through a Dalitz plot analysis of neutral D meson decays to K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} and K{sub S}{sup 0} K{sup +}K{sup -} produced in the processes B{sup {-+}} {yields} DK{sup {-+}}, B{sup {-+}} {yields} D* K{sup {-+}} with D* {yields} D{pi}{sup 0}, D{gamma}, and B{sup {-+}} {yields} DK*{sup {-+}} with K*{sup {-+}} {yields} K{sub S}{sup 0}{pi}{sup {-+}}, using 468 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. We measure {gamma} = (68 {+-} 14 {+-} 4 {+-} 3){supmore » o} (modulo 180{sup o}), where the first error is statistical, the second is the experimental systematic uncertainty and the third reflects the uncertainty in the description of the neutral D decay amplitudes. This result is inconsistent with {gamma} = 0 (no direct CP violation) with a significance of 3.5 standard deviations.« less

  14. Discrete contribution to {psi}{sup '}{yields}J/{psi}+{gamma}{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Zhiguo; Soto, Joan; Lu Xiaorui

    2011-03-01

    The decay mode {psi}(2S){yields}J/{psi}+{gamma}{gamma} is proposed in order to experimentally identify the effects of the coupling of charmonium states to the continuum D{bar D} states. To have a better understanding of such a two-photon decay process, in this work we restrict ourselves to investigate the contribution of the discrete part, in which the photons are mainly produced via the intermediate states {chi}{sub cJ}(nP). Besides calculating the resonance contributions of {chi}{sub cJ}(1P)(J=0,1,2), we also take into account the contributions of the higher excited states {chi}{sub cJ}(2P) and the interference effect among the 1P and 2P states. We find that the contributionmore » of the 2P states and the interference terms to the total decay width is very tiny. However, for specific regions of the Dalitz plot, off the resonance peaks, we find that these contributions are sizable and should also be accounted for. We also provide the photon spectrum and study the polarization of J/{psi}.« less

  15. B and Bs decays into three pseudoscalar mesons and the determination of the angle γ of the unitarity triangle

    NASA Astrophysics Data System (ADS)

    Deandrea, A.; Gatto, R.; Ladisa, M.; Nardulli, G.; Santorelli, P.

    2000-12-01

    We reconsider two classical proposals for the determination of the angle γ of the unitarity triangle: B+/--->χc0π+/--->π+π-π+/- and Bs-->ρ0KS-->π+π-KS. We point out the relevance, in both cases, of nonresonant amplitudes, where the π+π- pair is produced by weak decay of a B* (JP=1-) or B0 (JP=0+) off-shell meson. In particular, for the B decay channel, the inclusion of the B0 pole completes some previous analyses and confirms their conclusions, provided a suitable cut in the Dalitz plot is performed; for the Bs decay the inclusion of the B*, B0 amplitudes enhances the role of the tree diagrams as compared to penguin amplitudes, which makes the theoretical uncertainty related to the Bs-->ρ0KS decay process less significant. While the first method is affected by theoretical uncertainties, the second one is cleaner, but its usefulness will depend on the available number of events to perform the analysis.

  16. Study of dipion transitions among Υ(3S), Υ(2S), and Υ(1S) states

    NASA Astrophysics Data System (ADS)

    Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Pappas, S. P.; Weinstein, A. J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.

    2007-10-01

    We present measurements of decay matrix elements for hadronic transitions of the form Υ(nS)→Υ(mS)ππ, where (n,m)=(3,1),(2,1),(3,2). We reconstruct charged and neutral pion modes with the final state Upsilon decaying to either μ+μ- or e+e-. Dalitz plot distributions for the 12 decay modes are fit individually as well as jointly assuming isospin symmetry, thereby measuring the matrix elements of the decay amplitude. We observe and account for the anomaly previously noted in the dipion invariant mass distribution for the Υ(3S)→Υ(1S)ππ transition and obtain good descriptions of the dynamics of the decay using the most general decay amplitude allowed by partial conservation of the axial-vector current considerations. The fits further indicate that the Υ(2S)→Υ(1S)ππ and Υ(3S)→Υ(2S)ππ transitions also show the presence of terms in the decay amplitude that were previously ignored, although at a relatively suppressed level.

  17. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  18. Wind tunnel tests of an 0.019-scale space shuttle integrated vehicle -2A configuration (model 14-OTS) in the NASA Ames 8 X 7 foot unitary wind tunnel, volume 2. [cold jet gas plumes and pressure distribution

    NASA Technical Reports Server (NTRS)

    Hardin, R. B.; Burrows, R. R.

    1975-01-01

    The purpose of the test was to determine the effects of cold jet gas plumes on (1) the integrated vehicle longitudinal and lateral-directional force data, (2) exposed wing hinge moment, (3) wing pressure distributions, (4) orbiter MPS external pressure distributions, and (5) model base pressures. An investigation was undertaken to determine the similarity between solid and gaseous plumes; fluorescent oil flow visualization studies were also conducted. Plotted wing pressure data is tabulated.

  19. Color deconvolution. Optimizing handling of 3D unitary optical density vectors with polar coordinates.

    PubMed

    Bigras, Gilbert

    2012-06-01

    Color deconvolution relies on determination of unitary optical density vectors (OD(3D)) derived from pure constituent stains initially defined as intensity vectors in RGB space. OD(3D) can be defined in polar coordinates (phi, theta, radius); always being equal to one, radius can be ignored. Easier handling of unitary optical density 2D vectors (OD(2D)) is shown. OD(2D) pure stains used in anatomical pathology were assessed as centroid values (phi, theta) with a measure of variance: inertia based on arc lengths between centroid value and sampled points. These variables were plotted on a stereographic projection plane. In order to assess pure stains OD(2D), different methods of sampling RGB pixels were tested and compared: (2) direct sampling of nuclei from preparations using (a) composite H&E and (b) hematoxylin only and (2) for any pure stain RGB image, different associated 8-bit masks (saturation, brightness and RGB average) were used for sampling and compared. Behaviors of phi, theta and inertia were obtained by moving threshold in 8-bit mask histograms. Phi and theta stability were tested against variable light intensity during image acquisition and by using 2 different image acquisition systems. The more saturated RGB pixels are, the more stable phi, theta and inertia values are obtained. Different commercial hematoxylins have distinct OD(2D) characteristics. UltraView DAB stain shows high inertia and is angularly closer to usual counterstains than ultraView Red stain, which also has a lower inertia. Superior accuracy is expected from the latter stain. Phi and theta OD(2D) values are sensitive to light intensity variation, to the used imaging system and to the used objectives. An ImageJ plugin was designed to plot and interactively modify OD(2D) values with instant update of color deconvolution allowing heuristic segmentation. Utilization of polar OD(2D) eases statistical characterization of OD(3D) vectors: conditions of optimal sampling were demonstrated and various factors influencing OD(2D) stability were explored. Stereographic projection plane allows intuitive visualization of OD(3D) vectors as well as heuristic vectorial modification. All findings are not restricted to anatomical pathology but can be applied to bright field microscopy and subtractive color applications in general.

  20. Amplitude Analysis of B0 to K^ pi^-pi^0 and Evidence of Direct CP Violation in B to K^* pi decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J.P.

    We analyze the decay B{sup 0} {yields} K{sup +} {pi}{sup -} {pi}{sup 0} with a sample of 454 million B{bar B} events collected by the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, and extract the complex amplitudes of seven interfering resonances over the Dalitz plot. These results are combined with amplitudes measured in B{sup 0} {yields} K{sup 0}{sub s}{pi}{sup +}{pi}{sup -} decays to construct isospin amplitudes from B{sup 0} {yields} K{sup *}{pi} and B{sup 0} {yields} {rho}K decays. We measure the phase of the isospin amplitude {Phi}{sub 3/2}, useful in constraining the CKM unitarity triangle angle {gamma}more » and evaluate a CP rate asymmetry sum rule sensitive to the presence of new physics operators. We measure direct CP violation in B{sup 0} {yields} K{sup *+}{pi}{sup -} decays at the level of 3 {sigma} when measurements from both B{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0} and B{sup 0} {yields} K{sup 0}{sub s}{pi}{sup +}{pi}{sup -} decays are combined.« less

  1. Closing in on the radiative weak chiral couplings

    NASA Astrophysics Data System (ADS)

    Cappiello, Luigi; Catà, Oscar; D'Ambrosio, Giancarlo

    2018-03-01

    We point out that, given the current experimental status of radiative kaon decays, a subclass of the O (p^4) counterterms of the weak chiral lagrangian can be determined in closed form. This involves in a decisive way the decay K^± → π ^± π ^0 l^+ l^-, currently being measured at CERN by the NA48/2 and NA62 collaborations. We show that consistency with other radiative kaon decay measurements leads to a rather clean prediction for the {O}(p^4) weak couplings entering this decay mode. This results in a characteristic pattern for the interference Dalitz plot, susceptible to be tested already with the limited statistics available at NA48/2. We also provide the first analysis of K_S→ π ^+π ^-γ ^*, which will be measured by LHCb and will help reduce (together with the related K_L decay) the experimental uncertainty on the radiative weak chiral couplings. A precise experimental determination of the {O}(p^4) weak couplings is important in order to assess the validity of the existing theoretical models in a conclusive way. We briefly comment on the current theoretical situation and discuss the merits of the different theoretical approaches.

  2. Localization of Unitary Braid Group Representations

    NASA Astrophysics Data System (ADS)

    Rowell, Eric C.; Wang, Zhenghan

    2012-05-01

    Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.

  3. Unitary Root Music and Unitary Music with Real-Valued Rank Revealing Triangular Factorization

    DTIC Science & Technology

    2010-06-01

    AFRL-RY-WP-TP-2010-1213 UNITARY ROOT MUSIC AND UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) Nizar...DATES COVERED (From - To) June 2010 Journal Article Postprint 08 September 2006 – 31 August 2009 4. TITLE AND SUBTITLE UNITARY ROOT MUSIC AND...UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8650-05-D-1912-0007 5c

  4. Charm Penguin in B± → K±K+K-: Partonic and hadronic loops

    NASA Astrophysics Data System (ADS)

    Bediaga, I.; Frederico, T.; Magalhães, P. C.

    2018-05-01

    Charm penguin diagrams are known to be the main contribution to charmless B decay process with strangeness variation equal to minus one, which is the case of B± →K±K+K- decay. The large phase space available in this and other B three-body decays allows non trivial final state interactions with all sort of rescattering processes and also access high momentum transfers in the central region of the Dalitz plane. In this work we investigate the charm Penguin contribution to B± →K±K+K-, described by a hadronic triangle loop in nonperturbative regions of the phase space, and by a partonic loop at the quasi perturbative region. These nonresonant amplitudes should have a particular structure in the Dalitz plane and their contributions to the final decay amplitude can be confirmed by a data amplitude analysis in this channel. In particular, the hadronic amplitude has a changing sign in the phase at D D bar threshold which can result in a change of sign for the CP asymmetry.

  5. Amplitude analysis of B - → D + π - π - decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaij, R.; Adeva, B.; Adinolfi, M.

    The Dalitz plot analysis technique is used to study the resonant substructures of B - → D + π - π - decays in a data sample corresponding to 3.0 fb -1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. A model-independent analysis of the angular moments demonstrates the presence of resonances with spins 1, 2 and 3 at high D + π - mass. The data are fitted with an amplitude model composed of a quasi-model-independent function to describe the D + π - S wave together with virtual contributions from the D*(2007) 0 and B* 0 states, and components corresponding to the Dmore » $$*\\atop{2}$$(2460) 0, D$$*\\atop{1}$$(2680) 0 , D$$*\\atop{3}$$(2760) 0 and D$$*\\atop{2}$$(3000) 0 resonances. The masses and widths of these resonances are determined together with the branching fractions for their production in B- → D +π - π - decays. The D + π - S wave has phase motion consistent with that expected due to the presence of the D$$*\\atop{0}$$(2400) 0 state. These results constitute the first observations of the D$$*\\atop{3}$$(2760) 0 and D$$*\\atop{2}$$(3000) 0 resonances, with significances of 10σ and 6.6σ, respectively.« less

  6. Amplitude analysis of B - → D + π - π - decays

    DOE PAGES

    Aaij, R.; Adeva, B.; Adinolfi, M.; ...

    2016-10-05

    The Dalitz plot analysis technique is used to study the resonant substructures of B - → D + π - π - decays in a data sample corresponding to 3.0 fb -1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. A model-independent analysis of the angular moments demonstrates the presence of resonances with spins 1, 2 and 3 at high D + π - mass. The data are fitted with an amplitude model composed of a quasi-model-independent function to describe the D + π - S wave together with virtual contributions from the D*(2007) 0 and B* 0 states, and components corresponding to the Dmore » $$*\\atop{2}$$(2460) 0, D$$*\\atop{1}$$(2680) 0 , D$$*\\atop{3}$$(2760) 0 and D$$*\\atop{2}$$(3000) 0 resonances. The masses and widths of these resonances are determined together with the branching fractions for their production in B- → D +π - π - decays. The D + π - S wave has phase motion consistent with that expected due to the presence of the D$$*\\atop{0}$$(2400) 0 state. These results constitute the first observations of the D$$*\\atop{3}$$(2760) 0 and D$$*\\atop{2}$$(3000) 0 resonances, with significances of 10σ and 6.6σ, respectively.« less

  7. Quarks, gluons, and color are sufficient, but are they necessary II

    NASA Astrophysics Data System (ADS)

    Bartlett, David

    2017-01-01

    The 25th anniversary of the death of John Stewart Bell, was marked by lively discussion in Physics Today. This activity spurred me to consider the quark as one of Bell's ugly ``hidden variables'' which can be discarded. Here I extend comments on topics that are usually thought to be settled. These include CP-violation in KLong decay and ``quantum spookiness'' in B-decays. Apparently, the simple reaction e+ e- goes to ``anything + anything bar'' misses essential hadronic physics. The psi was indeed discovered by observing a sharp peak in the total cross section for e+e- at SLAC, but the J was found in the fragments from pp collisions at Brookhaven. Similarly, the parity of the D-meson was determined in a particle reconstruction by an LBL-SLAC group. They analyzed the Dalitz plot of the K pi pi in fragments at SPEAR and found ``Evidence for Parity Nonconservation in the Decays of the Narrow states near 1.87 GeV/c2. The authors did not mention quarks at all. Finally, the parity of the B-meson may be relevant to the exotic ``charmonium'' states observed in fragments at the B-factories. Unfortunately, the parity of the B cannot currently be determined independently of the quark model[PDG-2014, B+/-,top page 51].

  8. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akibue, Seiseki; Murao, Mio

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the laddermore » network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.« less

  9. A mapping from the unitary to doubly stochastic matrices and symbols on a finite set

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    2008-11-01

    We prove that the mapping from the unitary to doubly stochastic matrices that maps a unitary matrix (ukl) to the doubly stochastic matrix (|ukl|2) is a submersion at a generic unitary matrix. The proof uses the framework of operator symbols on a finite set.

  10. Measurement of the transition form factor of {eta} meson with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, H.

    2011-10-24

    Reaction {eta}{yields}e{sup +}e{sup -}{gamma} is used to investigate the transition form factor of {eta} meson with WASA detector at COSY. Where the {eta} meson is produced in pp collision at 1.4 GeV. We present the analysis techniques and preliminary results of {eta} Dalitz decays.

  11. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    NASA Astrophysics Data System (ADS)

    Goswami, A.

    2016-11-01

    In this work we present a study of the Dalitz decay η → γe+e-. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it's decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  12. Quantum computation over the butterfly network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.

    2011-07-15

    In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A 76, 040301(R) (2007)], which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that unitary operations can be performed without adding any entanglementmore » resource, if and only if the unitary operations are locally unitary equivalent to controlled unitary operations. Our protocol is optimal in the sense that the unitary operations cannot be implemented if we relax the specifications of any of the channels. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.« less

  13. Meditations on the unitary rhythm of dying-grieving.

    PubMed

    Malinski, Violet M

    2012-07-01

    When someone faces loss of a loved one, that person simultaneously grieves and dies a little, just as the one dying also grieves. The author's personal conceptualization of dying and grieving as a unitary rhythm is explored based primarily on her interpretation of Rogers' science of unitary human beings, along with selected examples from related nursing literature and from the emerging focus on continuing bonds in other disciplines. Examples from contemporary songwriters that depict such a unitary conceptualization are given along with personal examples. The author concludes with her description of the unitary rhythm of dying-grieving.

  14. KLOE results on light meson spectroscopy and prospects for KLOE-2

    NASA Astrophysics Data System (ADS)

    Gauzzi, Paolo; KLOE-2 Collaboration

    2012-03-01

    The results obtained by the KLOE Collaboration on light meson spectroscopy are presented. The radiative decay phi → ηγ have been used to study several η decay channels. The Dalitz plot distributions of the η → 3π decays, both in charged and neutral final states have been measured. The box anomaly contribution in η → π+ π-γ has been investigated in, and the rare decays η → π0γγ, η → π+π-e+e- and η → e+e-e+e- have been measured. Also the strategy for the measurement of the transition form factor of phi → ηe+e- is described. The radiateve process phi → η'γ has been used to study the η' → ηππ decay channels, obtaining a measurement of the pseudoscalar mixing angle, and finding an evidence for a gluonium content of η'. The decays phi → PPγ where P means a pseudoscalar meson, have been exploited to investigate the light scalar mesons, f0(980), a0(980), and σ(600). The couplings of the scalar mesons to Kbar K, ππ or ππ0, and to the phi resonance have been measured. The prospects for the new KLOE-2 data-taking just started at the upgraded DAΦNE with an upgraded detector are described.

  15. Matrix elements and duality for type 2 unitary representations of the Lie superalgebra gl(m|n)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werry, Jason L.; Gould, Mark D.; Isaac, Phillip S.

    The characteristic identity formalism discussed in our recent articles is further utilized to derive matrix elements of type 2 unitary irreducible gl(m|n) modules. In particular, we give matrix element formulae for all gl(m|n) generators, including the non-elementary generators, together with their phases on finite dimensional type 2 unitary irreducible representations which include the contravariant tensor representations and an additional class of essentially typical representations. Remarkably, we find that the type 2 unitary matrix element equations coincide with the type 1 unitary matrix element equations for non-vanishing matrix elements up to a phase.

  16. Core shroud corner joints

    DOEpatents

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  17. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  18. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    PubMed

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  19. A unitary healing praxis model for women in despair.

    PubMed

    Cowling, W Richard

    2006-04-01

    The evolution of a unitary healing praxis model derived from three unitary appreciative inquiries of despair is described. Explication of unitary appreciative inquiry and how it informed and contributed to the development of the model is provided. The model is based on a conceptualization of healing as appreciating the inherent wholeness of life and provides knowledge specific to the individual lives of women in despair. The process of generative theorizing that led to the creation of the model is explicated. Unitary, appreciative, and participatory responses to despair are integrated in the model, praxis modalities are delineated, key concerns and perspectives of women in despair are addressed, and potentialities for healing are illustrated.

  20. Instrument development and the measurement of unitary constructs.

    PubMed

    Carboni, J T

    1992-01-01

    This article initiates needed dialogue on the development of instruments to measure unitary constructs. The concept of measurement is explored and current measurement in Rogerian research is considered in light of the issues raised in the discussion. The human field - environmental field relationship is presented as the clinical practice area serving as the basis for the development of a unitary instrument that purports to measure field pattern. The instrument entitled Mutual Exploration of the Healing Human Field - Environmental Field Relationship is offered as a beginning effort in constructing an instrument that measures a unitary phenomenon. Rogerian scholars are provided with the challenge to continue the debate regarding the whole field of measurement and the development of unitary tools.

  1. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  2. A data-driven approach to {{\\rm{\\pi }}}^{0},{\\rm{\\eta }} and {{\\rm{\\eta }}}^{\\prime} single and double Dalitz decays

    NASA Astrophysics Data System (ADS)

    Escribano, Rafel; Gonzàlez-Solís, Sergi

    2018-01-01

    The dilepton invariant mass spectra and integrated branching ratios of the single and double Dalitz decays {\\mathscr{P}}\\to {{{l}}}+{{{l}}}-{{γ }} and {\\mathscr{P}}\\to {{{l}}}+{{{l}}}-{{{l}}}+{{{l}}}- ({\\mathscr{P}}={{{π }}}0,{{η }},{{{η }}}\\prime; {{l}}={{e}} or {{μ }}) are predicted by means of a data-driven approach based on the use of rational approximants applied to {{{π }}}0,{{η }} and {{{η }}}\\prime transition form factor experimental data in the space-like region. Supported by the FPI scholarship BES-2012-055371 (S.G-S), the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya under grant 2014 SGR 1450, the Ministerio de Ciencia e Innovación under grant FPA2011-25948, the Ministerio de Economía y Competitividad under grants CICYT-FEDER-FPA 2014-55613-P and SEV-2012-0234, the Spanish Consolider-Ingenio 2010 Program CPAN (CSD2007-00042), and the European Commission under program FP7-INFRASTRUCTURES-2011-1 (283286) S.G-S also Received Support from the CAS President’s International Fellowship Initiative for Young International Scientist (2017PM0031)

  3. Measurement of Dielectron Spectra with the Hadron Blind Detector in PHENIX

    NASA Astrophysics Data System (ADS)

    Sun, Jiayin

    2013-04-01

    Dielectrons are an important color neutral probe for studying the evolution of the hot dense medium created by heavy ion collisions at RHIC. At low mass region, dielectron spectra consists mainly of direct photons and light vector mesons, and give insight on the earliest stages of the collisions and thus constrain theoretical models on thermalization and chiral symmetry restoration in heavy ion collisions. At intermediate and high mass region, there are significant contributions from charm and bottom. The region was utilized to measure cross sections of open charm and open bottom, as well as quarkonium suppression. The measurement of the dielectron spectra, however, suffers from an unfavorable signal to background ratio. Random combination of electron positron pairs from unrelated sources, mostly Dalitz decay of π0 and external conversion of decay photon to electrons, are the main contributor to the background. The Hadron Blind Detector, a windowless proximity focusing Cerenkov detector, is designed to reduce this background by identifying electron tracks from photon conversions and π0 Dalitz decays. The detector has been installed and operated in PHENIX in 2009 and 2010, where Au+Au and reference p+p data sets were taken. Results from these data sets will be presented.

  4. Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2018-02-01

    Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.

  5. Local unitary equivalence of quantum states and simultaneous orthogonal equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Naihuan, E-mail: jing@ncsu.edu; Yang, Min; Zhao, Hui, E-mail: zhaohui@bjut.edu.cn

    2016-06-15

    The correspondence between local unitary equivalence of bipartite quantum states and simultaneous orthogonal equivalence is thoroughly investigated and strengthened. It is proved that local unitary equivalence can be studied through simultaneous similarity under projective orthogonal transformations, and four parametrization independent algorithms are proposed to judge when two density matrices on ℂ{sup d{sub 1}} ⊗ ℂ{sup d{sub 2}} are locally unitary equivalent in connection with trace identities, Kronecker pencils, Albert determinants and Smith normal forms.

  6. Entanglement quantification by local unitary operations

    NASA Astrophysics Data System (ADS)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  7. Entanglement quantification by local unitary operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different localmore » unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.« less

  8. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  9. Spectral stability of unitary network models

    NASA Astrophysics Data System (ADS)

    Asch, Joachim; Bourget, Olivier; Joye, Alain

    2015-08-01

    We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.

  10. Role of the N*(1535) in the J/{psi}{yields}p{eta}p and J/{psi}{yields}pK{sup +}{lambda} reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, L. S.; Oset, E.; Zou, B. S.

    2009-02-15

    We study the J/{psi}{yields}p{eta}p and J/{psi}{yields}pK{sup +}{lambda} reactions with a unitary chiral approach. We find that the unitary chiral approach, which generates the N*(1535) dynamically, can describe the data reasonably well, particularly the ratio of the integrated cross sections. This study provides further support for the unitary chiral description of the N*(1535). We also discuss some subtle differences between the coupling constants determined from the unitary chiral approach and those determined from phenomenological studies.

  11. Hyperon and hyperon resonance properties from charm baryon decays at BABAR

    NASA Astrophysics Data System (ADS)

    Ziegler, Veronique

    This thesis describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the X0c and W0c , it is shown, for the first time, that the spin of the O - is 3/2. The O- analysis procedures are extended to three-body final states and properties of the xi(1690)0 are extracted from a detailed isobar model analysis of the L+c → ΛK¯0K + Dalitz plot. The mass and width values of the xi(1690) 0 are measured with much greater precision than attained previously. The hypothesis that the spin of the xi(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The Λa0(980)+ decay mode of the L+c is observed for the first time. Similar techniques are then used to study xi(1530)0 production in L+c decay. The spin of the xi(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the xi -pi+ system is shown, and its interference with the xi(1530) 0 amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the xi(1530). The xi-pi + mass distribution in the vicinity of the xi(1690)0 exhibits interesting structure which may be interpreted as indicating that the xi(1690) has negative parity.

  12. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  13. Wind-tunnel tests on a 3-dimensional fixed-geometry scramjet inlet at M = 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Mueller, J. N.; Trexler, C. A.; Souders, S. W.

    1977-01-01

    Wind-tunnel tests were conducted on a baseline scramjet inlet model having fixed geometry and swept leading edges at M = 2.30, 2.96, 3.95, and 4.60 in the Langley unitary plan wind tunnel. The unit Reynolds number of the tests was held constant at 6.56 million per meter (2 million per foot). The objectives of the tests were to establish inlet performance and starting characteristics in the lower Mach number range of operation (less than M = 5). Surface pressures obtained on the inlet components are presented, along with the results of the internal flow surveys made at the throat and capture stations of the inlet. Contour plots of the inlet-flow-field parameters such as Mach numbers, pressure recovery, flow capture, local static and total pressure ratios at the survey stations are shown for the test Mach numbers.

  14. Unitary or Non-Unitary Nature of Working Memory? Evidence from Its Relation to General Fluid and Crystallized Intelligence

    ERIC Educational Resources Information Center

    Dang, Cai-Ping; Braeken, Johan; Ferrer, Emilio; Liu, Chang

    2012-01-01

    This study explored the controversy surrounding working memory: whether it is a unitary system providing general purpose resources or a more differentiated system with domain-specific sub-components. A total of 348 participants completed a set of 6 working memory tasks that systematically varied in storage target contents and type of information…

  15. Efficient Nonlocal M-Control and N-Target Controlled Unitary Gate Using Non-symmetric GHZ States

    NASA Astrophysics Data System (ADS)

    Chen, Li-Bing; Lu, Hong

    2018-03-01

    Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2 N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2 N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.

  16. Probing non-unitary CP violation effects in neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Verma, Surender; Bhardwaj, Shankita

    2018-05-01

    In the present work, we have considered minimal unitarity violation scheme to obtain the general expression for ν _{μ }→ ν _{τ } oscillation probability in vacuum and matter. For this channel, we have investigated the sensitivities of short baseline experiments to non-unitary parameters |ρ _{μ τ }| and ω _{μ τ } for normal as well as inverted hierarchical neutrino masses and θ _{23} being above or below maximality. We find that for normal hierarchy, the 3σ sensitivity of |ρ _{μ τ }| is maximum for non-unitary phase ω _{μ τ }=0 whereas it is minimum for ω _{μ τ }=± π . For inverted hierarchy, the sensitivity is minimum at ω _{μ τ }=0 and maximum for ω _{μ τ }=± π . We observe that the sensitivity to measure non-unitarity remains unaffected for unitary CP phase δ =0 or δ =π /2 . We have, also, explored wide spectrum of L/E ratio to investigate the possibilities to observe CP-violation due to unitary (δ ) and non-unitary (ω _{μ τ } ) phases. We find that the both phases can be disentangled, in principle, from each other for L/E<200 km/GeV.

  17. SU(p,q) coherent states and a Gaussian de Finetti theorem

    NASA Astrophysics Data System (ADS)

    Leverrier, Anthony

    2018-04-01

    We prove a generalization of the quantum de Finetti theorem when the local space is an infinite-dimensional Fock space. In particular, instead of considering the action of the permutation group on n copies of that space, we consider the action of the unitary group U(n) on the creation operators of the n modes and define a natural generalization of the symmetric subspace as the space of states invariant under unitaries in U(n). Our first result is a complete characterization of this subspace, which turns out to be spanned by a family of generalized coherent states related to the special unitary group SU(p, q) of signature (p, q). More precisely, this construction yields a unitary representation of the noncompact simple real Lie group SU(p, q). We therefore find a dual unitary representation of the pair of groups U(n) and SU(p, q) on an n(p + q)-mode Fock space. The (Gaussian) SU(p, q) coherent states resolve the identity on the symmetric subspace, which implies a Gaussian de Finetti theorem stating that tracing over a few modes of a unitary-invariant state yields a state close to a mixture of Gaussian states. As an application of this de Finetti theorem, we show that the n × n upper-left submatrix of an n × n Haar-invariant unitary matrix is close in total variation distance to a matrix of independent normal variables if n3 = O(m).

  18. Implementation of bipartite or remote unitary gates with repeater nodes

    NASA Astrophysics Data System (ADS)

    Yu, Li; Nemoto, Kae

    2016-08-01

    We propose some protocols to implement various classes of bipartite unitary operations on two remote parties with the help of repeater nodes in-between. We also present a protocol to implement a single-qubit unitary with parameters determined by a remote party with the help of up to three repeater nodes. It is assumed that the neighboring nodes are connected by noisy photonic channels, and the local gates can be performed quite accurately, while the decoherence of memories is significant. A unitary is often a part of a larger computation or communication task in a quantum network, and to reduce the amount of decoherence in other systems of the network, we focus on the goal of saving the total time for implementing a unitary including the time for entanglement preparation. We review some previously studied protocols that implement bipartite unitaries using local operations and classical communication and prior shared entanglement, and apply them to the situation with repeater nodes without prior entanglement. We find that the protocols using piecewise entanglement between neighboring nodes often require less total time compared to preparing entanglement between the two end nodes first and then performing the previously known protocols. For a generic bipartite unitary, as the number of repeater nodes increases, the total time could approach the time cost for direct signal transfer from one end node to the other. We also prove some lower bounds of the total time when there are a small number of repeater nodes. The application to position-based cryptography is discussed.

  19. Quantum mechanics on periodic and non-periodic lattices and almost unitary Schwinger operators

    NASA Astrophysics Data System (ADS)

    Arik, Metin; Ildes, Medine

    2018-05-01

    In this work, we uncover the mathematical structure of the Schwinger algebra and introduce almost unitary Schwinger operators which are derived by considering translation operators on a finite lattice. We calculate mathematical relations between these algebras and show that the almost unitary Schwinger operators are equivalent to the Schwinger algebra. We introduce new representations for MN(C) in terms of these algebras.

  20. Spatial interpolation of soil organic carbon using apparent electrical conductivity as secondary information

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J. L.

    2009-04-01

    Soil organic carbon (SOC) spatial characterization is necessary to evaluate under what circumstances soil acts as a source or sink of carbon dioxide. However, at the field or catchment scale it is hard to accurately characterize its spatial distribution since large numbers of soil samples are necessary. As an alternative, near-surface geophysical sensor-based information can improve the spatial estimation of soil properties at these scales. Electromagnetic induction (EMI) sensors provide non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa), which depends under non-saline conditions on clay content, water content or SOC, among other properties that determine the electromagnetic behavior of the soil. This study deals with the possible use of ECa-derived maps to improve SOC spatial estimation by Simple Kriging with varying local means (SKlm). Field work was carried out in a vertisol in SW Spain. The field is part of a long-term tillage experiment set up in 1982 with three replicates of conventional tillage (CT) and Direct Drilling (DD) plots with unitary dimensions of 15x65m. Shallow and deep (up to 0.8m depth) apparent electrical conductivity (ECas and ECad, respectively) was measured using the EM38-DD EMI sensor. Soil samples were taken from the upper horizont and analyzed for their SOC content. Correlation coefficients of ECas and ECad with SOC were low (0.331 and 0.175) due to the small range of SOC values and possibly also to the different support of the ECa and SOC data. Especially the ECas values were higher in the DD plots. The normalized ECa difference (ΔECa), calculated as the difference between the normalized ECas and ECad values, distinguished clearly the CT and DD plots, with the DD plots showing positive ΔECa values and CT plots ΔECa negative values. The field was stratified using fuzzy k-means (FKM) classification of ΔECa (FKM1), and ECas and ECad (FKM2). The FKM1 map mainly showed the difference between CT and DD plots, while the FKM2 map showed both differences between CT and DD and topography-associated features. Using the FKM1 and FKM2 maps as secondary information accounted for 30% of the total SOC variability, whereas plot and management average SOC explained 44 and 41%, respectively. Cross validation of SKlm using FKM2 reduced the RMSE by 8% and increased the efficiency index almost 70% as compared to Ordinary Kriging. This work shows how ECa can improve the spatial characterization of SOC, despite its low correlation and the small size of the plots used in this study.

  1. Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Sosa-Martinez, H.; Riofrío, C. A.; Deutsch, Ivan H.; Jessen, Poul S.

    2015-06-01

    Unitary transformations are the most general input-output maps available in closed quantum systems. Good control protocols have been developed for qubits, but questions remain about the use of optimal control theory to design unitary maps in high-dimensional Hilbert spaces, and about the feasibility of their robust implementation in the laboratory. Here we design and implement unitary maps in a 16-dimensional Hilbert space associated with the 6 S1 /2 ground state of 133Cs, achieving fidelities >0.98 with built-in robustness to static and dynamic perturbations. Our work has relevance for quantum information processing and provides a template for similar advances on other physical platforms.

  2. Natural resource theory of unitary taxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, J.L.; Reynolds, A.

    1985-01-01

    Empirical evidence supports the tentative hypothesis that unitary taxation encourages natural resource recovery in states well endowed with timber, fuels, and nonfuel minerals. Consequently, if combined apportionment is a stable institution in any state, it will remain so while extractive industries, with higher upstream than downstream profitability, continue to dominate the state's economy. Over time, however, nonproducing states will abandon unitary taxation to prevent integrated firms from disinvesting within their borders and expanding operations in states with a hospitable investment climate. Since states, like firms, must compete with one another, unitary taxation will become less important as state economies becomemore » less dependent on the recovery of natural resources. 43 references, 1 figure, 4 tables.« less

  3. Unitary reconstruction of secret for stabilizer-based quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryutaroh

    2017-08-01

    We propose a unitary procedure to reconstruct quantum secret for a quantum secret sharing scheme constructed from stabilizer quantum error-correcting codes. Erasure correcting procedures for stabilizer codes need to add missing shares for reconstruction of quantum secret, while unitary reconstruction procedures for certain class of quantum secret sharing are known to work without adding missing shares. The proposed procedure also works without adding missing shares.

  4. Minimal unitary representation of SO∗(8)=SO(6,2) and its SU(2) deformations as massless 6D conformal fields and their supersymmetric extensions

    NASA Astrophysics Data System (ADS)

    Fernando, Sudarshan; Günaydin, Murat

    2010-12-01

    We study the minimal unitary representation (minrep) of SO(6,2) over an Hilbert space of functions of five variables, obtained by quantizing its quasiconformal realization. The minrep of SO(6,2), which coincides with the minrep of SO(8) similarly constructed, corresponds to a massless conformal scalar field in six spacetime dimensions. There exists a family of "deformations" of the minrep of SO(8) labeled by the spin t of an SU(2 subgroup of the little group SO(4) of lightlike vectors. These deformations labeled by t are positive energy unitary irreducible representations of SO(8) that describe massless conformal fields in six dimensions. The SU(2 spin t is the six-dimensional counterpart of U(1) deformations of the minrep of 4D conformal group SU(2,2) labeled by helicity. We also construct the supersymmetric extensions of the minimal unitary representation of SO(8) to minimal unitary representations of OSp(8|2N) that describe massless six-dimensional conformal supermultiplets. The minimal unitary supermultiplet of OSp(8|4) is the massless supermultiplet of (2,0) conformal field theory that is believed to be dual to M-theory on AdS×S.

  5. Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates

    PubMed Central

    2010-01-01

    Background Unitary pseudogenes are a class of unprocessed pseudogenes without functioning counterparts in the genome. They constitute only a small fraction of annotated pseudogenes in the human genome. However, as they represent distinct functional losses over time, they shed light on the unique features of humans in primate evolution. Results We have developed a pipeline to detect human unitary pseudogenes through analyzing the global inventory of orthologs between the human genome and its mammalian relatives. We focus on gene losses along the human lineage after the divergence from rodents about 75 million years ago. In total, we identify 76 unitary pseudogenes, including previously annotated ones, and many novel ones. By comparing each of these to its functioning ortholog in other mammals, we can approximately date the creation of each unitary pseudogene (that is, the gene 'death date') and show that for our group of 76, the functional genes appear to be disabled at a fairly uniform rate throughout primate evolution - not all at once, correlated, for instance, with the 'Alu burst'. Furthermore, we identify 11 unitary pseudogenes that are polymorphic - that is, they have both nonfunctional and functional alleles currently segregating in the human population. Comparing them with their orthologs in other primates, we find that two of them are in fact pseudogenes in non-human primates, suggesting that they represent cases of a gene being resurrected in the human lineage. Conclusions This analysis of unitary pseudogenes provides insights into the evolutionary constraints faced by different organisms and the timescales of functional gene loss in humans. PMID:20210993

  6. Alternative working fluids for unitary equipment: A research perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, V.D.

    This paper deals with present and planned ORNL activities to characterize alternatives to R-22 for unitary heat pump and air-conditioning applications. Results of small-scale bread-board tests of potential alternatives R-32, R-134a, R-152a and R-143a are discussed. Portions of the AFEAS/DOE global warming impact study dealing with the unitary application are summarized. Methods for leak detection with the new refrigerants are discussed.

  7. Unidirectional Quantum Remote Control: Teleportation of Control-State

    NASA Astrophysics Data System (ADS)

    Zheng, Yi-Zhuang; Gu, Yong-Jian; Wu, Gui-Chu; Guo, Guang-Can

    2003-08-01

    We investigate the problem of teleportation of unitary operations by unidirectional control-state teleportation and propose a scheme called unidirectional quantum remote control. The scheme is based on the isomorphism between operation and state. It allows us to store a unitary operation in a control state, thereby teleportation of the unitary operation can be implemented by unidirectional teleportation of the control-state. We find that the probability of success for implementing an arbitrary unitary operation on arbitrary M-qubit state by unidirectional control-state teleportation is 4-M, and 2M ebits and 4M cbits are consumed in each teleportation. The project supported by the National Fundamental Research Programme (2001CB309300) and the Zhejiang Provincial Natural Science Foundation of China under Grant No. 102068

  8. Non-unitary probabilistic quantum computing

    NASA Technical Reports Server (NTRS)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  9. Slaves immersed in a liberal ideology.

    PubMed

    Daly, Leslie Kim

    2012-01-01

    Paradigm debates have been featured in the nursing literature for over four decades. There are at least two opposing paradigms specific to nursing that have remained central in these debates. Advocates of the unitary perspective (or simultaneity paradigm) consider their theories to be more philosophically advanced and contemporary alternatives when compared to the older more traditional ideas characteristic of models they describe as originating from the totality paradigm. In the context of these debates, I focus on some theoretical positions embedded in the unitary perspective, noting their limitations with respect to integrating the individual and social mandates of nursing; nurses are responsible not only for individual health-related needs, but also for the health of the collective. I explore two hypotheses that may explain the powers of endurance of the unitary perspective. Paley, who outlines the origins of nurses' 'slave morality', inspires the first hypothesis. The second hypothesis speaks to the location of nursing knowledge development in the context of liberal ideology. In this work, I outline key conceptualizations of the unitary perspective in order to clearly illustrate the limitations of the unitary perspective for nurses' social mandate. Then, I explore how slave morality and liberal ideological assumptions might both work to sustain the unitary perspective. A paradigm for nursing must have utility in addressing both the health-related needs of individuals, and for addressing the health of the collective. To this end, I advance suggestions in three areas: first, to transform nurses' slave morality to more honest and noble aspirations; second, to examine liberal ideological premises; and third, to end paradigm debate by resituating elements of the unitary perspective to the level of mid-range theory, where it could be most effective for research and practice with specific populations. © 2011 Blackwell Publishing Ltd.

  10. Caring science and the science of unitary human beings: a trans-theoretical discourse for nursing knowledge development.

    PubMed

    Watson, Jean; Smith, Marlaine C

    2002-03-01

    Two dominant discourses in contemporary nursing theory and knowledge development have evolved over the past few decades, in part by unitary science views and caring theories. Rogers' science of unitary human beings (SUHB) represents the unitary directions in nursing. Caring theories and related caring science (CS) scholarship represent the other. These two contemporary initiatives have generated two parallel, often controversial, seemingly separate and unrelated, trees of knowledge for nursing science. This paper explores the evolution of CS and its intersection with SUHB that have emerged in contemporary nursing literature. We present a case for integration, convergence, and creative synthesis of CS with SUHB. A trans-theoretical, trans-disciplinary context emerges, allowing nursing to sustain its caring ethic and ontology, within a unitary science. The authors critique and review the seminal, critical issues that have separated contemporary knowledge developments in CS and SUHB. Foundational issues of CS, and Watson's theory of transpersonal caring science (TCS), as a specific exemplar, are analysed, alongside parallel themes in SUHB. By examining hidden ethical-ontological and paradigmatic commonalities, trans-theoretical themes and connections are explored and revealed between TCS and SUHB. Through a creative synthesis of TCS and SUHB we explicate a distinct unitary view of human with a relational caring ontology and ethic that informs nursing as well as other sciences. The result: is a trans-theoretical, trans-disciplinary view for nursing knowledge development. Nursing's history has been to examine theoretical differences rather than commonalities. This trans-theoretical position moves nursing toward theoretical integration and creative synthesis, vs. separation, away from the 'Balkanization' of different theories. This initiative still maintains the integrity of different theories, while facilitating and inviting a new discourse for nursing science. The result: Unitary Caring Science that evokes both science and spirit.

  11. Precision study of the η → μ+μ-γ and ω → μ+μ-π0 electromagnetic transition form-factors and of the ρ → μ+μ- line shape in NA60

    NASA Astrophysics Data System (ADS)

    Arnaldi, R.; Banicz, K.; Borer, K.; Castor, J.; Chaurand, B.; Chen, W.; Cicalò, C.; Colla, A.; Cortese, P.; Damjanovic, S.; David, A.; de Falco, A.; Devaux, A.; Ducroux, L.; En'yo, H.; Fargeix, J.; Ferretti, A.; Floris, M.; Förster, A.; Force, P.; Guettet, N.; Guichard, A.; Gulkanian, H.; Heuser, J. M.; Jarron, P.; Keil, M.; Kluberg, L.; Li, Z.; Lourenço, C.; Lozano, J.; Manso, F.; Martins, P.; Masoni, A.; Neves, A.; Ohnishi, H.; Oppedisano, C.; Parracho, P.; Pillot, P.; Poghosyan, T.; Puddu, G.; Radermacher, E.; Ramalhete, P.; Rosinsky, P.; Scomparin, E.; Seixas, J.; Serci, S.; Shahoyan, R.; Sonderegger, P.; Specht, H. J.; Tieulent, R.; Uras, A.; Usai, G.; Veenhof, R.; Wöhri, H. K.

    2016-06-01

    The NA60 experiment studied low-mass muon pair production in proton-nucleus (p-A) collisions using a 400 GeV proton beam at the CERN SPS. The low-mass dimuon spectrum is well described by the superposition of the two-body and Dalitz decays of the light neutral mesons η, ρ, ω, η‧ and ϕ, and no evidence of in-medium effects is found. A new high-precision measurement of the electromagnetic transition form factors of the η and ω was performed, profiting from a 10 times larger data sample than the peripheral In-In sample previously collected by NA60. Using the pole-parameterisation | F (M)|2 =(1 -M2 /Λ2)- 2 we find Λη-2 = 1.934 ± 0.067 (stat.) ±0.050 (syst.) (GeV /c2)-2 and Λω-2 = 2.223 ± 0.026 (stat.) ±0.037 (syst.) (GeV /c2)-2. An improved value of the branching ratio of the Dalitz decay ω →μ+μ-π0 is also obtained, with BR (ω →μ+μ-π0) = [ 1.41 ± 0.09 (stat.) ± 0.15 (syst.) ] ×10-4. Further results refer to the ρ line shape and a new limit on ρ / ω interference in hadron interactions.

  12. Multiqubit Clifford groups are unitary 3-designs

    NASA Astrophysics Data System (ADS)

    Zhu, Huangjun

    2017-12-01

    Unitary t -designs are a ubiquitous tool in many research areas, including randomized benchmarking, quantum process tomography, and scrambling. Despite the intensive efforts of many researchers, little is known about unitary t -designs with t ≥3 in the literature. We show that the multiqubit Clifford group in any even prime-power dimension is not only a unitary 2-design, but also a 3-design. Moreover, it is a minimal 3-design except for dimension 4. As an immediate consequence, any orbit of pure states of the multiqubit Clifford group forms a complex projective 3-design; in particular, the set of stabilizer states forms a 3-design. In addition, our study is helpful in studying higher moments of the Clifford group, which are useful in many research areas ranging from quantum information science to signal processing. Furthermore, we reveal a surprising connection between unitary 3-designs and the physics of discrete phase spaces and thereby offer a simple explanation of why no discrete Wigner function is covariant with respect to the multiqubit Clifford group, which is of intrinsic interest in studying quantum computation.

  13. Study of light mesons with WASA-at-COSY

    NASA Astrophysics Data System (ADS)

    Prencipe, Elisabetta

    2014-06-01

    The WASA detector, operating at the COSY facility in Jülich (Germany) has been collecting data since 2007. The experiment allows to perform studies of light mesons, such as π0, η and ω rare decay processes, in order to perform precise measurements of branching ratios, determine Dalitz plot parameters, test symmetry and symmetry breaking, and evaluate transition form factors. In the experiments a proton or deuteron beam impinged on a pellet target of hydrogen or deuterium, which allows the reactions proton-proton (pp) or proton-deuteron (pd). A high-statistics sample of η mesons has been collected: in the reaction pd →3He η, 3×107η mesons were tagged at a beam energy of 1.0 GeV, while 5×108η mesons were produced in the reaction pp → ppη at 1.4 GeV. This corresponds to the production of 10 η/s and 100 η/s, respectively, for the two reaction processes. In the pp dataset a higher background level is found compared to the pd data set. In both cases, we identify the η mesons by means of the missing mass derived from the recoil particles. A kinematic fit largely rejects the background in our analysis. The advantage in using the pp dataset is that the production of η mesons is almost a factor of 10 higher than in the pd fusion to 3He. As we plan to measure the branching ratios of very rare processes, high statistics is needed. A summary of the recent activity on the study of light mesons with WASA-at-COSY here is given.

  14. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-07-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  15. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-03-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  16. Experimental Measurements of Sonic Boom Signatures Using a Continuous Data Acquisition Technique

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel to determine the effectiveness of a technique to measure aircraft sonic boom signatures using a single conical survey probe while continuously moving the model past the probe. Sonic boom signatures were obtained using both move-pause and continuous data acquisition methods for comparison. The test was conducted using a generic business jet model at a constant angle of attack and a single model-to-survey-probe separation distance. The sonic boom signatures were obtained at a Mach number of 2.0 and a unit Reynolds number of 2 million per foot. The test results showed that it is possible to obtain sonic boom signatures while continuously moving the model and that the time required to acquire the signature is at least 10 times faster than the move-pause method. Data plots are presented with a discussion of the results. No tabulated data or flow visualization photographs are included.

  17. Transitioning to Low-GWP Alternatives in Unitary Air Conditioning

    EPA Pesticide Factsheets

    This fact sheet provides current information on low-Global Warming Potential (GWP) refrigerant alternatives used in unitary air-conditioning equipment, relevant to the Montreal Protocol on Substances that Deplete the Ozone Layer.

  18. Dark Forces at DAΦNE

    NASA Astrophysics Data System (ADS)

    Curciarello, F.

    2015-06-01

    The DAΦNE Φ-factory is an ideal place to search for forces beyond the Standard Model. By using the KLOE detector, limits on U-boson coupling ɛ2 of the order of 10-5 ÷ 10-7 and on the αD × ɛ2 product have been set through the study of the Φ Dalitz decay, Uγ events and the Higgsstrahlung process. An improvement of these limits is expected thanks to the KLOE detector and DAΦNE upgrades of KLOE-2.

  19. The flexible focus: whether spatial attention is unitary or divided depends on observer goals.

    PubMed

    Jefferies, Lisa N; Enns, James T; Di Lollo, Vincent

    2014-04-01

    The distribution of visual attention has been the topic of much investigation, and various theories have posited that attention is allocated either as a single unitary focus or as multiple independent foci. In the present experiment, we demonstrate that attention can be flexibly deployed as either a unitary or a divided focus in the same experimental task, depending on the observer's goals. To assess the distribution of attention, we used a dual-stream Attentional Blink (AB) paradigm and 2 target pairs. One component of the AB, Lag-1 sparing, occurs only if the second target pair appears within the focus of attention. By varying whether the first-target-pair could be expected in a predictable location (always in-stream) or not (unpredictably in-stream or between-streams), observers were encouraged to deploy a divided or a unitary focus, respectively. When the second-target-pair appeared between the streams, Lag-1 sparing occurred for the Unpredictable group (consistent with a unitary focus) but not for the Predictable group (consistent with a divided focus). Thus, diametrically different outcomes occurred for physically identical displays, depending on the expectations of the observer about where spatial attention would be required.

  20. Non-unitary probabilistic quantum computing circuit and method

    NASA Technical Reports Server (NTRS)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  1. Multiple multicontrol unitary operations: Implementation and applications

    NASA Astrophysics Data System (ADS)

    Lin, Qing

    2018-04-01

    The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary two-photon operations could be reduced from O( n 3) with the traditional decomposition approach to O( n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the ( n- k)-uniform hypergraph state.

  2. Consciousness, intentionality, and community: Unitary perspectives and research.

    PubMed

    Zahourek, Rothlyn P; Larkin, Dorothy M

    2009-01-01

    Consciousness and intentionality often have been related and studied together. These concepts also are readily viewed and understood for practice, research, and education in a unitary paradigm. How these ideas relate to community is less known. Considering the expansion of our capacity for communication through the World Wide Web and other technologic advances and appreciating recent research on the nonlocal character of intentionality and consciousness, it is more apparent how concepts of community can be seen in the same unitary context. The authors address these issues and review relevant nursing research.

  3. Procedures and requirements for testing in the Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Wassum, Donald L.; Hyman, Curtis E., Jr.

    1988-01-01

    Information is presented to assist those interested in conducting wind-tunnel testing within the Langley Unitary Plan Wind Tunnel. Procedures, requirements, forms and examples necessary for tunnel entry are included.

  4. Compressor-fan unitary structure for air conditioning system

    NASA Astrophysics Data System (ADS)

    Dreiman, N.

    2015-08-01

    An extremely compact, therefore space saving unitary structure of short axial length is produced by radial integration of a revolving piston rotary compressor and an impeller of a centrifugal fan. The unitary structure employs single motor to run as the compressor so the airflow fan and eliminates duality of motors, related power supply and control elements. Novel revolving piston rotary compressor which provides possibility for such integration comprises the following: a suction gas delivery system which provides cooling of the motor and supplies refrigerant into the suction chamber under higher pressure (supercharged); a modified discharge system and lubricating oil supply system. Axial passages formed in the stationary crankshaft are used to supply discharge gas to a condenser, to return vaporized cooling agent from the evaporator to the suction cavity of the compressor, to pass a lubricant and to accommodate wiring supplying power to the unitary structure driver -external rotor electric motor.

  5. Chaos and complexity by design

    DOE PAGES

    Roberts, Daniel A.; Yoshida, Beni

    2017-04-20

    We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We also show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. In addition, we prove that these 2k-point correlators for Pauli operators completely determine the k-foldmore » channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.« less

  6. Gauge-origin independent formalism of two-component relativistic framework based on unitary transformation in nuclear magnetic shielding constant

    NASA Astrophysics Data System (ADS)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2018-03-01

    This article proposes a gauge-origin independent formalism of the nuclear magnetic shielding constant in the two-component relativistic framework based on the unitary transformation. The proposed scheme introduces the gauge factor and the unitary transformation into the atomic orbitals. The two-component relativistic equation is formulated by block-diagonalizing the Dirac Hamiltonian together with gauge factors. This formulation is available for arbitrary relativistic unitary transformations. Then, the infinite-order Douglas-Kroll-Hess (IODKH) transformation is applied to the present formulation. Next, the analytical derivatives of the IODKH Hamiltonian for the evaluation of the nuclear magnetic shielding constant are derived. Results obtained from the numerical assessments demonstrate that the present formulation removes the gauge-origin dependence completely. Furthermore, the formulation with the IODKH transformation gives results that are close to those in four-component and other two-component relativistic schemes.

  7. Robust Learning Control Design for Quantum Unitary Transformations.

    PubMed

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  8. Precision study of the η → μ +μ -γ and ω → μ +μ -π 0 electromagnetic transition form-factors and of the ρ → μ +μ - line shape in NA60

    DOE PAGES

    Arnaldi, R.; Banicz, K.; Borer, K.; ...

    2016-04-11

    The NA60 experiment studied low-mass muon pair production in proton–nucleus (p–A) collisions using a 400 GeV proton beam at the CERN SPS. The low-mass dimuon spectrum is well described by the superposition of the two-body and Dalitz decays of the light neutral mesons η, ρ, ω, η' and φ, and no evidence of in-medium effects is found. A new high-precision measurement of the electromagnetic transition form factors of the η and ω was performed, profiting from a 10 times larger data sample than the peripheral In–In sample previously collected by NA60. Using the pole-parameterisation |F(M)| 2=(1 - M 2/Λ 2)more » -2 we find Λ -2 η = 1.934 ± 0.067 (stat.) ±0.050(syst.) (GeV/c 2) -2 and Λ -2 ω = 2.223 ± 0.026(stat.) ± 0.037(syst.) (GeV/c 2) -2. An improved value of the branching ratio of the Dalitz decay ω → μ +μ -π 0 is also obtained, with BR(ω → μ +μ -π 0) = [1.41 ± 0.09(stat.) ± 0.15(syst.)] ×10 -4. Finally, further results refer to the ρ line shape and a new limit on ρ/ω interference in hadron interactions.« less

  9. The Unitary Plan Wind Tunnel(UPWT) Test 1891 Space Launch System

    NASA Image and Video Library

    2014-10-15

    Stage Separation Test of the Space Launch System(SLS) in the Langley Unitary Plan Wind Tunnel (UPWT). The model used High Pressure air blown through the solid rocket boosters. (SRB) to simulate the booster separation motors (BSM) firing.

  10. The Unitary Plan Wind Tunnel(UPWT) Test 1891 Space Launch System

    NASA Image and Video Library

    2014-10-14

    Stage Separation Test of the Space Launch System(SLS) in the Langley Unitary Plan Wind Tunnel (UPWT). The model used High Pressure air blown through the solid rocket boosters. (SRB) to simulate the booster separation motors (BSM) firing.

  11. Representation and design of wavelets using unitary circuits

    NASA Astrophysics Data System (ADS)

    Evenbly, Glen; White, Steven R.

    2018-05-01

    The representation of discrete, compact wavelet transformations (WTs) as circuits of local unitary gates is discussed. We employ a similar formalism as used in the multiscale representation of quantum many-body wave functions using unitary circuits, further cementing the relation established in the literature between classical and quantum multiscale methods. An algorithm for constructing the circuit representation of known orthogonal, dyadic, discrete WTs is presented, and the explicit representation for Daubechies wavelets, coiflets, and symlets is provided. Furthermore, we demonstrate the usefulness of the circuit formalism in designing WTs, including various classes of symmetric wavelets and multiwavelets, boundary wavelets, and biorthogonal wavelets.

  12. How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maciążek, Tomasz; Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa; Oszmaniec, Michał

    2013-09-15

    Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure.

  13. Unitary Operators on the Document Space.

    ERIC Educational Resources Information Center

    Hoenkamp, Eduard

    2003-01-01

    Discusses latent semantic indexing (LSI) that would allow search engines to reduce the dimension of the document space by mapping it into a space spanned by conceptual indices. Topics include vector space models; singular value decomposition (SVD); unitary operators; the Haar transform; and new algorithms. (Author/LRW)

  14. Full allogeneic fusion of embryos in a holothuroid echinoderm.

    PubMed

    Gianasi, Bruno L; Hamel, Jean-François; Mercier, Annie

    2018-05-30

    Whole-body chimaeras (organisms composed of genetically distinct cells) have been directly observed in modular/colonial organisms (e.g. corals, sponges, ascidians); whereas in unitary deuterostosmes (including mammals) they have only been detected indirectly through molecular analysis. Here, we document for the first time the step-by-step development of whole-body chimaeras in the holothuroid Cucumaria frondosa , a unitary deuterostome belonging to the phylum Echinodermata. To the best of our knowledge, this is the most derived unitary metazoan in which direct investigation of zygote fusibility has been undertaken. Fusion occurred among hatched blastulae, never during earlier (unhatched) or later (larval) stages. The fully fused chimaeric propagules were two to five times larger than non-chimaeric embryos. Fusion was positively correlated with propagule density and facilitated by the natural tendency of early embryos to agglomerate. The discovery of natural chimaerism in a unitary deuterostome that possesses large externally fertilized eggs provides a framework to explore key aspects of evolutionary biology, histocompatibility and cell transplantation in biomedical research. © 2018 The Author(s).

  15. Informational correlation between two parties of a quantum system: spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Zenchuk, A. I.

    2014-12-01

    We introduce the informational correlation between two interacting quantum subsystems and of a quantum system as the number of arbitrary parameters of a unitary transformation (locally performed on the subsystem ) which may be detected in the subsystem by the local measurements. This quantity indicates whether the state of the subsystem may be effected by means of the unitary transformation applied to the subsystem . Emphasize that in general. The informational correlations in systems with tensor product initial states are studied in more details. In particular, it is shown that the informational correlation may be changed by the local unitary transformations of the subsystem . However, there is some non-reducible part of which may not be decreased by any unitary transformation of the subsystem at a fixed time instant . Two examples of the informational correlations between two parties of the four-node spin-1/2 chain with mixed initial states are studied. The long chains with a single initially excited spin (the pure initial state) are considered as well.

  16. [Hadroproduction of charmed and bottom mesons (Fermilab experiment E-653): Progress report, June 13, 1983--June 14, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1984-12-31

    (I)Results are given for photoproduction of the D{sup *} at 103 GeV. Clean signals are seen for the decay D{sup *{+-}} {yields} {pi}{sup {+-}}D{sup 0} with the D{sup 0} decaying into both K{sup {-+}}{pi}{sup {+-}} and K{sup {-+}}{pi}{sup {+-}}{pi}{sup 0}. Analysis of the Dalitz plot for the K{pi}{pi} mode gives branching fractions (BFs) for K{sup {minus}}{rho}{sup +}, K{sup *{minus}}{pi}{sup +}, and {anti K}{sup *0}{pi}{sup 0} final states. The BF for D{sup 0} {yields} K{sup {minus}}{rho}{sup +}, much lower than a previous result, is in approximate agreement with the value expected for an l=1/2 final state. (II)Inelastic and elastic J/{psi} photoproductionmore » on H is investigated at 103 GeV. The inelastic cross section with E{sub {psi}}/E{sub {gamma}} {lt} 0.9 is significantly lower than the corresponding result for muoproduction on Fe targets, but consistent with second-order perturbative QCD calculation. The mean p{sub +} of inelastic events is larger than that of elastic events. (III)Analysis of data from the CLEO experiment has yielded evidence for B{bar B} production from the 4S upsilon state. A preliminary cross section is shown. (IV)The SSD prototyping and testing program is described. The detectors performed as expected. (V)Three 24 x 36 mm{sup 2} Centronic detectors 300 microns thick were tested in 650-MeV/c proton and 600-MeV/c pion beams. Charge sharing was found to occur. (VI)Tests of attenuation lengths and light output were made on three types of scintillator: NE102A, PS12, and PS10. PS10 appears the most suitable. (VII)Charge-sharing SSDs of (V) were subject to analysis: checking of pulse heights of single stripes, hit pairs, and hit quads vs theoretical values; resolution of three-point proton/pion tracks, and characterization of devices by charge sum/difference plots of hit pairs. (VIII) Board fabrication and tests of a hadron calorimeter intended to be 91 x 91 sq.in. are discussed. (IX)Testing of an amplifier with LRS hybrid preamp is related.« less

  17. Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, Mark D.; Isaac, Phillip S.; Werry, Jason L.

    Using our recent results on eigenvalues of invariants associated to the Lie superalgebra gl(m|n), we use characteristic identities to derive explicit matrix element formulae for all gl(m|n) generators, particularly non-elementary generators, on finite dimensional type 1 unitary irreducible representations. We compare our results with existing works that deal with only subsets of the class of type 1 unitary representations, all of which only present explicit matrix elements for elementary generators. Our work therefore provides an important extension to existing methods, and thus highlights the strength of our techniques which exploit the characteristic identities.

  18. Study of optical techniques for the Ames unitary wind tunnel, part 7

    NASA Technical Reports Server (NTRS)

    Lee, George

    1993-01-01

    A summary of optical techniques for the Ames Unitary Plan wind tunnels are discussed. Six optical techniques were studied: Schlieren, light sheet and laser vapor screen, angle of attack, model deformation, infrared imagery, and digital image processing. The study includes surveys and reviews of wind tunnel optical techniques, some conceptual designs, and recommendations for use of optical methods in the Ames Unitary Plan wind tunnels. Particular emphasis was placed on searching for systems developed for wind tunnel use and on commercial systems which could be readily adapted for wind tunnels. This final report is to summarize the major results and recommendations.

  19. An exploration of the perception of time from the perspective of the Science of Unitary Human Beings.

    PubMed

    Ring, Marcia E

    2009-01-01

    What is time? The science of unitary human beings describes pandimensional reality as a domain without spatial or temporal attributes. As part of this pandimensional reality, unitary human beings experience time as passing, and involving the past, present, and future. The theory of accelerating evolution describes changes in human and environmental energy fields that are always accelerating and are manifested as differences in the experience of time as being slow, fast, and still. Time, be it measured or experienced, has no meaning in and of itself, but can only be understood in terms of the ever-evolving life process.

  20. Polynomial approximation of non-Gaussian unitaries by counting one photon at a time

    NASA Astrophysics Data System (ADS)

    Arzani, Francesco; Treps, Nicolas; Ferrini, Giulia

    2017-05-01

    In quantum computation with continuous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the laboratory. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.

  1. The unitary life pattern of persons experiencing serenity in recovery from alcohol and drug addiction.

    PubMed

    Rushing, Alison M

    2008-01-01

    People recovering from addiction to alcohol or drugs often acknowledge the need for complete change in life pattern orientation in a journey toward healing. Serenity is the hallmark of recovery according to the tenets of 12-step programs, but little is known about the actual experience of serenity in healing from addiction. From a perspective of unitary pattern appreciation and a method of unitary appreciative inquiry, this study explored the experience of serenity among 9 people recovering from alcohol and/or drug addiction. Results are portrayed in both individual and group profiles, depicted in a format that integrates empirical findings as poetry.

  2. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    NASA Astrophysics Data System (ADS)

    Klink, W. H.; Wickramasekara, S.

    2016-06-01

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner-Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.

  3. 24 CFR 3280.714 - Appliances, cooling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning...) Mechanical air conditioners shall be rated in accordance with the ARI Standard 210/240-89 Unitary Air Conditioning and Air Source Unitary Heat Pump Equipment and certified by ARI or other nationally recognized...

  4. 24 CFR 3280.714 - Appliances, cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning...) Mechanical air conditioners shall be rated in accordance with the ARI Standard 210/240-89 Unitary Air Conditioning and Air Source Unitary Heat Pump Equipment and certified by ARI or other nationally recognized...

  5. Geometrically controlled evolution of four-qubit states

    NASA Astrophysics Data System (ADS)

    Duy, Hoang Ngoc; Heydari, Hoshang

    2011-03-01

    In this paper the evolution of some states of four qubits in [1] under global bipartite unitary operation and controlled by local unitary operation using four-tangle [2] and the geometric invariants [3] is investigated. Particularly the entanglement distribution and properties of these four-qubit states are studied.

  6. Dynamical Localization for Unitary Anderson Models

    NASA Astrophysics Data System (ADS)

    Hamza, Eman; Joye, Alain; Stolz, Günter

    2009-11-01

    This paper establishes dynamical localization properties of certain families of unitary random operators on the d-dimensional lattice in various regimes. These operators are generalizations of one-dimensional physical models of quantum transport and draw their name from the analogy with the discrete Anderson model of solid state physics. They consist in a product of a deterministic unitary operator and a random unitary operator. The deterministic operator has a band structure, is absolutely continuous and plays the role of the discrete Laplacian. The random operator is diagonal with elements given by i.i.d. random phases distributed according to some absolutely continuous measure and plays the role of the random potential. In dimension one, these operators belong to the family of CMV-matrices in the theory of orthogonal polynomials on the unit circle. We implement the method of Aizenman-Molchanov to prove exponential decay of the fractional moments of the Green function for the unitary Anderson model in the following three regimes: In any dimension, throughout the spectrum at large disorder and near the band edges at arbitrary disorder and, in dimension one, throughout the spectrum at arbitrary disorder. We also prove that exponential decay of fractional moments of the Green function implies dynamical localization, which in turn implies spectral localization. These results complete the analogy with the self-adjoint case where dynamical localization is known to be true in the same three regimes.

  7. Establishing the Unitary Classroom: Organizational Change and School Culture.

    ERIC Educational Resources Information Center

    Eddy, Elizabeth M.; True, Joan H.

    1980-01-01

    This paper examines the organizational changes introduced in two elementary schools to create unitary (desegregated) classrooms. The different models adopted by the two schools--departmentalization and team teaching--are considered as expressions of their patterns of interaction, behavior, and values. (Part of a theme issue on educational…

  8. ARC-2006-ACD06-0213-011

    NASA Image and Video Library

    2006-10-03

    Ames and Moffett Field (MFA) historical sites and memorials Unitary Plan Wind Tunned plaza; display and historical site plaques with the NASA logo on the Wind Tunnel valve as a backdrop. shown is the Unitary International Historic Mechanical Engineering Landmark Dedication plaque (American Society of Mechanical Engineers) May 5, 1995

  9. IRBM in Unitary Plan Wind Tunnel

    NASA Image and Video Library

    1957-09-07

    L57-700 In the reentry flight path of this nose cone model of a Jupiter Intermediate range ballistic missile (IRBM) was tested in the Unitary Plan Wind Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 475.

  10. Prevention of Child Abuse: Theory, Myth, Practice.

    ERIC Educational Resources Information Center

    Newberger, Eli H.; Newberger, Carolyn Moore

    Child abuse is discussed in terms of theory which when realized may lead to more effective primary and secondary prevention efforts. Theoretical explanations of child abuse are classified as either unitary or interactive. Unitary theories (psychological, sociological, and legal views of behavior) are considered deficient; none is capable of…

  11. Experimental Sonic Boom Measurements on a Mach 1.6 Cruise Low-Boom Configuration

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa, A.; Wayman, Thomas R.; Waithe, Kenrick A.; Howe, Donald C.; Bangert, Linda S.

    2012-01-01

    A wind tunnel test has been conducted by Gulfstream Aerospace Corporation (GAC) to measure the sonic boom pressure signature of a low boom Mach 1.6 cruise business jet in the Langley Unitary Plan Wind Tunnel at Mach numbers 1.60 and 1.80. Through a cooperative agreement between GAC and the National Aeronautics and Space Administration (NASA), GAC provided NASA access to some of the experimental data and NASA is publishing these data for the sonic boom research community. On-track and off-track near field sonic boom pressure signatures were acquired at three separation distances (0.5, 1.2, and 1.7 reference body lengths) and three angles of attack (-0.26deg, 0.26deg, and 0.68deg). The model was blade mounted to minimize the sting effects on the sonic boom signatures. Although no extensive data analysis is provided, selected data are plotted to illustrate salient features of the data. All of the experimental sonic boom pressure data are tabulated. Schlieren images of the configuration are also included.

  12. The second law of thermodynamics under unitary evolution and external operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Tatsuhiko N., E-mail: ikeda@cat.phys.s.u-tokyo.ac.jp; Physics Department, Boston University, Boston, MA 02215; Sakumichi, Naoyuki

    The von Neumann entropy cannot represent the thermodynamic entropy of equilibrium pure states in isolated quantum systems. The diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, is a natural generalization of the von Neumann entropy and applicable to equilibrium pure states. We show that the diagonal entropy is consistent with the second law of thermodynamics upon arbitrary external unitary operations. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that quantum trajectories under unitary evolution are restricted by the Hamiltonian dynamics and that the external operation is performed withoutmore » reference to the microscopic state of the system.« less

  13. Reflection Positive Stochastic Processes Indexed by Lie Groups

    NASA Astrophysics Data System (ADS)

    Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur

    2016-06-01

    Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.

  14. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubler, Philipp, E-mail: pgubler@riken.jp; RIKEN Nishina Center, Wako, Saitama 351-0198; Yamamoto, Naoki

    2015-05-15

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  15. Unitary n -designs via random quenches in atomic Hubbard and spin models: Application to the measurement of Rényi entropies

    NASA Astrophysics Data System (ADS)

    Vermersch, B.; Elben, A.; Dalmonte, M.; Cirac, J. I.; Zoller, P.

    2018-02-01

    We present a general framework for the generation of random unitaries based on random quenches in atomic Hubbard and spin models, forming approximate unitary n -designs, and their application to the measurement of Rényi entropies. We generalize our protocol presented in Elben et al. [Phys. Rev. Lett. 120, 050406 (2018), 10.1103/PhysRevLett.120.050406] to a broad class of atomic and spin-lattice models. We further present an in-depth numerical and analytical study of experimental imperfections, including the effect of decoherence and statistical errors, and discuss connections of our approach with many-body quantum chaos.

  16. Surface effects in the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Salasnich, L.; Ancilotto, F.; Toigo, F.

    2010-01-01

    We study the extended Thomas-Fermi (ETF) density functional of the superfluid unitary Fermi gas. This functional includes a gradient term which is essential to describe accurately the surface effects of the system, in particular with a small number of atoms, where the Thomas-Fermi (local density) approximation fails. We find that our ETF functional gives density profiles which are in good agreement with recent Monte Carlo results and also with a more sophisticated superfluid density functional based on Bogoliubov-de Gennes equations. In addition, by using extended hydrodynamics equations of superfluids, we calculate the frequencies of collective surface oscillations of the unitary Fermi gas, showing that quadrupole and octupole modes strongly depend on the number of trapped atoms.

  17. Efficient quantum pseudorandomness with simple graph states

    NASA Astrophysics Data System (ADS)

    Mezher, Rawad; Ghalbouni, Joe; Dgheim, Joseph; Markham, Damian

    2018-02-01

    Measurement based (MB) quantum computation allows for universal quantum computing by measuring individual qubits prepared in entangled multipartite states, known as graph states. Unless corrected for, the randomness of the measurements leads to the generation of ensembles of random unitaries, where each random unitary is identified with a string of possible measurement results. We show that repeating an MB scheme an efficient number of times, on a simple graph state, with measurements at fixed angles and no feedforward corrections, produces a random unitary ensemble that is an ɛ -approximate t design on n qubits. Unlike previous constructions, the graph is regular and is also a universal resource for measurement based quantum computing, closely related to the brickwork state.

  18. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2016-06-15

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner–Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated inmore » quantum theory.« less

  19. Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases

    NASA Astrophysics Data System (ADS)

    Colussi, V. E.; Corson, J. P.; D'Incao, J. P.

    2018-03-01

    We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.

  20. 47 CFR 65.102 - Petitions for exclusion from unitary treatment and for individual treatment in determining...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Petitions for exclusion from unitary treatment and for individual treatment in determining authorized return for interstate exchange access service. 65.102 Section 65.102 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN...

  1. Nonunitary and unitary approach to Eigenvalue problem of Boson operators and squeezed coherent states

    NASA Technical Reports Server (NTRS)

    Wunsche, A.

    1993-01-01

    The eigenvalue problem of the operator a + zeta(boson creation operator) is solved for arbitrarily complex zeta by applying a nonunitary operator to the vacuum state. This nonunitary approach is compared with the unitary approach leading for the absolute value of zeta less than 1 to squeezed coherent states.

  2. Piaget's Egocentrism: A Unitary Construct?

    ERIC Educational Resources Information Center

    Ruthven, Avis J.; Cunningham, William L.

    In order to determine whether egocentrism can be conceptualized as a unitary construct, 100 children (51 four-year-olds, 37 five-year-olds, and 12 six-year-olds) were administered a visual/spatial perspective task, a cognitive/communicative task, and an affective task. All tasks were designed to measure different facets of egocentrism. The 50…

  3. Recasting Communication Theory and Research: A Cybernetic Approach.

    ERIC Educational Resources Information Center

    Hill, Gary A.

    The author's main concern is to provide a research format which will supply a unitary conception of communication. The wide range of complex topics and variety of concepts embraced by communication theory and the rather disparate set of phenomena encompassed by communication research create this need for a unitary study approach capable of linking…

  4. Arbitrary unitary transformations on optical states using a quantum memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi

    2014-12-04

    We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.

  5. Matching relations for optimal entanglement concentration and purification

    PubMed Central

    Kong, Fan-Zhen; Xia, Hui-Zhi; Yang, Ming; Yang, Qing; Cao, Zhuo-Liang

    2016-01-01

    The bilateral controlled NOT (CNOT) operation plays a key role in standard entanglement purification process, but the CNOT operation may not be the optimal joint operation in the sense that the output entanglement is maximized. In this paper, the CNOT operations in both the Schmidt-projection based entanglement concentration and the entanglement purification schemes are replaced with a general joint unitary operation, and the optimal matching relations between the entangling power of the joint unitary operation and the non-maximal entangled channel are found for optimizing the entanglement in- crement or the output entanglement. The result is somewhat counter-intuitive for entanglement concentration. The output entanglement is maximized when the entangling power of the joint unitary operation and the quantum channel satisfy certain relation. There exist a variety of joint operations with non-maximal entangling power that can induce a maximal output entanglement, which will greatly broaden the set of the potential joint operations in entanglement concentration. In addition, the entanglement increment in purification process is maximized only by the joint unitary operations (including CNOT) with maximal entangling power. PMID:27189800

  6. Maximum saliency bias in binocular fusion

    NASA Astrophysics Data System (ADS)

    Lu, Yuhao; Stafford, Tom; Fox, Charles

    2016-07-01

    Subjective experience at any instant consists of a single ("unitary"), coherent interpretation of sense data rather than a "Bayesian blur" of alternatives. However, computation of Bayes-optimal actions has no role for unitary perception, instead being required to integrate over every possible action-percept pair to maximise expected utility. So what is the role of unitary coherent percepts, and how are they computed? Recent work provided objective evidence for non-Bayes-optimal, unitary coherent, perception and action in humans; and further suggested that the percept selected is not the maximum a posteriori percept but is instead affected by utility. The present study uses a binocular fusion task first to reproduce the same effect in a new domain, and second, to test multiple hypotheses about exactly how utility may affect the percept. After accounting for high experimental noise, it finds that both Bayes optimality (maximise expected utility) and the previously proposed maximum-utility hypothesis are outperformed in fitting the data by a modified maximum-salience hypothesis, using unsigned utility magnitudes in place of signed utilities in the bias function.

  7. Crossover ensembles of random matrices and skew-orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Santosh, E-mail: skumar.physics@gmail.com; Pandey, Akhilesh, E-mail: ap0700@mail.jnu.ac.in

    2011-08-15

    Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we givemore » details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.« less

  8. Identification and analysis of unitary loss of long-established protein-coding genes in Poaceae shows evidences for biased gene loss and putatively functional transcription of relics.

    PubMed

    Zhao, Yi; Tang, Liang; Li, Zhe; Jin, Jinpu; Luo, Jingchu; Gao, Ge

    2015-04-18

    Long-established protein-coding genes may lose their coding potential during evolution ("unitary gene loss"). Members of the Poaceae family are a major food source and represent an ideal model clade for plant evolution research. However, the global pattern of unitary gene loss in Poaceae genomes as well as the evolutionary fate of lost genes are still less-investigated and remain largely elusive. Using a locally developed pipeline, we identified 129 unitary gene loss events for long-established protein-coding genes from four representative species of Poaceae, i.e. brachypodium, rice, sorghum and maize. Functional annotation suggested that the lost genes in all or most of Poaceae species are enriched for genes involved in development and response to endogenous stimulus. We also found that 44 mutated genomic loci of lost genes, which we referred as relics, were still actively transcribed, and of which 84% (37 of 44) showed significantly differential expression across different tissues. More interestingly, we found that there were totally five expressed relics may function as competitive endogenous RNA in brachypodium, rice and sorghum genome. Based on comparative genomics and transcriptome data, we firstly compiled a comprehensive catalogue of unitary gene loss events in Poaceae species and characterized a statistically significant functional preference for these lost genes as well showed the potential of relics functioning as competitive endogenous RNAs in Poaceae genomes.

  9. Physics with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schadmand, Susan

    2010-12-28

    The WASA detector facility is an internal experiment at the COoler SYnchrotron COSY in Juelich, Germany. The COSY accelerator provides proton and deuteron beams with momenta up to 3.7 GeV/c giving access to hadron physics including the strange quark sector. The WASA-at-COSY physics program focuses on light meson decays where rare decays are used to scrutinize symmetries and symmetry breaking. The structure of hadrons is probed with transition form factors and hadron spectroscopy while hadron dynamics is studied via reaction dynamics and few body reactions. Goals and status are reported with special emphasis on the meson Dalitz decays.

  10. Indefinite intertwining operators

    PubMed Central

    Baldoni-Silva, M. W.; Knapp, A. W.

    1984-01-01

    For a wide class of linear connected semisimple Lie groups, one obtains formulas limiting the Langlands parameters of irreducible unitary representations obtained from maximal parabolic subgroups. The formulas relate unitarity to the number of roots satisfying certain conditions. Some evidence is presented that the formulas are sharp. The results confirm aspects of conjectures that relate unitary parameters to cohomological induction. PMID:16593424

  11. Unitary Plan Wind Tunnel Landmark Dedication and Revitalization

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This video shows construction scenes of unitary plan wind tunnel, aerials, and views of various models, including an MD-II in the 11 ft, an Apollo in the 8x7, Dynasoar in the 8x7, a one inch scale shuttle in the 8x7, and an artist's concept of a 12 ft test section.

  12. Entanglement classes of symmetric Werner states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, David W.; Walck, Scott N.

    2011-10-15

    The symmetric Werner states for n qubits, important in the study of quantum nonlocality and useful for applications in quantum information, have a surprisingly simple and elegant structure in terms of tensor products of Pauli matrices. Further, each of these states forms a unique local unitary equivalence class, that is, no two of these states are interconvertible by local unitary operations.

  13. A Quantitative Analysis of the Increase in Public School Segregation in Delaware: 1989-2006

    ERIC Educational Resources Information Center

    Glenn, William J.

    2011-01-01

    This study analyzes the increase in school segregation in Delaware from a quantitative perspective. The article tests the hypothesis that the declaration of unitary status that released the Wilmington area school districts from their desegregation order caused the increase in segregation. The research reveals that the declaration of unitary status…

  14. An answer to Housing Discrimination: The Need for a Unitary Marketing System

    ERIC Educational Resources Information Center

    Rosser, Lawrence; White, Beth

    1975-01-01

    Proposes that a central Clearinghouse be established to collect and disseminate information to inner city residents on available suburban units, noting that to be effective, this unitary marketing system would have to be able to identify and seek out those who most need rental vacancy data, and to deliver vacancy listings and related information…

  15. Beyond the Tipping Point: Issues of Racial Diversity in Magnet Schools Following Unitary Status

    ERIC Educational Resources Information Center

    Smrekar, Claire

    2009-01-01

    This article uses qualitative case study methodology to examine why the racial composition of magnet schools in Nashville, Tennessee, has shifted to predominantly African American in the aftermath of unitary status. The article compares the policy contexts and parents' reasons for choosing magnet schools at two points in time--under court order…

  16. Stability issues of black hole in non-local gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Park, Young-Jai

    2018-04-01

    We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.

  17. Single-qubit unitary gates by graph scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumer, Benjamin A.; Underwood, Michael S.; Feder, David L.

    2011-12-15

    We consider the effects of plane-wave states scattering off finite graphs as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to n=9 vertices for which the scattering implements a single-qubit gate. As n increases, the number of new unitary operations increases exponentially, and for n>6 the majority correspond to rotations about axes distributed roughly uniformlymore » across the Bloch sphere. Rotations by both rational and irrational multiples of {pi} are found.« less

  18. Cognitive Load in Percentage Change Problems: Unitary, Pictorial, and Equation Approaches to Instruction

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing; Tobias, Stephen

    2014-01-01

    Eighth grade students in Australia (N = 60) participated in an experiment on learning how to solve percentage change problems in a regular classroom in three conditions: unitary, pictorial, and equation approaches. The procedure involved a pre-test, an acquisition phase, and a post-test. The main goal was to test the relative merits of the three…

  19. Discourses in Reading and Linguistics. Annals of the New York Academy of Sciences, Volume 433.

    ERIC Educational Resources Information Center

    White, Sheila J., Ed.; Teller, Virginia, Ed.

    That the attainment of literacy does not represent a unitary process or a unitary set of skills is reflected in this collection of papers from a variety of disciplines showing concerns about reading problems. Following an introduction by Sheila White, the first half of the book contains the following articles: "The Practice of Literacy: Where Mind…

  20. Reproducible, high performance patch antenna array apparatus and method of fabrication

    DOEpatents

    Strassner, II, Bernd H.

    2007-01-23

    A reproducible, high-performance patch antenna array apparatus includes a patch antenna array provided on a unitary dielectric substrate, and a feed network provided on the same unitary substrate and proximity coupled to the patch antenna array. The reproducibility is enhanced by using photolithographic patterning and etching to produce both the patch antenna array and the feed network.

  1. Parallel and pipeline computation of fast unitary transforms

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    The letter discusses the parallel and pipeline organization of fast-unitary-transform algorithms such as the fast Fourier transform, and points out the efficiency of a combined parallel-pipeline processor of a transform such as the Haar transform, in which (2 to the n-th power) -1 hardware 'butterflies' generate a transform of order 2 to the n-th power every computation cycle.

  2. Quantum tomography of near-unitary processes in high-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Lysne, Nathan; Sosa Martinez, Hector; Jessen, Poul; Baldwin, Charles; Kalev, Amir; Deutsch, Ivan

    2016-05-01

    Quantum Tomography (QT) is often considered the ideal tool for experimental debugging of quantum devices, capable of delivering complete information about quantum states (QST) or processes (QPT). In practice, the protocols used for QT are resource intensive and scale poorly with system size. In this situation, a well behaved model system with access to large state spaces (qudits) can serve as a useful platform for examining the tradeoffs between resource cost and accuracy inherent in QT. In past years we have developed one such experimental testbed, consisting of the electron-nuclear spins in the electronic ground state of individual Cs atoms. Our available toolkit includes high fidelity state preparation, complete unitary control, arbitrary orthogonal measurements, and accurate and efficient QST in Hilbert space dimensions up to d = 16. Using these tools, we have recently completed a comprehensive study of QPT in 4, 7 and 16 dimensions. Our results show that QPT of near-unitary processes is quite feasible if one chooses optimal input states and efficient QST on the outputs. We further show that for unitary processes in high dimensional spaces, one can use informationally incomplete QPT to achieve high-fidelity process reconstruction (90% in d = 16) with greatly reduced resource requirements.

  3. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  4. Fidelity under isospectral perturbations: a random matrix study

    NASA Astrophysics Data System (ADS)

    Leyvraz, F.; García, A.; Kohler, H.; Seligman, T. H.

    2013-07-01

    The set of Hamiltonians generated by all unitary transformations from a single Hamiltonian is the largest set of isospectral Hamiltonians we can form. Taking advantage of the fact that the unitary group can be generated from Hermitian matrices we can take the ones generated by the Gaussian unitary ensemble with a small parameter as small perturbations. Similarly, the transformations generated by Hermitian antisymmetric matrices from orthogonal matrices form isospectral transformations among symmetric matrices. Based on this concept we can obtain the fidelity decay of a system that decays under a random isospectral perturbation with well-defined properties regarding time-reversal invariance. If we choose the Hamiltonian itself also from a classical random matrix ensemble, then we obtain solutions in terms of form factors in the limit of large matrices.

  5. Random unitary evolution model of quantum Darwinism with pure decoherence

    NASA Astrophysics Data System (ADS)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  6. Fault detection and bypass in a sequence information signal processor

    NASA Technical Reports Server (NTRS)

    Peterson, John C. (Inventor); Chow, Edward T. (Inventor)

    1992-01-01

    The invention comprises a plurality of scan registers, each such register respectively associated with a processor element; an on-chip comparator, encoder and fault bypass register. Each scan register generates a unitary signal the logic state of which depends on the correctness of the input from the previous processor in the systolic array. These unitary signals are input to a common comparator which generates an output indicating whether or not an error has occurred. These unitary signals are also input to an encoder which identifies the location of any fault detected so that an appropriate multiplexer can be switched to bypass the faulty processor element. Input scan data can be readily programmed to fully exercise all of the processor elements so that no fault can remain undetected.

  7. Stability of a Unitary Bose Gas

    NASA Astrophysics Data System (ADS)

    Fletcher, Richard J.; Gaunt, Alexander L.; Navon, Nir; Smith, Robert P.; Hadzibabic, Zoran

    2013-09-01

    We study the stability of a thermal K39 Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length a exceeds the thermal wavelength λ. We measure the general scaling laws relating the particle-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive a≪λ we find agreement with three-body theory. However, for a<0 and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, L3∝λ4, is 3 times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes K39 particularly promising for studies of many-body physics in a unitary Bose gas.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolić, Hrvoje, E-mail: hnikolic@irb.hr

    An argument by Banks, Susskind and Peskin (BSP), according to which violation of unitarity would violate either locality or energy-momentum conservation, is widely believed to be a strong argument against non-unitarity of Hawking radiation. We find that the whole BSP argument rests on the crucial assumption that the Hamiltonian is not highly degenerate, and point out that this assumption is not satisfied for systems with many degrees of freedom. Using Lindblad equation, we show that high degeneracy of the Hamiltonian allows local non-unitary evolution without violating energy-momentum conservation. Moreover, since energy-momentum is the source of gravity, we argue that energy-momentummore » is necessarily conserved for a large class of non-unitary systems with gravity. Finally, we explicitly calculate the Lindblad operators for non-unitary Hawking radiation and show that they conserve energy-momentum.« less

  9. Gravitational lensing by eigenvalue distributions of random matrix models

    NASA Astrophysics Data System (ADS)

    Martínez Alonso, Luis; Medina, Elena

    2018-05-01

    We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.

  10. Computation of transform domain covariance matrices

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    It is often of interest in applications to compute the covariance matrix of a random process transformed by a fast unitary transform. Here, the recursive definition of fast unitary transforms is used to derive recursive relations for the covariance matrices of the transformed process. These relations lead to fast methods of computation of covariance matrices and to substantial reductions of the number of arithmetic operations required.

  11. Assessment of the Emerging Biocruise Threat

    DTIC Science & Technology

    2000-08-01

    navigation and guidance system is located in the front; and the fuel and warhead are typically located in the midbody .66 (See Figure 1.) Guidance of a...unitary or submunitions Undetermined Undetermined MUPSOW South Africa Air & ground Conventional/ unitary or submunitions 200+ 2002 Storm Shadow ...replicating agents, bacteria or viruses, or nonreplicating materials, toxins or physiologically active proteins or peptides, that can be produced by living

  12. A note on parallel and pipeline computation of fast unitary transforms

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1974-01-01

    The parallel and pipeline organization of fast unitary transform algorithms such as the Fast Fourier Transform are discussed. The efficiency is pointed out of a combined parallel-pipeline processor of a transform such as the Haar transform in which 2 to the n minus 1 power hardware butterflies generate a transform of order 2 to the n power every computation cycle.

  13. On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation

    NASA Astrophysics Data System (ADS)

    Ikramov, Kh. D.

    2010-03-01

    There are well-known conditions under which a complex n × n matrix A can be made real by a similarity transformation. Under the additional assumption that A has a simple real spectrum, a constructive answer is given to the question whether this transformation can be realized via a unitary rather than arbitrary similarity.

  14. Non-Unitary Boson Mapping and Its Application to Nuclear Collective Motions

    NASA Astrophysics Data System (ADS)

    Takada, K.

    First, the general theory of boson mapping for even-number many-fermion systems is surveyed. In order to overcome the confusion concerning the so-called unphysical or spurious states in the boson mapping, the correct concept of the unphysical states is precisely given in a clear-cut way. Next, a method to apply the boson mapping to a truncated many-fermion Hilbert space consisting of collective phonons is proposed, by putting special emphasis on the Dyson-type non-unitary boson mapping. On the basis of this method, it becomes possible for the first time to apply the Dyson-type boson mapping to analyses of collective motions in realistic nuclei. This method is also extended to be applicable to odd-number-fermion systems. As known well, the Dyson-type boson mapping is a non-unitary transformation and it gives a non-Hermitian boson Hamiltonian. It is not easy (but not impossible) to solve the eigenstates of the non-Hermitian Hamiltonian. A Hermitian treatment of this non-Hermitian eigenvalue problem is discussed and it is shown that this treatment is a very good approximation. Using this Hermitian treatment, we can obtain the normal-ordered Holstein-Primakoff-type boson expansion in the multi-collective-phonon subspace. Thereby the convergence of the boson expansion can be tested. Some examples of application of the Dyson-type non-unitary boson mapping to simplified models and realistic nuclei are also shown, and we can see that it is quite useful for analysis of the collective motions in realistic nuclei. In contrast to the above-mentioned ordinary type of boson mapping, which may be called a ``static'' boson mapping, the Dyson-type non-unitary selfconsistent-collective-coordinate method is discussed. The latter is, so to speak, a ``dynamical'' boson mapping, which is a dynamical extension of the ordinary boson mapping to be capable to include the coupling effects from the non-collective degrees of freedom selfconsistently. Thus all of the Dyson-type non-unitary boson mapping from A to Z is summarized in this paper.

  15. Unitary synaptic connections among substantia nigra pars reticulata neurons

    PubMed Central

    Wilson, Charles J.

    2016-01-01

    Neurons in substantia nigra pars reticulata (SNr) are synaptically coupled by local axon collaterals, providing a potential mechanism for local signal processing. Because SNr neurons fire spontaneously, these synapses are constantly active. To investigate their properties, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) from SNr neurons in brain slices, in which afferents from upstream nuclei are severed, and the cells fire rhythmically. The sIPSC trains contained a mixture of periodic and aperiodic events. Autocorrelation analysis of sIPSC trains showed that a majority of cells had one to four active unitary inputs. The properties of the unitary IPSCs (uIPSCs) were analyzed for cells with one unitary input, using a model of periodic presynaptic firing and stochastic synaptic transmission. The inferred presynaptic firing rates and coefficient of variation of interspike intervals (ISIs) corresponded well with direct measurements of spiking in SNr neurons. Methods were developed to estimate the success probability, amplitude distributions, and kinetics of the uIPSCs, while removing the contribution from aperiodic sIPSCs. The sIPSC amplitudes were not increased upon release from halorhodopsin silencing, suggesting that most synapses were not depressed at the spontaneous firing rate. Gramicidin perforated-patch recordings indicated that the average reversal potential of spontaneous inhibitory postsynaptic potentials was −64 mV. Because of the change in driving force across the ISI, the unitary inputs are predicted to have a larger postsynaptic impact when they arrive late in the ISI. Simulations of network activity suggest that this very sparse inhibitory coupling may act to desynchronize the activity of SNr neurons while having only a small effect on firing rate. PMID:26961101

  16. Action-angle variables for the harmonic oscillator: Ambiguity spin × duplication spin

    NASA Astrophysics Data System (ADS)

    de Oliveira, César R.; Malta, Coraci P.

    1984-07-01

    The difficulties of obtaining for the harmonic oscillator a well-defined unitary transformation to action-angle variables were overcome by M. Moshinsky and T. H. Seligman ( Ann. Phys. (N.Y.)114 (1978), 243) through the introduction of a spinlike variable (ambiguity spin) from a classical point of view. The difficulty of defining a unitary phase operator for the harmonic oscillator was overcome by Roger G. Newton ( Ann. Phys. (N.Y.)124 (1980), 324) also through the introduction of a spinlike variable (named duplication spin by us) but within a quantum framework. Here the relation between the ambiguity spin and the duplication spin is investigated by introducing these two types of spins in the canonical transformation to action-angle variables. In this way both well-defined unitary transformation and phase operators were obtained.

  17. Generalized graphs and unitary irrational central charge in the superconformal master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, M.B.; Obers, N.A.

    1991-12-01

    For each magic basis of Lie {ital g}, it is known that the Virasoro master equation on affine {ital g} contains a generalized graph theory of conformal level-families. In this paper, it is found that the superconformal master equation on affine {ital g}{times}SO(dim {ital g}) similarly contains a generalized graph theory of superconformal level-families for each magic basis of {ital g}. The superconformal level-families satisfy linear equations on the generalized graphs, and the first exact unitary irrational solutions of the superconformal master equation are obtained on the sine-area graphs of {ital g}=SU({ital n}), including the simplest unitary irrational central chargesmore » {ital c}=6{ital nx}/({ital nx}+8 sin{sup 2}(rs{pi}/n)) yet observed in the program.« less

  18. No chiral truncation of quantum log gravity?

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  19. The contact of a homogeneous unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Patel, Parth; Yan, Zhenjie; Fletcher, Richard; Struck, Julian; Zwierlein, Martin

    2017-04-01

    The contact is a fundamental quantity that measures the strength of short-range correlations in quantum gases. As one of its most important implications, it provides a link between the microscopic two-particle correlation function at small distance and the macroscopic thermodynamic properties of the gas. In particular, pairing and superfluidity in a unitary Fermi gas can be expected to leave its mark in behavior of the contact. Here we present measurements on the temperature dependence of the contact of a unitary Fermi gas across the superfluid transition. By trapping ultracold 6Li atoms in a potential that is homogeneous in two directions and harmonic in the third, we obtain radiofrequency spectra of the homogeneous gas at a high signal-to-noise ratio. We compare our data to existing, but often mutually excluding theoretical calculations for the strongly interacting Fermi gas.

  20. Unitary-matrix models as exactly solvable string theories

    NASA Technical Reports Server (NTRS)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  1. Crypto-Unitary Forms of Quantum Evolution Operators

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2013-06-01

    The description of quantum evolution using unitary operator {u}(t)=exp(-i{h}t) requires that the underlying self-adjoint quantum Hamiltonian {h} remains time-independent. In a way extending the so called {PT}-symmetric quantum mechanics to the models with manifestly time-dependent "charge" {C}(t) we propose and describe an extension of such an exponential-operator approach to evolution to the manifestly time-dependent self-adjoint quantum Hamiltonians {h}(t).

  2. Optimal superdense coding over memory channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadman, Z.; Kampermann, H.; Bruss, D.

    2011-10-15

    We study the superdense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and nonunitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The superdense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where nonunitary encoding leads to an improvement in the superdense coding capacity.

  3. Biophysically based mathematical modeling of interstitial cells of Cajal slow wave activity generated from a discrete unitary potential basis.

    PubMed

    Faville, R A; Pullan, A J; Sanders, K M; Koh, S D; Lloyd, C M; Smith, N P

    2009-06-17

    Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.

  4. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-01-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  5. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-12-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  6. Efimov-driven phase transitions of the unitary Bose gas.

    PubMed

    Piatecki, Swann; Krauth, Werner

    2014-03-20

    Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.

  7. Quantum Measurement and Initial Conditions

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu Cristinel

    2016-03-01

    Quantum measurement finds the observed system in a collapsed state, rather than in the state predicted by the Schrödinger equation. Yet there is a relatively spread opinion that the wavefunction collapse can be explained by unitary evolution (for instance in the decoherence approach, if we take into account the environment). In this article it is proven a mathematical result which severely restricts the initial conditions for which measurements have definite outcomes, if pure unitary evolution is assumed. This no-go theorem remains true even if we take the environment into account. The result does not forbid a unitary description of the measurement process, it only shows that such a description is possible only for very restricted initial conditions. The existence of such restrictions of the initial conditions can be understood in the four-dimensional block universe perspective, as a requirement of global self-consistency of the solutions of the Schrödinger equation.

  8. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  9. Quench of non-Markovian coherence in the deep sub-Ohmic spin–boson model: A unitary equilibration scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yao, E-mail: yaoyao@fudan.edu.cn

    The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovianmore » feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model.« less

  10. Black hole thermodynamics based on unitary evolutions

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-10-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy SBH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

  11. Extended Thomas-Fermi density functional for the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Salasnich, Luca; Toigo, Flavio

    2008-11-01

    We determine the energy density ξ(3/5)nɛF and the gradient correction λℏ2(∇n)2/(8mn) of the extended Thomas-Fermi (ETF) density functional, where n is the number density and ɛF is the Fermi energy, for a trapped two-component Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. 99, 233201 (2007)]. In particular we find that ξ=0.455 and λ=0.13 give the best fit of the DMC data with an even number N of particles. We also study the odd-even splitting γN1/9ℏω of the ground-state energy for the unitary gas in a harmonic trap of frequency ω determining the constant γ . Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.

  12. Validating simple dynamical simulations of the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Forbes, Michael McNeil; Sharma, Rishi

    2014-10-01

    We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid local density approximation (SLDA) and a simplified bosonic model, the extended Thomas-Fermi (ETF) with a unitary equation of state. Small-amplitude fluctuations have similar dynamics in both theories for frequencies far below the pair-breaking threshold and wave vectors much smaller than the Fermi momentum. The low-frequency linear responses in both match well for surprisingly large wave vectors, even up to the Fermi momentum. For nonlinear dynamics such as vortex generation, the ETF provides a semiquantitative description of SLDA dynamics as long as the fluctuations do not have significant power near the pair-breaking threshold; otherwise the dynamics of the ETF cannot be trusted. Nonlinearities in the ETF tend to generate high-frequency fluctuations, and with no normal component to remove this energy from the superfluid, features such as vortex lattices cannot relax and crystallize as they do in the SLDA.

  13. Study of optical techniques for the Ames unitary wind tunnels. Part 3: Angle of attack

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A review of optical sensors that are capable of accurate angle of attack measurements in wind tunnels was conducted. These include sensors being used or being developed at NASA Ames and Langley Research Centers, Boeing Airplane Company, McDonald Aircraft Company, Arnold Engineering Development Center, National Aerospace Laboratory of the Netherlands, National Research Council of Canada, and the Royal Aircraft Establishment of England. Some commercial sensors that may be applicable to accurate angle measurements were also reviewed. It was found that the optical sensor systems were based on interferometers, polarized light detector, linear or area photodiode cameras, position sensing photodetectors, and laser scanners. Several of the optical sensors can meet the requirements of the Ames Unitary Plan Wind Tunnel. Two of these, the Boeing interferometer and the Complere lateral effect photodiode sensors are being developed for the Ames Unitary Plan Wind Tunnel.

  14. Operational flow visualization techniques in the Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Corlett, W. A.

    1982-01-01

    The unitary plan wind tunnel (UPWT) uses in daily operation are shown. New ideas for improving the quality of established flow visualization methods are developed and programs on promising new flow visualization techniques are pursued. The unitary plan wind tunnel is a supersonic facility, referred to as a production facility, although the majority of tests are inhouse basic research investigations. The facility has two 4 ft. by 4 ft. test sections which span a Mach range from 1.5 to 4.6. The cost of operation is about $10 per minute. Problems are the time required for a flow visualization test setup and investigation costs and the ability to obtain consistently repeatable results. Examples of sublimation, vapor screen, oil flow, minitufts, schlieren, and shadowgraphs taken in UPWT are presented. All tests in UPWT employ one or more of the flow visualization techniques.

  15. Quadratic time dependent Hamiltonians and separation of variables

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  16. Violation of unitarity by Hawking radiation does not violate energy-momentum conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolić, Hrvoje

    2015-04-02

    An argument by Banks, Susskind and Peskin (BSP), according to which violation of unitarity would violate either locality or energy-momentum conservation, is widely believed to be a strong argument against non-unitarity of Hawking radiation. We find that the whole BSP argument rests on the crucial assumption that the Hamiltonian is not highly degenerate, and point out that this assumption is not satisfied for systems with many degrees of freedom. Using Lindblad equation, we show that high degeneracy of the Hamiltonian allows local non-unitary evolution without violating energy-momentum conservation. Moreover, since energy-momentum is the source of gravity, we argue that energy-momentummore » is necessarily conserved for a large class of non-unitary systems with gravity. Finally, we explicitly calculate the Lindblad operators for non-unitary Hawking radiation and show that they conserve energy-momentum.« less

  17. Margaret Newman's Theory of Health as Expanding Consciousness and a Nursing Intervention from a Unitary Perspective

    PubMed Central

    Endo, Emiko

    2017-01-01

    This mini-review aims to introduce Margaret Newman's theory of health as expanding consciousness and caring partnership as a nursing intervention. Emanating from a unitary and transformative perspective of nursing, caring partnership enables nurses to identify with cancer patients as well as to help the patients find meaning in their situation and their lives. In genuine patient–nurse interactions, both patients and nurses experience higher levels of consciousness. PMID:28217730

  18. Biophysically Based Mathematical Modeling of Interstitial Cells of Cajal Slow Wave Activity Generated from a Discrete Unitary Potential Basis

    PubMed Central

    Faville, R.A.; Pullan, A.J.; Sanders, K.M.; Koh, S.D.; Lloyd, C.M.; Smith, N.P.

    2009-01-01

    Abstract Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations. PMID:19527643

  19. Quantum control and quantum tomography on neutral atom qudits

    NASA Astrophysics Data System (ADS)

    Sosa Martinez, Hector

    Neutral atom systems are an appealing platform for the development and testing of quantum control and measurement techniques. This dissertation presents experimental investigations of control and measurement tools using as a testbed the 16-dimensional hyperfine manifold associated with the electronic ground state of cesium atoms. On the control side, we present an experimental realization of a protocol to implement robust unitary transformations in the presence of static and dynamic perturbations. We also present an experimental realization of inhomogeneous quantum control. Specifically, we demonstrate our ability to perform two different unitary transformations on atoms that see different light shifts from an optical addressing field. On the measurement side, we present experimental realizations of quantum state and process tomography. The state tomography project encompasses a comprehensive evaluation of several measurement strategies and state estimation algorithms. Our experimental results show that in the presence of experimental imperfections, there is a clear tradeoff between accuracy, efficiency and robustness in the reconstruction. The process tomography project involves an experimental demonstration of efficient reconstruction by using a set of intelligent probe states. Experimental results show that we are able to reconstruct unitary maps in Hilbert spaces with dimension ranging from d=4 to d=16. To the best of our knowledge, this is the first time that a unitary process in d=16 is successfully reconstructed in the laboratory.

  20. Determining the best forecasting method to estimate unitary charges price indexes of PFI data in central region Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Ahmad Kamaruddin, Saadi Bin; Md Ghani, Nor Azura; Mohamed Ramli, Norazan

    2013-04-01

    The concept of Private Financial Initiative (PFI) has been implemented by many developed countries as an innovative way for the governments to improve future public service delivery and infrastructure procurement. However, the idea is just about to germinate in Malaysia and its success is still vague. The major phase that needs to be given main attention in this agenda is value for money whereby optimum efficiency and effectiveness of each expense is attained. Therefore, at the early stage of this study, estimating unitary charges or materials price indexes in each region in Malaysia was the key objective. This particular study aims to discover the best forecasting method to estimate unitary charges price indexes in construction industry by different regions in the central region of Peninsular Malaysia (Selangor, Federal Territory of Kuala Lumpur, Negeri Sembilan, and Melaka). The unitary charges indexes data used were from year 2002 to 2011 monthly data of different states in the central region Peninsular Malaysia, comprising price indexes of aggregate, sand, steel reinforcement, ready mix concrete, bricks and partition, roof material, floor and wall finishes, ceiling, plumbing materials, sanitary fittings, paint, glass, steel and metal sections, timber and plywood. At the end of the study, it was found that Backpropagation Neural Network with linear transfer function produced the most accurate and reliable results for estimating unitary charges price indexes in every states in central region Peninsular Malaysia based on the Root Mean Squared Errors, where the values for both estimation and evaluation sets were approximately zero and highly significant at p < 0.01. Therefore, artificial neural network is sufficient to forecast construction materials price indexes in Malaysia. The estimated price indexes of construction materials will contribute significantly to the value for money of PFI as well as towards Malaysian economical growth.

  1. Dark Searches and γγ Physics at KLOE

    NASA Astrophysics Data System (ADS)

    Curciarello, Francesca

    2017-04-01

    The search for a dark sector mediated by a new gauge boson, the dark photon, is motivated by many astrophysical anomalies and by the g - 2 discrepancy. The KLOE experiment, operating at the e+e- DAΦNE collider in Frascati, searched for a visibly-decaying dark photon by investigating the ϕ-Dalitz decay into the η meson, the dark photon production from continuum, and the Higgsstrahlung process. The KLOE-2 run started in November 2014, after the upgrade of both, DAΦNE and the KLOE apparatus. In particular, two high electron and positron tagger stations were installed in the DAΦNE layout to study γγ interactions at 1 GeV. Progress status of the project is given.

  2. Energy-absorption spectroscopy of unitary Fermi gases in a uniform potential

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Yu, Zhenhua

    2018-04-01

    We propose to use the energy absorption spectroscopy to measure the kinetic coefficients of unitary Fermi gases in a uniform potential. We show that, in our scheme, the energy absorption spectrum is proportional to the dynamic structure factor of the system. The profile of the spectrum depends on the shear viscosity η , the thermal conductivity κ , and the superfluid bulk viscosity ξ3. We show that extraction of these coefficients from the spectrum is achievable in present experiments.

  3. Power, trust, and Science of Unitary Human Beings influence political leadership: a celebration of Barrett's power theory.

    PubMed

    Wright, Barbara W

    2010-01-01

    The importance of nurses' participation in health policy leadership is discussed within the context of Rogers' science of unitary human beings, Barrett's power theory, and one nurse-politician's experience. Nurses have a major role to play in resolving public policy issues that influence the health of people. A brief review of the history of nurses in the political arena is presented. Research related to power and trust is reviewed. Suggested strategies for success in political situations are offered.

  4. ARC-2006-ACD06-0213-010

    NASA Image and Video Library

    2006-10-03

    Ames and Moffett Field (MFA) historical sites and memorials Unitary Plan Wind Tunned plaza; display and historical site plaques with the NASA logo on the Wind Tunnel valve as a backdrop. Plaque depicts that Ames Unitary Plan Wind Tunnel has been designated a National Historic Landmark by the National Park Service, United States Department of the Interior 1985 The plaque reads; This site possesses national significance in commemorating the history of the United States of America. That ceremony took place on September 12, 1990

  5. Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    NASA Technical Reports Server (NTRS)

    Lee, George

    1993-01-01

    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.

  6. Local unitary invariants for N-qubit pure states

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2010-11-01

    The concept of negativity font, a basic unit of multipartite entanglement, is introduced. Transformation properties of determinants of negativity fonts under local unitary (LU) transformations are exploited to obtain relevant N-qubit polynomial invariants and construct entanglement monotones from first principles. It is shown that entanglement monotones that detect the entanglement of specific parts of the composite system may be constructed to distinguish between states with distinct types of entanglement. The structural difference between entanglement monotones for an odd and even number of qubits is brought out.

  7. Study of optical techniques for the Ames unitary wind tunnel. Part 5: Infrared imagery

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A survey of infrared thermography for aerodynamics was made. Particular attention was paid to boundary layer transition detection. IR thermography flow visualization of 2-D and 3-D separation was surveyed. Heat transfer measurements and surface temperature measurements were also covered. Comparisons of several commercial IR cameras were made. The use of a recently purchased IR camera in the Ames Unitary Plan Wind Tunnels was studied. Optical access for these facilities and the methods to scan typical models was investigated.

  8. Preparation of freezing quantum state for quantum coherence

    NASA Astrophysics Data System (ADS)

    Yang, Lian-Wu; Man, Zhong-Xiao; Zhang, Ying-Jie; Han, Feng; Du, Shao-jiang; Xia, Yun-Jie

    2018-06-01

    We provide a method to prepare the freezing quantum state for quantum coherence via unitary operations. The initial product state consists of the control qubit and target qubit; when it satisfies certain conditions, the initial product state converts into the particular Bell diagonal state under the unitary operations, which have the property of freezing of quantum coherence under quantum channels. We calculate the frozen quantum coherence and corresponding quantum correlations, and find that the quantities are determined by the control qubit only when the freezing phenomena occur.

  9. The conformal characters

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Troost, Jan

    2018-04-01

    We revisit the study of the multiplets of the conformal algebra in any dimension. The theory of highest weight representations is reviewed in the context of the Bernstein-Gelfand-Gelfand category of modules. The Kazhdan-Lusztig polynomials code the relation between the Verma modules and the irreducible modules in the category and are the key to the characters of the conformal multiplets (whether finite dimensional, infinite dimensional, unitary or non-unitary). We discuss the representation theory and review in full generality which representations are unitarizable. The mathematical theory that allows for both the general treatment of characters and the full analysis of unitarity is made accessible. A good understanding of the mathematics of conformal multiplets renders the treatment of all highest weight representations in any dimension uniform, and provides an overarching comprehension of case-by-case results. Unitary highest weight representations and their characters are classified and computed in terms of data associated to cosets of the Weyl group of the conformal algebra. An executive summary is provided, as well as look-up tables up to and including rank four.

  10. Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas

    NASA Astrophysics Data System (ADS)

    Eigen, Christoph; Glidden, Jake A. P.; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P.

    2017-12-01

    We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N . In the degenerate and thermal regimes, the per-particle loss rate is ∝N2 /3 and N26 /9, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.

  11. THE EIGHTFOLD WAY: A THEORY OF STRONG INTERACTION SYMMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gell-Mann, M.

    1961-03-15

    A new model of the higher symmetry of elementary particles is introduced ln which the eight known baryons are treated as a supermultiplet, degenerate in the limit of unitary symmetry but split into isotopic spin multiplets by a symmetry-breaking term. The symmetry violation is sscribed phenomenologically to the mass differences. The baryons correspond to an eight-dimensional irreducible representation of the unitary group. The pion and K meson fit into a similar set of eight particles along with a predicted pseudoscalar meson X/sup o/ having I = 0. A ninth vector meson coupled to the baryon current can be accomodated natarallymore » in the scheme. It is predicted that the eight baryons should all have the same spin and parity and that pseudoscalar and vector mesons should form octets with possible additional singlets. The mathematics of the unitary group is described by considering three fictitious leptons, nu , e/sup -/ , and mu /sup -/, which may throw light on the structure of weak interactions. (D. L.C.)« less

  12. ARES I Aerodynamic Testing at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Wilcox, Floyd J.

    2011-01-01

    Small-scale force and moment and pressure models based on the outer mold lines of the Ares I design analysis cycle crew launch vehicle were tested in the NASA Langley Research Center Unitary Plan Wind Tunnel from May 2006 to September 2009. The test objectives were to establish supersonic ascent aerodynamic databases and to obtain force and moment, surface pressure, and longitudinal line-load distributions for comparison to computational predictions. Test data were obtained at low through high supersonic Mach numbers for ranges of the Reynolds number, angle of attack, and roll angle. This paper focuses on (1) the sensitivity of the supersonic aerodynamic characteristics to selected protuberances, outer mold line changes, and wind tunnel boundary layer transition techniques, (2) comparisons of experimental data to computational predictions, and (3) data reproducibility. The experimental data obtained in the Unitary Plan Wind Tunnel captured the effects of evolutionary changes to the Ares I crew launch vehicle, exhibited good agreement with predictions, and displayed satisfactory within-test and tunnel-to-tunnel data reproducibility.

  13. On the construction of unitary quantum group differential calculus

    NASA Astrophysics Data System (ADS)

    Pyatov, Pavel

    2016-10-01

    We develop a construction of the unitary type anti-involution for the quantized differential calculus over {{GL}}q(n) in the case | q| =1. To this end, we consider a joint associative algebra of quantized functions, differential forms and Lie derivatives over {{GL}}q(n)/{{SL}}q(n), which is bicovariant with respect to {{GL}}q(n)/{{SL}}q(n) coactions. We define a specific non-central spectral extension of this algebra by the spectral variables of three matrices of the algebra generators. In the spectrally expended algebra, we construct a three-parametric family of its inner automorphisms. These automorphisms are used for the construction of the unitary anti-involution for the (spectrally extended) calculus over {{GL}}q(n). This work has been funded by the Russian Academic Excellence Project ‘5-100’. The results of section 5 (propositions 5.2, 5.3 and theorem 5.5) have been obtained under support of the RSF grant No.16-11-10160.

  14. Floquet topological phases with symmetry in all dimensions

    NASA Astrophysics Data System (ADS)

    Roy, Rahul; Harper, Fenner

    2017-05-01

    Dynamical systems may host a number of remarkable symmetry-protected phases that are qualitatively different from their static analogs. In this work, we consider the phase space of symmetry-respecting unitary evolutions in detail and identify several distinct classes of evolution that host dynamical order. Using ideas from group cohomology, we construct a set of interacting Floquet drives that generate dynamical symmetry-protected topological order for each nontrivial cohomology class in every dimension, illustrating our construction with explicit two-dimensional examples. We also identify a set of symmetry-protected Floquet drives that lie outside of the group cohomology construction, and a further class of symmetry-respecting topological drives which host chiral edge modes. We use these special drives to define a notion of phase (stable to a class of local perturbations in the bulk) and the concepts of relative and absolute topological order, which can be applied to many different classes of unitary evolutions. These include fully many-body localized unitary evolutions and time crystals.

  15. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adesso, Gerardo; CNR-INFM Coherentia, Naples; CNISM, Unita di Salerno, Salerno

    2007-10-15

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself andmore » the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.« less

  16. The Ξ* and Ωη Interaction Within a Chiral Unitary Approach

    NASA Astrophysics Data System (ADS)

    Xu, Si-Qi; Xie, Ju-Jun; Chen, Xu-Rong; Jia, Duo-Jie

    2016-01-01

    In this work we study the interaction of the coupled channels Ωη and {\\Xi}\\ast\\bar{K} within the chiral unitary approach. The systems under consideration have total isospins 0, strangeness S = -3, and spin 3/2. We study the s wave interaction which implies that the possible resonances generated in the system can have spin-parity JP = 3/2-. The unitary amplitudes in coupled channels develop poles that can be associated with some known baryonic resonances. We find there is a dynamically generated 3/2- Ω state with mass around 1800 MeV, which is in agreement with the predictions of the five-quark model. Supported by the National Basic Research Program (973 Program Grant No. 2014CB845406), and the National Natural Science Foundation of China under Grant Nos. 11475227, 11265014, and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China No. Y5KF151CJ1

  17. Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas.

    PubMed

    Eigen, Christoph; Glidden, Jake A P; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P

    2017-12-22

    We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N. In the degenerate and thermal regimes, the per-particle loss rate is ∝N^{2/3} and N^{26/9}, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.

  18. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    NASA Astrophysics Data System (ADS)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  19. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  20. The Eightfold Way: A Theory of Strong Interaction Symmetry

    DOE R&D Accomplishments Database

    Gell-Mann, M.

    1961-03-15

    A new model of the higher symmetry of elementary particles is introduced ln which the eight known baryons are treated as a supermultiplet, degenerate in the limit of unitary symmetry but split into isotopic spin multiplets by a symmetry-breaking term. The symmetry violation is ascribed phenomenologically to the mass differences. The baryons correspond to an eight-dimensional irreducible representation of the unitary group. The pion and K meson fit into a similar set of eight particles along with a predicted pseudoscalar meson X {sup o} having I = 0. A ninth vector meson coupled to the baryon current can be accommodated naturally in the scheme. It is predicted that the eight baryons should all have the same spin and parity and that pseudoscalar and vector mesons should form octets with possible additional singlets. The mathematics of the unitary group is described by considering three fictitious leptons, nu , e {sup -}, and mu {sup -}, which may throw light on the structure of weak interactions. (D. L.C.)

  1. Minimal unitary representation of 5d superconformal algebra F(4) and AdS 6/CFT 5 higher spin (super)-algebras

    DOE PAGES

    Fernando, Sudarshan; Günaydin, Murat

    2014-11-28

    We study the minimal unitary representation (minrep) of SO(5, 2), obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5, 2) describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5, 2) are the 5d analogs of Dirac’s singletons of SO(3, 2). We then construct the minimal unitary representation of the unique 5d supercon-formal algebra F(4) with the even subalgebra SO(5, 2) ×SU(2). The minrep of F(4) describes a massless conformal supermultiplet consisting of two scalar andmore » one spinor fields. We then extend our results to the construction of higher spin AdS 6/CFT 5 (super)-algebras. The Joseph ideal of the minrep of SO(5, 2) vanishes identically as operators and hence its enveloping algebra yields the AdS 6/CFT 5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS 6/CFT 5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4) obtained by the quasiconformal methods.« less

  2. Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition

    PubMed Central

    Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli

    2015-01-01

    We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094

  3. The relationship between buccofacial and limb apraxia.

    PubMed

    Raade, A S; Rothi, L J; Heilman, K M

    1991-07-01

    There are at least two possible models depicting the relationship between buccofacial and limb apraxia. First, apraxia can be viewed as a unitary motor disorder which transcends the output modalities of both buccofacial and limb output. A high degree of similarity between the two types of apraxia would support this model. Alternatively, the relationship between buccofacial and limb apraxia may not include a unitary mechanism. The presence of quantitative and qualitative differences between buccofacial and limb performance would support this nonunitary model. The results of the present study support the nonunitary model.

  4. Nuclei and the Unitary Limit

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.

    2018-07-01

    Few-body systems with large scattering length display universal properties which are independent of the details of short-distance dynamics. These features include universal correlations between few-body observables and a geometric spectrum of three- and higher-body bound states. They can be observed in a wide range of systems from ultracold atoms to hadrons and nuclei. In this contribution, we review universality in nuclei dominated by few-body physics. In particular, we discuss halo nuclei and the description of light nuclei in a strict expansion around the unitary limit of infinite scattering length.

  5. On the integration of a class of nonlinear systems of ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Talyshev, Aleksandr A.

    2017-11-01

    For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.

  6. Introducing electron capture into the unitary-convolution-approximation energy-loss theory at low velocities

    NASA Astrophysics Data System (ADS)

    Schiwietz, G.; Grande, P. L.

    2011-11-01

    Recent developments in the theoretical treatment of electronic energy losses of bare and screened ions in gases are presented. Specifically, the unitary-convolution-approximation (UCA) stopping-power model has proven its strengths for the determination of nonequilibrium effects for light as well as heavy projectiles at intermediate to high projectile velocities. The focus of this contribution will be on the UCA and its extension to specific projectile energies far below 100 keV/u, by considering electron-capture contributions at charge-equilibrium conditions.

  7. Schwarzschild fuzzball and explicitly unitary Hawking radiation

    NASA Astrophysics Data System (ADS)

    Zeng, Ding-fang

    2018-05-01

    We provide a fuzzball picture for Schwarzschild black holes, in which matters and energy consisting the hole are not positioned on the central point exclusively but oscillate around there in a serial of eigen-modes, each of which features a special level of binding degrees and are quantum mechanically possible to be measured outside the horizon. By listing these modes explicitly for holes as large as 6Mpl, we find that their number increases exponentially with the area. Basing on these results, we construct a simple but explicitly unitary formulation of Hawking radiations.

  8. Two-dimensional RCFT's without Kac-Moody symmetry

    NASA Astrophysics Data System (ADS)

    Hampapura, Harsha R.; Mukhi, Sunil

    2016-07-01

    Using the method of modular-invariant differential equations, we classify a family of Rational Conformal Field Theories with two and three characters having no Kac-Moody algebra. In addition to unitary and non-unitary minimal models, we find "dual" theories whose characters obey bilinear relations with those of the minimal models to give the Moonshine Module. In some ways this relation is analogous to cosets of meromorphic CFT's. The theory dual in this sense to the Ising model has central charge 47/2 and is related to the Baby Monster Module.

  9. Unitary subsector of generalized minimal models

    NASA Astrophysics Data System (ADS)

    Behan, Connor

    2018-05-01

    We revisit the line of nonunitary theories that interpolate between the Virasoro minimal models. Numerical bootstrap applications have brought about interest in the four-point function involving the scalar primary of lowest dimension. Using recent progress in harmonic analysis on the conformal group, we prove the conjecture that global conformal blocks in this correlator appear with positive coefficients. We also compute many such coefficients in the simplest mixed correlator system. Finally, we comment on the status of using global conformal blocks to isolate the truly unitary points on this line.

  10. Study of optical techniques for the Ames unitary wind tunnels. Part 1: Schlieren

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    Alignment procedures and conceptual designs for the rapid alignment of the Ames Unitary Wind Tunnel schlieren systems were devised. The schlieren systems can be aligned by translating the light source, the mirrors, and the knife edge equal distances. One design for rapid alignment consists of a manual pin locking scheme. The other is a motorized electronic position scheme. A study of two optical concepts which can be used with the schlieren system was made. These are the 'point diffraction interferometers' and the 'focus schlieren'. Effects of vibrations were studied.

  11. Disordered two-dimensional electron systems with chiral symmetry

    NASA Astrophysics Data System (ADS)

    Markoš, P.; Schweitzer, L.

    2012-10-01

    We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.

  12. A Unitary-Transformative Nursing Science: From Angst to Appreciation.

    PubMed

    Cowling, W Richard

    2017-10-01

    The discord within nursing regarding the definition of nursing science has created great angst, particularly for those who view nursing science as a body of knowledge derived from theories specific to its unique concerns. The purpose of this brief article is to suggest a perspective and process grounded in appreciation of wholeness that may offer a way forward for proponents of a unitary-transformative nursing science that transcends the discord. This way forward is guided by principles of fostering dissent without contempt, generating a well-imagined future, and garnering appreciatively inspired action for change.

  13. Extending matchgates into universal quantum computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brod, Daniel J.; Galvao, Ernesto F.

    2011-08-15

    Matchgates are a family of two-qubit gates associated with noninteracting fermions. They are classically simulatable if acting only on nearest neighbors but become universal for quantum computation if we relax this restriction or use swap gates [Jozsa and Miyake, Proc. R. Soc. A 464, 3089 (2008)]. We generalize this result by proving that any nonmatchgate parity-preserving unitary is capable of extending the computational power of matchgates into universal quantum computation. We identify the single local invariant of parity-preserving unitaries responsible for this, and discuss related results in the context of fermionic systems.

  14. Local unitary representation of braids and N-qubit entanglements

    NASA Astrophysics Data System (ADS)

    Yu, Li-Wei

    2018-03-01

    In this paper, by utilizing the idea of stabilizer codes, we give some relationships between one local unitary representation of braid group in N-qubit tensor space and the corresponding entanglement properties of the N-qubit pure state |Ψ >, where the N-qubit state |Ψ > is obtained by applying the braiding operation on the natural basis. Specifically, we show that the separability of |Ψ > =B|0> ^{⊗ N} is closely related to the diagrammatic version of the braid operator B. This may provide us more insights about the topological entanglement and quantum entanglement.

  15. Defining a Conceptual Topography of Word Concreteness: Clustering Properties of Emotion, Sensation, and Magnitude among 750 English Words

    PubMed Central

    Troche, Joshua; Crutch, Sebastian J.; Reilly, Jamie

    2017-01-01

    Cognitive science has a longstanding interest in the ways that people acquire and use abstract vs. concrete words (e.g., truth vs. piano). One dominant theory holds that abstract and concrete words are subserved by two parallel semantic systems. We recently proposed an alternative account of abstract-concrete word representation premised upon a unitary, high dimensional semantic space wherein word meaning is nested. We hypothesize that a range of cognitive and perceptual dimensions (e.g., emotion, time, space, color, size, visual form) bound this space, forming a conceptual topography. Here we report a normative study where we examined the clustering properties of a sample of English words (N = 750) spanning a spectrum of concreteness in a continuous manner from highly abstract to highly concrete. Participants (N = 328) rated each target word on a range of 14 cognitive dimensions (e.g., color, emotion, valence, polarity, motion, space). The dimensions reduced to three factors: Endogenous factor, Exogenous factor, and Magnitude factor. Concepts were plotted in a unified, multimodal space with concrete and abstract concepts along a continuous continuum. We discuss theoretical implications and practical applications of this dataset. These word norms are freely available for download and use at http://www.reilly-coglab.com/data/. PMID:29075224

  16. Defining a Conceptual Topography of Word Concreteness: Clustering Properties of Emotion, Sensation, and Magnitude among 750 English Words.

    PubMed

    Troche, Joshua; Crutch, Sebastian J; Reilly, Jamie

    2017-01-01

    Cognitive science has a longstanding interest in the ways that people acquire and use abstract vs. concrete words (e.g., truth vs. piano). One dominant theory holds that abstract and concrete words are subserved by two parallel semantic systems. We recently proposed an alternative account of abstract-concrete word representation premised upon a unitary, high dimensional semantic space wherein word meaning is nested. We hypothesize that a range of cognitive and perceptual dimensions (e.g., emotion, time, space, color, size, visual form) bound this space, forming a conceptual topography. Here we report a normative study where we examined the clustering properties of a sample of English words ( N = 750) spanning a spectrum of concreteness in a continuous manner from highly abstract to highly concrete. Participants ( N = 328) rated each target word on a range of 14 cognitive dimensions (e.g., color, emotion, valence, polarity, motion, space). The dimensions reduced to three factors: Endogenous factor, Exogenous factor, and Magnitude factor. Concepts were plotted in a unified, multimodal space with concrete and abstract concepts along a continuous continuum. We discuss theoretical implications and practical applications of this dataset. These word norms are freely available for download and use at http://www.reilly-coglab.com/data/.

  17. Wavelet Analysis of Nonstationary Fluctuations of Monte Carlo-Simulated Excitatory Postsynaptic Currents

    PubMed Central

    Aristizabal, F.; Glavinovic, M. I.

    2003-01-01

    Tracking spectral changes of rapidly varying signals is a demanding task. In this study, we explore on Monte Carlo-simulated glutamate-activated AMPA patch and synaptic currents whether a wavelet analysis offers such a possibility. Unlike Fourier methods that determine only the frequency content of a signal, the wavelet analysis determines both the frequency and the time. This is owing to the nature of the basis functions, which are infinite for Fourier transforms (sines and cosines are infinite), but are finite for wavelet analysis (wavelets are localized waves). In agreement with previous reports, the frequency of the stationary patch current fluctuations is higher for larger currents, whereas the mean-variance plots are parabolic. The spectra of the current fluctuations and mean-variance plots are close to the theoretically predicted values. The median frequency of the synaptic and nonstationary patch currents is, however, time dependent, though at the peak of synaptic currents, the median frequency is insensitive to the number of glutamate molecules released. Such time dependence demonstrates that the “composite spectra” of the current fluctuations gathered over the whole duration of synaptic currents cannot be used to assess the mean open time or effective mean open time of AMPA channels. The current (patch or synaptic) versus median frequency plots show hysteresis. The median frequency is thus not a simple reflection of the overall receptor saturation levels and is greater during the rise phase for the same saturation level. The hysteresis is due to the higher occupancy of the doubly bound state during the rise phase and not due to the spatial spread of the saturation disk, which remains remarkably constant. Albeit time dependent, the variance of the synaptic and nonstationary patch currents can be accurately determined. Nevertheless the evaluation of the number of AMPA channels and their single current from the mean-variance plots of patch or synaptic currents is not highly accurate owing to the varying number of the activatable AMPA channels caused by desensitization. The spatial nonuniformity of open, bound, and desensitized AMPA channels, and the time dependence and spatial nonuniformity of the glutamate concentration in the synaptic cleft, further reduce the accuracy of estimates of the number of AMPA channels from synaptic currents. In conclusion, wavelet analysis of nonstationary fluctuations of patch and synaptic currents expands our ability to determine accurately the variance and frequency of current fluctuations, demonstrates the limits of applicability of techniques currently used to evaluate the single channel current and number of AMPA channels, and offers new insights into the mechanisms involved in the generation of unitary quantal events at excitatory central synapses. PMID:14507683

  18. Wavelet analysis of nonstationary fluctuations of Monte Carlo-simulated excitatory postsynaptic currents.

    PubMed

    Aristizabal, F; Glavinovic, M I

    2003-10-01

    Tracking spectral changes of rapidly varying signals is a demanding task. In this study, we explore on Monte Carlo-simulated glutamate-activated AMPA patch and synaptic currents whether a wavelet analysis offers such a possibility. Unlike Fourier methods that determine only the frequency content of a signal, the wavelet analysis determines both the frequency and the time. This is owing to the nature of the basis functions, which are infinite for Fourier transforms (sines and cosines are infinite), but are finite for wavelet analysis (wavelets are localized waves). In agreement with previous reports, the frequency of the stationary patch current fluctuations is higher for larger currents, whereas the mean-variance plots are parabolic. The spectra of the current fluctuations and mean-variance plots are close to the theoretically predicted values. The median frequency of the synaptic and nonstationary patch currents is, however, time dependent, though at the peak of synaptic currents, the median frequency is insensitive to the number of glutamate molecules released. Such time dependence demonstrates that the "composite spectra" of the current fluctuations gathered over the whole duration of synaptic currents cannot be used to assess the mean open time or effective mean open time of AMPA channels. The current (patch or synaptic) versus median frequency plots show hysteresis. The median frequency is thus not a simple reflection of the overall receptor saturation levels and is greater during the rise phase for the same saturation level. The hysteresis is due to the higher occupancy of the doubly bound state during the rise phase and not due to the spatial spread of the saturation disk, which remains remarkably constant. Albeit time dependent, the variance of the synaptic and nonstationary patch currents can be accurately determined. Nevertheless the evaluation of the number of AMPA channels and their single current from the mean-variance plots of patch or synaptic currents is not highly accurate owing to the varying number of the activatable AMPA channels caused by desensitization. The spatial nonuniformity of open, bound, and desensitized AMPA channels, and the time dependence and spatial nonuniformity of the glutamate concentration in the synaptic cleft, further reduce the accuracy of estimates of the number of AMPA channels from synaptic currents. In conclusion, wavelet analysis of nonstationary fluctuations of patch and synaptic currents expands our ability to determine accurately the variance and frequency of current fluctuations, demonstrates the limits of applicability of techniques currently used to evaluate the single channel current and number of AMPA channels, and offers new insights into the mechanisms involved in the generation of unitary quantal events at excitatory central synapses.

  19. Local Random Quantum Circuits are Approximate Polynomial-Designs

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-09-01

    We prove that local random quantum circuits acting on n qubits composed of O( t 10 n 2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O( t 10 n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O( n k ) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O( n ( k-9)/11) that are given oracle access to U.

  20. Unitary cocycle representations of the Galilean line group: Quantum mechanical principle of equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, B.R.; McCoy, A.E.; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2012-09-15

    We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertialmore » reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics. - Highlights: Black-Right-Pointing-Pointer A formulation of Galilean quantum mechanics in non-inertial reference frames is given. Black-Right-Pointing-Pointer The key concept is the Galilean line group, an infinite dimensional group. Black-Right-Pointing-Pointer Unitary, cocycle representations of the Galilean line group are constructed. Black-Right-Pointing-Pointer A non-central extension of the group underlies these representations. Black-Right-Pointing-Pointer Quantum equivalence principle and gravity emerge from these representations.« less

  1. Quantum Jarzynski equality of measurement-based work extraction

    NASA Astrophysics Data System (ADS)

    Morikuni, Yohei; Tajima, Hiroyasu; Hatano, Naomichi

    2017-03-01

    Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima, arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal system (namely, the first assumption above) using a simple two-level system; we show that the variance of the energy transferred to an external system diverges when the dynamics of the internal system is approximated to a unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the equality reduces to unity for "natural" cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.

  2. {{SO(d,1)}}-Invariant Yang-Baxter Operators and the dS/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Hollands, Stefan; Lechner, Gandalf

    2018-01-01

    We propose a model for the dS/CFT correspondence. The model is constructed in terms of a "Yang-Baxter operator" R for unitary representations of the de Sitter group {SO(d,1)}. This R-operator is shown to satisfy the Yang-Baxter equation, unitarity, as well as certain analyticity relations, including in particular a crossing symmetry. With the aid of this operator we construct: (a) a chiral (light-ray) conformal quantum field theory whose internal degrees of freedom transform under the given unitary representation of {SO(d,1)}. By analogy with the O( N) non-linear sigma model, this chiral CFT can be viewed as propagating in a de Sitter spacetime. (b) A (non-unitary) Euclidean conformal quantum field theory on R}^{d-1, where SO( d, 1) now acts by conformal transformations in (Euclidean) spacetime. These two theories can be viewed as dual to each other if we interpret R}^{d-1 as conformal infinity of de Sitter spacetime. Our constructions use semi-local generator fields defined in terms of R and abstract methods from operator algebras.

  3. Adiabatic quantum computation along quasienergies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Atushi; Nemoto, Kae; National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430

    2010-02-15

    The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy was recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [A. Tanaka and M.more » Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of a parameter |v>, which is available to adjust the gaps of the quasienergies to control the running time steps. In Grover's database search problem, the costs to prepare |v> for the qualitatively different (i.e., power or exponential) running time steps are shown to be qualitatively different.« less

  4. Spatial evolution of quantum mechanical states

    NASA Astrophysics Data System (ADS)

    Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.

    2018-02-01

    The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.

  5. Eternal non-Markovianity: from random unitary to Markov chain realisations.

    PubMed

    Megier, Nina; Chruściński, Dariusz; Piilo, Jyrki; Strunz, Walter T

    2017-07-25

    The theoretical description of quantum dynamics in an intriguing way does not necessarily imply the underlying dynamics is indeed intriguing. Here we show how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM)] arises from simple stochastic Schrödinger dynamics (random unitary dynamics). Equivalently, it may be seen as arising from a mixture of Markov (semi-group) open system dynamics. Both these approaches lead to a more general family of CPT maps, characterized by a point within a parameter triangle. Our results show how ENM quantum dynamics can be realised easily in the laboratory. Moreover, we find a quantum time-continuously measured (quantum trajectory) realisation of the dynamics of the ENM master equation based on unitary transformations and projective measurements in an extended Hilbert space, guided by a classical Markov process. Furthermore, a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation of the dynamics in an extended Hilbert space can be found, with a remarkable property: there is no dynamics in the ancilla state. Finally, analogous constructions for two qubits extend these results from non-CP-divisible to non-P-divisible dynamics.

  6. Complex Instruction Set Quantum Computing

    NASA Astrophysics Data System (ADS)

    Sanders, G. D.; Kim, K. W.; Holton, W. C.

    1998-03-01

    In proposed quantum computers, electromagnetic pulses are used to implement logic gates on quantum bits (qubits). Gates are unitary transformations applied to coherent qubit wavefunctions and a universal computer can be created using a minimal set of gates. By applying many elementary gates in sequence, desired quantum computations can be performed. This reduced instruction set approach to quantum computing (RISC QC) is characterized by serial application of a few basic pulse shapes and a long coherence time. However, the unitary matrix of the overall computation is ultimately a unitary matrix of the same size as any of the elementary matrices. This suggests that we might replace a sequence of reduced instructions with a single complex instruction using an optimally taylored pulse. We refer to this approach as complex instruction set quantum computing (CISC QC). One trades the requirement for long coherence times for the ability to design and generate potentially more complex pulses. We consider a model system of coupled qubits interacting through nearest neighbor coupling and show that CISC QC can reduce the time required to perform quantum computations.

  7. Quantum Jarzynski equality of measurement-based work extraction.

    PubMed

    Morikuni, Yohei; Tajima, Hiroyasu; Hatano, Naomichi

    2017-03-01

    Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima, arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal system (namely, the first assumption above) using a simple two-level system; we show that the variance of the energy transferred to an external system diverges when the dynamics of the internal system is approximated to a unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the equality reduces to unity for "natural" cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.

  8. Quantum jump from singularity to outside of black hole

    NASA Astrophysics Data System (ADS)

    Dündar, Furkan Semih; Hajian, Kamal

    2016-02-01

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  9. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    NASA Astrophysics Data System (ADS)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d < ∞) to generate quantum coherence and the geometry of the set Md of maximally abelian subalgebras (of the quantum system full operator algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  10. A self-consistency check for unitary propagation of Hawking quanta

    NASA Astrophysics Data System (ADS)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  11. Implementing controlled-unitary operations over the butterfly network

    NASA Astrophysics Data System (ADS)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2014-12-01

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  12. The pressure and entropy of a unitary Fermi gas with particle-hole fluctuation

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Ruan, Xiao-Xia; Zong, Hong-Shi

    2018-01-01

    We calculate the pressure and entropy of a unitary Fermi gas based on universal relations combined with our previous prediction of energy which was calculated within the framework of the non-self-consistent T-matrix approximation with particle-hole fluctuation. The resulting entropy and pressure are compared with the experimental data and the theoretical results without induced interaction. For entropy, we find good agreement between our results with particle-hole fluctuation and the experimental measurements reported by ENS group and MIT experiment. For pressure, our results suffer from a systematic upshift compared to MIT data.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krebs, H., E-mail: hermann.krebs@rub.de; Epelbaum, E., E-mail: evgeny.epelbaum@rub.de; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93016

    We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of themore » continuity equation.« less

  14. FAST TRACK COMMUNICATION Quantum entanglement: the unitary 8-vertex braid matrix with imaginary rapidity

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Amitabha; Chakraborti, Anirban; Jedidi, Aymen

    2010-12-01

    We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the 'canonical factorization' of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement.

  15. A unitary convolution approximation for the impact-parameter dependent electronic energy loss

    NASA Astrophysics Data System (ADS)

    Schiwietz, G.; Grande, P. L.

    1999-06-01

    In this work, we propose a simple method to calculate the impact-parameter dependence of the electronic energy loss of bare ions for all impact parameters. This perturbative convolution approximation (PCA) is based on first-order perturbation theory, and thus, it is only valid for fast particles with low projectile charges. Using Bloch's stopping-power result and a simple scaling, we get rid of the restriction to low charge states and derive the unitary convolution approximation (UCA). Results of the UCA are then compared with full quantum-mechanical coupled-channel calculations for the impact-parameter dependent electronic energy loss.

  16. Implementing controlled-unitary operations over the butterfly network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  17. Improving the capacity of the Boström-Felbinger protocol

    NASA Astrophysics Data System (ADS)

    Cai, Qing-Yu; Li, Bai-Wen

    2004-05-01

    We show that the capacity of the Boström-Felbinger (ping-pong) protocol [

    Phys. Rev. Lett. 89, 187902 (2002)
    ] can be doubled by introducing two additional unitary operations. In message mode, Alice can use one of the four unitary operations to encode two classical bits of information. Bob can decode Alice’s information by using a Bell-basis measurement. Security against eavesdropping attack can be ensured by using two conjugate measurement bases in control mode. A message authentification method can protect this communication against a man-in-the-middle attack without eavesdropping.

  18. Extending matchgates into universal quantum computation

    NASA Astrophysics Data System (ADS)

    Brod, Daniel J.; Galvão, Ernesto F.

    2011-08-01

    Matchgates are a family of two-qubit gates associated with noninteracting fermions. They are classically simulatable if acting only on nearest neighbors but become universal for quantum computation if we relax this restriction or use swap gates [Jozsa and Miyake, Proc. R. Soc. ANATUAS1364-502110.1098/rspa.2008.0189 464, 3089 (2008)]. We generalize this result by proving that any nonmatchgate parity-preserving unitary is capable of extending the computational power of matchgates into universal quantum computation. We identify the single local invariant of parity-preserving unitaries responsible for this, and discuss related results in the context of fermionic systems.

  19. Duality and topology

    NASA Astrophysics Data System (ADS)

    Sacramento, P. D.; Vieira, V. R.

    2018-04-01

    Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.

  20. Geometry of quantum dynamics in infinite-dimensional Hilbert space

    NASA Astrophysics Data System (ADS)

    Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana

    2018-04-01

    We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.

  1. Configurable unitary transformations and linear logic gates using quantum memories.

    PubMed

    Campbell, G T; Pinel, O; Hosseini, M; Ralph, T C; Buchler, B C; Lam, P K

    2014-08-08

    We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favorable scaling with an increasing number of modes where N memories can be configured to implement arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional cz gate.

  2. Analysis of the performance of the drive system and diffuser of the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Hasel, L. E.; Stallings, R. L.

    1981-01-01

    A broad program was initiated at the Langley Research Center in 1973 to reduce the energy consumption of the laboratory. As a part of this program, the performance characteristics of the Unitary Plan Wind Tunnel were reexamined to determine if potential methods for incresing the operating efficiencies of the tunnel could be formulated. The results of that study are summarized. The performance characteristics of the drive system components and the variable-geometry diffuser system of the tunnel are documented and analyzed. Several potential methods for reducing the energy requirements of the facility are discussed.

  3. The evaluation of lyophilized polymer matrices for administering recombinant human bone morphogenetic protein-2.

    PubMed

    Duggirala, S S; Rodgers, J B; DeLuca, P P

    1996-07-01

    Novel unitary devices, prepared by lyophilization of viscous solutions of sodium carboxymethylcellulose (CMC) and methylcellulose (MC), were evaluated as sustained-release delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). In vitro characterization of the unitary devices, which contained rhBMP-2-loaded poly (d,l lactide-co-glycolide) (PLGA) bioerodible particles (BEPs), was conducted over a 2-month period. Determinations included buffer uptake, mass and molecular weight loss and rhBMP-2 release from the unitary devices. CMC devices imbibed approximately 16 times their weight of buffer, while with MC, equilibrium uptake was approximately 6 times the dry weight of the devices. Overall mass loss percentages were approximately 55 and 35%, respectively, for CMC and MC devices. rhBMP-2 release from the devices was essentially a triphasic process: an initial phase during which "free" protein (rhBMP-2 present on the surface and within the pores of the PLGA BEPs) was released, a lag period during which no release was discerned, and then release of "bound" rhBMP-2 (protein adsorbed to the BEPs). The release of bound protein correlated with the mass loss of the polymer which began after 3 weeks. Release from the unitary devices was lower than that from the BEPs alone, due to a retardation effect of the gelled CMC/MC polymers. In rabbits in which full-thickness cranial bone defects were created, the implants were well tolerated and induced significant new bone growth during an 8-week evaluation period. The CMC devices appear to have induced bone earlier (at 2 weeks), but this did not affect eventual 8-week results. CMC devices without rhBMP-2 appeared to provide some bone conduction, in contrast to the blank MC devices.

  4. Low-mass dielectrons in pp, p-Pb and Pb-Pb collisions measured by the ALICE Experiment

    NASA Astrophysics Data System (ADS)

    Vorobyev, Ivan

    2018-02-01

    Dielectrons produced in ultra-relativistic heavy-ion collisions at the LHC provide a unique probe of the system evolution as they are unperturbed by final-state interactions. The dielectron continuum is extremely rich in physics sources: on top of ordinary Dalitz and resonance decays of pseudoscalar and vector mesons, thermal black-body radiation is of particular interest as it carries information about the temperature of the hot and dense system created in such collisions. The dielectron invariant-mass distribution is furthermore sensitive to medium modifications of the spectral function of short-lived vector mesons that are linked to the potential restoration of chiral symmetry at high temperatures. Correlated electron pairs from semi-leptonic charm and beauty decays provide complementary information about the heavy-quark energy loss.

  5. Dark Forces at KLOE/KLOE-2

    NASA Astrophysics Data System (ADS)

    Curciarello, Francesca

    2014-05-01

    Searches for dark matter particles in the GeV mass range and for dark forces are strongly motivated by the numerous striking astrophysical observations recently reported by many experiments. Flavor factories, like the Frascati Φ-factory DAΦNE, are particularly suited to search for the light gauge vector boson, called U boson, which is thought to mediate an unknown interaction between hypothetical dark matter particles. By using the KLOE detector, limits on U boson coupling factor ɛ2 of the order of 10-5 ÷ 10-7 have been set through the study of the ϕ Dalitz decay, the Higgsstrahlung process and Uγ events. New experiments with the upgraded KLOE detector and the increased luminosity of DAΦNE are expected to improve the already set upper limits by a factor of two or better.

  6. Slopes of $pi$-meson spectra in the K $Yields$ 3$pi$ decays (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapustnikov, A.A.

    1973-12-01

    The strong violation ( approximates 35%) of the rule DELTA T = 1/2 on the Dalitz piot for the K yields 3 pi decays is considered in the framework of the nonlinear realization of the chiral SU(2) x SU(2) symmetry. The Lagrangian without derivatives obtained previously is used to describe the contact weak K pi interaction. It is postulated that the enhancement of effects related to the electromagnetic mass differences of pi and K mesons in the K yields 3 pi amplitudes is due to the PCAC modification: partial delta A = constant pi (1 - 2 alpha lambda /supmore » 2/ KK). At alpha = 0.8 the predictions of the model are shown to coincide with the experiment. (auth)« less

  7. CP violation in multibody B decays from QCD factorization

    NASA Astrophysics Data System (ADS)

    Klein, Rebecca; Mannel, Thomas; Virto, Javier; Vos, K. Keri

    2017-10-01

    We test a data-driven approach based on QCD factorization for charmless three-body B-decays by confronting it to measurements of CP violation in B - → π - π + π -. While some of the needed non-perturbative objects can be directly extracted from data, some others can, so far, only be modelled. Although this approach is currently model dependent, we comment on the perspectives to reduce this model dependence. While our model naturally accommodates the gross features of the Dalitz distribution, it cannot quantitatively explain the details seen in the current experimental data on local CP asymmetries. We comment on possible refinements of our simple model and conclude by briefly discussing a possible extension of the model to large invariant masses, where large local CP asymmetries have been measured.

  8. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  9. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  10. Robust Assignment Of Eigensystems For Flexible Structures

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lim, Kyong B.; Junkins, John L.

    1992-01-01

    Improved method for placement of eigenvalues and eigenvectors of closed-loop control system by use of either state or output feedback. Applied to reduced-order finite-element mathematical model of NASA's MAST truss beam structure. Model represents deployer/retractor assembly, inertial properties of Space Shuttle, and rigid platforms for allocation of sensors and actuators. Algorithm formulated in real arithmetic for efficient implementation. Choice of open-loop eigenvector matrix and its closest unitary matrix believed suitable for generating well-conditioned eigensystem with small control gains. Implication of this approach is that element of iterative search for "optimal" unitary matrix appears unnecessary in practice for many test problems.

  11. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (CoF) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design Of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  12. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (Car) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  13. Feasibility study of transit photon correlation anemometer for Ames Research Center unitary wind tunnel plan

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.; Smart, A. E.

    1979-01-01

    A laser transit anemometer measured a two-dimensional vector velocity, using the transit time of scattering particles between two focused and parallel laser beams. The objectives were: (1) the determination of the concentration levels and light scattering efficiencies of naturally occurring, submicron particles in the NASA/Ames unitary wind tunnel and (2) the evaluation based on these measured data of a laser transit anemometer with digital correlation processing for nonintrusive velocity measurement in this facility. The evaluation criteria were the speeds at which point velocity measurements could be realized with this technique (as determined from computer simulations) for given accuracy requirements.

  14. Results of a Pressure Loads Investigation on a 0.030-scale Model (47-OTS) of the Integrated Space Shuttle Vehicle Configuration 5 in the NASA Ames Research Center 11 by 11 Foot Leg of the Unitary Plan Wind Tunnel (IA81A), Volume 1

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1975-01-01

    Results of wind tunnel tests on a 0.030-scale model of the integrated space shuttle vehicle configuration 5 are presented. Testing was conducted in the NASA Ames Research Center 11 x 11 foot leg of the Unitary Plan Wind Tunnel to investigate pressure distributions for airloads analyses at Mach numbers from 0.9 through 1.4. Angles of attack and sideslip were varied from -6 to +6 degrees.

  15. N = 2 supersymmetry and Bailey pairs

    NASA Astrophysics Data System (ADS)

    Berkovich, Alexander; McCoy, Barry M.; Schilling, Anne

    1996-02-01

    We demonstrate that the Bailey pair formulation of Rogers-Ramanujan identities unifies the calculations of the characters of N = 1 and N = 2 supersymmetric conformal field theories with the counterpart theory with no supersymmetry. We illustrate this construction for the M(3,4) (Ising) model where the Bailey pairs have been given by Slater. We then present the general unitary case. We demonstrate that the model M( p,p + 1) is derived from M( p - 1, p) by a Bailey renormalization flow and conclude by obtaining the N = 1 model SM( p,p + 2) and the unitary N = 2 model with central charge c = 3(1 - 2/ p).

  16. Strong Unitary and Overlap Uncertainty Relations: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Bong, Kok-Wei; Tischler, Nora; Patel, Raj B.; Wollmann, Sabine; Pryde, Geoff J.; Hall, Michael J. W.

    2018-06-01

    We derive and experimentally investigate a strong uncertainty relation valid for any n unitary operators, which implies the standard uncertainty relation and others as special cases, and which can be written in terms of geometric phases. It is saturated by every pure state of any n -dimensional quantum system, generates a tight overlap uncertainty relation for the transition probabilities of any n +1 pure states, and gives an upper bound for the out-of-time-order correlation function. We test these uncertainty relations experimentally for photonic polarization qubits, including the minimum uncertainty states of the overlap uncertainty relation, via interferometric measurements of generalized geometric phases.

  17. A nursing theory-guided framework for genetic and epigenetic research.

    PubMed

    Maki, Katherine A; DeVon, Holli A

    2018-04-01

    The notion that genetics, through natural selection, determines innate traits has led to much debate and divergence of thought on the impact of innate traits on the human phenotype. The purpose of this synthesis was to examine how innate theory informs genetic research and how understanding innate theory through the lens of Martha Rogers' theory of unitary human beings can offer a contemporary view of how innate traits can inform epigenetic and genetic research. We also propose a new conceptual model for genetic and epigenetic research. The philosophical, theoretical, and research literatures were examined for this synthesis. We have merged philosophical and conceptual phenomena from innate theory with the theory of unitary beings into the University of Illinois at Chicago model for genetic and epigenetic research. Innate traits are the cornerstone of the framework but may be modified epigenetically by biological, physiological, psychological, and social determinants as they are transcribed. These modifiers serve as important links between the concept of innate traits and epigenetic modifications, and, like the theory of unitary human beings, the process is understood in the context of individual and environmental interaction that has the potential to evolve as the determinants change. © 2018 John Wiley & Sons Ltd.

  18. Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study

    DOE PAGES

    Escrihuela, F. J.; Forero, D. V.; Miranda, O. G.; ...

    2017-09-08

    When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phasemore » $${\\delta }_{\\mathrm{CP}}$$ characterizing the three neutrino paradigm.We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. In this study we find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.« less

  19. Unique Fock quantization of a massive fermion field in a cosmological scenario

    NASA Astrophysics Data System (ADS)

    Cortez, Jerónimo; Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Velhinho, José M.

    2016-04-01

    It is well known that the Fock quantization of field theories in general spacetimes suffers from an infinite ambiguity, owing to the inequivalent possibilities in the selection of a representation of the canonical commutation or anticommutation relations, but also owing to the freedom in the choice of variables to describe the field among all those related by linear time-dependent transformations, including the dependence through functions of the background. In this work we remove this ambiguity (up to unitary equivalence) in the case of a massive Dirac free field propagating in a spacetime with homogeneous and isotropic spatial sections of spherical topology. Two physically reasonable conditions are imposed in order to arrive at this result: (a) The invariance of the vacuum under the spatial isometries of the background, and (b) the unitary implementability of the dynamical evolution that dictates the Dirac equation. We characterize the Fock quantizations with a nontrivial fermion dynamics that satisfy these two conditions. Then, we provide a complete proof of the unitary equivalence of the representations in this class under very mild requirements on the time variation of the background, once a criterion to discern between particles and antiparticles has been set.

  20. Characterization of separability and entanglement in (2xD)- and (3xD)-dimensional systems by single-qubit and single-qutrit unitary transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giampaolo, Salvatore M.; CNR-INFM Coherentia, Naples; CNISM Unita di Salerno and INFN Sezione di Napoli, Gruppo collegato di Salerno, Baronissi

    2007-10-15

    We investigate the geometric characterization of pure state bipartite entanglement of (2xD)- and (3xD)-dimensional composite quantum systems. To this aim, we analyze the relationship between states and their images under the action of particular classes of local unitary operations. We find that invariance of states under the action of single-qubit and single-qutrit transformations is a necessary and sufficient condition for separability. We demonstrate that in the (2xD)-dimensional case the von Neumann entropy of entanglement is a monotonic function of the minimum squared Euclidean distance between states and their images over the set of single qubit unitary transformations. Moreover, both inmore » the (2xD)- and in the (3xD)-dimensional cases the minimum squared Euclidean distance exactly coincides with the linear entropy [and thus as well with the tangle measure of entanglement in the (2xD)-dimensional case]. These results provide a geometric characterization of entanglement measures originally established in informational frameworks. Consequences and applications of the formalism to quantum critical phenomena in spin systems are discussed.« less

  1. Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.

    2018-01-01

    In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.

  2. Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2018-06-01

    We construct ℓ -spin-flipping matrices from the coefficient matrices of pure states of n qubits and show that the ℓ -spin-flipping matrices are congruent and unitary congruent whenever two pure states of n qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of ranks of the ℓ -spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classification of n qubits to calculation of ranks of the ℓ -spin-flipping matrices. The unitary congruence implies the invariance of singular values of the ℓ -spin-flipping matrices under LU and then permits a reduction of LU classification of n qubits to calculation of singular values of the ℓ -spin-flipping matrices. Furthermore, we show that the invariance of singular values of the ℓ -spin-flipping matrices Ω 1^{(n)} implies the invariance of the concurrence for even n qubits and the invariance of the n-tangle for odd n qubits. Thus, the concurrence and the n-tangle can be used for LU classification and computing the concurrence and the n-tangle only performs additions and multiplications of coefficients of states.

  3. Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escrihuela, F. J.; Forero, D. V.; Miranda, O. G.

    When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phasemore » $${\\delta }_{\\mathrm{CP}}$$ characterizing the three neutrino paradigm.We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. In this study we find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.« less

  4. Regarding the unitary theory of agonist and antagonist action at presynaptic adrenoceptors.

    PubMed

    Kalsner, S; Abdali, S A

    2001-06-01

    1. The linkage between potentiation of field stimulation-induced noradrenaline release and blockade of the presynaptic inhibitory effect of exogenous noradrenaline by a presynaptic antagonist was examined in superfused rabbit aorta preparations. 2. Rauwolscine clearly potentiated the release of noradrenaline in response to 100 pulses at 2 Hz but reduced the capacity of noradrenaline to inhibit transmitter release to a questionable extent, and then only when comparisons were made with untreated, rather then to rauwolscine-treated, controls. 3. Aortic preparations exposed for 60 min to rauwolscine followed by superfusion with antagonist-free Krebs for 60 min retained the potentiation of stimulation-induced transmitter release but no antagonism of the noradrenaline-induced inhibition could be detected at either of two noradrenaline concentrations when comparisons were made with rauwolscine treated controls. 4. Comparisons of the inhibitory effect of exogenous noradrenaline (1.8 x 10-6 M) on transmitter efflux in the presence and absence of rauwolscine pretreatment revealed that the antagonist enhanced rather than antagonized the presynaptic inhibition by noradrenaline. 5 It is concluded that the unitary hypothesis that asserts that antagonist enhancement of transmitter release and its blockade of noradrenaline induced inhibition are manifestations of a unitary event are not supportable.

  5. Conditional Bounds on Polarization Transfer

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Sorensen, O. W.

    The implications of constraints on unitary transformations of spin operators with respect to the accessible regions of Liouville space are analyzed. Specifically, the effects of spin-permutation symmetry on the unitary propagators are investigated. The influence of S2 and S3 propagator symmetry on two-dimensional bounds for F z = Σ Ni=1 I iz ↔ G z = Σ Mj=1 S jz polarization transfer in IS and I 2S spin- {1}/{2} systems is examined in detail. One result is that the maximum achievable F z ↔ G z polarization transfer is not reduced by permutation symmetry among the spins. For I 2S spin systems, S3 symmetry in the unitary propagator is shown to significantly reduce the accessible region in the 2D F z-S z Liouville subspace compared to the case restricted by unitarity alone. That result is compared with transformations under symmetric dipolar and scalar J coupling as well as shift and RF interactions. An important practical implication is that the refined spin thermodynamic theory of Levitt, Suter, and Ernst ( J. Chem. Phys.84, 4243, 1986) for cross polarization in solid-state NMR does not predict experimental outcomes incompatible with constraints of unitarity and spin-permutation symmetry.

  6. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    PubMed

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  7. A Unitary ESPRIT Scheme of Joint Angle Estimation for MOTS MIMO Radar

    PubMed Central

    Wen, Chao; Shi, Guangming

    2014-01-01

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme. PMID:25106023

  8. Direction of Arrival Estimation for MIMO Radar via Unitary Nuclear Norm Minimization

    PubMed Central

    Wang, Xianpeng; Huang, Mengxing; Wu, Xiaoqin; Bi, Guoan

    2017-01-01

    In this paper, we consider the direction of arrival (DOA) estimation issue of noncircular (NC) source in multiple-input multiple-output (MIMO) radar and propose a novel unitary nuclear norm minimization (UNNM) algorithm. In the proposed method, the noncircular properties of signals are used to double the virtual array aperture, and the real-valued data are obtained by utilizing unitary transformation. Then a real-valued block sparse model is established based on a novel over-complete dictionary, and a UNNM algorithm is formulated for recovering the block-sparse matrix. In addition, the real-valued NC-MUSIC spectrum is used to design a weight matrix for reweighting the nuclear norm minimization to achieve the enhanced sparsity of solutions. Finally, the DOA is estimated by searching the non-zero blocks of the recovered matrix. Because of using the noncircular properties of signals to extend the virtual array aperture and an additional real structure to suppress the noise, the proposed method provides better performance compared with the conventional sparse recovery based algorithms. Furthermore, the proposed method can handle the case of underdetermined DOA estimation. Simulation results show the effectiveness and advantages of the proposed method. PMID:28441770

  9. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, paranoid personality disorder diagnosis: a unitary or a two-dimensional construct?

    PubMed

    Falkum, Erik; Pedersen, Geir; Karterud, Sigmund

    2009-01-01

    This article examines reliability and validity aspects of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) paranoid personality disorder (PPD) diagnosis. Patients with personality disorders (n = 930) from the Norwegian network of psychotherapeutic day hospitals, of which 114 had PPD, were included in the study. Frequency distribution, chi(2), correlations, reliability statistics, exploratory, and confirmatory factor analyses were performed. The distribution of PPD criteria revealed no distinct boundary between patients with and without PPD. Diagnostic category membership was obtained in 37 of 64 theoretically possible ways. The PPD criteria formed a separate factor in a principal component analysis, whereas a confirmatory factor analysis indicated that the DSM-IV PPD construct consists of 2 separate dimensions as follows: suspiciousness and hostility. The reliability of the unitary PPD scale was only 0.70, probably partly due to the apparent 2-dimensionality of the construct. Persistent unwarranted doubts about the loyalty of friends had the highest diagnostic efficiency, whereas unwarranted accusations of infidelity of partner had particularly poor indicator properties. The reliability and validity of the unitary PPD construct may be questioned. The 2-dimensional PPD model should be further explored.

  10. A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.

    PubMed

    Wen, Chao; Shi, Guangming

    2014-08-07

    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.

  11. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  12. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  13. Hidden Entanglement and Unitarity at the Planck Scale

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Hamma, Alioscia; Severini, Simone

    Attempts to go beyond the framework of local quantum field theory include scenarios in which the action of external symmetries on the quantum fields Hilbert space is deformed. We show how the Fock spaces of such theories exhibit a richer structure in their multi-particle sectors. When the deformation scale is proportional to the Planck energy, such new structure leads to the emergence of a "planckian" mode-entanglement, invisible to an observer that cannot probe the Planck scale. To the same observer, certain unitary processes would appear non-unitary. We show how entanglement transfer to the additional degrees of freedom can provide a potential way out of the black hole information paradox.

  14. Berry phase and entanglement of three qubits in a new Yang-Baxter system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Taotao; Xue Kang; Wu Chunfeng

    2009-08-15

    In this paper we construct a new 8x8M matrix from the 4x4M matrix, where M/M is the image of the braid group representation. The 8x8M matrix and the 4x4M matrix both satisfy extraspecial 2-group algebra relations. By Yang-Baxteration approach, we derive a unitary R({theta},{phi}) matrix from the M matrix with parameters {phi} and {theta}. Three-qubit entangled states can be generated by using the R({theta},{phi}) matrix. A Hamiltonian for three qubits is constructed from the unitary R({theta},{phi}) matrix. We then study the entanglement and Berry phase of the Yang-Baxter system.

  15. Quantum Standard Teleportation Based on the Generic Measurement Bases

    NASA Astrophysics Data System (ADS)

    Hao, San-Ru; Hou, Bo-Yu; Xi, Xiao-Qiang; Yue, Rui-Hong

    2003-10-01

    We study the quantum standard teleportation based on the generic measurement bases. It is shown that the quantum standard teleportation does not depend on the explicit expression of the measurement bases. We have given the correspondence relation between the measurement performed by Alice and the unitary transformation performed by Bob. We also prove that the single particle unknown states and the two-particle unknown cat-like states can be exactly transmitted by means of the generic measurement bases and the correspondence unitary transformations. The project supported in part by National Natural Science Foundation of China, the Hunan Provincial Natural Science Foundation of China, and the Scientific Research Fund of Hunan Provincial Education Department

  16. Probabilistic Teleportation of One-Particle State of S-level

    NASA Astrophysics Data System (ADS)

    Yan, Feng-Li; Bai, Yan-Kui

    2003-09-01

    A scheme for probabilistically teleporting an unknown one-particle state of S-level by a group of pairs of partially entangled 2-level particle state is proposed. In this scheme unitary transformation and local measurement take the place of Bell state measurement, then proper unitary transformation and the measurement on an auxiliary qubit with the aid of classical communication are performed. In this way the unknown one-particle state of S-level can be transferred onto a group of remote 2-level particles with certain probability. Furthermore, the receiver can recover the initial signal state on an S-level particle at his hand. The project supported by Natural Science Foundation of Hebei Province of China

  17. Distilling Gaussian states with Gaussian operations is impossible.

    PubMed

    Eisert, J; Scheel, S; Plenio, M B

    2002-09-23

    We show that no distillation protocol for Gaussian quantum states exists that relies on (i) arbitrary local unitary operations that preserve the Gaussian character of the state and (ii) homodyne detection together with classical communication and postprocessing by means of local Gaussian unitary operations on two symmetric identically prepared copies. This is in contrast to the finite-dimensional case, where entanglement can be distilled in an iterative protocol using two copies at a time. The ramifications for the distribution of Gaussian states over large distances will be outlined. We also comment on the generality of the approach and sketch the most general form of a Gaussian local operation with classical communication in a bipartite setting.

  18. 3d expansions of 5d instanton partition functions

    NASA Astrophysics Data System (ADS)

    Nieri, Fabrizio; Pan, Yiwen; Zabzine, Maxim

    2018-04-01

    We propose a set of novel expansions of Nekrasov's instanton partition functions. Focusing on 5d supersymmetric pure Yang-Mills theory with unitary gauge group on C_{q,{t}^{-1}}^2× S^1 , we show that the instanton partition function admits expansions in terms of partition functions of unitary gauge theories living on the 3d subspaces C_q× S^1 , C_{t^{-1}}× S^1 and their intersection along S^1 . These new expansions are natural from the BPS/CFT viewpoint, as they can be matched with W q,t correlators involving an arbitrary number of screening charges of two kinds. Our constructions generalize and interpolate existing results in the literature.

  19. Entropic cohering power in quantum operations

    NASA Astrophysics Data System (ADS)

    Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng

    2018-02-01

    Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

  20. Extracting observables from lattice data in the three-particle sector

    NASA Astrophysics Data System (ADS)

    Rusetsky, Akaki; Hammer, Hans-Werner; Pang, Jin-Yi

    2018-03-01

    The three-particle quantization condition is derived, using the particle-dimer picture in the non-relativistic effective field theory. The procedure for the extraction of various observables in the three-particle sector (the particle-dimer scattering amplitudes, breakup amplitudes, etc.) from the finite-volume lattice spectrum is discussed in detail. As an illustration of the general formalism, the expression for the finite-volume energy shift of the three-body bound-state in the unitary limit is re-derived. The role of the threebody force, which is essential for the renormalization, is highlighted, and the extension of the result beyond the unitary limit is studied. Comparison with other approaches, known in the literature, is carried out.

  1. Supersonic Retropropulsion CFD Validation with Ames Unitary Plan Wind Tunnel Test Data

    NASA Technical Reports Server (NTRS)

    Schauerhamer, Daniel G.; Zarchi, Kerry A.; Kleb, William L.; Edquist, Karl T.

    2013-01-01

    A validation study of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) was conducted using three Navier-Stokes flow solvers (DPLR, FUN3D, and OVERFLOW). The study compared results from the CFD codes to each other and also to wind tunnel test data obtained in the NASA Ames Research Center 90 70 Unitary PlanWind Tunnel. Comparisons include surface pressure coefficient as well as unsteady plume effects, and cover a range of Mach numbers, levels of thrust, and angles of orientation. The comparisons show promising capability of CFD to simulate SRP, and best agreement with the tunnel data exists for the steadier cases of the 1-nozzle and high thrust 3-nozzle configurations.

  2. Results of the NASA/MSFC FA-23 plume technology test program performed in the NASA/Ames unitary wind tunnels

    NASA Technical Reports Server (NTRS)

    Hendershot, K. C.

    1977-01-01

    A 2.25% scale model of the space shuttle external tank and solid rocket boosters was tested in the NASA/Ames Unitary 11 x 11 foot transonic and 9 x 7 foot supersonic tunnels to obtain base pressure data with firing solid propellant exhaust plumes. Data system difficulties prevented the acquisition of any useful data in the 9 x 7 tunnel. However, 28 successful rocket test firings were made in the 11 x 11 tunnel, providing base pressure data at Mach numbers of 0.5, 0.9, 1.05, 1.2, and 1.3 and at plume pressure ratios ranging from 11 to 89.

  3. On the debate about teleology in biology: the notion of "teleological obstacle".

    PubMed

    Ribeiro, Manuel Gustavo Leitão; Larentis, Ariane Leites; Caldas, Lúcio Ayres; Garcia, Tomás Coelho; Terra, Letícia Labati; Herbst, Marcelo Hawrylak; Almeida, Rodrigo Volcan

    2015-12-01

    Among the epistemological obstacles described by Gaston Bachelard, we contend that unitary and pragmatic knowledge is correlated to the teleological categories of Ernst Mayr and is the basis for prevailing debate on the notion of "function" in biology. Given the proximity of the aspects highlighted by these authors, we propose to associate the role of teleological thinking in biology and the notion of unitary and pragmatic knowledge as an obstacle to scientific knowledge. Thus, teleological thinking persists acting as an epistemological obstacle in biology, according to Bachelardian terminology. Our investigation led us to formulate the "teleological obstacle," which we consider important for the future of biology and possibly other sciences.

  4. Description and calibration of the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Corlett, W. A.; Monta, W. J.

    1981-01-01

    The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed.

  5. Unitary easy quantum groups: Geometric aspects

    NASA Astrophysics Data System (ADS)

    Banica, Teodor

    2018-03-01

    We discuss the classification problem for the unitary easy quantum groups, under strong axioms, of noncommutative geometric nature. Our main results concern the intermediate easy quantum groups ON ⊂ G ⊂ UN+ . To any such quantum group we associate its Schur-Weyl twist G ¯ , two noncommutative spheres S , S ¯ , a noncommutative torus T, and a quantum reflection group K. Studying (S , S ¯ , T , K , G , G ¯) leads then to some natural axioms, which can be used in order to investigate G itself. We prove that the main examples are covered by our formalism, and we conjecture that in what concerns the case UN ⊂ G ⊂ UN+ , our axioms should restrict the list of known examples.

  6. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  7. Quantum simulation from the bottom up: the case of rebits

    NASA Astrophysics Data System (ADS)

    Enshan Koh, Dax; Yuezhen Niu, Murphy; Yoder, Theodore J.

    2018-05-01

    Typically, quantum mechanics is thought of as a linear theory with unitary evolution governed by the Schrödinger equation. While this is technically true and useful for a physicist, with regards to computation it is an unfortunately narrow point of view. Just as a classical computer can simulate highly nonlinear functions of classical states, so too can the more general quantum computer simulate nonlinear evolutions of quantum states. We detail one particular simulation of nonlinearity on a quantum computer, showing how the entire class of -unitary evolutions (on n qubits) can be simulated using a unitary, real-amplitude quantum computer (consisting of n  +  1 qubits in total). These operators can be represented as the sum of a linear and antilinear operator, and add an intriguing new set of nonlinear quantum gates to the toolbox of the quantum algorithm designer. Furthermore, a subgroup of these nonlinear evolutions, called the -Cliffords, can be efficiently classically simulated, by making use of the fact that Clifford operators can simulate non-Clifford (in fact, non-linear) operators. This perspective of using the physical operators that we have to simulate non-physical ones that we do not is what we call bottom-up simulation, and we give some examples of its broader implications.

  8. Realization of the three-qubit quantum controlled gate based on matching Hermitian generators

    NASA Astrophysics Data System (ADS)

    Gautam, Kumar; Rawat, Tarun Kumar; Parthasarathy, Harish; Sharma, Navneet; Upadhyaya, Varun

    2017-05-01

    This paper deals with the design of quantum unitary gate by matching the Hermitian generators. A given complicated quantum controlled gate is approximated by perturbing a simple quantum system with a small time-varying potential. The basic idea is to evaluate the generator H_φ of the perturbed system approximately using first-order perturbation theory in the interaction picture. H_φ depends on a modulating signal φ(t){:} 0≤t≤T which modulates a known potential V. The generator H_φ of the given gate U_g is evaluated using H_g=ι log U_g. The optimal modulating signal φ(t) is chosen so that \\Vert H_g - H_φ \\Vert is a minimum. The simple quantum system chosen for our simulation is harmonic oscillator with charge perturbed by an electric field that is a constant in space but time varying and is controlled externally. This is used to approximate the controlled unitary gate obtained by perturbing the oscillator with an anharmonic term proportional to q^3. Simulations results show significantly small noise-to-signal ratio. Finally, we discuss how the proposed method is particularly suitable for designing some commonly used unitary gates. Another example was chosen to illustrate this method of gate design is the ion-trap model.

  9. First unitary, then divided: the temporal dynamics of dividing attention.

    PubMed

    Jefferies, Lisa N; Witt, Joseph B

    2018-04-24

    Whether focused visual attention can be divided has been the topic of much investigation, and there is a compelling body of evidence showing that, at least under certain conditions, attention can be divided and deployed as two independent foci. Three experiments were conducted to examine whether attention can be deployed in divided form from the outset, or whether it is first deployed as a unitary focus before being divided. To test this, we adapted the methodology of Jefferies, Enns, and Di Lollo (Journal of Experimental Psychology: Human Perception and Performance 40: 465, 2014), who used a dual-stream Attentional Blink paradigm and two letter-pair targets. One aspect of the AB, Lag-1 sparing, has been shown to occur only if the second target pair appears within the focus of attention. By presenting the second target pair at various spatial locations and assessing the magnitude of Lag-1 sparing, we probed the spatial distribution of attention. By systematically manipulating the stimulus-onset-asynchrony between the targets, we also tracked changes to the spatial distribution of attention over time. The results showed that even under conditions which encourage the division of attention, the attentional focus is first deployed in unitary form before being divided. It is then maintained in divided form only briefly before settling on a single location.

  10. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory

    DOE PAGES

    Aab, Alexander

    2016-02-17

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muonmore » counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The mechanical setup, which allows access to the electronics for maintenance, is also described in addition to tests of the modules' response and integrity. As a result, the completed Unitary Cell has measured a number of air showers of which a first analysis of a sample event is included here.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Sudarshan; Günaydin, Murat

    We study the minimal unitary representation (minrep) of SO(5, 2), obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5, 2) describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5, 2) are the 5d analogs of Dirac’s singletons of SO(3, 2). We then construct the minimal unitary representation of the unique 5d supercon-formal algebra F(4) with the even subalgebra SO(5, 2) ×SU(2). The minrep of F(4) describes a massless conformal supermultiplet consisting of two scalar andmore » one spinor fields. We then extend our results to the construction of higher spin AdS 6/CFT 5 (super)-algebras. The Joseph ideal of the minrep of SO(5, 2) vanishes identically as operators and hence its enveloping algebra yields the AdS 6/CFT 5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS 6/CFT 5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4) obtained by the quasiconformal methods.« less

  12. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels

    PubMed Central

    Díaz-Franulic, Ignacio; Sepúlveda, Romina V.; Navarro-Quezada, Nieves; González-Nilo, Fernando

    2015-01-01

    K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K+ transport rates to ∼1 kT. Thus, although Shaker’s pore sustains ion translocation as the BK channel’s does, higher energetic costs of ion stabilization or higher friction with the ion’s rigid hydration cage in its narrower aqueous cavity may entail higher resistance. PMID:26216859

  13. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    NASA Astrophysics Data System (ADS)

    Osmanović, H.; Ceci, S.; Švarc, A.; Hadžimehmedović, M.; Stahov, J.

    2011-09-01

    In Hadžimehmedović [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.84.035204 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  14. Wave functions of the Q .Q interaction in terms of unitary 9-j coefficients

    NASA Astrophysics Data System (ADS)

    Zamick, Larry; Harper, Matthew

    2015-03-01

    We obtain wave functions for two protons and two neutrons in the g9 /2 shell expressed as column vectors with amplitudes D (Jp,Jn) . When we use a quadrupole-quadrupole interaction (Q .Q ) we get, in many cases, a very strong overlap with wave functions given by a single set of unitary 9-j coefficients—U 9 j =<(jj ) 2 j(jjJB|(jj ) Jp(jj ) Jn) I> . Here JB=9 for even I T =0 states. For both even and odd T =1 states we take JB equal to 8 whilst for odd I ,T =0 we take JB to be 7. We compare the Q .Q results with those of a more realistic interaction.

  15. Multi-Hop Teleportation of an Unknown Qubit State Based on W States

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-04-01

    Quantum teleportation is important in quantum communication networks. Considering that quantum state information is also transmitted between two distant nodes, intermediated nodes are employed and two multi-hop teleportation protocols based on W state are proposed. One is hop-by-hop teleportation protocol and the other is the improved multi-hop teleportation protocol with centralized unitary transformation. In hop-by-hop protocol, the transmitted quantum state needs to be recovered at every node on the route. In improved multi-hop teleportation protocol with centralized unitary transformation, intermediate nodes need not to recover the transmitted quantum state. Compared to the hop-by-hop protocol, the improved protocol can reduce the transmission delay and improve the transmission efficiency.

  16. Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models.

    PubMed

    Elben, A; Vermersch, B; Dalmonte, M; Cirac, J I; Zoller, P

    2018-02-02

    We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.

  17. Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models

    NASA Astrophysics Data System (ADS)

    Elben, A.; Vermersch, B.; Dalmonte, M.; Cirac, J. I.; Zoller, P.

    2018-02-01

    We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.

  18. Practical Unitary Simulator for Non-Markovian Complex Processes

    NASA Astrophysics Data System (ADS)

    Binder, Felix C.; Thompson, Jayne; Gu, Mile

    2018-06-01

    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this Letter, we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models, it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.

  19. On multivariate trace inequalities of Sutter, Berta, and Tomamichel

    NASA Astrophysics Data System (ADS)

    Lemm, Marius

    2018-01-01

    We consider a family of multivariate trace inequalities recently derived by Sutter, Berta, and Tomamichel. These inequalities generalize the Golden-Thompson inequality and Lieb's triple matrix inequality to an arbitrary number of matrices in a way that features complex matrix powers (i.e., certain unitaries). We show that their inequalities can be rewritten as an n-matrix generalization of Lieb's original triple matrix inequality. The complex matrix powers are replaced by resolvents and appropriate maximally entangled states. We expect that the technically advantageous properties of resolvents, in particular for perturbation theory, can be of use in applications of the n-matrix inequalities, e.g., for analyzing the performance of the rotated Petz recovery map in quantum information theory and for removing the unitaries altogether.

  20. Design for a Unitary Graphite Composite Instrument Boom

    NASA Technical Reports Server (NTRS)

    Alexander, Wes; Carlos, Rene; Sturm, James; Rossoni, Peter

    2004-01-01

    This paper describes development of a Unitary graphite composite instrument boom that incorporates carpenter-tape like hinges for stowage. While light and stiff, graphite composite is not ordinarily thought of as a flexible material. This design has taken advantage of the stiffness of the composite in tubular geometry, yet leveraged its thin- section behavior to place flexibility at the required locations. Key is the proprietary layup, which results in a tough yet flexible hinge capable of rotating over 90 degrees in each direction. When the boom deploys, there is enough torque to overcome parasitic resistance from harness, etc. It will snap to the fully extended, rigid shape. The design has addressed materials issues such as out-of-plane bending, edge cracking, and interlaminar ply separation.

  1. Unitary limit of two-nucleon interactions in strong magnetic fields

    DOE PAGES

    Detmold, William; Orginos, Kostas; Parreño, Assumpta; ...

    2016-03-14

    In this study, two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of m π ~ 450 and 806 MeV in uniform, time-independent magnetic fields of strength |B| ~ 10 19 – 10 20 Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavymore » ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems.« less

  2. Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Corlett, W. A.; Wassum, D. L.; Babb, C. D.

    1985-01-01

    The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research.

  3. Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model

    NASA Astrophysics Data System (ADS)

    Kanazawa, Takuya; Kieburg, Mario

    2018-06-01

    We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.

  4. Study of the Dalitz decay ϕ → ηe+e- with the KLOE detector

    NASA Astrophysics Data System (ADS)

    Babusci, D.; Balwierz-Pytko, I.; Bencivenni, G.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; Danè, E.; De Leo, V.; De Lucia, E.; De Robertis, G.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Salvo, R.; Domenici, D.; Erriquez, O.; Fanizzi, G.; Fantini, A.; Felici, G.; Fiore, S.; Franzini, P.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Höistad, B.; Johansson, T.; Kamińska, D.; Krzemien, W.; Kupsc, A.; Lee-Franzini, J.; Loddo, F.; Loffredo, S.; Mandaglio, G.; Martemianov, M.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Palladino, A.; Passeri, A.; Patera, V.; Prado Longhi, I.; Ranieri, A.; Santangelo, P.; Sarra, I.; Schioppa, M.; Sciascia, B.; Silarski, M.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.

    2015-03-01

    We have studied the vector to pseudoscalar conversion decay ϕ → ηe+e-, with η →π0π0π0, with the KLOE detector at DAΦNE. The data set of 1.7 fb-1 of e+e- collisions at √{ s} ∼Mϕ contains a clear conversion decay signal of ∼ 31 , 000 events from which we measured a value of BR (ϕ → ηe+e-) = (1.075 ± 0.007 ± 0.038) ×10-4. The same sample is used to determine the transition form factor by a fit to the e+e- invariant mass spectrum, obtaining bϕη = (1.28 ±0.10-0.08+0.09) GeV-2, that improves by a factor of five the precision of the previous measurement and is in good agreement with VMD expectations.

  5. Structure of hadron resonances with a nearby zero of the amplitude

    NASA Astrophysics Data System (ADS)

    Kamiya, Yuki; Hyodo, Tetsuo

    2018-03-01

    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude. If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the K ¯ N -π Σ amplitude, we discuss the origin of the eigenstates in the Λ (1405 ) region.

  6. An overview of η and η‧ decays at BESIII

    NASA Astrophysics Data System (ADS)

    Fang, Shuang-shi; Kupsc, Andrzej; Wei, Dai-hui

    2018-04-01

    The world’s largest sample of J/ψ events, 1.31 billion events accumulated at the BESIII detector, provides a unique opportunity to investigate η and η‧ physics via two-body J/ψ radiative or hadronic decays. For many η‧ decay channels the low background data samples are up to three orders of magnitude larger than collected in any previous experiment. Here we review the most significant results on η and η‧ obtained at BESIII so far. The analyses range from detailed studies of common decay dynamics, observations of new radiative and Dalitz decays, and searches for rare/forbidden decays with sensitivity up to ℬ ∼ 10‑5. Finally, prospects of forthcoming runs at the J/ψ peak for η and η‧ physics are discussed. Supported by National Natural Science Foundation of China (NSFC) (11565006, 11675184, 11735014)

  7. Testing of the Crew Exploration Vehicle in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Borg, Stephen E.; Watkins, Anthony N.; Cole, Daniel R.; Schwartz, Richard J.

    2007-01-01

    As part of a strategic, multi-facility test program, subscale testing of NASA s Crew Exploration Vehicle was conducted in both legs of NASA Langley s Unitary Plan Wind Tunnel. The objectives of these tests were to generate aerodynamic and surface pressure data over a range of supersonic Mach numbers and reentry angles of attack for experimental and computational validation and aerodynamic database development. To provide initial information on boundary layer transition at supersonic test conditions, transition studies were conducted using temperature sensitive paint and infrared thermography optical techniques. To support implementation of these optical diagnostics in the Unitary Wind Tunnel, the experiment was first modeled using the Virtual Diagnostics Interface software. For reentry orientations of 140 to 170 degrees (heat shield forward), windward surface flow was entirely laminar for freestream unit Reynolds numbers equal to or less than 3 million per foot. Optical techniques showed qualitative evidence of forced transition on the windward heat shield with application of both distributed grit and discreet trip dots. Longitudinal static force and moment data showed the largest differences with Mach number and angle of attack variations. Differences associated with Reynolds number variation and/or laminar versus turbulent flow on the heat shield were very small. Static surface pressure data supported the aforementioned trends with Mach number, Reynolds number, and angle of attack.

  8. Loop Braiding Statistics and Interacting Fermionic Symmetry-Protected Topological Phases in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Tantivasadakarn, Nathanan; Wang, Chenjie

    2018-01-01

    We study Abelian braiding statistics of loop excitations in three-dimensional gauge theories with fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected topological (FSPT) phases with unitary symmetries. It is known that the two problems are related by turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that there exist certain types of Abelian loop braiding statistics that are allowed only in the presence of fermionic particles, which correspond to 3D "intrinsic" FSPT phases, i.e., those that do not stem from bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems with antiunitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed previously due to the fact that strong interaction is necessary to realize them. We show that the simplest unitary symmetry to support 3D intrinsic FSPT phases is Z2×Z4. To establish the results, we first derive a complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.

  9. Low-momentum dynamic structure factor of a strongly interacting Fermi gas at finite temperature: A two-fluid hydrodynamic description

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Zou, Peng; Liu, Xia-Ji

    2018-02-01

    We provide a description of the dynamic structure factor of a homogeneous unitary Fermi gas at low momentum and low frequency, based on the dissipative two-fluid hydrodynamic theory. The viscous relaxation time is estimated and is used to determine the regime where the hydrodynamic theory is applicable and to understand the nature of sound waves in the density response near the superfluid phase transition. By collecting the best knowledge on the shear viscosity and thermal conductivity known so far, we calculate the various diffusion coefficients and obtain the damping width of the (first and second) sounds. We find that the damping width of the first sound is greatly enhanced across the superfluid transition and very close to the transition the second sound might be resolved in the density response for the transferred momentum up to half of Fermi momentum. Our work is motivated by the recent measurement of the local dynamic structure factor at low momentum at Swinburne University of Technology and the ongoing experiment on sound attenuation of a homogeneous unitary Fermi gas at Massachusetts Institute of Technology. We discuss how the measurement of the velocity and damping width of the sound modes in low-momentum dynamic structure factor may lead to an improved determination of the universal superfluid density, shear viscosity, and thermal conductivity of a unitary Fermi gas.

  10. Modulation of KvAP Unitary Conductance and Gating by 1-Alkanols and Other Surface Active Agents

    PubMed Central

    Finol-Urdaneta, Rocio K.; McArthur, Jeffrey R.; Juranka, Peter F.; French, Robert J.; Morris, Catherine E.

    2010-01-01

    Abstract The actions of alcohols and anesthetics on ion channels are poorly understood. Controversy continues about whether bilayer restructuring is relevant to the modulatory effects of these surface active agents (SAAs). Some voltage-gated K channels (Kv), but not KvAP, have putative low affinity alcohol-binding sites, and because KvAP structures have been determined in bilayers, KvAP could offer insights into the contribution of bilayer mechanics to SAA actions. We monitored KvAP unitary conductance and macroscopic activation and inactivation kinetics in PE:PG/decane bilayers with and without exposure to classic SAAs (short-chain 1-alkanols, cholesterol, and selected anesthetics: halothane, isoflurane, chloroform). At levels that did not measurably alter membrane specific capacitance, alkanols caused functional changes in KvAP behavior including lowered unitary conductance, modified kinetics, and shifted voltage dependence for activation. A simple explanation is that the site of SAA action on KvAP is its entire lateral interface with the PE:PG/decane bilayer, with SAA-induced changes in surface tension and bilayer packing order combining to modulate the shape and stability of various conformations. The KvAP structural adjustment to diverse bilayer pressure profiles has implications for understanding desirable and undesirable actions of SAA-like drugs and, broadly, predicts that channel gating, conductance and pharmacology may differ when membrane packing order differs, as in raft versus nonraft domains. PMID:20197029

  11. A quasiparticle-based multi-reference coupled-cluster method.

    PubMed

    Rolik, Zoltán; Kállay, Mihály

    2014-10-07

    The purpose of this paper is to introduce a quasiparticle-based multi-reference coupled-cluster (MRCC) approach. The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference (MR) basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. On the basis of these quasiparticles, a generalization of the normal-ordered operator products for the MR case can be introduced as an alternative to the approach of Mukherjee and Kutzelnigg [Recent Prog. Many-Body Theor. 4, 127 (1995); Mukherjee and Kutzelnigg, J. Chem. Phys. 107, 432 (1997)]. Based on the new normal ordering any quasiparticle-based theory can be formulated using the well-known diagram techniques. Beyond the general quasiparticle framework we also present a possible realization of the unitary transformation. The suggested transformation has an exponential form where the parameters, holding exclusively active indices, are defined in a form similar to the wave operator of the unitary coupled-cluster approach. The definition of our quasiparticle-based MRCC approach strictly follows the form of the single-reference coupled-cluster method and retains several of its beneficial properties. Test results for small systems are presented using a pilot implementation of the new approach and compared to those obtained by other MR methods.

  12. Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian.

    PubMed

    Seino, Junji; Nakai, Hiromi

    2012-06-28

    An accurate and efficient scheme for two-component relativistic calculations at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level is presented. The present scheme, termed local unitary transformation (LUT), is based on the locality of the relativistic effect. Numerical assessments of the LUT scheme were performed in diatomic molecules such as HX and X(2) (X = F, Cl, Br, I, and At) and hydrogen halide clusters, (HX)(n) (X = F, Cl, Br, and I). Total energies obtained by the LUT method agree well with conventional IODKH results. The computational costs of the LUT method are drastically lower than those of conventional methods since in the former there is linear-scaling with respect to the system size and a small prefactor.

  13. Aerodynamic characteristics of a fixed arrow-wing supersonic cruise aircraft at Mach numbers of 2.30, 2.70, and 2.95. [Langley Unitary Plan wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Fuller, D. E.; Watson, C. B.

    1978-01-01

    Tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30. 2.70, and 2.95 to determine the performance, static stability, and control characteristics of a model of a fixed-wing supersonic cruise aircraft with a design Mach Number of 2.70 (SCAT 15-F-9898). The configuration had a 74 deg swept warped wing with a reflexed trailing edge and four engine nacelles mounted below the reflexed portion of the wing. A number of variations in the basic configuration were investigated; they included the effect of wing leading edge radius, the effect of various model components, and the effect of model control deflections.

  14. Controllability of symmetric spin networks

    NASA Astrophysics Data System (ADS)

    Albertini, Francesca; D'Alessandro, Domenico

    2018-05-01

    We consider a network of n spin 1/2 systems which are pairwise interacting via Ising interaction and are controlled by the same electro-magnetic control field. Such a system presents symmetries since the Hamiltonian is unchanged if we permute two spins. This prevents full (operator) controllability, in that not every unitary evolution can be obtained. We prove however that controllability is verified if we restrict ourselves to unitary evolutions which preserve the above permutation invariance. For low dimensional cases, n = 2 and n = 3, we provide an analysis of the Lie group of available evolutions and give explicit control laws to transfer between two arbitrary permutation invariant states. This class of states includes highly entangled states such as Greenberger-Horne-Zeilinger (GHZ) states and W states, which are of interest in quantum information.

  15. Hamiltonian models for topological phases of matter in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Williamson, Dominic J.; Wang, Zhenghan

    2017-02-01

    We present commuting projector Hamiltonian realizations of a large class of (3 + 1)D topological models based on mathematical objects called unitary G-crossed braided fusion categories. This construction comes with a wealth of examples from the literature of symmetry-enriched topological phases. The spacetime counterparts to our Hamiltonians are unitary state sum topological quantum fields theories (TQFTs) that appear to capture all known constructions in the literature, including the Crane-Yetter-Walker-Wang and 2-Group gauge theory models. We also present Hamiltonian realizations of a state sum TQFT recently constructed by Kashaev whose relation to existing models was previously unknown. We argue that this TQFT is captured as a special case of the Crane-Yetter-Walker-Wang model, with a premodular input category in some instances.

  16. Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing.

    PubMed

    Howard, Mark; Campbell, Earl

    2017-03-03

    Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. First, we show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford gates, Pauli measurements, and stabilizer ancillas-the most general synthesis scenario-then the class of synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the number of magic states required for implementing a given target unitary. Guided by these results, we have found new and optimal examples of such synthesis.

  17. Unitary irreducible representations of SL(2,C) in discrete and continuous SU(1,1) bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrady, Florian; Hnybida, Jeff; Department of Physics, University of Waterloo, Waterloo, Ontario

    2011-01-15

    We derive the matrix elements of generators of unitary irreducible representations of SL(2,C) with respect to basis states arising from a decomposition into irreducible representations of SU(1,1). This is done with regard to a discrete basis diagonalized by J{sup 3} and a continuous basis diagonalized by K{sup 1}, and for both the discrete and continuous series of SU(1,1). For completeness, we also treat the more conventional SU(2) decomposition as a fifth case. The derivation proceeds in a functional/differential framework and exploits the fact that state functions and differential operators have a similar structure in all five cases. The states aremore » defined explicitly and related to SU(1,1) and SU(2) matrix elements.« less

  18. Observing single quantum trajectories of a superconducting qubit: ensemble properties and driven dynamics

    NASA Astrophysics Data System (ADS)

    Weber, Steven; Murch, K. W.; Chantasri, A.; Dressel, J.; Jordan, A. N.; Siddiqi, I.

    2014-03-01

    We use weak measurements to track individual quantum trajectories of a superconducting qubit embedded in a microwave cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We analyze ensembles of trajectories to determine statistical properties such as the most likely path and most likely time connecting pre and post-selected quantum states. We compare our results with theoretical predictions derived from an action principle for continuous quantum measurement. Furthermore, by introducing a qubit drive, we investigate the interplay between unitary state evolution and non-unitary measurement dynamics. This work was supported by the IARPA CSQ program and the ONR.

  19. Restricted numerical range: A versatile tool in the theory of quantum information

    NASA Astrophysics Data System (ADS)

    Gawron, Piotr; Puchała, Zbigniew; Miszczak, Jarosław Adam; Skowronek, Łukasz; Życzkowski, Karol

    2010-10-01

    Numerical range of a Hermitian operator X is defined as the set of all possible expectation values of this observable among a normalized quantum state. We analyze a modification of this definition in which the expectation value is taken among a certain subset of the set of all quantum states. One considers, for instance, the set of real states, the set of product states, separable states, or the set of maximally entangled states. We show exemplary applications of these algebraic tools in the theory of quantum information: analysis of k-positive maps and entanglement witnesses, as well as study of the minimal output entropy of a quantum channel. Product numerical range of a unitary operator is used to solve the problem of local distinguishability of a family of two unitary gates.

  20. User-Oriented Modeling Tools for Advanced Hybrid and Climate-Appropriate Rooftop Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolley, Jonathan; Univ. of California, Davis, CA; Modera, Mark

    Hybrid unitary air conditioning systems offer a pathway to substantially reduce energy use and peak electrical demand for cooling, heating, and ventilation in commercial buildings. Hybrid air conditioners incorporate multiple subsystems that are carefully orchestrated to provide climate- and application-specific efficiency advantages. There are a multitude of hybrid system architectures, but common subsystems include: heat recovery ventilation, indirect evaporative cooling, desiccant dehumidification, variable speed fans, modulating dampers, and multi-stage or variable-speed vapor compression cooling. Categorically, hybrid systems can operate in numerous discrete modes. For example: indirect evaporative cooling may operate for periods when the subsystem provides adequate sensible cooling, thenmore » vapor compression cooling will be included when more cooling or dehumidification is necessary. Laboratory assessments, field studies, and simulations have demonstrated that hybrid unitary air conditioners could reduce energy use for cooling and ventilation by 30-90% depending on climate and application. Heretofore, it has been challenging - if not impossible - for practitioners to model hybrid air conditioners as part of building energy simulations; and the limitation has severely obstructed broader adoption of technologies in this class. In this project, we developed a new feature for EnergyPlus that enables modeling hybrid unitary air conditioning equipment for building energy simulations. This is a significant advancement for both theory and practice, and confers public benefit by enabling practitioners to evaluate this compelling efficiency technology as a part of building energy simulations. The feature is a black-box model that requires extensive performance data for each hybrid unitary product. In parallel, we also developed new features for the Technology Performance Exchange to enable manufacturers to submit performance data in a standard format that can be used with the hybrid unitary model in EnergyPlus. Additionally, through this project we expanded university educational resources, and university- manufacturing industry collaborations in the field of energy efficiency technology. Over two years, we involved 20 undergraduate students in ambitious research projects focused on modeling complex multi-mode mechanical systems, supported three mechanical engineering bachelor theses, established undergraduate apprenticeships with multiple industry partners, and involved those partners in the process of design, validation, and debugging for the new EnergyPlus feature. The EnergyPlus feature is described and discussed in an academic article, as well as in an engineering reference, and input/output reference documentation for EnergyPlus. The Technology Performance Exchange features are live and publicly accessible, our manufacturer partners are primed to submit initial product information and performance data to the exchange, and the EnergyPlus feature is scheduled for public release in Spring 2018 as a part of EnergyPlus v8.9.« less

  1. a Perspective on the Magic Square and the "special Unitary" Realization of Real Simple Lie Algebras

    NASA Astrophysics Data System (ADS)

    Santander, Mariano

    2013-07-01

    This paper contains the last part of the minicourse "Spaces: A Perspective View" delivered at the IFWGP2012. The series of three lectures was intended to bring the listeners from the more naive and elementary idea of space as "our physical Space" (which after all was the dominant one up to the 1820s) through the generalization of the idea of space which took place in the last third of the 19th century. That was a consequence of first the discovery and acceptance of non-Euclidean geometry and second, of the views afforded by the works of Riemann and Klein and continued since then by many others, outstandingly Lie and Cartan. Here we deal with the part of the minicourse which centers on the classification questions associated to the simple real Lie groups. We review the original introduction of the Magic Square "á la Freudenthal", putting the emphasis in the role played in this construction by the four normed division algebras ℝ, ℂ, ℍ, 𝕆. We then explore the possibility of understanding some simple real Lie algebras as "special unitary" over some algebras 𝕂 or tensor products 𝕂1 ⊗ 𝕂2, and we argue that the proper setting for this construction is not to confine only to normed division algebras, but to allow the split versions ℂ‧, ℍ‧, 𝕆‧ of complex, quaternions and octonions as well. This way we get a "Grand Magic Square" and we fill in all details required to cover all real forms of simple real Lie algebras within this scheme. The paper ends with the complete lists of all realizations of simple real Lie algebras as "special unitary" (or only unitary when n = 2) over some tensor product of two *-algebras 𝕂1, 𝕂2, which in all cases are obtained from ℝ, ℂ, ℂ‧, ℍ, ℍ‧, 𝕆, 𝕆‧ as sets, endowing them with a *-conjugation which usually but not always is the natural complex, quaternionic or octonionic conjugation.

  2. On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices

    NASA Astrophysics Data System (ADS)

    Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.

    2008-02-01

    Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).

  3. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    PubMed

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.

  4. Genuine four tangle for four qubit states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S. Shelly; Sharma, N. K.

    We report a four qubit polynomial invariant that quantifies genuine four-body correlations. The four qubit invariants are obtained from transformation properties of three qubit invariants under a local unitary on the fourth qubit.

  5. Pore size matters for potassium channel conductance

    PubMed Central

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  6. Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer in the transition from quantum to classical

    NASA Astrophysics Data System (ADS)

    Zurek, Wojciech Hubert

    2007-11-01

    Measurements transfer information about a system to the apparatus and then, further on, to observers and (often inadvertently) to the environment. I show that even imperfect copying essential in such situations restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred outcome states emerge as a result. They provide a framework for “wave-packet collapse,” designating terminal points of quantum jumps and defining the measured observable by specifying its eigenstates. In quantum Darwinism, they are the progenitors of multiple copies spread throughout the environment—the fittest quantum states that not only survive decoherence, but subvert the environment into carrying information about them—into becoming a witness.

  7. An Informal Overview of the Unitary Group Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnad, V.; Escher, J.; Kruse, M.

    The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGAmore » is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.« less

  8. Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems.

    PubMed

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2014-12-12

    Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.

  9. Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions.

    PubMed

    Pieper, Ron; Koslover, Deborah; Poon, Ting-Chung

    2009-03-01

    An exact solution to the four-order acousto-optic (AO) Bragg diffraction problem with arbitrary initial conditions compatible with exact Bragg angle incident light is developed. The solution, obtained by solving a 4th-order differential equation, is formalized into a transition matrix operator predicting diffracted light orders at the exit of the AO cell in terms of the same diffracted light orders at the entrance. It is shown that the transition matrix is unitary and that this unitary matrix condition is sufficient to guarantee energy conservation. A comparison of analytical solutions with numerical predictions validates the formalism. Although not directly related to the approach used to obtain the solution, it was discovered that all four generated eigenvalues from the four-order AO differential matrix operator are expressed simply in terms of Euclid's Divine Proportion.

  10. Centrifugal distortion coefficients of asymmetric-top molecules: Reduction of the octic terms of the rotational Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ramachandra Rao, Ch. V. S.

    1983-11-01

    The rotational Hamiltonian of an asymmetric-top molecule in its standard form, containing terms up to eighth degree in the components of the total angular momentum, is transformed by a unitary transformation with parameters Spqr to a reduced Hamiltonian so as to avoid the indeterminacies inherent in fitting the complete Hamiltonian to observed energy levels. Expressions are given for the nine determinable combinations of octic constants Θ' i ( i = 1 to 9) which are invariant under the unitary transformation. A method of reduction suitable for energy calculations by matrix diagonalization is considered. The relations between the coefficients of the transformed Hamiltonian, for suitable choice of the parameters Spqr, and those of the reduced Hamiltonian are given. This enables the determination of the nine octic constants Θ' i in terms of the experimental constants.

  11. Attitudes and cognitive distances: On the non-unitary and flexible nature of cognitive maps.

    PubMed

    Carbon, Claus-Christian; Hesslinger, Vera M

    2013-01-01

    Spatial relations of our environment are represented in cognitive maps. These cognitive maps are prone to various distortions (e.g., alignment and hierarchical effects) caused by basic cognitive factors (such as perceptual and conceptual reorganization) but also by affectively loaded and attitudinal influences. Here we show that even differences in attitude towards a single person representing a foreign country (here Barack Obama and the USA) can be related to drastic differences in the cognitive representation of distances concerning that country. Europeans who had a positive attitude towards Obama's first presidential program estimated distances between US and European cities as being much smaller than did people who were skeptical or negative towards Obama's ideas. On the basis of this result and existing literature, arguments on the non-unitary and flexible nature of cognitive maps are discussed.

  12. Quantum mechanics on phase space: The hydrogen atom and its Wigner functions

    NASA Astrophysics Data System (ADS)

    Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.

    2018-03-01

    Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.

  13. Supersymmetric symplectic quantum mechanics

    NASA Astrophysics Data System (ADS)

    de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.

    2018-02-01

    Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.

  14. Scalable randomized benchmarking of non-Clifford gates

    NASA Astrophysics Data System (ADS)

    Cross, Andrew; Magesan, Easwar; Bishop, Lev; Smolin, John; Gambetta, Jay

    Randomized benchmarking is a widely used experimental technique to characterize the average error of quantum operations. Benchmarking procedures that scale to enable characterization of n-qubit circuits rely on efficient procedures for manipulating those circuits and, as such, have been limited to subgroups of the Clifford group. However, universal quantum computers require additional, non-Clifford gates to approximate arbitrary unitary transformations. We define a scalable randomized benchmarking procedure over n-qubit unitary matrices that correspond to protected non-Clifford gates for a class of stabilizer codes. We present efficient methods for representing and composing group elements, sampling them uniformly, and synthesizing corresponding poly (n) -sized circuits. The procedure provides experimental access to two independent parameters that together characterize the average gate fidelity of a group element. We acknowledge support from ARO under Contract W911NF-14-1-0124.

  15. [On-line processing mechanisms in text comprehension: a theoretical review on constructing situation models].

    PubMed

    Iseki, Ryuta

    2004-12-01

    This article reviewed research on construction of situation models during reading. To position variety of research in overall process appropriately, an unitary framework was devised in terms of three theories for on-line processing: resonance process, event-indexing model, and constructionist theory. Resonance process was treated as a basic activation mechanism in the framework. Event-indexing model was regarded as a screening system which selected and encoded activated information in situation models along with situational dimensions. Constructionist theory was considered to have a supervisory role based on coherence and explanation. From a view of the unitary framework, some problems concerning each theory were examined and possible interpretations were given. Finally, it was pointed out that there were little theoretical arguments on associative processing at global level and encoding text- and inference-information into long-term memory.

  16. Quantitative approaches to information recovery from black holes

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Czech, Bartłomiej

    2011-08-01

    The evaporation of black holes into apparently thermal radiation poses a serious conundrum for theoretical physics: at face value, it appears that in the presence of a black hole, quantum evolution is non-unitary and destroys information. This information loss paradox has its seed in the presence of a horizon causally separating the interior and asymptotic regions in a black hole spacetime. A quantitative resolution of the paradox could take several forms: (a) a precise argument that the underlying quantum theory is unitary, and that information loss must be an artifact of approximations in the derivation of black hole evaporation, (b) an explicit construction showing how information can be recovered by the asymptotic observer, (c) a demonstration that the causal disconnection of the black hole interior from infinity is an artifact of the semiclassical approximation. This review summarizes progress on all these fronts.

  17. Unitary Quantum Relativity. (Work in Progress)

    NASA Astrophysics Data System (ADS)

    Finkelstein, David Ritz

    2017-01-01

    A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

  18. Randomly displaced phase distribution design and its advantage in page-data recording of Fourier transform holograms.

    PubMed

    Emoto, Akira; Fukuda, Takashi

    2013-02-20

    For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.

  19. Connes' embedding problem and winning strategies for quantum XOR games

    NASA Astrophysics Data System (ADS)

    Harris, Samuel J.

    2017-12-01

    We consider quantum XOR games, defined in the work of Regev and Vidick [ACM Trans. Comput. Theory 7, 43 (2015)], from the perspective of unitary correlations defined in the work of Harris and Paulsen [Integr. Equations Oper. Theory 89, 125 (2017)]. We show that the winning bias of a quantum XOR game in the tensor product model (respectively, the commuting model) is equal to the norm of its associated linear functional on the unitary correlation set from the appropriate model. We show that Connes' embedding problem has a positive answer if and only if every quantum XOR game has entanglement bias equal to the commuting bias. In particular, the embedding problem is equivalent to determining whether every quantum XOR game G with a winning strategy in the commuting model also has a winning strategy in the approximate finite-dimensional model.

  20. Isospectral Hamiltonian for position-dependent mass for an arbitrary quantum system and coherent states

    NASA Astrophysics Data System (ADS)

    Yahiaoui, Sid-Ahmed; Bentaiba, Mustapha

    2017-06-01

    By means of the unitary transformation, a new way for discussing the ordering prescription of the Schrödinger equation with a position-dependent mass (PDM) for isospectral Hamiltonian operators is presented. We show that the ambiguity parameter choices in the kinetic part of the Hamiltonian can be explained through an exact SUSY QM symmetry as well as a consequence of an accidental symmetry under the Z2 action. By making use of the unitary transformation, we construct coherent states for a family of PDM isospectral Hamiltonians from a suitable choice of ladder operators. We show that these states preserve the usual structure of Klauder-Perelomov's states and thus saturate and minimize the position-momentum uncertainty relation (PMUR) under some special restrictions. We show that PMUR properties can be used to determine the sign of the superpotential.

  1. High-Threshold Low-Overhead Fault-Tolerant Classical Computation and the Replacement of Measurements with Unitary Quantum Gates.

    PubMed

    Cruikshank, Benjamin; Jacobs, Kurt

    2017-07-21

    von Neumann's classic "multiplexing" method is unique in achieving high-threshold fault-tolerant classical computation (FTCC), but has several significant barriers to implementation: (i) the extremely complex circuits required by randomized connections, (ii) the difficulty of calculating its performance in practical regimes of both code size and logical error rate, and (iii) the (perceived) need for large code sizes. Here we present numerical results indicating that the third assertion is false, and introduce a novel scheme that eliminates the two remaining problems while retaining a threshold very close to von Neumann's ideal of 1/6. We present a simple, highly ordered wiring structure that vastly reduces the circuit complexity, demonstrates that randomization is unnecessary, and provides a feasible method to calculate the performance. This in turn allows us to show that the scheme requires only moderate code sizes, vastly outperforms concatenation schemes, and under a standard error model a unitary implementation realizes universal FTCC with an accuracy threshold of p<5.5%, in which p is the error probability for 3-qubit gates. FTCC is a key component in realizing measurement-free protocols for quantum information processing. In view of this, we use our scheme to show that all-unitary quantum circuits can reproduce any measurement-based feedback process in which the asymptotic error probabilities for the measurement and feedback are (32/63)p≈0.51p and 1.51p, respectively.

  2. Kitaev honeycomb tensor networks: Exact unitary circuits and applications

    NASA Astrophysics Data System (ADS)

    Schmoll, Philipp; Orús, Román

    2017-01-01

    The Kitaev honeycomb model is a paradigm of exactly solvable models, showing nontrivial physical properties such as topological quantum order, Abelian and non-Abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely, Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear understanding of several properties of the model. In particular, we show how the fidelity diagram is straightforward both at zero temperature and at finite temperature in the vortex-free sector. We also show how the properties of two-point correlation functions follow easily. Finally, we also discuss the pros and cons of contracting of our 3d TN down to a 2d projected entangled pair state (PEPS) with finite bond dimension. The results in this paper can be extended to generalizations of the Kitaev model, e.g., to other lattices, spins, and dimensions.

  3. A new fourth-order Fourier-Bessel split-step method for the extended nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Patrick L.

    2008-01-10

    Fourier split-step techniques are often used to compute soliton-like numerical solutions of the nonlinear Schroedinger equation. Here, a new fourth-order implementation of the Fourier split-step algorithm is described for problems possessing azimuthal symmetry in 3 + 1-dimensions. This implementation is based, in part, on a finite difference approximation {delta}{sub perpendicular} {sup FDA} of 1/r ({partial_derivative})/({partial_derivative}r) r({partial_derivative})/({partial_derivative}r) that possesses an associated exact unitary representation of e{sup i/2{lambda}}{sup {delta}{sub perpendicular}{sup FDA}}. The matrix elements of this unitary matrix are given by special functions known as the associated Bessel functions. Hence the attribute Fourier-Bessel for the method. The Fourier-Bessel algorithm is shown tomore » be unitary and unconditionally stable. The Fourier-Bessel algorithm is employed to simulate the propagation of a periodic series of short laser pulses through a nonlinear medium. This numerical simulation calculates waveform intensity profiles in a sequence of planes that are transverse to the general propagation direction, and labeled by the cylindrical coordinate z. These profiles exhibit a series of isolated pulses that are offset from the time origin by characteristic times, and provide evidence for a physical effect that may be loosely termed normal mode condensation. Normal mode condensation is consistent with experimentally observed pulse filamentation into a packet of short bursts, which may occur as a result of short, intense irradiation of a medium.« less

  4. [Anterograde declarative memory and its models].

    PubMed

    Barbeau, E-J; Puel, M; Pariente, J

    2010-01-01

    Patient H.M.'s recent death provides the opportunity to highlight the importance of his contribution to a better understanding of the anterograde amnesic syndrome. The thorough study of this patient over five decades largely contributed to shape the unitary model of declarative memory. This model holds that declarative memory is a single system that cannot be fractionated into subcomponents. As a system, it depends mainly on medial temporal lobes structures. The objective of this review is to present the main characteristics of different modular models that have been proposed as alternatives to the unitary model. It is also an opportunity to present different patients, who, although less famous than H.M., helped make signification contribution to the field of memory. The characteristics of the five main modular models are presented, including the most recent one (the perceptual-mnemonic model). The differences as well as how these models converge are highlighted. Different possibilities that could help reconcile unitary and modular approaches are considered. Although modular models differ significantly in many aspects, all converge to the notion that memory for single items and semantic memory could be dissociated from memory for complex material and context-rich episodes. In addition, these models converge concerning the involvement of critical brain structures for these stages: Item and semantic memory, as well as familiarity, are thought to largely depend on anterior subhippocampal areas, while relational, context-rich memory and recollective experiences are thought to largely depend on the hippocampal formation. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. Quantum Search in Hilbert Space

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    A proposed quantum-computing algorithm would perform a search for an item of information in a database stored in a Hilbert-space memory structure. The algorithm is intended to make it possible to search relatively quickly through a large database under conditions in which available computing resources would otherwise be considered inadequate to perform such a task. The algorithm would apply, more specifically, to a relational database in which information would be stored in a set of N complex orthonormal vectors, each of N dimensions (where N can be exponentially large). Each vector would constitute one row of a unitary matrix, from which one would derive the Hamiltonian operator (and hence the evolutionary operator) of a quantum system. In other words, all the stored information would be mapped onto a unitary operator acting on a quantum state that would represent the item of information to be retrieved. Then one could exploit quantum parallelism: one could pose all search queries simultaneously by performing a quantum measurement on the system. In so doing, one would effectively solve the search problem in one computational step. One could exploit the direct- and inner-product decomposability of the unitary matrix to make the dimensionality of the memory space exponentially large by use of only linear resources. However, inasmuch as the necessary preprocessing (the mapping of the stored information into a Hilbert space) could be exponentially expensive, the proposed algorithm would likely be most beneficial in applications in which the resources available for preprocessing were much greater than those available for searching.

  6. Shear viscosity in an anisotropic unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.

    2017-11-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.

  7. Internal brooding favours pre-metamorphic chimerism in a non-colonial cnidarian, the sea anemone Urticina felina

    PubMed Central

    Mercier, Annie; Sun, Zhao; Hamel, Jean-François

    2011-01-01

    The concept of intraorganismal genetic heterogeneity resulting from allogeneic fusion (i.e. chimerism) has almost exclusively been explored in modular organisms that have the capacity to reproduce asexually, such as colonial ascidians and corals. Apart from medical conditions in mammals, the natural development of chimeras across ontogenetic stages has not been investigated in any unitary organism incapable of asexual propagation. Furthermore, chimerism was mainly studied among gregarious settlers to show that clustering of genetically similar individuals upon settlement promotes the occurrence of multi-chimeras exhibiting greater fitness. The possible occurrence of chimeric embryos and larvae prior to settlement has not received any attention. Here we document for the first time the presence of natural chimeras in brooded embryos and larvae of a unitary cnidarian, the sea anemone Urticina felina. Rates of visible bi- and multi-chimerism of up to 3.13 per cent were measured in the broods of 16 females. Apart from these sectorial chimeras, monitored fusion events also yielded homogeneous chimeric entities (mega-larvae) suggesting that the actual rates of natural chimerism in U. felina are greater than predicted by visual assessment. In support of this assumption, the broods of certain individuals comprised a dominant proportion (to 90%) of inexplicably large embryos and larvae (relative to oocyte size). Findings of fusion and chimerism in a unitary organism add a novel dimension to the framework within which the mechanisms and evolutionary significance of genetic heterogeneity in animal taxa can be explored. PMID:21508035

  8. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  9. Local aspects of disentanglement induced by spontaneous emission

    NASA Astrophysics Data System (ADS)

    Jamróz, Anna

    2006-06-01

    We consider spontaneous emission of two two-level atoms interacting with vacuum fluctuations. We study the process of disentanglement in this system and show the possibility of changing disentanglement time by local unitary operations.

  10. Weakly Coretractable Modules

    NASA Astrophysics Data System (ADS)

    Hadi, Inaam M. A.; Al-aeashi, Shukur N.

    2018-05-01

    If R is a ring with identity and M is a unitary right R-module. Here we introduce the class of weakly coretractable module. Some basic properties are investigated and some relationships between these modules and other related one are introduced.

  11. Fuel cell sub-assembly

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  12. Lossless and Sufficient - Invariant Decomposition of Deterministic Target

    NASA Astrophysics Data System (ADS)

    Paladini, Riccardo; Ferro Famil, Laurent; Pottier, Eric; Martorella, Marco; Berizzi, Fabrizio

    2011-03-01

    The symmetric radar scattering matrix of a reciprocal target is projected on the circular polarization basis and is decomposed into four orientation invariant parameters, relative phase and relative orientation. The physical interpretation of this results is found in the wave-particle nature of radar scattering due to the circular polarization nature of elemental packets of energy. The proposed decomposition, is based on left orthogonal to left Special Unitary basis, providing the target description in term of a unitary vector. A comparison between the proposed CTD and Cameron, Kennaugh and Krogager decompositions is also pointed out. A validation by the use of both anechoic chamber data and airborne EMISAR data of DTU is used to show the effectiveness of this decomposition for the analysis of coherent targets. In the second paper we will show the application of the rotation group U(3) for the decomposition of distributed targets into nine meaningful parameters.

  13. Symmetric weak ternary quantum homomorphic encryption schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  14. Qubit transport model for unitary black hole evaporation without firewalls*

    NASA Astrophysics Data System (ADS)

    Osuga, Kento; Page, Don N.

    2018-03-01

    We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon, and it avoids a counterargument that has been raised for subsystem transfer models as resolutions of the firewall paradox. Furthermore, it fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitatively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.

  15. Study of X(5568) in a unitary coupled-channel approximation of BK¯ and Bs π

    NASA Astrophysics Data System (ADS)

    Sun, Bao-Xi; Dong, Fang-Yong; Pang, Jing-Long

    2017-07-01

    The potential of the B meson and the pseudoscalar meson is constructed up to the next-to-leading order Lagrangian, and then the BK¯ and Bs π interaction is studied in the unitary coupled-channel approximation. A resonant state with a mass about 5568 MeV and JP =0+ is generated dynamically, which can be associated with the X(5568) state announced by the D0 Collaboration recently. The mass and the decay width of this resonant state depend on the regularization scale in the dimensional regularization scheme, or the maximum momentum in the momentum cutoff regularization scheme. The scattering amplitude of the vector B meson and the pseudoscalar meson is calculated, and an axial-vector state with a mass near 5620 MeV and JP =1+ is produced. Their partners in the charm sector are also discussed.

  16. Majorana-Based Fermionic Quantum Computation.

    PubMed

    O'Brien, T E; Rożek, P; Akhmerov, A R

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  17. A Chinese view of the Western nursing metaparadigm.

    PubMed

    Kao, Hsueh-Fen Sabrina; Reeder, Francelyn M; Hsu, Min-Tao; Cheng, Su-Fen

    2006-06-01

    The purpose of this article is to reveal Chinese-rooted meanings present within the Western nursing metaparadigm and to illustrate some similarities with Rogers's Science of Unitary Human Beings. Confucian and Taoist beliefs have the potential to illuminate the basic constructs inherent in holistic nursing. The Western nursing metaparadigm of four concepts--person, nursing, health, and environment--was explored through the lens of a Chinese worldview and led to the presentation of a broadened view for an integrated model of nursing. Asian and Western worldviews of human beings and health are not mutually exclusive. The Chinese holistic worldview of Taoism and Confucianism resonates theoretically and cosmically with the dynamic nature of the human-environment mutual relationship basic to Rogers' unitary view. This strong, theoretical link, when elaborated for its similarities and implications, can broaden the knowledge base to guide contemporary nursing practice, education, and research, particularly relevant for holistic nursing.

  18. The SNARC effect is not a unitary phenomenon.

    PubMed

    Basso Moro, Sara; Dell'Acqua, Roberto; Cutini, Simone

    2018-04-01

    Models of the spatial-numerical association of response codes (SNARC) effect-faster responses to small numbers using left effectors, and the converse for large numbers-diverge substantially in localizing the root cause of this effect along the numbers' processing chain. One class of models ascribes the cause of the SNARC effect to the inherently spatial nature of the semantic representation of numerical magnitude. A different class of models ascribes the effect's cause to the processing dynamics taking place during response selection. To disentangle these opposing views, we devised a paradigm combining magnitude comparison and stimulus-response switching in order to monitor modulations of the SNARC effect while concurrently tapping both semantic and response-related processing stages. We observed that the SNARC effect varied nonlinearly as a function of both manipulated factors, a result that can hardly be reconciled with a unitary cause of the SNARC effect.

  19. Healing patterns revealed in middle school boys' experiences of being bullied using Roger's Science of Unitary Human Beings (SUHB).

    PubMed

    Willis, Danny G; Griffith, Catherine A

    2010-08-01

    Although two of the primary risk factors for being bullied include "male" and "middle school" status, a gap in knowledge exists of middle school boys' personal accounts and meanings of being bullied and their healing. Giorgi's descriptive phenomenological approach using open-ended semi-structured individual interviews was used to collect and analyze evidence related to middle school boys' lived experiences of being bullied and healing. Roger's Science of Unitary Human Beings (SUHB) guided interpretation of the healing patterns. Three patterns of healing were identified in boys' experiences: meaning-making, self-transcendence, and nonviolently claiming personal power. Evidence of healing patterns exists in middle school boys' experiences of being bullied, offering a foundation for further research and practice focused on healing. When working with middle school boys who have been bullied, nurses need to ask about their experiences and promote their healing.

  20. Maximal coherence and the resource theory of purity

    NASA Astrophysics Data System (ADS)

    Streltsov, Alexander; Kampermann, Hermann; Wölk, Sabine; Gessner, Manuel; Bruß, Dagmar

    2018-05-01

    The resource theory of quantum coherence studies the off-diagonal elements of a density matrix in a distinguished basis, whereas the resource theory of purity studies all deviations from the maximally mixed state. We establish a direct connection between the two resource theories, by identifying purity as the maximal coherence which is achievable by unitary operations. The states that saturate this maximum identify a universal family of maximally coherent mixed states. These states are optimal resources under maximally incoherent operations, and thus independent of the way coherence is quantified. For all distance-based coherence quantifiers the maximal coherence can be evaluated exactly, and is shown to coincide with the corresponding distance-based purity quantifier. We further show that purity bounds the maximal amount of entanglement and discord that can be generated by unitary operations, thus demonstrating that purity is the most elementary resource for quantum information processing.

  1. Efficient Quantum Pseudorandomness.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał

    2016-04-29

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  2. Quantum chaos and breaking of all anti-unitary symmetries in Rydberg excitons.

    PubMed

    Aßmann, Marc; Thewes, Johannes; Fröhlich, Dietmar; Bayer, Manfred

    2016-07-01

    Symmetries are the underlying principles of fundamental interactions in nature. Chaos in a quantum system may emerge from breaking these symmetries. Compared to vacuum, crystals are attractive for studying quantum chaos, as they not only break spatial isotropy, but also lead to novel quasiparticles with modified interactions. Here we study yellow Rydberg excitons in cuprous oxide which couple strongly to the vacuum light field and interact significantly with crystal phonons, leading to inversion symmetry breaking. In a magnetic field, time-reversal symmetry is also broken and the exciton states show a complex splitting pattern, resulting in quadratic level repulsion for small splittings. In contrast to atomic chaotic systems in a magnetic field, which show only a linear level repulsion, this is a signature of a system where all anti-unitary symmetries are broken simultaneously. This behaviour can otherwise be found only for the electro-weak interaction or engineered billiards.

  3. Attitudes and cognitive distances: On the non-unitary and flexible nature of cognitive maps

    PubMed Central

    Carbon, Claus-Christian; Hesslinger, Vera M.

    2013-01-01

    Spatial relations of our environment are represented in cognitive maps. These cognitive maps are prone to various distortions (e.g., alignment and hierarchical effects) caused by basic cognitive factors (such as perceptual and conceptual reorganization) but also by affectively loaded and attitudinal influences. Here we show that even differences in attitude towards a single person representing a foreign country (here Barack Obama and the USA) can be related to drastic differences in the cognitive representation of distances concerning that country. Europeans who had a positive attitude towards Obama’s first presidential program estimated distances between US and European cities as being much smaller than did people who were skeptical or negative towards Obama’s ideas. On the basis of this result and existing literature, arguments on the non-unitary and flexible nature of cognitive maps are discussed. PMID:24155860

  4. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2016-06-01

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  5. Results of tests OA12 and IA9 in the Ames Research Center unitary plan wind tunnels on an 0.030-scale model of the space shuttle vehicle 2A to determine aerodynamic loads, volume 1

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1973-01-01

    Tests were conducted in unitary plan wind tunnels on an 0.030-scale replica of the space shuttle vehicle configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and tests on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from minus 8 deg to plus 8 deg. The isolated orbiter was tested at angles of attack from minus 15 deg to plus 40 deg and angles of sideslip from minus 10 deg to plus 10 deg are dictated by trajectory considerations. The effects of orbiter/external tank incidence and deflected control surfaces on aerodynamic loads were also investigated.

  6. Effects of reaction control system jet simulation on the stability and control characteristics of a 0.015 scale space shuttle orbiter model tested in the Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1974-01-01

    An experimental investigation was performed in the Langley Research Center Unitary Plan Wind Tunnel (Test 0A70) to obtain the detailed effects that RCS jet flow interactions with local orbiter flow field have on supersonic stability and control characteristics of the space shuttle orbiter. Six-component force data were obtained through an angle-of-attack range from 15 to 35 degrees at angles of sideslip of 0, +5, and -5 degrees. The test was conducted with yaw jet simulation at free-stream Mach numbers of 2.5 and 4.6, simulating SSV re-entry flight conditions at these Mach numbers. In addition to the basic force measurements, fuselage base pressures and pressures on the non-metric RCS pods were obtained.

  7. Majorana-Based Fermionic Quantum Computation

    NASA Astrophysics Data System (ADS)

    O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  8. Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Tamascelli, D.; Smirne, A.; Huelga, S. F.; Plenio, M. B.

    2018-01-01

    We identify the conditions that guarantee equivalence of the reduced dynamics of an open quantum system (OQS) for two different types of environments—one a continuous bosonic environment leading to a unitary system-environment evolution and the other a discrete-mode bosonic environment resulting in a system-mode (nonunitary) Lindbladian evolution. Assuming initial Gaussian states for the environments, we prove that the two OQS dynamics are equivalent if both the expectation values and two-time correlation functions of the environmental interaction operators are the same at all times for the two configurations. Since the numerical and analytical description of a discrete-mode environment undergoing a Lindbladian evolution is significantly more efficient than that of a continuous bosonic environment in a unitary evolution, our result represents a powerful, nonperturbative tool to describe complex and possibly highly non-Markovian dynamics. As a special application, we recover and generalize the well-known pseudomodes approach to open-system dynamics.

  9. Multihop teleportation of two-qubit state via the composite GHZ-Bell channel

    NASA Astrophysics Data System (ADS)

    Zou, Zhen-Zhen; Yu, Xu-Tao; Gong, Yan-Xiao; Zhang, Zai-Chen

    2017-01-01

    A multihop teleportation protocol in quantum communication network is introduced to teleport an arbitrary two-qubit state, between two nodes without directly sharing entanglement pairs. Quantum channels are built among neighbor nodes based on a five-qubit entangled system composed of GHZ and Bell pairs. The von Neumann measurements in all intermediate nodes and the source node are implemented, and then the measurement outcomes are sent to the destination node independently. After collecting all the measurement outcomes at the destination node, an efficient method is proposed to calculate the unitary operations for transforming the receiver's states to the state teleported. Therefore, only adopting the proper unitary operations at the destination node, the desired quantum state can be recovered perfectly. The transmission flexibility and efficiency of quantum network with composite GHZ-Bell channel are improved by transmitting measurement outcomes of all nodes in parallelism and reducing hop-by-hop teleportation delay.

  10. A quantum Fredkin gate.

    PubMed

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently.

  11. Unitary evolution of the quantum Universe with a Brown-Kuchař dust

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki

    2015-12-01

    We study the time evolution of a wave function for the spatially flat Friedmann-Lemaître-Robertson-Walker Universe governed by the Wheeler-DeWitt equation in both analytical and numerical methods. We consider a Brown-Kuchař dust as a matter field in order to introduce a ‘clock’ in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. Exact wave functions show that the expectation value of the spatial volume of the Universe obeys the classical-time evolution in the late time but its variance diverges.

  12. Embedded Gaussian unitary ensembles with U(Ω)⊗SU(r) embedding generated by random two-body interactions with SU(r) symmetry

    NASA Astrophysics Data System (ADS)

    Vyas, Manan; Kota, V. K. B.

    2012-12-01

    Following the earlier studies on embedded unitary ensembles generated by random two-body interactions [EGUE(2)] with spin SU(2) and spin-isospin SU(4) symmetries, developed is a general formulation, for deriving lower order moments of the one- and two-point correlation functions in eigenvalues, that is valid for any EGUE(2) and BEGUE(2) ("B" stands for bosons) with U(Ω)⊗SU(r) embedding and with two-body interactions preserving SU(r) symmetry. Using this formulation with r = 1, we recover the results derived by Asaga et al. [Ann. Phys. (N.Y.) 297, 344 (2002)], 10.1006/aphy.2002.6248 for spinless boson systems. Going further, new results are obtained for r = 2 (this corresponds to two species boson systems) and r = 3 (this corresponds to spin 1 boson systems).

  13. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  14. Realization of allowable qeneralized quantum gates

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Cao, Huaixin; Li, Li

    2010-10-01

    The most general duality gates were introduced by Long, Liu and Wang and named allowable generalized quantum gates (AGQGs, for short). By definition, an allowable generalized quantum gate has the form of mathcal{U} = ∑{/k=0 d-1} c k U k , where U k ’s are unitary operators on a Hilbert space H and the coefficients c k ’s are complex numbers with |∑{/k=0 d-1} c k | ⩽ 1 and | c k | ⩽ 1 for all k = 0, 1, ..., d - 1. In this paper, we prove that an AGQG mathcal{U} = ∑{/k=0 d-1} c k U k is realizable, i.e. there are two d by d unitary matrices W and V such that c k = W 0 k V k0 (0 ⩽ k ⩽ d - 1) if and only if ∑{/k=0 d-1} | c k | ⩽ 1, in that case, the matrices W and V are constructed.

  15. Faddeev-chiral unitary approach to the K-d scattering length

    NASA Astrophysics Data System (ADS)

    Mizutani, T.; Fayard, C.; Saghai, B.; Tsushima, K.

    2013-03-01

    Our earlier Faddeev three-body study in the K--deuteron scattering length, AK-d, is revisited here in light of the recent developments on two fronts: (i) the improved chiral unitary approach to the theoretical description of the coupled K¯N related channels at low energies, and (ii) the new and improved measurement from SIDDHARTA Collaboration of the strong interaction energy shift and width in the lowest K--hydrogen atomic level. Those two, in combination, have allowed us to produce a reliable two-body input to the three-body calculation. All available low-energy K-p observables are well reproduced and predictions for the K¯N scattering lengths and amplitudes, (πΣ)∘ invariant-mass spectra, as well as for AK-d are put forward and compared with results from other sources. The findings of the present work are expected to be useful in interpreting the forthcoming data from CLAS, HADES, LEPS, and SIDDHARTA Collaborations.

  16. Quantumness-generating capability of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Li, Nan; Luo, Shunlong; Mao, Yuanyuan

    2018-04-01

    We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.

  17. Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Simon, R.; Mukunda, N.; Chaturvedi, S.; Srinivasan, V.

    2008-11-01

    In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.

  18. 11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica M.

    2015-01-01

    The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.

  19. The DSM diagnostic criteria for dyspareunia.

    PubMed

    Binik, Yitzchak M

    2010-04-01

    The DSM-IV-TR attempted to create a unitary category of dyspareunia based on the criterion of genital pain that interfered with sexual intercourse. This classificatory emphasis of interference with intercourse is reviewed and evaluated from both theoretical and empirical points of view. Neither of these points of view was found to support the notion of dyspareunia as a unitary disorder or its inclusion in the DSM-V as a sexual dysfunction. It seems highly likely that there are different syndromes of dyspareunia and that what is currently termed "superficial dyspareunia" cannot be differentiated reliably from vaginismus. It is proposed that the diagnoses of vaginismus and dyspareunia be collapsed into a single diagnostic entity called genito-pelvic pain/penetration disorder. This diagnostic category is defined according to five dimensions: percentage success of vaginal penetration; pain with vaginal penetration; fear of vaginal penetration or of genito-pelvic pain during vaginal penetration; pelvic floor muscle dysfunction; medical co-morbidity.

  20. Three-dimensional fractional-spin gravity

    NASA Astrophysics Data System (ADS)

    Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio

    2014-02-01

    Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.

  1. Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble

    NASA Astrophysics Data System (ADS)

    Berggren, Tomas; Duits, Maurice

    2017-09-01

    In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.

  2. Collective modes of an imbalanced unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes; Chevy, Frédéric; Goulko, Olga; Lobo, Carlos

    2018-03-01

    We study theoretically the collective mode spectrum of a strongly imbalanced two-component unitary Fermi gas in a cigar-shaped trap, where the minority species forms a gas of polarons. We describe the collective breathing mode of the gas in terms of the Fermi-liquid kinetic equation taking collisions into account using the method of moments. Our results for the frequency and damping of the longitudinal in-phase breathing mode are in good quantitative agreement with an experiment by Nascimbène et al. [Phys. Rev. Lett. 103, 170402 (2009), 10.1103/PhysRevLett.103.170402] and interpolate between a hydrodynamic and a collisionless regime as the polarization is increased. A separate out-of phase breathing mode, which for a collisionless gas is sensitive to the effective mass of the polaron, however, is strongly damped at finite temperature, whereas the experiment observes a well-defined oscillation.

  3. Comparison of unitary associations and probabilistic ranking and scaling as applied to mesozoic radiolarians

    NASA Astrophysics Data System (ADS)

    Baumgartner, Peter O.

    A database on Middle Jurassic-Early Cretaceous radiolarians consisting of first and final occurrences of 110 species in 226 samples from 43 localities was used to compute Unitary Associations and probabilistic ranking and scaling (RASC), in order to test deterministic versus probabilistic quantitative biostratigraphic methods. Because the Mesozoic radiolarian fossil record is mainly dissolution-controlled, the sequence of events differs greatly from section to section. The scatter of local first and final appearances along a time scale is large compared to the species range; it is asymmetrical, with a maximum near the ends of the range and it is non-random. Thus, these data do not satisfy the statistical assumptions made in ranking and scaling. Unitary Associations produce maximum ranges of the species relative to each other by stacking cooccurrence data from all sections and therefore compensate for the local dissolution effects. Ranking and scaling, based on the assumption of a normal random distribution of the events, produces average ranges which are for most species much shorter than the maximum UA-ranges. There are, however, a number of species with similar ranges in both solutions. These species are believed to be the most dissolution-resistant and, therefore, the most reliable ones for the definition of biochronozones. The comparison of maximum and average ranges may be a powerful tool to test reliability of species for biochronology. Dissolution-controlled fossil data yield high crossover frequencies and therefore small, statistically insignificant interfossil distances. Scaling has not produced a useful sequence for this type of data.

  4. Quantum Entanglement Growth under Random Unitary Dynamics

    NASA Astrophysics Data System (ADS)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  5. How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem

    NASA Astrophysics Data System (ADS)

    Tegmark, Max

    2012-06-01

    We analyze cosmology assuming unitary quantum mechanics, using a tripartite partition into system, observer, and environment degrees of freedom. This generalizes the second law of thermodynamics to “The system’s entropy cannot decrease unless it interacts with the observer, and it cannot increase unless it interacts with the environment.” The former follows from the quantum Bayes theorem we derive. We show that because of the long-range entanglement created by cosmological inflation, the cosmic entropy decreases exponentially rather than linearly with the number of bits of information observed, so that a given observer can reduce entropy by much more than the amount of information her brain can store. Indeed, we argue that as long as inflation has occurred in a non-negligible fraction of the volume, almost all sentient observers will find themselves in a post-inflationary low-entropy Hubble volume, and we humans have no reason to be surprised that we do so as well, which solves the so-called inflationary entropy problem. An arguably worse problem for unitary cosmology involves gamma-ray-burst constraints on the “big snap,” a fourth cosmic doomsday scenario alongside the “big crunch,” “big chill,” and “big rip,” where an increasingly granular nature of expanding space modifies our life-supporting laws of physics. Our tripartite framework also clarifies when the popular quantum gravity approximation Gμν≈8πG⟨Tμν⟩ is valid, and how problems with recent attempts to explain dark energy as gravitational backreaction from superhorizon scale fluctuations can be understood as a failure of this approximation.

  6. Role of breakup and direct processes in deuteron-induced reactions at low energies

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Avrigeanu, V.

    2015-08-01

    Background: Recent studies of deuteron-induced reactions around the Coulomb barrier B pointed out that numerical calculations for deuteron-induced reactions are beyond current capabilities. The statistical model of nuclear reactions was used in this respect since the compound-nucleus (CN) mechanism was considered to be responsible for most of the total-reaction cross section σR in this energy range. However, specific noncompound processes such as the breakup (BU) and direct reactions (DR) should be also considered for the deuteron-induced reactions, making them different from reactions with other incident particles. Purpose: The unitary and consistent BU and DR consideration in deuteron-induced reactions is proved to yield results at variance with the assumption of negligible noncompound components. Method: The CN fractions of σR obtained by analysis of measured neutron angular distributions in deuteron-induced reactions on 27Al, 56Fe, 63,63Cu, and 89Y target nuclei, around B , are compared with the results of an unitary analysis of every reaction mechanism. The latter values have been supported by the previously established agreement with all available deuteron data for 27Al 54,56,-58,natCu, 63,65,natCu and 93Nb. Results: There is a significant difference between the larger CN contributions obtained from measured neutron angular distributions and calculated results of an unitary analysis of every deuteron-interaction mechanism. The decrease of the latter values is mainly due to the BU component. Conclusions: The above-mentioned differences underline the key role of the breakup and direct reactions that should be considered explicitly in the case of deuteron-induced reactions.

  7. 0.4 Percent Scale Space Launch System Wind Tunnel Test

    NASA Image and Video Library

    2011-11-15

    0.4 Percent Scale Space Launch System Wind Tunnel Test 0.4 Percent Scale SLS model installed in the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 1 for aerodynamic force and movement testing.

  8. The Perceived Competence Scale for Children.

    ERIC Educational Resources Information Center

    Harter, Susan

    1982-01-01

    A new self-report instrument, the Perceived Competence Scale for Children, is described. Emphasis is placed on the assessment of a child's sense of competence across different domains, instead of on viewing perceived competence as a unitary construct. (Author/RH)

  9. Evaluation of latent links between irritable bowel syndrome and sleep quality

    PubMed Central

    Bellini, Massimo; Gemignani, Angelo; Gambaccini, Dario; Toti, Simona; Menicucci, Danilo; Stasi, Cristina; Costa, Francesco; Mumolo, Maria Gloria; Ricchiuti, Angelo; Bedini, Remo; de Bortoli, Nicola; Marchi, Santino

    2011-01-01

    AIM: To examine the links between quality of sleep and the severity of intestinal symptoms in irritable bowel syndrome (IBS). METHODS: One hundred and forty-two outpatients (110 female, 32 male) who met the Rome III criteria for IBS with no psychiatric comorbidity were consecutively enrolled in this study. Data on age, body mass index (BMI), and a set of life-habit variables were recorded, and IBS symptoms and sleep quality were evaluated using the questionnaires IBS Symptom Severity Score (IBS-SSS) and Pittsburgh Sleep Quality Index (PSQI). The association between severity of IBS and sleep disturbances was evaluated by comparing the global IBS-SSS and PSQI score (Pearson’s correlation and Fisher’s exact test) and then analyzing the individual items of the IBS-SSS and PSQI questionnaires by a unitary bowel-sleep model based on item response theory (IRT). RESULTS: IBS-SSS ranged from mild to severe (120-470). The global PSQI score ranged from 1 to 17 (median 5), and 60 patients were found to be poor sleepers (PSQI > 5). The correlation between the global IBS-SSS and PSQI score indicated a weak association (r = 0.2 and 95% CI: -0.03 to 0.35, P < 0.05), which becomes stronger using our unitary model. Indeed, the IBS and sleep disturbances severities, estimated as latent variables, resulted significantly high intra-subject correlation (posterior mean of r = 0.45 and 95% CI: 0.17 to 0.70, P < 0.05). Moreover, the correlations between patient features (age, sex, BMI, daily coffee and alcohol intake) and IBS and sleep disturbances were also analyzed through our unitary model. Age was a significant regressor, with patients ≤ 50 years old showing more severe bowel disturbances (posterior mean = -0.38, P < 0.05) and less severe sleep disturbances (posterior mean = 0.49, P < 0.05) than older patients. Higher daily coffee intake was correlated with a lower severity of bowel disturbances (posterior mean = -0.31, P < 0.05). Sex (female) and daily alcohol intake (modest) were correlated with less severe sleep disturbances. CONCLUSION: The unitary bowel-sleep model based on IRT revealed a strong positive correlation between the severity of IBS symptoms and sleep disturbances. PMID:22171143

  10. Lattice QCD evidence that the Λ(1405) resonance is an antikaon-nucleon molecule.

    PubMed

    Hall, Jonathan M M; Kamleh, Waseem; Leinweber, Derek B; Menadue, Benjamin J; Owen, Benjamin J; Thomas, Anthony W; Young, Ross D

    2015-04-03

    For almost 50 years the structure of the Λ(1405) resonance has been a mystery. Even though it contains a heavy strange quark and has odd parity, its mass is lower than any other excited spin-1/2 baryon. Dalitz and co-workers speculated that it might be a molecular state of an antikaon bound to a nucleon. However, a standard quark-model structure is also admissible. Although the intervening years have seen considerable effort, there has been no convincing resolution. Here we present a new lattice QCD simulation showing that the strange magnetic form factor of the Λ(1405) vanishes, signaling the formation of an antikaon-nucleon molecule. Together with a Hamiltonian effective-field-theory model analysis of the lattice QCD energy levels, this strongly suggests that the structure is dominated by a bound antikaon-nucleon component. This result clarifies that not all states occurring in nature can be described within a simple quark model framework and points to the existence of exotic molecular meson-nucleon bound states.

  11. ω and η (η') Mesons from NN and nd Collisions at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Kaptari, L. P.; Kämpfer, B.

    The production of pseudo scalar, η, η‧, and vector, ω, ρ, ϕ, mesons in NN collisions at threshold-near energies is analyzed within a covariant effective meson-nucleon theory. It is shown that a good description of cross sections and angular distributions, for vector meson production, can be accomplished by considering meson and nucleon currents only, while for pseudo scalar production an inclusion of nucleon resonances is needed. The di-electron production from subsequent Dalitz decay of the produced mesons, η‧ → γγ* → γe+e- and ω → πγ* → πe+e- is also considered and numerical results are presented for intermediate energies and kinematics of possible experiments with HADES, CLAS and KEK-PS. We argue that the transition form factor ω → γ*π as well as η‧ → γ*γ can be defined in a fairly model independent way and the feasibility of an experimental access to transition form factors is discussed.

  12. Visual Aspects of the Electric Environment. NECA Electrical Design Guidelines.

    ERIC Educational Resources Information Center

    National Electrical Contractors Association, Washington, DC.

    New design opportunities afforded by modern high-intensity light sources, and the many ways of integrating package air-conditioners with the design of buildings, are discussed. A guide to unitary air-conditioners and heat pumps is included. (RK)

  13. Albert Einstein 1879-1955.

    ERIC Educational Resources Information Center

    Physics Today, 1979

    1979-01-01

    Celebrates the centennial of Einstein's birth with an eight-page pictorial biography and two special articles: (1) Einstein the catalyst; and (2) Unitary field theories. His special and general theories of relativity and his contributions to quantum physics and other topics are also presented. (HM)

  14. Negative Rotation Cinch Strap.

    DTIC Science & Technology

    This project discloses an improved unitary parachute torso harness, having a single fastening means, wherein an auxillary tightening strap is...attached to the groin straps of said harness. Said auxillary straps are used to prevent torso rotation or harness slippage and to prevent harness elongation

  15. Unique Fock quantization of scalar cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2012-05-01

    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.

  16. Quantum Entanglement Growth under Random Unitary Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement growsmore » linearly in time, while fluctuations grow like (time) 1/3 and are spatially correlated over a distance ∝(time) 2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.« less

  17. Quantum Entanglement Growth under Random Unitary Dynamics

    DOE PAGES

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; ...

    2017-07-24

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement growsmore » linearly in time, while fluctuations grow like (time) 1/3 and are spatially correlated over a distance ∝(time) 2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.« less

  18. Recent advances in spin-free state-specific and state-universal multi-reference coupled cluster formalisms: A unitary group adapted approach

    NASA Astrophysics Data System (ADS)

    Maitra, Rahul; Sinha, Debalina; Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2012-06-01

    We present here the formulations and implementations of Mukherjee's State-Specific and State-Universal Multi-reference Coupled Cluster theories, which are explicitly spin free being obtained via the Unitary Group Adapted (UGA) approach, and thus, do not suffer from spin-contamination. We refer to them as UGA-SSMRCC and UGASUMRCC respectively. We propose a new multi-exponential cluster Ansatz analogous to but different from the one suggested by Jeziorski and Monkhorst (JM). Unlike the JM Ansatz, our choice involves spin-free unitary generators for the cluster operators and we replace the traditional exponential structure for the wave-operator by a suitable normal ordered exponential. We sketch the consequences of choosing our Ansatz, which leads to fully spin-free finite power series structure of the direct term of the MRCC equations. The UGA-SUMRCC follows from a suitable hierarchical generation of the cluster amplitudes of increasing rank, while the UGA-SSMRCC requires suitable sufficiency conditions to arrive at a well-defined set of equations for the cluster amplitudes. We discuss two distinct and inequivalent sufficiency conditions and their pros and cons. We also discuss a variant of the UGA-SSMRCC, where the number of cluster amplitudes can be drastically reduced by internal contraction of the two-body inactive cluster amplitudes. These are the most numerous, and thus a spin-free internally contracted description will lead to a high speed-up factor. We refer to this as ICID-UGA-SSMRCC. Essentially the same mathematical manipulations provide us with the UGA-SUMRCC theory as well. Pilot numerical results are presented to indicate the promise and the efficacy of all the three methods.

  19. Ghost busting: PT-symmetric interpretation of the Lee model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Carl M.; Brandt, Sebastian F.; Chen, J.-H.

    2005-01-15

    The Lee model was introduced in the 1950s as an elementary quantum field theory in which mass, wave function, and charge renormalization could be carried out exactly. In early studies of this model it was found that there is a critical value of g{sup 2}, the square of the renormalized coupling constant, above which g{sub 0}{sup 2}, the square of the unrenormalized coupling constant, is negative. Thus, for g{sup 2} larger than this critical value, the Hamiltonian of the Lee model becomes non-Hermitian. It was also discovered that in this non-Hermitian regime a new state appears whose norm is negative.more » This state is called a ghost state. It has always been assumed that in this ghost regime the Lee model is an unacceptable quantum theory because unitarity appears to be violated. However, in this regime while the Hamiltonian is not Hermitian, it does possess PT symmetry. It has recently been discovered that a non-Hermitian Hamiltonian having PT symmetry may define a quantum theory that is unitary. The proof of unitarity requires the construction of a new time-independent operator called C. In terms of C one can define a new inner product with respect to which the norms of the states in the Hilbert space are positive. Furthermore, it has been shown that time evolution in such a theory is unitary. In this paper the C operator for the Lee model in the ghost regime is constructed in the V/N{theta} sector. It is then shown that the ghost state has a positive norm and that the Lee model is an acceptable unitary quantum field theory for all values of g{sup 2}.« less

  20. Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus.

    PubMed

    Cox, C L; Huguenard, J R; Prince, D A

    1997-08-05

    Detailed information regarding the contribution of individual gamma-aminobutyric acid (GABA)-containing inhibitory neurons to the overall synaptic activity of single postsynaptic cells is essential to our understanding of fundamental elements of synaptic integration and operation of neuronal circuits. For example, GABA-containing cells in the thalamic reticular nucleus (nRt) provide major inhibitory innervation of thalamic relay nuclei that is critical to thalamocortical rhythm generation. To investigate the contribution of individual nRt neurons to the strength of this internuclear inhibition, we obtained whole-cell recordings of unitary inhibitory postsynaptic currents (IPSCs) evoked in ventrobasal thalamocortical (VB) neurons by stimulation of single nRt cells in rat thalamic slices, in conjunction with intracellular biocytin labeling. Two types of monosynaptic IPSCs could be distinguished. "Weak" inhibitory connections were characterized by a significant number of postsynaptic failures in response to presynaptic nRt action potentials and relatively small IPSCs. In contrast, "strong" inhibition was characterized by the absence of postsynaptic failures and significantly larger unitary IPSCs. By using miniature IPSC amplitudes to infer quantal size, we estimated that unitary IPSCs associated with weak inhibition resulted from activation of 1-3 release sites, whereas stronger inhibition would require simultaneous activation of 5-70 release sites. The inhibitory strengths were positively correlated with the density of axonal swellings of the presynaptic nRt neurons, an indicator that characterizes different nRt axonal arborization patterns. These results demonstrate that there is a heterogeneity of inhibitory interactions between nRt and VB neurons, and that variations in gross morphological features of axonal arbors in the central nervous system can be associated with significant differences in postsynaptic response characteristics.

  1. The prognostic value of formal thought disorder following first episode psychosis.

    PubMed

    Roche, Eric; Lyne, John; O'Donoghue, Brian; Segurado, Ricardo; Behan, Caragh; Renwick, Laoise; Fanning, Felicity; Madigan, Kevin; Clarke, Mary

    2016-12-01

    Formal thought disorder (FTD) is associated with poor outcome in established psychotic illnesses and it can be assessed as a categorical or dimensional variable. However, its influence on functional outcome and hospitalisation patterns in early psychosis has not been investigated. We evaluated the relationship between FTD and these outcomes in a first episode psychosis (FEP) sample. A mixed diagnostic FEP cohort was recruited through an Early Intervention in Psychosis Service in Ireland. Participants were assessed at initial presentation and one year later with the MIRECC GAF to evaluate social and occupational functioning domains. Disorganisation (disFTD), verbosity (verFTD) and poverty (povFTD) dimensions of FTD were examined at both time points, as well as a unitary FTD construct. Analyses were controlled for demographic, clinical and treatment variables. DisFTD was the only FTD dimension associated with functional outcome, specifically social functioning, on multivariate analysis (beta=0.13, P<0.05). The unitary FTD construct was not associated with functional outcome. DisFTD at FEP presentation predicted a greater number of hospitalisations (adjusted beta=0.24, P<0.001) and prolonged inpatient admission (adjusted OR=1.08, 95% CI 1.02-1.15, P<0.05) following FEP. Longitudinal and dimensional evaluation of FTD has a clinical utility that is distinct from a cross-sectional or unitary assessment. Dimensions of FTD may map onto different domains of functioning. These findings are supportive of some of the changes in DSM-V with an emphasis on longitudinal and dimensional appraisal of psychopathology. Communication disorders may be considered a potential target for intervention in psychotic disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Distinct effect of actin cytoskeleton disassembly on exo- and endocytic events in a membrane patch of rat melanotrophs.

    PubMed

    Chowdhury, Helena H; Kreft, Marko; Zorec, Robert

    2002-12-15

    We used the cell-attached mode of patch-clamp technique to measure discrete attofarad steps in membrane capacitance (C(m)), reporting area changes in the plasma membrane due to unitary exocytic and endocytic events. To investigate the role of the actin cytoskeleton in elementary exocytic and endocytic events, neuroendocrine rat melanotrophs were treated with Clostridium spiroforme toxin (CST), which specifically depolymerises F-actin. The average amplitude of exocytic events was not significantly different in control and in CST-treated cells. However, the amplitude of endocytic events was significantly smaller in CST-treated cells as compared to controls. The frequency of exocytic events increased by 2-fold in CST-treated cells relative to controls. In control cells the average frequency of exocytic events (upsilon;(exo)) was lower than the frequency of endocytic events (upsilon;(endo)) with a ratio upsilon;(exo)/upsilon;(endo) < 1. In the toxin treated cells, the predominant process was exocytosis with a ratio (upsilon;(exo)/upsilon;(endo) > 1). To study the coupling between the two processes, the slopes of regression lines relating upsilon;(exo) and upsilon;(endo) in a given patch of membrane were studied. The slopes of regression lines were similar, whereas the line intercepts with the y-axis were significantly different. The increased frequency of unitary exocytic events in CST-treated cells is consistent with the view, that the actin cytoskeleton acts as a barrier for exocytosis. While the disassembly of the actin cytoskeleton diminishes the size of unitary endocytic events, suggesting an important role of the actin cytoskeleton in determining the size of endocytic vesicles, the coupling between exocytosis and endocytosis in a given patch of membrane was independent of the state of the actin cytoskeleton.

  3. Distinct effect of actin cytoskeleton disassembly on exo- and endocytic events in a membrane patch of rat melanotrophs

    PubMed Central

    Chowdhury, Helena H; Kreft, Marko; Zorec, Robert

    2002-01-01

    We used the cell-attached mode of patch-clamp technique to measure discrete attofarad steps in membrane capacitance (Cm), reporting area changes in the plasma membrane due to unitary exocytic and endocytic events. To investigate the role of the actin cytoskeleton in elementary exocytic and endocytic events, neuroendocrine rat melanotrophs were treated with Clostridium spiroforme toxin (CST), which specifically depolymerises F-actin. The average amplitude of exocytic events was not significantly different in control and in CST-treated cells. However, the amplitude of endocytic events was significantly smaller in CST-treated cells as compared to controls. The frequency of exocytic events increased by 2-fold in CST-treated cells relative to controls. In control cells the average frequency of exocytic events (νexo) was lower than the frequency of endocytic events (νendo) with a ratio νexo/νendo < 1. In the toxin treated cells, the predominant process was exocytosis with a ratio (νexo/νendo > 1). To study the coupling between the two processes, the slopes of regression lines relating νexo and νendo in a given patch of membrane were studied. The slopes of regression lines were similar, whereas the line intercepts with the y-axis were significantly different. The increased frequency of unitary exocytic events in CST-treated cells is consistent with the view, that the actin cytoskeleton acts as a barrier for exocytosis. While the disassembly of the actin cytoskeleton diminishes the size of unitary endocytic events, suggesting an important role of the actin cytoskeleton in determining the size of endocytic vesicles, the coupling between exocytosis and endocytosis in a given patch of membrane was independent of the state of the actin cytoskeleton. PMID:12482893

  4. Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2013-09-15

    This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle asmore » well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. •The Galilei group is generalized to infinite dimensional Galilean line group. •Loop prolongations of Galilean line group contain central extensions of Galilei group. •Unitary representations of the loops are constructed. •These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and Coriolis forces.« less

  5. Pathological Gambling Subtypes

    ERIC Educational Resources Information Center

    Vachon, David D.; Bagby, R. Michael

    2009-01-01

    Although pathological gambling (PG) is regarded in the 4th edition of the "Diagnostic and Statistical Manual of Mental Disorders" (American Psychiatric Association, 1994) as a unitary diagnostic construct, it is likely composed of distinct subtypes. In the current report, the authors used cluster analyses of personality traits with a…

  6. Strategic Influence: A Framework to Counter Violent Extremist Ideology

    DTIC Science & Technology

    2013-03-01

    a result, non-lethal counterterrorism activities have “developed in a haphazard fashion without unitary direction or meaningful substance.”9 This...the critical capability is the network of likeminded individuals, which in some cases have formed franchise groups to the extremist social movement

  7. 24 CFR 3280.714 - Appliances, cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... refrigerating systems serving any air conditioning or comfort-cooling system installed in a manufactured home... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning... Conditioning and Air Source Unitary Heat Pump Equipment and certified by ARI or other nationally recognized...

  8. 24 CFR 3280.714 - Appliances, cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... refrigerating systems serving any air conditioning or comfort-cooling system installed in a manufactured home... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning... Conditioning and Air Source Unitary Heat Pump Equipment and certified by ARI or other nationally recognized...

  9. The Longitudinal Guttman Simplex: Applications to Health Behavior Data.

    ERIC Educational Resources Information Center

    Collins, Linda M.; Dent, Clyde W.

    Because health behavior is often concerned with dynamic constructs, a longitudinal approach to measurement is needed. The Longitudinal Guttman Simplex (LGS) is a measurement model developed especially for dynamic constructs exhibiting cumulative, unitary development measured longitudinally. Data from the Television Smoking Prevention Project, a…

  10. Variational treatment of entanglement in the Dicke model

    NASA Astrophysics Data System (ADS)

    Bakemeier, L.; Alvermann, A.; Fehske, H.

    2015-10-01

    We introduce a variational ansatz for the Dicke model that extends mean-field theory through the inclusion of spin-oscillator correlations. The correlated variational state is obtained from the mean-field product state via a unitary transformation. The ansatz becomes correct in the limit of large oscillator frequency and in the limit of a large spin, for which it captures the leading quantum corrections to the classical limit exactly including the spin-oscillator entanglement entropy. We explain the origin of the unitary transformation before we show that the ansatz improves substantially upon mean-field theory, giving near exact results for the ground state energy and very good results for other observables. We then discuss why the ansatz still encounters problems in the transition regime at moderate spin lengths, where it fails to capture the precursors of the superradiant quantum phase transition faithfully. This observation illustrates the principal limits of semi-classical formulations, even after they are extended with correlations and entanglement.

  11. Overview of Supersonic Aerodynamics Measurement Techniques in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  12. A unitary model of the black hole evaporation

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2014-12-01

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.

  13. Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation

    NASA Astrophysics Data System (ADS)

    Ellinas, Demosthenes; Konstandakis, Christos

    2016-02-01

    Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.

  14. Entanglement and nonclassical properties of hypergraph states

    NASA Astrophysics Data System (ADS)

    Gühne, Otfried; Cuquet, Martí; Steinhoff, Frank E. S.; Moroder, Tobias; Rossi, Matteo; Bruß, Dagmar; Kraus, Barbara; Macchiavello, Chiara

    2014-08-01

    Hypergraph states are multiqubit states that form a subset of the locally maximally entangleable states and a generalization of the well-established notion of graph states. Mathematically, they can conveniently be described by a hypergraph that indicates a possible generation procedure of these states; alternatively, they can also be phrased in terms of a nonlocal stabilizer formalism. In this paper, we explore the entanglement properties and nonclassical features of hypergraph states. First, we identify the equivalence classes under local unitary transformations for up to four qubits, as well as important classes of five- and six-qubit states, and determine various entanglement properties of these classes. Second, we present general conditions under which the local unitary equivalence of hypergraph states can simply be decided by considering a finite set of transformations with a clear graph-theoretical interpretation. Finally, we consider the question of whether hypergraph states and their correlations can be used to reveal contradictions with classical hidden-variable theories. We demonstrate that various noncontextuality inequalities and Bell inequalities can be derived for hypergraph states.

  15. Nozzle dam having a unitary plug

    DOEpatents

    Veronesi, L.; Wepfer, R.M.

    1992-12-15

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.

  16. Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel

    2014-03-01

    In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.

  17. On the homotopy equivalence of simple AI-algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristov, O Yu

    1999-02-28

    Let A and B be simple unital AI-algebras (an AI-algebra is an inductive limit of C*-algebras of the form BigOplus{sub i}{sup k}C([0,1],M{sub N{sub i}}). It is proved that two arbitrary unital homomorphisms from A into B such that the corresponding maps K{sub 0}A{yields}K{sub 0}B coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for A and B to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same K-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, whichmore » is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix h can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with h.« less

  18. Multiparty Quantum Direct Secret Sharing of Classical Information with Bell States and Bell Measurements

    NASA Astrophysics Data System (ADS)

    Song, Yun; Li, Yongming; Wang, Wenhua

    2018-02-01

    This paper proposed a new and efficient multiparty quantum direct secret sharing (QDSS) by using swapping quantum entanglement of Bell states. In the proposed scheme, the quantum correlation between the possible measurement results of the members (except dealer) and the original local unitary operation encoded by the dealer was presented. All agents only need to perform Bell measurements to share dealer's secret by recovering dealer's operation without performing any unitary operation. Our scheme has several advantages. The dealer is not required to retain any photons, and can further share a predetermined key instead of a random key to the agents. It has high capacity as two bits of secret messages can be transmitted by an EPR pair and the intrinsic efficiency approaches 100%, because no classical bit needs to be transmitted except those for detection. Without inserting any checking sets for detecting the eavesdropping, the scheme can resist not only the existing attacks, but also the cheating attack from the dishonest agent.

  19. Supersonic dynamic stability characteristics of the test technique demonstrator NASP configuration

    NASA Technical Reports Server (NTRS)

    Dress, David A.; Boyden, Richmond P.; Cruz, Christopher I.

    1992-01-01

    Wind tunnel tests of a National Aero-Space Plane (NASP) configuration were conducted in both test sections of the Langley Unitary Plan Wind Tunnel. The model used is a Langley designed blended body NASP configuration. Dynamic stability characteristics were measured on this configuration at Mach numbers of 2.0, 2.5, 3.5, and 4.5. In addition to tests of the baseline configuration, component buildup tests were conducted. The test results show that the baseline configuration generally has positive damping about all three axes with only isolated exceptions. In addition, there was generally good agreement between the in-pulse dynamic parameters and the corresponding static data which were measured during another series of tests in the Unitary Plan Wind Tunnel. Also included are comparisons of the experimental damping parameters with results from the engineering predictive code APAS (Aerodynamic Preliminary Analysis System). These comparisons show good agreement at low angles of attack; however, the comparisons are generally not as good at the higher angles of attack.

  20. Unitarily localizable entanglement of Gaussian states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio

    2005-03-01

    We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose)more » condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes.« less

Top