Sarchielli, Guido; De Plato, Giovanni; Cavalli, Mario; Albertini, Stefano; Nonni, Ilaria; Bencivenni, Lucia; Montali, Arianna; Ventura, Antonio; Montali, Francesca
2016-01-01
Assessment of the knowledge and application as well as perceived utility by doctors of clinical governance tools in order to explore their impact on clinical units' performance measured through mortality rates and efficiency indicators. This research is a cross-sectional study with a deterministic record-linkage procedure. The sample includes n = 1250 doctors (n = 249 chiefs of clinical units; n = 1001 physicians) working in six public hospitals located in the Emilia-Romagna Region in Italy. Survey instruments include a checklist and a research-made questionnaire which were used for data collection about doctors' knowledge and application as well as perceived utility of clinical governance tools. The analysis was based on clinical units' performance indicators which include patients' mortality, extra-region active mobility rate, average hospital stay, bed occupancy, rotation and turnover rates, and the comparative performance index as efficiency indicators. The clinical governance tools are known and applied differently in all the considered clinical units. Significant differences emerged between roles and organizational levels at which the medical leadership is carried out. The levels of knowledge and application of clinical governance practices are correlated with the clinical units' efficiency indicators (bed occupancy rate, bed turnover interval, and extra-region mobility). These multiple linear regression analyses highlighted that the clinical governance knowledge and application is correlated with clinical units' mortality rates (odds ratio, -8.677; 95% confidence interval, -16.654, -0.700). The knowledge and application, as well as perceived utility by medical professionals of clinical governance tools, are associated with the mortality rates of their units and with some efficiency indicators. However, the medical frontline staff seems to not consider homogeneously useful the clinical governance tools application on its own clinical practice.
Fuel efficiency through new airframe technology
NASA Technical Reports Server (NTRS)
Leonard, R. W.
1982-01-01
In its Aircraft Energy Efficiency Program, NASA has expended approximately 200 million dollars toward development and application of advanced airframe technologies to United States's commercial transports. United States manufacturers have already been given a significant boost toward early application of advanced composite materials to control surface and empennage structures and toward selected applications of active controls and advanced aerodynamic concepts. In addition, significant progress in definition and development of innovative, but realistic systems for laminar flow control over the wings of future transports has already been made.
Efficiency equations of the railgun
NASA Astrophysics Data System (ADS)
Sadedin, D. R.
1984-03-01
The feasibility of an employment of railguns for large scale applications, such as space launching, will ultimately be determined by efficiency considerations. The present investigation is concerned with the calculation of the efficiencies for constant current railguns. Elementary considerations are discussed, taking into account a simple condition for high efficiency, the magnetic field of the rails, and the acceleration force on the projectile. The loss in a portion of the rails is considered along with rail loss comparisons, applications to the segmented gun, rail losses related to the constant resistance per unit length, efficiency expressions, and arc, or muzzle voltage energy.
78 FR 74189 - Compass Efficient Model Portfolios, LLC, et al.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
... from, the series in connection with the purchase and redemption of Creation Units; and (e) certain... Unit will range from $1 million to $10 million. All orders to purchase Creation Units must be placed... Participant''). 11. The Shares will be purchased and redeemed in Creation Units and generally on an in-kind...
High Efficiency Low Global Warming Potential Compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cogswell, Frederick; Verma, Parmesh
During this project UTRC designed a novel compressor for use with new low Global-Warming-Potential (GWP) refrigerants. Through two design and testing iterations, UTRC advanced the compressor technology from TRL3 to TRL5. The target application was a 5 Tons of Refrigeration (TR) capacity Roof-Top Unit (RTU), although this technology may be applied to other low-capacity systems such as residential. The prototype unit met all design goals at the ARI-A rating condition and requires high efficiency motor to meet high performance targets at the ARI-B condition. This technology may be used in high efficiency units and with seasonal energy efficiency rating (SEER)more » exceeding 20. A preliminary cost analysis estimated that there would be less than $25/kbtuh cost impact to the customer.« less
Development of a new photocatalytic oxidation air filter for aircraft cabin.
Ginestet, A; Pugnet, D; Rowley, J; Bull, K; Yeomans, H
2005-10-01
A new photocatalytic oxidation air filter (PCO unit) has been designed for aircraft cabin applications. The PCO unit is designed as a regenerable VOC removal system in order to improve the quality of the recirculated air entering the aircraft cabin. The PCO was designed to be a modular unit, with four UV lamps sandwiched between two interchangeable titanium dioxide coated panels. Performances of the PCO unit has been measured in a single pass mode test rig in order to show the ability of the unit to decrease the amount of VOCs (toluene, ethanol, and acetone) entering it (VOCs are fed separately), and in a multipass mode test rig in order to measure the ability of the unit to clean the air of an experimental room polluted with the same VOCs (fed separately). Triangular cell panels have been chosen instead of the wire mesh panels because they have higher efficiency. The efficiency of the PCO unit depends on the type of VOCs that challenges it, toluene being the most difficult one to oxidise. The efficiency of the PCO unit decreases when the air flow rate increases. The multipass mode test results show that the VOCs are oxidized but additional testing time would be necessary in order to show if they can be fully oxidized. The intermediate reaction products are mainly acetaldehyde and formaldehyde whose amount depends on the challenge VOC. The intermediate reaction products are also oxidized and additional testing time would be necessary in order to show if they can be fully oxidized. The development of this new photocatalytic air filter is still going on. The VOC/odor removing adsorbers are available for only a small proportion of aircraft currently in service. The photocatalytic oxidation (PCO) technique has appeared to be a promising solution to odors problems met in aircraft. This article reports the test results of a new photocatalytic oxidation air filter (PCO unit) designed for aircraft cabin applications. The overall efficiency of the PCO unit is function of the compound (toluene, ethanol, and acetone) that challenges the unit and toluene appears to be the most difficult compound to oxidize. Test results have shown the influence of the design of the PCO unit, the air flow rate and the type of UV on the efficiency of the PCO unit. The results obtained in this study represent a first attempt on the way to design a filter for VOC removal in cabin aircraft applications. The PCO technique used by the tested prototype unit is able to partially oxidized the challenge VOCs but one has to be aware that some harmful intermediate reaction products (mainly formaldehyde and acetaldehyde) are produced during the oxidation process before being partially oxidized too.
Designing occupancy studies: general advice and allocating survey effort
MacKenzie, D.I.; Royle, J. Andrew
2005-01-01
1. The fraction of sampling units in a landscape where a target species is present (occupancy) is an extensively used concept in ecology. Yet in many applications the species will not always be detected in a sampling unit even when present, resulting in biased estimates of occupancy. Given that sampling units are surveyed repeatedly within a relatively short timeframe, a number of similar methods have now been developed to provide unbiased occupancy estimates. However, practical guidance on the efficient design of occupancy studies has been lacking. 2. In this paper we comment on a number of general issues related to designing occupancy studies, including the need for clear objectives that are explicitly linked to science or management, selection of sampling units, timing of repeat surveys and allocation of survey effort. Advice on the number of repeat surveys per sampling unit is considered in terms of the variance of the occupancy estimator, for three possible study designs. 3. We recommend that sampling units should be surveyed a minimum of three times when detection probability is high (> 0.5 survey-1), unless a removal design is used. 4. We found that an optimal removal design will generally be the most efficient, but we suggest it may be less robust to assumption violations than a standard design. 5. Our results suggest that for a rare species it is more efficient to survey more sampling units less intensively, while for a common species fewer sampling units should be surveyed more intensively. 6. Synthesis and applications. Reliable inferences can only result from quality data. To make the best use of logistical resources, study objectives must be clearly defined; sampling units must be selected, and repeated surveys timed appropriately; and a sufficient number of repeated surveys must be conducted. Failure to do so may compromise the integrity of the study. The guidance given here on study design issues is particularly applicable to studies of species occurrence and distribution, habitat selection and modelling, metapopulation studies and monitoring programmes.
Three-terminal RGB full-color OLED pixels for ultrahigh density displays.
Fröbel, Markus; Fries, Felix; Schwab, Tobias; Lenk, Simone; Leo, Karl; Gather, Malte C; Reineke, Sebastian
2018-06-26
In recent years, the organic light-emitting diode (OLED) technology has been a rapidly evolving field of research, successfully making the transition to commercial applications such as mobile phones and other small portable devices. OLEDs provide efficient generation of light, excellent color quality, and allow for innovative display designs, e.g., curved shapes, mechanically flexible and/or transparent devices. Especially their self emissive nature is a highly desirable feature for display applications. In this work, we demonstrate an approach for full-color OLED pixels that are fabricated by vertical stacking of a red-, green-, and blue-emitting unit. Each unit can be addressed separately which allows for efficient generation of every color that is accessible by superpositioning the spectra of the individual emission units. Here, we use a combination of time division multiplexing and pulse width modulation to achieve efficient color mixing. The presented device design requires only three independently addressable electrodes, simplifying both fabrication and electrical driving. The device is built in a top-emission geometry, which is highly desirable for display fabrication as the pixel can be directly deposited onto back-plane electronics. Despite the top-emission design and the application of three silver layers within the device, there is only a minor color shift even for large viewing angles. The color space spanned by the three emission sub-units exceeds the sRGB space, providing more saturated green/yellow/red colors. Furthermore, the electrical performance of each individual unit is on par with standard single emission unit OLEDs, showing very low leakage currents and achieving brightness levels above 1000 cd/m 2 at moderate voltages of around 3-4 V.
Centrifugal microfluidic platforms: advanced unit operations and applications.
Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N
2015-10-07
Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.
2012-01-01
Purpose A key challenge for providers and commissioners of rehabilitation services is to find optimal balance between service costs and outcomes. This article presents a “real-lifeâ application of the UK Rehabilitation Outcomes Collaborative (UKROC) dataset. We undertook a comparative cohort analysis of case-episode data (n = 173) from two specialist neurological rehabilitation units (A and B), to compare the cost-efficiency of two service models. Key messages (i) Demographics, casemix and levels of functional dependency on admission and discharge were broadly similar for the two units. (ii) The mean length of stay for Unit A was 1.5 times longer than Unit B, which had 85% higher levels of therapy staffing in relation to occupied bed days so despite higher bed-day costs, Unit B was 20% more cost-efficient overall, for similar gain. (iii) Following analysis, engagement with service commissioners led to successful negotiation of a business plan for service reconfiguration with increased staffing levels for Unit A and further development of local community rehabilitation services. Conclusion (i) Lower front-end service costs do not always signify optimal cost-efficiency. (ii) Analysis of routinely collected clinical data can be used to engage commissioners and to make the case for resources to maximise efficiency and improve patient care. PMID:22506504
Turner-Stokes, Lynne; Poppleton, Rob; Williams, Heather; Schoewenaars, Katie; Badwan, Derar
2012-01-01
A key challenge for providers and commissioners of rehabilitation services is to find optimal balance between service costs and outcomes. This article presents a "real-life" application of the UK Rehabilitation Outcomes Collaborative (UKROC) dataset. We undertook a comparative cohort analysis of case-episode data (n = 173) from two specialist neurological rehabilitation units (A and B), to compare the cost-efficiency of two service models. (i) Demographics, casemix and levels of functional dependency on admission and discharge were broadly similar for the two units. (ii) The mean length of stay for Unit A was 1.5 times longer than Unit B, which had 85% higher levels of therapy staffing in relation to occupied bed days so despite higher bed-day costs, Unit B was 20% more cost-efficient overall, for similar gain. (iii) Following analysis, engagement with service commissioners led to successful negotiation of a business plan for service reconfiguration with increased staffing levels for Unit A and further development of local community rehabilitation services. (i) Lower front-end service costs do not always signify optimal cost-efficiency. (ii) Analysis of routinely collected clinical data can be used to engage commissioners and to make the case for resources to maximise efficiency and improve patient care.
Efficient biprediction decision scheme for fast high efficiency video coding encoding
NASA Astrophysics Data System (ADS)
Park, Sang-hyo; Lee, Seung-ho; Jang, Euee S.; Jun, Dongsan; Kang, Jung-Won
2016-11-01
An efficient biprediction decision scheme of high efficiency video coding (HEVC) is proposed for fast-encoding applications. For low-delay video applications, bidirectional prediction can be used to increase compression performance efficiently with previous reference frames. However, at the same time, the computational complexity of the HEVC encoder is significantly increased due to the additional biprediction search. Although a some research has attempted to reduce this complexity, whether the prediction is strongly related to both motion complexity and prediction modes in a coding unit has not yet been investigated. A method that avoids most compression-inefficient search points is proposed so that the computational complexity of the motion estimation process can be dramatically decreased. To determine if biprediction is critical, the proposed method exploits the stochastic correlation of the context of prediction units (PUs): the direction of a PU and the accuracy of a motion vector. Through experimental results, the proposed method showed that the time complexity of biprediction can be reduced to 30% on average, outperforming existing methods in view of encoding time, number of function calls, and memory access.
Progress in a novel architecture for high performance processing
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Liu, Meng; Liu, Zijun; Du, Xueliang; Xie, Shaolin; Ma, Hong; Ding, Guangxin; Ren, Weili; Zhou, Fabiao; Sun, Wenqin; Wang, Huijuan; Wang, Donglin
2018-04-01
The high performance processing (HPP) is an innovative architecture which targets on high performance computing with excellent power efficiency and computing performance. It is suitable for data intensive applications like supercomputing, machine learning and wireless communication. An example chip with four application-specific integrated circuit (ASIC) cores which is the first generation of HPP cores has been taped out successfully under Taiwan Semiconductor Manufacturing Company (TSMC) 40 nm low power process. The innovative architecture shows great energy efficiency over the traditional central processing unit (CPU) and general-purpose computing on graphics processing units (GPGPU). Compared with MaPU, HPP has made great improvement in architecture. The chip with 32 HPP cores is being developed under TSMC 16 nm field effect transistor (FFC) technology process and is planed to use commercially. The peak performance of this chip can reach 4.3 teraFLOPS (TFLOPS) and its power efficiency is up to 89.5 gigaFLOPS per watt (GFLOPS/W).
Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan
2017-07-12
An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.
An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.
Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen
2010-02-01
An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.
NASA Technical Reports Server (NTRS)
Craigie, J. H.; Otten, D. D.; Garabedian, A.; Morrison, D. D.; MALLINCKRODT; ZIPPER
1970-01-01
The objective was to determine on a priority basis the satellite applications to communications, navigation, and surveillance requirements for aircraft operating beyond 1975 over the contiguous United States and adjacent oceanic transition regions, and to determine if and how satellite technology can meet these requirements in a reliable, efficient, and economical manner. Major results and conclusions are as follows: (1) The satellite applications of greatest importance are surveillance and rapid collision warning communications; and (2) The necessary technology is available as demonstrated by an attractive system concept.
A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.
Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T; Salama, Khaled Nabil
2016-05-01
This paper proposes a new "twisted" 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.
A “twisted” microfluidic mixer suitable for a wide range of flow rate applications
Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T.; Salama, Khaled Nabil
2016-01-01
This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices. PMID:27453767
High Power High Efficiency Ka-Band Power Combiners for Solid-State Devices
NASA Technical Reports Server (NTRS)
Freeman, Jon C.; Wintucky, Edwin G.; Chevalier, Christine T.
2006-01-01
Wide-band power combining units for Ka-band are simulated for use as MMIC amplifier applications. Short-slot couplers as well as magic-tees are the basic elements for the combiners. Wide bandwidth (5 GHz) and low insertion (approx.0.2 dB) and high combining efficiencies (approx.90 percent) are obtained.
Application of holographic elements in displays and planar illuminators
NASA Astrophysics Data System (ADS)
Putilin, Andrew; Gustomiasov, Igor
2007-05-01
Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.
White OLED devices and processes for lighting applications
NASA Astrophysics Data System (ADS)
Ide, Nobuhiro; Tsuji, Hiroya; Ito, Norihiro; Matsuhisa, Yuko; Houzumi, Shingo; Nishimori, Taisuke
2010-05-01
In these days, the basic performances of white OLEDs are dramatically improved and application of OLEDs to "Lighting" is expected to be true in the near future. We have developed various technologies for OLED lighting with the aid of the Japanese governmental project, "High-efficiency lighting based on the organic light-emitting mechanism." In this project, a white OLED with high efficiency (37 lm/W) and high quality emission characteristics (CRI of 95 with a small variation of chromaticity in different directions and chromaticity just on the black-body radiation curve) applicable to "Lighting" was realized by a two-unit structure with a fluorescent deep blue emissive unit and a phosphorescent green and red emissive unit. Half-decay lifetime of this white OLED at 1,000 cd/m2 was over 40,000 h. A heat radiative, thin encapsulation structure (less than 1 mm) realized a very stable emission at high luminance of over 3,000 cd/m2. A new deposition source with a hot-wall and a rate controllable valve was developed. Thickness uniformity within +/- 3% at high deposition rate of over 8 nm/s, high material utilization of over 70 %, and repeatable deposition rate controllability were confirmed.
Improving patient safety and optimizing nursing teamwork using crew resource management techniques.
West, Priscilla; Sculli, Gary; Fore, Amanda; Okam, Nwoha; Dunlap, Cleveland; Neily, Julia; Mills, Peter
2012-01-01
This project describes the application of the "sterile cockpit rule," a crew resource management (CRM) technique, targeted to improve efficacy and safety for nursing assistants in the performance of patient care duties. Crew resource management techniques have been successfully implemented in the aviation industry to improve flight safety. Application of these techniques can improve patient safety in medical settings. The Veterans Affairs (VA) National Center for Patient Safety conducted a CRM training program in select VA nursing units. One unit developed a novel application of the sterile cockpit rule to create protected time for certified nursing assistants (CNAs) while they collected vital signs and blood glucose data at the beginning of each shift. The typical nursing authority structure was reversed, with senior nurses protecting CNAs from distractions. This process led to improvements in efficiency and communication among nurses, with the added benefit of increased staff morale. Crew resource management techniques can be used to improve efficiency, morale, and patient safety in the healthcare setting.
Application of CFB technology for large power generating units and CO{sub 2} capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryabov, G. A., E-mail: georgy.ryabov@gmail.com; Folomeev, O. M.; Sankin, D. A.
2010-07-15
Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units aremore » used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; Gevorgian, Vahan; Wang, Caixia
Electrical energy storage (EES) systems are expected to play an increasing role in helping the United States and China-the world's largest economies with the two largest power systems-meet the challenges of integrating more variable renewable resources and enhancing the reliability of power systems by improving the operating capabilities of the electric grid. EES systems are becoming integral components of a resilient and efficient grid through a diverse set of applications that include energy management, load shifting, frequency regulation, grid stabilization, and voltage support.
NASA Astrophysics Data System (ADS)
Suebsiri, Jitsopa
Increasing greenhouse gas concentration in the atmosphere influences global climate change even though the level of impact is still unclear. Carbon dioxide capture and storage (CCS) is increasingly seen as an important component of broadly based greenhouse gas reduction measures. Although the other greenhouse gases are more potent, the sheer volume of CO 2 makes it dominant in term of its effect in the atmosphere. To understand the implications, CCS activities should be studied from a full life cycle perspective. This thesis outlines the successful achievement of the objectives of this study in conducting life cycle assessment (LCA), reviewing the carbon dioxide implications only, combining two energy systems, coal-fired electrical generations and CO2 used for enhanced oil recovery (EOR). LCA is the primary approach used in this study to create a tool for CCS environmental evaluation. The Boundary Dam Power Station (BDPS) and the Weyburn-Midale CO 2 EOR Project in Saskatchewan, Canada, are studied and adopted as case scenarios to find the potential for effective application of CCS in both energy systems. This study demonstrates two levels of retrofitting of the BDPS, retrofit of unit 3 or retrofit of all units, combined with three options for CO 2 geological storage: deep saline aquifer, CO2 EOR, and a combination of deep saline aquifer storage and CO2 EOR. Energy output is considered the product of combining these two energy resources (coal and oil). Gigajoules (GJ) are used as the fundamental unit of measurement in comparing the combined energy types. The application of this tool effectively demonstrates the results of application of a CCS system concerning global warming potential (GWP) and fossil fuel resource use efficiency. Other environmental impacts could be analyzed with this tool as well. In addition, the results demonstrate that the GWP reduction is directly related to resource use efficiency. This means the lower the GWP of CCS, the lower resource use efficiency as well. Three processes, coal mining, power production including CO2 capture unit operation, and crude oil usage, must be included when the GWP of CCS is calculated. Moreover, the results from the sensitivity analysis of power generation efficiency present not only a significant reduction of GWP, but also a competitive solution for improving or at least preventing the decrease of fossil fuel resource use efficiency when CCS is applied.
Premium Efficiency Motor Selection and Application Guide – A Handbook for Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert A. McCoy and John G. Douglass
2014-02-01
This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards, currently available and emerging advanced efficiency motor technologies, and guidance on how to evaluate motor efficiency opportunities. It also several tips on getting the most out of industrial motors, such as how to avoid adverse motor interactions with electronic adjustable speed drives and how to ensure efficiency gains are not lost to undervoltage operation or excessive voltagemore » unbalance.« less
NASA Astrophysics Data System (ADS)
Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.
2017-10-01
Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.
KOZAI, Toyoki
2013-01-01
Extensive research has recently been conducted on plant factory with artificial light, which is one type of closed plant production system (CPPS) consisting of a thermally insulated and airtight structure, a multi-tier system with lighting devices, air conditioners and fans, a CO2 supply unit, a nutrient solution supply unit, and an environment control unit. One of the research outcomes is the concept of resource use efficiency (RUE) of CPPS. This paper reviews the characteristics of the CPPS compared with those of the greenhouse, mainly from the viewpoint of RUE, which is defined as the ratio of the amount of the resource fixed or held in plants to the amount of the resource supplied to the CPPS. It is shown that the use efficiencies of water, CO2 and light energy are considerably higher in the CPPS than those in the greenhouse. On the other hand, there is much more room for improving the light and electric energy use efficiencies of CPPS. Challenging issues for CPPS and RUE are also discussed. PMID:24334509
Kozai, Toyoki
2013-01-01
Extensive research has recently been conducted on plant factory with artificial light, which is one type of closed plant production system (CPPS) consisting of a thermally insulated and airtight structure, a multi-tier system with lighting devices, air conditioners and fans, a CO2 supply unit, a nutrient solution supply unit, and an environment control unit. One of the research outcomes is the concept of resource use efficiency (RUE) of CPPS.This paper reviews the characteristics of the CPPS compared with those of the greenhouse, mainly from the viewpoint of RUE, which is defined as the ratio of the amount of the resource fixed or held in plants to the amount of the resource supplied to the CPPS.It is shown that the use efficiencies of water, CO2 and light energy are considerably higher in the CPPS than those in the greenhouse. On the other hand, there is much more room for improving the light and electric energy use efficiencies of CPPS. Challenging issues for CPPS and RUE are also discussed.
Efficiency of endoscopy units can be improved with use of discrete event simulation modeling.
Sauer, Bryan G; Singh, Kanwar P; Wagner, Barry L; Vanden Hoek, Matthew S; Twilley, Katherine; Cohn, Steven M; Shami, Vanessa M; Wang, Andrew Y
2016-11-01
Background and study aims: The projected increased demand for health services obligates healthcare organizations to operate efficiently. Discrete event simulation (DES) is a modeling method that allows for optimization of systems through virtual testing of different configurations before implementation. The objective of this study was to identify strategies to improve the daily efficiencies of an endoscopy center with the use of DES. Methods: We built a DES model of a five procedure room endoscopy unit at a tertiary-care university medical center. After validating the baseline model, we tested alternate configurations to run the endoscopy suite and evaluated outcomes associated with each change. The main outcome measures included adequate number of preparation and recovery rooms, blocked inflow, delay times, blocked outflows, and patient cycle time. Results: Based on a sensitivity analysis, the adequate number of preparation rooms is eight and recovery rooms is nine for a five procedure room unit (total 3.4 preparation and recovery rooms per procedure room). Simple changes to procedure scheduling and patient arrival times led to a modest improvement in efficiency. Increasing the preparation/recovery rooms based on the sensitivity analysis led to significant improvements in efficiency. Conclusions: By applying tools such as DES, we can model changes in an environment with complex interactions and find ways to improve the medical care we provide. DES is applicable to any endoscopy unit and would be particularly valuable to those who are trying to improve on the efficiency of care and patient experience.
Efficiency of endoscopy units can be improved with use of discrete event simulation modeling
Sauer, Bryan G.; Singh, Kanwar P.; Wagner, Barry L.; Vanden Hoek, Matthew S.; Twilley, Katherine; Cohn, Steven M.; Shami, Vanessa M.; Wang, Andrew Y.
2016-01-01
Background and study aims: The projected increased demand for health services obligates healthcare organizations to operate efficiently. Discrete event simulation (DES) is a modeling method that allows for optimization of systems through virtual testing of different configurations before implementation. The objective of this study was to identify strategies to improve the daily efficiencies of an endoscopy center with the use of DES. Methods: We built a DES model of a five procedure room endoscopy unit at a tertiary-care university medical center. After validating the baseline model, we tested alternate configurations to run the endoscopy suite and evaluated outcomes associated with each change. The main outcome measures included adequate number of preparation and recovery rooms, blocked inflow, delay times, blocked outflows, and patient cycle time. Results: Based on a sensitivity analysis, the adequate number of preparation rooms is eight and recovery rooms is nine for a five procedure room unit (total 3.4 preparation and recovery rooms per procedure room). Simple changes to procedure scheduling and patient arrival times led to a modest improvement in efficiency. Increasing the preparation/recovery rooms based on the sensitivity analysis led to significant improvements in efficiency. Conclusions: By applying tools such as DES, we can model changes in an environment with complex interactions and find ways to improve the medical care we provide. DES is applicable to any endoscopy unit and would be particularly valuable to those who are trying to improve on the efficiency of care and patient experience. PMID:27853739
Powell, W R
1974-10-01
A simple, economical absorber utilizing a new principle of operation to achieve very low reradiation losses while generating temperatures limited by material properties of quartz is described. Its performance is analyzed and indicates approximately 90% thermal efficiency and 73% conversion efficiency for an earth based unit with moderately concentrated (~tenfold) sunlight incident. It is consequently compatible with the most economic of concentrator mirrors (stamped) or mirrors deployable in space. Space applications are particularly attractive, as temperatures significantly below 300 K are possible and permit even higher conversion efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, M.G.; Sauber, R.S.
Two models of a high-efficiency compressor were manufactured in a pilot production run. These compressors were for low back-pressure applications. While based on a production compressor, there were many changes that required production process changes. Some changes were performed within our company and others were made by outside vendors. The compressors were used in top mount refrigerator-freezers and sold in normal distribution channels. Forty units were placed in residences for a one-year field test. Additional compressors were built so that a life test program could be performed. The results of the field test reveal a 27.0% improvement in energy consumptionmore » for the 18 ft/sup 3/ high-efficiency model and a 15.6% improvement in the 21 ft/sup 3/ improvement in the 21 ft/sup 3/ high-efficiency model as compared to the standard production unit.« less
Micro-cogen AMTEC systems for residential and transportation opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mital, R.; Rasmussen, J.R.; Hunt, T.
1998-07-01
This paper describes the design and anticipated performance of high efficiency AMTEC systems suitable for natural gas fired micro-cogeneration for residential and transportation applications. AMTEC systems have a relatively flat efficiency curve from a few tens of watts to several kilowatts. This unique quality of AMTEC makes it well suited for micro-cogen as opposed to other technologies, such as internal combustion (IC) engines, which lose efficiency at low power levels. AMTEC also offers additional advantages of high efficiency, high reliability, low noise and low emissions. Combustion heated AMTEC cogeneration systems can also be used in trucks and trailers to keepmore » the diesel engines and cabs warm, provide electrical power for charging the battery and maintain power to the electrical systems during stand down periods. A market study indicates that residential micro-cogen units should have a design generating capacity between 0.5--2 kW. AMTEC systems producing 500 W net electric power have been designed and are presently being built. A 350 W prototype unit is being manufactured for a European firm as a trial unit for central heat and power from a home furnace. Modular one kilowatt units are also being designed that will allow combination into multi-kilowatt systems. The results of feasibility studies focused on price/Watt, efficiency, noise, emission, vibrations, expected lifetime and maintenance cost are also presented in this paper.« less
Rapid Parallel Calculation of shell Element Based On GPU
NASA Astrophysics Data System (ADS)
Wanga, Jian Hua; Lia, Guang Yao; Lib, Sheng; Li, Guang Yao
2010-06-01
Long computing time bottlenecked the application of finite element. In this paper, an effective method to speed up the FEM calculation by using the existing modern graphic processing unit and programmable colored rendering tool was put forward, which devised the representation of unit information in accordance with the features of GPU, converted all the unit calculation into film rendering process, solved the simulation work of all the unit calculation of the internal force, and overcame the shortcomings of lowly parallel level appeared ever before when it run in a single computer. Studies shown that this method could improve efficiency and shorten calculating hours greatly. The results of emulation calculation about the elasticity problem of large number cells in the sheet metal proved that using the GPU parallel simulation calculation was faster than using the CPU's. It is useful and efficient to solve the project problems in this way.
Improving Initiation and Tracking of Research Projects at an Academic Health Center: A Case Study.
Schmidt, Susanne; Goros, Martin; Parsons, Helen M; Saygin, Can; Wan, Hung-Da; Shireman, Paula K; Gelfond, Jonathan A L
2017-09-01
Research service cores at academic health centers are important in driving translational advancements. Specifically, biostatistics and research design units provide services and training in data analytics, biostatistics, and study design. However, the increasing demand and complexity of assigning appropriate personnel to time-sensitive projects strains existing resources, potentially decreasing productivity and increasing costs. Improving processes for project initiation, assigning appropriate personnel, and tracking time-sensitive projects can eliminate bottlenecks and utilize resources more efficiently. In this case study, we describe our application of lean six sigma principles to our biostatistics unit to establish a systematic continual process improvement cycle for intake, allocation, and tracking of research design and data analysis projects. The define, measure, analyze, improve, and control methodology was used to guide the process improvement. Our goal was to assess and improve the efficiency and effectiveness of operations by objectively measuring outcomes, automating processes, and reducing bottlenecks. As a result, we developed a web-based dashboard application to capture, track, categorize, streamline, and automate project flow. Our workflow system resulted in improved transparency, efficiency, and workload allocation. Using the dashboard application, we reduced the average study intake time from 18 to 6 days, a 66.7% reduction over 12 months (January to December 2015).
NASA Astrophysics Data System (ADS)
Saldan, Yosyp R.; Pavlov, Sergii V.; Vovkotrub, Dina V.; Saldan, Yulia Y.; Vassilenko, Valentina B.; Mazur, Nadia I.; Nikolaichuk, Daria V.; Wójcik, Waldemar; Romaniuk, Ryszard; Suleimenov, Batyrbek; Bainazarov, Ulan
2017-08-01
Process of eye tomogram obtaining by means of optical coherent tomography is studied. Stages of idiopathic macula holes formation in the process of eye grounds diagnostics are considered. Main stages of retina pathology progression are determined: Fuzzy logic units for obtaining reliable conclusions regarding the result of diagnosis are developed. By the results of theoretical and practical research system and technique of retinal macular region of the eye state analysis is developed ; application of the system, based on fuzzy logic device, improves the efficiency of eye retina complex.
Ito, Toshihiro; Kato, Tsuyoshi; Hasegawa, Makoto; Katayama, Hiroyuki; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke
2016-12-01
The virus reduction efficiency of each unit process is commonly determined based on the ratio of virus concentration in influent to that in effluent of a unit, but the virus concentration in wastewater has often fallen below the analytical quantification limit, which does not allow us to calculate the concentration ratio at each sampling event. In this study, left-censored datasets of norovirus (genogroup I and II), and adenovirus were used to calculate the virus reduction efficiency in unit processes of secondary biological treatment and chlorine disinfection. Virus concentration in influent, effluent from the secondary treatment, and chlorine-disinfected effluent of four municipal wastewater treatment plants were analyzed by a quantitative polymerase chain reaction (PCR) approach, and the probabilistic distributions of log reduction (LR) were estimated by a Bayesian estimation algorithm. The mean values of LR in the secondary treatment units ranged from 0.9 and 2.2, whereas those in the free chlorine disinfection units were from -0.1 and 0.5. The LR value in the secondary treatment was virus type and unit process dependent, which raised the importance for accumulating the data of virus LR values applicable to the multiple-barrier system, which is a global concept of microbial risk management in wastewater reclamation and reuse.
Renner, Ade; Kirigia, Joses M; Zere, Eyob A; Barry, Saidou P; Kirigia, Doris G; Kamara, Clifford; Muthuri, Lenity HK
2005-01-01
Background The Data Envelopment Analysis (DEA) method has been fruitfully used in many countries in Asia, Europe and North America to shed light on the efficiency of health facilities and programmes. There is, however, a dearth of such studies in countries in sub-Saharan Africa. Since hospitals and health centres are important instruments in the efforts to scale up pro-poor cost-effective interventions aimed at achieving the United Nations Millennium Development Goals, decision-makers need to ensure that these health facilities provide efficient services. The objective of this study was to measure the technical efficiency (TE) and scale efficiency (SE) of a sample of public peripheral health units (PHUs) in Sierra Leone. Methods This study applied the Data Envelopment Analysis approach to investigate the TE and SE among a sample of 37 PHUs in Sierra Leone. Results Twenty-two (59%) of the 37 health units analysed were found to be technically inefficient, with an average score of 63% (standard deviation = 18%). On the other hand, 24 (65%) health units were found to be scale inefficient, with an average scale efficiency score of 72% (standard deviation = 17%). Conclusion It is concluded that with the existing high levels of pure technical and scale inefficiency, scaling up of interventions to achieve both global and regional targets such as the MDG and Abuja health targets becomes far-fetched. In a country with per capita expenditure on health of about US$7, and with only 30% of its population having access to health services, it is demonstrated that efficiency savings can significantly augment the government's initiatives to cater for the unmet health care needs of the population. Therefore, we strongly recommend that Sierra Leone and all other countries in the Region should institutionalise health facility efficiency monitoring at the Ministry of Health headquarter (MoH/HQ) and at each health district headquarter. PMID:16354299
Energy Efficiency: An Experiential-Based Energy Unit for Youth Ages 13-18
ERIC Educational Resources Information Center
Poorman, Myken D.; Webster, Nicole
2010-01-01
Not all 16 year olds can buy hybrid cars to help save gas emissions, but they can learn new, easy ways to save energy. Youth are more likely to develop a greater sense of positive impact on the environment if they learn easy and creative ways to use energy more efficiently at a young age. Through the use of practical applications, youth can begin…
Application of color to reduce complexity in air traffic control.
DOT National Transportation Integrated Search
2002-11-01
The United States Air Traffic Control (ATC) system is designed to provide for the safe and efficient flow of air : traffic from origin to destination. The Federal Aviation Administration predicts that traffic levels will continue : increasing over th...
Application of activity-based costing (ABC) for a Peruvian NGO healthcare provider.
Waters, H; Abdallah, H; Santillán, D
2001-01-01
This article describes the application of activity-based costing (ABC) to calculate the unit costs of the services for a health care provider in Peru. While traditional costing allocates overhead and indirect costs in proportion to production volume or to direct costs, ABC assigns costs through activities within an organization. ABC uses personnel interviews to determine principal activities and the distribution of individual's time among these activities. Indirect costs are linked to services through time allocation and other tracing methods, and the result is a more accurate estimate of unit costs. The study concludes that applying ABC in a developing country setting is feasible, yielding results that are directly applicable to pricing and management. ABC determines costs for individual clinics, departments and services according to the activities that originate these costs, showing where an organization spends its money. With this information, it is possible to identify services that are generating extra revenue and those operating at a loss, and to calculate cross subsidies across services. ABC also highlights areas in the health care process where efficiency improvements are possible. Conclusions about the ultimate impact of the methodology are not drawn here, since the study was not repeated and changes in utilization patterns and the addition of new clinics affected applicability of the results. A potential constraint to implementing ABC is the availability and organization of cost information. Applying ABC efficiently requires information to be readily available, by cost category and department, since the greatest benefits of ABC come from frequent, systematic application of the methodology in order to monitor efficiency and provide feedback for management. The article concludes with a discussion of the potential applications of ABC in the health sector in developing countries.
NASA Astrophysics Data System (ADS)
Pate, S. F.; Wester, T.; Bugel, L.; Conrad, J.; Henderson, E.; Jones, B. J. P.; McLean, A. I. L.; Moon, J. S.; Toups, M.; Wongjirad, T.
2018-02-01
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.
Design of experiments applications in bioprocessing: concepts and approach.
Kumar, Vijesh; Bhalla, Akriti; Rathore, Anurag S
2014-01-01
Most biotechnology unit operations are complex in nature with numerous process variables, feed material attributes, and raw material attributes that can have significant impact on the performance of the process. Design of experiments (DOE)-based approach offers a solution to this conundrum and allows for an efficient estimation of the main effects and the interactions with minimal number of experiments. Numerous publications illustrate application of DOE towards development of different bioprocessing unit operations. However, a systematic approach for evaluation of the different DOE designs and for choosing the optimal design for a given application has not been published yet. Through this work we have compared the I-optimal and D-optimal designs to the commonly used central composite and Box-Behnken designs for bioprocess applications. A systematic methodology is proposed for construction of the model and for precise prediction of the responses for the three case studies involving some of the commonly used unit operations in downstream processing. Use of Akaike information criterion for model selection has been examined and found to be suitable for the applications under consideration. © 2013 American Institute of Chemical Engineers.
Experiences in solar cooling systems
NASA Astrophysics Data System (ADS)
Ward, D. S.
The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.
Advances in the development of remote sensing technology for agricultural applications
NASA Technical Reports Server (NTRS)
Powers, J. E.; Erb, R. B.; Hall, F. G.; Macdonald, R. B.
1979-01-01
The application of remote sensing technology to crop forecasting is discussed. The importance of crop forecasts to the world economy and agricultural management is explained, and the development of aerial and spaceborne remote sensing for global crop forecasting by the United States is outlined. The structure, goals and technical aspects of the Large Area Crop Inventory Experiment (LACIE) are presented, and main findings on the accuracy, efficiency, applicability and areas for further study of the LACIE procedure are reviewed. The current status of NASA crop forecasting activities in the United States and worldwide is discussed, and the objectives and organization of the newly created Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AgRISTARS) program are presented.
Large-screen display industry: market and technology trends for direct view and projection displays
NASA Astrophysics Data System (ADS)
Castellano, Joseph A.; Mentley, David E.
1996-03-01
Large screen information displays are defined as dynamic electronic displays that can be viewed by more than one person and are at least 2-feet wide. These large area displays for public viewing provide convenience, entertainment, security, and efficiency to the viewers. There are numerous uses for large screen information displays including those in advertising, transportation, traffic control, conference room presentations, computer aided design, banking, and military command/control. A noticeable characteristic of the large screen display market is the interchangeability of display types. For any given application, the user can usually choose from at least three alternative technologies, and sometimes from many more. Some display types have features that make them suitable for specific applications due to temperature, brightness, power consumption, or other such characteristic. The overall worldwide unit consumption of large screen information displays of all types and for all applications (excluding consumer TV) will increase from 401,109 units in 1995 to 655,797 units in 2002. On a unit consumption basis, applications in business and education represent the largest share of unit consumption over this time period; in 1995, this application represented 69.7% of the total. The market (value of shipments) will grow from DOL3.1 billion in 1995 to DOL3.9 billion in 2002. The market will be dominated by front LCD projectors and LCD overhead projector plates.
Scale and scope economies in Mexican private medical units.
Keith, Jorge; Prior, Diego
2014-01-01
To evaluate technical efficiency and potential presence of scale and scope economies in Mexican private medical units (PMU) that will improve management decisions. We used data envelopment analysis methods with inputs and outputs for 2 105 Mexican PMU published in 2010 by the Instituto Nacional de Estadística y Geografía from the "Estadística de Unidades Médicas Privadas con Servicio de Hospitalización (PEC-6-20-A)" questionnaire. The application of the models used in the paper found that there is a marginal presence of economies of scale and scope in Mexican PMU. PMU in Mexico must focus to deliver their services on a diversified structure to achieve technical efficiency.
Human smuggling organizations facilitating the smuggling of aliens into the United States have an unlawful network supporting their illicit...illegal aliens more efficient while producing the necessary articulable facts to substantiate enough probable cause for subsequent investigative
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... efficiency; (7) optimization of generation and energy storage ranging from a 4 unit, 500 megawatts (MW) (4... brief comments up to 6,000 characters, without prior registration, using the eComment system at http...
The Pythagorean Theorem and the Solid State
ERIC Educational Resources Information Center
Kelly, Brenda S.; Splittgerber, Allan G.
2005-01-01
Packing efficiency and crystal density can be calculated from basic geometric principles employing the Pythagorean theorem, if the unit-cell structure is known. The procedures illustrated have applicability in courses such as general chemistry, intermediate and advanced inorganic, materials science, and solid-state physics.
Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.
2007-01-01
Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. Conclusions The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR. PMID:17138580
Rosati, Adolfo; Metcalf, Samuel G; Buchner, Richard P; Fulton, Allan E; Lampinen, Bruce D
2007-02-01
Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.
Efficient Design in a DC to DC Converter Unit
NASA Technical Reports Server (NTRS)
Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.
2002-01-01
Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.
Highly efficient multifunctional metasurface for high-gain lens antenna application
NASA Astrophysics Data System (ADS)
Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing
2017-07-01
In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.
Airspace Complexity and its Application in Air Traffic Management
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Chatterji, Gano; Sheth, Kapil; Edwards, Thomas (Technical Monitor)
1998-01-01
The United States Air Traffic Management (ATM) system provides services to enable safe, orderly and efficient aircraft operations within the airspace over the continental United States and over large portions of the Pacific and Atlantic Oceans, and the Gulf of Mexico. It consists of two components, Air Traffic Control (ATC) and Traffic Flow Management (TFM). The ATC function ensures that the aircraft within the airspace are separated at all times while the TFM function organizes the aircraft into a flow pattern to ensure their safe and efficient movement. In order to accomplish the ATC and TFM functions, the airspace over United States is organized into 22 Air Route Traffic Control Centers (ARTCCs). The Center airspace is stratified into low-altitude, high-altitude and super-high altitude groups of Sectors. Each vertical layer is further partitioned into several horizontal Sectors. A typical ARTCC airspace is partitioned into 20 to 80 Sectors. These Sectors are the basic control units within the ATM system.
2012-06-01
in an effort to be more reliable and efficient. However, with the benefits of this new technology comes added risk . This research utilizes a con ...AN APPLICATION OF CON -RESISTANT TRUST TO IMPROVE THE RELIABILITY OF SPECIAL PROTECTION SYSTEMS WITHIN THE SMART GRID THESIS Crystal M. Shipman...Government and is not subject to copyright protection in the United States AFIT/GCO/ENG/12-22 AN APPLICATION OF CON -RESISTANT TRUST TO IMPROVE THE
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... Unit 3 of the project by rewinding the generator and replacing the turbine runner with a more efficient runner. The proposed upgrade would increase the installed and hydraulic capacities of the project by 5.7...
Rajamalli, P; Senthilkumar, N; Huang, P-Y; Ren-Wu, C-C; Lin, H-W; Cheng, C-H
2017-08-16
Simultaneous enhancement of out-coupling efficiency, internal quantum efficiency, and color purity in thermally activated delayed fluorescence (TADF) emitters is highly desired for the practical application of these materials. We designed and synthesized two isomeric TADF emitters, 2DPyM-mDTC and 3DPyM-pDTC, based on di(pyridinyl)methanone (DPyM) cores as the new electron-accepting units and di(tert-butyl)carbazole (DTC) as the electron-donating units. 3DPyM-pDTC, which is structurally nearly planar with a very small ΔE ST , shows higher color purity, horizontal ratio, and quantum yield than 2DPyM-mDTC, which has a more flexible structure. An electroluminescence device based on 3DPyM-pDTC as the dopant emitter can reach an extremely high external quantum efficiency of 31.9% with a pure blue emission. This work also demonstrates a way to design materials with a high portion of horizontal molecular orientation to realize a highly efficient pure-blue device based on TADF emitters.
NASA Astrophysics Data System (ADS)
Chen, Ming; Xiao, Xiaofei; Chang, Linzi; Wang, Congyun; Zhao, Deping
2017-07-01
In this work, a high-efficiency and tunable dual-frequency reflective polarization converter composed of graphene metasurface with twisting double L-shaped unit is firstly realized. Numerical results demonstrate that the device can convert a linearly polarized wave to its cross-polarized wave, and meantime it can also convert to a circularly polarized wave. Subsequently, one thickness of 500 nm SiO2 layer sandwiched by two graphene metasurfaces with similar pattern is stacked on the top of the two-layered structure, a four-frequency efficient reflective polarization converters is realized. Above all, those working frequencies can also be dynamically tuned within a large frequency range by adjusting the Fermi energy of the graphene, without reoptimizing and refabricating the nanostructures, which paves a novel way toward developing a controllable polarization converter for mid-infrared applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonnemacher, G.C.; Killen, D.C.; Weinstein, R.E.
This paper reports on the results of an US Department of Energy (DOE) conceptual design evaluation. This is for an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). Here, APFBC would repower an existing generation station, the Carolina Power and Light Company's (CP and L) L.V. Sutton steam station. Repowering concepts are presented for APFBC repowering of Unit 2 (226 MWe) and both Units 1 and 2 in combination (340 MWe total). This evaluation found that it is more economical to repower the existing coal-fired generation unit with APFBC than to build newmore » pulverized coal capacity of equivalent output. The paper provides a review of the DOE study and summarizes the design and costs associated with the APFBC concept. A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, JR. steam plant Unit 4. This all-coal technology is under development by DOE and equipment manufacturers. This paper's concept evaluation is for a larger implementation than the Lakeland McIntosh CCT project. The repowering of L.V. Sutton Unit 2 is projected to boost the energy efficiency of the existing unit from its present 32.0% HHV level to an APFBC-repowered energy efficiency of 42.2% HHV (44.1% LHV). A large frame Westinghouse W501F combustion turbine is modified for APFBC use. This produces a 225+ MWe class APFBC. At this size, APFBC has a wide application for repowering many existing units in America. The paper focuses on the design issues, shows how the APFBC power block integrates with the existing site, and gives a brief summary of the resulting system performance and costs.« less
Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Genk, Mohamed S.; Tournier, Jean-Michel P.
2002-07-01
This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing,more » or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)« less
Pate, S. F.; Wester, T.; Bugel, L.; ...
2018-02-28
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pate, S. F.; Wester, T.; Bugel, L.
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less
Application-specific coarse-grained reconfigurable array: architecture and design methodology
NASA Astrophysics Data System (ADS)
Zhou, Li; Liu, Dongpei; Zhang, Jianfeng; Liu, Hengzhu
2015-06-01
Coarse-grained reconfigurable arrays (CGRAs) have shown potential for application in embedded systems in recent years. Numerous reconfigurable processing elements (PEs) in CGRAs provide flexibility while maintaining high performance by exploring different levels of parallelism. However, a difference remains between the CGRA and the application-specific integrated circuit (ASIC). Some application domains, such as software-defined radios (SDRs), require flexibility with performance demand increases. More effective CGRA architectures are expected to be developed. Customisation of a CGRA according to its application can improve performance and efficiency. This study proposes an application-specific CGRA architecture template composed of generic PEs (GPEs) and special PEs (SPEs). The hardware of the SPE can be customised to accelerate specific computational patterns. An automatic design methodology that includes pattern identification and application-specific function unit generation is also presented. A mapping algorithm based on ant colony optimisation is provided. Experimental results on the SDR target domain show that compared with other ordinary and application-specific reconfigurable architectures, the CGRA generated by the proposed method performs more efficiently for given applications.
Ferdowsi, Parnian; Saygili, Yasemin; Zhang, Weiwei; Edvinson, Tomas; Kavan, Ladislav; Mokhtari, Javad; Zakeeruddin, Shaik M; Grätzel, Michael; Hagfeldt, Anders
2018-01-23
A metal-free organic sensitizer, suitable for the application in dye-sensitized solar cells (DSSCs), has been designed, synthesized and characterized both experimentally and theoretically. The structure of the novel donor-acceptor-π-bridge-acceptor (D-A-π-A) dye incorporates a triphenylamine (TPA) segment and 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTEBA). The triphenylamine unit is widely used as an electron donor for photosensitizers, owing to its nonplanar molecular configuration and excellent electron-donating capability, whereas 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid is used as an electron acceptor unit. The influences of I 3 - /I - , [Co(bpy) 3 ] 3+/2+ and [Cu(tmby) 2 ] 2+/+ (tmby=4,4',6,6'-tetramethyl-2,2'-bipyridine) as redox electrolytes on the DSSC device performance were also investigated. The maximal monochromatic incident photon-to-current conversion efficiency (IPCE) reached 81 % and the solar light to electrical energy conversion efficiency of devices with [Cu(tmby) 2 ] 2+/+ reached 7.15 %. The devices with [Co(bpy) 3 ] 3+/2+ and I 3 - /I - electrolytes gave efficiencies of 5.22 % and 6.14 %, respectively. The lowest device performance with a [Co(bpy) 3 ] 3+/2+ -based electrolyte is attributed to increased charge recombination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA
2006-10-24
Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA
2010-01-26
Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
Wegeng, Robert S.; TeGrotenhuis, Ward E.; Whyatt, Greg A.
2007-09-18
Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
31 CFR 205.11 - What requirements apply to funding techniques?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Program Agency must minimize the time elapsing between the transfer of funds from the United States Treasury and the State's payout of funds for Federal assistance program purposes, whether the transfer... EFFICIENT FEDERAL-STATE FUNDS TRANSFERS Rules Applicable to Federal Assistance Programs Included in a...
Microbial fuel cells as power supply of a low-power temperature sensor
NASA Astrophysics Data System (ADS)
Khaled, Firas; Ondel, Olivier; Allard, Bruno
2016-02-01
Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.
Efficient parallel architecture for highly coupled real-time linear system applications
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo
1988-01-01
A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.
Liquid-Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide
NASA Technical Reports Server (NTRS)
Cowen, J.; Lucas, L.; Ernst, F.; Pirouz, P.; Hepp, A.; Bailey, S.
2005-01-01
The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Figure 1 shows a well-known example: The robotic vehicle "Rover," constructed for NASA s "Mars Pathfinder" mission. The solar cells for such applications not only need to have high conversion efficiency, but must possess a high specific power, thus a high power output per unit mass. Since future missions will demand for large aggregates of solar cells and space flights are expensive, the solar cells must furthermore be available at low costs (per unit power output) and - very important in outer space - have a long lifetime and a high resistance against structural damage introduced by irradiation with high-energy electrons and protons.
NASA Technical Reports Server (NTRS)
1983-01-01
An assessment was made of the impact of developments in computational fluid dynamics (CFD) on the traditional role of aerospace ground test facilities over the next fifteen years. With improvements in CFD and more powerful scientific computers projected over this period it is expected to have the capability to compute the flow over a complete aircraft at a unit cost three orders of magnitude lower than presently possible. Over the same period improvements in ground test facilities will progress by application of computational techniques including CFD to data acquisition, facility operational efficiency, and simulation of the light envelope; however, no dramatic change in unit cost is expected as greater efficiency will be countered by higher energy and labor costs.
REDOX electrochemical energy storage
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1980-01-01
Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.
15 CFR 971.501 - Resource assessment, recovery plan, and logical mining unit.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Resource assessment, recovery plan... COMMERCIAL RECOVERY PERMITS Resource Development § 971.501 Resource assessment, recovery plan, and logical... relation to the applicant's production requirements, operating period, and recovery efficiency in order to...
15 CFR 971.501 - Resource assessment, recovery plan, and logical mining unit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Resource assessment, recovery plan... COMMERCIAL RECOVERY PERMITS Resource Development § 971.501 Resource assessment, recovery plan, and logical... relation to the applicant's production requirements, operating period, and recovery efficiency in order to...
15 CFR 971.501 - Resource assessment, recovery plan, and logical mining unit.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Resource assessment, recovery plan... COMMERCIAL RECOVERY PERMITS Resource Development § 971.501 Resource assessment, recovery plan, and logical... relation to the applicant's production requirements, operating period, and recovery efficiency in order to...
15 CFR 971.501 - Resource assessment, recovery plan, and logical mining unit.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Resource assessment, recovery plan... COMMERCIAL RECOVERY PERMITS Resource Development § 971.501 Resource assessment, recovery plan, and logical... relation to the applicant's production requirements, operating period, and recovery efficiency in order to...
Preparation of cherry-picked combinatorial libraries by string synthesis.
Furka, Arpád; Dibó, Gábor; Gombosuren, Naran
2005-03-01
String synthesis [1-3] is an efficient and cheap manual method for preparation of combinatorial libraries by using macroscopic solid support units. Sorting the units between two synthetic steps is an important operation of the procedure. The software developed to guide sorting can be used only when complete combinatorial libraries are prepared. Since very often only selected components of the full libraries are needed, new software was constructed that guides sorting in preparation of non-complete combinatorial libraries. Application of the software is described in details.
1983-09-01
which were based on off-season, summer prices and demand C4 143-8], and placed mandatory controls on all petroleum product prices s6:136]. These...Service, September 1982. Hausman , J. A., and P. L. Joskow. "Evaluating the Costs and Benefits of Appliance Efficiency Standards," American Economic...Department of Agriculture, Washington: United States Government Printing Office, March 4, 1989. Zoch, Lawrence L., Jr., Jack J. Rusch, and Edward L. Springer
Land availability and land value assessment for solar ponds in the United States
NASA Technical Reports Server (NTRS)
1982-01-01
The land availability and land values for solar ponds in the United States as they concern the residential, commercial, and institutional land use categories were investigated. Solar ponds were identified as efficient and economical means for collecting and storing direct and diffuse solar energy. Innovative methodologies were applied to arrive at regional projections regarding the amount of land that might potentially be available for retrofit or future solar pond applications. Regional land values were also documented and analyzed.
Automatic movie skimming with general tempo analysis
NASA Astrophysics Data System (ADS)
Lee, Shih-Hung; Yeh, Chia-Hung; Kuo, C. C. J.
2003-11-01
Story units are extracted by general tempo analysis including tempos analysis including tempos of audio and visual information in this research. Although many schemes have been proposed to successfully segment video data into shots using basic low-level features, how to group shots into meaningful units called story units is still a challenging problem. By focusing on a certain type of video such as sport or news, we can explore models with the specific application domain knowledge. For movie contents, many heuristic rules based on audiovisual clues have been proposed with limited success. We propose a method to extract story units using general tempo analysis. Experimental results are given to demonstrate the feasibility and efficiency of the proposed technique.
Estimating Energy Consumption of Mobile Fluid Power in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Lauren; Zigler, Bradley T.
This report estimates the market size and energy consumption of mobile off-road applications utilizing hydraulic fluid power, and summarizes technology gaps and implementation barriers. Mobile fluid power is the use of hydraulic fluids under pressure to transmit power in mobile equipment applications. The mobile off-road fluid power sector includes various uses of hydraulic fluid power equipment with fundamentally diverse end-use application and operational requirements, such as a skid steer loader, a wheel loader or an agriculture tractor. The agriculture and construction segments dominate the mobile off-road fluid power market in component unit sales volume. An estimated range of energy consumedmore » by the mobile off-road fluid power sector is 0.36 - 1.8 quads per year, which was 1.3 percent - 6.5 percent of the total energy consumed in 2016 by the transportation sector. Opportunities for efficiency improvements within the fluid power system result from needs to level and reduce the peak system load requirements and develop new technologies to reduce fluid power system level losses, both of which may be facilitated by characterizing duty cycles to define standardized performance test methods. There are currently no commonly accepted standardized test methods for evaluating equipment level efficiency over a duty cycle. The off-road transportation sector currently meets criteria emissions requirements, and there are no efficiency regulations requiring original equipment manufacturers (OEM) to invest in new architecture development to improve the fuel economy of mobile off-road fluid power systems. In addition, the end-user efficiency interests are outweighed by low equipment purchase or lease price concerns, required payback periods, and reliability and durability requirements of new architecture. Current economics, low market volumes with high product diversity, and regulation compliance challenge OEM investment in commercialization of new architecture development.« less
Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping
2017-10-30
The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.
Development and application of soil coupled heat pump
NASA Astrophysics Data System (ADS)
Liu, Lu
2017-05-01
Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.
Data Center Energy Efficiency Standards in India: Preliminary Findings from Global Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raje, Sanyukta; Maan, Hermant; Ganguly, Suprotim
Global data center energy consumption is growing rapidly. In India, information technology industry growth, fossil-fuel generation, and rising energy prices add significant operational costs and carbon emissions from energy-intensive data centers. Adoption of energy-efficient practices can improve the global competitiveness and sustainability of data centers in India. Previous studies have concluded that advancement of energy efficiency standards through policy and regulatory mechanisms is the fastest path to accelerate the adoption of energy-efficient practices in the Indian data centers. In this study, we reviewed data center energy efficiency practices in the United States, Europe, and Asia. Using evaluation metrics, we identifiedmore » an initial set of energy efficiency standards applicable to the Indian context using the existing policy mechanisms. These preliminary findings support next steps to recommend energy efficiency standards and inform policy makers on strategies to adopt energy-efficient technologies and practices in Indian data centers.« less
NASA Technical Reports Server (NTRS)
Ehsani, M.; Tchamdjou, A.
1997-01-01
This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.
NASA Astrophysics Data System (ADS)
Johnsson, L.; Netzer, G.
2016-10-01
Moore's law, the doubling of transistors per unit area for each CMOS technology generation, is expected to continue throughout the decade, while Dennard voltage scaling resulting in constant power per unit area stopped about a decade ago. The semiconductor industry's response to the loss of Dennard scaling and the consequent challenges in managing power distribution and dissipation has been leveled off clock rates, a die performance gain reduced from about a factor of 2.8 to 1.4 per technology generation, and multi-core processor dies with increased cache sizes. Increased caches sizes offers performance benefits for many applications as well as energy savings. Accessing data in cache is considerably more energy efficient than main memory accesses. Further, caches consume less power than a corresponding amount of functional logic. As feature sizes continue to be scaled down an increasing fraction of the die must be “underutilized” or “dark” due to power constraints. With power being a prime design constraint there is a concerted effort to find significantly more energy efficient chip architectures than dominant in servers today, with chips potentially incorporating several types of cores to cover a range of applications, or different functions in an application, as is already common for the mobile processor market. Digital Signal Processors (DSPs), largely targeting the embedded and mobile processor markets, typically have been designed for a power consumption of 10% or less of a typical x86 CPU, yet with much more than 10% of the floating-point capability of the same technology generation x86 CPUs. Thus, DSPs could potentially offer an energy efficient alternative to x86 CPUs. Here we report an assessment of the Texas Instruments TMS320C6678 DSP in regards to its energy efficiency for two common HPC benchmarks: STREAM (memory system benchmark) and HPL (CPU benchmark)
Global Carbon Fiber Composites Supply Chain Competitiveness Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sujit; Warren, Josh; West, Devin
This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components,more » all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.« less
NASA Astrophysics Data System (ADS)
Natsui, Masanori; Hanyu, Takahiro
2018-04-01
In realizing a nonvolatile microcontroller unit (MCU) for sensor nodes in Internet-of-Things (IoT) applications, it is important to solve the data-transfer bottleneck between the central processing unit (CPU) and the nonvolatile memory constituting the MCU. As one circuit-oriented approach to solving this problem, we propose a memory access minimization technique for magnetoresistive-random-access-memory (MRAM)-embedded nonvolatile MCUs. In addition to multiplexing and prefetching of memory access, the proposed technique realizes efficient instruction fetch by eliminating redundant memory access while considering the code length of the instruction to be fetched and the transition of the memory address to be accessed. As a result, the performance of the MCU can be improved while relaxing the performance requirement for the embedded MRAM, and compact and low-power implementation can be performed as compared with the conventional cache-based one. Through the evaluation using a system consisting of a general purpose 32-bit CPU and embedded MRAM, it is demonstrated that the proposed technique increases the peak efficiency of the system up to 3.71 times, while a 2.29-fold area reduction is achieved compared with the cache-based one.
Conical structures for highly efficient solar cell applications
NASA Astrophysics Data System (ADS)
Korany, Fatma M. H.; Hameed, Mohamed Farhat O.; Hussein, Mohamed; Mubarak, Roaa; Eladawy, Mohamed I.; Obayya, Salah Sabry A.
2018-01-01
Improving solar cell efficiency is a critical research topic. Nowadays, light trapping techniques are a promising way to enhance solar cell performance. A modified nanocone nanowire (NW) is proposed and analyzed for solar cell applications. The suggested NW consists of conical and truncated conical units. The geometrical parameters are studied using a three-dimensional (3-D) finite difference time-domain (FDTD) method to achieve broadband absorption through the reported design and maximize its ultimate efficiency. The analyzed parameters are absorption spectra, ultimate efficiency, and short circuit current density. The numerical results prove that the proposed structure is superior compared with cone, truncated cone, and cylindrical NWs. The reported design achieves an ultimate efficiency of 44.21% with substrate and back reflector. Further, short circuit current density of 36.17 mA / cm2 is achieved by the suggested NW. The electrical performance analysis of the proposed structure including doping concentration, junction thickness, and Shockley-Read-Hall recombination is also investigated. The electrical simulations show that a power conversion efficiency of 17.21% can be achieved using the proposed NW. The modified nanocone has advantages of broadband absorption enhancement, low cost, and fabrication feasibility.
Activity and storage of commercial amylases in the 2013 Louisiana grinding season
USDA-ARS?s Scientific Manuscript database
A current problem in the application of amylases at sugarcane factories is the existence of a wide variation in the activities and activity per unit cost of commercial amylases. The efficiency of amylase action to break down starch in the factory is related to the activity of the amylase used. Until...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... achieve in their certification: (a.) LEED for Homes program by the United States Green Building Council... Home Builders (NAHB) ICC 700- 2008 National Green Building Standard TM: http://www.nahb.org . (1... Level (10 points). iv. Participation in local green/energy efficient building standards; Applicants, who...
Safeguards Technology Development Program 1st Quarter FY 2018 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, Manoj K.
LLNL will evaluate the performance of a stilbene-based scintillation detector array for IAEA neutron multiplicity counting (NMC) applications. This effort will combine newly developed modeling methodologies and recently acquired high-efficiency stilbene detector units to quantitatively compare the prototype system performance with the conventional He-3 counters and liquid scintillator alternatives.
Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmalz, Mark S
2011-07-24
Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less
NASA Astrophysics Data System (ADS)
Hobbs, J.; Turmon, M.; David, C. H.; Reager, J. T., II; Famiglietti, J. S.
2017-12-01
NASA's Western States Water Mission (WSWM) combines remote sensing of the terrestrial water cycle with hydrological models to provide high-resolution state estimates for multiple variables. The effort includes both land surface and river routing models that are subject to several sources of uncertainty, including errors in the model forcing and model structural uncertainty. Computational and storage constraints prohibit extensive ensemble simulations, so this work outlines efficient but flexible approaches for estimating and reporting uncertainty. Calibrated by remote sensing and in situ data where available, we illustrate the application of these techniques in producing state estimates with associated uncertainties at kilometer-scale resolution for key variables such as soil moisture, groundwater, and streamflow.
Efficient production of artificially designed gelatins with a Bacillus brevis system.
Kajino, T; Takahashi, H; Hirai, M; Yamada, Y
2000-01-01
Artificially designed gelatins comprising tandemly repeated 30-amino-acid peptide units derived from human alphaI collagen were successfully produced with a Bacillus brevis system. The DNA encoding the peptide unit was synthesized by taking into consideration the codon usage of the host cells, but no clones having a tandemly repeated gene were obtained through the above-mentioned strategy. Minirepeat genes could be selected in vivo from a mixture of every possible sequence encoding an artificial gelatin by randomly ligating the mixed sequence unit and transforming it into Escherichia coli. Larger repeat genes constructed by connecting minirepeat genes obtained by in vivo selection were also stable in the expression host cells. Gelatins derived from the eight-unit and six-unit repeat genes were extracellularly produced at the level of 0.5 g/liter and easily purified by ammonium sulfate fractionation and anion-exchange chromatography. The purified artificial gelatins had the predicted N-terminal sequences and amino acid compositions and a solgel property similar to that of the native gelatin. These results suggest that the selection of a repeat unit sequence stable in an expression host is a shortcut for the efficient production of repetitive proteins and that it can conveniently be achieved by the in vivo selection method. This study revealed the possible industrial application of artificially designed repetitive proteins.
Technical and scale efficiency in public and private Irish nursing homes - a bootstrap DEA approach.
Ni Luasa, Shiovan; Dineen, Declan; Zieba, Marta
2016-10-27
This article provides methodological and empirical insights into the estimation of technical efficiency in the nursing home sector. Focusing on long-stay care and using primary data, we examine technical and scale efficiency in 39 public and 73 private Irish nursing homes by applying an input-oriented data envelopment analysis (DEA). We employ robust bootstrap methods to validate our nonparametric DEA scores and to integrate the effects of potential determinants in estimating the efficiencies. Both the homogenous and two-stage double bootstrap procedures are used to obtain confidence intervals for the bias-corrected DEA scores. Importantly, the application of the double bootstrap approach affords true DEA technical efficiency scores after adjusting for the effects of ownership, size, case-mix, and other determinants such as location, and quality. Based on our DEA results for variable returns to scale technology, the average technical efficiency score is 62 %, and the mean scale efficiency is 88 %, with nearly all units operating on the increasing returns to scale part of the production frontier. Moreover, based on the double bootstrap results, Irish nursing homes are less technically efficient, and more scale efficient than the conventional DEA estimates suggest. Regarding the efficiency determinants, in terms of ownership, we find that private facilities are less efficient than the public units. Furthermore, the size of the nursing home has a positive effect, and this reinforces our finding that Irish homes produce at increasing returns to scale. Also, notably, we find that a tendency towards quality improvements can lead to poorer technical efficiency performance.
Artificial intelligence applications in the intensive care unit.
Hanson, C W; Marshall, B E
2001-02-01
To review the history and current applications of artificial intelligence in the intensive care unit. The MEDLINE database, bibliographies of selected articles, and current texts on the subject. The studies that were selected for review used artificial intelligence tools for a variety of intensive care applications, including direct patient care and retrospective database analysis. All literature relevant to the topic was reviewed. Although some of the earliest artificial intelligence (AI) applications were medically oriented, AI has not been widely accepted in medicine. Despite this, patient demographic, clinical, and billing data are increasingly available in an electronic format and therefore susceptible to analysis by intelligent software. Individual AI tools are specifically suited to different tasks, such as waveform analysis or device control. The intensive care environment is particularly suited to the implementation of AI tools because of the wealth of available data and the inherent opportunities for increased efficiency in inpatient care. A variety of new AI tools have become available in recent years that can function as intelligent assistants to clinicians, constantly monitoring electronic data streams for important trends, or adjusting the settings of bedside devices. The integration of these tools into the intensive care unit can be expected to reduce costs and improve patient outcomes.
Zheng, Huaiguo; Xu, Xinpeng
2016-01-01
In order to make clear the recent status and trend of wheat (Triticum aestivum L.) production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000–2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied) values of N (PFP-N), P (PFP-P) and K (PFP-K) were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied) values of N (AEN), P (AEP) and K (AEK) were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application) values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R’s nutrient management (right time, right rate, right site and right fertilizer) should be adopted widely to improve the yield production and nutrient use efficiency. PMID:27631468
Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit
NASA Astrophysics Data System (ADS)
Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.
2017-11-01
In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.
Design of Research on Performance of a New Iridium Coordination Compound for the Detection of Hg2.
Ma, Hailing; Tsai, Sang-Bing
2017-10-16
Heavy metal pollution has become one of the most significant pollution problems encountered by our country in terms of environment protection. In addition to the significant effects of heavy metals on the human body and other organisms through water, food chain enrichment and other routes, heavy metals involved in daily necessities beyond the level limit could also affect people's lives, so the detection of heavy metals is extremely important. Ir (III) coordination compound, considered to be one of the best phosphorescent sensing materials, is characterized by high luminous efficiency, easy modification of the ligand and so on, and it has potential applications in the field of heavy metal detection. This project aims to product a new Ir (III) functional coordination compound by designing a new auxiliary ligand and a main ligand with a sulfur identification unit, in order to systematically investigate the application of iridium coordination compound in the detection of the heavy metal Hg 2+ . With the introduction of the sulfur identification unit, selective sensing of Hg 2+ could be achieved. Additionally, a new auxiliary ligand is also introduced to produce a functional iridium coordination compound with high quantum efficiency, and to diversify the application of iridium coordination compound in this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Michael Douglas; Nam, Hyun-Joo; Padron, Eric
2005-06-01
The production, purification, crystallization and preliminary X-ray crystallographic analysis of adeno-associated virus serotype 8 is reported. Adeno-associated viruses (AAVs) are actively being developed for clinical gene-therapy applications and the efficiencies of the vectors could be significantly improved by a detailed understanding of their viral capsid structures and the structural determinants of their tissue-transduction interactions. AAV8 is ∼80% identical to the more widely studied AAV2, but its liver-transduction efficiency is significantly greater than that of AAV2 and other serotypes. The production, purification, crystallization and preliminary X-ray crystallographic analysis of AAV8 viral capsids are reported. The crystals diffract X-rays to 3.0 Åmore » resolution using synchrotron radiation and belong to the hexagonal space group P6{sub 3}22, with unit-cell parameters a = 257.5, c = 443.5 Å. The unit cell contains two viral particles, with ten capsid viral protein monomers per crystallographic asymmetric unit.« less
A fast mass spring model solver for high-resolution elastic objects
NASA Astrophysics Data System (ADS)
Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian
2017-03-01
Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.
Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less
Two-stage sequential sampling: A neighborhood-free adaptive sampling procedure
Salehi, M.; Smith, D.R.
2005-01-01
Designing an efficient sampling scheme for a rare and clustered population is a challenging area of research. Adaptive cluster sampling, which has been shown to be viable for such a population, is based on sampling a neighborhood of units around a unit that meets a specified condition. However, the edge units produced by sampling neighborhoods have proven to limit the efficiency and applicability of adaptive cluster sampling. We propose a sampling design that is adaptive in the sense that the final sample depends on observed values, but it avoids the use of neighborhoods and the sampling of edge units. Unbiased estimators of population total and its variance are derived using Murthy's estimator. The modified two-stage sampling design is easy to implement and can be applied to a wider range of populations than adaptive cluster sampling. We evaluate the proposed sampling design by simulating sampling of two real biological populations and an artificial population for which the variable of interest took the value either 0 or 1 (e.g., indicating presence and absence of a rare event). We show that the proposed sampling design is more efficient than conventional sampling in nearly all cases. The approach used to derive estimators (Murthy's estimator) opens the door for unbiased estimators to be found for similar sequential sampling designs. ?? 2005 American Statistical Association and the International Biometric Society.
Analysis of H2 storage needs for early market non-motive fuel cell applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco
Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In additionmore » to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.« less
Is Efficiency Enough? Towards a New Framework for Carbon Savingsin the California Residential Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moezzi, Mithra; Diamond, Rick
2005-10-01
The overall implementation of energy efficiency in the United States is not adequately aligned with the environmental benefits claimed for efficiency, because it does not consider absolute levels of energy use, pollutant emissions, or consumption. In some ways, promoting energy efficiency may even encourage consumption. A more effective basis for environmental policy could be achieved by recognizing the degree and nature of the synchronization between environmental objectives and efficiency. This research seeks to motivate and initiate exploration of alternative ways of defining efficiency or otherwise moderating energy use toward reaching environmental objectives, as applicable to residential electricity use in California.more » The report offers three main recommendations: (1) produce definitions of efficiency that better integrate absolute consumption, (2) attend to the deeper social messages of energy efficiency communications, and (3) develop a more critical perspective on benefits and limitations of energy efficiency for delivering environmental benefits. In keeping with the exploratory nature of this project, the report also identifies ten questions for further investigation.« less
Design and optimization of membrane-type acoustic metamaterials
NASA Astrophysics Data System (ADS)
Blevins, Matthew Grant
One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.
O'Neill, Liam; Dexter, Franklin
2005-11-01
We compare two techniques for increasing the transparency and face validity of Data Envelopment Analysis (DEA) results for managers at a single decision-making unit: multifactor efficiency (MFE) and non-radial super-efficiency (NRSE). Both methods incorporate the slack values from the super-efficient DEA model to provide a more robust performance measure than radial super-efficiency scores. MFE and NRSE are equivalent for unique optimal solutions and a single output. MFE incorporates the slack values from multiple output variables, whereas NRSE does not. MFE can be more transparent to managers since it involves no additional optimization steps beyond the DEA, whereas NRSE requires several. We compare results for operating room managers at an Iowa hospital evaluating its growth potential for multiple surgical specialties. In addition, we address the problem of upward bias of the slack values of the super-efficient DEA model.
Min, Ari; Scott, Linda D; Park, Chang; Vincent, Catherine; Ryan, Catherine J; Lee, Taewha
2018-04-10
This study aimed to evaluate technical efficiency of US intensive care units and determine the effects of environmental factors on technical efficiency in providing quality of nursing care. Data were obtained from the 2014 National Database of Nursing Quality Indicators and the Centers for Medicare and Medicaid Services. Data envelopment analysis was used to estimate technical efficiency for each intensive care unit. Multilevel modeling was used to determine the effects of environmental factors on technical efficiency. Overall, Medicare Advantage penetration and hospital competition in a market did not create pressure for intensive care units to become more efficient by reducing their inputs. However, these 2 environmental factors showed positive influences on technical efficiency in intensive care units with certain levels of technical efficiency. The implications of the study results for management strategies and health policy may vary according to the levels of technical efficiency in intensive care units. Further studies are needed to examine why and how intensive care units with particular levels of technical efficiency are differently affected by certain environmental factors. Copyright © 2018 John Wiley & Sons, Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... product as a natural soil amendment and seed coating that promotes more efficient growth of crops and... synthetic, petroleum-based polymers for soil amendment applications to achieve increased soil strength, reduced air transport, and decreased soil erosion. During processing, the biopolymer also can be...
43 CFR 3510.15 - What will BLM do with my application?
Code of Federal Regulations, 2013 CFR
2013-10-01
... specified in § 3503.37 of this part; (c) The acreage of the modified lease, including additional lands, is... necessary for the recovery of the mineral deposit on the original Federal lease; and (iii) Had the acreage... conserve natural resources and will provide for economical and efficient recovery as part of a mining unit...
43 CFR 3510.15 - What will BLM do with my application?
Code of Federal Regulations, 2012 CFR
2012-10-01
... specified in § 3503.37 of this part; (c) The acreage of the modified lease, including additional lands, is... necessary for the recovery of the mineral deposit on the original Federal lease; and (iii) Had the acreage... conserve natural resources and will provide for economical and efficient recovery as part of a mining unit...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... achieve in their certification: LEED for Homes program by the United States Green Building Council (USGBC... Builders (NAHB) ICC 700-2008 National Green Building Standard TM: http://www.nahb.org . [cir] Bronze Level... (10 points). (4) Participation in local green/energy efficient building standards; Applicants, who...
Wood as a sustainable building material
Robert H. Falk
2009-01-01
Few building materials possess the environmental benefits of wood. It is not only the most widely used building material in the United States but also one with characteristics that make it suitable for a wide range of applications. Efficient, durable, and useful wood products produced from trees range from a minimally processed log at a log-home building site to a...
Design issues for semi-passive optical communication devices
NASA Astrophysics Data System (ADS)
Glaser, I.
2007-09-01
Optical smart cards are devices containing a retro-reflector, light modulator, and some computing and data storage capabilities to affect semi-passive communication. They do not produce light; instead they modulate and send back light received from a stationary unit. These devices can replace contact-based smart cards as well as RF based ones for applications ranging from identification to transmitting and validating data. Since their transmission is essentially focused on the receiving unit, they are harder to eavesdrop than RF devices, yet need no physical contact or alignment. In this paper we explore optical design issues of these devices and estimate their optical behavior. Specifically, we analyze how these compact devices can be optimized for selected application profiles. Some of the key parameters addressed are effective light efficiency (how much modulated signal can be received by the stationary unit given the amount of light it transmits), range of tilt angles (angle between device surface normal to the line connecting the optical smart card with the stationary unit) through which the device would be effective, and power requirements of the semi-passive unit. In addition, issues concerning compact packaging of this device are discussed. Finally, results of the analysis are employed to produce a comparison of achievable capabilities of these optical smart cards, as opposed to alternative devices, and discuss potential applications were they can be best utilized.
Prospects for the development of coal-steam plants in Russia
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.
2017-06-01
Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.
High Efficiency Centrifugal Compressor for Rotorcraft Applications
NASA Technical Reports Server (NTRS)
Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.
2017-01-01
A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.
Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P
2013-03-11
The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.
A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.
Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix
2015-09-25
The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hongwei; Cao, Ranran; Yu, Shixin
Single-layer catalysis sparks huge interests and gains widespread attention owing to its high activity. Simultaneously, three-dimensional (3D) hierarchical structure can afford large surface area and abundant reactive sites, contributing to high efficiency. Herein, we report an absorbing single-unit-cell layer established Bi2WO6 3D hierarchical architecture fabricated by a sodium dodecyl benzene sulfonate (SDBS)-assisted assembled strategy. The DBS- long chains can adsorb on the (Bi2O2)2+ layers and hence impede stacking of the layers, resulting in the single-unit-cell layer. We also uncovered that SDS with a shorter chain is less effective than SDBS. Due to the sufficient exposure of surface O atoms, single-unit-cellmore » layer 3D Bi2WO6 shows strong selectivity for adsorption on multiform organic dyes with different charges. Remarkably, the single-unit-cell layer 3D Bi2WO6 casts profoundly enhanced photodegradation activity and especially a superior photocatalytic H2 evolution rate, which is 14-fold increase in contrast to the bulk Bi2WO6. Systematic photoelectrochemical characterizations disclose that the substantially elevated carrier density and charge separation efficiency take responsibility for the strengthened photocatalytic performance. Additionally, the possibility of single-unit-cell layer 3D Bi2WO6 as dye-sensitized solar cells (DSSC) has also been attempted and it was manifested to be a promising dye-sensitized photoanode for oxygen evolution reaction (ORR). Our work not only furnish an insight into designing single-layer assembled 3D hierarchical architecture, but also offer a multi-functional material for environmental and energy applications.« less
USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations
NASA Astrophysics Data System (ADS)
Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.
2013-12-01
This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.
Construction method of pre assembled unit of bolt sphere grid
NASA Astrophysics Data System (ADS)
Hu, L. W.; Guo, F. L.; Wang, J. L.; Bu, F. M.
2018-03-01
The traditional construction of bolt sphere grid has many disadvantages, such as high cost, large amount of work at high altitude and long construction period, in order to make up for these shortcomings, in this paper, a new and applicable construction method is explored: setting up local scaffolding, installing the bolt sphere grid starting frame on the local scaffolding, then the pre assembled unit of bolt sphere grid is assembled on the ground, using small hoisting equipment to lift pre assembled unit to high altitude and install. Compared with the traditional installation method, the construction method has strong practicability and high economic efficiency, and has achieved good social and economic benefits.
Nature of collective decision-making by simple yes/no decision units.
Hasegawa, Eisuke; Mizumoto, Nobuaki; Kobayashi, Kazuya; Dobata, Shigeto; Yoshimura, Jin; Watanabe, Saori; Murakami, Yuuka; Matsuura, Kenji
2017-10-31
The study of collective decision-making spans various fields such as brain and behavioural sciences, economics, management sciences, and artificial intelligence. Despite these interdisciplinary applications, little is known regarding how a group of simple 'yes/no' units, such as neurons in the brain, can select the best option among multiple options. One prerequisite for achieving such correct choices by the brain is correct evaluation of relative option quality, which enables a collective decision maker to efficiently choose the best option. Here, we applied a sensory discrimination mechanism using yes/no units with differential thresholds to a model for making a collective choice among multiple options. The performance corresponding to the correct choice was shown to be affected by various parameters. High performance can be achieved by tuning the threshold distribution with the options' quality distribution. The number of yes/no units allocated to each option and its variability profoundly affects performance. When this variability is large, a quorum decision becomes superior to a majority decision under some conditions. The general features of this collective decision-making by a group of simple yes/no units revealed in this study suggest that this mechanism may be useful in applications across various fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, Mark H; Hadjerioua, Boualem; Lee, Kyutae
2015-01-01
The following paper represents the results of an investigation into the impact of the number and placement of Current Meter (CM) flow sensors on the accuracy to which they are capable of predicting the overall flow rate. Flow measurement accuracy is of particular importance in multiunit plants because it plays a pivotal role in determining the operational efficiency characteristics of each unit, allowing the operator to select the unit (or combination of units) which most efficiently meet demand. Several case studies have demonstrated that optimization of unit dispatch has the potential to increase plant efficiencies from between 1 to 4.4more » percent [2] [3]. Unfortunately current industry standards do not have an established methodology to measure the flow rate through hydropower units with short converging intakes (SCI); the only direction provided is that CM sensors should be used. The most common application of CM is horizontally, along a trolley which is incrementally lowered across a measurement cross section. As such, the measurement resolution is defined horizontally and vertically by the number of CM and the number of measurement increments respectively. There has not been any published research on the role of resolution in either direction on the accuracy of flow measurement. The work below investigates the effectiveness of flow measurement in a SCI by performing a case study in which point velocity measurements were extracted from a physical plant and then used to calculate a series of reference flow distributions. These distributions were then used to perform sensitivity studies on the relation between the number of CM and the accuracy to which the flow rate was predicted. The following research uncovered that a minimum of 795 plants contain SCI, a quantity which represents roughly 12% of total domestic hydropower capacity. In regards to measurement accuracy, it was determined that accuracy ceases to increase considerably due to strict increases in vertical resolution beyond the application of 49 transects. Moreover the research uncovered that the application of 5 CM (when applied at 49 vertical transects) resulted in an average accuracy of 95.6% and the application of additional sensors resulted in a linear increase in accuracy up to 17 CM which had an average accuracy of 98.5%. Beyond 17 CM incremental increases in accuracy due to the addition of CM was found decrease exponentially. Future work that will be performed in this area will investigate the use of computational fluid dynamics to acquire a broader range of flow fields within SCI.« less
Gartzia-Rivero, Leire; Sánchez-Carnerero, Esther M; Jiménez, Josue; Bañuelos, Jorge; Moreno, Florencio; Maroto, Beatriz L; López-Arbeloa, Iñigo; de la Moya, Santiago
2017-09-12
We report the synthesis, and spectroscopic and electrochemical properties of a selected library of novel spiranic O-BODIPYs bearing a phenol-based bi(polyarene) unit tethered to the boron center through oxygen atoms. These dyes constitute an interesting family of arene-BODIPY dyads useful for the development of photonic applications due to their synthetic accessibility and tunable photonic properties. It is demonstrated that the electron-donor capability of the involved arene moiety switches on a non-emissive intramolecular charge transfer (ICT) state, which restricts the fluorescence efficiency of the dyad. Interestingly, the influence of this non-radiative deactivation channel can be efficiently modulated by the substitution pattern, either at the dipyrrin ligand or at the polyarene moiety. Thus, dyads featuring electron-rich dipyrrin and electron-poor polyarene show lower or almost negligible ICT probability, and hence display bright fluorescence upon dual excitation at far-away spectral regions. This synthetic approach has allowed the easy development of low-cost efficient ultraviolet-absorbing visible-emitting cassettes by selecting properly the substitution pattern of the involved key units, dipyrrin and bi(polyarene), to modulate not only absorption and emission wavelengths, but also fluorescence efficiencies.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.
McDaniel, T; D'Azevedo, E F; Li, Y W; Wong, K; Kent, P R C
2017-11-07
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
NASA Astrophysics Data System (ADS)
McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.
2017-11-01
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeschele, Marc; Weitzel, Elizabeth; Backman, Christine
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unitmore » with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less
Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae
Jia, Fei; Kacira, Murat; Ogden, Kimberly L.
2015-01-01
A multi-wavelength based optical density sensor unit was designed, developed, and evaluated to monitor microalgae growth in real time. The system consisted of five main components including: (1) laser diode modules as light sources; (2) photodiodes as detectors; (3) driver circuit; (4) flow cell; and (5) sensor housing temperature controller. The sensor unit was designed to be integrated into any microalgae culture system for both real time and non-real time optical density measurements and algae growth monitoring applications. It was shown that the sensor unit was capable of monitoring the dynamics and physiological changes of the microalgae culture in real-time. Algae biomass concentration was accurately estimated with optical density measurements at 650, 685 and 780 nm wavelengths used by the sensor unit. The sensor unit was able to monitor cell concentration as high as 1.05 g·L−1 (1.51 × 108 cells·mL−1) during the culture growth without any sample preparation for the measurements. Since high cell concentrations do not need to be diluted using the sensor unit, the system has the potential to be used in industrial microalgae cultivation systems for real time monitoring and control applications that can lead to improved resource use efficiency. PMID:26364640
High-throughput countercurrent microextraction in passive mode.
Xie, Tingliang; Xu, Cong
2018-05-15
Although microextraction is much more efficient than conventional macroextraction, its practical application has been limited by low throughputs and difficulties in constructing robust countercurrent microextraction (CCME) systems. In this work, a robust CCME process was established based on a novel passive microextractor with four units without any moving parts. The passive microextractor has internal recirculation and can efficiently mix two immiscible liquids. The hydraulic characteristics as well as the extraction and back-extraction performance of the passive CCME were investigated experimentally. The recovery efficiencies of the passive CCME were 1.43-1.68 times larger than the best values achieved using cocurrent extraction. Furthermore, the total throughput of the passive CCME developed in this work was about one to three orders of magnitude higher than that of other passive CCME systems reported in the literature. Therefore, a robust CCME process with high throughputs has been successfully constructed, which may promote the application of passive CCME in a wide variety of fields.
Image processing applications: From particle physics to society
NASA Astrophysics Data System (ADS)
Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.
2017-01-01
We present an embedded system for extremely efficient real-time pattern recognition execution, enabling technological advancements with both scientific and social impact. It is a compact, fast, low consumption processing unit (PU) based on a combination of Field Programmable Gate Arrays (FPGAs) and the full custom associative memory chip. The PU has been developed for real time tracking in particle physics experiments, but delivers flexible features for potential application in a wide range of fields. It has been proposed to be used in accelerated pattern matching execution for Magnetic Resonance Fingerprinting (biomedical applications), in real time detection of space debris trails in astronomical images (space applications) and in brain emulation for image processing (cognitive image processing). We illustrate the potentiality of the PU for the new applications.
Nanotechnology in Aerospace Applications
2007-03-01
CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...logic and memory chips, sensors, catalyst support, adsorption media, actuators, etc. All early works in nanoelectronics use CNTs as a conducting...inspection cost effectively , quickly, and efficiently than the present procedures, composites, wear resistant tires, improved avionics, satellite
Application of blue laser diodes and LEDs in phototherapy for neonatal jaundice
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; Sayed El-Ahl, Mohammad H.; Hamza, Ahmad M.; Hamza, Aya M.; Hamza, Yahya M.
2003-10-01
The authors introduce the design of a compact phototherapy unit capable of fulfilling the recommendations of the clinical use of lasers and LEDs in phototherapy for the treatment of neonatal jaundice. The system keeps the duration of phototherapy to the minimum required for efficient treatment. Our leading clinical experience as well as the wavelength selection rules will be presented.
NASA Technical Reports Server (NTRS)
Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana
2016-01-01
In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.
NASA Astrophysics Data System (ADS)
Zamani, P.; Borzouei, M.
2016-12-01
This paper addresses issue of sensitivity of efficiency classification of variable returns to scale (VRS) technology for enhancing the credibility of data envelopment analysis (DEA) results in practical applications when an additional decision making unit (DMU) needs to be added to the set being considered. It also develops a structured approach to assisting practitioners in making an appropriate selection of variation range for inputs and outputs of additional DMU so that this DMU be efficient and the efficiency classification of VRS technology remains unchanged. This stability region is simply specified by the concept of defining hyperplanes of production possibility set of VRS technology and the corresponding halfspaces. Furthermore, this study determines a stability region for the additional DMU within which, in addition to efficiency classification, the efficiency score of a specific inefficient DMU is preserved and also using a simulation method, a region in which some specific efficient DMUs become inefficient is provided.
Duan, Lian; Tsuboi, Taiju; Qiu, Yong; Li, Yanrui; Zhang, Guohui
2012-06-18
Tandem organic light emitting diodes (OLEDs) are ideal for lighting applications due to their low working current density at high brightness. In this work, we have studied an efficient electron transporting layer of KBH(4) doped 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA) which is located adjacent to charge generation layer of MoO(3)/NPB. The excellent transporting property of the DPyPA:KBH(4) layer helps the tandem OLED to achieve a lower voltage than the tandem device with the widely used tris-(8-hydroxyquinoline)aluminum:Li. For the tandem white OLED with a fluorescent blue unit and a phosphorescent yellow unit, we've achieved a high current efficiency of 75 cd/A, which can be further improved to 120 cd/A by attaching a diffuser layer.
NASA Technical Reports Server (NTRS)
Ramakumar, R.; Bahrami, K.
1981-01-01
This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.
Knall, Astrid-Caroline; Jones, Andrew O F; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas
2017-01-01
Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC 70 BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS 2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD-BDT/CuInS 2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.
Liang, Xiao; Li, Chenmeng; Wang, Wenya; Li, Qiang
2018-05-18
Metabolic engineering and synthetic biology usually require universal expression systems for stable and efficient gene expression in various organisms. In this study, a host-independent and stable T7 expression system had been developed by integrating T7 RNA polymerase and its cognate transcriptional units in single plasmid. The expression of T7 RNA polymerase was restricted below its lethal threshold using a T7 RNA polymerase antisense gene cassette, which allowed long periods of cultivation and protein production. In addition, by designing ribosome binding sites, we further tuned the expression capacity of this novel T7 system within a wide range. This host-independent expression system efficiently expressed genes in five different Gram-negative strains and one Gram-positive strain and was also shown to be applicable in a real industrial d- p-hydroxyphenylglycine production system.
1988-05-01
thick asphalt pavement and a unit cost of $10/sy for subbase, binder and wearing courses (22), the following costs can be considered: Road Width Cofts...on exposed surfaces, whereas concrete and asphalt absorb and then transmit heat. This is the same rationale used in selecting a white roof over a...Surfaces Item Avg±L !9PRe± M! Trees 80 Grass Lawn i11 Wall Surface 130 ... Asphalt 160 (From Energy Efficient Site Desgn) What constitutes a good site
Geometric modeling of space-optimal unit-cell-based tissue engineering scaffolds
NASA Astrophysics Data System (ADS)
Rajagopalan, Srinivasan; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.
2005-04-01
Tissue engineering involves regenerating damaged or malfunctioning organs using cells, biomolecules, and synthetic or natural scaffolds. Based on their intended roles, scaffolds can be injected as space-fillers or be preformed and implanted to provide mechanical support. Preformed scaffolds are biomimetic "trellis-like" structures which, on implantation and integration, act as tissue/organ surrogates. Customized, computer controlled, and reproducible preformed scaffolds can be fabricated using Computer Aided Design (CAD) techniques and rapid prototyping devices. A curved, monolithic construct with minimal surface area constitutes an efficient substrate geometry that promotes cell attachment, migration and proliferation. However, current CAD approaches do not provide such a biomorphic construct. We address this critical issue by presenting one of the very first physical realizations of minimal surfaces towards the construction of efficient unit-cell based tissue engineering scaffolds. Mask programmability, and optimal packing density of triply periodic minimal surfaces are used to construct the optimal pore geometry. Budgeted polygonization, and progressive minimal surface refinement facilitate the machinability of these surfaces. The efficient stress distributions, as deduced from the Finite Element simulations, favor the use of these scaffolds for orthopedic applications.
Chen, Xueye; Zhao, Zhongyi
2017-04-29
This paper aims at layout optimization design of obstacles in a three-dimensional T-type micromixer. Numerical analysis shows that the direction of flow velocity change constantly due to the obstacles blocking, which produces the chaotic convection and increases species mixing effectively. The orthogonal experiment method was applied for determining the effects of some key parameters on mixing efficiency. The weights in the order are: height of obstacles > geometric shape > symmetry = number of obstacles. Based on the optimized results, a multi-units obstacle micromixer was designed. Compared with T-type micromixer, the multi-units obstacle micromixer is more efficient, and more than 90% mixing efficiency were obtained for a wide range of peclet numbers. It can be demonstrated that the presented optimal design method of obstacles layout in three-dimensional microchannels is a simple and effective technology to improve species mixing in microfluidic devices. The obstacles layout methodology has the potential for applications in chemical engineering and bioengineering. Copyright © 2017 Elsevier B.V. All rights reserved.
A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys
Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix
2015-01-01
The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270
Sensor network based vehicle classification and license plate identification system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, Janette Rose; Brennan, Sean M; Rosten, Edward J
Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform.more » Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.« less
Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms
NASA Astrophysics Data System (ADS)
Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo
This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.
NASA Astrophysics Data System (ADS)
Buligin, Y. I.; Zharkova, M. G.; Alexeenko, L. N.
2017-01-01
In previous studies, experiments were carried out on the small-size models of cyclonic units, but now there completed the semi-industrial pilot plant ≪Cyclone≫, which would allow comparative testing of real samples of different shaped centrifugal dust-collectors and compare their efficiency. This original research plant is patented by authors. The aim of the study is to improve efficiency of exhaust gases collecting process, by creating improved designs of centrifugal dust collectors, providing for the possibility of regulation constructive parameters depending on the properties and characteristics of air-fuel field. The objectives of the study include identifying and studying the cyclonic apparatus association constructive parameters with their aerodynamic characteristics and dust-collecting efficiency. The article is very relevant, especially for future practical application of its results in dust removal technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.
2006-03-31
As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-sidemore » instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed to drop as sales increase to $4674.50 for a 10-ton unit (i.e. the original cost difference is halved), the life-cycle costs improve. A grid of first cost, annual maintenance cost and electricity price is enumerated and the results presented in the report show the sensitivity of life cycle cost to these three financial parameters in each of eight different climates.« less
García-Negrón, Valerie; Phillip, Nathan D.; Li, Jianlin; ...
2016-11-18
Lignin, an abundant organic polymer and a byproduct of pulp and biofuel production, has potential applications owing to its high carbon content and aromatic structure. Processing structure relationships are difficult to predict because of the heterogeneity of lignin. Here, this work discusses the roles of unit operations in the carbonization process of softwood lignin, and their resulting impacts on the material structure and electrochemical properties in application as the anode in lithium-ion cells. The processing variables include the lignin source, temperature, and duration of thermal stabilization, pyrolysis, and reduction. Materials are characterized at the atomic and microscales. High-temperature carbonization, atmore » 2000 °C, produces larger graphitic domains than at 1050 °C, but results in a reduced capacity. Coulombic efficiencies over 98 % are achieved for extended galvanostatic cycling. Consequently, a properly designed carbonization process for lignin is well suited for the generation of low-cost, high-efficiency electrodes.« less
Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Hoeschele, E. Weitzel, C. Backman
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements.« less
Impact of memory bottleneck on the performance of graphics processing units
NASA Astrophysics Data System (ADS)
Son, Dong Oh; Choi, Hong Jun; Kim, Jong Myon; Kim, Cheol Hong
2015-12-01
Recent graphics processing units (GPUs) can process general-purpose applications as well as graphics applications with the help of various user-friendly application programming interfaces (APIs) supported by GPU vendors. Unfortunately, utilizing the hardware resource in the GPU efficiently is a challenging problem, since the GPU architecture is totally different to the traditional CPU architecture. To solve this problem, many studies have focused on the techniques for improving the system performance using GPUs. In this work, we analyze the GPU performance varying GPU parameters such as the number of cores and clock frequency. According to our simulations, the GPU performance can be improved by 125.8% and 16.2% on average as the number of cores and clock frequency increase, respectively. However, the performance is saturated when memory bottleneck problems incur due to huge data requests to the memory. The performance of GPUs can be improved as the memory bottleneck is reduced by changing GPU parameters dynamically.
Kübler, Andrea; Holz, Elisa M; Riccio, Angela; Zickler, Claudia; Kaufmann, Tobias; Kleih, Sonja C; Staiger-Sälzer, Pit; Desideri, Lorenzo; Hoogerwerf, Evert-Jan; Mattia, Donatella
2014-01-01
Albeit research on brain-computer interfaces (BCI) for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD) to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR), to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload). Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process.
Kübler, Andrea; Holz, Elisa M.; Riccio, Angela; Zickler, Claudia; Kaufmann, Tobias; Kleih, Sonja C.; Staiger-Sälzer, Pit; Desideri, Lorenzo; Hoogerwerf, Evert-Jan; Mattia, Donatella
2014-01-01
Albeit research on brain-computer interfaces (BCI) for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD) to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR), to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload). Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process. PMID:25469774
Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer
NASA Astrophysics Data System (ADS)
Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong
2016-09-01
Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.
GPU applications for data processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladymyrov, Mykhailo, E-mail: mykhailo.vladymyrov@cern.ch; Aleksandrov, Andrey; INFN sezione di Napoli, I-80125 Napoli
2015-12-31
Modern experiments that use nuclear photoemulsion imply fast and efficient data acquisition from the emulsion can be performed. The new approaches in developing scanning systems require real-time processing of large amount of data. Methods that use Graphical Processing Unit (GPU) computing power for emulsion data processing are presented here. It is shown how the GPU-accelerated emulsion processing helped us to rise the scanning speed by factor of nine.
Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications
2015-06-24
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly
Microwave Hydrogen Production from Methane
2012-04-01
combustion NOx control of reciprocating engine exhaust and fuel cell application of biogas . Our target is to obtain the methane conversion efficiency...demonstration of MW technology removing and destroying hydrogen sulfide (H2S) and siloxanes from biogas produced by Sacramento Regional Wastewater...running on biogas and is currently conducting the field demonstration of the unit at Tollenaar Dairy in Elk Grove, CA. SMUD, California Air Resources
Modeling technical efficiency of inshore fishery using data envelopment analysis
NASA Astrophysics Data System (ADS)
Rahman, Rahayu; Zahid, Zalina; Khairi, Siti Shaliza Mohd; Hussin, Siti Aida Sheikh
2016-10-01
Fishery industry contributes significantly to the economy of Malaysia. This study utilized Data Envelopment Analysis application in estimating the technical efficiency of fishery in Terengganu, a state on the eastern coast of Peninsular Malaysia, based on multiple output, i.e. total fish landing and income of fishermen with six inputs, i.e. engine power, vessel size, number of trips, number of workers, cost and operation distance. The data were collected by survey conducted between November and December 2014. The decision making units (DMUs) involved 100 fishermen from 10 fishery areas. The result showed that the technical efficiency in Season I (dry season) and Season II (rainy season) were 90.2% and 66.7% respectively. About 27% of the fishermen were rated to be efficient during Season I, meanwhile only 13% of the fishermen achieved full efficiency 100% during Season II. The results also found out that there was a significance difference in the efficiency performance between the fishery areas.
NASA Astrophysics Data System (ADS)
Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.
2018-05-01
Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn't involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.
Further development and application of polycrystalline metal whiskers
NASA Technical Reports Server (NTRS)
Schladitz, H. J.
1979-01-01
High strength metal whiskers have a larger versatile field of application than monocrystalline whiskers. Although polycrystalline metal whiskers can be used for composites, preferably by extrusion in thermoplastics or by infiltration of resins or metals into whisker networks, the chief application at present may be the production and various use of whisker networks. Such networks can be produced up to high degrees of porosity and besides high mechanical strength, they have high inside surfaces and high electric conductivity. There are for instance, applications concerning construction of electrodes for batteries and fuel cells, catalysts and also new heat-exchanger material, capable of preparing fuel oil and gasoline in order to assist a high-efficiency combustion. The technical application of polycrystalline metal whiskers require their modification as well as the construction of a pilot production unit.
Review of computational fluid dynamics applications in biotechnology processes.
Sharma, C; Malhotra, D; Rathore, A S
2011-01-01
Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.
2003-01-01
Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.
Performance evaluation of nonhomogeneous hospitals: the case of Hong Kong hospitals.
Li, Yongjun; Lei, Xiyang; Morton, Alec
2018-02-14
Throughout the world, hospitals are under increasing pressure to become more efficient. Efficiency analysis tools can play a role in giving policymakers insight into which units are less efficient and why. Many researchers have studied efficiencies of hospitals using data envelopment analysis (DEA) as an efficiency analysis tool. However, in the existing literature on DEA-based performance evaluation, a standard assumption of the constant returns to scale (CRS) or the variable returns to scale (VRS) DEA models is that decision-making units (DMUs) use a similar mix of inputs to produce a similar set of outputs. In fact, hospitals with different primary goals supply different services and provide different outputs. That is, hospitals are nonhomogeneous and the standard assumption of the DEA model is not applicable to the performance evaluation of nonhomogeneous hospitals. This paper considers the nonhomogeneity among hospitals in the performance evaluation and takes hospitals in Hong Kong as a case study. An extension of Cook et al. (2013) [1] based on the VRS assumption is developed to evaluated nonhomogeneous hospitals' efficiencies since inputs of hospitals vary greatly. Following the philosophy of Cook et al. (2013) [1], hospitals are divided into homogeneous groups and the product process of each hospital is divided into subunits. The performance of hospitals is measured on the basis of subunits. The proposed approach can be applied to measure the performance of other nonhomogeneous entities that exhibit variable return to scale.
Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei
2017-12-27
A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.
NASA Astrophysics Data System (ADS)
Cai, Xiaohui; Liu, Yang; Ren, Zhiming
2018-06-01
Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.
An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application
Cosentino, Armando; Madadi, Hojjat; Vergara, Paola; Vecchione, Raffaele; Causa, Filippo; Netti, Paolo Antonio
2015-01-01
Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10−12 < D < 10−11 m2/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis. PMID:26658848
An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application
NASA Astrophysics Data System (ADS)
Cosentino, Armando; Madadi, Hojjat; Vergara, Paola; Vecchione, Raffaele; Causa, Filippo; Netti, Paolo Antonio
2015-12-01
Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10-12 < D < 10-11 m2/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis.
An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application.
Cosentino, Armando; Madadi, Hojjat; Vergara, Paola; Vecchione, Raffaele; Causa, Filippo; Netti, Paolo Antonio
2015-12-14
Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10(-12) < D < 10(-11) m(2)/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis.
Assessment of a Hybrid Retrofit Gas Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeschele, Marc; Weitzel, Elizabeth; Backman, Christine
2017-02-28
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unitmore » with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, M.J.; LeMire, R.A.; Horner-Richardson, K.
1995-12-31
The Phillips Laboratory Power and Thermal Management Division (PL/VTP), with the support of ORION International Technologies, is investigating new methods of advanced thermal to electric power conversion for space and terrestrial applications. The alkali metal thermal-to-electric converter (AMTEC), manufactured primarily by Advanced Modular Power Systems (AMPS) of Ann Arbor, MI, has reached a level of technological maturity which would allow its use in a constant, unattended thermal source, such as a geothermal field. Approximately 95,000 square miles in the western United States has hot dry rock with thermal gradients of 60 C/km and higher. Several places in the United Statesmore » and the world have thermal gradients of 500 C/km. Such heat sources represent an excellent thermal source for a system of modular power units using AMTEC devices to convert the heat to electricity. AMTEC cells using sodium as a working fluid require heat input at temperatures between 500 and 1,000 C to generate power. The present state of the art is capable of 15% efficiency with 800 C heat input and has demonstrated 18% efficiency for single cells. This paper discusses the basics of AMTEC operation, current drilling technology as a cost driver, design of modular AMTEC power units, heat rejection technologies, materials considerations, and estimates of power production from a geothermal AMTEC concept.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfmeyer, J.C.; Jowers, C.; Weinstein, R.E.
As the power industry moves toward increased competition, low operating costs become increasingly important for continued profitability. This paper provides an overview of the plant concept evaluation of using an emerging coal-fired technology for repowering one of Duke Energy steam generating stations. The paper describes the results of a US Department of Energy (DOE) conceptual design evaluation of an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). The paper provides a review of the DOE study and summarizes the preliminary results. It shows the prospects for APFBC repowering, and discusses how this mightmore » be an attractive option for a wide range of existing power plants, when added baseload coal-fired generation is needed. This paper presents an APFBC concept under development by DOE and equipment manufacturers. This all-coal technology has projected energy efficiency in the 42 to 46% HHV (43 to 48% LHV) range and environmental emissions superior to New Source Performance Standards (NSPS). A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, Jr. steam plant Unit 4. This paper's concept evaluation is for a larger implementation. A Westinghouse W501F combustion turbine modified for APFBC operation is considered for use to produce a 300+MWe class APFBC combined cycle. At this size, APFBC has a wide application for repowering many existing units in America, Here, APFBC would repower an existing generation station, the Duke Energy Company's Dan River steam station. Repowering concepts are presented for APFBC repowering of Unit 3. The existing coal-fired Unit 3 has an output of about 150 MWe. When repowered with APFBC, this unit is boosted to about 280 MWe output, with high-energy efficiency.« less
Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang
We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.
Maximum-performance fiber-optic irradiation with nonimaging designs.
Fang, Y; Feuermann, D; Gordon, J M
1997-10-01
A range of practical nonimaging designs for optical fiber applications is presented. Rays emerging from a fiber over a restricted angular range (small numerical aperture) are needed to illuminate a small near-field detector at maximum radiative efficiency. These designs range from pure reflector (all-mirror), to pure dielectric (refractive and based on total internal reflection) to lens-mirror combinations. Sample designs are shown for a specific infrared fiber-optic irradiation problem of practical interest. Optical performance is checked with computer three-dimensional ray tracing. Compared with conventional imaging solutions, nonimaging units offer considerable practical advantages in compactness and ease of alignment as well as noticeably superior radiative efficiency.
Zhang, Wei; Fang, Zhen; Su, Mingjuan; Saeys, Mark; Liu, Bin
2009-09-17
A conjugated polymer containing an electron donating backbone (triphenylamine) and an electron accepting side chain (cyanoacetic acid) with conjugated thiophene units as the linkers has been synthesized. Dye-sensitized solar cells (DSSCs) are fabricated utilizing this material as the dye sensitizer, resulting a typical power conversion efficiency of 3.39% under AM 1.5 G illumination, which represents the highest efficiency for polymer dye-sensitized DSSCs reported so far. The results show the good promise of conjugated polymers as sensitizers for DSSC applications. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An analysis of mobile whole blood collection labor efficiency.
Rose, William N; Dayton, Paula J; Raife, Thomas J
2011-07-01
Labor efficiency is desirable in mobile blood collection. There are few published data on labor efficiency. The variability in the labor efficiency of mobile whole blood collections was analyzed. We determined to improve our labor efficiency using lean manufacturing principles. Workflow changes in mobile collections were implemented with the goal of minimizing labor expenditures. To measure success, data on labor efficiency measured by units/hour/full-time equivalent (FTE) were collected. The labor efficiency in a 6-month period before the implementation of changes, and in months 1 to 6 and 7 to 12 after implementation was analyzed and compared. Labor efficiency in the 6-month period preceding implementation was 1.06 ± 0.4 units collected/hour/FTE. In months 1 to 6, labor efficiency declined slightly to 0.92 ± 0.4 units collected/hour/FTE (p = 0.016 vs. preimplementation). In months 7 to 12, the mean labor efficiency returned to preimplementation levels of 1.09 ±0.4 units collected/hour/FTE. Regression analysis correlating labor efficiency with total units collected per drive revealed a strong correlation (R(2) = 0.48 for the aggregate data from all three periods), indicating that nearly half of labor efficiency was associated with drive size. The lean-based changes in workflow were subjectively favored by employees and donors. The labor efficiency of our mobile whole blood drives is strongly influenced by size. Larger drives are more efficient, with diminishing returns above 40 units collected. Lean-based workflow changes were positively received by employees and donors. © 2011 American Association of Blood Banks.
Enhanced waterflooding design with dilute surfactant concentrations for North Sea conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michels, A.M.; Djojosoeparto, R.S.; Haas, H.
1996-08-01
Efficient selection procedures for surfactants have been applied to design a low-concentration surfactant-flooding process for North Sea oilfield application. Anionic surfactants of the propoxy ethoxy glyceryl sulfonate type can be used at 0.1 wt% concentrations together with sacrificial agents and without a polymer drive. Currently estimated unit technical costs (UTC`s)--at 8%--for application in the North Sea oil fields range frommore » $81 to $$94/incremental m{sup 3}, without taking uncertainty factors into account. Including such factors would likely add another $$31/m{sup 3} to the costs.« less
SPEKTROP DPU: optoelectronic platform for fast multispectral imaging
NASA Astrophysics Data System (ADS)
Graczyk, Rafal; Sitek, Piotr; Stolarski, Marcin
2010-09-01
In recent years it easy to spot and increasing need of high-quality Earth imaging in airborne and space applications. This is due fact that government and local authorities urge for up to date topological data for administrative purposes. On the other hand, interest in environmental sciences, push for ecological approach, efficient agriculture and forests management are also heavily supported by Earth images in various resolutions and spectral ranges. "SPEKTROP DPU: Opto-electronic platform for fast multi-spectral imaging" paper describes architectural datails of data processing unit, part of universal and modular platform that provides high quality imaging functionality in aerospace applications.
NASA Technical Reports Server (NTRS)
Waters, K. T.
1979-01-01
The results of a study of the uses of helicopters in agriculture and forestry in the United States are discussed. Comparisons with agricultural airplanes are made in terms of costs of aerial application to the growers. An analysis of cost drivers and potential improvements to helicopters that will lower costs is presented. Future trends are discussed, and recommendations for research are outlined. Operational safety hazards and accident records are examined, and problem areas are identified. Areas where research and development are needed to provide opportunities for lowering costs while increasing productivity are analyzed.
FPGA implementation of sparse matrix algorithm for information retrieval
NASA Astrophysics Data System (ADS)
Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio
2005-06-01
Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.
Adaptive real-time methodology for optimizing energy-efficient computing
Hsu, Chung-Hsing [Los Alamos, NM; Feng, Wu-Chun [Blacksburg, VA
2011-06-28
Dynamic voltage and frequency scaling (DVFS) is an effective way to reduce energy and power consumption in microprocessor units. Current implementations of DVFS suffer from inaccurate modeling of power requirements and usage, and from inaccurate characterization of the relationships between the applicable variables. A system and method is proposed that adjusts CPU frequency and voltage based on run-time calculations of the workload processing time, as well as a calculation of performance sensitivity with respect to CPU frequency. The system and method are processor independent, and can be applied to either an entire system as a unit, or individually to each process running on a system.
Evaluation of two typical distributed energy systems
NASA Astrophysics Data System (ADS)
Han, Miaomiao; Tan, Xiu
2018-03-01
According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.
Using Wet-FGD systems for mercury removal.
Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G
2005-09-01
A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers.
NASA Astrophysics Data System (ADS)
Haldorai, Yuvaraj; Shim, Jae-Jin
2014-02-01
We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CS-MgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.
High-throughput real-time quantitative reverse transcription PCR.
Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F
2006-02-01
Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Vandenbosch, Guy A. E.; Narbudowicz, Adam
2017-01-01
A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.
Lin, Wen-Chi; Brondum, Klaus; Monroe, Charles W.; Burns, Mark A.
2017-01-01
Monitoring of the pH, oxidation-reduction-potential (ORP), and conductivity of aqueous samples is typically performed using multiple sensors. To minimize the size and cost of these sensors for practical applications, we have investigated the use of a single sensor constructed with only bare platinum electrodes deposited on a glass substrate. The sensor can measure pH from 4 to 10 while simultaneously measuring ORP from 150 to 800 mV. The device can also measure conductivity up to 8000 μS/cm in the range of 10 °C to 50 °C, and all these measurements can be made even if the water samples contain common ions found in residential water. The sensor is inexpensive (i.e., ~$0.10/unit) and has a sensing area below 1 mm2, suggesting that the unit is cost-efficient, robust, and widely applicable, including in microfluidic systems. PMID:28753913
Cloud Computing for radiologists.
Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit
2012-07-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.
Phasor Measurement Unit and Its Application in Modern Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jian; Makarov, Yuri V.; Dong, Zhao Yang
2010-06-01
The introduction of phasor measuring units (PMUs) in power systems significantly improves the possibilities for monitoring and analyzing power system dynamics. Synchronized measurements make it possible to directly measure phase angles between corresponding phasors in different locations within the power system. Improved monitoring and remedial action capabilities allow network operators to utilize the existing power system in a more efficient way. Improved information allows fast and reliable emergency actions, which reduces the need for relatively high transmission margins required by potential power system disturbances. In this chapter, the applications of PMU in modern power systems are presented. Specifically, the topicsmore » touched in this chapter include state estimation, voltage and transient stability, oscillation monitoring, event and fault detection, situation awareness, and model validation. A case study using Characteristic Ellipsoid method based on PMU to monitor power system dynamic is presented.« less
NASA Astrophysics Data System (ADS)
Leung, E. M. W.; Bailey, R. E.; Michels, P. H.
1989-03-01
The hybrid pulse power transformer (HPPT) is a unique concept utilizing the ultrafast superconducting-to-normal transition process of a superconductor. When used in the form of a hybrid transformer current-zero switch (HTCS), this creates an approach in which the large, high-power, high-current opening switch in a conventional railgun system can be eliminated. This represents an innovative application of superconductivity to pulsed power conditioning required for the Strategic Defense Initiative (SDI). The authors explain the working principles of a 100-KJ unit capable of switching up to 500 kA at a frequency of 0.5 Hz and with a system efficiency of greater than 90 percent. Circuit analysis using a computer code called SPICE PLUS was used to verify the HTCS concept. This concept can be scaled up to applications in the several mega-ampere levels.
Cloud Computing for radiologists
Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit
2012-01-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560
NASA Astrophysics Data System (ADS)
Shimanov, A. A.; Biryuk, V. V.; Sheludko, L. P.; Shabanov, K. Yu.
2017-08-01
In the framework of this paper, there have been analyzed power station building methods to construct a power station for utilities for gas-main pipelines compressor stations. The application efficiency of turbo expanders in them to expand the power gas of compressor stations' gas compressor units has been shown. New schemes for gas-turbine expander power generating systems have been proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, G.; Erickson, D.C.
1999-07-01
The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compactmore » ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.« less
Efficient Design and Analysis of Lightweight Reinforced Core Sandwich and PRSEUS Structures
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Yarrington, Phillip W.; Lucking, Ryan C.; Collier, Craig S.; Ainsworth, James J.; Toubia, Elias A.
2012-01-01
Design, analysis, and sizing methods for two novel structural panel concepts have been developed and incorporated into the HyperSizer Structural Sizing Software. Reinforced Core Sandwich (RCS) panels consist of a foam core with reinforcing composite webs connecting composite facesheets. Boeing s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels use a pultruded unidirectional composite rod to provide axial stiffness along with integrated transverse frames and stitching. Both of these structural concepts are ovencured and have shown great promise applications in lightweight structures, but have suffered from the lack of efficient sizing capabilities similar to those that exist for honeycomb sandwich, foam sandwich, hat stiffened, and other, more traditional concepts. Now, with accurate design methods for RCS and PRSEUS panels available in HyperSizer, these concepts can be traded and used in designs as is done with the more traditional structural concepts. The methods developed to enable sizing of RCS and PRSEUS are outlined, as are results showing the validity and utility of the methods. Applications include several large NASA heavy lift launch vehicle structures.
Data-Driven Benchmarking of Building Energy Efficiency Utilizing Statistical Frontier Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavousian, A; Rajagopal, R
2014-01-01
Frontier methods quantify the energy efficiency of buildings by forming an efficient frontier (best-practice technology) and by comparing all buildings against that frontier. Because energy consumption fluctuates over time, the efficiency scores are stochastic random variables. Existing applications of frontier methods in energy efficiency either treat efficiency scores as deterministic values or estimate their uncertainty by resampling from one set of measurements. Availability of smart meter data (repeated measurements of energy consumption of buildings) enables using actual data to estimate the uncertainty in efficiency scores. Additionally, existing applications assume a linear form for an efficient frontier; i.e.,they assume that themore » best-practice technology scales up and down proportionally with building characteristics. However, previous research shows that buildings are nonlinear systems. This paper proposes a statistical method called stochastic energy efficiency frontier (SEEF) to estimate a bias-corrected efficiency score and its confidence intervals from measured data. The paper proposes an algorithm to specify the functional form of the frontier, identify the probability distribution of the efficiency score of each building using measured data, and rank buildings based on their energy efficiency. To illustrate the power of SEEF, this paper presents the results from applying SEEF on a smart meter data set of 307 residential buildings in the United States. SEEF efficiency scores are used to rank individual buildings based on energy efficiency, to compare subpopulations of buildings, and to identify irregular behavior of buildings across different time-of-use periods. SEEF is an improvement to the energy-intensity method (comparing kWh/sq.ft.): whereas SEEF identifies efficient buildings across the entire spectrum of building sizes, the energy-intensity method showed bias toward smaller buildings. The results of this research are expected to assist researchers and practitioners compare and rank (i.e.,benchmark) buildings more robustly and over a wider range of building types and sizes. Eventually, doing so is expected to result in improved resource allocation in energy-efficiency programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M.; Nam, H; Carter, A
2009-01-01
Adeno-associated virus (AAV) serotype 9, which is under development for gene-delivery applications, shows significantly enhanced capsid-associated transduction efficiency in muscle compared with other AAV serotypes. With the aim of characterizing the structural determinants of this property, the purification, crystallization and preliminary X-ray crystallographic analyses of the AAV9 viral capsid are reported. The crystals diffracted X-rays to 2.8 A resolution using synchrotron radiation and belonged to the trigonal space group P32, with unit-cell parameters a = b = 251.0, c = 640.0 A. There are three complete viral capsids in the crystal unit cell. The orientation and position of the asymmetricmore » unit capsid have been determined by molecular-replacement methods and structure determination is in progress.« less
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
Solar heating and cooling diode module
Maloney, Timothy J.
1986-01-01
A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.
AMTEC: High efficiency static conversion for space power
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Shirbacheh, M.
1986-01-01
Future manned and unmanned space missions will require reliable, high efficiency energy conversion systems. For a manned Mars mission, power levels in the range of 10 to 100 kWe will be needed. The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion technology with the potential to meet these needs. The AMTEC is a thermally regenerative electrochemical device that derives its operation from the sodium ion conducting properties of beta-alumina solid electrolyte (BASE). To date, an efficiency of 19%, area power density of 1 W/sq cm, and a lifetime of 10,000 hours at high temperature were demonstrated in laboratory devices. Systems studies show that projected AMTEC systems equal or surpass the performance of other static or dynamic systems in applications of 1 kWe-1 MWe. Thus, the laboratory experiments and applications studies conducted to date have shown that the AMTEC posseses great potential. In order to bring this technology to the stage where prototype units can be built and operated, several technical issues must be addressed. These include the need for long life, high power electrodes, minimization of radiative parasitic losses, and high temperature seals. In summary, the evidence shows that if AMTEC is developed, it can play a significant role in future space power applications.
Patel, Neha; Siegler, James E; Stromberg, Nathaniel; Ravitz, Neil; Hanson, C William
2016-08-10
In hospitals, effective and efficient communication among care providers is critical to the provision of high-quality patient care. Yet, major problems impede communications including the frequent use of interruptive and one-way communication paradigms. This is especially frustrating for frontline providers given the dynamic nature of hospital care teams in an environment that is in constant flux. We conducted a pre-post evaluation of a commercially available secured messaging mobile application on 4 hospital units at a single institution for over one year. We included care providers on these units: residents, hospitalists, fellows, nurses, social workers, and pharmacists. Utilization metrics and survey responses on clinician perceptions were collected and analyzed using descriptive statistics, the Kruskal-Wallis test, and Mann-Whitney U test where appropriate. Between May 2013 and June 2014, 1,021 providers sent a total of 708,456 messages. About 85.5% of total threads were between two providers and the remaining were group messages. Residents and social workers/clinical resource coordinators were the largest per person users of this communication system, sending 9 (IQR 2-20) and 9 (IQR 2-22) messages per person per day, and receiving 18 (IQR 5-36) and 14 (IQR 5-29) messages per person per day, respectively (p=0.0001). More than half of the messages received by hospitalists, residents, and nurses were read within a minute. Communicating using secured messaging was found to be statistically significantly less disruptive to workflow by both nursing and physician survey respondents (p<0.001 for each comparison). Routine adoption of secured messaging improved perceived efficiency among providers on 4 hospital units. Our study suggests that a mobile application can improve communication and workflow efficiency among providers in a hospital. New technology has the potential to improve communication among care providers in hospitals.
2015-01-01
Functional nucleic acid (FNA)-based sensing systems have been developed for efficient detection of a wide range of biorelated analytes by employing DNAzymes or aptamers as recognition units. However, their intracellular delivery has always been a concern, mainly in delivery efficiency, kinetics, and the amount of delivered FNAs. Here we report a DNA dendrimer scaffold as an efficient nanocarrier to deliver FNAs and to conduct in situ monitoring of biological molecules in living cells. A histidine-dependent DNAzyme and an anti-ATP aptamer were chosen separately as the model FNAs to make the FNA dendrimer. The FNA-embedded DNA dendrimers maintained the catalytic activity of the DNAzyme or the aptamer recognition function toward ATP in the cellular environment, with no change in sensitivity or specificity. Moreover, these DNA dendrimeric nanocarriers show excellent biocompatibility, high intracellular delivery efficiency, and sufficient stability in a cellular environment. This FNA dendrimeric nanocarrier may find a broad spectrum of applications in biomedical diagnosis and therapy. PMID:24806614
Laser, Mark; Lynd, Lee R.
2014-01-01
This study addresses the question, “When using cellulosic biomass for vehicular transportation, which field-to-wheels pathway is more efficient: that using biofuels or that using bioelectricity?” In considering the question, the level of assumed technological maturity significantly affects the comparison, as does the intended transportation application. Results from the analysis indicate that for light-duty vehicles, over ranges typical in the United States today (e.g., 560–820 miles), field-to-wheels performance is similar, with some scenarios showing biofuel to be more efficient, and others indicating the two pathways to be essentially the same. Over the current range of heavy-duty vehicles, the field-to-wheels efficiency is higher for biofuels than for electrically powered vehicles. Accounting for technological advances and range, there is little basis to expect mature bioelectricity-powered vehicles to have greater field-to-wheels efficiency (e.g., kilometers per gigajoule biomass or per hectare) compared with mature biofuel-powered vehicles. PMID:24550477
Diesel fuel to dc power: Navy & Marine Corps Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomfield, D.P.
1996-12-31
During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have beenmore » tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.« less
The development of optimal lightweight truss-core sandwich panels
NASA Astrophysics Data System (ADS)
Langhorst, Benjamin Robert
Sandwich structures effectively provide lightweight stiffness and strength by sandwiching a low-density core between stiff face sheets. The performance of lightweight truss-core sandwich panels is enhanced through the design of novel truss arrangements and the development of methods by which the panels may be optimized. An introduction to sandwich panels is presented along with an overview of previous research of truss-core sandwich panels. Three alternative truss arrangements are developed and their corresponding advantages, disadvantages, and optimization routines are discussed. Finally, performance is investigated by theoretical and numerical methods, and it is shown that the relative structural efficiency of alternative truss cores varies with panel weight and load-carrying capacity. Discrete truss core sandwich panels can be designed to serve bending applications more efficiently than traditional pyramidal truss arrangements at low panel weights and load capacities. Additionally, discrete-truss cores permit the design of heterogeneous cores, which feature unit cells that vary in geometry throughout the panel according to the internal loads present at each unit cell's location. A discrete-truss core panel may be selectively strengthened to more efficiently support bending loads. Future research is proposed and additional areas for lightweight sandwich panel development are explained.
On an efficient multilevel inverter assembly: structural savings and design optimisations
NASA Astrophysics Data System (ADS)
Choupan, Reza; Nazarpour, Daryoush; Golshannavaz, Sajjad
2018-01-01
This study puts forward an efficient unit cell to be taken in use in multilevel inverter assemblies. The proposed structure is in line with reductions in number of direct current (dc) voltage sources, insulated-gate bipolar transistors (IGBTs), gate driver circuits, installation area, and hence the implementation costs. Such structural savings do not sacrifice the technical performance of the proposed design wherein an increased number of output voltage levels is attained, interestingly. Targeting a techno-economic characteristic, the contemplated structure is included as the key unit of cascaded multilevel inverters. Such extensions require development of applicable design procedures. To this end, two efficient strategies are elaborated to determine the magnitudes of input dc voltage sources. As well, an optimisation process is developed to explore the optimal allocation of different parameters in overall performance of the proposed inverter. These parameters are investigated as the number of IGBTs, dc sources, diodes, and overall blocked voltage on switches. In the lights of these characteristics, a comprehensive analysis is established to compare the proposed design with the conventional and recently developed structures. Detailed simulation and experimental studies are conducted to assess the performance of the proposed design. The obtained results are discussed in depth.
Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media
NASA Astrophysics Data System (ADS)
Vezzoli, Stefano; Bruno, Vincenzo; DeVault, Clayton; Roger, Thomas; Shalaev, Vladimir M.; Boltasseva, Alexandra; Ferrera, Marcello; Clerici, Matteo; Dubietis, Audrius; Faccio, Daniele
2018-01-01
Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realization of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realizes a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008), 10.1126/science.1162087]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide. An incident probe beam is both negatively refracted and time reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required, e.g., for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies.
10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... seasonal energy efficiency ratio (SEER in British thermal units per Watt-hour (Btu/Wh)), the heating...) Package terminal air conditioners: The energy efficiency ratio (EER in British thermal units per Watt-hour... package vertical air conditioner: The energy efficiency ratio (EER in British thermal units per Watt-hour...
10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... seasonal energy efficiency ratio (SEER in British thermal units per Watt-hour (Btu/Wh)), the heating...) Package terminal air conditioners: The energy efficiency ratio (EER in British thermal units per Watt-hour... package vertical air conditioner: The energy efficiency ratio (EER in British thermal units per Watt-hour...
Kamgang-Youbi, Georges; Herry, Jean-Marie; Bellon-Fontaine, Marie-Noëlle; Brisset, Jean-Louis; Doubla, Avaly; Naïtali, Murielle
2007-01-01
This study aimed to characterize the bacterium-destroying properties of a gliding arc plasma device during electric discharges and also under temporal postdischarge conditions (i.e., when the discharge was switched off). This phenomenon was reported for the first time in the literature in the case of the plasma destruction of microorganisms. When cells of a model bacterium, Hafnia alvei, were exposed to electric discharges, followed or not followed by temporal postdischarges, the survival curves exhibited a shoulder and then log-linear decay. These destruction kinetics were modeled using GinaFiT, a freeware tool to assess microbial survival curves, and adjustment parameters were determined. The efficiency of postdischarge treatments was clearly affected by the discharge time (t*); both the shoulder length and the inactivation rate kmax were linearly modified as a function of t*. Nevertheless, all conditions tested (t* ranging from 2 to 5 min) made it possible to achieve an abatement of at least 7 decimal logarithm units. Postdischarge treatment was also efficient against bacteria not subjected to direct discharge, and the disinfecting properties of “plasma-activated water” were dependent on the treatment time for the solution. Water treated with plasma for 2 min achieved a 3.7-decimal-logarithm-unit reduction in 20 min after application to cells, and abatement greater than 7 decimal logarithm units resulted from the same contact time with water activated with plasma for 10 min. These disinfecting properties were maintained during storage of activated water for 30 min. After that, they declined as the storage time increased. PMID:17557841
Microlith-Based Catalytic Reactor for Air Quality and Trace Contaminant Control Applications
NASA Technical Reports Server (NTRS)
Vilekar, Saurabh; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.
2015-01-01
Traditionally, gaseous compounds such as methane, carbon monoxide, and trace contaminants have posed challenges for maintaining clean air in enclosed spaces such as crewed spacecraft cabins as they are hazardous to humans and are often difficult to remove by conventional adsorption technology. Catalytic oxidizers have provided a reliable and robust means of disposing of even trace levels of these compounds by converting them into carbon dioxide and water. Precision Combustion, Inc. (PCI) and NASA - Marshall (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI's patented Microlith® technology to meet the requirements of future extended human spaceflight explorations. Current efforts have focused on integrating the HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight while also reducing its energy requirements. Previous efforts relied on external heat exchangers to recover the waste heat and recycle it to the oxidizer to minimize the system's power requirements; however, these units contribute weight and volume burdens to the overall system. They also result in excess heat loss due to the separation of the HTCO and the heat recuperator, resulting in lower overall efficiency. Improvements in the recuperative efficiency and close coupling of HTCO and heat recuperator lead to reductions in system energy requirements and startup time. Results from testing HTCO units integrated with heat recuperators at a variety of scales for cabin air quality control and heat melt compactor applications are reported and their benefits over previous iterations of the HTCO and heat recuperator assembly are quantified in this paper.
Electrospray micromixer chip for on-line derivatization and kinetic studies.
Abonnenc, Mélanie; Dayon, Loïc; Perruche, Brice; Lion, Niels; Girault, Hubert H
2008-05-01
An electrospray microchip for mass spectrometry comprising an integrated passive mixer to carry out on-chip chemical derivatizations is described. The microchip fabricated using UV-photoablation is composed of two microchannels linked together by a liquid junction. Downstream of this liquid junction, a mixing unit made of parallel oblique grooves is integrated to the microchannel in order to create flow perturbations. Several mixer designs are evaluated. The mixer efficiency is investigated both by fluorescence study and mass spectrometric monitoring of the tagging reaction of cysteinyl peptides with 1,4-benzoquinone. The comparisons with a microchip without a mixing unit and a kinetic model are used to assess the efficiency of the mixer showing tagging kinetics close to that of bulk reactions in an ideally mixed reactor. As an ultimate application, the electrospray micromixer is implemented in a LC-MS workflow. On-line derivatization of albumin tryptic peptides after a reversed-phase separation and counting of their cysteines drastically enhance the protein identification.
NASA Astrophysics Data System (ADS)
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-12-01
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m-3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard `infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-12-11
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
Oilwell Power Controller (OPC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
The Oil Well Power Controller (OPC) prototype units is nearing completion. This device is an oilwell beam pump controller and data logger. Applications for this device have been for an electrical power saving device, pump off control, parafffin detection, demand power load control, chemical treatment data, dynamometer and pump efficiency data. Preliminary results appear vary promising. A total of ten OPC rod pump controllers were assembled and installed on oilwells in several areas of Central and Western United States. Data was analyzed on these wells and forwarded to the participating oil companies. Cost savings on each individual oil well participatingmore » in the OPC testing vary considerably, savings on some situations have been outstanding. In situations where the pump efficiency was determined to be low, the cost savings have been considerable. Cost savings due to preventive maintenance are also present, but are difficult to pin point an exact dollar amount at the present time. A break out of actual cost data obtained on some of the oilwells controlled and monitored with the oilwell power controller.« less
Applications of superconductor technologies to transportation
NASA Astrophysics Data System (ADS)
Rote, D. M.; Herring, J. S.; Sheahen, T. P.
1989-06-01
This report assesses transportation applications of superconducting devices, such as rotary motors and generators, linear synchronous motors, energy storage devices, and magnets. Among conventional vehicles, ships appear to have the greatest potential for maximizing the technical benefits of superconductivity, such as smaller, lighter, and more-efficient motors and, possibly, more-efficient generators. Smaller-scale applications include motors for pipeline pumps, all-electric and diesel-electric locomotives, self-propelled rail cars, and electric highway vehicles. For diesel-electric locomotives, superconducting units would eliminate space limitations on tractive power. Superconducting magnetic energy storage devices appear most suitable for regenerative braking or power assistance in grade climbing, rather than for long-term energy storage. With toroidal devices (especially for onboard temporary energy storage), external fields would be eliminated. With regard to new vehicle technologies, the use of superconducting devices would only marginally enhance the benefits of inductive-power-coupled vehicles over conventional electric vehicles, but could enable magnetically levitated (maglev) vehicles to obtain speeds of 520 km/h or more. This feature, together with the quiet, smooth ride, might make maglev vehicles an attractive alternative to intercity highway-vehicle or airlane trips in the range of 100 to 600 miles. Electromagnetic airport applications are not yet feasible.
NASA Astrophysics Data System (ADS)
Olschanowsky, C.; Flores, A. N.; FitzGerald, K.; Masarik, M. T.; Rudisill, W. J.; Aguayo, M.
2017-12-01
Dynamic models of the spatiotemporal evolution of water, energy, and nutrient cycling are important tools to assess impacts of climate and other environmental changes on ecohydrologic systems. These models require spatiotemporally varying environmental forcings like precipitation, temperature, humidity, windspeed, and solar radiation. These input data originate from a variety of sources, including global and regional weather and climate models, global and regional reanalysis products, and geostatistically interpolated surface observations. Data translation measures, often subsetting in space and/or time and transforming and converting variable units, represent a seemingly mundane, but critical step in the application workflows. Translation steps can introduce errors, misrepresentations of data, slow execution time, and interrupt data provenance. We leverage a workflow that subsets a large regional dataset derived from the Weather Research and Forecasting (WRF) model and prepares inputs to the Parflow integrated hydrologic model to demonstrate the impact translation tool software quality on scientific workflow results and performance. We propose that such workflows will benefit from a community approved collection of data transformation components. The components should be self-contained composable units of code. This design pattern enables automated parallelization and software verification, improving performance and reliability. Ensuring that individual translation components are self-contained and target minute tasks increases reliability. The small code size of each component enables effective unit and regression testing. The components can be automatically composed for efficient execution. An efficient data translation framework should be written to minimize data movement. Composing components within a single streaming process reduces data movement. Each component will typically have a low arithmetic intensity, meaning that it requires about the same number of bytes to be read as the number of computations it performs. When several components' executions are coordinated the overall arithmetic intensity increases, leading to increased efficiency.
10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... conditioners: The energy efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)), the cooling...) Package terminal heat pumps: The energy efficiency ratio (EER in British thermal units per Watt-hour (Btu...: The energy efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)) and the cooling...
Microwave Power Transmission Using Electromagnetic Coupling of Open-Ring Resonators
2012-11-01
AUTHOR(S) Yasuo Ohno 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The University...of Tokushima,2-1 Minami-Josanjima-cho,Tokushima-shi 770-8506,Japan,JP,770-8506 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9. SPONSORING...efficiency, the reduction of ON-resistance (RON) and OFF-capacitance ( COFF ) is essential. For power rectification, the voltage applicable to the
NASA Astrophysics Data System (ADS)
Krishnan, Anath Rau; Hamzah, Ahmad Aizuddin
2017-08-01
It is crucial for a zakat institution to evaluate and understand how efficiently they have operated in the past, thus ideal strategies could be developed for future improvement. However, evaluating the efficiency of a zakat institution is actually a challenging process as it involves the presence of multiple inputs or/and outputs. This paper proposes a step-by-step procedure comprising two data envelopment analysis models, namely dual Charnes-Cooper-Rhodes and slack-based model to quantitatively measure the overall efficiency of a zakat institution over a period of time. The applicability of the proposed procedure was demonstrated by evaluating the efficiency of Pusat Zakat Sabah, Malaysia from the year of 2007 up to 2015 by treating each year as a decision making unit. Two inputs (i.e. number of staff and number of branches) and two outputs (i.e. total collection and total distribution) were used to measure the overall efficiency achieved each year. The causes of inefficiency and strategy for future improvement were discussed based on the results.
Wu, Zhenxu; Zhou, Yulai; Chen, Li; Hu, Mingxin; Wang, Yu; Li, Linlong; Wang, Zongliang; Zhang, Peibiao
2018-03-01
The recombinant basic fibroblast growth factor (bFGF) containing collagen-binding domain (CBD) has been found to be a potential therapeutic factor in tissue regeneration. However, its binding efficiency and quantification remain uncertain. In this research, massive recombinant bFGFs with good bioactivity for enhancing the proliferation of NIH-3T3 cells were achieved. An ELISA-based quantitative method was set up to investigate the binding efficiency of CBD-bFGFs on collagen films. It indicated that the CBDs significantly increased the collagen-binding ability of bFGF (P < .05), with the optimum binding condition first determined to be in the pH range of 7.5-9.5 (P < .05). Then, the relevant equations to calculate the binding density of bFGF, C-bFGF, and V-bFGF were acquired. Analysis confirmed that the bioactivity of immobilized bFGFs was well correlated with the density of growth factor on collagen films. Based on this research, the density of growth factor is a logical and applicable dosage unit for quantification of binding efficiency of growth factors, rather than traditional concentration of soluble growth factors in tissue engineering applications. © 2018 Wiley Periodicals, Inc.
Efficient image acquisition design for a cancer detection system
NASA Astrophysics Data System (ADS)
Nguyen, Dung; Roehrig, Hans; Borders, Marisa H.; Fitzpatrick, Kimberly A.; Roveda, Janet
2013-09-01
Modern imaging modalities, such as Computed Tomography (CT), Digital Breast Tomosynthesis (DBT) or Magnetic Resonance Tomography (MRT) are able to acquire volumetric images with an isotropic resolution in micrometer (um) or millimeter (mm) range. When used in interactive telemedicine applications, these raw images need a huge storage unit, thereby necessitating the use of high bandwidth data communication link. To reduce the cost of transmission and enable archiving, especially for medical applications, image compression is performed. Recent advances in compression algorithms have resulted in a vast array of data compression techniques, but because of the characteristics of these images, there are challenges to overcome to transmit these images efficiently. In addition, the recent studies raise the low dose mammography risk on high risk patient. Our preliminary studies indicate that by bringing the compression before the analog-to-digital conversion (ADC) stage is more efficient than other compression techniques after the ADC. The linearity characteristic of the compressed sensing and ability to perform the digital signal processing (DSP) during data conversion open up a new area of research regarding the roles of sparsity in medical image registration, medical image analysis (for example, automatic image processing algorithm to efficiently extract the relevant information for the clinician), further Xray dose reduction for mammography, and contrast enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaukus, Christine
2015-07-09
Five Steps to Implementing the PHA Energy Efficient Unit Turnover Package (ARIES, 2014) is a guide to prepare for the installation of energy efficient measures during a typical public housing authority unit turnover. While a PHA is cleaning, painting and readying a unit for a new resident, there is an opportunity to incorporate energy efficiency measures to further improve the unit's performance. The measures on the list are simple enough to be implemented by in-house maintenance personnel, inexpensive enough to be folded into operating expenses without needing capital budget, and fast enough to implement without substantially changing the number ofmore » days between occupancies, a critical factor for organizations where the demand for dwelling units far outweighs the supply. The following guide lays out a five step plan to implement the EE Unit Turnover Package in your PHA, from an initial Self-Assessment through to Package Implementation.« less
Brown, Gary S; Betty, Rita G; Brockmann, John E; Lucero, Daniel A; Souza, Caroline A; Walsh, Kathryn S; Boucher, Raymond M; Tezak, Matthew S; Wilson, Mollye C
2007-07-01
Vacuum filter socks were evaluated for recovery efficiency of powdered Bacillus atrophaeus spores from two non-porous surfaces, stainless steel and painted wallboard and two porous surfaces, carpet and bare concrete. Two surface coupons were positioned side-by-side and seeded with aerosolized Bacillus atrophaeus spores. One of the surfaces, a stainless steel reference coupon, was sized to fit into a sample vial for direct spore removal, while the other surface, a sample surface coupon, was sized for a vacuum collection application. Deposited spore material was directly removed from the reference coupon surface and cultured for enumeration of colony forming units (CFU), while deposited spore material was collected from the sample coupon using the vacuum filter sock method, extracted by sonication and cultured for enumeration. Recovery efficiency, which is a measure of overall transfer effectiveness from the surface to culture, was calculated as the number of CFU enumerated from the filter sock sample per unit area relative to the number of CFU enumerated from the co-located reference coupon per unit area. The observed mean filter sock recovery efficiency from stainless steel was 0.29 (SD = 0.14, n = 36), from painted wallboard was 0.25 (SD = 0.15, n = 36), from carpet was 0.28 (SD = 0.13, n = 40) and from bare concrete was 0.19 (SD = 0.14, n = 44). Vacuum filter sock recovery quantitative limits of detection were estimated at 105 CFU m(-2) from stainless steel and carpet, 120 CFU m(-2) from painted wallboard and 160 CFU m(-2) from bare concrete. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling for biological agents such as Bacillus anthracis.
Manyscale Computing for Sensor Processing in Support of Space Situational Awareness
NASA Astrophysics Data System (ADS)
Schmalz, M.; Chapman, W.; Hayden, E.; Sahni, S.; Ranka, S.
2014-09-01
Increasing image and signal data burden associated with sensor data processing in support of space situational awareness implies continuing computational throughput growth beyond the petascale regime. In addition to growing applications data burden and diversity, the breadth, diversity and scalability of high performance computing architectures and their various organizations challenge the development of a single, unifying, practicable model of parallel computation. Therefore, models for scalable parallel processing have exploited architectural and structural idiosyncrasies, yielding potential misapplications when legacy programs are ported among such architectures. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Manyscale Computing to facilitate efficient mapping of annotated application codes to heterogeneous parallel architectures. Our theory, algorithms, software, and experimental results support partitioning and scheduling of application codes for envisioned parallel architectures, in terms of work atoms that are mapped (for example) to threads or thread blocks on computational hardware. Because of the rigor, completeness, conciseness, and layered design of our manyscale approach, application-to-architecture mapping is feasible and scalable for architectures at petascales, exascales, and above. Further, our methodology is simple, relying primarily on a small set of primitive mapping operations and support routines that are readily implemented on modern parallel processors such as graphics processing units (GPUs) and hybrid multi-processors (HMPs). In this paper, we overview the opportunities and challenges of manyscale computing for image and signal processing in support of space situational awareness applications. We discuss applications in terms of a layered hardware architecture (laboratory > supercomputer > rack > processor > component hierarchy). Demonstration applications include performance analysis and results in terms of execution time as well as storage, power, and energy consumption for bus-connected and/or networked architectures. The feasibility of the manyscale paradigm is demonstrated by addressing four principal challenges: (1) architectural/structural diversity, parallelism, and locality, (2) masking of I/O and memory latencies, (3) scalability of design as well as implementation, and (4) efficient representation/expression of parallel applications. Examples will demonstrate how manyscale computing helps solve these challenges efficiently on real-world computing systems.
NASA Astrophysics Data System (ADS)
Szega, Marcin; Nowak, Grzegorz Tadeusz
2013-12-01
In generalized method of data reconciliation as equations of conditions beside substance and energy balances can be used equations which don't have precisely the status of conservation lows. Empirical coefficients in these equations are traded as unknowns' values. To this kind of equations, in application of the generalized method of data reconciliation in supercritical power unit, can be classified: steam flow capacity of a turbine for a group of stages, adiabatic internal efficiency of group of stages, equations for pressure drop in pipelines and equations for heat transfer in regeneration heat exchangers. Mathematical model of a power unit was developed in the code Thermoflex. Using this model the off-design calculation has been made in several points of loads for the power unit. Using these calculations identification of unknown values and empirical coefficients for generalized method of data reconciliation used in power unit has been made. Additional equations of conditions will be used in the generalized method of data reconciliation which will be used in optimization of measurement placement in redundant measurement system in power unit for new control systems
Screw expander for light duty diesel engines
NASA Technical Reports Server (NTRS)
1983-01-01
Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.
Laing, Karen; Baumgartner, Katherine
2005-01-01
Many endoscopy units are looking for ways to improve their efficiency without increasing the number of staff, purchasing additional equipment, or making the patients feel as if they have been rushed through the care process. To accomplish this, a few hospitals have looked to other industries for help. Recently, "lean" methods and tools from the manufacturing industry, have been applied successfully in health care systems, and have proven to be an effective way to eliminate waste and redundancy in workplace processes. The "lean" method and tools in service organizations focuses on providing the most efficient and effective flow of service and products. This article will describe the journey of one endoscopy department within a community hospital to illustrate application of "lean" methods and tools and results.
Development of a second generation biofiltration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinheinz, G.T.; McGinnis, G.D.; Niemi, B.A.
1999-07-01
Biofiltration utilizes microbial processes which are immobilized on a solid support to biodegrade contaminants in air. Biofilters traditionally have been utilized in applications where there is a high volume of air containing low levels of compounds. There are several operational problems biofilters are currently encountering. Some of these problems include systems which are very large, microbial breakdown of the solid support, cycling of compounds onto the biofilters (uneven amounts of compounds in the air), and very short residence times in the biofiltration units. This project was undertaken to determine the feasibility of using physical/chemical methods to adsorb and then desorbmore » analytes to convert a dilute, high volume air stream to a more concentrated low volume air stream. The chemical/physical (adsorption/desorption) system will also serve to provide a relatively consistent air stream to the biofiltration units in order to alleviate the perturbations to the system as a result of uneven analyte concentrations. The ability to concentrate a dilute air stream and provide a constant stream of VOCs to the biofiltration unit will allow for smaller, more efficient, and more economical biofilters. Two years of laboratory studies and initial pilot-scale trials on these coupled systems have shown that they are indeed able to efficiently concentrate dilute streams, and the coupled biofilters are able to remove 90+% of the VOCs from the adsorption/desorption unit.« less
Multiplexed Energy Coupler for Rotating Equipment
NASA Technical Reports Server (NTRS)
Zhao, Xiaoliang
2011-01-01
A multiplexing antenna assembly can efficiently couple AC signal/energy into, or out of, rotating equipment. The unit only passes AC energy while blocking DC energy. Concentric tubes that are sliced into multiple pieces are assembled together so that, when a piece from an outer tube aligns well with an inner tube piece, efficient energy coupling is achieved through a capacitive scheme. With N outer pieces and M inner pieces, an effective N x M combination can be achieved in a multiplexed manner. The energy coupler is non-contact, which is useful if isolation from rotating and stationary parts is required. Additionally, the innovation can operate in high temperatures. Applications include rotating structure sensing, non-contact energy transmission, etc.
Autonomous Robot Navigation in Human-Centered Environments Based on 3D Data Fusion
NASA Astrophysics Data System (ADS)
Steinhaus, Peter; Strand, Marcus; Dillmann, Rüdiger
2007-12-01
Efficient navigation of mobile platforms in dynamic human-centered environments is still an open research topic. We have already proposed an architecture (MEPHISTO) for a navigation system that is able to fulfill the main requirements of efficient navigation: fast and reliable sensor processing, extensive global world modeling, and distributed path planning. Our architecture uses a distributed system of sensor processing, world modeling, and path planning units. In this arcticle, we present implemented methods in the context of data fusion algorithms for 3D world modeling and real-time path planning. We also show results of the prototypic application of the system at the museum ZKM (center for art and media) in Karlsruhe.
A High-efficiency, Small, Solid-state Laser for Pyrotechnic Ignition
NASA Technical Reports Server (NTRS)
Yang, L. C.; Menichelli, V. J.
1973-01-01
A completely self-contained, small, neodymium laser has been designed and demonstrated for use in a pyrotechnic ignition system. A nominal 16 J of laser energy (1.06 micron wavelength, 1-ms duration) was achieved in a rectangular 10.5-X 15.1-X 25.4-cm package weighting 5.14 kg. This high energy-to-weight ratio is encouraging for laser applications in which specific energy efficiency (energy per unit weight or volume) is important. The laser design concepts are described, and some results on pyrotechnic ignition are given. Some details on a laser currently under construction, which will be 1/8 the size of the above laser, are included.
Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz Resonators.
Lan, Jun; Li, Yifeng; Xu, Yue; Liu, Xiaozhou
2017-09-06
We designed a gradient acoustic metasurface to manipulate acoustic wavefront freely. The broad bandwidth and high efficiency transmission are achieved by the acoustic metasurface which is constructed with a series of unit cells to provide desired discrete acoustic velocity distribution. Each unit cell is composed of a decorated metal plate with four periodically arrayed Helmholtz resonators (HRs) and a single slit. The design employs a gradient velocity to redirect refracted wave and the impedance matching between the metasurface and the background medium can be realized by adjusting the slit width of unit cell. The theoretical and numerical results show that some excellent wavefront manipulations are demonstrated by anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat focusing, and effective tunable acoustic negative refraction. Our designed structure may offer potential applications for the imaging system, beam steering and acoustic lens.
A Modified Artificial Bee Colony Algorithm Application for Economic Environmental Dispatch
NASA Astrophysics Data System (ADS)
Tarafdar Hagh, M.; Baghban Orandi, Omid
2018-03-01
In conventional fossil-fuel power systems, the economic environmental dispatch (EED) problem is a major problem that optimally determines the output power of generating units in a way that cost of total production and emission level be minimized simultaneously, and at the same time all the constraints of units and system are satisfied properly. To solve EED problem which is a non-convex optimization problem, a modified artificial bee colony (MABC) algorithm is proposed in this paper. This algorithm by implementing weighted sum method is applied on two test systems, and eventually, obtained results are compared with other reported results. Comparison of results confirms superiority and efficiency of proposed method clearly.
Adaptive real-time methodology for optimizing energy-efficient computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Chung-Hsing; Feng, Wu-Chun
Dynamic voltage and frequency scaling (DVFS) is an effective way to reduce energy and power consumption in microprocessor units. Current implementations of DVFS suffer from inaccurate modeling of power requirements and usage, and from inaccurate characterization of the relationships between the applicable variables. A system and method is proposed that adjusts CPU frequency and voltage based on run-time calculations of the workload processing time, as well as a calculation of performance sensitivity with respect to CPU frequency. The system and method are processor independent, and can be applied to either an entire system as a unit, or individually to eachmore » process running on a system.« less
RF power harvesting: a review on designing methodologies and applications
NASA Astrophysics Data System (ADS)
Tran, Le-Giang; Cha, Hyouk-Kyu; Park, Woo-Tae
2017-12-01
Wireless power transmission was conceptualized nearly a century ago. Certain achievements made to date have made power harvesting a reality, capable of providing alternative sources of energy. This review provides a summ ary of radio frequency (RF) power harvesting technologies in order to serve as a guide for the design of RF energy harvesting units. Since energy harvesting circuits are designed to operate with relatively small voltages and currents, they rely on state-of-the-art electrical technology for obtaining high efficiency. Thus, comprehensive analysis and discussions of various designs and their tradeoffs are included. Finally, recent applications of RF power harvesting are outlined.
Hari, Pradip; Ko, Kevin; Koukoumidis, Emmanouil; Kremer, Ulrich; Martonosi, Margaret; Ottoni, Desiree; Peh, Li-Shiuan; Zhang, Pei
2008-10-28
Increasingly, spatial awareness plays a central role in many distributed and mobile computing applications. Spatially aware applications rely on information about the geographical position of compute devices and their supported services in order to support novel functionality. While many spatial application drivers already exist in mobile and distributed computing, very little systems research has explored how best to program these applications, to express their spatial and temporal constraints, and to allow efficient implementations on highly dynamic real-world platforms. This paper proposes the SARANA system architecture, which includes language and run-time system support for spatially aware and resource-aware applications. SARANA allows users to express spatial regions of interest, as well as trade-offs between quality of result (QoR), latency and cost. The goal is to produce applications that use resources efficiently and that can be run on diverse resource-constrained platforms ranging from laptops to personal digital assistants and to smart phones. SARANA's run-time system manages QoR and cost trade-offs dynamically by tracking resource availability and locations, brokering usage/pricing agreements and migrating programs to nodes accordingly. A resource cost model permeates the SARANA system layers, permitting users to express their resource needs and QoR expectations in units that make sense to them. Although we are still early in the system development, initial versions have been demonstrated on a nine-node system prototype.
Efficient system interrupt concept design at the microprogramming level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakharzadeh, M.M.
1989-01-01
Over the past decade the demand for high speed super microcomputers has been tremendously increased. To satisfy this demand many high speed 32-bit microcomputers have been designed. However, the currently available 32-bit systems do not provide an adequate solution to many highly demanding problems such as in multitasking, and in interrupt driven applications, which both require context switching. Systems for these purposes usually incorporate sophisticated software. In order to be efficient, a high end microprocessor based system must satisfy stringent software demands. Although these microprocessors use the latest technology in the fabrication design and run at a very high speed,more » they still suffer from insufficient hardware support for such applications. All too often, this lack also is the premier cause of execution inefficiency. In this dissertation a micro-programmable control unit and operation unit is considered in an advanced design. An automaton controller is designed for high speed micro-level interrupt handling. Different stack models are designed for the single task and multitasking environment. The stacks are used for storage of various components of the processor during the interrupt calls, procedure calls, and task switching. A universal (as an example seven port) register file is designed for high speed parameter passing, and intertask communication in the multitasking environment. In addition, the register file provides a direct path between ALU and the peripheral data which is important in real-time control applications. The overall system is a highly parallel architecture, with no pipeline and internal cache memory, which allows the designer to be able to predict the processor's behavior during the critical times.« less
A light hydrocarbon fuel processor producing high-purity hydrogen
NASA Astrophysics Data System (ADS)
Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan
This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.
NASA Astrophysics Data System (ADS)
Abing, Stephen Lloyd N.; Barton, Mercie Grace L.; Dumdum, Michael Gerard M.; Bongo, Miriam F.; Ocampo, Lanndon A.
2018-02-01
This paper adopts a modified approach of data envelopment analysis (DEA) to measure the academic efficiency of university departments. In real-world case studies, conventional DEA models often identify too many decision-making units (DMUs) as efficient. This occurs when the number of DMUs under evaluation is not large enough compared to the total number of decision variables. To overcome this limitation and reduce the number of decision variables, multi-objective data envelopment analysis (MODEA) approach previously presented in the literature is applied. The MODEA approach applies Shapley value as a cooperative game to determine the appropriate weights and efficiency score of each category of inputs. To illustrate the performance of the adopted approach, a case study is conducted in a university in the Philippines. The input variables are academic staff, non-academic staff, classrooms, laboratories, research grants, and department expenditures, while the output variables are the number of graduates and publications. The results of the case study revealed that all DMUs are inefficient. DMUs with efficiency scores close to the ideal efficiency score may be emulated by other DMUs with least efficiency scores.
An electro - optic modulator is used to modulate coherent light beams by the application of an electric potential. It combines a Fabry-Perot etalon and...a diffraction grating in a single unit. An etalon is constructed with an electro - optic material between reflecting surfaces. A voltage applied...between alternate, spaced-apart electrodes of a metal grid attached to one reflecting surface induces a diffraction grating in the electro optic material. Light entering the etalon is diffracted, reflected and efficiently coupled out.
2015-11-01
provided by a stand-alone desktop or hand held computing device. This introduces into the discussion a large number of mobile , tactical command...control, communications, and computer (C4) systems across the Services. A couple of examples are mobile command posts mounted on the back of an M1152... infrastructure (DCPI). This term encompasses on-site backup generators, switchgear, uninterruptible power supplies (UPS), power distribution units
Zhu, Xiang; Zhang, Dianwen
2013-01-01
We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785
Performance characterization of a low power hydrazine arcjet
NASA Technical Reports Server (NTRS)
Knowles, S. C.; Smith, W. W.; Curran, F. M.; Haag, T. W.
1987-01-01
Hydrazine arcjets, which offer substantial performance advantages over alternatives in geosynchronous satellite stationkeeping applications, have undergone startup, materials compatibility, lifetime, and power conditioning unit design issues. Devices in the 1000-3000 W output range have been characterized for several different electrode configurations. Constrictor length and diameter, electrode gap setting, and vortex strength have been parametrically studied in order to ascertain the influence of each on specific impulse and efficiency; specific impulse levels greater than 700 sec have been achieved.
Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie
2010-10-01
The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.
Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.
Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie
2010-07-01
The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.
Energy efficiency opportunities in the brewery industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrell, Ernst; Galitsky, Christina; Martin, Nathan
2002-06-28
Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggestmore » that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Sapio, Vincent
2010-09-01
The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial representation. While the representation of displacement in three dimensional Euclidean space is straightforward, orientation in three dimensions poses particular challenges. The unit quaternion provides an approach that mitigates many of the problems intrinsic in other representation approaches, including the ill-conditioning that arises from computing many successive rotations. This report focuses on the computational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV) motion history from sensor data. To this end they will be used in conjunction with other kinematic and data processingmore » techniques. We will present a numerical implementation for the reconstruction of RV motion solely from gyroscope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy in dealing with the composition of many incremental rotations over a time series. In addition to signal processing and data conditioning procedures, algorithms for numerical quaternion-based integration of gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV trajectory. Actual processed flight data will be presented to demonstrate the implementation of these methods.« less
NASA Astrophysics Data System (ADS)
Meng, Yueyu; Ma, Hua; Li, Yongfeng; Feng, Mingde; Wang, Jiafu; Li, Zhiqiang; Qu, Shaobo
2018-05-01
Realizing fine control of surface plasmon polaritons (SPPs) and spoof surface plasmon polaritons (SSPPs) is highly desired in many integrated photonic and microwave applications, but the flexibility to control the wavefront of SPPs and SSPPs still need addressing. In this paper, a Pancharatnam–Berry (PB) phase manipulating metasurface (PMM) was designed to achieve SSPPs excitation and wavefront control. Under circular polarization (CP) incidence, simply by designing the rotation angle of the unit cells the reflection phase spatial distribution can be manipulated. By means of different phase profiles on the 2D unit cells array, the SSPPs can be excited with various wavefront shapes, without the need of special excitation structure pattern. Meanwhile, a plasmonic metal is also designed to support SSPPs with both TE and TM polarizations, which can efficiently guide out the energies from the input CP waves. As a proof of concept, a PB PMM composed of N-shape metallic structure was designed. Through designing the rotation of the unit cells, two typical phase profiles were designed to excite SSPPs in arbitrary slant direction or focusing. This scheme could be used to achieve SSPPs excitation with many other wavefront shapes, and would also enable promising applications in other spectra.
Performance profiling for brachytherapy applications
NASA Astrophysics Data System (ADS)
Choi, Wonqook; Cho, Kihyeon; Yeo, Insung
2018-05-01
In many physics applications, a significant amount of software (e.g. R, ROOT and Geant4) is developed on novel computing architectures, and much effort is expended to ensure the software is efficient in terms of central processing unit (CPU) time and memory usage. Profiling tools are used during the evaluation process to evaluate the efficiency; however, few such tools are able to accommodate low-energy physics regions. To address this limitation, we developed a low-energy physics profiling system in Geant4 to profile the CPU time and memory of software applications in brachytherapy applications. This paper describes and evaluates specific models that are applied to brachytherapy applications in Geant4, such as QGSP_BIC_LIV, QGSP_BIC_EMZ, and QGSP_BIC_EMY. The physics range in this tool allows it to be used to generate low energy profiles in brachytherapy applications. This was a limitation in previous studies, which caused us to develop a new profiling tool that supports profiling in the MeV range, in contrast to the TeV range that is supported by existing high-energy profiling tools. In order to easily compare the profiling results between low-energy and high-energy modes, we employed the same software architecture as that in the SimpliCarlo tool developed at the Fermilab National Accelerator Laboratory (FNAL) for the Large Hadron Collider (LHC). The results show that the newly developed profiling system for low-energy physics (less than MeV) complements the current profiling system used for high-energy physics (greater than TeV) applications.
LCA-based optimization of wood utilization under special consideration of a cascading use of wood.
Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus
2015-04-01
Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghasem, Nayef
2016-07-01
This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes through simulators. A case study presenting the teaching method was evaluated using student surveys and faculty assessments, which were designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively demonstrate that this method is an extremely efficient way of teaching a simulator-based course. In addition to that, this teaching method can easily be generalised and used in other courses. A student's final mark is determined by a combination of in-class assessments conducted based on cooperative and peer learning, progress tests and a final exam. Results revealed that peer learning can improve the overall quality of student learning and enhance student understanding.
NASA Astrophysics Data System (ADS)
Chen, Linghua; Jiang, Yingjie; Xing, Li; Yao, Jun
2017-10-01
We have proposed a full dielectric (silicon) nanocube array polarizer based on a silicon dioxide substrate. Each polarization unit column includes a plurality of equal spaced polarization units. By optimizing the length, the width, the height of the polarization units and the center distance of adjacent polarization unit (x direction and y direction), an extinction ratio (ER) of higher than 25dB was obtained theoretically when the incident light wavelength is 1550nm. while for applications of most polarization optical elements, ER above 10dB is enough. With this condition, the polarizer we designed can work in a wide wavelength range from 1509.31nm to 1611.51nm. Compared with the previous polarizer, we have introduced a polarizer which is a full dielectric device, which solves the problems of low efficiency caused by Ohmic loss and weak coupling. Furthermore, compared with the existing optical polarizers, our polarizer has the advantages of thin thickness, small size, light weight, and low processing difficulty, which is in line with the future development trend of optical elements.
Long, Keith R.; Van Gosen, Bradley S.; Foley, Nora K.; Cordier, Daniel
2012-01-01
Demand for the rare earth elements (REE, lanthanide elements) is estimated to be increasing at a rate of about 8% per year due to increasing applications in consumer products, computers, automobiles, aircraft, and other advanced technology products. Much of this demand growth is driven by new technologies that increase energy efficiency and substitute away from fossil fuels. Production of these elements is highly concentrated in China, which is reducing its exports of REE raw materials as part of its industrial policy. The ability of the rest of the world to replace supply from China depends on the quality of known REE resources and the degree to which those resources have been explored and evaluated. A review of United States resources in a global context finds that the United States could make significant contributions to future REE production. Aside from two advanced projects in the United States and Australia, however, there are no REE projects advanced enough to meet short-term demand.
Efficiently photo-charging lithium-ion battery by perovskite solar cell
NASA Astrophysics Data System (ADS)
Xu, Jiantie; Chen, Yonghua; Dai, Liming
2015-08-01
Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; Macosko, Robert P.
2000-01-01
A refractive secondary solar concentrator is a non-imaging optical device that accepts focused solar energy from a primary concentrator and redirects that light, by means of refraction and total internal reflection (TIR) into a cavity where the solar energy is used for power and/or propulsion applications. This concept offers a variety of advantages compared to typical reflective secondary concentrators (or the use of no secondary at all): higher optical efficiency, minimal secondary cooling requirements, a smaller cavity aperture, a reduction of outgassing from the cavity and flux tailoring of the solar energy within the heat receiver. During the past 2 years, NASA Lewis has been aggressively developing this concept in support of the NASA Marshall Shooting Star Flight Experiment. This paper provides a brief overview of the advantages and technical challenges associated with the development of a refractive secondary concentrator and the fabrication of a working unit in support of the flight demonstration program.
Efficiently photo-charging lithium-ion battery by perovskite solar cell
Xu, Jiantie; Chen, Yonghua; Dai, Liming
2015-01-01
Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589
Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology.
Ye, Qin; Li, Zhimin; Wu, Hui
2016-01-01
Gas-liquid contacting is an important unit operation in chemical and biochemical processes, but the gas utilization efficiency is low in conventional gas-liquid contactors especially for sparingly soluble gases. The gas self-inducing impeller is able to recycle gas in the headspace of a reactor to the liquid without utilization of additional equipment such as a gas compressor, and thus, the gas utilization efficiency is significantly enhanced. Gas induction is caused by the low pressure or deep vortex at a sufficiently high impeller speed, and the speed at which gas induction starts is termed the critical speed. The critical impeller speed, gas-induction flow rate, power consumption, and gas-liquid mass transfer are determined by the impeller design and operation conditions. When the reactor is operated in a dead-end mode, all the introduced gas can be completely used, and this feature is especially favorable to flammable and/or toxic gases. In this article, the principles, designs, characteristics of self-inducing reactors, and applications to biotechnology are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Worrell, Ernst; Ruth, Michael
2003-07-01
Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It beginsmore » with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.« less
NASA Astrophysics Data System (ADS)
Zhang, L. M.; Hu, J. Y.; Wu, Z. H.; Luo, E. C.; Xu, J. Y.; Bi, T. J.
2015-07-01
This article introduces a multi-stage heat-driven thermoacoustic cryocooler capable of reaching cooling capacity about 1 kW at liquefied natural gas temperature range without any moving mechanical parts. The cooling system consists of an acoustically resonant double-acing traveling wave thermoacoustic heat engine and three identical pulse tube coolers. Unlike other traditional traveling wave thermoacoustic heat engines, the acoustically resonant double-acting thermoacoustic heat engine is a closed-loop configuration consists of three identical thermoacoustic conversion units. Each pulse tube cooler is bypass driven by one thermoacoustic heat engine unit. The device is acoustically completely symmetric and therefore "self-matching" for efficient traveling-wave thermoacoustic conversion. In the experiments, with 7 MPa helium gas as working gas, when the heating temperature reaches 918 K, total cooling capacity of 0.88 kW at 110 K is obtained with a resonant frequency of about 55 Hz. When the heating temperature is 903 K, a maximum total cooling capacity at 130 K of 1.20 kW is achieved, with a thermal-to-cold exergy efficiency of 8%. Compared to previously developed heat-driven thermoacoustic cryocoolers, this device has higher thermal efficiency and higher power density. It shows a good prospect of application in the field of natural gas liquefaction and recondensation.
NASA Astrophysics Data System (ADS)
Agrawal, Navik; Davis, Christopher C.
2008-08-01
Omnidirectional free space optical communication receivers can employ multiple non-imaging collectors, such as compound parabolic concentrators (CPCs), in an array-like fashion to increase the amount of possible light collection. CPCs can effectively channel light collected over a large aperture to a small area photodiode. The aperture to length ratio of such devices can increase the overall size of the transceiver unit, which may limit the practicality of such systems, especially when small size is desired. New non-imaging collector designs with smaller sizes, larger field of view (FOV), and comparable transmission curves to CPCs, offer alternative transceiver designs. This paper examines how transceiver performance is affected by the use of different non-imaging collector shapes that are designed for wide FOV with reduced efficiency compared with shapes such as the CPC that are designed for small FOV with optimal efficiency. Theoretical results provide evidence indicating that array-like transceiver designs using various non-imaging collector shapes with less efficient transmission curves, but a larger FOV will be an effective means for the design of omnidirectional optical transceiver units. The results also incorporate the effects of Fresnel loss at the collector exit aperture-photodiode interface, which is an important consideration for indoor omnidirectional FSO systems.
Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.
Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray
2017-07-11
Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.
Fuel processing for PEM fuel cells: transport and kinetic issues of system design
NASA Astrophysics Data System (ADS)
Zalc, J. M.; Löffler, D. G.
In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey; Remo, Timothy; Reese, Samantha
Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG powermore » modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.« less
NASA Astrophysics Data System (ADS)
Zhang, Yuli; Han, Jun; Weng, Xinqian; He, Zhongzhu; Zeng, Xiaoyang
This paper presents an Application Specific Instruction-set Processor (ASIP) for the SHA-3 BLAKE algorithm family by instruction set extensions (ISE) from an RISC (reduced instruction set computer) processor. With a design space exploration for this ASIP to increase the performance and reduce the area cost, we accomplish an efficient hardware and software implementation of BLAKE algorithm. The special instructions and their well-matched hardware function unit improve the calculation of the key section of the algorithm, namely G-functions. Also, relaxing the time constraint of the special function unit can decrease its hardware cost, while keeping the high data throughput of the processor. Evaluation results reveal the ASIP achieves 335Mbps and 176Mbps for BLAKE-256 and BLAKE-512. The extra area cost is only 8.06k equivalent gates. The proposed ASIP outperforms several software approaches on various platforms in cycle per byte. In fact, both high throughput and low hardware cost achieved by this programmable processor are comparable to that of ASIC implementations.
A General Accelerated Degradation Model Based on the Wiener Process.
Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning
2016-12-06
Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.
Flywheel Energy Storage Technology Workshop
NASA Astrophysics Data System (ADS)
Okain, D.; Howell, D.
Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in flywheel energy storage (FES) technologies. FES offers several advantages over conventional electrochemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.
A General Accelerated Degradation Model Based on the Wiener Process
Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning
2016-01-01
Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses. PMID:28774107
A micromachined efficient parametric array loudspeaker with a wide radiation frequency band.
Je, Yub; Lee, Haksue; Been, Kyounghun; Moon, Wonkyu
2015-04-01
Parametric array (PA) loudspeakers generate directional audible sound via the PA effect, which can make private listening possible. The practical applications of PA loudspeakers include information technology devices that require large power efficiency transducers with a wide frequency bandwidth. Piezoelectric micromachined ultrasonic transducers (PMUTs) are compact and efficient units for PA sources [Je, Lee, and Moon, Ultrasonics 53, 1124-1134 (2013)]. This study investigated the use of an array of PMUTs to make a PA loudspeaker with high power efficiency and wide bandwidth. The achievable maximum radiation bandwidth of the driver was calculated, and an array of PMUTs with two distinct resonance frequencies (f1 = 100 kHz, f2 = 110 kHz) was designed. Out-of-phase driving was used with the dual-resonance transducer array to increase the bandwidth. The fabricated PMUT array exhibited an efficiency of up to 71%, together with a ±3-dB bandwidth of 17 kHz for directly radiated primary waves, and 19.5 kHz (500 Hz to 20 kHz) for the difference frequency waves (with equalization).
Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang
2014-07-15
Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.
Electronic health record analysis via deep poisson factor models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henao, Ricardo; Lu, James T.; Lucas, Joseph E.
Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less
Electronic health record analysis via deep poisson factor models
Henao, Ricardo; Lu, James T.; Lucas, Joseph E.; ...
2016-01-01
Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less
Jeon, Jouhyun; Arnold, Roland; Singh, Fateh; Teyra, Joan; Braun, Tatjana; Kim, Philip M
2016-04-01
The identification of structured units in a protein sequence is an important first step for most biochemical studies. Importantly for this study, the identification of stable structured region is a crucial first step to generate novel synthetic antibodies. While many approaches to find domains or predict structured regions exist, important limitations remain, such as the optimization of domain boundaries and the lack of identification of non-domain structured units. Moreover, no integrated tool exists to find and optimize structural domains within protein sequences. Here, we describe a new tool, PAT ( http://www.kimlab.org/software/pat ) that can efficiently identify both domains (with optimized boundaries) and non-domain putative structured units. PAT automatically analyzes various structural properties, evaluates the folding stability, and reports possible structural domains in a given protein sequence. For reliability evaluation of PAT, we applied PAT to identify antibody target molecules based on the notion that soluble and well-defined protein secondary and tertiary structures are appropriate target molecules for synthetic antibodies. PAT is an efficient and sensitive tool to identify structured units. A performance analysis shows that PAT can characterize structurally well-defined regions in a given sequence and outperforms other efforts to define reliable boundaries of domains. Specially, PAT successfully identifies experimentally confirmed target molecules for antibody generation. PAT also offers the pre-calculated results of 20,210 human proteins to accelerate common queries. PAT can therefore help to investigate large-scale structured domains and improve the success rate for synthetic antibody generation.
Parabolic dish systems at work - Applying the concepts
NASA Technical Reports Server (NTRS)
Marriott, A. T.
1981-01-01
An overview is given of parabolic dish solar concentrator application experiments being conducted by the U.S. Department of Energy. The 'engineering experiments' comprise the testing of (1) a small-community powerplant system, in conjunction with a grid-connected utility; (2) stand-alone applications at remote sites such as military installations, radar stations and villages; and (3) dish modules that can deliver heat for direct use in industrial processes. Applicability projections are based on a dish and receiver that use a Brayton engine with an engine/generator efficiency of 25% and a production level of up to 25,000 units per year. Analyses indicate that parabolic-dish power systems can potentially replace small, oil-fired power plants in all regions of the U.S. between 1985 and 1991.
Design Of An Electrical Flywheel For Surge Power Applications In Mobile Robots
NASA Astrophysics Data System (ADS)
Wright, David D.
1987-01-01
An energy boost system based on a flywheel has been designed to supply the surge power needs of mobile robots for operating equipment like transmitters, drills, manipulator arms, mobility augmenters, and etc. This flywheel increases the average power available from a battery, fuel cell, generator, RPG or solar array by one or more orders of magnitude for short periods. Flywheels can be charged and discharged for thousands of battery lifetimes. Flywheels can deliver more than ten times the power per unit weight of batteries. The electromechanical details of a reliable, energy efficient and (relatively) low cost flywheel are described. This flywheel is the combination of a highly efficient brushless motor and a laminated steel rotor operating in an hermetically sealed container with only electrical input and output. This design approach overcomes the inefficiencies generally associated with mechanically geared devices. Electrical round trip efficiency is 94% under optimum operating conditions.
Fuel Cell Auxiliary Power Study Volume 1: RASER Task Order 5
NASA Technical Reports Server (NTRS)
Mak, Audie; Meier, John
2007-01-01
This study evaluated the feasibility of a hybrid solid oxide fuel cell (SOFC) auxiliary power unit (APU) and the impact in a 90-passenger More-Electric Regional Jet application. The study established realistic hybrid SOFC APU system weight and system efficiencies, and evaluated the impact on the aircraft total weight, fuel burn, and emissions from the main engine and the APU during cruise, landing and take-off (LTO) cycle, and at the gate. Although the SOFC APU may be heavier than the current conventional APU, its weight disadvantage can be offset by fuel savings in the higher SOFC APU system efficiencies against the main engine bleed and extraction during cruise. The higher SOFC APU system efficiency compared to the conventional APU on the ground can also provide considerable fuel saving and emissions reduction, particularly at the gate, but is limited by the fuel cell stack thermal fatigue characteristic.
NASA Astrophysics Data System (ADS)
1982-03-01
Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.
Large-scale modular biofiltration system for effective odor removal in a composting facility.
Lin, Yueh-Hsien; Chen, Yu-Pei; Ho, Kuo-Ling; Lee, Tsung-Yih; Tseng, Ching-Ping
2013-01-01
Several different foul odors such as nitrogen-containing groups, sulfur-containing groups, and short-chain fatty-acids commonly emitted from composting facilities. In this study, an experimental laboratory-scale bioreactor was scaled up to build a large-scale modular biofiltration system that can process 34 m(3)min(-1)waste gases. This modular reactor system was proven effective in eliminating odors, with a 97% removal efficiency for 96 ppm ammonia, a 98% removal efficiency for 220 ppm amines, and a 100% removal efficiency of other odorous substances. The results of operational parameters indicate that this modular biofiltration system offers long-term operational stability. Specifically, a low pressure drop (<45 mmH2O m(-1)) was observed, indicating that the packing carrier in bioreactor units does not require frequent replacement. Thus, this modular biofiltration system can be used in field applications to eliminate various odors with compact working volume.
Eco-efficiency evaluation of a smart window prototype.
Syrrakou, E; Papaefthimiou, S; Yianoulis, P
2006-04-15
An eco-efficiency analysis was conducted using indicators suitably defined to evaluate the performance of an electrochromic window acting as an energy saving component in buildings. Combining the indicators for various parameters (control scenario, expected lifetime, climatic type, purchase cost) significant conclusions are drawn for the development and the potential applications of the device compared to other commercial fenestration products. The reduction of the purchase cost (to 200 euros/m2) and the increase of the lifetime (above 15 years) are the two main targets for achieving both cost and environmental efficiency. An electrochromic device, implemented in cooling dominated areas and operated with an optimum control strategy for the maximum expected lifetime (25 years), can reduce the building energy requirements by 52%. Furthermore, the total energy savings provided will be 33 times more than the energy required for its production while the emission of 615 kg CO2 equivalent per electrochromic glazing unit can be avoided.
NASA Astrophysics Data System (ADS)
1982-02-01
Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.
Development of a Low Cost 10kW Tubular SOFC Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessette, Norman; Litka, Anthony; Rawson, Jolyon
The DOE program funded from 2003 through early 2013 has brought the Acumentrics SOFC program from an early stage R&D program to an entry level commercial product offering. The development work started as one of the main core teams under the DOE Solid State Energy Conversion Alliance (SECA) program administered by the National Energy Technology Laboratory (NETL) of the DOE. During the first phase of the program, lasting approximately 3-4 years, a 5kW machine was designed, manufactured and tested against the specification developed by NETL. This unit was also shipped to NETL for independent verification testing which validated all ofmore » the results achieved while in the laboratory at Acumentrics. The Acumentrics unit passed all criteria established from operational stability, efficiency, and cost projections. Passing of the SECA Phase I test allowed the program to move into Phase II of the program. During this phase, the overall objective was to further refine the unit meeting a higher level of performance stability as well as further cost reductions. During the first year of this new phase, the NETL SECA program was refocused towards larger size units and operation on coal gasification due to the severe rise in natural gas prices and refocus on the US supply of indigenous coal. At this point, the program was shifted to the U.S. DOE’s Energy Efficiency and Renewable Energy (EERE) division located in Golden, Colorado. With this shift, the focus remained on smaller power units operational on gaseous fuels for a variety of applications including micro combined heat and power (mCHP). To achieve this goal, further enhancements in power, life expectancy and reductions in cost were necessary. The past 5 years have achieved these goals with machines that can now achieve over 40% electrical efficiency and field units that have now operated for close to a year and a half with minimal maintenance. The following report details not only the first phase while under the SECA program and the key achievements but also the results while under EERE’s leadership and the transition to an early commercial product offering.« less
Evaluating architecture impact on system energy efficiency
Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget. PMID:29161317
Evaluating architecture impact on system energy efficiency.
Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget.
Pressure-assisted thermal sterilization of soup
NASA Astrophysics Data System (ADS)
Shibeshi, Kidane; Farid, Mohammed M.
2010-12-01
The overall efficiency of an existing scale-up pressure-assisted thermal sterilization (PATS) unit was investigated with regards to inactivation of Geobacillus stearothermophilus spores suspended in pumpkin soup. The PATS unit is a double pipe heat exchanger in which the soup is pumped into its inner high pressure tube and constrained by two high pressure valves, while steam is continuously passed through the annular region to heat the content. The technology is based on pressure generation by thermal expansion of the liquid in an enclosure. In this work, the addition of an air line to push the treated liquid food out of the existing PATS unit has improved the overall quality of the treated samples, as evidenced by achieving higher log reduction of the spores. Compared with thermal processing, the application of PATS shows the potential for lowering the thermal treatment temperature, offering improved food quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allada, Veerendra, Benjegerdes, Troy; Bode, Brett
Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as themore » workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.« less
Singh, P C; Nautiyal, C S
2012-12-01
To prepare concentrated formulation of Trichoderma harzianum MTCC-3841 (NBRI-1055) with high colony forming units (CFU), long shelf life and efficient in root colonization by a simple scrapping method. NBRI-1055 spores scrapped from potato dextrose agar plates were used to prepare a concentrated formulation after optimizing carrier material, moisture content and spore harvest time. The process provides an advantage of maintaining optimum moisture level by the addition of water rather than dehydration. The formulation had an initial 11-12 log(10) CFU g(-1). Its concentrated form reduces its application amount by 100 times (10 g 100 kg(-1) seed) and provides 3-4 log(10) CFU seed(-1). Shelf life of the product was experimentally determined at 30 and 40 °C and predicted at other temperatures following Arrhenius equation. The concentrated formulation as compared to similar products provides an extra advantage of smaller packaging for storage and transportation, cutting down product cost. Seed application of the formulation recorded significant increase in plant growth promotion. Stable and effective formulation of Trichoderma harzianum NBRI-1055 was obtained by a simple scrapping method. A new method for the production of concentrated, stable, effective and cost efficient formulation of T. harzianum has been validated for seed application. © 2012 The Society for Applied Microbiology.
Chen, S T; Berthouex, P M
2001-01-01
The extensive pentachlorophenol (PCP) contamination and its increasing treatment costs motivate the search for a more competitive treatment alternative. In a municipal wastewater treatment plant, anaerobic sludge-handling processes comprises three bio-processes, namely the anaerobic sludge digestion, post-sludge digestion and sludge land application, which reduce sludge organic content and make sludge a good fertilizer for land application. Availability and effectiveness make the anaerobic sludge handling processes potential technologies to treat PCP-contaminated soil. The technical feasibility of using anaerobic sludge bioprocesses was studied by treating PCP soil in two pilot digesters to simulate the primary sludge digestion, in serum bottles to mimic the post-sludge digestion, and in glass pans to represent the on-site sludge application. For primary digestion, the results showed that up to 0.98 and 0.6 mM of chemical and soil PCP, respectively, were treated at nearly 100% and 97.5% efficiencies. The PCP was transformed 95% to 3-MCP, 4.5% to 3,4-DCP, and 0.5% to 3,5-DCP. For post-digestion, 100% pure chemical PCP and greater than 95% soil PCP were removed in less than 6 months with no chlorophenol residues of any kind. Complete removal of PCP by-products makes this process a good soil cleanup method. For on-site treatment, PCP was efficiently treated by multiple sludge application; however, the PCP residue was observed due to the high initial PCP content in soil. Overall, more mass PCP per unit sludge per day was processed using the primary sludge digestion than the on-site soil treatment or post-sludge digestion. And, sludge acclimation resulted in better PCP treatment efficiencies with all three processes.
Genewein, U; Jakob, M; Bingisser, R; Burla, S; Heberer, M
2009-02-01
Mission and organization of emergency units were analysed to understand the underlying principles and concepts. The recent literature (2000-2007) on organizational structures and functional concepts of clinical emergency units was reviewed. An organizational portfolio based on the criteria specialization (presence of medical specialists on the emergency unit) and integration (integration of the emergency unit into the hospital structure) was established. The resulting organizational archetypes were comparatively assessed based on established efficiency criteria (efficiency of resource utilization, process efficiency, market efficiency). Clinical emergency units differ with regard to autonomy (within the hospital structure), range of services and service depth (horizontal and vertical integration). The "specialization"-"integration"-portfolio enabled the definition of typical organizational patterns (so-called archetypes): profit centres primarily driven by economic objectives, service centres operating on the basis of agreements with the hospital board, functional clinical units integrated into medical specialty units (e.g., surgery, gynaecology) and modular organizations characterized by small emergency teams that would call specialists immediately after triage and initial diagnostic. There is no "one fits all" concept for the organization of clinical emergency units. Instead, a number of well characterized organizational concepts are available enabling a rational choice based on a hospital's mission and demand.
Ko, Eun Yi; Park, Gi Eun; Lee, Ji Hyung; Kim, Hyung Jong; Lee, Dae Hee; Ahn, Hyungju; Uddin, Mohammad Afsar; Woo, Han Young; Cho, Min Ju; Choi, Dong Hoon
2017-03-15
New small molecules having modified acceptor strength and π-conjugation length and containing dicyanovinylene (DCV) and tricyanovinylene (TCV) as a strongly electron-accepting unit with indacenodithiophene, IDT(DCV) 2 , IDT(TCV) 2 , and IDTT(TCV) 2 , were synthesized and studied in terms of their applicability to polymer solar cells with PTB7-Th as an electron-donating polymer. Intriguingly, the blended films containing IDT(TCV) 2 and IDTT(TCV) 2 exhibited superior shelf life stabilities of more than 1000 h without any reduction in the initial power conversion efficiency. The low-lying lowest unoccupied molecular orbital energy levels and robust internal morphologies of small TCV-containing molecules could afford excellent shelf life stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menlove, Howard Olsen; Henzlova, Daniela
This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. Themore » comparison data is presented in this report.« less
Wang, Bo; Dong, Fengliang; Li, Qi-Tong; Yang, Dong; Sun, Chengwei; Chen, Jianjun; Song, Zhiwei; Xu, Lihua; Chu, Weiguo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan
2016-08-10
Dielectric metasurfaces built up with nanostructures of high refractive index represent a powerful platform for highly efficient flat optical devices due to their easy-tuning electromagnetic scattering properties and relatively high transmission efficiencies. Here we show visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit to constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously. Full phase control is achieved for each wavelength by independently changing the in-plane orientations of the corresponding nanoblocks to induce the required geometric phases. Achromatic and highly dispersive meta-holograms are fabricated to demonstrate the wavefront manipulation with high resolution. This technique could be viable for various practical holographic applications and flat achromatic devices.
Successfully use agglomeration for size enlargement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietsch, W.
1996-04-01
The processing of fine and ultrafine particles by size enlargement finds an ever increasing application. At the same time, undesirable agglomeration such as buildup, caking, bridging, and uncontrolled aggregation of fine particles can occur during processing and handling of these particulate solids. This article will provide a survey of the phenomena of agglomeration and discuss the unit operation of size enlargement by agglomeration. This article is also an invitation, particularly to young engineers, to become interested in agglomeration. Considering that mechanical process technologies are requiring more energy every year than any other group of consumers and efficiencies are typically inmore » the single digits or teens at best, considerable rewards can be expected from the development of scientifically modified, more energy-efficient methods and equipment.« less
Modular 5-kW Power-Processing Unit Being Developed for the Next-Generation Ion Engine
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bond, Thomas H.; Okada, Don; Phelps, Keith; Pyter, Janusz; Wiseman, Steve
2001-01-01
The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.
DETOX{sup SM} catalyzed wet oxidation as a highly suitable pretreatment for vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.; Goldblatt, S.D.
1995-11-01
A catalyzed wet oxidation process has been developed which uses ferric iron in an acidic water solution to oxidize organic compounds in the presence of platinum ion and/or ruthenium ion catalysts. The process is capable of oxidizing a wide range of organic compounds to carbon dioxide and water with great efficiency. The process has been tested in the bench-scale with many different types of organics. Conceptual engineering for application of the process to treatment of liquid and solid organic waste materials has been followed by engineering design for a demonstration unit. Fabrication of the unit and demonstration on hazardous andmore » mixed wastes at two Department of Energy sites is planned in 1995 through 1997.« less
NASA Technical Reports Server (NTRS)
Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan
2016-01-01
Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.
Morgan, Matthew M; Piers, Warren E
2016-04-14
Polycyclic aromatic hydrocarbons in which one or more CC units have been replaced by isoelectronic BN units have attracted interest as potentially improved organic materials in various devices. This promise has been hampered by a lack of access to gram quantities of these materials. However, the exploitation of keystone reactions such as ring closing metathesis, borylative cyclization of amino styrenes and electrophilic borylation has lead to strategies for access to workable amounts of material. These strategies can be augmented by judicious postfunctionalization reactions to diversify the library of materials available. This Frontier article highlights some of the recent successes and shows that the long promised applications of BN-doped PAHs are beginning to be explored in a meaningful way.
Abdelrahman, Hisham; ElHady, Mohamed; Alcivar-Warren, Acacia; Allen, Standish; Al-Tobasei, Rafet; Bao, Lisui; Beck, Ben; Blackburn, Harvey; Bosworth, Brian; Buchanan, John; Chappell, Jesse; Daniels, William; Dong, Sheng; Dunham, Rex; Durland, Evan; Elaswad, Ahmed; Gomez-Chiarri, Marta; Gosh, Kamal; Guo, Ximing; Hackett, Perry; Hanson, Terry; Hedgecock, Dennis; Howard, Tiffany; Holland, Leigh; Jackson, Molly; Jin, Yulin; Khalil, Karim; Kocher, Thomas; Leeds, Tim; Li, Ning; Lindsey, Lauren; Liu, Shikai; Liu, Zhanjiang; Martin, Kyle; Novriadi, Romi; Odin, Ramjie; Palti, Yniv; Peatman, Eric; Proestou, Dina; Qin, Guyu; Reading, Benjamin; Rexroad, Caird; Roberts, Steven; Salem, Mohamed; Severin, Andrew; Shi, Huitong; Shoemaker, Craig; Stiles, Sheila; Tan, Suxu; Tang, Kathy F J; Thongda, Wilawan; Tiersch, Terrence; Tomasso, Joseph; Prabowo, Wendy Tri; Vallejo, Roger; van der Steen, Hein; Vo, Khoi; Waldbieser, Geoff; Wang, Hanping; Wang, Xiaozhu; Xiang, Jianhai; Yang, Yujia; Yant, Roger; Yuan, Zihao; Zeng, Qifan; Zhou, Tao
2017-02-20
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
Progress in aeronautical research and technology applicable to civil air transports
NASA Technical Reports Server (NTRS)
Bower, R. E.
1981-01-01
Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.
High-Sensitivity Conjugated Polymer/Nanoparticle Nanocomposites for Infrared Sensor Applications
2011-03-03
Performances of Photovoltaic devices base d on Thieno[3,4-c] pyrrole -4,6-dione-Based Donor-Acceptor Conjugated Polymers and CdSe Tetrapods Abstract: We...2-yl)thieno[3,2-b] thiophene and thieno[3,4-c] pyrrole -4,6-dione units. The AM1.5 power conversion efficiency of a photovoltaic device containing...photovoltaic devices because of their readily tunable electronic properties. The electron-deficient thieno[3,4-c] pyrrole -4,6-dione (TPD) moiety exhibits a
Some recent developments in spacecraft environmental control/life support subsystems
NASA Technical Reports Server (NTRS)
Gillen, R. J.; Olcott, T. M.
1974-01-01
The subsystems considered include a flash evaporator for heat rejection, a regenerable carbon dioxide and humidity control subsystem, an iodinating subsystem for potable water, a cabin contaminant control subsystem, and a wet oxidation subsystem for processing spacecraft wastes. The flash evaporator discussed is a simple unit which efficiently controls life support system temperatures over a wide range of heat loads. For certain advanced spacecraft applications the control of cabin carbon dioxide and humidity can be successfully achieved by a regenerable solid amine subsystem.
2008-12-04
tracked. The RFID tag can be of various designs, materials , and/or sizes and hold a variable amount of information. Each tag is composed of three...efficiency in acquiring material from suppliers and in delivering to units in the field (Business Wire, 2005). The military learned an important lesson...RFID Supply-chain applications of RFID are beneficial to both the DoD and suppliers. RFID technology has enabled the recording of material transfer
Fiber Optic Microsensor for Receptor-Based Assays
1988-09-01
MONITORING ORGANIZATION ORDInc.(if applicable ) 6c. ADDRESS (CWty Sta~te, and ZIP code) 7b. ADDRESS (City, State, an~d ZIP=Cd) Nahant, MA 019081 Sa, NAME OF...yield B-PE B-phycoerythrin 545 575 2,410,000 0.98 R-PE R-phycoerythrin 565 578 11960,000 0.68 CPC C- phycocyanine 620 650 1,690,000 0.51 A-PC...efficient transfer occurred for unit magnification. Figure 3 shows the optical design. Evaluation of the instrument was done with both A- phycocyanine
Banks, Jim
2013-01-01
Having already made a big impact in the medical sector, three-dimensional (3-D) printing technology continues to push the boundaries of cost efficiency, convenience, and customization. It has transformed some aspects of medical device production. However, expectations of the technology are often exaggerated in the media, so we spoke to leading researchers in the field about its practical applications and what can be expected in the near future.
AMTEC: Current status and vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, G.C.; Hunt, T.K.; Sievers, R.K.
1997-12-31
The recent history of alkali metal thermal-to-electric conversion (AMTEC) has been tantalizing as technical advances have struck down most of the remaining barriers for realization of practical applications. AMTEC has always offered promise with its inherently noise-free, vibration-free, and high efficiency operation. Today`s AMTEC cells are also compact, lightweight and reliable, achieving near 20% conversion efficiency. Pathways have been defined that should lead to efficiencies of 30% or higher within two years. Prototype AMTEC devices are being built today for applications ranging from powering deep space probes (100--150 W) to residential appliance cogeneration (350--500 W) to remote and portable powermore » units (10--500 W). Multi-kilowatt systems may be only two years away. Current designs have power densities of 100--200 W/kg. Where is AMTEC technology at the start of the new millennium? Performance will exceed the numbers given above with the power capacity reaching 10 kW or more. These high power systems will also provide 100 volts or more when desired. Some AMTEC devices may be designed to operate at input temperatures well below that required today (800--900 C), providing more flexibility on the choice of heat source. Realization of industrial and consumer applications for AMTEDC will depend on manufacturing economies achieved through simplification of cell fabrication and high volume production. Advanced Modular Power Systems, Inc. is developing AMTEC manufacturing technology which may lead to costs under $25/watt within two years and under $1/watt eventually. At this cost, AMTEC devices will find broad consumer, and industrial applications.« less
Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.
Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng
2018-06-01
The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.
Robust and efficient method for matching features in omnidirectional images
NASA Astrophysics Data System (ADS)
Zhu, Qinyi; Zhang, Zhijiang; Zeng, Dan
2018-04-01
Binary descriptors have been widely used in many real-time applications due to their efficiency. These descriptors are commonly designed for perspective images but perform poorly on omnidirectional images, which are severely distorted. To address this issue, this paper proposes tangent plane BRIEF (TPBRIEF) and adapted log polar grid-based motion statistics (ALPGMS). TPBRIEF projects keypoints to a unit sphere and applies the fixed test set in BRIEF descriptor on the tangent plane of the unit sphere. The fixed test set is then backprojected onto the original distorted images to construct the distortion invariant descriptor. TPBRIEF directly enables keypoint detecting and feature describing on original distorted images, whereas other approaches correct the distortion through image resampling, which introduces artifacts and adds time cost. With ALPGMS, omnidirectional images are divided into circular arches named adapted log polar grids. Whether a match is true or false is then determined by simply thresholding the match numbers in a grid pair where the two matched points located. Experiments show that TPBRIEF greatly improves the feature matching accuracy and ALPGMS robustly removes wrong matches. Our proposed method outperforms the state-of-the-art methods.
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-01-01
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m−3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard ‘infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things. PMID:26656252
Solar-thermal jet pumping for irrigation
NASA Astrophysics Data System (ADS)
Clements, L. D.; Dellenback, P. A.; Bell, C. A.
1980-01-01
This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.
Design of an integrated fuel processor for residential PEMFCs applications
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.
NASA Astrophysics Data System (ADS)
Fetisov, K. V.; Maksimov, P. V.
2018-05-01
The paper presents the application of topology optimization and laser additive manufacturing in the design of lightweight aerospace parts. At the beginning a brief overview of the topology optimization algorithm SIMP is given, one of the most commonly used algorithm in FEA software. After that, methodology of parts design with using topology optimization is discussed as well as issues related to designing for additive manufacturing. In conclusion, the practical application of the proposed methodologies is presented using the example of one complex assembly unit. As a result of the new design approach, the mass of product was reduced five times, and twenty parts were replaced by one.
[Embryonic stem cells. Future perspectives].
Groebner, M; David, R; Franz, W M
2006-05-01
Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.
Research and application of key technology of electric submersible plunger pump
NASA Astrophysics Data System (ADS)
Qian, K.; Sun, Y. N.; Zheng, S.; Du, W. S.; Li, J. N.; Pei, G. Z.; Gao, Y.; Wu, N.
2018-06-01
Electric submersible plunger pump is a new generation of rodless oil production equipment, whose improvements and upgrades of key technologies are conducive to its large-scale application and reduce the cost and improve the efficiency. In this paper, the operating mechanism of the unit in-depth study, aimed at the problems existing in oilfield production, to propose an optimization method creatively, including the optimal design of a linear motor for submersible oil, development of new double-acting load-relief pump, embedded flexible closed-loop control technology, research and development of low-cost power cables. 90 oil wells were used on field application, the average pump inspection cycle is 608 days, the longest pump check cycle has exceeded 1037 days, the average power saving rate is 45.6%. Application results show that the new technology of optimization and upgrading can further improve the reliability and adaptability of electric submersible plunger pump, reduce the cost of investment.
Bartlett, C A; Ghoshal, S
1992-01-01
To compete around the world, a company needs three strategic capabilities: global-scale efficiency, local responsiveness, and the ability to leverage learning worldwide. No single "global" manager can build these capabilities. Rather, groups of specialized managers must integrate assets, resources, and people in diverse operating units. Such managers are made, not born. And how to make them is--and must be--the foremost question for corporate managers. Drawing on their research with leading transnational corporations, Christopher Bartlett and Sumantra Ghoshal identify three types of global managers. They also illustrate the responsibilities each position involves through a close look at the careers of successful executives: Leif Johansson of Electrolux, Howard Gottlieb of NEC, and Wahib Zaki of Procter & Gamble. The first type is the global business or product-division manager who must build worldwide efficiency and competitiveness. These managers recognize cross-border opportunities and risks as well as link activities and capabilities around the world. The second is the country manager whose unit is the building block for worldwide operations. These managers are responsible for understanding and interpreting local markets, building local resources and capabilities, and contributing to--and participating in--the development of global strategy. Finally, there are worldwide functional specialists--the managers whose potential is least appreciated in many traditional multinational companies. To transfer expertise from one unit to another and leverage learning, these managers must scan the company for good ideas and best practice, cross-pollinate among units, and champion innovations with worldwide applications.
A fully distributed implementation of mean annual streamflow regional regression equations
Verdin, K.L.; Worstell, B.
2008-01-01
Estimates of mean annual streamflow are needed for a variety of hydrologic assessments. Away from gage locations, regional regression equations that are a function of upstream area, precipitation, and temperature are commonly used. Geographic information systems technology has facilitated their use for projects, but traditional approaches using the polygon overlay operator have been too inefficient for national scale applications. As an alternative, the Elevation Derivatives for National Applications (EDNA) database was used as a framework for a fully distributed implementation of mean annual streamflow regional regression equations. The raster “flow accumulation” operator was used to efficiently achieve spatially continuous parameterization of the equations for every 30 m grid cell of the conterminous United States (U.S.). Results were confirmed by comparing with measured flows at stations of the Hydro-Climatic Data Network, and their applications value demonstrated in the development of a national geospatial hydropower assessment. Interactive tools at the EDNA website make possible the fast and efficient query of mean annual streamflow for any location in the conterminous U.S., providing a valuable complement to other national initiatives (StreamStats and the National Hydrography Dataset Plus).
A Framework for Comprehensive Health Terminology Systems in the United States
Chute, Christopher G.; Cohn, Simon P.; Campbell, James R.
1998-01-01
Health care in the United States has become an information-intensive industry, yet electronic health records represent patient data inconsistently for lack of clinical data standards. Classifications that have achieved common acceptance, such as the ICD-9-CM or ICD, aggregate heterogeneous patients into broad categories, which preclude their practical use in decision support, development of refined guidelines, or detailed comparison of patient outcomes or benchmarks. This document proposes a framework for the integration and maturation of clinical terminologies that would have practical applications in patient care, process management, outcome analysis, and decision support. Arising from the two working groups within the standards community—the ANSI (American National Standards Institute) Healthcare Informatics Standards Board Working Group and the Computer-based Patient Records Institute Working Group on Codes and Structures—it outlines policies regarding 1) functional characteristics of practical terminologies, 2) terminology models that can broaden their applications and contribute to their sustainability, 3) maintenance attributes that will enable terminologies to keep pace with rapidly changing health care knowledge and process, and 4) administrative issues that would facilitate their accessibility, adoption, and application to improve the quality and efficiency of American health care. PMID:9824798
Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium
NASA Astrophysics Data System (ADS)
Dahmen, David; Bos, Hannah; Helias, Moritz
2016-07-01
Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising) threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.
Directional Slack-Based Measure for the Inverse Data Envelopment Analysis
Abu Bakar, Mohd Rizam; Lee, Lai Soon; Jaafar, Azmi B.; Heydar, Maryam
2014-01-01
A novel technique has been introduced in this research which lends its basis to the Directional Slack-Based Measure for the inverse Data Envelopment Analysis. In practice, the current research endeavors to elucidate the inverse directional slack-based measure model within a new production possibility set. On one occasion, there is a modification imposed on the output (input) quantities of an efficient decision making unit. In detail, the efficient decision making unit in this method was omitted from the present production possibility set but substituted by the considered efficient decision making unit while its input and output quantities were subsequently modified. The efficiency score of the entire DMUs will be retained in this approach. Also, there would be an improvement in the efficiency score. The proposed approach was investigated in this study with reference to a resource allocation problem. It is possible to simultaneously consider any upsurges (declines) of certain outputs associated with the efficient decision making unit. The significance of the represented model is accentuated by presenting numerical examples. PMID:24883350
Alex, Rani; Kunniyoor Cheemani, Raghavan; Thomas, Naicy
2013-11-01
A stochastic frontier production function was employed to measure technical efficiency and its determinants in smallholder Malabari goat production units in Kerala, India. Data were obtained from 100 goat farmers in northern Kerala, selected using multistage random sampling. The parameters of the stochastic frontier production function were estimated using the maximum likelihood method. Cost and return analysis showed that the major expenditure was feed and fodder, and veterinary expenses were secondary. The chief returns were the sale of live animals, milk and manure. Individual farm technical efficiency ranged from 0.34 to 0.97 with a mean of 0.88. The study found herd size (number of animal units) and centre (locality of farm) significantly affected technical efficiency, but sex of farmer, education, land size and family size did not. Technical efficiency decreased as herd size increased; half the units with five or more adult animals had technical efficiency below 60 %.
Vuillemin, Quentin; Schwartzbrod, Pierre-Eric; Pasquier, Pierre; Sibille, Florian; Trousselard, Marion; Ferrer, Marie-Hélène
2018-01-01
Health care delivery in military conflicts implies high-stress environments. Hemorrhage is the first cause of survivable death among combat casualties, and tourniquet application is one of the most critical lifesaving interventions on the battlefield. However, previous studies have shown high failure rates in tourniquet application. Our study aimed to assess the correlation between personality traits that may interfere with effective tourniquet application in a simulated extremity hemorrhage. Seventy-two French soldiers, previously trained to forward combat casualty care, were evaluated by self-administered questionnaires and submitted to the simulation in group of six. We focused on measuring the empathic personality of the subjects, their peer-to-peer relationships (altruism), as well as their relationship to themselves (mindfulness and self-esteem). The effectiveness of the tourniquet was evidenced by the interruption of the popliteal artery flow Doppler signal. A composite variable called "efficiency" was defined by elimination of popliteal pulse Doppler signal in less than 60 s. Tourniquet application interrupted arterial flow in 37 participants (51.39%). Efficiency was obtained by 19 participants (26.39%). We observed that soldiers with high active altruism applied less-efficient tourniquet (odds ratio = 0.15; 95% confidence interval = 0.04-0.59). On the contrary, soldiers with high self-esteem scores applied more efficient tourniquet (odds ratio = 3.95; 95% confidence interval = 1.24-12.56). There was no significant difference concerning empathy and mindfulness scores. Tourniquet application is technically simple but painful and may involve personal sensitivity. These initial findings highlight the necessity to further explore the psychological processes involved in lifesaving interventions. Self-esteem stands out as a real asset in terms of military competence and resilience, a major prerequisite in stressful situations. Changing altruistic motivations of soldiers is likely not desirable, but being aware of its potential effects may help to develop personal adaptive strategies and to optimize collective training. © Association of Military Surgeons of the United States 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Trends in increasing gas-turbine units efficiency
NASA Astrophysics Data System (ADS)
Lebedev, A. S.; Kostennikov, S. V.
2008-06-01
A review of the latest models of gas-turbine units (GTUs) manufactured by leading firms of the world is given. With the example of units made by General Electric, Siemens, and Alstom, modern approaches to the problem of increasing the efficiency of gas-turbine units are dealt with. Basic principles of designing of moderate-size capacity gas turbine units are discussed, and comparison between characteristics of foreign-made GTUs belonging to this class and the advanced domestic GTE-65 unit is made.
An Efficiency Comparison of MBA Programs: Top 10 versus Non-Top 10
ERIC Educational Resources Information Center
Hsu, Maxwell K.; James, Marcia L.; Chao, Gary H.
2009-01-01
The authors compared the cohort group of the top-10 MBA programs in the United States with their lower-ranking counterparts on their value-added efficiency. The findings reveal that the top-10 MBA programs in the United States are associated with statistically higher average "technical and scale efficiency" and "scale efficiency", but not with a…
R744 ejector technology future perspectives
NASA Astrophysics Data System (ADS)
Hafner, Armin; Banasiak, Krzysztof
2016-09-01
Carbon Dioxide, CO2 (R744) was one of the first commonly applied working fluids in the infancy of refrigeration more than 100 years ago. In contrast to ammonia it mainly disappeared after the first generation of synthetic refrigerants have been introduced to the market after 1930. One reason was that the transition from low-rpm belt driven compressors towards the direct electrical motor driven compressors (50-60 Hz) was not performed for CO2 compressors before the revival introduced by Gustav Lorentzen in the 90is of last century. Since 1988 an enormous R & D effort has been made to further develop CO2 refrigeration technology in spite of the opposition from the chemical industry. Today CO2 refrigeration and heat pumping technologies are accepted as viable and sustainable alternatives for several applications like commercial refrigeration, transport refrigeration, vehicle air conditioning & heat pumping, domestic hot water heat pumps and industrial applications. For some applications, the current threshold to introduce R744 technology can be overcome when the system design takes into account the advantage of the thermo dynamical- and fluid properties of CO2. I.e. the system is designed for transcritical operation with all it pros and cons and takes into consideration how to minimize the losses, and to apply the normally lost expansion work. Shortcut-designs, i.e. drop in solutions, just replacing the H(C)FC refrigeration unit with an CO2 systems adapted for higher system pressures will not result in energy efficient products. CO2 systems do offer the advantage of enabling flooded evaporators supported with adapted ejector technology. These units offer high system performances at low temperature differences and show low temperature air mal-distributions across evaporators. This work gives an overview for the development possibilities for several applications during the next years. Resulting in a further market share increase of CO2 refrigeration and heat pump systems, as energy efficient alternatives to current systems not applying natural working fluids.
[Technical efficiency in primary care for patients with diabetes].
Salinas-Martínez, Ana María; Amaya-Alemán, María Agustina; Arteaga-García, Julio César; Núñez-Rocha, Georgina Mayela; Garza-Elizondo, María Eugenia
2009-01-01
To quantify the technical efficiency of diabetes care in family practice settings, characterize the provision of services and health results, and recognize potential sources of variation. We used data envelopment analysis with inputs and outputs for diabetes care from 47 family units within a social security agency in Nuevo Leon. Tobit regression models were also used. Seven units were technically efficient in providing services and nine in achieving health goals. Only two achieved both outcomes. The metropolitan location and the total number of consultations favored efficiency in the provision of services regardless of patient attributes; and the age of the doctor, the efficiency of health results. Performance varied within and among family units; some were efficient at providing services while others at accomplishing health goals. Sources of variation also differed. It is necessary to include both outputs in the study of efficiency of diabetes care in family practice settings.
Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos
2015-01-01
This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.
Solid State Energy Conversion Energy Alliance (SECA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessy, Daniel; Sibisan, Rodica; Rasmussen, Mike
2011-09-12
The overall objective is to develop a Solid Oxide Fuel Cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of ≥ 35 percent (AC/LHV). In Phase II andmore » Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥ 40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥ 30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of ≥ 30 percent (DC/LHV) and a factory cost of ≤ $400/kW.« less
Solid State Energy Conversion Energy Alliance (SECA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessy, Daniel; Sibisan, Rodica; Rasmussen, Mike
2011-09-12
The overall objective is to develop a solid oxide fuel cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of 35 percent (AC/LHV). In Phase II and Phasemore » III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of 30 percent (DC/LHV) and a factory cost of ≤$400/kW.« less
Comparison contemporary methods of regeneration sodium-cationic filters
NASA Astrophysics Data System (ADS)
Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.
2017-11-01
Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Rakesh
This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. Wemore » also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.« less
A Software Development Platform for Wearable Medical Applications.
Zhang, Ruikai; Lin, Wei
2015-10-01
Wearable medical devices have become a leading trend in healthcare industry. Microcontrollers are computers on a chip with sufficient processing power and preferred embedded computing units in those devices. We have developed a software platform specifically for the design of the wearable medical applications with a small code footprint on the microcontrollers. It is supported by the open source real time operating system FreeRTOS and supplemented with a set of standard APIs for the architectural specific hardware interfaces on the microcontrollers for data acquisition and wireless communication. We modified the tick counter routine in FreeRTOS to include a real time soft clock. When combined with the multitasking features in the FreeRTOS, the platform offers the quick development of wearable applications and easy porting of the application code to different microprocessors. Test results have demonstrated that the application software developed using this platform are highly efficient in CPU usage while maintaining a small code foot print to accommodate the limited memory space in microcontrollers.
Van de Walle, P; Hallemans, A; Truijen, S; Gosselink, R; Heyrman, L; Molenaers, G; Desloovere, K
2012-01-01
Gait efficiency in children with cerebral palsy is decreased. To date, most research did not include the upper body as a separate functional unit when exploring these changes in gait efficiency. Since children with spastic diplegia often experience problems with trunk control, they could benefit from separate evaluation of the so-called 'passenger unit'. Therefore, the aim of the current study was to improve insights in the role of the passenger unit in decreased gait efficiency in children with diplegia. Mechanical cost of walking was investigated by calculating work by the integrated joint power approach in 18 children with diplegia and 25 age-related typical developing controls. The total mechanical work in children with diplegia was 1.5 times higher than in typical children. In children with diplegia work at the lower limbs was increased by 37% compared to typical children. Substantially higher increases, up to 222%, were noted at the passenger unit. Trunk and head were the main contributors to the increased work of the passenger unit, but the role of the arms cannot be neglected. Due to these disproportional increases in locomotor and passenger unit, the demands of the passenger unit in pathological gait can no longer be considered minor, as in typical gait. Therefore, the role of the passenger unit must be recognized in the decrease of gait efficiency in children with spastic diplegia and should be part of the evaluation of gait efficiency in clinical practice. Copyright © 2012 Elsevier Ltd. All rights reserved.
Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design
NASA Astrophysics Data System (ADS)
Miller, Owen Dennis
Photonic innovation is becoming ever more important in the modern world. Optical systems are dominating shorter and shorter communications distances, LED's are rapidly emerging for a variety of applications, and solar cells show potential to be a mainstream technology in the energy space. The need for novel, energy-efficient photonic and optoelectronic devices will only increase. This work unites fundamental physics and a novel computational inverse design approach towards such innovation. The first half of the dissertation is devoted to the physics of high-efficiency solar cells. As solar cells approach fundamental efficiency limits, their internal physics transforms. Photonic considerations, instead of electronic ones, are the key to reaching the highest voltages and efficiencies. Proper photon management led to Alta Device's recent dramatic increase of the solar cell efficiency record to 28.3%. Moreover, approaching the Shockley-Queisser limit for any solar cell technology will require light extraction to become a part of all future designs. The second half of the dissertation introduces inverse design as a new computational paradigm in photonics. An assortment of techniques (FDTD, FEM, etc.) have enabled quick and accurate simulation of the "forward problem" of finding fields for a given geometry. However, scientists and engineers are typically more interested in the inverse problem: for a desired functionality, what geometry is needed? Answering this question breaks from the emphasis on the forward problem and forges a new path in computational photonics. The framework of shape calculus enables one to quickly find superior, non-intuitive designs. Novel designs for optical cloaking and sub-wavelength solar cell applications are presented.
Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna
NASA Astrophysics Data System (ADS)
Zhang, Di; Yang, Xiaoqing; Su, Piqiang; Luo, Jiefang; Chen, Huijie; Yuan, Jianping; Li, Lixin
2017-12-01
In this paper, based on rotation phase-gradient principle, a single-layer, high-efficiency transmitting metasurface is designed and applied to high-gain antenna. In the case of circularly polarized incident wave, the PCR (polarization conversions ratio) of the metasurface element is greater than 90% in the band of 9.11-10.48 GHz. The transmitting wave emerges an anomalous refraction when left-handed circularly polarized wave are incident perpendicularly to the 1D phase-gradient metasurface, which is composed of cycle arrangement of 6 units with step value of 30°. The simulated anomalous refraction angle is 40.1°, coincided with the theoretical design value (40.6°). For further application, the 2D focused metasurface is designed to enhance the antenna performance while the left-handed circularly polarized antenna is placed at the focus. The simulated max gain is increased by 12 dB (182%) and the half-power beamwidth is reduced by 74.6°. The measured results are coincided with the simulations, which indicates the antenna has high directivity. The designed single-layer transmission metasurface has advantages of thin thickness (only 1.5 mm), high efficiency and light weight, and will have important application prospects in polarization conversion and beam control.
NASA Astrophysics Data System (ADS)
Ye, Hua; Wu, Hongyu; Chen, Liangyuan; Ma, Songhua; Zhou, Kaifeng; Yan, Guobing; Shen, Jiazhong; Chen, Dongcheng; Su, Shi-Jian
2018-03-01
A series of new small molecules based on symmetric electron-acceptor of 1,3,4-oxadiazole moiety or its asymmetric isomer of 1,2,4-oxadiazole unit were successfully synthesized and applied to solution-processable blue phosphorescent organic light-emitting diodes for the first time, and their thermal, photophysical, electrochemical properties and density functional theory calculations were studied thoroughly. Due to the high triplet energy levels ( E T, 2.82-2.85 eV), the energy from phosphorescent emitter of iridium(III) bis[(4,6-difluorophenyl)-pyridinate- N,C2']picolinate (FIrpic) transfer to the host molecules could be effectively suppressed and thus assuring the emission of devices was all from FIrpic. In comparison with the para-mode conjugation in substitution of five-membered 1,3,4-oxadiazole in 134OXD, the meta-linkages of 1,2,4-isomer appending with two phenyl rings cause the worse conjugation degree and the electron delocalization as well as the lower electron-withdrawing ability for the other 1,2,4-oxadiazole-based materials. Noting that the solution-processed device based on 134OXD containing 1,3,4-oxadiazole units without extra vacuum thermal-deposited hole/exciton-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 8.75 cd/A due to the excellent charge transporting ability of 134OXD, which far surpassed the similar devices based on other host materials containing 1,2,4-oxadiazole units. Moreover, the device based on 134OXD presented small efficiency roll-off with current efficiency (CE) of 6.26 cd/A at high brightness up to 100 cd/m2. This work demonstrates different nitrogen and oxygen atom orientations of the oxadiazole-based host materials produce major impact on the optoelectronic characteristics of the solution-processable devices.
Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver
NASA Astrophysics Data System (ADS)
Kestener, Pierre
2017-10-01
RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.
Mining Quality Phrases from Massive Text Corpora
Liu, Jialu; Shang, Jingbo; Wang, Chi; Ren, Xiang; Han, Jiawei
2015-01-01
Text data are ubiquitous and play an essential role in big data applications. However, text data are mostly unstructured. Transforming unstructured text into structured units (e.g., semantically meaningful phrases) will substantially reduce semantic ambiguity and enhance the power and efficiency at manipulating such data using database technology. Thus mining quality phrases is a critical research problem in the field of databases. In this paper, we propose a new framework that extracts quality phrases from text corpora integrated with phrasal segmentation. The framework requires only limited training but the quality of phrases so generated is close to human judgment. Moreover, the method is scalable: both computation time and required space grow linearly as corpus size increases. Our experiments on large text corpora demonstrate the quality and efficiency of the new method. PMID:26705375
Adaptive correlation filter-based video stabilization without accumulative global motion estimation
NASA Astrophysics Data System (ADS)
Koh, Eunjin; Lee, Chanyong; Jeong, Dong Gil
2014-12-01
We present a digital video stabilization approach that provides both robustness and efficiency for practical applications. In this approach, we adopt a stabilization model that maintains spatio-temporal information of past input frames efficiently and can track original stabilization position. Because of the stabilization model, the proposed method does not need accumulative global motion estimation and can recover the original position even if there is a failure in interframe motion estimation. It can also intelligently overcome the situation of damaged or interrupted video sequences. Moreover, because it is simple and suitable to parallel scheme, we implement it on a commercial field programmable gate array and a graphics processing unit board with compute unified device architecture in a breeze. Experimental results show that the proposed approach is both fast and robust.
Novel microbial fuel cell design to operate with different wastewaters simultaneously.
Mathuriya, Abhilasha Singh
2016-04-01
A novel single cathode chamber and multiple anode chamber microbial fuel cell design (MAC-MFC) was developed by incorporating multiple anode chambers into a single unit and its performance was checked. During 60 days of operation, performance of MAC-MFC was assessed and compared with standard single anode/cathode chamber microbial fuel cell (SC-MFC). The tests showed that MAC-MFC generated stable and higher power outputs compared with SC-MFC and each anode chamber contributed efficiently. Further, MAC-MFCs were incorporated with different wastewaters in different anode chambers and their behavior in MFC performance was observed. MAC-MFC efficiently treated multiple wastewaters simultaneously at low cost and small space, which claims its candidature for future possible scale-up applications. Copyright © 2015. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Cotton (Gossypium hirsutum L.) production in the Southeast United States can be limited by periodic drought. Irrigation and furrow diking tillage may improve economic yield and water use efficiency of cotton. Timing of rainfall may interfere with the efficiency of irrigation. Field studies were c...
Lim, Ji Young; Kim, Mi Ja; Park, Chang Gi
2011-08-01
Time-driven activity-based costing was applied to analyze the nursing activity cost and efficiency of a medical unit. Data were collected at a medical unit of a general hospital. Nursing activities were measured using a nursing activities inventory and classified as 6 domains using Easley-Storfjell Instrument. Descriptive statistics were used to identify general characteristics of the unit, nursing activities and activity time, and stochastic frontier model was adopted to estimate true activity time. The average efficiency of the medical unit using theoretical resource capacity was 77%, however the efficiency using practical resource capacity was 96%. According to these results, the portion of non-added value time was estimated 23% and 4% each. The sums of total nursing activity costs were estimated 109,860,977 won in traditional activity-based costing and 84,427,126 won in time-driven activity-based costing. The difference in the two cost calculating methods was 25,433,851 won. These results indicate that the time-driven activity-based costing provides useful and more realistic information about the efficiency of unit operation compared to traditional activity-based costing. So time-driven activity-based costing is recommended as a performance evaluation framework for nursing departments based on cost management.
Design of RF energy harvesting platforms for power management unit with start-up circuits
NASA Astrophysics Data System (ADS)
Costanzo, Alessandra; Masotti, Diego
2013-12-01
In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.
Ho, ThienLuan; Oh, Seung-Rohk
2017-01-01
Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700
He, Shan; Botkin, Jeffrey R; Hurdle, John F
2015-02-01
The clinical research landscape has changed dramatically in recent years in terms of both volume and complexity. This poses new challenges for Institutional Review Boards' (IRBs) review efficiency and quality, especially at large academic medical centers. This article discusses the technical facets of IRB modernization. We analyzed the information technology used by IRBs in large academic institutions across the United States. We found that large academic medical centers have a high electronic IRB adoption rate; however, the capabilities of electronic IRB systems vary greatly. We discuss potential use-cases of a fully exploited electronic IRB system that promise to streamline the clinical research work flow. The key to that approach utilizes a structured and standardized information model for the IRB application. © The Author(s) 2014.
MIUS community conceptual design study
NASA Technical Reports Server (NTRS)
Fulbright, B. E.
1976-01-01
The feasibility, practicality, and applicability of the modular integrated utility systems (MIUS) concept to a satellite new-community development with a population of approximately 100,000 were analyzed. Two MIUS design options, the 29-MIUS-unit (option 1) and the 8-MIUS-unit (option 2) facilities were considered. Each resulted in considerable resource savings when compared to a conventional utility system. Economic analyses indicated that the total cash outlay and operations and maintenance costs for these two options were considerably less than for a conventional system. Computer analyses performed in support of this study provided corroborative data for the study group. An environmental impact assessment was performed to determine whether the MIUS meets or will meet necessary environmental standards. The MIUS can provide improved efficiency in the conservation of natural resources while not adversely affecting the physical environment.
Algae from the arid southwestern United States: an annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, W.H.; Gaines, S.R.
Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas aremore » attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.« less
Leonardi, Marco; Villacampa, Mercedes
2017-01-01
The pseudo-five-component reaction between β-dicarbonyl compounds (2 molecules), diamines and α-iodoketones (2 molecules), prepared in situ from aryl ketones, was performed efficiently under mechanochemical conditions involving high-speed vibration milling with a single zirconium oxide ball. This reaction afforded symmetrical frameworks containing two pyrrole or fused pyrrole units joined by a spacer, which are of interest in the exploration of chemical space for drug discovery purposes. The method was also extended to the synthesis of one compound containing three identical pyrrole fragments via a pseudo-seven-component reaction. Access to compounds having a double bond in their spacer chain was achieved by a different approach involving the homodimerization of 1-allyl- or 1-homoallylpyrroles by application of cross-metathesis chemistry. PMID:29062414
Parallel Key Frame Extraction for Surveillance Video Service in a Smart City.
Zheng, Ran; Yao, Chuanwei; Jin, Hai; Zhu, Lei; Zhang, Qin; Deng, Wei
2015-01-01
Surveillance video service (SVS) is one of the most important services provided in a smart city. It is very important for the utilization of SVS to provide design efficient surveillance video analysis techniques. Key frame extraction is a simple yet effective technique to achieve this goal. In surveillance video applications, key frames are typically used to summarize important video content. It is very important and essential to extract key frames accurately and efficiently. A novel approach is proposed to extract key frames from traffic surveillance videos based on GPU (graphics processing units) to ensure high efficiency and accuracy. For the determination of key frames, motion is a more salient feature in presenting actions or events, especially in surveillance videos. The motion feature is extracted in GPU to reduce running time. It is also smoothed to reduce noise, and the frames with local maxima of motion information are selected as the final key frames. The experimental results show that this approach can extract key frames more accurately and efficiently compared with several other methods.
Fan, Jianzhong; Wang, Xin; Lin, Lili; Wang, Chuankui
2016-08-01
A series of X-shaped thermally activated delayed fluorescence (TADF) emitters are systematically studied by first-principles calculations. Effects of the cyano group adding to the acceptor unit and the hydroxyl group adding to the donor part on the optical and electrical properties are analyzed. It is found that both kinds of groups can efficiently increase the emission wavelength to realize full-color emission. Although they play different roles in modulating the energy level of frontier orbitals, the S-T energy gap, the reorganization energy and transfer integral for different molecules, they can efficiently increase the charge transfer rate and reduce the difference of electron transfer rate and hole transfer rate. These results indicate that these designed strategies are efficient to achieve balanced charge transfer rates and modulate emission colors. By analyzing the energy matching between the TADF emitters and three kinds of hosts, the emission spectra of the 3,5-bis(N-carbazolyl)benzene (mcp) and the absorption spectra of most TADF emitters have a large overlap, which provides helpful information in application of these TADF molecules.
Li, Dong-Dong; Wang, Jun-Xia; Ma, Yan; Qian, Hai-Sheng; Wang, Dong; Wang, Li; Zhang, Guobing; Qiu, Longzhen; Wang, Yu-Cai; Yang, Xian-Zhu
2016-08-03
Conjugated polymers containing alternating donor/acceptor units have strong and sharp absorbance peaks in near-infrared (NIR) region, which could be suitable for photothermal therapy. However, these polymers as photothermal transducers are rarely reported because of their water insolubility, which limits their applications for cancer therapy. Herein, we report the donor-acceptor conjugated polymer PBIBDF-BT with alternating isoindigo derivative (BIBDF) and bithiophene (BT) units as a novel photothermal transducer, which exhibited strong near-infrared (NIR) absorbance due to its low band gap (1.52 eV). To stabilize the conjugated polymer physiological environments, we utilized an amphiphilic copolymer, poly(ethylene glycol)-block-poly(hexyl ethylene phosphate) (mPEG-b-PHEP), to stabilize PBIBDF-BT-based nanoparticles (PBIBDF-BT@NPPPE) through a single emulsion method. The obtained nanoparticles PBIBDF-BT@NPPPE showed great stability in physiological environments and excellent photostability. Moreover, the PBIBDF-BT@NPPPE exhibited high photothermal conversion efficiency, reaching 46.7%, which is relatively high compared with those of commonly used materials for photothermal therapy. Accordingly, in vivo and in vitro experiments demonstrated that PBIBDF-BT@NPPPE exhibits efficient photothermal anticancer efficacy. More importantly, PBIBDF-BT@NPPPE could simultaneously encapsulate other types of therapeutic agents though hydrophobic interactions with the PHEP core and achieve NIR-triggered intracellular drug release and a synergistic combination therapy of thermo-chemotherapy for the treatment of cancer.
Semiconductor solar cells: Recent progress in terrestrial applications
NASA Astrophysics Data System (ADS)
Avrutin, V.; Izyumskaya, N.; Morkoç, H.
2011-04-01
In the last decade, the photovoltaic industry grew at a rate exceeding 30% per year. Currently, solar-cell modules based on single-crystal and large-grain polycrystalline silicon wafers comprise more than 80% of the market. Bulk Si photovoltaics, which benefit from the highly advanced growth and fabrication processes developed for microelectronics industry, is a mature technology. The light-to-electric power conversion efficiency of the best modules offered on the market is over 20%. While there is still room for improvement, the device performance is approaching the thermodynamic limit of ˜28% for single-junction Si solar cells. The major challenge that the bulk Si solar cells face is, however, the cost reduction. The potential for price reduction of electrical power generated by wafer-based Si modules is limited by the cost of bulk Si wafers, making the electrical power cost substantially higher than that generated by combustion of fossil fuels. One major strategy to bring down the cost of electricity generated by photovoltaic modules is thin-film solar cells, whose production does not require expensive semiconductor substrates and very high temperatures and thus allows decreasing the cost per unit area while retaining a reasonable efficiency. Thin-film solar cells based on amorphous, microcrystalline, and polycrystalline Si as well as cadmium telluride and copper indium diselenide compound semiconductors have already proved their commercial viability and their market share is increasing rapidly. Another avenue to reduce the cost of photovoltaic electricity is to increase the cell efficiency beyond the Shockley-Queisser limit. A variety of concepts proposed along this avenue forms the basis of the so-called third generation photovoltaics technologies. Among these approaches, high-efficiency multi-junction solar cells based on III-V compound semiconductors, which initially found uses in space applications, are now being developed for terrestrial applications. In this article, we discuss the progress, outstanding problems, and environmental issues associated with bulk Si, thin-film, and high-efficiency multi-junction solar cells.
Achieving high performance polymer tandem solar cells via novel materials design
NASA Astrophysics Data System (ADS)
Dou, Letian
Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10% enhancement over those based on PBDTT-DPP. Finally, in Chapter 5, I demonstrate a new polymer system based on alternating dithienopyran and benzothiadiazole units with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions, which is the first certified polymer solar cell efficiency over 10%.
Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)
NASA Technical Reports Server (NTRS)
McLaughlin, Russell
2013-01-01
NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations manuals) necessary for KSC hydrogen system experts to approve use of the HFCML unit, including initiating the environmental checklist (i.e. exterior lighting waiver due to sea turtles), and development of operations and maintenance instructions. TEERM worked with SNL to establish a bailment agreement for KSC to utilize a Beta unit as part of normal Center Operations for a period of twelve months.
Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.
1998-01-01
The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.
Martin, S; Miñarro, R; Cano, P; Aranda, J M
2015-01-01
To qualitatively and quantitatively identify the level of agreement between the clinical staff of a quaternary care hospital and the National Institute for Health and Care Excellence (NICE) "do not do" recommendations, and to submit a strategic alternative for effective implementation. An ad hoc form was designed to evaluate level of clinical disagreement from the experience and knowledge of the clinical staff, as well as the applicability, usefulness, effectivity and efficiency of all the NICE "do not do" recommendations that had been published up to June 2012, checking their stability up to the July 2014 update. Description of the process of design and implementation of the strategic alternative to improve compliance is presented. The great majority (90%) of Clinical Unit directors agree with the NICE recommendations, with 64% finding them useful or very useful, 52% finding them applicable, and 32% and 34% thinking they are of high effectivity and efficiency, respectively. However, 20% of the efficient ones are not being applied. Moreover, knowledge discordances that might lead to clinical disagreements were detected. A strategic intervention, combining culture and incentives for good clinical practices, has been implemented. The improvement in the use of the good clinical practice recommendations is directly related to the agreement of its definition and evidence. An evaluation strategy of its application by the health professionals is essential to achieve an impact in avoidable costs. Moreover, to control for harmful effects of the economic impact on patient safety, it will be necessary to simultaneously evaluate clinical/health outcome indicators tightly linked to the applied recommendations. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.
Capturing ultrafast photoinduced local structural distortions of BiFeO 3
Wen, Haidan; Sassi, Michel JPC; Luo, Zhenlin; ...
2015-10-14
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO 3 film. The out-of-plane elongation of the unit cell is accompanied bymore » the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This uniaxial elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated nonequilibrium processes in polar materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Haidan; Sassi, Michel; Luo, Zhenlin
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO 3 film. The out-of-plane elongation of the unit cell is accompanied bymore » the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.« less
Capturing ultrafast photoinduced local structural distortions of BiFeO3
Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G.; Rosso, Kevin M.; Zhang, Xiaoyi
2015-01-01
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials. PMID:26463128
Capturing ultrafast photoinduced local structural distortions of BiFeO3.
Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G; Rosso, Kevin M; Zhang, Xiaoyi
2015-10-14
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Haidan; Sassi, Michel JPC; Luo, Zhenlin
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO 3 film. The out-of-plane elongation of the unit cell is accompanied bymore » the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This uniaxial elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated nonequilibrium processes in polar materials.« less
Capturing ultrafast photoinduced local structural distortions of BiFeO3
NASA Astrophysics Data System (ADS)
Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G.; Rosso, Kevin M.; Zhang, Xiaoyi
2015-10-01
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.
Ooi, Shing Ming; Sarkar, Srimanta; van Varenbergh, Griet; Schoeters, Kris; Heng, Paul Wan Sia
2013-04-01
Continuous processing and production in pharmaceutical manufacturing has received increased attention in recent years mainly due to the industries' pressing needs for more efficient, cost-effective processes and production, as well as regulatory facilitation. To achieve optimum product quality, the traditional trial-and-error method for the optimization of different process and formulation parameters is expensive and time consuming. Real-time evaluation and the control of product quality using an online process analyzer in continuous processing can provide high-quality production with very high-throughput at low unit cost. This review focuses on continuous processing and the application of different real-time monitoring tools used in the pharmaceutical industry for continuous processing from powder to tablets.
TPV power source development for an unmanned undersea vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmquist, G.A.
The thermophotovoltaic (TPV) generation of electrical power promises efficiencies that are exploitable for military and commercial applications. TPV offers a combination of unique characteristics as a power source for military Unmanned Undersea Vehicles. In civilian applications TPV technology offers the potential for lightweight, rugged, and reliable power systems that can be environmentally benign. These systems can use a variety of fuels and can be scaled up in size. TPV is truly a dual use technology in which the United States appears to have a technical lead. The focus of the current Quantum program is the maturation of the technology andmore » the demonstration of a 10 kilowatt generator. Preliminary results of this project are presented.« less
NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien
2015-07-01
NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.
Efficient Execution of Microscopy Image Analysis on CPU, GPU, and MIC Equipped Cluster Systems.
Andrade, G; Ferreira, R; Teodoro, George; Rocha, Leonardo; Saltz, Joel H; Kurc, Tahsin
2014-10-01
High performance computing is experiencing a major paradigm shift with the introduction of accelerators, such as graphics processing units (GPUs) and Intel Xeon Phi (MIC). These processors have made available a tremendous computing power at low cost, and are transforming machines into hybrid systems equipped with CPUs and accelerators. Although these systems can deliver a very high peak performance, making full use of its resources in real-world applications is a complex problem. Most current applications deployed to these machines are still being executed in a single processor, leaving other devices underutilized. In this paper we explore a scenario in which applications are composed of hierarchical data flow tasks which are allocated to nodes of a distributed memory machine in coarse-grain, but each of them may be composed of several finer-grain tasks which can be allocated to different devices within the node. We propose and implement novel performance aware scheduling techniques that can be used to allocate tasks to devices. We evaluate our techniques using a pathology image analysis application used to investigate brain cancer morphology, and our experimental evaluation shows that the proposed scheduling strategies significantly outperforms other efficient scheduling techniques, such as Heterogeneous Earliest Finish Time - HEFT, in cooperative executions using CPUs, GPUs, and MICs. We also experimentally show that our strategies are less sensitive to inaccuracy in the scheduling input data and that the performance gains are maintained as the application scales.
Efficient Execution of Microscopy Image Analysis on CPU, GPU, and MIC Equipped Cluster Systems
Andrade, G.; Ferreira, R.; Teodoro, George; Rocha, Leonardo; Saltz, Joel H.; Kurc, Tahsin
2015-01-01
High performance computing is experiencing a major paradigm shift with the introduction of accelerators, such as graphics processing units (GPUs) and Intel Xeon Phi (MIC). These processors have made available a tremendous computing power at low cost, and are transforming machines into hybrid systems equipped with CPUs and accelerators. Although these systems can deliver a very high peak performance, making full use of its resources in real-world applications is a complex problem. Most current applications deployed to these machines are still being executed in a single processor, leaving other devices underutilized. In this paper we explore a scenario in which applications are composed of hierarchical data flow tasks which are allocated to nodes of a distributed memory machine in coarse-grain, but each of them may be composed of several finer-grain tasks which can be allocated to different devices within the node. We propose and implement novel performance aware scheduling techniques that can be used to allocate tasks to devices. We evaluate our techniques using a pathology image analysis application used to investigate brain cancer morphology, and our experimental evaluation shows that the proposed scheduling strategies significantly outperforms other efficient scheduling techniques, such as Heterogeneous Earliest Finish Time - HEFT, in cooperative executions using CPUs, GPUs, and MICs. We also experimentally show that our strategies are less sensitive to inaccuracy in the scheduling input data and that the performance gains are maintained as the application scales. PMID:26640423
An Energy Saving System for a Beam Pumping Unit
Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An
2016-01-01
Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance. PMID:27187402
Design and process integration of organic Rankine cycle utilizing biomass for power generation
NASA Astrophysics Data System (ADS)
Ependi, S.; Nur, T. B.
2018-02-01
Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.
Ma, Liang; Ju, Ming-Gang; Dai, Jun; Zeng, Xiao Cheng
2018-06-21
Despite their high power conversion efficiency, the commercial applications of hybrid organic-inorganic lead (Pb) halide perovskite based solar cells are still hampered by concerns about the toxicity of Pb and the structural stability in open air. Herein, based on density-functional theory computation, we show that lead-free tin (Sn) and germanium (Ge) based two-dimensional (2D) Ruddlesden-Popper hybrid organic-inorganic perovskites with a thickness of a few unit-cells, BA2MAn-1MnI3n+1 (M = Sn or Ge, n = 2-4), possess desirable electronic, excitonic and light absorption properties, thereby showing promise for photovoltaic and/or photoelectronic applications. In particular, we show that by increasing the layer thickness of the Sn-based 2D perovskites, the bandgap can be lowered towards the optimal range (0.9-1.6 eV) for solar cells. Meanwhile, the exciton binding energy is reduced to a more optimal value. In addition, theoretical assessment indicates that the thermodynamic stability of Sn-/Ge-based 2D perovskites is notably enhanced compared to that of their 3D analogues. These features render the Sn-/Ge-based 2D hybrid perovskites with a thickness of a few tens of unit cells promising lead-free perovskites with much improved structural stabilities for photovoltaic and/or photoelectronic applications.
Real-time computation of parameter fitting and image reconstruction using graphical processing units
NASA Astrophysics Data System (ADS)
Locans, Uldis; Adelmann, Andreas; Suter, Andreas; Fischer, Jannis; Lustermann, Werner; Dissertori, Günther; Wang, Qiulin
2017-06-01
In recent years graphical processing units (GPUs) have become a powerful tool in scientific computing. Their potential to speed up highly parallel applications brings the power of high performance computing to a wider range of users. However, programming these devices and integrating their use in existing applications is still a challenging task. In this paper we examined the potential of GPUs for two different applications. The first application, created at Paul Scherrer Institut (PSI), is used for parameter fitting during data analysis of μSR (muon spin rotation, relaxation and resonance) experiments. The second application, developed at ETH, is used for PET (Positron Emission Tomography) image reconstruction and analysis. Applications currently in use were examined to identify parts of the algorithms in need of optimization. Efficient GPU kernels were created in order to allow applications to use a GPU, to speed up the previously identified parts. Benchmarking tests were performed in order to measure the achieved speedup. During this work, we focused on single GPU systems to show that real time data analysis of these problems can be achieved without the need for large computing clusters. The results show that the currently used application for parameter fitting, which uses OpenMP to parallelize calculations over multiple CPU cores, can be accelerated around 40 times through the use of a GPU. The speedup may vary depending on the size and complexity of the problem. For PET image analysis, the obtained speedups of the GPU version were more than × 40 larger compared to a single core CPU implementation. The achieved results show that it is possible to improve the execution time by orders of magnitude.
Li, Yifeng; Franklin, Sarah; Zhang, Michael J; Vondriska, Thomas M
2011-01-01
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG-binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin-binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three-tag system comprised of CBP, streptavidin-binding peptide (SBP) and hexa-histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP-His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems. PMID:21080425
Terrestrial Micro Renewable Energy Applications of Space Technology
NASA Astrophysics Data System (ADS)
Komerath, N. M.; Komerath, P. P.
This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.
Air pollution control systems in WtE units: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vehlow, J., E-mail: juergen.vehlow@partner.kit.edu
Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removalmore » of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.« less
Microstrip reflectarray antenna for the SCANSCAT radar application
NASA Technical Reports Server (NTRS)
Huang, John
1990-01-01
This publication presents an antenna system that has been proposed as one of the candidates for the SCANSCAT (Scanned Scatterometer) radar application. It is the mechanically steered planar microstrip reflectarray. Due to its thin, lightweight structure, the antenna's mechanical rotation will impose minimum angular momentum for the spacecraft. Since no power-dividing circuitry is needed for its many radiating microstrip patches, this electrically large array antenna demonstrates excellent power efficiency. In addition, this fairly new antenna concept can provide many significant advantages over a conventional parabolic reflector. The basic formulation for the radiation fields of the microstrip reflectarray is presented. This formulation is based on the array theory augmented by the Uniform Geometrical Theory of Diffraction (UTD). A computer code for analyzing the microstrip reflectarray's performances, such as far-field patterns, efficiency, etc., is also listed in this report. It is proposed here that a breadboard unit of this microstrip reflectarray should be constructed and tested in the future to validate the calculated performance. The antenna concept presented here can also be applied in many other types of radars where a large array antenna is needed.
Recurrent Neural Networks With Auxiliary Memory Units.
Wang, Jianyong; Zhang, Lei; Guo, Quan; Yi, Zhang
2018-05-01
Memory is one of the most important mechanisms in recurrent neural networks (RNNs) learning. It plays a crucial role in practical applications, such as sequence learning. With a good memory mechanism, long term history can be fused with current information, and can thus improve RNNs learning. Developing a suitable memory mechanism is always desirable in the field of RNNs. This paper proposes a novel memory mechanism for RNNs. The main contributions of this paper are: 1) an auxiliary memory unit (AMU) is proposed, which results in a new special RNN model (AMU-RNN), separating the memory and output explicitly and 2) an efficient learning algorithm is developed by employing the technique of error flow truncation. The proposed AMU-RNN model, together with the developed learning algorithm, can learn and maintain stable memory over a long time range. This method overcomes both the learning conflict problem and gradient vanishing problem. Unlike the traditional method, which mixes the memory and output with a single neuron in a recurrent unit, the AMU provides an auxiliary memory neuron to maintain memory in particular. By separating the memory and output in a recurrent unit, the problem of learning conflicts can be eliminated easily. Moreover, by using the technique of error flow truncation, each auxiliary memory neuron ensures constant error flow during the learning process. The experiments demonstrate good performance of the proposed AMU-RNNs and the developed learning algorithm. The method exhibits quite efficient learning performance with stable convergence in the AMU-RNN learning and outperforms the state-of-the-art RNN models in sequence generation and sequence classification tasks.
Yu, Aifang; Chen, Xiangyu; Wang, Rui; Liu, Jingyu; Luo, Jianjun; Chen, Libo; Zhang, Yang; Wu, Wei; Liu, Caihong; Yuan, Hongtao; Peng, Mingzeng; Hu, Weiguo; Zhai, Junyi; Wang, Zhong Lin
2016-04-26
In this paper, we demonstrate an application of a triboelectric nanogenerator (TENG) as a self-powered communication unit. An elaborately designed TENG is used to translate a series of environmental triggering signals into binary digital signals and drives an electronic-optical device to transmit binary digital data in real-time without an external power supply. The elaborately designed TENG is built in a membrane structure that can effectively drive the electronic-optical device in a bandwidth from 1.30 to 1.65 kHz. Two typical communication modes (amplitude-shift keying and frequency-shift keying) are realized through the resonant response of TENG to different frequencies, and two digital signals, i.e., "1001" and "0110", are successfully transmitted and received through this system, respectively. Hence, in this study, a simple but efficient method for directly transmitting ambient vibration to the receiver as a digital signal is established using an elaborately designed TENG and an optical communication technique. This type of the communication system, as well as the implementation method presented, exhibits great potential for applications in the smart city, smart home, password authentication, and so on.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
Merits of flywheels for spacecraft energy storage
NASA Technical Reports Server (NTRS)
Gross, S.
1984-01-01
Flywheel energy storage systems which have a very good potential for use in spacecraft are discussed. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. Flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have characteristics which would be useful for military applications. The major disadvantages of flywheel energy storage systems are that: power is not available during the launch phase without special provisions; and in flight failure of units may force shutdown of good counter rotating units, amplifying the effects of failure and limiting power distribution system options; no inherent emergency power capability unless specifically designed for, and a high level of complexity compared with batteries. The potential advantages of the flywheel energy storage system far outweigh the disadvantages.
Next generation Er:YAG fractional ablative laser
NASA Astrophysics Data System (ADS)
Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.
2011-03-01
Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).
Velmathi, Sivan; Reena, Vijayaraghavan; Suganya, Sivalingam; Anandan, Sambandam
2012-01-01
An efficient colorimetric sensor with pyrrole-NH moiety as binding site and nitro group as a signaling unit has been synthesized by a one step procedure and characterized by spectroscopic techniques, which displays excellent selectivity and sensitivity for fluoride and hydroxide ions. The hydrogen bonding with these anions provides remarkable colorimetric responses. (1)H NMR and FT IR studies has been carried out to confirm the hydrogen bonding. UV-vis and fluorescence spectral changes can be exploited for real time and on site application.
Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S
2016-08-20
One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.
Acceleration of GPU-based Krylov solvers via data transfer reduction
Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...
2015-04-08
Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less
Cordero, José Manuel; Nuño-Solinís, Roberto; Orueta, Juan F; Polo, Cristina; Del Río-Cámara, Mario; Alonso-Morán, Edurne
2016-01-01
To evaluate the technical efficiency of primary care units operating in the Basque Health Service during the period 2010-2013, corresponding to the implementation of a care integration strategy by health authorities. This study included 11 of the 12 primary care units in the Basque Health Service during the period 2010-2013. Data envelopment analysis (DEA) was used to assess the technical efficiency of the units. In particular, we applied the extension DEA windows to analyse all units as if they were in a single period (33 observations) as well as a conditional model, which allowed incorporation of the effect of the characteristics of the population covered. The outputs considered were a quality index based on fulfilment of different requirements related to primary care delivery and the rate of avoidable hospitalizations (treated as an undesirable output). The inputs used were the number of physicians, the number of nurses and the costs of prescriptions. The morbidity index was included as an exogenous variable. The results showed that the efficiency of all the units improved during the study period. However, this improvement was not greater in the units incorporated in the integrated healthcare organisation. In a context of global transformation of care delivery in the Basque country in the study period, primary care units increased their efficiency. However, this effect was not larger in vertically integrated primary care providers. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.
SIMD Optimization of Linear Expressions for Programmable Graphics Hardware
Bajaj, Chandrajit; Ihm, Insung; Min, Jungki; Oh, Jinsang
2009-01-01
The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of ȳ = Ax̄ + b̄, where A is a matrix, and x̄, ȳ and b̄ are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods. PMID:19946569
Single-hidden-layer feed-forward quantum neural network based on Grover learning.
Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min
2013-09-01
In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Efficient scalable solid-state neutron detector.
Moses, Daniel
2015-06-01
We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a (6)Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m(2), is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.
Estimating Most Productive Scale Size in Data Envelopment Analysis with Integer Value Data
NASA Astrophysics Data System (ADS)
Dwi Sari, Yunita; Angria S, Layla; Efendi, Syahril; Zarlis, Muhammad
2018-01-01
The most productive scale size (MPSS) is a measurement that states how resources should be organized and utilized to achieve optimal results. The most productive scale size (MPSS) can be used as a benchmark for the success of an industry or company in producing goods or services. To estimate the most productive scale size (MPSS), each decision making unit (DMU) should pay attention the level of input-output efficiency, by data envelopment analysis (DEA) method decision making unit (DMU) can identify units used as references that can help to find the cause and solution from inefficiencies can optimize productivity that main advantage in managerial applications. Therefore, data envelopment analysis (DEA) is chosen to estimating most productive scale size (MPSS) that will focus on the input of integer value data with the CCR model and the BCC model. The purpose of this research is to find the best solution for estimating most productive scale size (MPSS) with input of integer value data in data envelopment analysis (DEA) method.
Parameter regionalization of a monthly water balance model for the conterminous United States
Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight
2016-01-01
A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash–Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.
Parameter regionalization of a monthly water balance model for the conterminous United States
NASA Astrophysics Data System (ADS)
Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight
2016-07-01
A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash-Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.
Model for Sucker-Rod Pumping Unit Operating Modes Analysis Based on SimMechanics Library
NASA Astrophysics Data System (ADS)
Zyuzev, A. M.; Bubnov, M. V.
2018-01-01
The article provides basic information about the process of a sucker-rod pumping unit (SRPU) model developing by means of SimMechanics library in the MATLAB Simulink environment. The model is designed for the development of a pump productivity optimal management algorithms, sensorless diagnostics of the plunger pump and pumpjack, acquisition of the dynamometer card and determination of a dynamic fluid level in the well, normalization of the faulty unit operation before troubleshooting is performed by staff as well as equilibrium ratio determining by energy indicators and outputting of manual balancing recommendations to achieve optimal power consumption efficiency. Particular attention is given to the application of various blocks from SimMechanics library to take into account the pumpjack construction principal characteristic and to obtain an adequate model. The article explains in depth the developed tools features for collecting and analysis of simulated mechanism data. The conclusions were drawn about practical implementation possibility of the SRPU modelling results and areas for further development of investigation.
Modular Chemical Process Intensification: A Review.
Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas
2017-06-07
Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.
Thermoelectricity for future sustainable energy technologies
NASA Astrophysics Data System (ADS)
Weidenkaff, Anke
2017-07-01
Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.
Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.
2003-01-01
NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.
Modular Chemical Process Intensification: A Review
Kim, Yong-ha; Park, Lydia K.; Yiacoumi, Sotira; ...
2016-06-24
Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. Dramatic improvements such as these lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. Thismore » article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.« less
A Survey Of Techniques for Managing and Leveraging Caches in GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
2014-09-01
Initially introduced as special-purpose accelerators for graphics applications, graphics processing units (GPUs) have now emerged as general purpose computing platforms for a wide range of applications. To address the requirements of these applications, modern GPUs include sizable hardware-managed caches. However, several factors, such as unique architecture of GPU, rise of CPU–GPU heterogeneous computing, etc., demand effective management of caches to achieve high performance and energy efficiency. Recently, several techniques have been proposed for this purpose. In this paper, we survey several architectural and system-level techniques proposed for managing and leveraging GPU caches. We also discuss the importance and challenges ofmore » cache management in GPUs. The aim of this paper is to provide the readers insights into cache management techniques for GPUs and motivate them to propose even better techniques for leveraging the full potential of caches in the GPUs of tomorrow.« less
NASA Technical Reports Server (NTRS)
Perusich, Stephen; Moos, Thomas; Muscatello, Anthony
2011-01-01
This innovation provides the user with autonomous on-screen monitoring, embedded computations, and tabulated output for two new processes. The software was originally written for the Continuous Lunar Water Separation Process (CLWSP), but was found to be general enough to be applicable to the Lunar Greenhouse Amplifier (LGA) as well, with minor alterations. The resultant program should have general applicability to many laboratory processes (see figure). The objective for these programs was to create a software application that would provide both autonomous monitoring and data storage, along with manual manipulation. The software also allows operators the ability to input experimental changes and comments in real time without modifying the code itself. Common process elements, such as thermocouples, pressure transducers, and relative humidity sensors, are easily incorporated into the program in various configurations, along with specialized devices such as photodiode sensors. The goal of the CLWSP research project is to design, build, and test a new method to continuously separate, capture, and quantify water from a gas stream. The application is any In-Situ Resource Utilization (ISRU) process that desires to extract or produce water from lunar or planetary regolith. The present work is aimed at circumventing current problems and ultimately producing a system capable of continuous operation at moderate temperatures that can be scaled over a large capacity range depending on the ISRU process. The goal of the LGA research project is to design, build, and test a new type of greenhouse that could be used on the moon or Mars. The LGA uses super greenhouse gases (SGGs) to absorb long-wavelength radiation, thus creating a highly efficient greenhouse at a future lunar or Mars outpost. Silica-based glass, although highly efficient at trapping heat, is heavy, fragile, and not suitable for space greenhouse applications. Plastics are much lighter and resilient, but are not efficient for absorbing longwavelength infrared radiation and therefore will lose more heat to the environment compared to glass. The LGA unit uses a transparent polymer antechamber that surrounds part of the greenhouse and encases the SGGs, thereby minimizing infrared losses through the plastic windows. With ambient temperatures at the lunar poles at 50 C, the LGA should provide a substantial enhancement to currently conceived lunar greenhouses. Positive results obtained from this project could lead to a future large-scale system capable of running autonomously on the Moon, Mars, and beyond. The software for both applications needs to run the entire units and all subprocesses; however, throughout testing, many variables and parameters need to be changed as more is learned about the system operation. The software provides the versatility to permit the software operation to change as the user requirements evolve.
Electromagnetic reprogrammable coding-metasurface holograms.
Li, Lianlin; Jun Cui, Tie; Ji, Wei; Liu, Shuo; Ding, Jun; Wan, Xiang; Bo Li, Yun; Jiang, Menghua; Qiu, Cheng-Wei; Zhang, Shuang
2017-08-04
Metasurfaces have enabled a plethora of emerging functions within an ultrathin dimension, paving way towards flat and highly integrated photonic devices. Despite the rapid progress in this area, simultaneous realization of reconfigurability, high efficiency, and full control over the phase and amplitude of scattered light is posing a great challenge. Here, we try to tackle this challenge by introducing the concept of a reprogrammable hologram based on 1-bit coding metasurfaces. The state of each unit cell of the coding metasurface can be switched between '1' and '0' by electrically controlling the loaded diodes. Our proof-of-concept experiments show that multiple desired holographic images can be realized in real time with only a single coding metasurface. The proposed reprogrammable hologram may be a key in enabling future intelligent devices with reconfigurable and programmable functionalities that may lead to advances in a variety of applications such as microscopy, display, security, data storage, and information processing.Realizing metasurfaces with reconfigurability, high efficiency, and control over phase and amplitude is a challenge. Here, Li et al. introduce a reprogrammable hologram based on a 1-bit coding metasurface, where the state of each unit cell of the coding metasurface can be switched electrically.
Accelerating image recognition on mobile devices using GPGPU
NASA Astrophysics Data System (ADS)
Bordallo López, Miguel; Nykänen, Henri; Hannuksela, Jari; Silvén, Olli; Vehviläinen, Markku
2011-01-01
The future multi-modal user interfaces of battery-powered mobile devices are expected to require computationally costly image analysis techniques. The use of Graphic Processing Units for computing is very well suited for parallel processing and the addition of programmable stages and high precision arithmetic provide for opportunities to implement energy-efficient complete algorithms. At the moment the first mobile graphics accelerators with programmable pipelines are available, enabling the GPGPU implementation of several image processing algorithms. In this context, we consider a face tracking approach that uses efficient gray-scale invariant texture features and boosting. The solution is based on the Local Binary Pattern (LBP) features and makes use of the GPU on the pre-processing and feature extraction phase. We have implemented a series of image processing techniques in the shader language of OpenGL ES 2.0, compiled them for a mobile graphics processing unit and performed tests on a mobile application processor platform (OMAP3530). In our contribution, we describe the challenges of designing on a mobile platform, present the performance achieved and provide measurement results for the actual power consumption in comparison to using the CPU (ARM) on the same platform.
Field Evaluation of the Performance of the RTU Challenge Unit: Daikin Rebel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katipamula, Srinivas; Wang, W.; Ngo, Hung
2017-05-31
Packaged rooftop air-conditioning units (RTUs) are used in 44% (2.5 million) of all commercial buildings, serving over 57% (46 billion square feet) of the commercial building floor space in the United States (EIA 2012). The primary energy consumption associated with RTUs is over 2.2 quads annually. Therefore, even a small improvement in efficiency or part-load operation of these units can lead to significant reductions in energy use and carbon emissions. Starting in 2011, the U.S. Department of Energy’s (DOE’s) Building Technologies Office funded a series of projects related to RTUs. Some projects were intended to improve the operating efficiency ofmore » the existing RTUs, while others were focused on improving the operating efficiency of new units. This report documents the field-testing and comparison of the seasonal efficiency of a state-of-art RTU Challenge unit and a standard unit. Section II provides the background for the work. Section III describes the measurement and verification plan for the field tests. Section IV describes the measurement and verification evaluation plan. The results are described in Section V. The lessons learned and recommendations for future work are presented in Section VI. A list of references is provided in Section VII.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... Surface efficiency deviation interval technology unit % % ( ) % Large A Electric Coil... 1 69.79 1.59 1.97... Surface efficiency deviation interval technology unit % % ( ) % Large A Electric Coil... 1 64.52 0.87 1.08... technology unit % % ( ) % Large A Electric Coil... 1 79.81 1.66 2.06 B Electric........ 1 61.81 2.83 3.52...
A software defined RTU multi-protocol automatic adaptation data transmission method
NASA Astrophysics Data System (ADS)
Jin, Huiying; Xu, Xingwu; Wang, Zhanfeng; Ma, Weijun; Li, Sheng; Su, Yong; Pan, Yunpeng
2018-02-01
Remote terminal unit (RTU) is the core device of the monitor system in hydrology and water resources. Different devices often have different communication protocols in the application layer, which results in the difficulty in information analysis and communication networking. Therefore, we introduced the idea of software defined hardware, and abstracted the common feature of mainstream communication protocols of RTU application layer, and proposed a uniformed common protocol model. Then, various communication protocol algorithms of application layer are modularized according to the model. The executable codes of these algorithms are labeled by the virtual functions and stored in the flash chips of embedded CPU to form the protocol stack. According to the configuration commands to initialize the RTU communication systems, it is able to achieve dynamic assembling and loading of various application layer communication protocols of RTU and complete the efficient transport of sensor data from RTU to central station when the data acquisition protocol of sensors and various external communication terminals remain unchanged.
76 FR 34192 - Commercial and Industrial Pumps
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... 1999. The ADL analysis, ``Energy Consumption Characteristics of Commercial Building HVAC Systems... report for the United Nations (``Motor System Efficiency Supply Curves UNIDO,'' Dec. 2010),\\3\\ also used..., A. and A. Hasanbeigi, ``Motor Systems Efficiency Supply Curves,'' United Nations Industrial...
The TMI regenerable solid oxide fuel cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.
1995-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynoso, F; Cho, S
Purpose: To develop and validate a Monte Carlo (MC) model of a Phillips RT-250 orthovoltage unit to test various beam spectrum modulation strategies for in vitro/vivo studies. A model of this type would enable the production of unconventional beams from a typical orthovoltage unit for novel therapeutic applications such as gold nanoparticle-aided radiotherapy. Methods: The MCNP5 code system was used to create a MC model of the head of RT-250 and a 30 × 30 × 30 cm{sup 3} water phantom. For the x-ray machine head, the current model includes the vacuum region, beryllium window, collimators, inherent filters and exteriormore » steel housing. For increased computational efficiency, the primary x-ray spectrum from the target was calculated from a well-validated analytical software package. Calculated percentage-depth-dose (PDD) values and photon spectra were validated against experimental data from film and Compton-scatter spectrum measurements. Results: The model was validated for three common settings of the machine namely, 250 kVp (0.25 mm Cu), 125 kVp (2 mm Al), and 75 kVp (2 mm Al). The MC results for the PDD curves were compared with film measurements and showed good agreement for all depths with a maximum difference of 4 % around dmax and under 2.5 % for all other depths. The primary photon spectra were also measured and compared with the MC results showing reasonable agreement between the two, validating the input spectra and the final spectra as predicted by the current MC model. Conclusion: The current MC model accurately predicted the dosimetric and spectral characteristics of each beam from the RT-250 orthovoltage unit, demonstrating its applicability and reliability for beam spectrum modulation tasks. It accomplished this without the need to model the bremsstrahlung xray production from the target, while significantly improved on computational efficiency by at least two orders of magnitude. Supported by DOD/PCRP grant W81XWH-12-1-0198.« less
The TMI regenerable solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Cable, Thomas L.
1995-04-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
Marseille, Elliot; Dandona, Lalit; Marshall, Nell; Gaist, Paul; Bautista-Arredondo, Sergio; Rollins, Brandi; Bertozzi, Stefano M; Coovadia, Jerry; Saba, Joseph; Lioznov, Dmitry; Du Plessis, Jo-Ann; Krupitsky, Evgeny; Stanley, Nicci; Over, Mead; Peryshkina, Alena; Kumar, S G Prem; Muyingo, Sowedi; Pitter, Christian; Lundberg, Mattias; Kahn, James G
2007-07-12
Economic theory and limited empirical data suggest that costs per unit of HIV prevention program output (unit costs) will initially decrease as small programs expand. Unit costs may then reach a nadir and start to increase if expansion continues beyond the economically optimal size. Information on the relationship between scale and unit costs is critical to project the cost of global HIV prevention efforts and to allocate prevention resources efficiently. The "Prevent AIDS: Network for Cost-Effectiveness Analysis" (PANCEA) project collected 2003 and 2004 cost and output data from 206 HIV prevention programs of six types in five countries. The association between scale and efficiency for each intervention type was examined for each country. Our team characterized the direction, shape, and strength of this association by fitting bivariate regression lines to scatter plots of output levels and unit costs. We chose the regression forms with the highest explanatory power (R2). Efficiency increased with scale, across all countries and interventions. This association varied within intervention and within country, in terms of the range in scale and efficiency, the best fitting regression form, and the slope of the regression. The fraction of variation in efficiency explained by scale ranged from 26-96%. Doubling in scale resulted in reductions in unit costs averaging 34.2% (ranging from 2.4% to 58.0%). Two regression trends, in India, suggested an inflection point beyond which unit costs increased. Unit costs decrease with scale across a wide range of service types and volumes. These country and intervention-specific findings can inform projections of the global cost of scaling up HIV prevention efforts.
Development of Highly Fluorescent Materials Based on Thiophenylimidazole Dyes
NASA Technical Reports Server (NTRS)
Santos, Javier; Bu, Xiu R.; Mintz, Eric A.; Meador, Michael A. (Technical Monitor)
2000-01-01
Organic fluorescent materials are expected to find many potential applications in optical devices and photo-functionalized materials. Although many investigations have been focused on heterocyclic compounds such as coumarins, bipyridines, rhodamines, and pyrrole derivatives, little is known for fluorescent imidazole materials. We discovered that one particular class of imidazole derivatives is highly fluorescent. A series of monomeric and polymeric based fluorescent dyes were prepared containing a thiophene unit at the second position of the imidazole ring. Dependence of fluorescence efficiency on parameters such as solvent polarity and substituent groups has been investigated. It was found that a formyl group at the 2-position of the thiophene ring dramatically enhance fluorescence properties. Ion recognition probes indicated their potential as sensor materials. These fluorophores have flexibility for introduction of versatile substituent groups that could improve the fluorescence efficiency and sensor properties.
PIMS: Memristor-Based Processing-in-Memory-and-Storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Jeanine
Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energymore » efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.« less
NASA Astrophysics Data System (ADS)
Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa
2018-02-01
We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.
Andrade, Xavier; Aspuru-Guzik, Alán
2013-10-08
We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.
Remote sensing for rural development planning in Africa
NASA Technical Reports Server (NTRS)
Dunford, C.; Mouat, D. A.; Norton-Griffiths, M.; Slaymaker, D. M.
1983-01-01
Multilevel remote-sensing techniques were combined to provide land resource and land-use information for rural development planning in Arusha Region, Tanzania. Enhanced Landsat imagery, supplemented by low-level aerial survey data, slope angle data from topographic sheets, and existing reports on vegetation and soil conditions, was used jointly by image analysts and district-level land-management officials to divide the region's six districts into land-planning units. District-planning officials selected a number of these land-planning units for priority planning and development activities. For the priority areas, natural color aerial photographs provided detailed information for land-use planning discussions between district officials and villagers. Consideration of the efficiency of this remote sensing approach leads to general recommendations for similar applications. The technology and timing of data collection and interpretation activities should allow maximum participation by intended users of the information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravi, Kavita; Bennich, Peter; Cockburn, John
2013-10-15
The Global Efficiency Medal competition, a cornerstone activity of the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative, is an awards program that encourages the production and sale of super-efficient products. SEAD is a voluntary multinational government collaboration of the Clean Energy Ministerial (CEM). This winner-takes-all competition recognizes products with the best energy efficiency, guides early adopter purchasers towards the most efficient product choices and demonstrates the levels of energy efficiency achievable by commercially available and emerging technologies. The first Global Efficiency Medals were awarded to the most energy-efficient flat panel televisions; an iconic consumer purchase. SEAD Global Efficiency Medals weremore » awarded to televisions that have proven to be substantially more energy efficient than comparable models available at the time of the competition (applications closed in the end of May 2012). The award-winning TVs consume between 33 to 44 percent less energy per 2 unit of screen area than comparable LED-backlit LCD televisions sold in each regional market and 50 to 60 percent less energy than CCFL-backlit LCD TVs. Prior to the launch of this competition, SEAD conducted an unprecedented international round-robin test (RRT) to qualify TV test laboratories to support verification testing for SEAD awards. The RRT resulted in increased test laboratory capacity and expertise around the world and ensured that the test results from participating regional test laboratories could be compared in a fair and transparent fashion. This paper highlights a range of benefits resulting from this first SEAD awards competition and encourages further investigation of the awards concept as a means to promote energy efficiency in other equipment types.« less
From parabolic-trough to metasurface-concentrator: assessing focusing in the wave-optics limit.
Hsu, Liyi; Dupré, Matthieu; Ndao, Abdoulaye; Kanté, Boubacar
2017-04-15
Metasurfaces are promising tools toward novel designs for flat optics applications. As such, their quality and tolerance to fabrication imperfections need to be evaluated with specific tools. However, most such tools rely on the geometrical optics approximation and are not straightforwardly applicable to metasurfaces. In this Letter, we introduce and evaluate for metasurfaces parameters such as intercept factor and slope error usually defined for solar concentrators in the realm of ray-optics. After proposing definitions valid in physical optics, we put forward an approach to calculate them. As examples, we design three different concentrators based on three specific unit cells and assess them numerically. The concept allows for comparison of the efficiency of the metasurfaces and their sensitivities to fabrication imperfections and will be critical for practical systems implementation.
The Base Engine for Solar Stirling Power
NASA Technical Reports Server (NTRS)
Meijer, R. J.; Godett, T. M.
1984-01-01
A new concept in Stirling engine technology is embodied in the base engine now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The base engine, rated 40 kW at 2800 RPM, is a four-cylinder, double-acting variable displacement Stirling engine with pressurized crankcase and rotating shaft seal. Remote-heating technology is incorporated with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. High efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost are specifically emphasized. The base engine, its design philosophy and approach, its projected performance, and some of its more attractive applications are described.
Lou, Jie-Chung; Lin, Yung-Chang
2008-02-01
Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35-99.68% and 24.15-99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH(3)-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH(3)-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
NASA Astrophysics Data System (ADS)
Ekedebe, Nnanna; Yu, Wei; Lu, Chao
2015-06-01
Driver distraction could result in safety compromises attributable to distractions from in-vehicle equipment usage [1]. The effective design of driver-vehicle interfaces (DVIs) and other human-machine interfaces (HMIs) together with their usability, and accessibility while driving become important [2]. Driving distractions can be classified as: visual distractions (any activity that takes your eyes away from the road), cognitive distraction (any activity that takes your mind away from the course of driving), and manual distractions (any activity that takes your hands away from the steering wheel [2]). Besides, multitasking during driving is a distractive activity that can increase the risks of vehicular accidents. To study the driver's behaviors on the safety of transportation system, using an in-vehicle driver notification application, we examined the effects of increasing driver distraction levels on the evaluation metrics of traffic efficiency and safety by using two types of driver models: young drivers (ages 16-25 years) and middle-age drivers (ages 30-45 years). Our evaluation data demonstrates that as a drivers distraction level is increased, less heed is given to change route directives from the in-vehicle on-board unit (OBU) using textual, visual, audio, and haptic notifications. Interestingly, middle-age drivers proved more effective/resilient in mitigating the negative effects of driver distraction over young drivers [2].
Architecting the Finite Element Method Pipeline for the GPU.
Fu, Zhisong; Lewis, T James; Kirby, Robert M; Whitaker, Ross T
2014-02-01
The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers.
Solar heating system final design package
NASA Technical Reports Server (NTRS)
1979-01-01
The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netter, Judy
2015-07-28
Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, highmore » concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.« less
Chiavola, Agostina; D'Amato, Emilio; Gori, Riccardo; Lubello, Claudio; Sirini, Piero
2013-04-01
This paper deals with the application of the ozone-oxidation in a full scale aerobic sludge digester. Ozonation was applied continuously to a fraction of the biological sludge extracted from the digestion unit; the ozonated sludge was then recirculated to the same digester. Three different ozone flow rates were tested (60,500 and 670g O3 h(-1)) and their effects evaluated in terms of variation of the total and soluble fractions of COD, nitrogen and phosphorous, of total and volatile suspended solids concentrations and Sludge Volume Index in the aerobic digestion unit. During the 7-month operation of the ozonation process, it was observed an appreciable improvement of the aerobic digestion efficiency (up to about 20% under the optimal conditions) and of the sludge settleability properties. These results determined an average reduction of about 60% in the biological sludge extracted from the plant and delivered to final disposal. A thorough economic analysis showed that this reduction allowed to achieve a significant cost saving for the plant with respect to the previous years operated without ozonation. Furthermore, it was determined the threshold disposal cost above which implementation of the ozone oxidation in the aerobic digestion units of similar WWTPs becomes economically convenient (about 60€t(-1) of sludge). Copyright © 2013 Elsevier Ltd. All rights reserved.
Development Status of the NSTAR Ion Propulsion System Power Processor
NASA Technical Reports Server (NTRS)
Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Cartier, Kevin C.; Bowers, Glen E.
1995-01-01
A 0.5-2.3 kW xenon ion propulsion system is presently being developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program. This propulsion system includes a 30 cm diameter xenon ion thruster, a Digital Control Interface Unit, a xenon feed system, and a power processing unit (PPU). The PPU consists of the power supply assemblies which operate the thruster neutralizer, main discharge chamber, and ion optics. Also included are recycle logic and a digital microcontroller. The neutralizer and discharge power supplies employ a dual use configuration which combines the functions of two power supplies into one, significantly simplifying the PPU. Further simplification was realized by implementing a single thruster control loop which regulates the beam current via the discharge current. Continuous throttling is possible over a 0.5-2.3 kW output power range. All three power supplies have been fabricated and tested with resistive loads, and have been combined into a single breadboard unit with the recycle logic and microcontroller. All line and load regulation test results show the power supplies to be within the NSTAR flight PPU specified power output of 1.98 kW. The overall efficiency of the PPU, calculated as the combined efficiencies of the power supplies and controller, at 2.3 kW delivered to resistive loads was 0.90. The component was 6.16 kg. Integration testing of the neutralizer and discharge power supplies with a functional model thruster revealed no issues with discharge ignition or steady state operation.
I/O-Efficient Scientific Computation Using TPIE
NASA Technical Reports Server (NTRS)
Vengroff, Darren Erik; Vitter, Jeffrey Scott
1996-01-01
In recent years, input/output (I/O)-efficient algorithms for a wide variety of problems have appeared in the literature. However, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to support I/O-efficient paradigms for problems from a variety of domains, including computational geometry, graph algorithms, and scientific computation. The TPIE interface frees programmers from having to deal not only with explicit read and write calls, but also the complex memory management that must be performed for I/O-efficient computation. In this paper we discuss applications of TPIE to problems in scientific computation. We discuss algorithmic issues underlying the design and implementation of the relevant components of TPIE and present performance results of programs written to solve a series of benchmark problems using our current TPIE prototype. Some of the benchmarks we present are based on the NAS parallel benchmarks while others are of our own creation. We demonstrate that the central processing unit (CPU) overhead required to manage I/O is small and that even with just a single disk, the I/O overhead of I/O-efficient computation ranges from negligible to the same order of magnitude as CPU time. We conjecture that if we use a number of disks in parallel this overhead can be all but eliminated.
Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitlitsky, F; Myers, B; Weisberg, A H
1999-06-01
Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight,more » 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... resident status in the United States; who has an approved application for asylum in the United States or... United States; who has a pending application for asylum in the United States; who has a pending or approved application for temporary protected status (TPS) in the United States; who has approved deferred...
Code of Federal Regulations, 2010 CFR
2010-01-01
... resident status in the United States; who has an approved application for asylum in the United States or... United States; who has a pending application for asylum in the United States; who has a pending or approved application for temporary protected status (TPS) in the United States; who has approved deferred...
Determining the optimal model for role-substitution in NHS dental services in the United Kingdom.
Brocklehurst, Paul; Birch, Stephen; McDonald, Ruth; Tickle, Martin
2013-09-24
Role-substitution describes a model of dental care where Dental Care Professionals (DCPs) provide some of the clinical activity previously undertaken by General Dental Practitioners. This has the potential to increase technical efficiency, the capacity to care and reduce costs. Technical efficiency is defined as the production of the maximum amount of output from a given amount of input so that the service operates at the production frontier i.e. optimal level of productivity. Academic research into technical efficiency is becoming increasingly utilised in health care, although no studies have investigated the efficiency of NHS dentistry or role-substitution in high-street dental practices. The aim of this study is to examine the barriers and enablers that exist for role-substitution in general dental practices in the NHS and to determine the most technically efficient model for role-substitution. A screening questionnaire will be sent to DCPs to determine the type and location of role-substitutive models employed in NHS dental practices in the United Kingdom (UK). Semi-structured interviews will then be conducted with practice owners, DCPs and patients at selected sites identified by the questionnaire. Detail will be recorded about the organisational structure of the dental team, the number of NHS hours worked and the clinical activity undertaken. The interviews will continue until saturation and will record the views and attitudes of the members of the dental team. Final numbers of interviews will be determined by saturation.The second work-stream will examine the technical efficiency of the selected practices using Data Envelopment Analysis and Stochastic Frontier Modeling. The former is a non-parametric technique and is considered to be a highly flexible approach for applied health applications. The latter is parametric and is based on frontier regression models that estimate a conventional cost function. Maximising health for a given level and mix of resources is an ethical imperative for health service planners. This study will determine the technical efficiency of role-substitution and so address one of the key recommendations of the Independent Review of NHS dentistry in England.
Determining the optimal model for role-substitution in NHS dental services in the United Kingdom
2013-01-01
Background Role-substitution describes a model of dental care where Dental Care Professionals (DCPs) provide some of the clinical activity previously undertaken by General Dental Practitioners. This has the potential to increase technical efficiency, the capacity to care and reduce costs. Technical efficiency is defined as the production of the maximum amount of output from a given amount of input so that the service operates at the production frontier i.e. optimal level of productivity. Academic research into technical efficiency is becoming increasingly utilised in health care, although no studies have investigated the efficiency of NHS dentistry or role-substitution in high-street dental practices. The aim of this study is to examine the barriers and enablers that exist for role-substitution in general dental practices in the NHS and to determine the most technically efficient model for role-substitution. Methods/design A screening questionnaire will be sent to DCPs to determine the type and location of role-substitutive models employed in NHS dental practices in the United Kingdom (UK). Semi-structured interviews will then be conducted with practice owners, DCPs and patients at selected sites identified by the questionnaire. Detail will be recorded about the organisational structure of the dental team, the number of NHS hours worked and the clinical activity undertaken. The interviews will continue until saturation and will record the views and attitudes of the members of the dental team. Final numbers of interviews will be determined by saturation. The second work-stream will examine the technical efficiency of the selected practices using Data Envelopment Analysis and Stochastic Frontier Modeling. The former is a non-parametric technique and is considered to be a highly flexible approach for applied health applications. The latter is parametric and is based on frontier regression models that estimate a conventional cost function. Discussion Maximising health for a given level and mix of resources is an ethical imperative for health service planners. This study will determine the technical efficiency of role-substitution and so address one of the key recommendations of the Independent Review of NHS dentistry in England. PMID:24063247
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, Jeffrey D; Odukomaiya, Adewale O; Gehl, Anthony C
2014-01-01
With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses,more » and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.« less
Yang, Yi; Zhou, Yi; He, Qingguo; He, Chang; Yang, Chunhe; Bai, Fenglian; Li, Yongfang
2009-06-04
Three solution-processable red-emissive organic materials with a hole-transporting unit triphenylamine (TPA) as the core part and a D-pi-A bipolar structure as the branch part, TPA-BT (single-branched molecule), b-TPA-BT (bibranched molecule), and t-TPA-BT (tribranched molecule), were synthesized by the Heck coupling reaction. Herein, for the D-pi-A push-pull structure, we use TPA as the electron donor, benzothiodiazole (BT) as the electron acceptor, and the vinylene bond as the pi-bridge connecting the TPA and BT units. The compounds exhibit good solubility in common organic solvents, benefited from the three-dimensional spatial configuration of TPA units and the branch structure of the molecules. TPA-BT, b-TPA-BT, and t-TPA-BT show excellent photoluminescent properties with maximum emission peaks at ca. 630 nm. High-performance red-emission organic light-emitting diodes (OLEDs) were fabricated with the active layer spin coated from a solution of these compounds. The OLED based on TPA-BT displayed a low turn-on voltage of 2.0 V, a maximum luminance of 12192 cd/m2, and a maximum current efficiency of 1.66 cd/A, which is among the highest values for the solution-processed red-emission OLEDs. In addition, high-performance white-light-emitting diodes (WLEDs) with maximum luminance around 4400 cd/m2 and maximum current efficiencies above 4.5 cd/A were realized by separately doping the three TPA-BT-containing molecules as red emitter and poly(6,6'-bi-(9,9'-dihexylfluorene)- co-(9,9'-dihexylfluorene-3-thiophene-5'-yl)) as green emitter into blue poly(9,9-dioctylfluorene-2,7-diyl) host material with suitable weight ratios.
Shah, Amisha D; Dai, Ning; Mitch, William A
2013-03-19
Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although <1000 mJ/cm(2) UV fluence was generally needed for 90% removal of a series of model N-nitrosamines and N-nitramines, 280-1000 mJ/cm(2) average fluence was needed for 90% removal of total N-nitrosamines in pilot washwaters associated with two different solvents. While AOPs were somewhat more efficient than ozone for acetaldehyde destruction, ozone was more efficient for amine destruction. Ozone achieved 90% amine removal in washwaters at 5-12 molar excess of ozone, indicating transferred dosage levels of ∼100 mg/L for 90% removal in a first-stage washwater unit, but likely only ∼10 mg/L if applied to a second-stage washwater. Accurate dosage and cost estimates would require pilot testing to capture synergies between UV and ozone treatments.
High efficiency digital cooler electronics for aerospace applications
NASA Astrophysics Data System (ADS)
Kirkconnell, C. S.; Luong, T. T.; Shaw, L. S.; Murphy, J. B.; Moody, E. A.; Lisiecki, A. L.; Ellis, M. J.
2014-06-01
Closed-cycle cryogenic refrigerators, or cryocoolers, are an enabling technology for a wide range of aerospace applications, mostly related to infrared (IR) sensors. While the industry focus has tended to be on the mechanical cryocooler thermo mechanical unit (TMU) alone, implementation on a platform necessarily consists of the combination of the TMU and a mating set of command and control electronics. For some applications the cryocooler electronics (CCE) are technologically simple and low cost relative to the TMU, but this is not always the case. The relative cost and complexity of the CCE for a space-borne application can easily exceed that of the TMU, primarily due to the technical constraints and cost impacts introduced by the typical space radiation hardness and reliability requirements. High end tactical IR sensor applications also challenge the state of the art in cryocooler electronics, such as those for which temperature setpoint and frequency must be adjustable, or those where an informative telemetry set must be supported, etc. Generally speaking for both space and tactical applications, it is often the CCE that limits the rated lifetime and reliability of the cryocooler system. A family of high end digital cryocooler electronics has been developed to address these needs. These electronics are readily scalable from 10W to 500W output capacity; experimental performance data for nominally 25W and 100W variants are presented. The combination of a FPGA-based controller and dual H-bridge motor drive architectures yields high efficiency (>92% typical) and precision temperature control (+/- 30 mK typical) for a wide range of Stirling-class mechanical cryocooler types and vendors. This paper focuses on recent testing with the AIM INFRAROT-MODULE GmbH (AIM) SX030 and AIM SF100 cryocoolers.
NASA Astrophysics Data System (ADS)
da Silva, Thaísa Leal; Agostini, Luciano Volcan; da Silva Cruz, Luis A.
2014-05-01
Intra prediction is a very important tool in current video coding standards. High-efficiency video coding (HEVC) intra prediction presents relevant gains in encoding efficiency when compared to previous standards, but with a very important increase in the computational complexity since 33 directional angular modes must be evaluated. Motivated by this high complexity, this article presents a complexity reduction algorithm developed to reduce the HEVC intra mode decision complexity targeting multiview videos. The proposed algorithm presents an efficient fast intra prediction compliant with singleview and multiview video encoding. This fast solution defines a reduced subset of intra directions according to the video texture and it exploits the relationship between prediction units (PUs) of neighbor depth levels of the coding tree. This fast intra coding procedure is used to develop an inter-view prediction method, which exploits the relationship between the intra mode directions of adjacent views to further accelerate the intra prediction process in multiview video encoding applications. When compared to HEVC simulcast, our method achieves a complexity reduction of up to 47.77%, at the cost of an average BD-PSNR loss of 0.08 dB.
Modeling stochastic frontier based on vine copulas
NASA Astrophysics Data System (ADS)
Constantino, Michel; Candido, Osvaldo; Tabak, Benjamin M.; da Costa, Reginaldo Brito
2017-11-01
This article models a production function and analyzes the technical efficiency of listed companies in the United States, Germany and England between 2005 and 2012 based on the vine copula approach. Traditional estimates of the stochastic frontier assume that data is multivariate normally distributed and there is no source of asymmetry. The proposed method based on vine copulas allow us to explore different types of asymmetry and multivariate distribution. Using data on product, capital and labor, we measure the relative efficiency of the vine production function and estimate the coefficient used in the stochastic frontier literature for comparison purposes. This production vine copula predicts the value added by firms with given capital and labor in a probabilistic way. It thereby stands in sharp contrast to the production function, where the output of firms is completely deterministic. The results show that, on average, S&P500 companies are more efficient than companies listed in England and Germany, which presented similar average efficiency coefficients. For comparative purposes, the traditional stochastic frontier was estimated and the results showed discrepancies between the coefficients obtained by the application of the two methods, traditional and frontier-vine, opening new paths of non-linear research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Martin, Nathan; Worrell, Ernst
2003-09-01
Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findingsmore » suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.« less
Food security: increasing yield and improving resource use efficiency.
Parry, Martin A J; Hawkesford, Malcolm J
2010-11-01
Food production and security will be a major issue for supplying an increasing world population. The problem will almost certainly be exacerbated by climate change. There is a projected need to double food production by 2050. In recent times, the trend has been for incremental modest yield increases for most crops. There is an urgent need to develop integrated and sustainable approaches that will significantly increase both production per unit land area and the resource use efficiency of crops. This review considers some key processes involved in plant growth and development with some examples of ways in which molecular technology, plant breeding and genetics may increase the yield and resource use efficiency of wheat. The successful application of biotechnology to breeding is essential to provide the major increases in production required. However, each crop and each specific agricultural situation presents specific requirements and targets for optimisation. Some increases in production will come about as new varieties are developed which are able to produce satisfactory crops on marginal land presently not considered appropriate for arable crops. Other new varieties will be developed to increase both yield and resource use efficiency on the best land.
Localization and Tracking of Implantable Biomedical Sensors
Umay, Ilknur; Fidan, Barış; Barshan, Billur
2017-01-01
Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer) unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed) units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule) inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems. PMID:28335384
High efficient optical remote sensing images acquisition for nano-satellite-framework
NASA Astrophysics Data System (ADS)
Li, Feng; Xin, Lei; Liu, Yang; Fu, Jie; Liu, Yuhong; Guo, Yi
2017-09-01
It is more difficult and challenging to implement Nano-satellite (NanoSat) based optical Earth observation missions than conventional satellites because of the limitation of volume, weight and power consumption. In general, an image compression unit is a necessary onboard module to save data transmission bandwidth and disk space. The image compression unit can get rid of redundant information of those captured images. In this paper, a new image acquisition framework is proposed for NanoSat based optical Earth observation applications. The entire process of image acquisition and compression unit can be integrated in the photo detector array chip, that is, the output data of the chip is already compressed. That is to say, extra image compression unit is no longer needed; therefore, the power, volume, and weight of the common onboard image compression units consumed can be largely saved. The advantages of the proposed framework are: the image acquisition and image compression are combined into a single step; it can be easily built in CMOS architecture; quick view can be provided without reconstruction in the framework; Given a certain compression ratio, the reconstructed image quality is much better than those CS based methods. The framework holds promise to be widely used in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, R.E.; Goldstein, H.N.; White, J.S.
It is often more economical to keep existing generation capacity in operation than to build new capacity. Repowering is considered at a number of sites because of the need for added capacity, the poor condition of plant equipment (particularly the boiler), the need for improved environmental performance, the need for shorter licensing period, and other reasons. This paper describes the results of a US Department of Energy (DOE) conceptual design evaluation of an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). The paper provides a review of the DOE study and summarizes themore » preliminary results. This all-coal technology has projected energy efficiency in the 42 to 46% HHV (43 to 48% LHV) range and environmental emissions superior to New Source Performance Standards (NSPS). A DOE-sponsored demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland`s C.D. McIntosh, Jr. steam plant Unit 4. This paper`s concept evaluation is for a larger implementation. A modern large frame combustion turbine is used to produce a 300 + MWe class APFBC. At this size, APFBC has a wide application for repowering many existing units in America. Here, APFBC would repower an existing generation station, the Carolina Power and Light Company`s (CP and L) L.V. Suttong steam station. Repowering concepts are presented for APFBC repowering of Unit 2 (252 MWe) and of both Units 1 and 2 in combination (360 MWe total).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, D.A.
1995-12-31
Under the Acid Rain Program, by statute and regulation, affected utility units are allocated annual allowances. Each allowance permits a unit to emit one ton of SO{sub 2} during or after a specified year. At year end, utilities must hold allowances equal to or greater than the cumulative SO{sub 2} emissions throughout the year from their affected units. The program has been developing, on a staged basis, two major computer-based information systems: the Allowance Tracking System (ATS) for tracking creation, transfer, and ultimate use of allowances; and the Emissions Tracking System (ETS) for transmission, receipt, processing, and inventory of continuousmore » emissions monitoring (CEM) data. The systems collectively form a logical Acid Rain Data System (ARDS). ARDS will be the largest information system ever used to operate and evaluate an environmental program. The paper describes the progressive software engineering approach the Acid Rain Program has been using to develop ARDS. Iterative software version releases, keyed to critical program deadlines, add the functionality required to support specific statutory and regulatory provisions. Each software release also incorporates continual improvements for efficiency, user-friendliness, and lower life-cycle costs. The program is migrating the independent ATS and ETS systems into a logically coordinated True-Up processing model, to support the end-of-year reconciliation for balancing allowance holdings against annual emissions and compliance plans for Phase 1 affected utility units. The paper provides specific examples and data to illustrate exciting applications of today`s information technology in ARDS.« less
An efficient interpolation filter VLSI architecture for HEVC standard
NASA Astrophysics Data System (ADS)
Zhou, Wei; Zhou, Xin; Lian, Xiaocong; Liu, Zhenyu; Liu, Xiaoxiang
2015-12-01
The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.
Automatic visualization of 3D geometry contained in online databases
NASA Astrophysics Data System (ADS)
Zhang, Jie; John, Nigel W.
2003-04-01
In this paper, the application of the Virtual Reality Modeling Language (VRML) for efficient database visualization is analyzed. With the help of JAVA programming, three examples of automatic visualization from a database containing 3-D Geometry are given. The first example is used to create basic geometries. The second example is used to create cylinders with a defined start point and end point. The third example is used to processs data from an old copper mine complex in Cheshire, United Kingdom. Interactive 3-D visualization of all geometric data in an online database is achieved with JSP technology.
Forward Period Analysis Method of the Periodic Hamiltonian System.
Wang, Pengfei
2016-01-01
Using the forward period analysis (FPA), we obtain the period of a Morse oscillator and mathematical pendulum system, with the accuracy of 100 significant digits. From these results, the long-term [0, 1060] (time unit) solutions, ranging from the Planck time to the age of the universe, are computed reliably and quickly with a parallel multiple-precision Taylor series (PMT) scheme. The application of FPA to periodic systems can greatly reduce the computation time of long-term reliable simulations. This scheme provides an efficient way to generate reference solutions, against which long-term simulations using other schemes can be tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleason, T.C.J.
1992-06-01
The justification, strategies, and technology options for implementing advanced district heating and cooling systems in the United States are presented. The need for such systems is discussed in terms of global warming, ozone depletion, and the need for a sustainable energy policy. Strategies for implementation are presented in the context of the Public Utilities Regulatory Policies Act and proposed new institutional arrangements. Technology opportunities are highlighted in the areas of advanced block-scale cogeneration, CFC-free chiller technologies, and renewable sources of heating and cooling that are particularly applicable to district systems.
Bosca, Federica; Orio, Laura; Tagliapietra, Silvia; Corazzari, Ingrid; Turci, Francesco; Martina, Katia; Pastero, Linda; Cravotto, Giancarlo; Barge, Alessandro
2016-01-26
This work describes the design of a modified porphyrin that bears four furan rings linked by 1,2-bis-(2-aminoethoxy)ethane spacers. This unit is a well-suited scaffold for a Diels-Alder reaction with commercial reduced-graphene oxide, which is also described in this paper. A new hybrid material is obtained, thanks to efficient grafting under microwave irradiation, and fully characterized in terms of structure (UV, TGA, Raman) and morphology (HR-TEM and AFM). Potential applications in photo- and sonodynamic therapy are envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The UCSC genome browser: what every molecular biologist should know.
Mangan, Mary E; Williams, Jennifer M; Kuhn, Robert M; Lathe, Warren C
2009-10-01
Electronic data resources can enable molecular biologists to query and display many useful features that make benchwork more efficient and drive new discoveries. The UCSC Genome Browser provides a wealth of data and tools that advance one's understanding of genomic context for many species, enable detailed understanding of data, and provide the ability to interrogate regions of interest. Researchers can also supplement the standard display with their own data to query and share with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser.
Shreay, Sanatan; Ma, Martin; McCluskey, Jill; Mittelhammer, Ron C; Gitlin, Matthew; Stephens, J Mark
2014-01-01
Objective To explore the relative efficiency of dialysis facilities in the United States and identify factors that are associated with efficiency in the production of dialysis treatments. Data Sources/Study Setting Medicare cost report data from 4,343 free-standing dialysis facilities in the United States that offered in-center hemodialysis in 2010. Study Design A cross-sectional, facility-level retrospective database analysis, utilizing data envelopment analysis (DEA) to estimate facility efficiency. Data Collection/Extraction Methods Treatment data and cost and labor inputs of dialysis treatments were obtained from 2010 Medicare Renal Cost Reports. Demographic data were obtained from the 2010 U.S. Census. Principal Findings Only 26.6 percent of facilities were technically efficient. Neither the intensity of market competition nor the profit status of the facility had a significant effect on efficiency. Facilities that were members of large chains were less likely to be efficient. Cost and labor savings due to changes in drug protocols had little effect on overall dialysis center efficiency. Conclusions The majority of free-standing dialysis facilities in the United States were functioning in a technically inefficient manner. As payment systems increasingly employ capitation and bundling provisions, these institutions will need to evaluate their efficiency to remain competitive. PMID:24237043
High Efficiency Heat Exchanger for High Temperature and High Pressure Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, James J.; Lv, Qiuping; Moisseytsev, Anton
CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capitalmore » and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating channels so that each fluid is fully surrounded by the opposing fluid. As compared to similar existing compact heat exchangers, the new design converts most secondary surface area to primary surface area, eliminating fin inefficiencies. CompRex requests that all technical information about the heat exchanger designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.« less
NASA Astrophysics Data System (ADS)
Golik, V. V.; Zemenkova, M. Yu; Shipovalov, A. N.; Akulov, K. A.
2018-05-01
The paper presents calculations and an example of energy efficiency justification of the regimes of the equipment used. The engineering design of the gas pipeline in the part of monitoring the energy efficiency of a gas compressor unit (GCU) is considered. The results of the GCU characteristics and its components evaluation are described. The evaluation results of the energy efficiency indicators of the gas pipeline are presented. As an example of the result of the analysis, it is proposed to use gas compressor unit GCU-32 "Ladoga" because of its efficiency and cost effectiveness, in comparison with analogues.
8 CFR 343b.4 - Applicant outside of United States.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Applicant outside of United States. 343b.4... CERTIFICATE OF NATURALIZATION FOR RECOGNITION BY A FOREIGN STATE § 343b.4 Applicant outside of United States. If the application is received by a DHS office outside the United States, an officer will, when...
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with four PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost-effectively implement with their own staffs in the normal course of housing operations at the time whenmore » units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing, and measures that improve equipment efficiency. ARIES documented implementation in 18 housing units. Reductions in average air leakage were 16 percent and duct leakage reductions averaged 23 percent. Total source energy consumption savings due to implemented measures was estimated at 3-10 percent based on BEopt modeling with a simple payback of 1.6 to 2.5 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.« less
Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-08-01
More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations atmore » the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.« less
Design and Control of Integrated Systems for Hydrogen Production and Power Generation
NASA Astrophysics Data System (ADS)
Georgis, Dimitrios
Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared. The results of the dissertation provide a deeper understanding on the design, operational and control challenges of the above systems and can potentially guide further commercialization efforts. In addition to this, the results can be generalized and used for applications from the transportation and residential sector to large--scale power plants.
Dry coolers and air-condensing units (Review)
NASA Astrophysics Data System (ADS)
Milman, O. O.; Anan'ev, P. A.
2016-03-01
The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that global trends have a significant influence on the application of dry coolers in Russia, in view of the fact that some TPP have a surface condensers arrangement. The reasons that these systems are currently less efficient than the direct steam condensation in an air-cooled condenser are explained. It is shown that, in some cases, it is more reasonable to use mixing-type condensers in combination with a dry cooler. Measures for a full import substitution of steam exhaust heat removal systems are mentioned.
Panahbehagh, B.; Smith, D.R.; Salehi, M.M.; Hornbach, D.J.; Brown, D.J.; Chan, F.; Marinova, D.; Anderssen, R.S.
2011-01-01
Assessing populations of rare species is challenging because of the large effort required to locate patches of occupied habitat and achieve precise estimates of density and abundance. The presence of a rare species has been shown to be correlated with presence or abundance of more common species. Thus, ecological community richness or abundance can be used to inform sampling of rare species. Adaptive sampling designs have been developed specifically for rare and clustered populations and have been applied to a wide range of rare species. However, adaptive sampling can be logistically challenging, in part, because variation in final sample size introduces uncertainty in survey planning. Two-stage sequential sampling (TSS), a recently developed design, allows for adaptive sampling, but avoids edge units and has an upper bound on final sample size. In this paper we present an extension of two-stage sequential sampling that incorporates an auxiliary variable (TSSAV), such as community attributes, as the condition for adaptive sampling. We develop a set of simulations to approximate sampling of endangered freshwater mussels to evaluate the performance of the TSSAV design. The performance measures that we are interested in are efficiency and probability of sampling a unit occupied by the rare species. Efficiency measures the precision of population estimate from the TSSAV design relative to a standard design, such as simple random sampling (SRS). The simulations indicate that the density and distribution of the auxiliary population is the most important determinant of the performance of the TSSAV design. Of the design factors, such as sample size, the fraction of the primary units sampled was most important. For the best scenarios, the odds of sampling the rare species was approximately 1.5 times higher for TSSAV compared to SRS and efficiency was as high as 2 (i.e., variance from TSSAV was half that of SRS). We have found that design performance, especially for adaptive designs, is often case-specific. Efficiency of adaptive designs is especially sensitive to spatial distribution. We recommend that simulations tailored to the application of interest are highly useful for evaluating designs in preparation for sampling rare and clustered populations.
NASA Technical Reports Server (NTRS)
Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.
2011-01-01
The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3) varying the light source and spacing on contact time and illuminated catalyst area.
Current understanding of the correlation of lignin structure with biomass recalcitrance
Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J.
2016-11-18
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement inmore » application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability—pretreatment and enzymatic hydrolysis of biomass. Furthermore, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.« less
Current understanding of the correlation of lignin structure with biomass recalcitrance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J.
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement inmore » application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability—pretreatment and enzymatic hydrolysis of biomass. Furthermore, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.« less
Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research
NASA Technical Reports Server (NTRS)
Sun, Sam
2002-01-01
The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.
Application of wireless power transmission systems in wireless capsule endoscopy: an overview.
Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah
2014-06-19
Wireless capsule endoscopy (WCE) is a promising technology for direct diagnosis of the entire small bowel to detect lethal diseases, including cancer and obscure gastrointestinal bleeding (OGIB). To improve the quality of diagnosis, some vital specifications of WCE such as image resolution, frame rate and working time need to be improved. Additionally, future multi-functioning robotic capsule endoscopy (RCE) units may utilize advanced features such as active system control over capsule motion, drug delivery systems, semi-surgical tools and biopsy. However, the inclusion of the above advanced features demands additional power that make conventional power source methods impractical. In this regards, wireless power transmission (WPT) system has received attention among researchers to overcome this problem. Systematic reviews on techniques of using WPT for WCE are limited, especially when involving the recent technological advancements. This paper aims to fill that gap by providing a systematic review with emphasis on the aspects related to the amount of transmitted power, the power transmission efficiency, the system stability and patient safety. It is noted that, thus far the development of WPT system for this WCE application is still in initial stage and there is room for improvements, especially involving system efficiency, stability, and the patient safety aspects.
760nm: a new laser diode wavelength for hair removal modules
NASA Astrophysics Data System (ADS)
Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen
2015-02-01
A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.
Mini-review: Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance
NASA Astrophysics Data System (ADS)
Li, Mi; Pu, Yunqiao; Ragauskas, Arthur
2016-11-01
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresource to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement in application of biorefinery to production of biofuels, chemicals, and biomaterials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability— pretreatment and enzymatic hydrolysis of biomass. Specifically, lignin-enzyme interaction and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.
Process mining is an underutilized clinical research tool in transfusion medicine.
Quinn, Jason G; Conrad, David M; Cheng, Calvino K
2017-03-01
To understand inventory performance, transfusion services commonly use key performance indicators (KPIs) as summary descriptors of inventory efficiency that are graphed, trended, and used to benchmark institutions. Here, we summarize current limitations in KPI-based evaluation of blood bank inventory efficiency and propose process mining as an ideal methodology for application to inventory management research to improve inventory flows and performance. The transit of a blood product from inventory receipt to final disposition is complex and relates to many internal and external influences, and KPIs may be inadequate to fully understand the complexity of the blood supply chain and how units interact with its processes. Process mining lends itself well to analysis of blood bank inventories, and modern laboratory information systems can track nearly all of the complex processes that occur in the blood bank. Process mining is an analytical tool already used in other industries and can be applied to blood bank inventory management and research through laboratory information systems data using commercial applications. Although the current understanding of real blood bank inventories is value-centric through KPIs, it potentially can be understood from a process-centric lens using process mining. © 2017 AABB.
Obure, Carol Dayo; Jacobs, Rowena; Guinness, Lorna; Mayhew, Susannah; Vassall, Anna
2016-01-01
Theoretically, integration of vertically organized services is seen as an important approach to improving the efficiency of health service delivery. However, there is a dearth of evidence on the effect of integration on the technical efficiency of health service delivery. Furthermore, where technical efficiency has been assessed, there have been few attempts to incorporate quality measures within efficiency measurement models particularly in sub-Saharan African settings. This paper investigates the technical efficiency and the determinants of technical efficiency of integrated HIV and sexual and reproductive health (SRH) services using data collected from 40 health facilities in Kenya and Swaziland for 2008/2009 and 2010/2011. Incorporating a measure of quality, we estimate the technical efficiency of health facilities and explore the effect of integration and other environmental factors on technical efficiency using a two-stage semi-parametric double bootstrap approach. The empirical results reveal a high degree of inefficiency in the health facilities studied. The mean bias corrected technical efficiency scores taking quality into consideration varied between 22% and 65% depending on the data envelopment analysis (DEA) model specification. The number of additional HIV services in the maternal and child health unit, public ownership and facility type, have a positive and significant effect on technical efficiency. However, number of additional HIV and STI services provided in the same clinical room, proportion of clinical staff to overall staff, proportion of HIV services provided, and rural location had a negative and significant effect on technical efficiency. The low estimates of technical efficiency and mixed effects of the measures of integration on efficiency challenge the notion that integration of HIV and SRH services may substantially improve the technical efficiency of health facilities. The analysis of quality and efficiency as separate dimensions of performance suggest that efficiency may be achieved without sacrificing quality. PMID:26803655
Obure, Carol Dayo; Jacobs, Rowena; Guinness, Lorna; Mayhew, Susannah; Vassall, Anna
2016-02-01
Theoretically, integration of vertically organized services is seen as an important approach to improving the efficiency of health service delivery. However, there is a dearth of evidence on the effect of integration on the technical efficiency of health service delivery. Furthermore, where technical efficiency has been assessed, there have been few attempts to incorporate quality measures within efficiency measurement models particularly in sub-Saharan African settings. This paper investigates the technical efficiency and the determinants of technical efficiency of integrated HIV and sexual and reproductive health (SRH) services using data collected from 40 health facilities in Kenya and Swaziland for 2008/2009 and 2010/2011. Incorporating a measure of quality, we estimate the technical efficiency of health facilities and explore the effect of integration and other environmental factors on technical efficiency using a two-stage semi-parametric double bootstrap approach. The empirical results reveal a high degree of inefficiency in the health facilities studied. The mean bias corrected technical efficiency scores taking quality into consideration varied between 22% and 65% depending on the data envelopment analysis (DEA) model specification. The number of additional HIV services in the maternal and child health unit, public ownership and facility type, have a positive and significant effect on technical efficiency. However, number of additional HIV and STI services provided in the same clinical room, proportion of clinical staff to overall staff, proportion of HIV services provided, and rural location had a negative and significant effect on technical efficiency. The low estimates of technical efficiency and mixed effects of the measures of integration on efficiency challenge the notion that integration of HIV and SRH services may substantially improve the technical efficiency of health facilities. The analysis of quality and efficiency as separate dimensions of performance suggest that efficiency may be achieved without sacrificing quality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine
NASA Technical Reports Server (NTRS)
White, M. A.
1982-01-01
A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.
Design and Analysis of a Stiffened Composite Structure Repair Concept
NASA Technical Reports Server (NTRS)
Przekop, Adam
2011-01-01
A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.
Cool white light-emitting three stack OLED structures for AMOLED display applications.
Springer, Ramon; Kang, Byoung Yeop; Lampande, Raju; Ahn, Dae Hyun; Lenk, Simone; Reineke, Sebastian; Kwon, Jang Hyuk
2016-11-28
This paper demonstrates 2-stack and 3-stack white organic light-emitting diodes (WOLEDs) with fluorescent blue and phosphorescent yellow emissive units. The 2-stack and 3-stack WOLED comprises blue-yellow and blue-blue-yellow (blue-yellow-blue) combinations. The position of the yellow emitter and possible cavity lengths in different stack architectures are theoretically and experimentally investigated to reach Commission Internationale de L'Eclairage (CIE) coordinates of near (0.333/0.333). Here, a maximum external quantum efficiency (EQE) of 23.6% and current efficiency of 62.2 cd/A at 1000 cd/m2 as well as suitable CIE color coordinates of (0.335/0.313) for the blue-blue-yellow 3-stack hybrid WOLED structure is reported. In addition, the blue-yellow-blue 3-stack architecture exhibits an improved angular dependence compared to the blue-blue-yellow structure at a decreased EQE of 19.1%.
Use of a Relational Database to Support Clinical Research: Application in a Diabetes Program
Lomatch, Diane; Truax, Terry; Savage, Peter
1981-01-01
A database has been established to support conduct of clinical research and monitor delivery of medical care for 1200 diabetic patients as part of the Michigan Diabetes Research and Training Center (MDRTC). Use of an intelligent microcomputer to enter and retrieve the data and use of a relational database management system (DBMS) to store and manage data have provided a flexible, efficient method of achieving both support of small projects and monitoring overall activity of the Diabetes Center Unit (DCU). Simplicity of access to data, efficiency in providing data for unanticipated requests, ease of manipulations of relations, security and “logical data independence” were important factors in choosing a relational DBMS. The ability to interface with an interactive statistical program and a graphics program is a major advantage of this system. Out database currently provides support for the operation and analysis of several ongoing research projects.
Study on government's optimal incentive intensity of intellectual property rights
NASA Astrophysics Data System (ADS)
Yang, Chengbin; Sun, Shengxiang; Wei, Hua
2018-05-01
The integration of military and civilian technology in the development stage of weapon equipment is an inherent requirement for the development of the deep integration of the military and the civilian. In order to avoid repeated development of existing technology and improve the efficiency of weaponry development, the government should take effective measures to encourage development institutions to actively adopt existing intellectual property technology in the process of equipment development. According to the theory of utility function and the characteristics of practical problems, the utility function of government and weapon equipment development units is constructed, and the optimization model of incentive strength for national defense intellectual property is established. According to the numerical simulation, the conclusion is, to improve the development efficiency, and at the same time, to encourage innovation, thre government need to make a trade-off in incentive policy making, to achieve a high level in intellectual property rights' innovation and application.
Effect of Peat on Physicomechanical Properties of Cemented Brick
Hashim, Roslan; Kurnia, Ryan
2014-01-01
The popularity of low cost, lightweight, and environmentally affable masonry unit in building industry carries the need to investigate more flexible and adaptable brick component as well as to retain the requirements confirmed in building standards. In this study, potential use of local materials used as lightweight building materials in solving the economic problems of housing has been investigated. Experimental studies on peat added bricks have been carried out. It demonstrates the physicomechanical properties of bricks and investigates the influence of peat, sand, and cement solid bricks to the role of various types of constructional applications. The achieved compressive strength, spitting strength, flexural strength, unit weight, and ultrasonic pulse velocity are significantly reduced and the water absorption is increased with percentage wise replacement of peat as aggregate in the samples. The maximum 20% of (% mass) peat content meets the requirements of relevant well-known international standards. The experimental values illustrate that, the 44% volumetric replacement with peat did not exhibit any sudden brittle fracture even beyond the ultimate loads and a comparatively smooth surface is found. The application of peat as efficient brick substance shows a potential to be used for wall and a viable solution in the economic buildings design. PMID:24982941
Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site.
Gidarakos, E; Aivalioti, M
2007-11-19
This paper presents the course and the remediation results of a 4-year application of bioslurping technology on the subsurface of a Greek petroleum refinery, which is still under full operation and has important and complicated subsurface contamination problems, mainly due to the presence of light non-aqueous phase liquids (LNAPL). About 55 wells are connected to the central bioslurping unit, while a mobile bioslurping unit is also used whenever and wherever is necessary. Moreover, there are about 120 additional wells for the monitoring of the subsurface of the facilities that cover a total area of 1,000,000 m(2). An integrated monitoring program has also been developed and applied on the site, including frequent LNAPL layer depth and thickness measurements, conduction of bail-down and recovery tests, sampling and chemical analysis of the free oil phase, etc., so as to evaluate the remediation technique's efficiency and ensure a prompt tracing of any new potential leak. Despite the occurrence of new leaks within the last 4 years and the observed entrapment of LNAPL in the vadoze zone, bioslurping has managed to greatly restrict the original plume within certain and relatively small parts of the refinery facilities.
Energy efficient industrial technology in Europe: A compendium
NASA Astrophysics Data System (ADS)
Fassbender, A. G.; McGee, M. J.
1982-05-01
Energy efficient industrial technologies currently in use in Europe are described. Gas-fired equipment in West Germany, France, and the United Kingdom is emphasized. Some of these technologies are unique and some are currently available in the United States. Load management, cogeneration, heat recovery, and various industrial processes are discussed.
Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT
Schilling, K.E.; Wolter, C.F.
2009-01-01
The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.
Dish Stirling solar receiver program
NASA Technical Reports Server (NTRS)
Haglund, R. A.
1980-01-01
A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.
Flow-injection assay of catalase activity.
Ukeda, Hiroyuki; Adachi, Yukiko; Sawamura, Masayoshi
2004-03-01
A novel flow-injection assay (FIA) system with a double line for catalase activity was constructed in which an oxidase is immobilized and the substrate is continuously pumped to reduce the dissolved oxygen and to generate a given level of hydrogen peroxide. The catalase in a sample decomposed the hydrogen peroxide, and thus the increase in dissolved oxygen dependent on the activity was amperometrically monitored using a Clark-type oxygen electrode. Among the examined several oxidases, uricase was most suitable for the continuous formation of hydrogen peroxide from a consideration of the stability and the conversion efficiency. Under the optimum conditions, a linear calibration curve was obtained in the range from 21 to 210 units/mg and the reproducibility (CV) was better than 2% by 35 successive determinations of 210 units/ml catalase preparation. The sampling frequency was about 15 samples/h. The present FIA system was applicable to monitor the inactivation of catalase by glycation.
Shuttle freezer conceptual design
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Russell, D. J.
1975-01-01
A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.
Silver Recycling in the United States in 2000
Hilliard, Henry E.
2003-01-01
In 2000, the global silver supply deficit (the difference between mine and scrap supply and silver demand) was more than 3,000 metric tons. U.S. silver demand for photographic applications alone was nearly equal to annual U.S. silver production. Until 1968, the U.S. silver deficit was filled by withdrawals from the U.S. Treasury reserves. In 2000, the deficit was filled by destocking, imports, and recycling. Photographic wastes, spent catalysts, and electronic scrap are the major sources of materials for silver recycling. Nearly 1,800 tons of silver contained in these materials were available for recycling in 2000. Other recyclable silver-bearing materials include dental alloys, jewelry, and silverware. In 2000, an estimated 1,700 tons of silver were recovered from secondary sources in the United States. The U.S. recycling efficiency for old scrap was calculated to have been 97 percent in 2000; the recycling rate was estimated to be 32 percent.
Silver recycling in the United States in 2000
Hilliard, Henry E.
2003-01-01
In 2000, the global silver supply deficit (the difference between mine and scrap supply and silver demand) was more than 3,000 metric tons. U.S. silver demand for photographic applications alone was nearly equal to annual U.S. silver production. Until 1968, the U.S. silver deficit was filled by withdrawals from the U.S. Treasury reserves. In 2000, the deficit was filled by destocking, imports, and recycling. Photographic wastes, spent catalysts, and electronic scrap are the major sources of materials for silver recycling. Nearly 1,800 metric tons of silver contained in these materials were available for recycling in 2000. Other recyclable silver-bearing materials include dental alloys, jewelry, and silverware. In 2000, an estimated 1,700 tons of silver were recovered from secondary sources in the United States. The U.S. recycling efficiency for old scrap was calculated to have been 97 percent in 2000; the recycling rate was estimated to be 32 percent.
From random microstructures to representative volume elements
NASA Astrophysics Data System (ADS)
Zeman, J.; Šejnoha, M.
2007-06-01
A unified treatment of random microstructures proposed in this contribution opens the way to efficient solutions of large-scale real world problems. The paper introduces a notion of statistically equivalent periodic unit cell (SEPUC) that replaces in a computational step the actual complex geometries on an arbitrary scale. A SEPUC is constructed such that its morphology conforms with images of real microstructures. Here, the appreciated two-point probability function and the lineal path function are employed to classify, from the statistical point of view, the geometrical arrangement of various material systems. Examples of statistically equivalent unit cells constructed for a unidirectional fibre tow, a plain weave textile composite and an irregular-coursed masonry wall are given. A specific result promoting the applicability of the SEPUC as a tool for the derivation of homogenized effective properties that are subsequently used in an independent macroscopic analysis is also presented.
NASA Astrophysics Data System (ADS)
Wang, Kang; Gao, Guiqing; Qin, Yuanli; He, Xiangyong
2018-05-01
The nuclear accident emergency disposal must be supported by an efficient, real-time modularization and standardization communication system. Based on the analysis of communication system for nuclear accident emergency disposal which included many functions such as the internal and external communication, multiply access supporting and command center. Some difficult problems of the communication system were discussed such as variety access device type, complex composition, high mobility, set up quickly, multiply business support, and so on. Taking full advantages of the IP Multimedia Subsystem (IMS), a nuclear accident emergency communication system was build based on the IMS. It was studied and implemented that some key unit and module functions of communication system were included the system framework implementation, satellite access, short-wave access, load/vehicle-mounted communication units. The application tests showed that the system could provide effective communication support for the nuclear accident emergency disposal, which was of great practical value.
Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters.
Jiang, Hui; Zhang, Yuanyuan; Wang, Xuemei
2014-09-07
Ultra-small metallic nanoparticles, or so-called "nanoclusters" (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications.
The NIST Detector-Based Luminous Intensity Scale
Cromer, C. L.; Eppeldauer, G.; Hardis, J. E.; Larason, T. C.; Ohno, Y.; Parr, A. C.
1996-01-01
The Système International des Unités (SI) base unit for photometry, the candela, has been realized by using absolute detectors rather than absolute sources. This change in method permits luminous intensity calibrations of standard lamps to be carried out with a relative expanded uncertainty (coverage factor k = 2, and thus a 2 standard deviation estimate) of 0.46 %, almost a factor-of-two improvement. A group of eight reference photometers has been constructed with silicon photodiodes, matched with filters to mimic the spectral luminous efficiency function for photopic vision. The wide dynamic range of the photometers aid in their calibration. The components of the photometers were carefully measured and selected to reduce the sources of error and to provide baseline data for aging studies. Periodic remeasurement of the photometers indicate that a yearly recalibration is required. The design, characterization, calibration, evaluation, and application of the photometers are discussed. PMID:27805119
Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve
2002-01-01
NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.
Auction-based distributed efficient economic operations of microgrid systems
NASA Astrophysics Data System (ADS)
Zou, Suli; Ma, Zhongjing; Liu, Xiangdong
2014-12-01
This paper studies the economic operations of the microgrid in a distributed way such that the operational schedule of each of the units, like generators, load units, storage units, etc., in a microgrid system, is implemented by autonomous agents. We apply and generalise the progressive second price (PSP) auction mechanism which was proposed by Lazar and Semret to efficiently allocate the divisible network resources. Considering the economic operation for the microgrid systems, the generators play as sellers to supply energy and the load units play as the buyers to consume energy, while a storage unit, like battery, super capacitor, etc., may transit between buyer and seller, such that it is a buyer when it charges and becomes a seller when it discharges. Furthermore in a connected mode, each individual unit competes against not only the other individual units in the microgrid but also the exogenous main grid possessing fixed electricity price and infinite trade capacity; that is to say, the auctioneer assigns the electricity among all individual units and the main grid with respect to the submitted bid strategies of all individual units in the microgrid in an economic way. Due to these distinct characteristics, the underlying auction games are distinct from those studied in the literature. We show that under mild conditions, the efficient economic operation strategy is a Nash equilibrium (NE) for the PSP auction games, and propose a distributed algorithm under which the system can converge to an NE. We also show that the performance of worst NE can be bounded with respect to the system parameters, say the energy trading price with the main grid, and based upon that, the implemented NE is unique and efficient under some conditions.
NASA Astrophysics Data System (ADS)
Zhao, Dongliang
The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module, for the thermoelectric cooling unit, for the PCM thermal storage unit, and for the outdoor air-water heat exchanger. When modeling PCM thermal storage unit, the enthalpy method has been adopted. Since natural convection has been observed in experiments playing a key effect on heat transfer in PCM, a staged effective thermal conductivity (ke) concept and modified Rayleigh (Ra) number formula have been developed to better capture natural convection's variable effects during the PCM charging process. Therefore, a modeling-based design procedure for thermoelectric cooling system integrating with PCM has been proposed. A case study has been completed for a model office room to demonstrate the qualitative and quantitative evaluations to the major system components. Results of this research can be extended to other applications in relevant areas. For instance, the proposed PCM thermal storage unit can be applied to integration with water-cooled conventional air-conditioning devices. Instead of using water cooling, a case study of using the proposed PCM unit for a water-cooled air-conditioner shows a COP increase of more than 25.6%.
22 CFR 1103.102 - Application.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Application. 1103.102 Section 1103.102 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION... BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION § 1103.102 Application. This...
Extraction of drainage networks from large terrain datasets using high throughput computing
NASA Astrophysics Data System (ADS)
Gong, Jianya; Xie, Jibo
2009-02-01
Advanced digital photogrammetry and remote sensing technology produces large terrain datasets (LTD). How to process and use these LTD has become a big challenge for GIS users. Extracting drainage networks, which are basic for hydrological applications, from LTD is one of the typical applications of digital terrain analysis (DTA) in geographical information applications. Existing serial drainage algorithms cannot deal with large data volumes in a timely fashion, and few GIS platforms can process LTD beyond the GB size. High throughput computing (HTC), a distributed parallel computing mode, is proposed to improve the efficiency of drainage networks extraction from LTD. Drainage network extraction using HTC involves two key issues: (1) how to decompose the large DEM datasets into independent computing units and (2) how to merge the separate outputs into a final result. A new decomposition method is presented in which the large datasets are partitioned into independent computing units using natural watershed boundaries instead of using regular 1-dimensional (strip-wise) and 2-dimensional (block-wise) decomposition. Because the distribution of drainage networks is strongly related to watershed boundaries, the new decomposition method is more effective and natural. The method to extract natural watershed boundaries was improved by using multi-scale DEMs instead of single-scale DEMs. A HTC environment is employed to test the proposed methods with real datasets.
High efficiency novel window air conditioner
Bansal, Pradeep
2015-07-24
This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less
High efficiency novel window air conditioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep
This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less
Education & Collection Facility GSHP Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joplin, Jeff
The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to amore » recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient system.« less
Ellanti, Prasad; Moriarty, Andrew; Coughlan, Fionn; McCarthy, Thomas
2017-02-18
Effective and timely communication is important for any surgical specialty to function. The use of smartphones is prevalent amongst doctors. Numerous smartphone applications offer the potential for fast and cost-effective communication. WhatsApp is a commonly used application that is free, easy to use, and capable of text and multimedia messaging. We report on the use of WhatsApp over a six month period in our unit. WhatsApp communication between non-consultant members of an orthopaedic team over a six-month period was analysed. Both the phones and the WhatsApp application were password-protected, and patient details were anonymised. A series of 20 communications using the hospital pager system and the telephone system were also analysed. A total of 5,492 messages were sent during the six-month period and were part of 1,916 separate communication events. The vast majority of messages, 5,090, were related to patient care. A total of 195 multimedia messages were sent and these included images of radiographs and wounds. When using the hospital telephones, the length of time spent on a communication averaged 5.78 minutes and using the hospital pager system averaged 7.45 minutes. Using the WhatsApp messaging system has potentially saved up to 7,664 minutes over the study period. All participants found WhatsApp easy to use and found it to be more efficient than the traditional pager system Conclusion: Compared to the traditional pager systems, the use of WhatsApp is easy, inexpensive, and reliable and can help improve the efficiency of communication within a surgical team.
Moriarty, Andrew; Coughlan, Fionn; McCarthy, Thomas
2017-01-01
Introduction: Effective and timely communication is important for any surgical specialty to function. The use of smartphones is prevalent amongst doctors. Numerous smartphone applications offer the potential for fast and cost-effective communication. WhatsApp is a commonly used application that is free, easy to use, and capable of text and multimedia messaging. We report on the use of WhatsApp over a six month period in our unit. Materials and Methods: WhatsApp communication between non-consultant members of an orthopaedic team over a six-month period was analysed. Both the phones and the WhatsApp application were password-protected, and patient details were anonymised. A series of 20 communications using the hospital pager system and the telephone system were also analysed. Results: A total of 5,492 messages were sent during the six-month period and were part of 1,916 separate communication events. The vast majority of messages, 5,090, were related to patient care. A total of 195 multimedia messages were sent and these included images of radiographs and wounds. When using the hospital telephones, the length of time spent on a communication averaged 5.78 minutes and using the hospital pager system averaged 7.45 minutes. Using the WhatsApp messaging system has potentially saved up to 7,664 minutes over the study period. All participants found WhatsApp easy to use and found it to be more efficient than the traditional pager system Conclusion: Compared to the traditional pager systems, the use of WhatsApp is easy, inexpensive, and reliable and can help improve the efficiency of communication within a surgical team. PMID:28357172
Shekhawat, Lalita Kanwar; Sarkar, Jayati; Gupta, Rachit; Hadpe, Sandeep; Rathore, Anurag S
2018-02-10
Centrifugation continues to be one of the most commonly used unit operations for achieving efficient harvest of the product from the mammalian cell culture broth during production of therapeutic monoclonal antibodies (mAbs). Since the mammalian cells are known to be shear sensitive, optimal performance of the centrifuge requires a balance between productivity and shear. In this study, Computational Fluid Dynamics (CFD) has been successfully used as a tool to facilitate efficient optimization. Multiphase Eulerian-Eulerian model coupled with Gidaspow drag model along with Eulerian-Eulerian k-ε mixture turbulence model have been used to quantify the complex hydrodynamics of the centrifuge and thus evaluate the turbulent stresses generated by the centrifugal forces. An empirical model has been developed by statistical analysis of experimentally observed cell lysis data as a function of turbulent stresses. An operating window that offers the optimal balance between high productivity, high separation efficiency, and low cell damage has been identified by use of CFD modeling. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Palmiste, Ü.; Voll, H.
2017-10-01
The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.
Bae, Yun Mi; Kim, Myung Hee; Yu, Gwang Sig; Um, Bong Ho; Park, Hee Kyung; Lee, Hyun-il; Lee, Kang Taek; Suh, Yung Doug; Choi, Joon Sig
2014-02-10
Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp(n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing
NASA Astrophysics Data System (ADS)
Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.
Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.
Materials flow of indium in the United States in 2008 and 2009
Goonan, Thomas G.
2012-01-01
Indium is a material that has many applications. It is used by anyone who watches television or views a computer screen. It is found in solar energy arrays and in soldering applications that are required to be lead free. In 2009, about 550 metric tons (t) of indium metal was produced from primary sources world-wide; it was estimated that the United States consumed about 110 t of indium metal (20 percent of world primary production). However, when imports of consumer products that contain indium are considered, the United States consumed about 200 t of indium (36 percent of world primary production). When one considers the recovery from the low-efficiency sputtering process that coats indium-tin oxide onto glass and other surfaces, the recycling rate (within the manufacturing process that uses indium-tin oxide in flat panel displays approaches 36 percent. However, indium recovery from old scrap generated from end-of-life consumer products is not sufficiently economic to add significantly to secondary production. Between 1988 and 2010, indium prices averaged $381 per kilogram (in constant 2000 dollars). However, prices have been quite volatile (deviating from the average of $381 per kilogram by ±$199 per kilogram, a 52 percent difference from the average), reflecting short-term disequilibrium of supply and demand but also responsiveness of supply to demand. The dynamics of zinc smelting govern the primary supply of indium because indium is a byproduct of zinc smelting. Secondary indium supply, which accounts for about one-half of total indium supply, is governed by indium prices and technological advances in recovery. Indium demand is expected to grow because the number and volume of cutting edge technology applications that depend on indium are expected to grow.
AWE-WQ: fast-forwarding molecular dynamics using the accelerated weighted ensemble.
Abdul-Wahid, Badi'; Feng, Haoyun; Rajan, Dinesh; Costaouec, Ronan; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A
2014-10-27
A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy.
Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain
2017-01-01
Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results. PMID:28467468