Sample records for universal energy-efficient refining

  1. 3Drefine: an interactive web server for efficient protein structure refinement.

    PubMed

    Bhattacharya, Debswapna; Nowotny, Jackson; Cao, Renzhi; Cheng, Jianlin

    2016-07-08

    3Drefine is an interactive web server for consistent and computationally efficient protein structure refinement with the capability to perform web-based statistical and visual analysis. The 3Drefine refinement protocol utilizes iterative optimization of hydrogen bonding network combined with atomic-level energy minimization on the optimized model using a composite physics and knowledge-based force fields for efficient protein structure refinement. The method has been extensively evaluated on blind CASP experiments as well as on large-scale and diverse benchmark datasets and exhibits consistent improvement over the initial structure in both global and local structural quality measures. The 3Drefine web server allows for convenient protein structure refinement through a text or file input submission, email notification, provided example submission and is freely available without any registration requirement. The server also provides comprehensive analysis of submissions through various energy and statistical feedback and interactive visualization of multiple refined models through the JSmol applet that is equipped with numerous protein model analysis tools. The web server has been extensively tested and used by many users. As a result, the 3Drefine web server conveniently provides a useful tool easily accessible to the community. The 3Drefine web server has been made publicly available at the URL: http://sysbio.rnet.missouri.edu/3Drefine/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. NMRe: a web server for NMR protein structure refinement with high-quality structure validation scores.

    PubMed

    Ryu, Hyojung; Lim, GyuTae; Sung, Bong Hyun; Lee, Jinhyuk

    2016-02-15

    Protein structure refinement is a necessary step for the study of protein function. In particular, some nuclear magnetic resonance (NMR) structures are of lower quality than X-ray crystallographic structures. Here, we present NMRe, a web-based server for NMR structure refinement. The previously developed knowledge-based energy function STAP (Statistical Torsion Angle Potential) was used for NMRe refinement. With STAP, NMRe provides two refinement protocols using two types of distance restraints. If a user provides NOE (Nuclear Overhauser Effect) data, the refinement is performed with the NOE distance restraints as a conventional NMR structure refinement. Additionally, NMRe generates NOE-like distance restraints based on the inter-hydrogen distances derived from the input structure. The efficiency of NMRe refinement was validated on 20 NMR structures. Most of the quality assessment scores of the refined NMR structures were better than those of the original structures. The refinement results are provided as a three-dimensional structure view, a secondary structure scheme, and numerical and graphical structure validation scores. NMRe is available at http://psb.kobic.re.kr/nmre/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Comparison of lab, pilot, and industrial scale low consistency mechanical refining for improvements in enzymatic digestibility of pretreated hardwood.

    PubMed

    Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan

    2014-09-01

    Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. Published by Elsevier Ltd.

  4. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less

  5. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    PubMed

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. The Efficiency Change of Italian Public Universities in the New Millennium: A Non-Parametric Analysis

    ERIC Educational Resources Information Center

    Guccio, Calogero; Martorana, Marco Ferdinando; Mazza, Isidoro

    2017-01-01

    The paper assesses the evolution of efficiency of Italian public universities for the period 2000-2010. It aims at investigating whether their levels of efficiency showed signs of convergence, and if the well-known disparity between northern and southern regions decreased. For this purpose, we use a refinement of data envelopment analysis, namely…

  7. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Marano, John; Sathaye, Jayant

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less

  8. Comparison of oil refining and biodiesel production process between screw press and n-hexane techniques from beauty leaf feedstock

    NASA Astrophysics Data System (ADS)

    Bhuiya, M. M. K.; Rasul, M. G.; Khan, M. M. K.; Ashwath, N.

    2016-07-01

    The Beauty Leaf Tree (Callophylum inophyllum) is regarded as an alternative source of energy to produce 2nd generation biodiesel due to its potentiality as well as high oil yield content in the seed kernels. The treating process is indispensable during the biodiesel production process because it can augment the yield as well as quality of the product. Oil extracted from both mechanical screw press and solvent extraction using n-hexane was refined. Five replications each of 25 gm of crude oil for screw press and five replications each of 25 gm of crude oil for n-hexane were selected for refining as well as biodiesel conversion processes. The oil refining processes consists of degumming, neutralization as well as dewaxing. The degumming, neutralization and dewaxing processes were performed to remove all the gums (phosphorous-based compounds), free fatty acids, and waxes from the fresh crude oil before the biodiesel conversion process carried out, respectively. The results indicated that up to 73% and 81% of mass conversion efficiency of the refined oil in the screw press and n-hexane refining processes were obtained, respectively. It was also found that up to 88% and 90% of biodiesel were yielded in terms of mass conversion efficiency in the transesterification process for the screw press and n-hexane techniques, respectively. While the entire processes (refining and transesterification) were considered, the conversion of beauty leaf tree (BLT) refined oil into biodiesel was yielded up to 65% and 73% of mass conversion efficiency for the screw press and n-hexane techniques, respectively. Physico-chemical properties of crude and refined oil, and biodiesel were characterized according to the ASTM standards. Overall, BLT has the potential to contribute as an alternative energy source because of high mass conversion efficiency.

  9. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. Thismore » report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.« less

  10. 3Drefine: an interactive web server for efficient protein structure refinement

    PubMed Central

    Bhattacharya, Debswapna; Nowotny, Jackson; Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    3Drefine is an interactive web server for consistent and computationally efficient protein structure refinement with the capability to perform web-based statistical and visual analysis. The 3Drefine refinement protocol utilizes iterative optimization of hydrogen bonding network combined with atomic-level energy minimization on the optimized model using a composite physics and knowledge-based force fields for efficient protein structure refinement. The method has been extensively evaluated on blind CASP experiments as well as on large-scale and diverse benchmark datasets and exhibits consistent improvement over the initial structure in both global and local structural quality measures. The 3Drefine web server allows for convenient protein structure refinement through a text or file input submission, email notification, provided example submission and is freely available without any registration requirement. The server also provides comprehensive analysis of submissions through various energy and statistical feedback and interactive visualization of multiple refined models through the JSmol applet that is equipped with numerous protein model analysis tools. The web server has been extensively tested and used by many users. As a result, the 3Drefine web server conveniently provides a useful tool easily accessible to the community. The 3Drefine web server has been made publicly available at the URL: http://sysbio.rnet.missouri.edu/3Drefine/. PMID:27131371

  11. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass.

    PubMed

    Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan

    2013-02-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence < 1 J/sq cm for most beams. The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  13. A comparative assessment of resource efficiency in petroleum refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad

    Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less

  14. A Comparative Assessment of Resource Efficiency in Petroleum Refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeongwoo; Forman, G; Elgowainy, Amgad

    2015-10-01

    Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory's GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio. (c) 2015 Argonne National Laboratory. Published by Elsevier Ltd.« less

  15. A comparative assessment of resource efficiency in petroleum refining

    DOE PAGES

    Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad; ...

    2015-03-25

    Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less

  16. [Can the local energy minimization refine the PDB structures of different resolution universally?].

    PubMed

    Godzi, M G; Gromova, A P; Oferkin, I V; Mironov, P V

    2009-01-01

    The local energy minimization was statistically validated as the refinement strategy for PDB structure pairs of different resolution. Thirteen pairs of structures with the only difference in resolution were extracted from PDB, and the structures of 11 identical proteins obtained by different X-ray diffraction techniques were represented. The distribution of RMSD value was calculated for these pairs before and after the local energy minimization of each structure. The MMFF94 field was used for energy calculations, and the quasi-Newton method was used for local energy minimization. By comparison of these two RMSD distributions, the local energy minimization was proved to statistically increase the structural differences in pairs so that it cannot be used for refinement purposes. To explore the prospects of complex refinement strategies based on energy minimization, randomized structures were obtained by moving the initial PDB structures as far as the minimized structures had been moved in a multidimensional space of atomic coordinates. For these randomized structures, the RMSD distribution was calculated and compared with that for minimized structures. The significant differences in their mean values proved the energy surface of the protein to have only few minima near the conformations of different resolution obtained by X-ray diffraction for PDB. Some other results obtained by exploring the energy surface near these conformations are also presented. These results are expected to be very useful for the development of new protein refinement strategies based on energy minimization.

  17. ECUT: Energy Conversion and Utilization Technologies program - Biocatalysis research activity

    NASA Technical Reports Server (NTRS)

    Wilcox, R.

    1984-01-01

    The activities of the Biocatalysis Research Activity are organized into the Biocatalysis and Molecular Modeling work elements and a supporting planning and analysis function. In the Biocatalysis work element, progress is made in developing a method for stabilizing genetically engineered traits in microorganisms, refining a technique for monitoring cells that are genetically engineered, and identifying strains of fungi for highly efficient preprocessing of biomass for optimizing the efficiency of bioreactors. In the Molecular Modeling work element, a preliminary model of the behavior of enzymes is developed. A preliminary investigation of the potential for synthesizing enzymes for use in electrochemical processes is completed. Contact with industry and universities is made to define key biocatalysis technical issues and to broaden the range of potential participants in the activity. Analyses are conducted to identify and evaluate potential concepts for future research funding.

  18. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    NASA Technical Reports Server (NTRS)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  19. Energy Efficiency and Universal Design in Home Renovations - A Comparative Review.

    PubMed

    Kapedani, Ermal; Herssens, Jasmien; Verbeeck, Griet

    2016-01-01

    Policy and societal objectives indicate a large need for housing renovations that both accommodate lifelong living and significantly increase energy efficiency. However, these two areas of research are not yet examined in conjunction and this paper hypothesizes this as a missed opportunity to create better renovation concepts. The paper outlines a comparative review on research in Energy Efficiency and Universal Design in order to find the similarities and differences in both depth and breadth of knowledge. Scientific literature in the two fields reveals a disparate depth of knowledge in areas of theory, research approach, and degree of implementation in society. Universal Design and Energy Efficiency are part of a trajectory of expanding scope towards greater sustainability and, although social urgency has been a driver of the research intensity and approach in both fields, in energy efficiency there is an engineering, problem solving approach while Universal Design has a more sociological, user-focused one. These different approaches are reflected in the way home owners in Energy Efficiency research are viewed as consumers and decision makers whose drivers are studied, while Universal Design treats home owners as informants in the design process and studies their needs. There is an inherent difficulty in directly merging Universal Design and Energy Efficiency at a conceptual level because Energy Efficiency is understood as a set of measures, i.e. a product, while Universal Design is part of a (design) process. The conceptual difference is apparent in their implementation as well. Internationally energy efficiency in housing has been largely imposed through legislation, while legislation directly mandating Universal Design is either non-existent or it has an explicit focus on accessibility. However, Energy Efficiency and Universal Design can be complementary concepts and, even though it is more complex than expected, the combination offers possibilities to advance knowledge in both fields.

  20. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass

    Treesearch

    Zhaojiang Wang; Menghua Qin; J.Y. Zhu; Guoyu Tian; Zongquan Li

    2013-01-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical–biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by...

  1. Crew Survivable Helicopter Undercarriage.

    DTIC Science & Technology

    1984-01-01

    used to refine the high -rate test specimens and were compared to other literature data on a specific load per length and energy per inch of perimeter...marked improvement in energy efficiency was observed with no joint failures. Seven of the eight segments shipped to NASA for high - rate testing were...provides the weight and performance criteria used to evaluate the energy absorbing efficiency of the rotated sine wave concept. Next, the low-rate and high

  2. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl3 Particles

    PubMed Central

    Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing

    2016-01-01

    A series of Al-4Ti master alloys with various TiAl3 particles were prepared via pouring the pure aluminum added with K2TiF6 or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl3 particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl3 particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl3 particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl3 particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl3 particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl3 particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl3 particles prepared through different processes was almost identical. PMID:28773987

  3. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl₃ Particles.

    PubMed

    Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing

    2016-10-26

    A series of Al-4Ti master alloys with various TiAl₃ particles were prepared via pouring the pure aluminum added with K₂TiF₆ or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl₃ particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl₃ particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl₃ particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl₃ particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl₃ particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl₃ particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl₃ particles prepared through different processes was almost identical.

  4. The phototron: A light to RF energy conversion device

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Simons, S.

    1982-01-01

    The phototron, a photoelectric device that converts light to radio frequency energy, is described. It is a vacuum tube, free electron, device that is mechanically similar to a reflex klystron with the hot filament cathode replaced by a large area photocathode. The device can operate either with an external voltage source used to accelerate the photoelectrons or with zero bias voltage; in which case the photokinetic energy of the electrons sustains the R.F. oscillations in the tuned R.F. circuit. One basic design of the phototron was tested. Frequencies as high as about 1 GHz and an overall efficiency of about 1% in the biased mode were obtained. In the unbiased mode, the frequencies of operation and efficiences are considerably lower. Success with test model suggests that considerable improvements are possible through design refinements. One such design refinement is the reduction of the length of the electron flight path.

  5. A PFI mill can be used to predict biomechanical pulp strength properties

    Treesearch

    Gary F. Leatham; Gary C. Myers

    1990-01-01

    Recently, we showed that a biomechanical pulping process in which aspen chips are pretreated with a white-rot fungus can give energy savings and can increase paper sheet strength. To optimize this process, we need more efficient ways to evaluate the fungal treatments. Here, we examine a method that consists of treating coarse refiner mechanical pulp, refining in a PFI...

  6. A conservation and biophysics guided stochastic approach to refining docked multimeric proteins.

    PubMed

    Akbal-Delibas, Bahar; Haspel, Nurit

    2013-01-01

    We introduce a protein docking refinement method that accepts complexes consisting of any number of monomeric units. The method uses a scoring function based on a tight coupling between evolutionary conservation, geometry and physico-chemical interactions. Understanding the role of protein complexes in the basic biology of organisms heavily relies on the detection of protein complexes and their structures. Different computational docking methods are developed for this purpose, however, these methods are often not accurate and their results need to be further refined to improve the geometry and the energy of the resulting complexes. Also, despite the fact that complexes in nature often have more than two monomers, most docking methods focus on dimers since the computational complexity increases exponentially due to the addition of monomeric units. Our results show that the refinement scheme can efficiently handle complexes with more than two monomers by biasing the results towards complexes with native interactions, filtering out false positive results. Our refined complexes have better IRMSDs with respect to the known complexes and lower energies than those initial docked structures. Evolutionary conservation information allows us to bias our results towards possible functional interfaces, and the probabilistic selection scheme helps us to escape local energy minima. We aim to incorporate our refinement method in a larger framework which also enables docking of multimeric complexes given only monomeric structures.

  7. An Efficient Metadynamics-Based Protocol To Model the Binding Affinity and the Transition State Ensemble of G-Protein-Coupled Receptor Ligands.

    PubMed

    Saleh, Noureldin; Ibrahim, Passainte; Saladino, Giorgio; Gervasio, Francesco Luigi; Clark, Timothy

    2017-05-22

    A generally applicable metadynamics scheme for predicting the free energy profile of ligand binding to G-protein-coupled receptors (GPCRs) is described. A common and effective collective variable (CV) has been defined using the ideally placed and highly conserved Trp6.48 as a reference point for ligand-GPCR distance measurement and the common orientation of GPCRs in the cell membrane. Using this single CV together with well-tempered multiple-walker metadynamics with a funnel-like boundary allows an efficient exploration of the entire ligand binding path from the extracellular medium to the orthosteric binding site, including vestibule and intermediate sites. The protocol can be used with X-ray structures or high-quality homology models (based on a high-quality template and after thorough refinement) for the receptor and is universally applicable to agonists, antagonists, and partial and reverse agonists. The root-mean-square error (RMSE) in predicted binding free energies for 12 diverse ligands in five receptors (a total of 23 data points) is surprisingly small (less than 1 kcal mol -1 ). The RMSEs for simulations that use receptor X-ray structures and homology models are very similar.

  8. Alcoa/Alumax Reduces Energy Costs While Improving Its Dust Collection Systems (Mt. Holly Aluminum Production Facility)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1999-05-01

    In 1995, Alumax (subsequently acquired by Alcoa), an aluminum refiner, decided to improve the energy efficiency of its four-pot line dust collection systems at its smelter in Mount Holly, S.C. One consultant recommended installing variable frequency drive (VFD) controls on the fourfan system.

  9. RCD+: Fast loop modeling server.

    PubMed

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-08

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Center For Advanced Energy Studies Overview

    ScienceCinema

    Blackman, Harold; Curnutt, Byron; Harker, Caitlin; Hamilton, Melinda; Butt, Darryl; Imel, George; Tokuhiro, Akira; Harris, Jason; Hill, David

    2017-12-09

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce.

  11. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking.

    PubMed

    Heo, Lim; Lee, Hasup; Seok, Chaok

    2016-08-18

    Protein-protein docking methods have been widely used to gain an atomic-level understanding of protein interactions. However, docking methods that employ low-resolution energy functions are popular because of computational efficiency. Low-resolution docking tends to generate protein complex structures that are not fully optimized. GalaxyRefineComplex takes such low-resolution docking structures and refines them to improve model accuracy in terms of both interface contact and inter-protein orientation. This refinement method allows flexibility at the protein interface and in the overall docking structure to capture conformational changes that occur upon binding. Symmetric refinement is also provided for symmetric homo-complexes. This method was validated by refining models produced by available docking programs, including ZDOCK and M-ZDOCK, and was successfully applied to CAPRI targets in a blind fashion. An example of using the refinement method with an existing docking method for ligand binding mode prediction of a drug target is also presented. A web server that implements the method is freely available at http://galaxy.seoklab.org/refinecomplex.

  12. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREETmore » — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.« less

  13. Energy efficient engine: Flight propulsion system, preliminary analysis and design update

    NASA Technical Reports Server (NTRS)

    Stearns, E. M.

    1982-01-01

    The preliminary design of General Electric's Energy Efficient Engine (E3) was reported in detail in 1980. Since then, the design has been refined and the components have been rig-tested. The changes which have occurred in the engine and a reassessment of the economic payoff are presented in this report. All goals for efficiency, environmental considerations, and economic payoff are being met. The E3 Flight Propulsion System has 14.9% lower sfc than a CF6-50C. It provides a 7.1% reduction in direct operating cost for a short haul domestic transport and 14.5% reduction for an international long distance transport.

  14. GRID: a high-resolution protein structure refinement algorithm.

    PubMed

    Chitsaz, Mohsen; Mayo, Stephen L

    2013-03-05

    The energy-based refinement of protein structures generated by fold prediction algorithms to atomic-level accuracy remains a major challenge in structural biology. Energy-based refinement is mainly dependent on two components: (1) sufficiently accurate force fields, and (2) efficient conformational space search algorithms. Focusing on the latter, we developed a high-resolution refinement algorithm called GRID. It takes a three-dimensional protein structure as input and, using an all-atom force field, attempts to improve the energy of the structure by systematically perturbing backbone dihedrals and side-chain rotamer conformations. We compare GRID to Backrub, a stochastic algorithm that has been shown to predict a significant fraction of the conformational changes that occur with point mutations. We applied GRID and Backrub to 10 high-resolution (≤ 2.8 Å) crystal structures from the Protein Data Bank and measured the energy improvements obtained and the computation times required to achieve them. GRID resulted in energy improvements that were significantly better than those attained by Backrub while expending about the same amount of computational resources. GRID resulted in relaxed structures that had slightly higher backbone RMSDs compared to Backrub relative to the starting crystal structures. The average RMSD was 0.25 ± 0.02 Å for GRID versus 0.14 ± 0.04 Å for Backrub. These relatively minor deviations indicate that both algorithms generate structures that retain their original topologies, as expected given the nature of the algorithms. Copyright © 2012 Wiley Periodicals, Inc.

  15. A collaboration of labs: The Institute for Atom-Efficient Chemical Transformations (IACT)

    ScienceCinema

    Lobo, Rodrigo; Marshall, Chris; Cheng, Lei; Stair, Peter; Wu, Tianpan; Ray, Natalie; O'Neil, Brandon; Dietrich, Paul

    2018-06-08

    The Institute for Atom-Efficient Chemical Transformations (IACT) is an Energy Frontier Research Center funded by the U.S. Department of Energy. IACT focuses on advancing the science of catalysis to improve the efficiency of producing fuels from biomass and coal. IACT is a collaborative effort that brings together a diverse team of scientists from Argonne National Laboratory, Brookhaven National Laboratory, Northwestern University, Purdue University and the University of Wisconsin. For more information, visit www.iact.anl.gov

  16. University of Maryland Energy Research Center |

    Science.gov Websites

    ENERGY MICRO POWER SYSTEMS ENERGY EFFICIENCY SMART GRID POWER ELECTRONICS RENEWABLE ENERGY NUCLEAR ENERGY most efficient use of our natural resources while minimizing environmental impacts and our dependence

  17. The energy audit process for universities accommodation in Malaysia: a preliminary study

    NASA Astrophysics Data System (ADS)

    Dzulkefli Muhammad, Hilmi

    2017-05-01

    The increase of energy consumption in the Malaysian Universities has raised national concerns due to the fact that its consumption increase government fiscal budget and at the same time contributes negative impacts towards the environment. The purpose of this research is to focus on the process of energy audit conducted in the Malaysian universities and to identify the significant practice that can improve energy consumption of the selected universities. The significant criteria in energy audit may be found by comparing the energy implementation process of selected Malaysian universities through the investigation of energy consumption behavior and the number of electrical appliances, equipment, machinery and buildings activities that have an impact on energy consumption that can improve energy-efficiency in building. The Energy Efficiency Index (EEI) will be used as an indicator and combined with the suggested application of HOMER software to obtain solution and possible improvement of energy consumption during energy audit implementation. A document analysis approach will also be obtained in order to identify the best practice through the selected energy documentations. The result of this research may be used as a guideline for other universities that consume high energy in order to help improving the implementation of energy audit process in their universities.

  18. The Center for Multiscale Plasma Dynamics, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gombosi, Tamas I.

    The University of Michigan participated in the joint UCLA/Maryland fusion science center focused on plasma physics problems for which the traditional separation of the dynamics into microscale and macroscale processes breaks down. These processes involve large scale flows and magnetic fields tightly coupled to the small scale, kinetic dynamics of turbulence, particle acceleration and energy cascade. The interaction between these vastly disparate scales controls the evolution of the system. The enormous range of temporal and spatial scales associated with these problems renders direct simulation intractable even in computations that use the largest existing parallel computers. Our efforts focused on twomore » main problems: the development of Hall MHD solvers on solution adaptive grids and the development of solution adaptive grids using generalized coordinates so that the proper geometry of inertial confinement can be taken into account and efficient refinement strategies can be obtained.« less

  19. Automotive Thermoelectric Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M.G. Reynolds, K. Rober, F.R. Stabler; Marlow, JPL, Dana, Delphi E&S, Eberspaecher, Molycorp, University of Washington, Purdue University, Michigan State University, ORNL, BNL. Supported by US DOE.

  20. Dissipation of Energy in a Concentric ER Clutch and its Refined Quasi-Static Model

    NASA Astrophysics Data System (ADS)

    Oravský, Vladimír

    A concentric electrorheological clutch (ERC) constituting the central part of a broader system: electro-hydro-aggregate (EHA) with an electrodrive (ED) on one side and a loading machine (brake B) on the other side is considered. The corresponding quasi-static model (at constant load and speed) is investigated and refined by insertion of power absorbed by electrorheological fluid (ERF). This increases the number of nondimensional parameters of the model from 8 to 12. Classification of several kinds of dissipation of energy in ERC is presented. Description and analysis of dissipation of the first kind are given more in detail and illustrated by synoptical diagrams. Also two definitions of efficiency of ERC are introduced and discussed.

  1. Potential reduction of energy consumption in public university library

    NASA Astrophysics Data System (ADS)

    Noranai, Z.; Azman, ADF

    2017-09-01

    Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.

  2. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  3. Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors

    PubMed Central

    Huang, Guoji; Hou, Chengyi; Shao, Yuanlong; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang; Zhu, Meifang

    2014-01-01

    Graphene fibres are continuously prepared from universal graphene oxide precursors by a novel hydrogel-assisted spinning method. With assistance of a rolling process, meters of ribbon-like GFs, or GRs with improved conductivity, tensile strength, and a long-range ordered compact layer structure are successfully obtained. Furthermore, we refined our spinning process to obtained elastic GRs with a mixing microstructure and exceptional elasticity, which may provide a platform for electronic skins and wearable electronics, sensors, and energy devices. PMID:24576869

  4. Techno-Economic Analysis of the Deacetylation and Disk Refining Process. Characterizing the Effect of Refining Energy and Enzyme Usage on Minimum Sugar Selling Price and Minimum Ethanol Selling Price

    DOE PAGES

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; ...

    2015-10-29

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibilitymore » of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128–468 kWh/ODMT), cellulase (Novozyme’s CTec3) loading (11.6–28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme’s HTec3) loading (0–5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL’s 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.« less

  5. Techno-Economic Analysis of the Deacetylation and Disk Refining Process. Characterizing the Effect of Refining Energy and Enzyme Usage on Minimum Sugar Selling Price and Minimum Ethanol Selling Price

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibilitymore » of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128–468 kWh/ODMT), cellulase (Novozyme’s CTec3) loading (11.6–28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme’s HTec3) loading (0–5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL’s 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.« less

  6. Techno-economic analysis of the deacetylation and disk refining process: characterizing the effect of refining energy and enzyme usage on minimum sugar selling price and minimum ethanol selling price.

    PubMed

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; Sabourin, Marc; Tucker, Melvin P; Tao, Ling

    2015-01-01

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.

  7. Efficacy and efficiency in formative assessment: an informed reflection on the value of partial marking

    NASA Astrophysics Data System (ADS)

    Seaton, Katherine A.

    2013-10-01

    This article presents an informed reflection on the evolution of teacher-to-learner feedback provided on written assignments in first-year university mathematics subjects. The feedback provided addresses not only mathematical accuracy and skills, but also the development of graduate attributes, such as discipline-appropriate written communication. Effective and efficient practices that have been collectively refined and enhanced, for more than a decade, are described and examined. This model for formative assessment in mathematics subjects is critiqued in the light of the scholarly literature on feedback and assessment.

  8. Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Lowengrub, John; Shen, Jie; Wang, Cheng; Wise, Steven

    2018-07-01

    We develop efficient energy stable numerical methods for solving isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization. The scheme, which involves adaptive mesh refinement and a nonlinear multigrid finite difference method, is constructed based on a convex splitting approach. We prove that, for the isotropic Cahn-Hilliard system with the Willmore regularization, the total free energy of the system is non-increasing for any time step and mesh sizes. A straightforward modification of the scheme is then used to solve the regularized strongly anisotropic Cahn-Hilliard system, and it is numerically verified that the discrete energy of the anisotropic system is also non-increasing, and can be efficiently solved by using the modified stable method. We present numerical results in both two and three dimensions that are in good agreement with those in earlier work on the topics. Numerical simulations are presented to demonstrate the accuracy and efficiency of the proposed methods.

  9. Barriers to Energy Efficiency and the Uptake of Green Revolving Funds in Canadian Universities

    ERIC Educational Resources Information Center

    Maiorano, John; Savan, Beth

    2015-01-01

    Purpose: The purpose of this paper is to investigate the barriers to the implementation of energy efficiency projects in Canadian universities, including access to capital, bounded rationality, hidden costs, imperfect information, risk and split incentives. Methods to address these barriers are investigated, including evaluating the efficacy of…

  10. Shared Savings Financing for College and University Energy Efficiency Investments.

    ERIC Educational Resources Information Center

    Business Officer, 1984

    1984-01-01

    Shared savings arrangements for campus energy efficient investments are discussed. Shared savings is a term for an agreement in which a private company offers to implement an energy efficiency program, including capital improvements, in exchange for a portion of the energy cost savings. Attention is directed to: types of shared savings…

  11. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  12. Production of multi-fiber modifying enzyme from Mamillisphaeria sp. for refining of recycled paper pulp.

    PubMed

    Laothanachareon, Thanaporn; Khonzue, Parichart; Rattanaphan, Nakul; Tinnasulanon, Phungjai; Apawasin, Saowanee; Paemanee, Atchara; Ruanglek, Vasimon; Tanapongpipat, Sutipa; Champreda, Verawat; Eurwilaichitr, Lily

    2011-01-01

    Enzymatic modification of pulp is receiving increasing interest for energy reduction at the refining step of the paper-making process. In this study, the production of a multi-fiber modifying enzyme from Mamillisphaeria sp. BCC8893 was optimized in submerged fermentation using a response-surface methodology. Maximal production was obtained in a complex medium comprising wheat bran, soybean, and rice bran supplemented with yeast extract at pH 6.0 and a harvest time of 7 d, resulting in 9.2 IU/mL of carboxymethyl cellulase (CMCase), 14.9 IU/mL of filter paper activity (FPase), and 242.7 IU/mL of xylanase. Treatment of old corrugated container pulp at 0.2-0.3 IU of CMCase/g of pulp led to reductions in refining energy of 8.5-14.8%. The major physical properties were retained, including tensile and compression strength. Proteomic analysis showed that the enzyme was a complex composite of endo-glucanases, cellobiohydrolases, beta-1,4-xylanases, and beta-glucanases belonging to various glycosyl hydrolase families, suggestive of cooperative enzyme action in fiber modification, providing the basis for refining efficiency.

  13. The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules.

    PubMed

    Luginbühl, P; Güntert, P; Billeter, M; Wüthrich, K

    1996-09-01

    A new program for molecular dynamics (MD) simulation and energy refinement of biological macromolecules, OPAL, is introduced. Combined with the supporting program TRAJEC for the analysis of MD trajectories, OPAL affords high efficiency and flexibility for work with different force fields, and offers a user-friendly interface and extensive trajectory analysis capabilities. Salient features are computational speeds of up to 1.5 GFlops on vector supercomputers such as the NEC SX-3, ellipsoidal boundaries to reduce the system size for studies in explicit solvents, and natural treatment of the hydrostatic pressure. Practical applications of OPAL are illustrated with MD simulations of pure water, energy minimization of the NMR structure of the mixed disulfide of a mutant E. coli glutaredoxin with glutathione in different solvent models, and MD simulations of a small protein, pheromone Er-2, using either instantaneous or time-averaged NMR restraints, or no restraints.

  14. The Influence of Grain Refiners on the Efficiency of Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Towsey, Nicholas; Schneider, Wolfgang; Krug, Hans-Peter; Hardman, Angela; Keegan, Neil J.

    An extensive program of work has been carried out to evaluate the efficiency of ceramic foam filters under carefully controlled conditions. Work reported at previous TMS meetings showed that in the absence of grain refiners, ceramic foam filters have the capacity for high filtration efficiency and consistent, reliable performance. The current phase of the investigation focuses on the impact grain refiner additions have on filter performance. The high filtration efficiencies obtained using 50 or 80ppi CFF's in the absence of grain refiners diminish when Al-3%Ti-1%B grain refiners are added. This, together with the impact of incoming inclusion loading on filter performance and the level of grain refiner addition are considered in detail. The new generation Al-3%Ti-0.15%C grain refiner has also been included. At typical addition levels (1kg/tonne) the effect on filter efficiency is similar to that for TiB2based grain refiners. The work was again conducted on a production scale using AA1050 alloy. Metal quality was determined using LiMCA and PoDFA. Spent filters were also analysed.

  15. Options to improve energy efficiency for educational building

    NASA Astrophysics Data System (ADS)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to identify the most cost effective combinations of energy efficiency strategies. The model analyzes and compares the payback periods of all proposed Energy Performance Measures (EPMs) to determine which has the greatest potential value.

  16. Using Energy Profiles to Identify University Energy Reduction Opportunities

    ERIC Educational Resources Information Center

    Maistry, Nandarani; Annegarn, Harold

    2016-01-01

    Purpose: The purpose of this paper is to outline efforts at the University of Johannesburg, a large metropolitan university in Gauteng province, to examine energy efficiency within the context of the green campus movement, through the analysis of electricity consumption patterns. The study is particularly relevant in light of the cumulative 230…

  17. Demonstration of the Health Literacy Universal Precautions Toolkit

    PubMed Central

    Mabachi, Natabhona M.; Cifuentes, Maribel; Barnard, Juliana; Brega, Angela G.; Albright, Karen; Weiss, Barry D.; Brach, Cindy; West, David

    2016-01-01

    The Agency for Healthcare Research and Quality Health Literacy Universal Precautions Toolkit was developed to help primary care practices assess and make changes to improve communication with and support for patients. Twelve diverse primary care practices implemented assigned tools over a 6-month period. Qualitative results revealed challenges practices experienced during implementation, including competing demands, bureaucratic hurdles, technological challenges, limited quality improvement experience, and limited leadership support. Practices used the Toolkit flexibly and recognized the efficiencies of implementing tools in tandem and in coordination with other quality improvement initiatives. Practices recommended reducing Toolkit density and making specific refinements. PMID:27232681

  18. Demonstration of the Health Literacy Universal Precautions Toolkit: Lessons for Quality Improvement.

    PubMed

    Mabachi, Natabhona M; Cifuentes, Maribel; Barnard, Juliana; Brega, Angela G; Albright, Karen; Weiss, Barry D; Brach, Cindy; West, David

    2016-01-01

    The Agency for Healthcare Research and Quality Health Literacy Universal Precautions Toolkit was developed to help primary care practices assess and make changes to improve communication with and support for patients. Twelve diverse primary care practices implemented assigned tools over a 6-month period. Qualitative results revealed challenges practices experienced during implementation, including competing demands, bureaucratic hurdles, technological challenges, limited quality improvement experience, and limited leadership support. Practices used the Toolkit flexibly and recognized the efficiencies of implementing tools in tandem and in coordination with other quality improvement initiatives. Practices recommended reducing Toolkit density and making specific refinements.

  19. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  20. Integrating the Technology Acceptance Model and Diffusion of Innovation: Factors Promoting Interest in Energy Efficient and Renewable Energy Technologies at Military Installations, Federal Facilities and Land-Grant Universities

    ERIC Educational Resources Information Center

    Dudik, C. E. Jane

    2017-01-01

    Energy managers are tasked with identifying energy savings opportunities and promoting energy independence. Energy-efficient (EE) and renewable-energy (RE) technology demonstrations enable energy managers to evaluate new energy technologies and adopt those that appear most effective. This study examined whether energy technology demonstrations…

  1. The terrestrial evolution of metabolism and life – by the numbers

    PubMed Central

    O'Kelly, Gregory C

    2009-01-01

    Background Allometric scaling relating body mass to metabolic rate by an exponent of the former (Kleiber's Law), commonly known as quarter-power scaling (QPS), is controversial for claims made on its behalf, especially that of its universality for all life. As originally formulated, Kleiber was based upon the study of heat; metabolic rate is quantified in watts (or calories per unit time). Techniques and technology for metabolic energy measurement have been refined but the math has not. QPS is susceptible to increasing deviations from theoretical predictions to data, suggesting that there is no single, universal exponent relevant to all of life. QPS's major proponents continue to fail to make good on hints of the power of the equation for understanding aging. Essentialist-deductivist view If the equation includes a term for efficiency in the exponent, thereby ruling out thermogenesis as part of metabolism, its heuristic power is greatly amplified, and testable deductive inferences are generated. If metabolic rate is measured in watts and metabolic efficiency is a redox-coupling ratio, then the equation is essentially about the energy storage capacity of organic molecules. The equation is entirely about the essentials of all life: water, salt, organic molecules, and energy. The water and salt provide an electrochemical salt bridge for the transmission of energy into and through the organic components. The equation, when graphed, treats the organic structure as battery-like, and relates its recharge rate and electrical properties to its longevity. Conclusion The equation models the longevity-extending effects of caloric restriction, and shows where those effects wane. It models the immortality of some types of cells, and supports the argument for the origin of life being at submarine volcanic vents and black smokers. It clarifies how early life had to change to survive drifting to the surface, and what drove mutations in its ascent. It does not deal with cause and effect; it deals with variables in the essentials of all life, and treats life as an epiphenomenon of those variables. The equation describes how battery discharge into the body can increase muscle mass, promote fitness, and extend life span, among other issues. PMID:19712477

  2. Practicing Sustainability in an Urban University: A Case Study of a Behavior Based Energy Conservation Project

    ERIC Educational Resources Information Center

    Chan, Stuart; Dolderman, Dan; Savan, Beth; Wakefield, Sarah

    2012-01-01

    This case study of the University of Toronto Sustainability Office's energy conservation project, Rewire, explores the implementation of a social marketing campaign that encourages energy efficient behavior. Energy conservation activities have reached approximately 3,000 students and staff members annually, and have saved electricity, thermal…

  3. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It beginsmore » with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.« less

  4. AMMOS2: a web server for protein–ligand–water complexes refinement via molecular mechanics

    PubMed Central

    Labbé, Céline M.; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O.; Pajeva, Ilza

    2017-01-01

    Abstract AMMOS2 is an interactive web server for efficient computational refinement of protein–small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein–ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein–ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein–ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein–ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein–ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein–ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. PMID:28486703

  5. Verification of fluid-structure-interaction algorithms through the method of manufactured solutions for actuator-line applications

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh; Sprague, Michael

    2017-11-01

    Demonstrating expected convergence rates with spatial- and temporal-grid refinement is the ``gold standard'' of code and algorithm verification. However, the lack of analytical solutions and generating manufactured solutions presents challenges for verifying codes for complex systems. The application of the method of manufactured solutions (MMS) for verification for coupled multi-physics phenomena like fluid-structure interaction (FSI) has only seen recent investigation. While many FSI algorithms for aeroelastic phenomena have focused on boundary-resolved CFD simulations, the actuator-line representation of the structure is widely used for FSI simulations in wind-energy research. In this work, we demonstrate the verification of an FSI algorithm using MMS for actuator-line CFD simulations with a simplified structural model. We use a manufactured solution for the fluid velocity field and the displacement of the SMD system. We demonstrate the convergence of both the fluid and structural solver to second-order accuracy with grid and time-step refinement. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  6. The Efficient Windows Collaborative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  7. Industrial Assessment Center Helps Boost Efficiency for Small and Medium Manufacturers

    ScienceCinema

    Johnson, Mark; Friedman, David

    2018-06-12

    The Industrial Assessment Center program helps small and medium manufacturers boost efficiency and save energy. It pairs companies with universities as students perform energy assessments and provide recommendations to improve their facilities.

  8. Industrial Assessment Center Helps Boost Efficiency for Small and Medium Manufacturers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Mark; Friedman, David

    The Industrial Assessment Center program helps small and medium manufacturers boost efficiency and save energy. It pairs companies with universities as students perform energy assessments and provide recommendations to improve their facilities.

  9. Research on natural lighting in reading spaces of university libraries in Jinan under the perspective of energy-efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zengzhang

    2017-11-01

    The natural lighting design in the reading spaces of university libraries not only influences physical and mental health of readers but also concerns the energy consumption of the libraries. The scientific and rational design of natural lighting is the key to the design of energy saving for physical environment of the reading space. The paper elaborates the present situation and existed problems of natural lighting in reading spaces of university libraries across Jinan region based on characteristics of light climate of Jinan region and concrete utilization of reading spaces in university libraries, and combining field measurement, survey, research and data analysis of reading spaces in Shandong Women’s University’s library. The paper, under the perspective of energy-efficiency, puts forward proposals to improve natural lighting in the reading spaces of university libraries from five aspects, such as adjustment of interior layout, optimization of outer windows design, employment of the reflector panel, design lighting windows on inner walls and utilization of adjustable sun shading facilities.

  10. Tsunami modelling with adaptively refined finite volume methods

    USGS Publications Warehouse

    LeVeque, R.J.; George, D.L.; Berger, M.J.

    2011-01-01

    Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.

  11. Alternative Fuels Data Center

    Science.gov Websites

    Department of Economic and Community Affairs provides low-interest energy efficiency loans through its Local Government Energy Loan program to local governments and educational institutions. Eligible energy efficiency conversion costs. Local governments and public colleges and universities can borrow up to $350,000; K-12

  12. Stanford University: The Building Energy Retrofit Programs. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Flynn, Emily

    2011-01-01

    Stanford University's Energy Retrofit Program was created in 1993 to target resource reduction and conservation focused projects on campus. Fahmida Ahmed, Associate Director of the Department of Sustainability and Energy Management, says that Stanford has been investing in sustainability and energy-efficiency since the late 1970s, longer than many…

  13. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    PubMed

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  14. Large-eddy simulation of wind turbine wake interactions on locally refined Cartesian grids

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2014-11-01

    Performing high-fidelity numerical simulations of turbulent flow in wind farms remains a challenging issue mainly because of the large computational resources required to accurately simulate the turbine wakes and turbine/turbine interactions. The discretization of the governing equations on structured grids for mesoscale calculations may not be the most efficient approach for resolving the large disparity of spatial scales. A 3D Cartesian grid refinement method enabling the efficient coupling of the Actuator Line Model (ALM) with locally refined unstructured Cartesian grids adapted to accurately resolve tip vortices and multi-turbine interactions, is presented. Second order schemes are employed for the discretization of the incompressible Navier-Stokes equations in a hybrid staggered/non-staggered formulation coupled with a fractional step method that ensures the satisfaction of local mass conservation to machine zero. The current approach enables multi-resolution LES of turbulent flow in multi-turbine wind farms. The numerical simulations are in good agreement with experimental measurements and are able to resolve the rich dynamics of turbine wakes on grids containing only a small fraction of the grid nodes that would be required in simulations without local mesh refinement. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the National Science Foundation under Award number NSF PFI:BIC 1318201.

  15. 77 FR 261 - Notice of Request for Extension of a Currently Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... small businesses to become more energy efficient and to use renewable energy technologies and resources... colleges and universities or other institutions of higher learning; rural electric cooperatives; public... to improve the energy efficiency of the operations of the agricultural producers and rural small...

  16. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    NASA Astrophysics Data System (ADS)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  17. Demonstration & Testing of ClimaStat for Improved DX Air-Conditioning Efficiency

    DTIC Science & Technology

    2013-04-01

    impaired productivity and increased transmission of viruses and bacteria. Allowing indoor RH to rise above an average of 60%rh or a peak of 70%rh can...testing of an engineering prototype culminated in issuance of US Patent 6,427,454 in 2002. Then, development, testing and refinement of a production ...field tests on four Trane (American Standard) systems at a university site were concluded in 2009. A production prototype was constructed based on

  18. EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.

    The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices withmore » efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.« less

  19. A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators

    NASA Astrophysics Data System (ADS)

    Rouzegar, J.; Abbasi, A.

    2018-03-01

    This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.

  20. KoBaMIN: a knowledge-based minimization web server for protein structure refinement.

    PubMed

    Rodrigues, João P G L M; Levitt, Michael; Chopra, Gaurav

    2012-07-01

    The KoBaMIN web server provides an online interface to a simple, consistent and computationally efficient protein structure refinement protocol based on minimization of a knowledge-based potential of mean force. The server can be used to refine either a single protein structure or an ensemble of proteins starting from their unrefined coordinates in PDB format. The refinement method is particularly fast and accurate due to the underlying knowledge-based potential derived from structures deposited in the PDB; as such, the energy function implicitly includes the effects of solvent and the crystal environment. Our server allows for an optional but recommended step that optimizes stereochemistry using the MESHI software. The KoBaMIN server also allows comparison of the refined structures with a provided reference structure to assess the changes brought about by the refinement protocol. The performance of KoBaMIN has been benchmarked widely on a large set of decoys, all models generated at the seventh worldwide experiments on critical assessment of techniques for protein structure prediction (CASP7) and it was also shown to produce top-ranking predictions in the refinement category at both CASP8 and CASP9, yielding consistently good results across a broad range of model quality values. The web server is fully functional and freely available at http://csb.stanford.edu/kobamin.

  1. Absolute calibration of a multichannel plate detector for low energy O, O-, and O+

    NASA Astrophysics Data System (ADS)

    Stephen, T. M.; Peko, B. L.

    2000-03-01

    Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.

  2. i3Drefine software for protein 3D structure refinement and its assessment in CASP10.

    PubMed

    Bhattacharya, Debswapna; Cheng, Jianlin

    2013-01-01

    Protein structure refinement refers to the process of improving the qualities of protein structures during structure modeling processes to bring them closer to their native states. Structure refinement has been drawing increasing attention in the community-wide Critical Assessment of techniques for Protein Structure prediction (CASP) experiments since its addition in 8(th) CASP experiment. During the 9(th) and recently concluded 10(th) CASP experiments, a consistent growth in number of refinement targets and participating groups has been witnessed. Yet, protein structure refinement still remains a largely unsolved problem with majority of participating groups in CASP refinement category failed to consistently improve the quality of structures issued for refinement. In order to alleviate this need, we developed a completely automated and computationally efficient protein 3D structure refinement method, i3Drefine, based on an iterative and highly convergent energy minimization algorithm with a powerful all-atom composite physics and knowledge-based force fields and hydrogen bonding (HB) network optimization technique. In the recent community-wide blind experiment, CASP10, i3Drefine (as 'MULTICOM-CONSTRUCT') was ranked as the best method in the server section as per the official assessment of CASP10 experiment. Here we provide the community with free access to i3Drefine software and systematically analyse the performance of i3Drefine in strict blind mode on the refinement targets issued in CASP10 refinement category and compare with other state-of-the-art refinement methods participating in CASP10. Our analysis demonstrates that i3Drefine is only fully-automated server participating in CASP10 exhibiting consistent improvement over the initial structures in both global and local structural quality metrics. Executable version of i3Drefine is freely available at http://protein.rnet.missouri.edu/i3drefine/.

  3. 78 FR 16493 - ExxonMobil Canada Energy, Flint Hills Resources Canada, LP, Imperial Oil, NOVA Chemical (Canada...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    .... Paul Park Refining Co. LLC, Suncor Energy Marketing, Inc., United Refining Company v. Enbridge Energy..., Inc., Phillips 66 Canada ULC, St. Paul Park Refining Co. LLC, Suncor Energy Marketing, Inc., and... assistance with any FERC Online service, please email [email protected] , or call (866) 208-3676...

  4. Modern Efficiencies for Healthy Schools

    ERIC Educational Resources Information Center

    VanOort, Adam

    2012-01-01

    Facility managers everywhere are tasked with improving energy efficiency to control costs. Those strides cannot be achieved at the expense of system performance and reliability, or the comfort of the people within those properties. There are few places where this is truer than in schools and universities. K-12 schools and university lecture spaces…

  5. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.

    PubMed

    Cushing, Scott K; Wu, Nianqiang

    2016-02-18

    Plasmonics allows extraordinary control of light, making it attractive for application in solar energy harvesting. In metal-semiconductor heterojunctions, plasmons can enhance photoconversion in the semiconductor via three mechanisms, including light trapping, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET). To understand the plasmonic enhancement, the metal's geometry, constituent metal, and interface must be viewed in terms of the effects on the plasmon's dephasing and decay route. To simplify design of plasmonic metal-semiconductor heterojunctions for high-efficiency solar energy conversion, the parameters controlling the plasmonic enhancement can be distilled to the dephasing time. The plasmonic geometry can then be further refined to optimize hot carrier transfer, PIRET, or light trapping.

  6. Enabling Energy Efficiency (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coltrin, Mike; Simmons, Jerry

    "Enabling Energy Efficiency" was submitted by the EFRC for Solid-State Lighting Science (SSLS) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. SSLS is directed by Mike Coltrin (Acting) and Jerry Simmons at Sandia National Laboratories, and is a partnership of scientists from eight institutions: Sandia National Laboratories (lead); California Institute of Technology; Los Alamos National Laboratoryl; University of New Mexico; Northwestern University; Philips Lumileds Lighting; University of Californiamore » Merced and Santa Barbara. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  7. Enabling Energy Efficiency (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Coltrin, Mike (Acting Director, EFRC for Solid State Lighting Science); Simmons, Jerry; SSLS Staff

    2017-12-09

    'Enabling Energy Efficiency' was submitted by the EFRC for Solid-State Lighting Science (SSLS) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. SSLS is directed by Mike Coltrin (Acting) and Jerry Simmons at Sandia National Laboratories, and is a partnership of scientists from eight institutions: Sandia National Laboratories (lead); California Institute of Technology; Los Alamos National Laboratory; University of Massachusetts, Lowell; University of New Mexico; Northwestern University; Philips Lumileds Lighting; and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  8. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems.

    PubMed

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-10-28

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

  9. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems

    PubMed Central

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-01-01

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems’ architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation. PMID:27801829

  10. Principles of minimum cost refining for optimum linerboard strength

    Treesearch

    Thomas J. Urbanik; Jong Myoung Won

    2006-01-01

    The mechanical properties of paper at a single basis weight and a single targeted refining freeness level have traditionally been used to compare papers. Understanding the economics of corrugated fiberboard requires a more global characterization of the variation of mechanical properties and refining energy consumption with freeness. The cost of refining energy to...

  11. A New Curriculum: Energy Outsourcing Brings Cost and Efficiency Benefits.

    ERIC Educational Resources Information Center

    Dickerman, Robert N.

    2002-01-01

    Considers the value of colleges and universities upgrading their energy infrastructure and using outsourcing energy management functions to save money and gain greater control of energy operations without substantial investments in staff and resources. (GR)

  12. Sustainability Actions in Higher Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This brochure details common sustainability actions taken by universities to reduce their energy consumption. Some of the most common actions include energy efficiency (existing building commissioning; lighting; heating, ventilation, and air conditioning upgrades; plug loads) and renewable energy (RE) (on-site or off-site solar deployment, RE procurement). We focus on the costs and benefits of energy efficiency measures and RE through the brochure while highlighting resources where readers can find more information.

  13. Investigation of Air Transportation Technology at Ohio University, 1989-1990

    NASA Technical Reports Server (NTRS)

    Lilley, Robert W.

    1990-01-01

    The activities of the participants in the Joint University Program (JUP) at Ohio University are briefly surveyed. During 1989 to 1990, five topics received emphasis. A spectrum-efficient weather data uplink system was designed, constructed, and flight tested. An integrated Global Positioning System/Inertial Navigation System (GPS/INS) study continued, utilizing the Redundant strapdown Inertial Measurement Unit (IMU) on loan from NASA. The Ridge Regression theory was refined and applied to air navigation scenarios. System Identification theory was applied to GPS data to point the way to better understanding of the effects of Selective Availability on civilian users of this navigation system. An analysis of thought-related (electroencephalographic) signals for application to control of computer systems that could have significance in aiding paraplegics or for hands-off systems control in industrial or air traffic control areas was carried out.

  14. Energy index decomposition methodology at the plant level

    NASA Astrophysics Data System (ADS)

    Kumphai, Wisit

    Scope and method of study. The dissertation explores the use of a high level energy intensity index as a facility-level energy performance monitoring indicator with a goal of developing a methodology for an economically based energy performance monitoring system that incorporates production information. The performance measure closely monitors energy usage, production quantity, and product mix and determines the production efficiency as a part of an ongoing process that would enable facility managers to keep track of and, in the future, be able to predict when to perform a recommissioning process. The study focuses on the use of the index decomposition methodology and explored several high level (industry, sector, and country levels) energy utilization indexes, namely, Additive Log Mean Divisia, Multiplicative Log Mean Divisia, and Additive Refined Laspeyres. One level of index decomposition is performed. The indexes are decomposed into Intensity and Product mix effects. These indexes are tested on a flow shop brick manufacturing plant model in three different climates in the United States. The indexes obtained are analyzed by fitting an ARIMA model and testing for dependency between the two decomposed indexes. Findings and conclusions. The results concluded that the Additive Refined Laspeyres index decomposition methodology is suitable to use on a flow shop, non air conditioned production environment as an energy performance monitoring indicator. It is likely that this research can be further expanded in to predicting when to perform a recommissioning process.

  15. The Cummins advanced turbocompound diesel engine evaluation

    NASA Technical Reports Server (NTRS)

    Hoehne, J. L.; Werner, J. R.

    1982-01-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  16. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchangermore » was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.« less

  17. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  18. An Efficient Means of Adaptive Refinement Within Systems of Overset Grids

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    1996-01-01

    An efficient means of adaptive refinement within systems of overset grids is presented. Problem domains are segregated into near-body and off-body fields. Near-body fields are discretized via overlapping body-fitted grids that extend only a short distance from body surfaces. Off-body fields are discretized via systems of overlapping uniform Cartesian grids of varying levels of refinement. a novel off-body grid generation and management scheme provides the mechanism for carrying out adaptive refinement of off-body flow dynamics and solid body motion. The scheme allows for very efficient use of memory resources, and flow solvers and domain connectivity routines that can exploit the structure inherent to uniform Cartesian grids.

  19. Energy Efficiency of Higher Education Buildings: A Case Study

    ERIC Educational Resources Information Center

    Soares, Nelson; Pereira, Luísa Dias; Ferreira, João; Conceição, Pedro; da Silva, Patrícia Pereira

    2015-01-01

    Purpose: This paper aims to propose an energy efficiency plan (with technical and behavioural improvement measures) for a Portuguese higher education building--the Teaching Building of the Faculty of Economics of the University of Coimbra (FEUC). Design/methodology/approach: The study was developed in the context of both the "Green…

  20. University of Colorado at Boulder: Energy and Climate Revolving Fund. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Caine, Rebecca

    2012-01-01

    The University of Colorado at Boulder's student run Environmental Center leads the campus' sustainability efforts. The Center created the Energy and Climate Revolving Fund (ECRF) in 2007 to finance energy-efficiency upgrades. The ECRF functions as a source of funding for project loans and provides a method of financing projects that seeks to save…

  1. Universal optimal working cycles of molecular motors.

    PubMed

    Efremov, Artem; Wang, Zhisong

    2011-04-07

    Molecular motors capable of directional track-walking or rotation are abundant in living cells, and inspire the emerging field of artificial nanomotors. Some biomotors can convert 90% of free energy from chemical fuels into usable mechanical work, and the same motors still maintain a speed sufficient for cellular functions. This study exposed a new regime of universal optimization that amounts to a thermodynamically best working regime for molecular motors but is unfamiliar in macroscopic engines. For the ideal case of zero energy dissipation, the universally optimized working cycle for molecular motors is infinitely slow like Carnot cycle for heat engines. But when a small amount of energy dissipation reduces energy efficiency linearly from 100%, the speed is recovered exponentially due to Boltzmann's law. Experimental data on a major biomotor (kinesin) suggest that the regime of universal optimization has been largely approached in living cells, underpinning the extreme efficiency-speed trade-off in biomotors. The universal optimization and its practical approachability are unique thermodynamic advantages of molecular systems over macroscopic engines in facilitating motor functions. The findings have important implications for the natural evolution of biomotors as well as the development of artificial counterparts.

  2. Educating the Next Generation of Energy-Savvy Workforce

    ERIC Educational Resources Information Center

    Wu, Bin; Abad, Jorge

    2014-01-01

    This paper reports a problem-based learning model for the training of university students in the area of industrial energy efficiency, and discusses its context, contents, and the results from its implementation. The impact has been significant, with hundreds of university graduates trained and many of them now working in industry, leading their…

  3. Prospective CO 2 saline resource estimation methodology: Refinement of existing US-DOE-NETL methods based on data availability

    DOE PAGES

    Goodman, Angela; Sanguinito, Sean; Levine, Jonathan S.

    2016-09-28

    Carbon storage resource estimation in subsurface saline formations plays an important role in establishing the scale of carbon capture and storage activities for governmental policy and commercial project decision-making. Prospective CO 2 resource estimation of large regions or subregions, such as a basin, occurs at the initial screening stages of a project using only limited publicly available geophysical data, i.e. prior to project-specific site selection data generation. As the scale of investigation is narrowed and selected areas and formations are identified, prospective CO 2 resource estimation can be refined and uncertainty narrowed when site-specific geophysical data are available. Here, wemore » refine the United States Department of Energy – National Energy Technology Laboratory (US-DOE-NETL) methodology as the scale of investigation is narrowed from very large regional assessments down to selected areas and formations that may be developed for commercial storage. In addition, we present a new notation that explicitly identifies differences between data availability and data sources used for geologic parameters and efficiency factors as the scale of investigation is narrowed. This CO 2 resource estimation method is available for screening formations in a tool called CO 2-SCREEN.« less

  4. Prospective CO 2 saline resource estimation methodology: Refinement of existing US-DOE-NETL methods based on data availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Angela; Sanguinito, Sean; Levine, Jonathan S.

    Carbon storage resource estimation in subsurface saline formations plays an important role in establishing the scale of carbon capture and storage activities for governmental policy and commercial project decision-making. Prospective CO 2 resource estimation of large regions or subregions, such as a basin, occurs at the initial screening stages of a project using only limited publicly available geophysical data, i.e. prior to project-specific site selection data generation. As the scale of investigation is narrowed and selected areas and formations are identified, prospective CO 2 resource estimation can be refined and uncertainty narrowed when site-specific geophysical data are available. Here, wemore » refine the United States Department of Energy – National Energy Technology Laboratory (US-DOE-NETL) methodology as the scale of investigation is narrowed from very large regional assessments down to selected areas and formations that may be developed for commercial storage. In addition, we present a new notation that explicitly identifies differences between data availability and data sources used for geologic parameters and efficiency factors as the scale of investigation is narrowed. This CO 2 resource estimation method is available for screening formations in a tool called CO 2-SCREEN.« less

  5. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    PubMed

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. USE Efficiency: an innovative educational programme for energy efficiency in buildings

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.

    2017-10-01

    Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.

  7. Estimation of CO2-Equivalent Emission under the Copper Fire Refining Process

    NASA Astrophysics Data System (ADS)

    Chesnokov, Yu N.; Lisienko, V. G.; Holod, S. I.; Anufriev, V. P.; Lapteva, A. V.

    2017-06-01

    Non-ferrous metallurgy is one of the most energy-consuming and carbon-emissive sectors of industry. This is due to the fact that the volume of greenhouse gas (GHG) emissions is stipulated by energy consumption. Uralelectromed is a city-forming enterprise of the Verkhnyaya Pyshma. The situation is similar other cities of the old industrial regions of the Russian Federation (Krasnouralsk, Verkhnaya Salda, Karabash, etc.) Verkhnyaya Pyshma has many characteristics of “a clever city”. It can be compared to Hamburg where blister copper is being produced at the center of the city at a copper smelting plant Aurubis. Following the example of such ecologically clean country as Germany and in order to assess how modern energy-efficient low-carbon technologies can provide a favorable habitat, and an acceptable level of carbon footprint, the authors estimated the level of greenhouse gas, i.e., carbon dioxide emission produced by the Uralelectromed. The emission of greenhouse gas -carbon dioxide in the process of fire refining of blister copper has been calculated. The anode melting process consists of several stages where the most important ones are melting of charge, oxidation, and copper melt reduction. Calculations are based on taking into account the mass of burnt carbon of natural gas and the thermal dissociation of fuel oil. It implies that a complete combustion of carbon takes place. The specific value of carbon dioxide emission of the copper refining process is averaged 181 kg CO2 per 1 ton of anode copper.

  8. Gamma-Ray Burst Intensity Distributions

    NASA Technical Reports Server (NTRS)

    Band, David L.; Norris, Jay P.; Bonnell, Jerry T.

    2004-01-01

    We use the lag-luminosity relation to calculate self-consistently the redshifts, apparent peak bolometric luminosities L(sub B1), and isotropic energies E(sub iso) for a large sample of BATSE bursts. We consider two different forms of the lag-luminosity relation; for both forms the median redshift, for our burst database is 1.6. We model the resulting sample of burst energies with power law and Gaussian dis- tributions, both of which are reasonable models. The power law model has an index of a = 1.76 plus or minus 0.05 (95% confidence) as opposed to the index of a = 2 predicted by the simple universal jet profile model; however, reasonable refinements to this model permit much greater flexibility in reconciling predicted and observed energy distributions.

  9. Essays on Industry Response to Energy and Environmental Policy

    NASA Astrophysics Data System (ADS)

    Sweeney, Richard Leonard

    This dissertation consists of three essays on the relationship between firm incentives and energy and environmental policy outcomes. Chapters 1 and 2 study the impact of the 1990 Clean Air Act Amendments on the United States oil refining industry. This legislation imposed extensive restrictions on refined petroleum product markets, requiring select end users to purchase new cleaner versions of gasoline and diesel. In Chapter 2, I estimate the static impact of this intervention on refining costs, product prices and consumer welfare. Isolating these effects is complicated by several challenges likely to appear in other regulatory settings, including overlap between regulated and non-regulated markets and deviations from perfect competition. Using a rich database of refinery operations, I estimate a structural model that incorporates each of these dimensions, and then use this cost structure to simulate policy counterfactuals. I find that the policies increased gasoline production costs by 7 cents per gallon and diesel costs by 3 cents per gallon on average, although these costs varied considerably across refineries. As a result of these restrictions, consumers in regulated markets experienced welfare losses on the order of 3.7 billion per year, but this welfare loss was partially offset by gains of 1.5 billion dollars per year among consumers in markets not subject to regulation. The results highlight the importance of accounting for imperfect competition and market spillovers when assessing the cost of environmental regulation. Chapter 2 estimates the sunk costs incurred by United States oil refineries as a result of the low sulfur diesel program. The complex, regionally integrated nature of the industry poses many challenges for estimating these costs. I overcome them by placing the decision to invest in sulfur removal technology within the framework of a two period model and estimate the model using moment inequalities. I find that the regulation induced between 2.8 and 3.3 billion worth of investment in order to produce this new fuel. The results highlight the importance of accounting for sunk costs when evaluating environmental regulation, and suggest that the estimation approach used here might provide a viable way to estimate the sunk costs of other environmental policies. Chapter 3, coauthored with Hunt Allcott, turns the to retail market for water heaters to study the topic of energy efficiency. We run a natural field experiment at a large nationwide retailer to measure the effects of energy use information disclosure, customer rebates, and sales agent incentives on demand for energy efficient durable goods. We find that while a combination of large rebates plus sales incentives substantially increases market share, information and sales incentives alone each have zero statistical effect and explain at most a small fraction of the low baseline market share. Sales agents strategically comply only partially with the experiment, targeting information at more interested consumers but not discussing energy efficiency with the disinterested majority. These results suggest that at current prices in this context, seller-provided information is not a major barrier to energy efficiency investments. We theoretically and empirically explore the novel policy option of combining customer subsidies with government-provided sales incentives.

  10. i3Drefine Software for Protein 3D Structure Refinement and Its Assessment in CASP10

    PubMed Central

    Bhattacharya, Debswapna; Cheng, Jianlin

    2013-01-01

    Protein structure refinement refers to the process of improving the qualities of protein structures during structure modeling processes to bring them closer to their native states. Structure refinement has been drawing increasing attention in the community-wide Critical Assessment of techniques for Protein Structure prediction (CASP) experiments since its addition in 8th CASP experiment. During the 9th and recently concluded 10th CASP experiments, a consistent growth in number of refinement targets and participating groups has been witnessed. Yet, protein structure refinement still remains a largely unsolved problem with majority of participating groups in CASP refinement category failed to consistently improve the quality of structures issued for refinement. In order to alleviate this need, we developed a completely automated and computationally efficient protein 3D structure refinement method, i3Drefine, based on an iterative and highly convergent energy minimization algorithm with a powerful all-atom composite physics and knowledge-based force fields and hydrogen bonding (HB) network optimization technique. In the recent community-wide blind experiment, CASP10, i3Drefine (as ‘MULTICOM-CONSTRUCT’) was ranked as the best method in the server section as per the official assessment of CASP10 experiment. Here we provide the community with free access to i3Drefine software and systematically analyse the performance of i3Drefine in strict blind mode on the refinement targets issued in CASP10 refinement category and compare with other state-of-the-art refinement methods participating in CASP10. Our analysis demonstrates that i3Drefine is only fully-automated server participating in CASP10 exhibiting consistent improvement over the initial structures in both global and local structural quality metrics. Executable version of i3Drefine is freely available at http://protein.rnet.missouri.edu/i3drefine/. PMID:23894517

  11. Gross wood characteristics affecting properties of handsheets made from loblolly pine refiner groundwood

    Treesearch

    Charles W. McMillin

    1968-01-01

    Specific refining energy and gross wood properties accounted for as much as 90% of the total variation in strength of handsheets made from 96 pulps disk-refined from chips of varying characteristics. Burst, tear, and breaking length were increased by applying high specific refining energy and using fast-grown wood of high latewood content but of relatively low density...

  12. Quantum-splitting oxide-based phosphors, method of producing, and rules for designing the same

    DOEpatents

    Setlur, Anant Achyut; Comanzo, Holly Ann; Srivastava, Alok Mani

    2003-09-16

    Strontium and strontium calcium aluminates and lanthanum and lanthanum magnesium borates activated with Pr.sup.3+ and Mn.sup.2+ exhibit characteristics of quantum-splitting phosphors. Improved quantum efficiency may be obtained by further doping with Gd.sup.3+. Refined rules for designing quantum-splitting phosphors include the requirement of incorporation of Gd.sup.3+ and Mn.sup.2+ in the host lattice for facilitation of energy migration.

  13. Quantifying Energy and Water Savings in the U.S. Residential Sector.

    PubMed

    Chini, Christopher M; Schreiber, Kelsey L; Barker, Zachary A; Stillwell, Ashlynn S

    2016-09-06

    Stress on water and energy utilities, including natural resource depletion, infrastructure deterioration, and growing populations, threatens the ability to provide reliable and sustainable service. This study presents a demand-side management decision-making tool to evaluate energy and water efficiency opportunities at the residential level, including both direct and indirect consumption. The energy-water nexus accounts for indirect resource consumption, including water-for-energy and energy-for-water. We examine the relationship between water and energy in common household appliances and fixtures, comparing baseline appliances to ENERGY STAR or WaterSense appliances, using a cost abatement analysis for the average U.S. household, yielding a potential annual per household savings of 7600 kWh and 39 600 gallons, with most upgrades having negative abatement cost. We refine the national average cost abatement curves to understand regional relationships, specifically for the urban environments of Los Angeles, Chicago, and New York. Cost abatement curves display per unit cost savings related to overall direct and indirect energy and water efficiency, allowing utilities, policy makers, and homeowners to consider the relationship between energy and water when making decisions. Our research fills an important gap of the energy-water nexus in a residential unit and provides a decision making tool for policy initiatives.

  14. Joint Peru/United States report on Peru/United States cooperative energy assessment. Volume 3. Annexes 2-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    This report presents the results of a brief study of industral, mining, and agricultural sector energy demands in Peru. The study establishes current energy demands and sectoral activities, and projects future energy needs through the year 2000. With respect to energy demands, the subsectors covered are: mining and non-ferrous metals, iron and steel, cement, oil refining, petrochemicals, fertilizers, and agriculture (major crops). Total energy demands for these subsectors are developed for 1976, 1985, and 2000, assuming full-capacity operation for the majority of the plants. Potential options developed for reducing energy use in these sectors are: increased coal use, improved energymore » efficiency in the manufacturing sector, use of agricultural wastes as fuel, possible displacement of oil by hydroelectricity, use of geothermal energy, increased use of water materials for the cement and construction industries, and possible promotion of cogeneration systems (electricity/steam). (MCW)« less

  15. Limits on passivating defects in semiconductors: the case of Si edge dislocations.

    PubMed

    Chan, Tzu-Liang; West, D; Zhang, S B

    2011-07-15

    By minimizing the free energy while constraining dopant density, we derive a universal curve that relates the formation energy (E(form)) of doping and the efficiency of defect passivation in terms of segregation of dopants at defect sites. The universal curve takes the simple form of a Fermi-Dirac distribution. Our imposed constraint defines a chemical potential that assumes the role of "Fermi energy," which sets the thermodynamic limit on the E(form) required to overcome the effect of entropy such that dopant segregation at defects in semiconductors can occur. Using Si edge dislocation as an example, we show by first-principles calculations how to map the experimentally measurable passivation efficiency to our calculated E(form) by using the universal curve for typical n- and p-type substitutional dopants. We show that n-type dopants are ineffective. Among p-type dopants, B can satisfy the thermodynamic limit while improving electronic properties.

  16. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics

    NASA Astrophysics Data System (ADS)

    Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin

    2015-12-01

    Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m-3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard `infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.

  17. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics.

    PubMed

    Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin

    2015-12-11

    Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.

  18. Indoor radon problem in energy efficient multi-storey buildings.

    PubMed

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Aerodynamic design optimization via reduced Hessian SQP with solution refining

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1995-01-01

    An all-at-once reduced Hessian Successive Quadratic Programming (SQP) scheme has been shown to be efficient for solving aerodynamic design optimization problems with a moderate number of design variables. This paper extends this scheme to allow solution refining. In particular, we introduce a reduced Hessian refining technique that is critical for making a smooth transition of the Hessian information from coarse grids to fine grids. Test results on a nozzle design using quasi-one-dimensional Euler equations show that through solution refining the efficiency and the robustness of the all-at-once reduced Hessian SQP scheme are significantly improved.

  20. The Louisiana State University waste-to-energy incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-26

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes aremore » produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.« less

  1. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  2. Analysis of Gamma-Ray Data from Solar Flares in Cycles 21 and 22

    NASA Technical Reports Server (NTRS)

    Vestrand, W. Thomas

    1998-01-01

    One of our primary accomplishments under grant NAGW-35381 was the systematic derivation and compilation, for the first time, of physical parameters for all gamma-ray flares detected by the SMM GRS during its ten year lifetime. The flare parameters derived from the gamma-ray spectra include: bremsstrahlung fluence and best-fit power-law parameters, narrow nuclear line fluence, positron annihilation line fluence, neutron capture line fluence, and an indication of whether or not greater than 10 MeV emissions were present. We combined this compilation of flare parameters with our plots of counting rate time histories and flare spectra to construct an atlas of gamma-ray flare characteristics. The atlas time histories display four energy bands: 56-199 kev, 298526 keV, 4-8 MeV, and 10-25 MeV. These energy bands respectively measure nonrelativistic bremsstrahlung, trans-relativistic bremsstrahlung, nuclear de-excitation, and ultra-relativistic bremsstrahlung. The atlas spectra show the integrated high-energy spectra measured for all GRS flares and dissects them into electron bremsstrahlung, positron annihilation and nuclear emission components. The atlas has been accepted for publication in the Astrophysical Journal Supplements and is currently in press. The atlas materials were also supplied to the Solar Data Analysis Center at Goddard Space Flight Center and were made available through a web site at the University of New Hampshire. Since a uniform methodology was adopted for deriving the flare parameters, this atlas will be very useful for future statistical and correlative studies of solar flares-three independent groups are presently using it to correlate interplanetary energetic particle measurements with our gamma-ray measurements. A better model for the response of the GRS instrument to high energy radiation was also developed. A refined response model was needed because the old model was not adequate for predicting the first and second escape peaks associated with strong nuclear lines nor could it accurately describe the Compton continuum shape. The new response was developed using a GEANT based simulation code and tested against preflight calibration data. The refinement of the response model and the removal of systematic errors now allow more detailed spectral studies of the GRS gamma-ray measurements. This refined response function was supplied to the Solar DAC at Goddard and was also made available via a web site at the University of New Hampshire.

  3. Team West Virginia/Rome Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korakakis, Dimitris

    Overall, the team, West Virginia University (WVU) and University of Rome Tor Vergata (UTV), has a goal of building an attractive, low-cost, energy-efficient solar-powered home that represents both the West Virginian and Italian cultures.

  4. Managing Campus Energy: Compromising between Rapid Needs and Environmental Requirement

    NASA Astrophysics Data System (ADS)

    Ambariyanto, Ambariyanto; Utama, Yos J.; Purwanto

    2018-02-01

    The utilization of energy, especially electricity at Diponegoro University campus continues to increase in line with the development of the university. This increase has a direct impact on the increased costs to be paid by the university. Some of the causes of increased utilization of electrical energy is the construction of new buildings to meet the needs, increased learning activities and education, research activities in the laboratory, and various other activities. On the other hand, the increase of energy utilization is considered not good from the environment point of view, especially the utilization of electrical energy coming from non sustainable resources. Efforts to compromise on both are to develop policies in developing environmentally friendly buildings, efficiency in utilization of electrical energy, and development of sustainable energy sources.

  5. CERA; Refiners can cope with CAA requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-17

    This paper reports on a study conducted for the Department of Energy which predicts initial reformulated gasoline requirements in 1995 won't pose significant technical problems for U.S. refiners. But nearly all refiners will have to make added investments. Cambridge Energy Research Associates (CERA) prepared the study for DOE on critical issues affecting refiners and U.S. product supplies in the 1990s, particularly the effects of the 1990 Clean Air Act (CAA) amendments.

  6. Pigs in cyberspace

    NASA Technical Reports Server (NTRS)

    Moravec, Hans

    1993-01-01

    Exploration and colonization of the universe awaits, but Earth-adapted biological humans are ill-equipped to respond to the challenge. Machines have gone farther and seen more, limited though they presently are by insect-like behavior inflexibility. As they become smarter over the coming decades, space will be theirs. Organizations of robots of ever increasing intelligence and sensory and motor ability will expand and transform what they occupy, working with matter, space and time. As they grow, a smaller and smaller fraction of their territory will be undeveloped frontier. Competitive success will depend more and more on using already available matter and space in ever more refined and useful forms. The process, analogous to the miniaturization that makes today's computers a trillion times more powerful than the mechanical calculators of the past, will gradually transform all activity from grossly physical homesteading of raw nature, to minimum-energy quantum transactions of computation. The final frontier will be urbanized, ultimately into an arena where every bit of activity is a meaningful computation: the inhabited portion of the universe will be transformed into a cyberspace. Because it will use resources more efficiently, a mature cyberspace of the distant future will be effectively much bigger than the present physical universe. While only an infinitesimal fraction of existing matter and space is doing interesting work, in a well developed cyberspace every bit will be part of a relevant computation or storing a useful datum. Over time, more compact and faster ways of using space and matter will be invented, and used to restructure the cyberspace, effectively increasing the amount of computational spacetime per unit of physical spacetime. Computational speed-ups will affect the subjective experience of entities in the cyberspace in a paradoxical way. At first glimpse, there is no subjective effect, because everything, inside and outside the individual, speeds up equally. But, more subtly, speed-up produces an expansion of the cyber universe, because, as thought accelerates, more subjective time passes during the fixed (probably lightspeed) physical transit time of a message between a given pair of locations - so those fixed locations seem to grow farther apart. Also, as information storage is made continually more efficient through both denser utilization of matter and more efficient encodings, there will be increasingly more cyber-stuff between any two points. The effect may somewhat resemble the continuous-creation process in the old steady-state theory of the physical universe of Hoyle, Bondi and Gold, where hydrogen atoms appear just fast enough throughout the expanding cosmos to maintain a constant density.

  7. Processing the CONSOL Energy, Inc. Mine Maps and Records Collection at the University of Pittsburgh

    ERIC Educational Resources Information Center

    Rougeux, Debora A.

    2011-01-01

    This article describes the efforts of archivists and student assistants at the University of Pittsburgh's Archives Service Center to organize, describe, store, and provide timely and efficient access to over 8,000 maps of underground coal mines in southwestern Pennsylvania, as well the records that accompanied them, donated by CONSOL Energy, Inc.…

  8. Educational initiative for EE/RE engineering skills: Solar Two student interns. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norbeck, J.M.

    1997-07-01

    The US Department of Energy sponsored five student interns from the University of California, Riverside, College of Engineering to work during the summer of 1996 at the Solar Two Energy facility in the Mojave Desert. Through the DOE intern program, engineering students supported the Solar Two Project under the supervision of engineers from Southern California Edison. The prime purpose was to provide outreach and educational support for expanding interactions with university students to increase awareness of careers in renewable energy and energy efficiency fields. The College of Engineering-Center for Environmental Research and Technology (CE-CERT) coordinated this project. CE-CERT is primarilymore » a research facility focusing on air pollution and energy efficiency. CE-CERT serves undergraduate and graduate students by employing them on research projects, supporting them in the research and experimentation required for Senior Design Projects, and sponsoring them in student engineering competitions.« less

  9. The Louisiana State University waste-to-energy incinerator

    NASA Astrophysics Data System (ADS)

    1994-10-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  10. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  11. Max Tech Efficiency Electric HPWH with low-GWP Halogenated Refrigerant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawaz, Kashif; Shen, Bo; Elatar, Ahmed F.

    A scoping-level analysis was conducted to determine the maximum performance of an electric heat pump water heater (HPWH) with low GWP refrigerants (hydroflouroolefins (HFO), hydrofluorocarbons (HFC), and blends). A baseline heat pump water heater (GE GeoSpring) deploying R-134a was analyzed first using the DOE/ORNL Heat Pump Design Model (HPDM) modeling tool. The model was calibrated using experimental data to match the water temperature stratification in tank, first hour rating, energy factor and coefficient of performance. A CFD modeling tool was used to further refine the HPDM tank model. After calibration, the model was used to simulate the performance of alternativemore » refrigerants. The parametric analysis concluded that by appropriate selection of equipment size and condenser tube wrap configuration the overall performance of emerging low GWP refrigerants for HPWH application not only exceed the Energy Star Energy Factor criteria i.e. 2.20, but is also comparable to some of the most efficient products in the market.« less

  12. Exploration of transit's sustainability competitiveness : summary.

    DOT National Transportation Integrated Search

    2011-01-01

    Public transportation is an important community amenity, offering economy of energy use and space. A common assumption is that public transportation is always more energy efficient than the private automobile. University of South Florida researchers ...

  13. Energy Advantages for Green Schools

    ERIC Educational Resources Information Center

    Griffin, J. Tim

    2012-01-01

    Because of many advantages associated with central utility systems, school campuses, from large universities to elementary schools, have used district energy for decades. District energy facilities enable thermal and electric utilities to be generated with greater efficiency and higher system reliability, while requiring fewer maintenance and…

  14. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.

    PubMed

    Menke, S Matthew; Holmes, Russell J

    2015-02-04

    In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.

  15. Cosmology of Universe Particles and Beyond

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    2016-06-01

    For the first time in history, all properties of cosmology particles are uncovered and described concisely and systematically, known as the elementary particles in contemporary physics.Aligning with the synthesis of the virtual and physical worlds in a hierarchical taxonomy of the universe, this theory refines the topology framework of cosmology, and presents a new perspective of the Yin Yang natural laws that, through the processes of creation and reproduction, the fundamental elements generate an infinite series of circular objects and a Yin Yang duality of dynamic fields that are sequenced and transformed states of matter between the virtual and physical worlds.Once virtual objects are transformed, they embody various enclaves of energy states, known as dark energy, quarks, leptons, bosons, protons, and neutrons, characterized by their incentive oscillations of timestate variables in a duality of virtual realities: energy and time, spin and charge, mass and space, symmetry and antisymmetry.As a consequence, it derives the fully-scaled quantum properties of physical particles in accordance with numerous historical experiments, and has overcome the limitations of uncertainty principle and the Standard Model, towards concisely exploring physical nature and beyond...

  16. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less

  17. 78 FR 46938 - St. Paul Park Refining Co. LLC v. Enbridge Pipelines (North Dakota) LLC; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR13-28-000] St. Paul Park..., 2013, St. Paul Park Refining Co. LLC (Complainant) filed a formal complaint against Enbridge Pipelines... regulatory basis. St. Paul Park Refining Co. LLC certifies that copies of the complaint were served on the...

  18. 76 FR 45246 - Tesoro Refining and Marketing Company v. SFPP, L.P.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR11-19-000] Tesoro Refining and Marketing Company v. SFPP, L.P.; Notice of Complaint Take notice that on July 20, 2011, pursuant...), Tesoro Refining and Marketing Company (Tesoro) filed a formal complaint against SFPP, L.P. (SFPP). Tesoro...

  19. Smart campus: Data on energy consumption in an ICT-driven university.

    PubMed

    Popoola, Segun I; Atayero, Aderemi A; Okanlawon, Theresa T; Omopariola, Benson I; Takpor, Olusegun A

    2018-02-01

    In this data article, we present a comprehensive dataset on electrical energy consumption in a university that is practically driven by Information and Communication Technologies (ICTs). The total amount of electricity consumed at Covenant University, Ota, Nigeria was measured, monitored, and recorded on daily basis for a period of 12 consecutive months (January-December, 2016). Energy readings were observed from the digital energy meter (EDMI Mk10E) located at the distribution substation that supplies electricity to the university community. The complete energy data are clearly presented in tables and graphs for relevant utility and potential reuse. Also, descriptive first-order statistical analyses of the energy data are provided in this data article. For each month, the histogram distribution and time series plot of the monthly energy consumption data are analyzed to show insightful trends of energy consumption in the university. Furthermore, data on the significant differences in the means of daily energy consumption are made available as obtained from one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests. The information provided in this data article will foster research development in the areas of energy efficiency, planning, policy formulation, and management towards the realization of smart campuses.

  20. Willow bioenergy plantation research in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E.H.; Abrahamson, L.P.; Kopp, R.F.

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are nowmore » being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.« less

  1. Efficient Means of Detecting Neutral Atoms in Space

    NASA Astrophysics Data System (ADS)

    Zinicola, W. N.

    2006-12-01

    This summer, The Society of Physics Students granted me the opportunity to participate in an internship for The National Aeronautics and Space Administration (NASA) and The University of Maryland. Our chief interest was analyzing low energy neutral atoms that were created from random interactions of ions in space plasma. From detecting these neutrals one can project a image of what the plasma's composition is, and how this plasma changes through interactions with the solar wind. Presently, low energy neutral atom detectors have poor efficiency, typically in the range of 1%. Our goal was to increase this efficiency. To detect low energy neutrals we must first convert them from neutral molecules to negatively charged ions. Once converted, these "new" negatively charged ions can be easily detected and completely analyzed giving us information about their energy, mass, and instantaneous direction. The efficiency of the detector is drastically affected by the surface used for converting these neutrals. My job was first to create thin metal conversion surfaces. Then, using an X-ray photoelectron spectrometer, analyze atomic surface composition and gather work function values. Once the work function values were known we placed the surfaces in our neutral detector and measured their conversion efficiencies. Finally, a relation between the work function of the metal surface an its conversion efficiency was generated. With this relationship accurately measured one could use this information to help give suggestions on what surface would be the best to increase our detection efficiency. If we could increase the efficiency of these low energy neutral atom detectors by even 1% we would be able to decrease the size of the detector therefore making it cheaper and more applicable for space exploration.* * A special thanks to Dr. Michael Coplan of the University of Maryland for his support and guidance through all my research.

  2. Breakthrough Ideas.

    ERIC Educational Resources Information Center

    American School & University, 1996

    1996-01-01

    Describes innovative strategies that schools and universities are using to save money and reshape operations. Focuses on ideas in energy efficiency and facilities improvement, direct purchasing, energy management, retrofitting buildings, ceiling insulation upgrades, automation systems, electric demand programs, facilities programs, warranty…

  3. Improving energy efficiency of facilities.

    DOT National Transportation Integrated Search

    2016-10-01

    The Indiana Department of Transportation (INDOT) has entered into an agreement with the Purdue University Manufacturing Extension Partnership (MEP) to perform energy assessments on six sites. The six sites were selected to represent a variety of type...

  4. The drive for Aircraft Energy Efficiency

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  5. Electrochemical and diffusional insights of combustion synthesized SrLi2Ti6O14 negative insertion material for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Dayamani, Allumolu; Shinde, Ganesh S.; Chaupatnaik, Anshuman; Rao, R. Prasada; Adams, Stefan; Barpanda, Prabeer

    2018-05-01

    Solvothermal synthetic routes can provide energy-savvy platforms to fabricate battery anode materials involving relatively milder annealing steps vis-à-vis the conventional solid-state synthesis. These energy efficient routes in turn restrict aggressive grain growth to form nanoscale particles favouring efficient Li+ diffusion. Here, we report an economic solution combustion synthesis of SrLi2Ti6O14 anode involving nitrate-urea complexation with a short annealing duration of only 2 h (900 °C). Rietveld refinement confirms the phase purity of target product assuming an orthorhombic framework (Cmca symmetry). It delivers reversible capacity of ∼125 mAh.g-1 at a rate of C/20 involving a 1.38 V Ti4+/Ti3+ redox activity with excellent rate kinetics and cycling stability. Bond valence site energy (BVSE) calculations gauge SrLi2Ti6O14 to be an anisotropic 3D Li+ ion conductor with the highest ionic conductivity along the c direction. The electrochemical and diffusional pathways have been elucidated for combustion prepared SrLi2Ti6O14 as an efficient and safe negative electrode candidate for Li-ion batteries.

  6. Process integration of crude oil distillation with technological and economic restrictions.

    PubMed

    Ulyev, Leonid; Vasiliev, Mikhail; Boldyryev, Stanislav

    2018-09-15

    The petrochemical industry is one of the most important industries in the world economy. In the largest oil-producing countries, more than half of GDP is generated by hydrocarbons production and refining. Reduction of oil prices and new environmental regulations are forcing petrochemical companies to improve their energy efficiency. Improvement of the energy efficiency of Crude oil distillation process at atmospheric vacuum distillation unit (AVDU) with a capacity of 3.3 million ton per year is considered in this paper. The amount of fuel spent for reprocessing of one ton of crude oil has been defined and it is 3.79 kg of natural gas. This paper shows the ways to achieve the objectives of retrofit in the context of administrative and technical restrictions. The retrofit goal was achieved by the retrofit of the heat exchange network, which allowed reducing gas consumption by 0.98 t/h (natural gas). The provided case studies show the pathway for efficient retrofit of crude oil distillation and most profitable ways for investment taking into account various administrative and technical constraints. The results of this work allow achieving reduction of energy consumption by 26%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Influence of refining time on nonmetallic inclusions in a low-carbon, silicon-killed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Marcolino; Pires, Jose Carlos; Cheung, Noe

    2003-12-15

    Nonmetallic inclusions are harmful to the mechanical properties of every kind of steel produced worldwide. The greater the size of the inclusion present in the structure of a determined kind of steel, the greater its negative effect on the quality of the steel. Therefore, the objective of this work was to investigate the size, the quantity, the shape and the chemical composition of nonmetallic inclusions formed throughout the refining process of silicon-killed, low-carbon steel, as a function of the treatment time in a ladle furnace, trying to ensure the flotation of inclusions bigger than 25 {mu}m. This investigation was carriedmore » out using a scanning electron microscope (SEM), with an analysis system using energy dispersive spectometry (EDS). Based on this work, it was possible to know more precisely the nature of the inclusions, the necessary time to ensure flotation of large inclusions, the efficiency of the slag to capture the inclusions, and the inclusion level of the steel throughout its refining process to try to obtain a higher quality steel product.« less

  8. Distillation Column Flooding Predictor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.« less

  9. NREL: News - Energy Secretary Abraham Welcomes College Students Who will

    Science.gov Websites

    is a team competition among universities to design and build the most energy-efficient solar-powered Decathlon, a team must blend aesthetics and modern conveniences with maximum energy production and National Mall marks a significant step forward in innovative residential design, and advanced, energy

  10. Basic Energy Conservation and Management--Part 2: HVAC

    ERIC Educational Resources Information Center

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal, and new technologies have brought greater energy efficiencies to the school environment. In Part 1 of this two-part series, the author discussed the steps required to establish an energy conservation and management program with an emphasis on lighting. In this article, he…

  11. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics

    PubMed Central

    Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin

    2015-01-01

    Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m−3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard ‘infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things. PMID:26656252

  12. Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemrick, James Gordon

    For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oakmore » Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.« less

  13. 77 FR 39695 - HollyFrontier Refining and Marketing LLC v. Osage Pipe Line Company, LLC; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR12-21-000] HollyFrontier Refining and Marketing LLC v. Osage Pipe Line Company, LLC; Notice of Complaint Take notice that on June 25...; 18 CFR 343.1(a) and 343.2(c), HollyFrontier Refining and Marketing LLC (Complainant) filed a formal...

  14. 76 FR 63918 - Tesoro Refining and Marketing Company v. SFPP, L.P.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR12-3-000] Tesoro Refining and Marketing Company v. SFPP, L.P.; Notice of Complaint Take notice that on October 5, 2011, pursuant... section 1(13) of the Interstate Commerce Act (ICA), 49 U.S.C. App. 13(1), Tesoro Refining and Marketing...

  15. Accommodating Change: A Case Study in Planning a Sustainable New Business School Building.

    ERIC Educational Resources Information Center

    Taylor, Lee

    2002-01-01

    Provides a case study of the planning and design of a new building for the Open University Business School. Goals included an energy-efficient building that would break the paradigm of traditional university working methods. (EV)

  16. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S. -K.; Mrozowski, T.; Harrell-Seyburn, A.

    This project report details activities and results of the "Market Characterization" project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University, and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within the Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristicsmore » of housing groups referred to as "archetypes" by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market.« less

  17. Absolute detection efficiencies of low energy H, H -, H +, H 2+ and H 3+ incident on a multichannel plate detector

    NASA Astrophysics Data System (ADS)

    Peko, B. L.; Stephen, T. M.

    2000-12-01

    Measured absolute detection efficiencies are presented for H, H - and H n+ ( n=1,2,3) impacting a commercially available, dual multichannel plate (MCP) electron multiplier at kinetic energies ranging from 30 to 1000 eV. Measurements involving isotopic substitutions (D, D -, D n+) and Ar + are also presented. In addition, atomic hydrogen detection efficiencies relative to those of H + and H - are given, as they may have a more universal application. For the three charge states, H, H + and H -, the absolute detection efficiencies are markedly different at low energies and converge to a nearly uniform value of ˜70% with increasing projectile energy. The energy dependence is strongest for H +, varying nearly three orders of magnitude over the energy range studied, and weakest for H -, varying by less than one order of magnitude. In general, for the low energy positive ions at a given energy, the lighter the incident particle mass, the greater the probability of its detection.

  18. A test of Hořava gravity: the dark energy

    NASA Astrophysics Data System (ADS)

    Park, Mu-In

    2010-01-01

    Recently Hořava proposed a renormalizable gravity theory with higher spatial derivatives in four dimensions which reduces to Einstein gravity with a non-vanishing cosmological constant in IR but with improved UV behaviors. Here, I consider a non-trivial test of the new gravity theory in FRW universe by considering an IR modification which breaks ``softly'' the detailed balance condition in the original Hořava model. I separate the dark energy parts from the usual Einstein gravity parts in the Friedman equations and obtain the formula of the equations of state parameter. The IR modified Hořava gravity seems to be consistent with the current observational data but we need some more refined data sets to see whether the theory is really consistent with our universe. From the consistency of our theory, I obtain some constraints on the allowed values of w0 and wa in the Chevallier, Polarski, and Linder's parametrization and this may be tested in the near future, by sharpening the data sets.

  19. Efficiency Optimization for FEL Oscillators,

    DTIC Science & Technology

    1987-12-01

    I 7 -ŕvle 3IIATIONCIFOR FEL OSCILLATORS(U) MARYLAND i/1’ UNIV COLLEGE PARK LAS FOR PLASMIA AND FUSION ENERGY STUDIES A SERBETO ET AL DEC 87 UMLPF-88...University of Maryland, By3 f *O- 0Laboratory for Plasrra and Fusion Energy Studies D i~ Avciil adi r "UnOUIO SAEMNT A APPrOVed for public reloe...Distribution Unlimited EFFICIENCY OPTIMIZATION FOR FEL OSCILLATORS A. Serbeto, B. Levush, and T. M. Antonsen, Jr. Laboratory for Plasma and Fusion Energy Studies

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakicenovic, Nebojsa; Kammen, Daniel; Jewell, Jessica

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doublingmore » the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.« less

  1. Purdue professors review energy issues: six separate statements for the National Research Council Committee on Nuclear and Alternative Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-01-01

    In the Introductory statement, Professor Philip N. Powers, Director of the Energy Engineering Center, discussed briefly the societal stresses resulting from energy shortfalls, the conservation and lower-growth-rate approach, the energy decision-making process, international considerations of energy supply and demand, the consideration for alternative energy sources other than nuclear or coal, and the cost-effectiveness of environmental improvements. Professor Leonard Z. Breen's statement, Energy and Society, discusses population changes, communication networks in decision making, effects of urbanizing and suburbanizing, and social impacts of changing technologies. Professor Otto C. Doering in his statement, Alternate Fuels and Agricultural Production, emphasizes such things as timemore » constraints, relative inflexibility with respect to energy source, and the biological nature of agriculture (especially weather concerns). Professor Frank P. Incropera identifies the technology of power generation (especially increasing power plant efficiency) as the first priority in his statement, Efficient Energy Utilization and Conservation. Professor Reinhardt Schuhmann, Jr. in his statement, National Problem Solving and Energy, suggests that the primary objective should be development of a new national energy process, rather than the collection and analysis of comprehensive and detailed data and rather than refinement of forecasting and scenario building. Professor Jay W. Wiley in his statement, Planning for Effective Energy Utilization, specifies certain basic understandings that must be recognized in the following areas: economic relationships, energy sources, fission nuclear energy, and electric power production in the short run. (MCW)« less

  2. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.

    PubMed

    Hu, Peijun; Wu, Fa; Peng, Jialin; Bao, Yuanyuan; Chen, Feng; Kong, Dexing

    2017-03-01

    Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images. The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model. Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency. A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.

  3. Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements

    NASA Astrophysics Data System (ADS)

    Saizu, Mirela Angela

    2016-09-01

    The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.

  4. Efficiency Versus Instability in Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2017-01-05

    Plasma wake-field acceleration in a strongly nonlinear (a.k.a. the blowout) regime is one of the main candidates for future high-energy colliders. For this case, we derive a universal efficiency-instability relation, between the power efficiency and the key instability parameter of the witness bunch. We also show that in order to stabilize the witness bunch in a regime with high power efficiency, the bunch needs to have high energy spread, which is not presently compatible with collider-quality beam properties. It is unclear how such limitations could be overcome for high-luminosity linear colliders.

  5. Concerted drive to cut carbon footprint.

    PubMed

    2015-04-01

    In 2013 Peter Sellars, head of Profession for Estates & Facilities Policy at the Department of Health, successfully bid for £50 million from the Treasury to help finance a range of 'spend-to-save' energy efficiency initiatives across the NHS in England. In all 117 energy efficiency projects were initiated across 48 English NHS organisations--funded through a dedicated NHS Energy Efficiency Fund. An independent analysis for the DH, NHS Energy Efficiency Fund Final Report, Summary 2014, by Professor Alan Short of Cambridge University's Department of Architecture, says the projects are already on track to save 100.6 million kg of CO2 annually, and some 2.4% of the entire 2012 NHS building energy-related carbon footprint, delivering annual energy savings of 160.5 million kWh (equivalent to boiling 3.34 billion cups of tea a year.) The Report--reproduced in large part here--summarises the schemes' preliminary outcomes, and makes recommendations for policy-makers implementing similar energy-saving funding schemes in the future.

  6. Influence of Mg on Grain Refinement of Near Eutectic Al-Si Alloys

    NASA Astrophysics Data System (ADS)

    Ravi, K. R.; Manivannan, S.; Phanikumar, G.; Murty, B. S.; Sundarraj, Suresh

    2011-07-01

    Although the grain-refinement practice is well established for wrought Al alloys, in the case of foundry alloys such as near eutectic Al-Si alloys, the underlying mechanisms and the use of grain refiners need better understanding. Conventional grain refiners such as Al-5Ti-1B are not effective in grain refining the Al-Si alloys due to the poisoning effect of Si. In this work, we report the results of a newly developed grain refiner, which can effectively grain refine as well as modify eutectic and primary Si in near eutectic Al-Si alloys. Among the material choices, the grain refining response with Al-1Ti-3B master alloy is found to be superior compared to the conventional Al-5Ti-1B master alloy. It was also found that magnesium additions of 0.2 wt pct along with the Al-1Ti-3B master alloy further enhance the near eutectic Al-Si alloy's grain refining efficiency, thus leading to improved bulk mechanical properties. We have found that magnesium essentially scavenges the oxygen present on the surface of nucleant particles, improves wettability, and reduces the agglomeration tendency of boride particles, thereby enhancing grain refining efficiency. It allows the nucleant particles to act as potent and active nucleation sites even at levels as low as 0.2 pct in the Al-1Ti-3B master alloy.

  7. The Role of Values, Moral Norms, and Descriptive Norms in Building Occupant Responses to an Energy-Efficiency Pilot Program and to Framing of Related Messages

    ERIC Educational Resources Information Center

    Arpan, Laura M.; Barooah, Prabir; Subramany, Rahul

    2015-01-01

    This study examined building occupants' responses associated with an occupant-based energy-efficiency pilot in a university building. The influence of occupants' values and norms as well as effects of two educational message frames (descriptive vs. moral norms cues) on program support were tested. Occupants' personal moral norm to conserve energy…

  8. Conformational Sampling of a Biomolecular Rugged Energy Landscape.

    PubMed

    Rydzewski, Jakub; Jakubowski, Rafal; Nicosia, Giuseppe; Nowak, Wieslaw

    2018-01-01

    The protein structure refinement using conformational sampling is important in hitherto protein studies. In this paper, we examined the protein structure refinement by means of potential energy minimization using immune computing as a method of sampling conformations. The method was tested on the x-ray structure and 30 decoys of the mutant of [Leu]Enkephalin, a paradigmatic example of the biomolecular multiple-minima problem. In order to score the refined conformations, we used a standard potential energy function with the OPLSAA force field. The effectiveness of the search was assessed using a variety of methods. The robustness of sampling was checked by the energy yield function which measures quantitatively the number of the peptide decoys residing in an energetic funnel. Furthermore, the potential energy-dependent Pareto fronts were calculated to elucidate dissimilarities between peptide conformations and the native state as observed by x-ray crystallography. Our results showed that the probed potential energy landscape of [Leu]Enkephalin is self-similar on different metric scales and that the local potential energy minima of the peptide decoys are metastable, thus they can be refined to conformations whose potential energy is decreased by approximately 250 kJ/mol.

  9. Activities of the Institute of Chemical Processing of Coal at Zabrze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Ross J.; Brigham, Derek M.; Delmau, Laetitia

    The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid–liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)3Ln]3+ complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligandsmore » for efficient adjacent lanthanide separation for rare-earth refining.« less

  11. A Mulit-State Model for Catalyzing the Home Energy Efficiency Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackmon, Glenn

    The RePower Kitsap partnership sought to jump-start the market for energy efficiency upgrades in Kitsap County, an underserved market on Puget Sound in Washington State. The Washington State Department of Commerce partnered with Washington State University (WSU) Energy Program to supplement and extend existing utility incentives offered by Puget Sound Energy (PSE) and Cascade Natural Gas and to offer energy efficiency finance options through the Kitsap Credit Union and Puget Sound Cooperative Credit Union (PSCCU). RePower Kitsap established a coordinated approach with a second Better Buildings Neighborhood Program project serving the two largest cities in the county – Bainbridge Islandmore » and Bremerton. These two projects shared both the “RePower” brand and implementation team (Conservation Services Group (CSG) and Earth Advantage).« less

  12. Performance Contracting: Meeting the Challenge of Deferred Maintenance.

    ERIC Educational Resources Information Center

    Singer, Terry E.; Johnson, Mary E.

    2001-01-01

    Discusses the magnitude of the problem of deferred maintenance on today's university campuses and the solving this problem using performance-based energy efficiency retrofit as implemented by energy service companies (ESCO). Several case studies of ESCO designed retrofits are examined. (GR)

  13. Engineering management technologies of increasing energy efficiency processes in the investment and construction projects

    NASA Astrophysics Data System (ADS)

    Borisovich Zelentsov, Leonid; Dmitrievna Mailyan, Liya; Sultanovich Shogenov, Murat

    2017-10-01

    The article deals with the problems of using the energy-efficient materials and engineering technologies during the construction of buildings and structures. As the analysis showed, one of the most important problems in this sphere is the infringement of production technologies working with energy-efficient materials. To improve the given situation, it is offered to set a technological normal at the design stage by means of working out the technological maps studying the set and the succession of operations in details, taking in mind the properties of energy-efficient materials. At Don State Technical University (DSTU) the intelligent systems of management are being developed providing organizational and technological and also informational integration of design and production stages by means of creating the single database of technological maps, volumes of work and resources.

  14. Long-term Energy and Emissions Savings Potential in New York City Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Vatsal; Lee, John; Klein, Yehuda

    2012-09-30

    The New York State Energy Research and Development Authority (NYSERDA) partnered with the Brookhaven National Laboratory (BNL) and the City University of New York (CUNY) to develop an integrated methodology that is capable of quantifying the impact of energy efficiency and load management options in buildings, including CUNY’s campus buildings, housing projects, hospitals, and hotels, while capturing the synergies and offsets in a complex and integrated energy-environmental system. The results of this work serve as a guideline in implementing urban energy efficiency and other forms of urban environmental improvement through cost-effective planning at the institutional and local level.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner thatmore » produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for integrated system options; 5. Identify experimental needs to develop and demonstrate nuclear-renewable energy systems.« less

  16. Adaptive mesh refinement and load balancing based on multi-level block-structured Cartesian mesh

    NASA Astrophysics Data System (ADS)

    Misaka, Takashi; Sasaki, Daisuke; Obayashi, Shigeru

    2017-11-01

    We developed a framework for a distributed-memory parallel computer that enables dynamic data management for adaptive mesh refinement and load balancing. We employed simple data structure of the building cube method (BCM) where a computational domain is divided into multi-level cubic domains and each cube has the same number of grid points inside, realising a multi-level block-structured Cartesian mesh. Solution adaptive mesh refinement, which works efficiently with the help of the dynamic load balancing, was implemented by dividing cubes based on mesh refinement criteria. The framework was investigated with the Laplace equation in terms of adaptive mesh refinement, load balancing and the parallel efficiency. It was then applied to the incompressible Navier-Stokes equations to simulate a turbulent flow around a sphere. We considered wall-adaptive cube refinement where a non-dimensional wall distance y+ near the sphere is used for a criterion of mesh refinement. The result showed the load imbalance due to y+ adaptive mesh refinement was corrected by the present approach. To utilise the BCM framework more effectively, we also tested a cube-wise algorithm switching where an explicit and implicit time integration schemes are switched depending on the local Courant-Friedrichs-Lewy (CFL) condition in each cube.

  17. Fossil energy biotechnology: A research needs assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects intomore » three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.« less

  18. Substituting whole grains for refined grains in a 6-week randomized trial favorably affects energy balance parameters in healthy men and post-menopausal women

    USDA-ARS?s Scientific Manuscript database

    Background: The effect of whole grains on the regulation of energy balance remains controversial. Objective: To determine the effects of substituting whole grains for refined grains, independent of body weight change, on energy metabolism parameters and glycemic control. Design: A randomized, con...

  19. Refined Dummy Atom Model of Mg(2+) by Simple Parameter Screening Strategy with Revised Experimental Solvation Free Energy.

    PubMed

    Jiang, Yang; Zhang, Haiyang; Feng, Wei; Tan, Tianwei

    2015-12-28

    Metal ions play an important role in the catalysis of metalloenzymes. To investigate metalloenzymes via molecular modeling, a set of accurate force field parameters for metal ions is highly imperative. To extend its application range and improve the performance, the dummy atom model of metal ions was refined through a simple parameter screening strategy using the Mg(2+) ion as an example. Using the AMBER ff03 force field with the TIP3P model, the refined model accurately reproduced the experimental geometric and thermodynamic properties of Mg(2+). Compared with point charge models and previous dummy atom models, the refined dummy atom model yields an enhanced performance for producing reliable ATP/GTP-Mg(2+)-protein conformations in three metalloenzyme systems with single or double metal centers. Similar to other unbounded models, the refined model failed to reproduce the Mg-Mg distance and favored a monodentate binding of carboxylate groups, and these drawbacks needed to be considered with care. The outperformance of the refined model is mainly attributed to the use of a revised (more accurate) experimental solvation free energy and a suitable free energy correction protocol. This work provides a parameter screening strategy that can be readily applied to refine the dummy atom models for metal ions.

  20. Monthly petroleum-product price report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-07-01

    This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products. the data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. The legislative authority for this survey is the Federal Energy Administration Act of 1974 (PL 93-275). Price data in this publicationmore » were collected fronm separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survye of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia.« less

  1. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions.

    PubMed

    Olson, Mark A; Feig, Michael; Brooks, Charles L

    2008-04-15

    This article examines ab initio methods for the prediction of protein loops by a computational strategy of multiscale conformational sampling and physical energy scoring functions. Our approach consists of initial sampling of loop conformations from lattice-based low-resolution models followed by refinement using all-atom simulations. To allow enhanced conformational sampling, the replica exchange method was implemented. Physical energy functions based on CHARMM19 and CHARMM22 parameterizations with generalized Born (GB) solvent models were applied in scoring loop conformations extracted from the lattice simulations and, in the case of all-atom simulations, the ensemble of conformations were generated and scored with these models. Predictions are reported for 25 loop segments, each eight residues long and taken from a diverse set of 22 protein structures. We find that the simulations generally sampled conformations with low global root-mean-square-deviation (RMSD) for loop backbone coordinates from the known structures, whereas clustering conformations in RMSD space and scoring detected less favorable loop structures. Specifically, the lattice simulations sampled basins that exhibited an average global RMSD of 2.21 +/- 1.42 A, whereas clustering and scoring the loop conformations determined an RMSD of 3.72 +/- 1.91 A. Using CHARMM19/GB to refine the lattice conformations improved the sampling RMSD to 1.57 +/- 0.98 A and detection to 2.58 +/- 1.48 A. We found that further improvement could be gained from extending the upper temperature in the all-atom refinement from 400 to 800 K, where the results typically yield a reduction of approximately 1 A or greater in the RMSD of the detected loop. Overall, CHARMM19 with a simple pairwise GB solvent model is more efficient at sampling low-RMSD loop basins than CHARMM22 with a higher-resolution modified analytical GB model; however, the latter simulation method provides a more accurate description of the all-atom energy surface, yet demands a much greater computational cost. (c) 2007 Wiley Periodicals, Inc.

  2. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  3. Carpet: Adaptive Mesh Refinement for the Cactus Framework

    NASA Astrophysics Data System (ADS)

    Schnetter, Erik; Hawley, Scott; Hawke, Ian

    2016-11-01

    Carpet is an adaptive mesh refinement and multi-patch driver for the Cactus Framework (ascl:1102.013). Cactus is a software framework for solving time-dependent partial differential equations on block-structured grids, and Carpet acts as driver layer providing adaptive mesh refinement, multi-patch capability, as well as parallelization and efficient I/O.

  4. A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao; Xiao, Long; Wang, Yalin; Yang, Chunhua; Gui, Weihua

    2018-02-01

    High quality control method is essential for the implementation of aircraft autopilot system. An optimal control problem model considering the safe aerodynamic envelop is therefore established to improve the control quality of aircraft flight level tracking. A novel non-uniform control vector parameterization (CVP) method with time grid refinement is then proposed for solving the optimal control problem. By introducing the Hilbert-Huang transform (HHT) analysis, an efficient time grid refinement approach is presented and an adaptive time grid is automatically obtained. With this refinement, the proposed method needs fewer optimization parameters to achieve better control quality when compared with uniform refinement CVP method, whereas the computational cost is lower. Two well-known flight level altitude tracking problems and one minimum time cost problem are tested as illustrations and the uniform refinement control vector parameterization method is adopted as the comparative base. Numerical results show that the proposed method achieves better performances in terms of optimization accuracy and computation cost; meanwhile, the control quality is efficiently improved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides

    PubMed Central

    Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J.; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing

    2016-01-01

    Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2). PMID:26931353

  6. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J.; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing

    2016-03-01

    Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2).

  7. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides.

    PubMed

    Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing

    2016-03-02

    Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2).

  8. Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.

    1984-01-01

    Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.

  9. Centre for Education, Training, & Research in Renewable Energy and Energy Efficiency (CETREE) of Malaysia: Educating the Nation

    NASA Astrophysics Data System (ADS)

    Ibrahim, Kamarulazizi; Hilme, Khairur Rahim Ahmad

    2007-10-01

    Centre for Education, Training, and Research in Renewable Energy and Energy Efficiency (CETREE), was established in the year 2000, in Universiti Sains Malaysia (USM). CETREE is a not-for-profit organization that was part of the Malaysian Government's continuous effort in promoting sustainable development. The centre's main task is to tackle issues and problems that are slowing the potential growth of RE & EE utilizations in Malaysia. CETREE and the Government of Malaysia, with funding and supports from Danish International Development Assistance (DANIDA) and USM, has been working together closely in applying trans-disciplinary educational methods and approaches for the teaching of RE & EE that are compatible with Malaysian. Through association with various entities such as Energy Centre of Malaysia (PTM), Energy Commission of Malaysia (ST), Malaysia Electricity Supply Industry Trust Account (MESITA); CETREE was able to successfully promote sustainable development through education and training. Significant accomplishments made by CETREE include introducing RE and EE as part of Malaysian secondary schools and universities education; conducting energy related courses for professionals; and generating awareness via campaign in the mass media and CETREE's mobile-exhibition-unit road-tour.

  10. Synthesis and Characterization of Block Copolymers with Unique Chemical Functionalities and Entropically-Hindering Moieties

    DTIC Science & Technology

    2017-08-14

    Synthesis and Characterization of Sulfonated Amine Block Copolymers for Energy Efficient Applications". Chemical Engineering Symposium, University of...Specialty Separations” Oral Presentation during the 2014 Chemical Engineering Department Symposium (Key Note Speaker), University of Puerto Rico, Mayaguez...Leadership Award in the College of Engineering of the University of Puerto Rico, May, 2015. 3. Distinguished Professor of Chemical Engineering

  11. Material and energy recovery in integrated waste management systems: project overview and main results.

    PubMed

    Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Ragazzi, Marco; Saccani, Cesare

    2011-01-01

    This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on "how much" source separation is carried out, but rather on "how" a given SSL is reached. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  13. Refined sugar intake in Australian children.

    PubMed

    Somerset, Shawn M

    2003-12-01

    To estimate the intake of refined sugar in Australian children and adolescents, aged 2-18 years. Foods contributing to total sugar intake were identified using data from the National Nutrition Survey 1995 (NNS95), the most recent national dietary survey of the Australian population. The top 100 foods represented means of 85% (range 79-91%) and 82% (range 78-85%) of total sugar intake for boys and girls, respectively. Using published Australian food composition data (NUTTAB95), the proportion of total sugar being refined sugar was estimated for each food. Where published food composition data were not available, calculations from ingredients and manufacturer's information were used. The NNS95 assessed the dietary intake of a random sample of the Australian population, aged 2-18 years (n=3007). Mean daily intakes of refined sugar ranged from 26.9 to 78.3 g for 2-18-year-old girls, representing 6.6-14.8% of total energy intake. Corresponding figures for boys were 27.0 to 81.6 g and 8.0-14.0%, respectively. Of the 10 highest sources of refined sugar for each age group, sweetened beverages, especially cola-type beverages, were the most prominent. Refined sugar is an important contributor to dietary energy in Australian children. Sweetened beverages such as soft drinks and cordials were substantial sources of refined sugar and represent a potential target for campaigns to reduce refined sugar intake. Better access to information on the amounts of sugar added to processed food is essential for appropriate monitoring of this important energy source.

  14. Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions

    NASA Astrophysics Data System (ADS)

    Kurtz, Jason Patrick

    We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.

  15. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature.

    PubMed

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 degrees C, 150 degrees C, and 160 degrees C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 degrees C. At 150 degrees C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 degrees C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil>waste engine oil>B-C heavy oil>waste cooking oil. The duration at 150 degrees C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight. Copyright 2010 Elsevier B.V. All rights reserved.

  16. A methodology for quadrilateral finite element mesh coarsening

    DOE PAGES

    Staten, Matthew L.; Benzley, Steven; Scott, Michael

    2008-03-27

    High fidelity finite element modeling of continuum mechanics problems often requires using all quadrilateral or all hexahedral meshes. The efficiency of such models is often dependent upon the ability to adapt a mesh to the physics of the phenomena. Adapting a mesh requires the ability to both refine and/or coarsen the mesh. The algorithms available to refine and coarsen triangular and tetrahedral meshes are very robust and efficient. However, the ability to locally and conformally refine or coarsen all quadrilateral and all hexahedral meshes presents many difficulties. Some research has been done on localized conformal refinement of quadrilateral and hexahedralmore » meshes. However, little work has been done on localized conformal coarsening of quadrilateral and hexahedral meshes. A general method which provides both localized conformal coarsening and refinement for quadrilateral meshes is presented in this paper. This method is based on restructuring the mesh with simplex manipulations to the dual of the mesh. Finally, this method appears to be extensible to hexahedral meshes in three dimensions.« less

  17. Performance Contracting and Energy Efficiency in the State Government Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharvirkar, Ranjit; Goldman, Charles; Gilligan, Donald

    There is growing interest in energy efficiency (EE) among state policymakers as a result of increasing environmental concerns, rising electricity and natural gas prices, and lean economic times that motivate states to look more aggressively for cost-saving opportunities in public sector buildings. One logical place for state policymakers to demonstrate their commitment to energy efficiency is to 'lead by example' by developing and implementing strategies to reduce the energy consumption of state government facilities through investments in energy efficient technologies. Traditionally, energy efficiency improvements at state government facilities are viewed as a subset in the general category of building maintenancemore » and construction. These projects are typically funded through direct appropriations. However, energy efficiency projects are often delayed or reduced in scope whereby not all cost-effective measures are implemented because many states have tight capital budgets. Energy Savings Performance Contracting (ESPC) offers a potentially useful strategy for state program and facility managers to proactively finance and develop energy efficiency projects. In an ESPC project, Energy Service Companies (ESCOs) typically guarantee that the energy and cost savings produced by the project will equal or exceed all costs associated with implementing the project over the term of the contract. ESCOs typically provide turnkey design, installation, and maintenance services and also help arrange project financing. Between 1990 and 2006, U.S. ESCOs reported market activity of {approx}$28 Billion, with about {approx}75-80% of that activity concentrated in the institutional markets (K-12 schools, colleges/universities, state/local/federal government and hospitals). In this study, we review the magnitude of energy efficiency investment in state facilities and identify 'best practices' while employing performance contracting in the state government sector. The state government market is defined to include state offices, state universities, correctional facilities, and other state facilities. This study is part of a series of reports prepared by Lawrence Berkeley National Laboratory (LBNL) and the National Association of Energy Services Companies (NAESCO) on the ESCO market and industry trends. The scope of previous reports was much broader: Goldman et al. (2002) analyzed ESCO project costs and savings in public and private sector facilities, Hopper et al. (2005) focused on ESCO project activity in all public and institutional sectors, while Hopper et al (2007) provided aggregate results of a comprehensive survey of ESCOs on current industry activity and future prospects. We decided to focus the current study on ESCO and energy efficiency activity and potential market barriers in the state government market because previous studies suggested that this institutional sector has significant remaining energy efficiency opportunities. Moreover, ESCO activity in the state government market has lagged behind other institutional markets (e.g., K-12 schools, local governments, and the federal market). Our primary objectives were as follows: (1) Assess existing state agency energy information and data sources that could be utilized to develop performance metrics to assess progress among ESPC programs in states; (2) Conduct a comparative review of the performance of selected state ESPC programs in reducing energy usage and costs in state government buildings; and (3) Delineate the extent to which state government sector facilities are implementing energy efficiency projects apart from ESPC programs using other strategies (e.g. utility ratepayer-funded energy efficiency programs, loan funds).« less

  18. Coordinated development of leading biomass pretreatment technologies.

    PubMed

    Wyman, Charles E; Dale, Bruce E; Elander, Richard T; Holtzapple, Mark; Ladisch, Michael R; Lee, Y Y

    2005-12-01

    For the first time, a single source of cellulosic biomass was pretreated by leading technologies using identical analytical methods to provide comparative performance data. In particular, ammonia explosion, aqueous ammonia recycle, controlled pH, dilute acid, flowthrough, and lime approaches were applied to prepare corn stover for subsequent biological conversion to sugars through a Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) among Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, and Texas A&M University. An Agricultural and Industrial Advisory Board provided guidance to the project. Pretreatment conditions were selected based on the extensive experience of the team with each of the technologies, and the resulting fluid and solid streams were characterized using standard methods. The data were used to close material balances, and energy balances were estimated for all processes. The digestibilities of the solids by a controlled supply of cellulase enzyme and the fermentability of the liquids were also assessed and used to guide selection of optimum pretreatment conditions. Economic assessments were applied based on the performance data to estimate each pretreatment cost on a consistent basis. Through this approach, comparative data were developed on sugar recovery from hemicellulose and cellulose by the combined pretreatment and enzymatic hydrolysis operations when applied to corn stover. This paper introduces the project and summarizes the shared methods for papers reporting results of this research in this special edition of Bioresource Technology.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Charles

    University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S.more » Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who had a home energy upgrade invested on average $4,500, resulting in a 13% reduction in annual energy use and utility bill savings of $325. Rebates and incentives covered 40%-50% of retrofit cost, resulting in an average simple payback of about 7 years. STEP has created a handbook in which are assembled all the key elements that went into the design and delivery of STEP. The target audiences for the handbook include interested citizens, elected officials and municipal staff who want to establish and run their own efficiency program within a small community or neighborhood, using elements, materials and lessons from STEP.« less

  20. Thermodynamic limits to the conversion of blackbody radiation by quantum systems. [with application to solar energy conversion devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Smith, B. T.; Byvik, C. E.

    1982-01-01

    Using general thermodynamic arguments, we analyze the conversion of the energy contained in the radiation from a blackbody to useful work by a quantum system. We show that the energy available for conversion is bounded above by the change in free energy in the incident and reradiated fields and that this free energy change depends upon the temperature of the receiving device. Universal efficiency curves giving the ultimate thermodynamic conversion efficiency of the quantum system are presented in terms of the blackbody temperature and the temperature and threshold energy of the quantum system. Application of these results is made to a variety of systems including biological photosynthetic, photovoltaic, and photoelectrochemical systems.

  1. Quantum Adiabatic Optimization and Combinatorial Landscapes

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2003-01-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.

  2. 77 FR 14416 - Notice of Availability of a Final Environmental Impact Statement and Final Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... wind turbine generators; a substation; administration, operations and maintenance facilities... Action (the ``Refined Project''). Under the Refined Project configuration, only 112 wind turbines... Report for the Pattern Energy Group's Ocotillo Express Wind Energy Project and Proposed California Desert...

  3. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  4. Computations of Unsteady Viscous Compressible Flows Using Adaptive Mesh Refinement in Curvilinear Body-fitted Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Modiano, David; Colella, Phillip

    1994-01-01

    A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.

  5. Petroleum: An energy profile. [CONTAINS GLOSSARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-08-01

    This publication is intended as a general reference about petroleum: its origins, production, refining, marketing, and use. This report presents an overview of refined petroleum products and their use, crude oil reserves and production, refining technology and US refining capacity, the development and operation of petroleum markets, and foreign trade. A statistical supplement, an appendix describing refining operations, a glossary, and bibliographic references for additional sources of information are also included. 36 figs., 4 tabs.

  6. [Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils].

    PubMed

    Mao, Lisha; Liu, Honghe; Kang, Li; Jiang, Jie; Liao, Shicheng; Liu, Guihua; Deng, Pingjian

    2014-07-01

    To evaluate the efficiency of capsaicinoids to discriminate bio-waste oil from edible vegetable oil. 14 raw vegetable oils, 24 fried waste oils, 34 kitchen-waste oils, 32 edible non-peanut vegetable oil, 32 edible peanuts oil, 16 edible oil add flavorand and 11 refined bio-waste oils were prepared and examined for capsaicinoids including capsaicin, dihydrocapsaicin and nonylic acid vanillylamide. The detection results of the above samples were statistically tested based on sample category to assessment identify the effectiveness of the bio-waste oils with capsaicinoids. As a indicator, capsaincin was possessed of high detection sensitivity and has the highest efficiency to discern kitchen-waste oils and refined bio-waste oils samples from edible non-peanut vegetable oil correctly. The accuracy rate of identification were 100% and 90.1% respectively. There is the background in peanut oil. CONCLUSION Capsaicin added in cooking process can be retained in the refining process and hardly be removed in the refining process. In the case of fully eliminating the background interference, capsaicinoids can effectively identify bio-waste oils and edible vegetable oil in combination.

  7. An Integrated Decision-Making Framework for Sustainability Assessment: A Case Study of Memorial University

    ERIC Educational Resources Information Center

    Waheed, Bushra; Khan, Faisal; Veitch, Brian; Hawboldt, Kelly

    2011-01-01

    This article presents an overview of the sustainability initiatives at the St. John's campus of Memorial University in Newfoundland and Labrador (Canada). The key initiatives include setting a realistic goal for energy efficiency, becoming carbon neutral, and conducting various research and outreach projects related to sustainability. As…

  8. Protein homology model refinement by large-scale energy optimization.

    PubMed

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  9. Environmental Regulations and Changes in Petroleum Refining Operations (Short-Term Energy Outlook Supplement June 1998)

    EIA Publications

    1998-01-01

    Changes in domestic refining operations are identified and related to the summer Reid vapor pressure (RVP) restrictions and oxygenate blending requirements. This analysis uses published Energy Information Administration survey data and linear regression equations from the Short-Term Integrated Forecasting System (STIFS). The STIFS model is used for producing forecasts appearing in the Short-Term Energy Outlook.

  10. Air impacts from three alternatives for producing JP-8 jet fuel.

    PubMed

    Kositkanawuth, Ketwalee; Gangupomu, Roja Haritha; Sattler, Melanie L; Dennis, Brian H; MacDonnell, Frederick M; Billo, Richard; Priest, John W

    2012-10-01

    To increase U.S. petroleum energy independence, the University of Texas at Arlington (UT Arlington) has developed a direct coal liquefaction process which uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This sweet crude can be refined to form JP-8 military jet fuel, as well as other end products like gasoline and diesel. This paper presents an analysis of air pollutants resulting from using UT Arlington's liquefaction process to produce crude and then JP-8, compared with 2 alternative processes: conventional crude extraction and refining (CCER), and the Fischer-Tropsch process. For each of the 3 processes, air pollutant emissions through production of JP-8 fuel were considered, including emissions from upstream extraction/ production, transportation, and conversion/refining. Air pollutants from the direct liquefaction process were measured using a LandTEC GEM2000 Plus, Draeger color detector tubes, OhioLumex RA-915 Light Hg Analyzer, and SRI 8610 gas chromatograph with thermal conductivity detector. According to the screening analysis presented here, producing jet fuel from UT Arlington crude results in lower levels of pollutants compared to international conventional crude extraction/refining. Compared to US domestic CCER, the UTA process emits lower levels of CO2-e, NO(x), and Hg, and higher levels of CO and SO2. Emissions from the UT Arlington process for producing JP-8 are estimated to be lower than for the Fischer-Tropsch process for all pollutants, with the exception of CO2-e, which were high for the UT Arlington process due to nitrous oxide emissions from crude refining. When comparing emissions from conventional lignite combustion to produce electricity, versus UT Arlington coal liquefaction to make JP-8 and subsequent JP-8 transport, emissions from the UT Arlington process are estimated to be lower for all air pollutants, per MJ of power delivered to the end user. The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. At current use rates, U.S. coal reserves (262 billion short tons, including 23 billion short tons lignite) would last 236 years. Accordingly, the University of Texas at Arlington (UT Arlington) has developed a process that converts lignite to crude oil, at about half the cost of regular crude. According to the screening analysis presented here, producing jet fuel from UT Arlington crude generates lower levels of pollutants compared to international conventional crude extraction/refining (CCER).

  11. Converge & Conquer

    ERIC Educational Resources Information Center

    Korzeniowski, Paul

    2008-01-01

    State-of-the-art, energy-efficient facilities are now emerging on campuses across the US, and for a variety of reasons: One practical consideration is that such buildings bring down energy costs, which are now soaring. Facing rising expenditures and a tightening of potential revenue, universities are looking for ways to reduce operating costs, and…

  12. Achieving and Maintaining Existing Building Sustainability Certification at Georgetown University

    ERIC Educational Resources Information Center

    Payant, Richard P.

    2013-01-01

    Sustainability is the promotion of high performance, healthful, energy-efficient, and environmentally stable buildings. Buildings intended for sustainable certification must meet guidelines developed by the Leadership in Energy and Environmental Design (LEED) of the U.S. Green Building Council. The problem is that LEED certification often fails to…

  13. Green Schools.

    ERIC Educational Resources Information Center

    Kozlowski, David, Ed.

    1998-01-01

    Discusses "going green" concept in school-building design, its cost-savings benefits through more efficient energy use, and its use by the State University of New York at Buffalo as solution to an energy retrofit program. Examples are provided of how this concept can be used, even for small colleges without large capital budgets, and how…

  14. Advanced Manufacturing Office Clean Water Processing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)’s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.

  15. Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj K. Rajamani

    2006-07-21

    A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Outokumpu Technology, Kennecott Utah Copper Corporation, and Process Engineering Resources Inc. At Cortez Gold Operations the shell and pulp lifters of the semiautogenous grinding mill was redesigned. The redesigned shell lifter hasmore » been in operation for over three years and the redesigned pulp lifter has been in operation for over nine months now. This report summarizes the dramatic reductions in energy consumption. Even though the energy reductions are very large, it is safe to say that a 20% minimum reduction would be achieved in any future installations of this technology.« less

  16. Arctic Energy Technology Development Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. Inmore » the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.« less

  17. Solidification Based Grain Refinement in Steels

    DTIC Science & Technology

    2009-07-24

    pearlite (See Figure 1). No evidence of the as-cast austenite dendrite structure was observed. The gating system for this sample resides at the thermal...possible nucleating compounds. 3) Extend grain refinement theory and solidification knowledge through experimental data. 4) Determine structure ...refine the structure of a casting through heat treatment. The energy required for grain refining via thermomechanical processes or heat treatment

  18. The Efficiency and Effectiveness of the K-12 Energy Technology Education Promotion Centers in Taiwan

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng

    2013-01-01

    In order to promote energy literacy for graders K-12, the Ministry of Education (MOE) in Taiwan initiated a K-12 Energy Technology Education Project in September 2010. This 40-month project has one project office affiliated to a university, and 18 promotion centers affiliated to 18 schools--including 5 regional centers for upper-secondary schools…

  19. Evaluation of the Liberian Petroleum Refining Company operations: crude oil refining vs product importation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuels, G.; Barron, W.F.; Barnes, R.W.

    1985-02-01

    This report is one of a series of project papers providing background information for an assessment of energy options for Liberia, West Africa. It presents information on a controversial recommendation of the energy assessment - that the only refinery in the country be closed and refined products be imported for a savings of approximately $20 million per year. The report reviews refinery operations, discusses a number of related issues, and presents a detailed analysis of the economics of the refinery operations as of 1982. This analysis corroborates the initial estimate of savings to be gained from importing all refined products.more » 1 reference, 24 tables.« less

  20. Biomethane production system: Energetic analysis of various scenarios.

    PubMed

    Wu, Bin; Zhang, Xiangping; Bao, Di; Xu, Yajing; Zhang, Suojiang; Deng, Liyuan

    2016-04-01

    The energy consumption models of biomethane production system were established, which are more rigorous and universal than the empirical data reported by previous biomethane system energetic assessment work. The energy efficiencies of different scenarios considering factors such as two digestion modes, two heating modes of digester, with or without heat exchange between slurry and feedstock, and four crude biogas upgrading technologies were evaluated. Results showed the scenario employing thermophilic digestion and high pressure water scrubbing technology, with heat exchange between feedstock and slurry, and heat demand of digester supplied by the energy source outside the system has the highest energy efficiency (46.5%) and lowest energy consumption (13.46 MJth/Nm(3) CH4), while scenario employing mesophilic digestion and pressure swing adsorption technology, without heat exchange and heat demand of digester supplied by combusting the biogas produced inside the system has the lowest energy efficiency (15.8%) and highest energy consumption (34.90 MJth/Nm(3) CH4). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A new dawn for industrial photosynthesis.

    PubMed

    Robertson, Dan E; Jacobson, Stuart A; Morgan, Frederick; Berry, David; Church, George M; Afeyan, Noubar B

    2011-03-01

    Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO(2) into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.

  2. Overview of a flywheel stack energy storage system

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Davinder K.

    1988-01-01

    The concept of storing electrical energy in rotating flywheels provides an attractive substitute to batteries. To realize these advantages the critical technologies of rotor design, composite materials, magnetic suspension, and high efficiency motor/generators are reviewed in this paper. The magnetically suspended flywheel energy storage system, currently under development at the University of Maryland, consisting of a family of interference assembled rings, is presented as an integrated solution for energy storage.

  3. Unstructured Euler flow solutions using hexahedral cell refinement

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1991-01-01

    An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.

  4. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University.

    PubMed

    Okeniyi, Joshua O; Atayero, Aderemi A; Popoola, Segun I; Okeniyi, Elizabeth T; Alalade, Gbenga M

    2018-04-01

    This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT). Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment.

  5. Conformational Analysis of Free and Bound Retinoic Acid

    PubMed Central

    Fu, Zheng; Li, Xue; Merz, Kenneth M.

    2012-01-01

    The conformational profiles of unbound all-trans and 9-cis retinoic acid (RA) have been determined using classical and quantum mechanical calculations. Sixty-six all-trans-RA (ATRA) and forty-eight 9-cis-RA energy minimum conformers were identified via HF/6-31G* geometry optimizations in vacuo. Their relative conformational energies were estimated utilizing the M06, M06-2x and MP2 methods combined with the 6-311+G(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis sets, as well as complete basis set MP2 extrapolations using the latter two basis sets. Single-point energy calculations performed with the M06-2x density functional were found to yield similar results to MP2/CBS for the low-energy retinoic acid conformations. Not unexpectedly, the conformational propensities of retinoic acid were governed by the orientation and arrangement of the torsion angles associated with the polyene tail. We also used previously reported QM/MM X-ray refinement results on four ATRA-protein crystal structures plus one newly refined 9-cis-RA complex (PDB ID 1XDK) in order to investigate the conformational preferences of bound retinoic acid. In the re-refined RA conformers the conjugated double bonds are nearly coplanar, which is consistent with the global minimum identified by the Omega/QM method rather than the corresponding crystallographically determined conformations given in the PDB. Consequently, a 91.3% average reduction of the local strain energy in the gas phase, as well as 92.1% in PCM solvent, was observed using the QM/MM refined structures versus the PDB deposited RA conformations. These results thus demonstrate that our QM/MM X-ray refinement approach can significantly enhance the quality of X-ray crystal structures refined by conventional refinement protocols, thereby providing reliable drug-target structural information for use in structure-based drug discovery applications. PMID:22844234

  6. Office of Industrial Technologies research in progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffsmore » of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.« less

  7. Refining King and Baxter Magolda's Model of Intercultural Maturity

    ERIC Educational Resources Information Center

    Perez, Rosemary J.; Shim, Woojeong; King, Patricia M.; Baxter Magolda, Marcia B.

    2015-01-01

    This study examined 110 intercultural experiences from 82 students attending six colleges and universities to explore how students' interpretations of their intercultural experiences reflected their developmental capacities for intercultural maturity. Our analysis of students' experiences confirmed as well as refined and expanded King and Baxter…

  8. Energy balances of bioenergy crops (Miscanthus, maize, rapeseed) and their CO2-mitigation potential on a regional farm scale

    NASA Astrophysics Data System (ADS)

    Felten, D.; Emmerling, C.

    2012-04-01

    Increasing cultivation of energy crops in agriculture reveals the progressive substitution of fossil fuels, such as crude oil or brown coal. For the future development of renewable resources, the efficiency of different cropping systems will be crucial, as energy crops differ in terms of the energy needed for crop cultivation and refinement and the respective energy yield, e.g. per area. Here, balancing is certainly the most suitable method for the assessment of cropping system efficiency, contrasting energy inputs with energy outputs and the related CO2 emissions with potential CO2 credits due to substitution of fossil fuels, respectively. The aim of the present study was to calculate both energy and CO2 balances for rapeseed and maize, representing the recently most often cultivated energy crops in Germany, on a regional farm scale. Furthermore, special emphasis was made on perennial Miscanthus x giganteus, which is commonly used as a solid fuel for combustion. This C4-grass is of increasing interest due to its high yield potential accompanied by low requirements for soil tillage, weed control, and fertilization as well as long cultivation periods up to 25 years. In contrast to more general approaches, balances were calculated with local data from commercial farms. The site-specific consumption of diesel fuel was calculated using an online-based calculator, developed by the German Association for Technology and Structures in Agriculture (KTBL). By balancing each of the aforementioned cropping systems, our research focused on (i) the quantification of energy gains and CO2 savings due to fossil fuel substitution and (ii) the assessment of energy efficiency, expressed as the ratio of energy output to input. The energy input was highest for maize sites (33.8 GJ ha-1 yr-1), followed by rapeseed (18.2 GJ ha-1 yr-1), and Miscanthus (1.1 GJ ha-1 yr-1); corresponding energy yields were 129.5 GJ ha-1 yr-1 (maize), 83.6 GJ ha-1 yr-1 (rapeseed), and 259.7 GJ ha-1 yr-1 (Miscanthus), respectively. The energy output:input ratios were 3.83 (maize), 4.59 (rapeseed), and 236 (Miscanthus). The cultivation of rapeseed for biodiesel led to reduced CO2 emissions of 3.552 Mg ha-1 yr-1 due to substitution of diesel fuel. An amount of 9.312 Mg CO2 ha-1 yr-1 was saved by maize as co-ferment for biogas. Thereby, biogas was a substitute for electrical power from German energy mix (esp. nuclear power, utilization of coal), whereas the simultaneously used thermal energy was assumed to replace heating oil. Miscanthus cropping saved up to 18.540 Mg CO2 ha-1 yr-1 as a substitute for heating oil, including approx. 4 Mg CO2 ha-1 from organic carbon, which got sequestered within the soil organic matter due to site-remaining crop residues. In sum, each cropping system gained energy and reduced greenhouse gas emissions, although energy inputs and outputs differed significantly. High energy inputs for maize and rapeseed were mainly related to mineral N-fertilization. Also the need of methanol for biodiesel refining and the energy consumed by the biogas plant increased the total energy consumption markedly. Due to its low-input character, Miscanthus seems promising to fulfill several demands in the context of sustainability.

  9. Vapor-phase diethyl oxalate pretreatment of wood chips. Part 1, Energy savings and improved pulps

    Treesearch

    William Kenealy; Eric Horn; Carl Houtman

    2007-01-01

    Diethyl oxalate (DEO) was injected into a digester containing wood chips (pine, spruce, or aspen) preheated to 130–1408C and held for 30 min at the same temperature. When mechanical pulps were produced from these pretreated chips, savings in electrical refiner energy could be achieved. For southern yellow pine (Pinus taeda), the electrical refiner energy required to...

  10. Electrochemical characteristics of needle coke refined by molten caustic leaching as an anode material for a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Kang, Hyeong-Gon; Park, Jong-Kwang; Han, Byoung-Sung; Lee, Haeseong

    Needle coke, the remaining material after refining petroleum, is used as an anode of a lithium-ion secondary battery. Sulfur is separated from the needle coke to below 0.1 wt.% using the molten caustic leaching (MCL) method developed at the Korea Institute of Energy Research. The needle coke with high-purity is carbonized at various temperatures, namely 0, 500, 700 and 900 °C. The coke treated at 700 °C gives a first and second discharge capacity of more than 560 and 460 mAh g -1, respectively, between 0 and 2.0 V. By contrast, the first and second discharge capacity of untreated coke is over 420 and 340 mAh g -1, respectively, between 0.05 and 2.0 V.The first discharge capacity of 560 mAh g -1 is beyond the theoretical maximum capacity of 372 mAh g -1 for LiC 6. Though the cycle efficiency is not consistent, the needle coke heat-treated at 700 °C persistently maintains an efficiency of over 90% until the 50th cycle, except on the first cycle. This study demonstrates that the needle coke with high-purity could be a good candidate for an anode material in fabricating high-capacity lithium-ion secondary batteries.

  11. A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.

    1999-01-01

    The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.

  12. A strategy to find minimal energy nanocluster structures.

    PubMed

    Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel

    2013-11-05

    An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.

  13. 76 FR 45247 - Tesoro Refining and Marketing Company v. SFPP, L.P.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR 11-18-000] Tesoro Refining and Marketing Company v. SFPP, L.P.; Notice of Complaint Take notice that on July 20, 2011... Marketing Company (Complainant) filed a formal complaint against SFPP L.P. (SFPP or Respondent) alleging...

  14. 76 FR 49468 - Tesoro Refining and Marketing Company, SFPP, L.P.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR11-20-000] Tesoro Refining and Marketing Company, SFPP, L.P.; Notice of Complaint Take notice that on August 2, 2011, pursuant to... Marketing Company (Complainant) filed a complaint against SFPP, L.P. (SFPP or Respondent), challenging the...

  15. University of Arizona High Energy Physics Program at the Cosmic Frontier 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    abate, alex; cheu, elliott

    This is the final technical report from the University of Arizona High Energy Physics program at the Cosmic Frontier covering the period 2014-2016. The work aims to advance the understanding of dark energy using the Large Synoptic Survey Telescope (LSST). Progress on the engineering design of the power supplies for the LSST camera is discussed. A variety of contributions to photometric redshift measurement uncertainties were studied. The effect of the intergalactic medium on the photometric redshift of very distant galaxies was evaluated. Computer code was developed realizing the full chain of calculations needed to accurately and efficiently run large-scale simulations.

  16. Crystal structure optimisation using an auxiliary equation of state

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  17. The Kill-a-Watt Competition at University of Central Florida

    ScienceCinema

    Margaret Lo

    2017-12-09

    At the University of Central Florida, students have taken it upon themselves to create a culture of energy efficiency. Each year, different dorm buildings compete to see who can save the most. In 2009, the school saw a total savings of $27,000. As of March 2010, they've saved over $24,000 this year alone.

  18. The Kill-a-Watt Competition at University of Central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, Chris; Lo, Margaret; Norvell, David

    2010-04-05

    At the University of Central Florida, students have taken it upon themselves to create a culture of energy efficiency. Each year, different dorm buildings compete to see who can save the most. In 2009, the school saw a total savings of $27,000. As of March 2010, they've saved over $24,000 this year alone.

  19. Sustainable Attitudes and Behaviours amongst a Sample of Non-Academic Staff: A Case Study from an Information Services Department, Griffith University, Brisbane

    ERIC Educational Resources Information Center

    Davis, G.; O'Callaghan, F.; Knox, K.

    2009-01-01

    Purpose: The purpose of this paper is seek to characterise sustainable attitudes and behaviours (including recycling and waste minimisation, energy efficiency, water conservation and "green" purchasing) amongst non-academic staff within Griffith University, Queensland. Design/methodology/approach: For this study, the attitudes and…

  20. Laser Ray Tracing in a Parallel Arbitrary Lagrangian-Eulerian Adaptive Mesh Refinement Hydrocode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, N D; Kaiser, T B; Anderson, R W

    2009-09-28

    ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray-tracing in ALE-AMR. We present the equations of laser ray tracing, our approach to efficient traversal of the adaptive mesh hierarchy in which we propagate computational rays through a virtual composite mesh consisting of the finest resolution representation of the modeled space, and anticipate simulations that will be compared to experiments for code validation.

  1. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema

    McGraw, Jennifer

    2017-12-27

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  2. A Dialogic Inquiry Approach to Working with Teachers in Developing Classroom Dialogue

    ERIC Educational Resources Information Center

    Hennessy, Sara; Mercer, Neil; Warwick, Paul

    2011-01-01

    Background/Context: This article describes how we refined an innovative methodology for equitable collaboration between university researchers and classroom practitioners building and refining theory together. The work builds on other coinquiry models in which complementary professional expertise is respected and deliberately exploited in order to…

  3. Lactation and neonatal nutrition: Defining and refining the critical questions

    USDA-ARS?s Scientific Manuscript database

    This paper resulted from a conference entitled "Lactation and Milk: Defining and Refining the Critical Questions" held at the University of Colorado School of Medicine from January 18-20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into ...

  4. Superoxide Stabilization and a Universal KO2 Growth Mechanism in Potassium-Oxygen Batteries.

    PubMed

    Wang, Wanwan; Lai, Nien-Chu; Liang, Zhuojian; Wang, Yu; Lu, Yi-Chun

    2018-04-23

    Rechargeable potassium-oxygen (K-O 2 ) batteries promise to provide higher round-trip efficiency and cycle life than other alkali-oxygen batteries with satisfactory gravimetric energy density (935 Wh kg -1 ). Exploiting a strong electron-donating solvent, for example, dimethyl sulfoxide (DMSO) strongly stabilizes the discharge product (KO 2 ), resulting in significant improvement in electrode kinetics and chemical/electrochemical reversibility. The first DMSO-based K-O 2 battery demonstrates a much higher energy efficiency and stability than the glyme-based electrolyte. A universal KO 2 growth model is developed and it is demonstrated that the ideal solvent for K-O 2 batteries should strongly stabilize superoxide (strong donor ability) to obtain high electrode kinetics and reversibility while providing fast oxygen diffusion to achieve high discharge capacity. This work elucidates key electrolyte properties that control the efficiency and reversibility of K-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Machines that Manage.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2003-01-01

    Describes how facilities-management systems use technology to help schools and universities operate their buildings more efficiently, reduce energy consumption, manage inventory more accurately, keep track of supplies and maintenance schedules, and save money. (EV)

  6. Array-based, parallel hierarchical mesh refinement algorithms for unstructured meshes

    DOE PAGES

    Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...

    2016-08-18

    In this paper, we describe an array-based hierarchical mesh refinement capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in memory refinement). We also describe a high-order boundary reconstruction capability that can be used tomore » project the new points after refinement using high-order approximations instead of linear projection in order to minimize and provide more control on geometrical errors introduced by curved boundaries.The capability is developed under the parallel unstructured mesh framework "Mesh Oriented dAtaBase" (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to generate such hierarchies in parallel and present numerical results for computational efficiency and effect on mesh quality. Furthermore, we also present results to demonstrate the applicability of the developed capability to study convergence properties of different point projection schemes for various mesh hierarchies and to a multigrid finite-element solver for elliptic problems.« less

  7. Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover.

    PubMed

    Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab

    2009-12-01

    Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.

  8. Recent Progress Made in the Development of High-Energy UV Transmitter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell J.

    2007-01-01

    In this paper, the status of an all-solid-state UV converter development for ozone sensing applications is discussed. A high energy Nd:YAG laser for pumping the UV converter arrangement was recently reported. The pump is an all-solid-state, single longitudinal mode, and conductively cooled Nd:YAG laser operating at 1064 nm wavelength. Currently, this pump laser provides an output pulse energy of greater than 1J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of approx. 2. The spatial profile of the output beam is a rectangular super Gaussian. This Nd:YAG pump laser has been developed to pump the nonlinear optics based UV converter arrangement to generate 320 nm and 308 nm wavelengths by means of 532 nm wavelength. Previously, this UV converter arrangement has demonstrated IR-to-UV conversion efficiency of 24% using a flash lamp pumped laser providing a round, flat top spatial profile. Recently, the UV converter was assembled and tested at NASA LaRC for pumping with the diode pumped Nd:YAG laser. With current spatial profile, the UV converter was made operational. Current efforts to maximize the nonlinear conversion efficiency by refining its spatial profile to match RISTRA OPO requirements are progressing.

  9. Occupational health risk assessment of volatile organic compounds emitted from the coke production unit of a steel plant.

    PubMed

    Dehghani, Fateme; Omidi, Fariborz; Heravizadeh, Omidreza; Barati Chamgordani, Saied; Gharibi, Vahid; Sotoudeh Manesh, Akbar

    2018-03-27

    In this study, cancer and non-cancer risks of exposure to volatile organic compounds in the coke production unit of a steel plant were evaluated. To determine individual exposure to benzene, toluene, xylene and ethylbenzene, personal samples were taken from the breathing zone of workers according to National Institute for Occupational Safety and Health (NIOSH) method 1501. Cancer and non-cancer risk assessment was performed, using US Environmental Protection Agency (US EPA) methods. Samples analysis showed that the concentration of benzene in the energy and biochemistry and the benzol refinement sections was higher than occupational exposure limits. The cancer risk for benzene in all sections was significantly higher than allowable limit; the non-cancer risk for benzene in all sections and toluene in the benzol refinement section was also higher than 1.0. In conclusion, the current control measures are not sufficient and should be improved for efficient control of occupational exposures.

  10. Application of Computer Assisted Energy Analysis Seminar (Pittsburgh, Pennsylvania, April 12-14, 1977).

    ERIC Educational Resources Information Center

    Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.

    The intent of this seminar presentation was to demonstrate that with proper care in selecting and managing energy analysis programs, or in choosing commercial services to accomplish the same purposes, universities and colleges may derive significant benefits from efficient and economical use and management of their facilities. The workbook begins…

  11. Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.

    2015-07-01

    This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-element method (FEM). The key novel aspect of the introduced algorithm is the use of automatic mesh refinement techniques for both forward and inverse modelling. These techniques alleviate tedious and subjective procedure of choosing a suitable model parametrization. To avoid overparametrization, meshes for forward and inverse problems were decoupled. For calculation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM fields for each frequency were calculated using independent meshes in order to account for substantially different spatial behaviour of the fields over a wide range of frequencies. An automatic approach for efficient initial mesh design in inverse problems based on linearized model resolution matrix was developed. To make this algorithm suitable for large-scale problems, it was proposed to use a low-rank approximation of the linearized model resolution matrix. In order to fill a gap between initial and true model complexities and resolve emerging 3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined in the neighborhoods of points with the largest variations. A series of numerical tests were performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement based on the model resolution estimates provides an efficient tool to derive initial meshes which account for arbitrary survey layouts, data types, frequency content and measurement uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve features on multiple scales while keeping number of unknowns low. However, such meshes exhibit dependency on an initial model guess. Additionally, it is demonstrated that the adaptive mesh refinement can be particularly efficient in resolving complex shapes. The implemented inversion scheme was able to resolve a hemisphere object with sufficient resolution starting from a coarse discretization and refining mesh adaptively in a fully automatic process. The code is able to harness the computational power of modern distributed platforms and is shown to work with models consisting of millions of degrees of freedom. Significant computational savings were achieved by using locally refined decoupled meshes.

  12. Recovery Act - Refinement of Cross Flow Turbine Airfoils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEntee, Jarlath

    2013-08-30

    Ocean Renewable Power Company, LLC (ORPC) is a global leader in hydrokinetic technology and project development. ORPC develops hydrokinetic power systems and eco-conscious projects that harness the power of oceans and rivers to create clean, predictable renewable energy. ORPC’s technology consists of a family of modular hydrokinetic power systems: the TidGen® Power System, for use at shallow to medium-depth tidal sites; the RivGen™ Power System, for use at river and estuary sites; and the OCGen® Power System, presently under development, for use at deep tidal and offshore ocean current sites. These power systems convert kinetic energy in moving water intomore » clean, renewable, grid-compatible electric power. The core technology component for all ORPC power systems is its patented turbine generator unit (TGU). The TGU uses proprietary advanced design cross flow (ADCF) turbines to drive an underwater permanent magnet generator mounted at the TGU’s center. It is a gearless, direct-drive system that has the potential for high reliability, requires no lubricants and releases no toxins that could contaminate the surrounding water. The hydrokinetic industry shows tremendous promise as a means of helping reduce the U.S.’s use of fossil fuels and dependence on foreign oil. To exploit this market opportunity, cross-flow hydrokinetic devices need to advance beyond the pre-commercial state and more systematic data about the structure and function of cross-flow hydrokinetic devices is required. This DOE STTR project, “Recovery Act - Refinement of Cross Flow Turbine Airfoils,” refined the cross-flow turbine design process to improve efficiency and performance and developed turbine manufacturing processes appropriate for volume production. The project proposed (1) to overcome the lack of data by extensively studying the properties of cross flow turbines, a particularly competitive design approach for extracting hydrokinetic energy and (2) to help ORPC mature its pre-commercial hydrokinetic technology into a commercially viable product over a three-year period by means of a design-for-manufacture process to be applied to the turbines which would result in a detail turbine design suitable for volume manufacture. In Phase I of the Project, ORPC systematically investigated performance of cross flow turbines by varying design parameters including solidity, foil profile, number of foils and foil toe angle using scale models of ORPC’s turbine design in a tow tank at the University of Maine (UMaine). Data collected provided information on interactions between design variables and helped ORPC improve turbine efficiency from 21% to greater than 35%. Analytical models were developed to better understand the physical phenomena at play in cross-flow turbines. In Phase II of the Project, ORPC expanded on data collected in Phase I to continue improving turbine efficiency, with a goal to optimally approach the Betz limit of 59.3%. Further tow tank testing and development of the analytical models and techniques was completed at UMaine and led to a deeper understanding of the flow phenomena involved. In addition, ORPC evaluated various designs, materials and manufacturing methods for full-scale turbine foils, and identified those most conducive to volume manufacture. Selected components of the turbine were structurally tested in a laboratory environment at UMaine. Performance and structural testing of the full scale turbine design was conducted as part of the field testing. The work funded by this project enabled the development of design tools for the rapid and efficient development of high performance cross-flow hydrokinetic turbine foils. The analytical tools are accurate and properly capture the underlying physical flow phenomena present in hydrokinetic cross-flow turbines. The ability to efficiently examine the design space provides substantial economic benefit to ORPC in that it allows for rapid design iteration at a low computational cost. The design-for-manufacture work enabled the delivery of a turbine design suitable for manufacture in intermediate to large quantity, lowering the unit cost of turbines and the levelized cost of electricity from ORPC hydrokinetic turbine. ORPC fielded the turbine design in a full scale application – the Cobscook Bay Tidal Energy Project which began operation off the coast of Eastport, Maine in September 2012. This is the first commercial, grid-connected tidal energy project in North America and the only ocean energy project not involving a dam which delivers power to a utility grid anywhere in the Americas. ORPC received a Federal Energy Regulatory Commission pilot project license to install and operate this project in February 2012. Construction of the TidGen® Power System began in March 2012, and the system was grid-connected on September 13, 2012. A 20-year commercial power purchase agreement to sell the power generated by the project was completed with Bangor Hydro Electric Company and is the first and only power purchase agreement for tidal energy. This is the first project in the U.S. to receive Renewable Energy Certificates for tidal energy production. The STTR project is a benefit to the public through its creation of jobs. ORPC’s recent deployment of the TidGen™ Power System is part of their larger project, the Maine Tidal Energy Project. According to ORPC’s report to the Maine Public Utilities Commission and the 20-year power purchase agreement, the Maine Tidal Energy Project will create and/or retain at least 80 direct full-time equivalent jobs in Maine during the development, construction and installation phase (2011 through 2016). In addition, the Maine Tidal Energy Project will create and/or retain at least 12 direct full-time equivalent jobs in Maine during the operating and maintenance phase (2016 through 2020). The STTR project has facilitated new and expanded services in manufacturing, fabrication and assembly, including major business growth for the composite technologies sector; creation of deepwater deployment, maintenance and retrieval services; and the expansion and formation of technical support services such as site assessment and design services, geotechnical services, underwater transmission services, and environmental monitoring services. The Maine Tidal Energy Project’s impact on workforce will enable other ocean energy projects – be they offshore wind, wave or additional tidal opportunities – to succeed in Maine. ORPC received a 2013 Tibbetts Award by the U.S. Small Business Administration.« less

  13. Elastic and inelastic scattering of neutrons from 56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.

    2015-10-01

    The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.

  14. Detailed analysis of acidic compounds in Mayan gas oil and hydrotreated products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, G.P. Jr.; Green, J.B.; Grigsby, R.D.

    1989-04-01

    The present and future importance of heavy crude as a primary energy resource is widely recognized in spite of the current oversupply of crude oil. Along with coal and shale oil, heavy crudes and heavy ends of conventional crude produced by primary and enhanced oil recovery methods are considered important and dependable resources to meet their nation's long-term energy needs. Heavy crudes impose more severe requirements upon refining technology to produce end products meeting current specifications in terms of stability, compatibility, and corrosiveness. This study is based on the premise that knowledge of the problem components in the feedstocks, intermediatemore » process streams, and products can aid in the development of efficient and economical means of producing higher quality products.« less

  15. Electron scattering measurements from molecules of technological relevance

    NASA Astrophysics Data System (ADS)

    Jones, Darryl

    2014-10-01

    Biomass represents a significant opportunity to provide renewable and sustainable biofuels. Non-thermal atmospheric pressure plasmas provide an opportunity to efficiently breakdown the naturally-resilient biomass into its useful subunits. Free electrons produced in the plasma may assist in this process by inducing fragmentation though dissociative excitation, ionization or attachment processes. To assist in understanding and refining this process, we have performed electron energy loss experiments from phenol (C6H5OH), a key structural building block of biomass. This enables a quantitative assessment of the excited electronic states of phenol. Differential cross sections for the electron-driven excitation of phenol have also been obtained for incident electron energies in the 20--250 eV range and over 3--90° scattering angles. DBJ acknowledges financial support provided by an Australian Research Council DECRA.

  16. “Straining” to Separate the Rare Earths: How the Lanthanide Contraction Impacts Chelation by Diglycolamide Ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Ross J.; Brigham, Derek M.; Delmau, Laetitia

    The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid–liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)3Ln]3+ complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligandsmore » for efficient adjacent lanthanide separation for rare-earth refining.« less

  17. “Straining” to Separate the Rare Earths: How the Lanthanide Contraction Impacts Chelation by Diglycolamide Ligands

    DOE PAGES

    Ellis, Ross J.; Brigham, Derek M.; Delmau, Laetitia; ...

    2016-11-23

    The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid–liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)3Ln]3+ complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligandsmore » for efficient adjacent lanthanide separation for rare-earth refining.« less

  18. Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks.

    PubMed

    Khan, Majid I; Gansterer, Wilfried N; Haring, Guenter

    2013-05-15

    Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax , the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar , the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar . The main contribution of this paper is to provide a simulation-based analysis of the energy efficiency of WSNs with static and mobile sinks. The focus is on two important configuration parameters: mobility path of the sink and duty cycling value of the nodes. On the one hand, it is well known that in the case of a mobile sink with fixed trajectory the choice of the mobility path influences energy efficiency. On the other hand, in some types of applications sensor nodes spend a rather large fraction of their total lifetime in idle mode, and therefore higher energy efficiency can be achieved by using the concept of reduced duty cycles. In particular, we quantitatively analyze the influence of duty cycling and the mobility radius of the sink as well as their interrelationship in terms of energy consumption for a well-defined model scenario. The analysis starts from general load considerations and is refined into a geometrical model. This model is validated by simulations which are more realistic in terms of duty cycling than previous work. It is illustrated that over all possible configuration scenarios in terms of duty cycle and mobility radius of the sink the energy dissipation in the WSN can vary up to a factor of nine in terms of Emax and up to a factor of 17 in terms of Ebar. It turns out that in general the choice of the duty cycle value is more important for achieving energy efficiency than the choice of the mobility radius of the sink. Moreover, for small values of the duty cycle, a static sink turns out to be optimal in terms of both Emax and Ebar . For larger values of the duty cycle, a mobile sink has advantages over a static sink, especially in terms of Emax . These insights into the basic interrelationship between duty cycle value and mobility radius of a mobile sink are relevant for energy efficient operation of homogeneous WSNs beyond our model scenario.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovard R. Perry; David L. Georgeson

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for high energy lung counting. The source used for the calibration was a NIST traceable lung set manufactured at the University of Cincinnati UCLL43AMEU & UCSL43AMEU containing Am-241 and Eu-152 with energies from 26 keV to 1408 keV. The lung set was used in conjunction with a Realistic Torso phantom. The phantom was placed on the RMC II counting table (with pins removed) between the v-ridges on the backwall of the Accuscan II counter. The top of the detector housing was positioned perpendicular to themore » junction of the phantom clavicle with the sternum. This position places the approximate center line of the detector housing with the center of the lungs. The energy and efficiency calibrations were performed using a Realistic Torso phantom (Appendix I) and the University of Cincinnati lung set. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for high energy lung counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.« less

  20. Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiswanger, Jr, Robert C

    2010-05-20

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is availablemore » to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.« less

  1. Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiswanger, Robert C.

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is availablemore » to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.« less

  2. Parallel Cartesian grid refinement for 3D complex flow simulations

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2013-11-01

    A second order accurate method for discretizing the Navier-Stokes equations on 3D unstructured Cartesian grids is presented. Although the grid generator is based on the oct-tree hierarchical method, fully unstructured data-structure is adopted enabling robust calculations for incompressible flows, avoiding both the need of synchronization of the solution between different levels of refinement and usage of prolongation/restriction operators. The current solver implements a hybrid staggered/non-staggered grid layout, employing the implicit fractional step method to satisfy the continuity equation. The pressure-Poisson equation is discretized by using a novel second order fully implicit scheme for unstructured Cartesian grids and solved using an efficient Krylov subspace solver. The momentum equation is also discretized with second order accuracy and the high performance Newton-Krylov method is used for integrating them in time. Neumann and Dirichlet conditions are used to validate the Poisson solver against analytical functions and grid refinement results to a significant reduction of the solution error. The effectiveness of the fractional step method results in the stability of the overall algorithm and enables the performance of accurate multi-resolution real life simulations. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482.

  3. Neutron response function characterization of 4He scintillation detectors

    DOE PAGES

    Kelley, Ryan P.; Rolison, Lucas M.; Lewis, Jason M.; ...

    2015-04-15

    Time-of-flight measurements were conducted to characterize the neutron energy response of pressurized 4He fast neutron scintillation detectors for the first time, using the Van de Graaff generator at Ohio University. The time-of-flight spectra and pulse height distributions were measured. This data was used to determine the light output response function, which was found to be linear at energies below 3.5 MeV. The intrinsic efficiency of the detector as a function of incident energy was also calculated: the average efficiency up to 10 MeV was 3.1%, with a maximum efficiency of 6.6% at 1.05 MeV. Furthermore, these results will enable developmentmore » of neutron spectrum unfolding algorithms for neutron spectroscopy applications with these detectors.« less

  4. Organization Theory: Implications for Design.

    ERIC Educational Resources Information Center

    Young, David A.

    1979-01-01

    This paper outlines the possibilities for scientific inquiry into the design of the university organization structure. In a theoretical context, bureaucratic management techniques were not refined enough to apply to university structures until the mid-twentieth century. Universities today are bureaucracies in that they have a formal division of…

  5. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    NASA Astrophysics Data System (ADS)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  6. UNC EFRC: Fuels from Sunlight (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Meyer, Thomas J. (Director, UNC EFRC: Solar Fuels and Next Generation Photovoltaics); UNC EFRC Staff

    2017-12-09

    'Fuels from Sunlight' was submitted by the University of North Carolina (UNC) EFRC: Solar Fuels and Next Generation Photovoltaics to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. The UNC EFRC directed by Thomas J. Meyer is a partnership of scientists from six institutions: UNC (lead), Duke University, University of Florida, North Caroline Central University, North Carolina State University, and the Research Triangle Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Solar Fuels and Next Generation Photovoltaics is 'to combine the best features of academic and translational research to study light/matter interactions and chemical processes for the efficient collection, transfer, and conversion of solar energy into chemical fuels and electricity.' Research topics are: catalysis (CO{sub 2}, hydrocarbons, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, photonic, solar electrodes, photosynthesis, fuel cells, CO{sub 2} (convert), greenhosue gas, hydrogen (fuel), interfacial characterization, novel materials synthesis, charge transport, and self-assembly.

  7. Interstellar Communication Channel Based on a Biological Universal

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Cellular biosynthesis starts with sugar substrates and continues energetically downhill to yield amino acid, rapid, and nucleotide products. To understand the energetics of these processes, we calculated the energy for biosynthesis from sugars of E. cali's amino acids, nucleotides, and lipids. We found that the biosynthesis of amino acids and lipids from sugar substrates proceeds by redox disproportionation. of sugar carbon with a favorable energy of about -11 kcal/mole of carbon. Overall, redox disproportion of sugar carbon accounted for 84% and 96% (ATP only 6% and 1%) of the total biosynthetic energy of amino acids and lipids (the major cellular constituents). Next, we calculated for all 48 possible 3-carbon substrates the energy of maximal disproportionation to carbon dioxide and methane. We found no other carbon substrates than matched sugars in biosynthetic energy, efficiency, and simplicity. From this, we concluded that sugars are the optimal biosynthetic substrate. Since this conclusion is based on universal properties of carbon chemistry, other carbon-based life throughout the Universe would also use optimal sugar substrates. Furthermore, this rather obvious universal role of sugars as the optimal biosubstrate would probably be common knowledge of technological civilizations throughout the Universe. Since the elemental building block of all sugars is formaldehyde, the common knowledge that sugars are the universal optimal biosubstrate could reasonably lead to the selection of a line(s) in the microwave spectrum of formaldehyde as a frequency for interstellar communication.

  8. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    PubMed

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  9. Energy Efficiency Finance Programs: Use Case Analysis to Define Data Needs and Guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Peter; Larsen, Peter; Kramer, Chris

    There are over 200 energy efficiency loan programs—across 49 U.S. states—administered by utilities, state/local government agencies, or private lenders.1 This distributed model has led to significant variation in program design and implementation practices including how data is collected and used. The challenge of consolidating and aggregating data across independently administered programs has been illustrated by a recent pilot of an open source database for energy efficiency financing program data. This project was led by the Environmental Defense Fund (EDF), the Investor Confidence Project, the Clean Energy Finance Center (CEFC), and the University of Chicago. This partnership discussed data collection practicesmore » with a number of existing energy efficiency loan programs and identified four programs that were suitable and willing to participate in the pilot database (Diamond 2014).2 The partnership collected information related to ~12,000 loans with an aggregate value of ~$100M across the four programs. Of the 95 data fields collected across the four programs, 30 fields were common between two or more programs and only seven data fields were common across all programs. The results of that pilot study illustrate the inconsistencies in current data definition and collection practices among energy efficiency finance programs and may contribute to certain barriers.« less

  10. State University of New York Institute of Technology (SUNYIT) Visiting Scholars Program

    DTIC Science & Technology

    2013-05-01

    team members, and build the necessary backend metal interconnections. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 4 Baek-Young Choi...Cooperative and Opportunistic Mobile Cloud for Energy Efficient Positioning; Department of Computer Science Electrical Engineering, University of...Missouri - Kansas City The fast growing popularity of smartphones and tablets enables us the use of various intelligent mobile applications. As many of

  11. Energy-Efficient High-Performance Routers

    DTIC Science & Technology

    2012-02-01

    award, the PI Dr. Sartaj Sahni, AFRL research scientist Dr. Gunasekaran Seetharaman, and University of Florida Ph.D. student Ms. Tania Banerjee...Sartaj Sahni, AFRL research scientist Dr. Gunasekaran Seetharaman, and University of Florida Ph.D. student Ms. Tania Banerjee-Mishra...Searching and Shift Redundancy Architecture, IJSSC, 40, 1, Jan 2005, 245-253. PC-DUOS+: A TCAM Architecture for Packet Classifiers Tania Banerjee

  12. Modeling Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team

    2013-10-01

    The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  13. Greening the Bottom Line: The Trend toward Green Revolving Funds on Campus

    ERIC Educational Resources Information Center

    Weisbord, Dano

    2011-01-01

    Facing steep budget cuts and rising energy costs, many colleges are grappling with how to finance urgently needed, but capital intensive, energy efficiency upgrades on campus. One innovative approach, using return-oriented green revolving funds (GRFs), is a rapidly growing trend at colleges and universities. GRFs can invest in a variety of…

  14. Teaching the Relation between Solar Cell Efficiency and Annual Energy Yield

    ERIC Educational Resources Information Center

    van Sark, Wilfried G. J. H. M.

    2007-01-01

    To reach a sustainable world the use of renewable energy sources is imperative. Photovoltaics (PV) is but one of the technologies that use the power of the sun and its deployment is growing very fast. Several master programs have been developed over the world, including Utrecht University, that teach these technologies. Within the framework of a…

  15. Global map of solar power production efficiency, considering micro climate factors

    NASA Astrophysics Data System (ADS)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  16. Improving an Assessment of Tidal Stream Energy Resource for Anchorage, Alaska

    NASA Astrophysics Data System (ADS)

    Xu, T.; Haas, K. A.

    2016-12-01

    Increasing global energy demand is driving the pursuit of new and innovative energy sources leading to the need for assessing and utilizing alternative, productive and reliable energy resources. Tidal currents, characterized by periodicity and predictability, have long been explored and studied as a potential energy source, focusing on many different locations with significant tidal ranges. However, a proper resource assessment cannot be accomplished without accurate knowledge of the spatial-temporal distribution and availability of tidal currents. Known for possessing one of the top tidal energy sources along the U.S. coastline, Cook Inlet, Alaska is the area of interest for this project. A previous regional scaled resource assessment has been completed, however, the present study is to focus the assessment on the available power specifically near Anchorage while significantly improving the accuracy of the assessment following IEC guidelines. The Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system is configured to simulate the tidal flows with grid refinement techniques for a minimum of 32 days, encompassing an entire lunar cycle. Simulation results are validated by extracting tidal constituents with harmonic analysis and comparing tidal components with National Oceanic and Atmospheric Administration (NOAA) observations and predictions. Model calibration includes adjustments to bottom friction coefficients and the usage of different tidal database. Differences between NOAA observations and COAWST simulations after applying grid refinement decrease, compared with results from a former study without grid refinement. Also, energy extraction is simulated at potential sites to study the impact on the tidal resources. This study demonstrates the enhancement of the resource assessment using grid refinement to evaluate tidal energy near Anchorage within Cook Inlet, Alaska, the productivity that energy extraction can achieve and the change in tidal currents caused by energy extraction.

  17. Leap-dynamics: efficient sampling of conformational space of proteins and peptides in solution.

    PubMed

    Kleinjung, J; Bayley, P; Fraternali, F

    2000-03-31

    A molecular simulation scheme, called Leap-dynamics, that provides efficient sampling of protein conformational space in solution is presented. The scheme is a combined approach using a fast sampling method, imposing conformational 'leaps' to force the system over energy barriers, and molecular dynamics (MD) for refinement. The presence of solvent is approximated by a potential of mean force depending on the solvent accessible surface area. The method has been successfully applied to N-acetyl-L-alanine-N-methylamide (alanine dipeptide), sampling experimentally observed conformations inaccessible to MD alone under the chosen conditions. The method predicts correctly the increased partial flexibility of the mutant Y35G compared to native bovine pancreatic trypsin inhibitor. In particular, the improvement over MD consists of the detection of conformational flexibility that corresponds closely to slow motions identified by nuclear magnetic resonance techniques.

  18. An Environmentally Friendly Process Involving Refining and Membrane-Based Electrolysis for Magnesium Recovery from Partially Oxidized Scrap Alloy

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2013-10-01

    Magnesium is recovered from partially oxidized scrap alloy by combining refining and solid oxide membrane (SOM) electrolysis. In this combined process, a molten salt eutectic flux (45 wt.% MgF2-55 wt.% CaF2) containing 10 wt.% MgO and 2 wt.% YF3 was used as the medium for magnesium recovery. During refining, magnesium and its oxide are dissolved from the scrap into the molten flux. Forming gas is bubbled through the flux and the dissolved magnesium is removed via the gas phase and condensed in a separate condenser at a lower temperature. The molten flux has a finite solubility for magnesium and acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium recovered has high purity. After refining, SOM electrolysis is performed in the same reactor to enable electrolysis of the dissolved magnesium oxide in the molten flux producing magnesium at the cathode and oxygen at the SOM anode. During SOM electrolysis, it is necessary to decrease the concentration of the dissolved magnesium in the flux to improve the faradaic current efficiency and prevent degradation of the SOM. Thus, for both refining and SOM electrolysis, it is very important to measure and control the magnesium solubility in the molten flux. High magnesium solubility facilitates refining whereas lower solubility benefits the SOM electrolysis process. Computational fluid dynamics modeling was employed to simulate the flow behavior of the flux stirred by the forming gas. Based on the modeling results, an optimized design of the stirring tubes and its placement in the flux are determined for efficiently removing the dissolved magnesium and also increasing the efficiency of the SOM electrolysis process.

  19. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  20. Advancing Efficient All-Electron Electronic Structure Methods Based on Numeric Atom-Centered Orbitals for Energy Related Materials

    NASA Astrophysics Data System (ADS)

    Blum, Volker

    This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.

  1. Hubble's Megamaser Galaxy

    NASA Image and Video Library

    2017-12-08

    Feast your eyes on Hubble's Megamaser galaxy! Phenomena across the Universe emit radiation spanning the entire electromagnetic spectrum — from high-energy gamma rays, which stream out from the most energetic events in the cosmos, to lower-energy microwaves and radio waves. Microwaves, the very same radiation that can heat up your dinner, are produced by a multitude of astrophysical sources, including strong emitters known as masers (microwave lasers), even stronger emitters with the somewhat villainous name of megamasers and the centers of some galaxies. Especially intense and luminous galactic centers are known as active galactic nuclei. They are in turn thought to be driven by the presence of supermassive black holes, which drag surrounding material inwards and spit out bright jets and radiation as they do so. The two galaxies shown here, imaged by the NASA/ESA Hubble Space Telescope, are named MCG+01-38-004 (the upper, red-tinted one) and MCG+01-38-005 (the lower, blue-tinted one). MCG+01-38-005 (also known as NGC 5765B) is a special kind of megamaser; the galaxy’s active galactic nucleus pumps out huge amounts of energy, which stimulates clouds of surrounding water. Water’s constituent atoms of hydrogen and oxygen are able to absorb some of this energy and re-emit it at specific wavelengths, one of which falls within the microwave regime, invisible to Hubble but detectable by microwave telescopes. MCG+01-38-005 is thus known as a water megamaser! Astronomers can use such objects to probe the fundamental properties of the Universe. The microwave emissions from MCG+01-38-005 were used to calculate a refined value for the Hubble constant, a measure of how fast the Universe is expanding. This constant is named after the astronomer whose observations were responsible for the discovery of the expanding Universe and after whom the Hubble Space Telescope was named, Edwin Hubble.

  2. ADAPTIVE TETRAHEDRAL GRID REFINEMENT AND COARSENING IN MESSAGE-PASSING ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallberg, J.; Stagg, A.

    2000-10-01

    A grid refinement and coarsening scheme has been developed for tetrahedral and triangular grid-based calculations in message-passing environments. The element adaption scheme is based on an edge bisection of elements marked for refinement by an appropriate error indicator. Hash-table/linked-list data structures are used to store nodal and element formation. The grid along inter-processor boundaries is refined and coarsened consistently with the update of these data structures via MPI calls. The parallel adaption scheme has been applied to the solution of a transient, three-dimensional, nonlinear, groundwater flow problem. Timings indicate efficiency of the grid refinement process relative to the flow solvermore » calculations.« less

  3. High Efficiency Solar-based Catalytic Structure for CO 2 Reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menkara, Hisham

    Throughout this project, we developed and optimized various photocatalyst structures for CO 2 reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO 2 reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solutionmore » containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO 2 into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).« less

  4. International energy annual 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided.

  5. Mesh quality control for multiply-refined tetrahedral grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1994-01-01

    A new algorithm for controlling the quality of multiply-refined tetrahedral meshes is presented in this paper. The basic dynamic mesh adaption procedure allows localized grid refinement and coarsening to efficiently capture aerodynamic flow features in computational fluid dynamics problems; however, repeated application of the procedure may significantly deteriorate the quality of the mesh. Results presented show the effectiveness of this mesh quality algorithm and its potential in the area of helicopter aerodynamics and acoustics.

  6. Energy-efficient neural information processing in individual neurons and neuronal networks.

    PubMed

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Directional fidelity of nanoscale motors and particles is limited by the 2nd law of thermodynamics—Via a universal equality

    NASA Astrophysics Data System (ADS)

    Wang, Zhisong; Hou, Ruizheng; Efremov, Artem

    2013-07-01

    Directional motion of nanoscale motors and driven particles in an isothermal environment costs a finite amount of energy despite zero work as decreed by the 2nd law, but quantifying this general limit remains difficult. Here we derive a universal equality linking directional fidelity of an arbitrary nanoscale object to the least possible energy driving it. The fidelity-energy equality depends on the environmental temperature alone; any lower energy would violate the 2nd law in a thought experiment. Real experimental proof for the equality comes from force-induced motion of biological nanomotors by three independent groups - for translational as well as rotational motion. Interestingly, the natural self-propelled motion of a biological nanomotor (F1-ATPase) known to have nearly 100% energy efficiency evidently pays the 2nd law decreed least energy cost for direction production.

  8. Design and Implementation of Geothermal Energy Systems at West Chester University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, James

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energymore » Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less

  9. What is the optimum social marketing mix to market energy conservation behaviour: an empirical study.

    PubMed

    Sheau-Ting, Low; Mohammed, Abdul Hakim; Weng-Wai, Choong

    2013-12-15

    This study attempts to identify the optimum social marketing mix for marketing energy conservation behaviour to students in Malaysian universities. A total of 2000 students from 5 major Malaysian universities were invited to provide their preferred social marketing mix. A choice-based conjoint analysis identified a mix of five social marketing attributes to promote energy conservation behaviour; the mix is comprised of the attributes of Product, Price, Place, Promotion, and Post-purchase Maintenance. Each attribute of the mix is associated with a list of strategies. The Product and Post-purchase Maintenance attributes were identified by students as the highest priority attributes in the social marketing mix for energy conservation behaviour marketing, with shares of 27.12% and 27.02%, respectively. The least preferred attribute in the mix is Promotion, with a share of 11.59%. This study proposes an optimal social marketing mix to university management when making decisions about marketing energy conservation behaviour to students, who are the primary energy consumers in the campus. Additionally, this study will assist university management to efficiently allocate scarce resources in fulfilling its social responsibility and to overcome marketing shortcomings by selecting the right marketing mix. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Monthly petroleum product price report, November 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-03-03

    This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products (motor gasoline, diesel fuels, residual fuel oils, aviation fuels, kerosene, petrochemical feedstocks, heating oils, and liquefied petroleum gases). The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in thismore » publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia.« less

  11. Monthly petroleum product price report, December 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-03-30

    This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products (motor gasoline, diesel fuels, residual fuel oils, aviation fuels, kerosene, petrochemical feedstocks, heating oils, and liquefied petroleum gases). The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in thismore » publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia.« less

  12. An adaptive embedded mesh procedure for leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.; Beer, Michael A.; Law, Glenn W.

    1989-01-01

    A procedure for solving the conical Euler equations on an adaptively refined mesh is presented, along with a method for determining which cells to refine. The solution procedure is a central-difference cell-vertex scheme. The adaptation procedure is made up of a parameter on which the refinement decision is based, and a method for choosing a threshold value of the parameter. The refinement parameter is a measure of mesh-convergence, constructed by comparison of locally coarse- and fine-grid solutions. The threshold for the refinement parameter is based on the curvature of the curve relating the number of cells flagged for refinement to the value of the refinement threshold. Results for three test cases are presented. The test problem is that of a delta wing at angle of attack in a supersonic free-stream. The resulting vortices and shocks are captured efficiently by the adaptive code.

  13. ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production.

  14. Evaluation of high-energy-efficiency powertrain approaches: the 1996 futurecar challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sluder, S.; Duoba, M.; Larsen, R.

    Twelve colleges and universities were selected to design, build, and develop a mid-size vehicle that could achieve high energy economy while maintaining the performance characteristics of today`s mid-size vehicle. Many of the teams were able to increase the fuel economy of their vehicles, but most of these increases came at the expense of decreased performance or worsened emissions. This paper evaluates and summarizes the high-energy-efficiency powertrain technology approaches that were utilized in the 1996 FutureCar Challenge, which was the first evaluation of these vehicles in a two-year program. Of the 11 vehicles evaluated in the competition, nine utilized hybrid electricmore » vehicle approaches. This paper discusses the design trade- offs made by the teams to achieve high efficiency while trying to maintain stock performance.« less

  15. PREFACE: Modern Technologies in Industrial Engineering (ModTech2015)

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Comaneci, R.; Carausu, C.; Placzek, M.; Cohal, V.; Topala, P.; Nedelcu, D.

    2015-11-01

    The dominant feature of the current stage of society development is the update, refinement and innovation of the technological processes and products whose ultimate goal is to satisfy the market requirements. New and modern technologies should be considered in terms of their applicability in industry while the materials can lead to an increase in the quality of the end products. Replacing the existing technologies with innovative and eco-efficient technologies can contribute to an added value increase in the production of new materials. Materials are one of the most dynamic and prospective fields, with applications in all other fields. The development of new advanced materials and technologies shall contribute to the procurement of a wide range of reliable products, with competitive prices and worldwide performance, high sensitivity and functionality, user-friendly and reduced energy consumption, for different industrial applications. Research in the field of advanced/intelligent materials supposes a fundamental, experimental, laboratory and technological research and its approach has to be linked to the application. This involves, even for the niche fields, complex projects which result in scientific issues in top journals, patents and functional models. The third edition of ModTech International Conference was held in Mamaia, Romania, between June 17-20, with the Professional Association in Modern Manufacturing Technologies, ModTech, as main organizer, and the Constanta Maritime University, Constanta, Romania, Silesian University of Technology, Gliwice, Poland, the Technical University of Chisinau, Republic of Moldova and the Donetsk National Technical University, Donetsk, Ukraine as co-organizers. The ModTech2015 International Conference brought together representatives of technology and materials manufacturers, various universities, professional associations and research institutes that exchanged the latest knowledge on the conference topics. This edition was attended by 140 participants from 17 countries. The authors and co-authors were from various countries worldwide, namely: Sweden, China, Switzerland, Romania, Serbia, Germany, Netherlands, Belgium, France, South Korea, Taiwan, Poland, USA, Slovenia, Turkey, Republic of Moldova, Russia, Finland, Japan, Ukraine, Portugal, Uzbekistan, Iraq, Italy and India. The Keynote Speakers were as follows: Prof. Esteban Broitman - Linkoping University, Sweden; Prof. Ziyi Ge - NIMTE, Chinese Academy of Sciences, Ningbo, China; Prof. Thomas Graule - EMPA, Switzerland; prof. Razvan Tamas - Constanta Maritime University, Romania; Prof. Rainer Gadow - University of Stuttgart, Germany; Prof. Marcel Van de Voorde - DELFT University of Technology, Netherlands; Prof. Chris Lacor - Vrije University, Brussels, Belgium; Prof. Fiqiri Hodaj - National Polytechnique Institute of Grenoble, France; Prof. Hong Seok Park - University of Ulsan, South Korea; Prof. Der-Jang Liaw - National Taiwan University of Science and Technology, Taiwan; Prof. Petrica Vizureanu - Gheorghe Asachi Technical University of Iasi, Romania. The main publications of ModTech2015 International Conference are as follows: IOP Conference Series: Materials Science and Engineering, United Kingdom, Indian Journal of Engineering & Materials Sciences (IJEMS) and International Journal of Modern Manufacturing Technologies (IJMMT).

  16. An Assessment of Energy-Related Career Paths of Senior Industrial Assessment Center Program Alumni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.A.

    2003-10-20

    The purpose of this study was to assess the career paths of alumni from the U.S. Department of Energy's Industrial Assessment Center (IAC) program. IAC was originally named the Energy Analysis and Diagnostic Center (EADC) program when it began in association with four schools in 1976. The current IAC program provides funding to 26 engineering colleges, located in centers across the United States, to conduct energy, waste, and productivity assessments for small- to medium-sized manufacturing establishments within their respective regions. Through part-time employment with the university, students receive training and in turn conduct assessments for local manufacturers, under the directmore » supervision of engineering faculty. Annually, IAC participants conduct over 700 assessments, and each assessment generates recommendations for energy savings, energy cost savings, and waste and productivity cost savings customized for individual clients. An earlier study determined that energy savings could be attributed to alumni of the IAC program who take their IAC experiences with them to the professional workplace. During their careers, the alumni conduct additional energy assessments as well as influence energy efficiency through design, teaching and training, and other activities. Indeed, a significant level of program benefits can be attributed to the alumni. This project addressed such specific questions as: How many years after graduation are IAC alumni involved in energy-efficiency activities? What different methods do they use to influence energy-efficiency decisions? To answer these questions, the University of Tennessee, Knoxville (UT) surveyed IAC senior alumni, defined as those who graduated in 1995 or earlier. Section 2 describes the survey used in this research. The actual survey can be found in Appendix A. Section 3 describes our approach to data collection. Section 4 presents descriptive statistics about the senior alumni who responded to the survey. Section 5 begins with the presentation of two frameworks used to help analyze the data about alumni career paths and then presents the career path results. Section 6 offers concluding remarks.« less

  17. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Manuel, Mario; Keiter, Paul; Drake, R. P.

    2014-10-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, imploding bubbles, and interacting jet experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via Grant DEFC52-08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840, and by the National Laser User Facility Program, Grant Number DE-NA0000850.

  18. Nature of gamma rays background radiation in new and old buildings of Qatar University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Houty, L.; Abou-Leila, H.; El-Kameesy, S.

    Measurements and analysis of gamma-background radiation spectrum in four different places of Qatar University campus were performed at the energy range 10 keV-3 MeV using hyper pure Ge-detector. The dependence of the detector absolute photopeak efficiency on gamma-ray energies was determined and correction of the data for that was also done. The absorbed dose for each gamma line was calculated and an estimation of the total absorbed dose for the detected gamma lines in the four different places was obtained. Comparison with other results was also performed.

  19. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    ScienceCinema

    Guenther, Chris

    2018-05-23

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  20. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, Chris

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  1. Harvard University: Green Loan Fund. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Foley, Robert

    2011-01-01

    The Green Loan Fund at Harvard University has been an active source of capital for energy efficiency and waste reduction projects for almost a decade. This case study examines the revolving fund's history from its inception as a pilot project in the 1990s to its regeneration in the early 2000s to its current operations today. The green revolving…

  2. Photosystem II Water Oxidation: Mechanism, Efficiency and Flux in Diverse Oxygenic Phototrophs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dismukes, Gerard Charles; Ananyev, Gennady; Gates, Colin

    In one year, we pursued four aims: 1) extend the VZAD model to allow analysis of PSII chlorophyll fluorescence emission as modulated by interaction with the WOC (partial success); 2) compare the solar energy conversion efficiencies of PSII-WOCs from intact cells, isolated thylakoid membranes and PSII core complexes and crystals from cyanobacterium Thermosynechococcus elongatus (collaboration with Lawrence Berkeley National Laboratory; some success after changing collaborator); 3) determine whether PSIIs can store light energy by pumping protons across the thylakoid membrane (PSII-cyclic electron flow) and how it is regulated within the green alga Chlorella ohadii (collaboration with the Hebrew University ofmore » Jerusalem; some success); and 4) genetically replace the native PSII-D1 protein subunit from a higher plant with two cyanobacterial D1 isoforms to test whether their functional advantages in growth and photoprotection can be transferred (collaboration with Rutgers University; success).« less

  3. Thrifty: An Exascale Architecture for Energy Proportional Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrellas, Josep

    2014-12-23

    The objective of this project is to design different aspects of a novel exascale architecture called Thrifty. Our goal is to focus on the challenges of power/energy efficiency, performance, and resiliency in exascale systems. The project includes work on computer architecture (Josep Torrellas from University of Illinois), compilation (Daniel Quinlan from Lawrence Livermore National Laboratory), runtime and applications (Laura Carrington from University of California San Diego), and circuits (Wilfred Pinfold from Intel Corporation). In this report, we focus on the progress at the University of Illinois during the last year of the grant (September 1, 2013 to August 31, 2014).more » We also point to the progress in the other collaborating institutions when needed.« less

  4. Cost-benefit analysis and emission reduction of energy efficient lighting at the Universiti Tenaga Nasional.

    PubMed

    Ganandran, G S B; Mahlia, T M I; Ong, Hwai Chyuan; Rismanchi, B; Chong, W T

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment.

  5. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional

    PubMed Central

    Ganandran, G. S. B.; Mahlia, T. M. I.; Ong, Hwai Chyuan; Rismanchi, B.; Chong, W. T.

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment. PMID:25133258

  6. Universal biology and the statistical mechanics of early life.

    PubMed

    Goldenfeld, Nigel; Biancalani, Tommaso; Jafarpour, Farshid

    2017-12-28

    All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  7. Universal biology and the statistical mechanics of early life

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel; Biancalani, Tommaso; Jafarpour, Farshid

    2017-11-01

    All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  8. Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets

    EIA Publications

    2011-01-01

    This report is the Energy Information Administration's (EIA) initial effort to provide information and analysis on the potential impacts on petroleum product markets from reductions in Northeast petroleum refining activity.

  9. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  10. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  11. West Village Student Housing Phase I: Apartment Monitoring and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    German, A.; Bell, C.; Dakin, B.

    Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated inmore » the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.« less

  12. NASA's Chandra Finds Black Holes Are "Green"

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce the cavities. "If a car was as fuel-efficient as these black holes, it could theoretically travel over a billion miles on a gallon of gas," said coauthor Christopher Reynolds of the University of Maryland, College Park. New details are given about how black hole engines achieve this extreme efficiency. Some of the gas first attracted to the black holes may be blown away by the energetic activity before it gets too near the black hole, but a significant fraction must eventually approach the event horizon where it is used with high efficiency to power the jets. The study also implies that matter flows towards the black holes at a steady rate for several million years. Chandra X-ray Images of Elliptical Galaxies Chandra X-ray Images of Elliptical Galaxies "These black holes are very efficient, but it also takes a very long time to refuel them," said Steve Allen who receives funding from the Office of Science of the Department of Energy. This new study shows that black holes are green in another important way. The energy transferred to the hot gas by the jets should keep hot gas from cooling, thereby preventing billions of new stars from forming. This will place limits on the growth of the largest galaxies, and prevent galactic sprawl from taking over the neighborhood. These results will appear in an upcoming issue of the Monthly Notices of the Royal Astronomical Society. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov For information about NASA and agency programs on the Web, visit: http://www.nasa.gov

  13. Computer simulation of refining process of a high consistency disc refiner based on CFD

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Yang, Jianwei; Wang, Jiahui

    2017-08-01

    In order to reduce refining energy consumption, the ANSYS CFX was used to simulate the refining process of a high consistency disc refiner. In the first it was assumed to be uniform Newton fluid of turbulent state in disc refiner with the k-ɛ flow model; then meshed grids and set the boundary conditions in 3-D model of the disc refiner; and then was simulated and analyzed; finally, the viscosity of the pulp were measured. The results show that the CFD method can be used to analyze the pressure and torque on the disc plate, so as to calculate the refining power, and streamlines and velocity vectors can also be observed. CFD simulation can optimize parameters of the bar and groove, which is of great significance to reduce the experimental cost and cycle.

  14. Modellierung dreidimensionaler Strahlungsfelder im frühen Universum %t Modelling three dimensional radiation fields in the early universe

    NASA Astrophysics Data System (ADS)

    Meinköhn, Erik

    2002-11-01

    The present work aims at the modelling of three-dimensional radiation fields in gas clouds from the early universe, in particular as to the influence of varying distributions of density and velocity. In observations of high-redshift gas clouds, the Lyα transition from the first excited energy level to the ground state of the hydrogen atom is usually found to be the only prominent emission lines in the entire spectrum. It is a well-known assumption that high-redshifted hydrogen clouds are the precursors of present-day galaxies. Thus, the investigation of the Lyα line is of paramount importance of the theory of galaxy formation and evolution. The observed Lyα line - or rather, to be precise, its profile - reveals both the complexity of the spatial distribution and of the kinematics of the interstellar gas, and also the nature of the photon source. In this thesis we have developed a code which is capable of solving the three-dimensional frequency-dependent radiative transfer equation for arbitrarily nonrelativistically moving media. The numerical treatment of the associated partial integro-differential equation is an extremely challenging task, since radiation intensity depends on 6 variables, namely 3 space variables, 2 variables describing the direction of photon propagation, and the frequency. With the goal of a quantitative comparison with observational data in mind, the implementation of very efficient methods for a sufficiently accurate solution of the complex radiative transfer problems turned out to be a necessity. The size of the resulting linear system of equations makes the use of parallelization techniques and grid refinement strategies indispensable.

  15. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings.

    PubMed

    Fotopoulou, Eleni; Zafeiropoulos, Anastasios; Terroso-Sáenz, Fernando; Şimşek, Umutcan; González-Vidal, Aurora; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-09-07

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants' behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants' behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants' lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research.

  16. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings

    PubMed Central

    Fotopoulou, Eleni; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-01-01

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants’ behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants’ behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants’ lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research. PMID:28880227

  17. Petroleum Refining Footprint, October 2012 (MECS 2006)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less

  18. High speed superconducting flywheel system for energy storage

    NASA Astrophysics Data System (ADS)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  19. Connected Vehicle Pilot Deployment Program Independent Evaluation: Mobility, Environmental, and Public Agency Efficiency Refined Evaluation Plan - New York City

    DOT National Transportation Integrated Search

    2018-03-01

    The purpose of this report is to provide a refined evaluation plan detailing the approach to be used by the Texas A&M Transportation Institute Connected Vehicle Pilot Deployment Evaluation Team for evaluating the mobility, environmental, and public a...

  20. Evolution of the Utah energy research triangle: A contemporary case study in the nexus of applied research and public policy

    NASA Astrophysics Data System (ADS)

    Walker, Alan John

    The evolution of the Utah Energy Research Triangle began August 2009 with Governor Gary Herbert's inauguration. On January 26, 2010 Governor Herbert delivered his first State of the State Address and announced the "most impactful economic initiative ever taken in our state...the Utah Energy Initiative." Even before this speech, actions were underway as the Governor assembled 16 energy professionals who forged Utah's 10-Year Strategic Energy Plan (Plan) released March 2011. The priorities in the Plan included: (1) establishing the Office of Energy Development in 2011; (2) launching the annual Governor's Energy Development Summits beginning in 2012; and (3) executing the first cycle of the Utah Energy Research Triangle in 2013 through 2015. Other objectives would be achieved as the Plan unfolded but those lower priorities are beyond the scope of this case study. This study will review the three priorities noted and focus on the execution of the Energy Research Triangle as a nexus of applied research and public policy. The Plan's vision was to "align the State's main research universities...into a powerful energy research and development triangle...through increased collaboration." In March 2014, execution of the first cycle of the Energy Research Triangle resulted in seven new research efforts across three research university campuses in Utah - Brigham Young University (BYU), Utah State University (USU), and the University of Utah (UofU). These research programs included eighteen researchers tackling principle energy issues: air quality, hydrocarbon transportation, and safety. Seven other researchers were awarded Governor's Energy Leadership Scholarships with requirements to address topics including efficient solar power, cold-weather battery performance, and molten salt energy storage. Final results will be known in June 2015, but collaboration on energy issues is active and ongoing. Together the three research teams are successfully reaching out to industry and federal agencies to expand their capability to address Utah energy issues. This case study provides a road map and lessons learned for developing a meaningful grass roots research program with modest resources. Public policy is notorious for cycling through good ideas. This study provides guidance to solve local issues using the collaborative capabilities of our universities.

  1. Opening Up New Possibilities.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2001-01-01

    Discusses technology's impact on educational facilities and operations. Technology's influence on a school's ability to streamline their business operations and manage their facilities more efficiency is examined, and how Baylor University (Waco, TX) used technology to cut energy costs is highlighted. (GR)

  2. Best of College Architecture: AS&U's Architectural Competition.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    A restoration/addition that preserves traditional New England architecture, a sleek vocational-technical college on the prairie, and two energy efficient masonry buildings were selected as winners in the 1981 American School & University Design Awards competition. (Author/MLF)

  3. Use of the WNR spallation neutron source at LAMPF to determine the absolute efficiency of a neutron scintillation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staples, P.A.; Egan, J.J.; Kegel, G.H.R.

    1994-06-01

    Prompt fission neutron spectrum measurements at the University of Massachusetts Lowell 5.5 MV Van de Graaff accelerator laboratory require that the neutron detector efficiency be well known over a neutron energy range of 100 keV to 20 MeV. The efficiency of the detector, has been determined for energies greater than 5.0 MeV using the Weapons Neutron Research (WNR) white neutron source at the Los Alamos Meson Physics Facility (LAMPF) in a pulsed beam, time-of-flight (TOF) experiment. Carbon matched polyethylene and graphite scatterers were used to obtain a hydrogen spectrum. The detector efficiency was determined using the well known H(n,n) scatteringmore » cross section. Results are compared to the detector efficiency calculation program SCINFUL available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consonni, Stefano, E-mail: stefano.consonni@polimi.it; Giugliano, Michele; Massarutto, Antonio

    Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW)more » in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.« less

  5. Study of thermal and hydraulic efficiency of supersonic tube of temperature stratification

    NASA Astrophysics Data System (ADS)

    Tsynaeva, Anna A.; Nikitin, Maxim N.; Tsynaeva, Ekaterina A.

    2017-10-01

    Efficiency of supersonic pipe for temperature stratification with finned subsonic surface of heat transfer is the major of this paper. Thermal and hydraulic analyses of this pipe were conducted to asses effects from installation of longitudinal rectangular and parabolic fins as well as studs of cylindrical, rectangular and parabolic profiles. The analysis was performed based on refined empirical equations of similarity, dedicated to heat transfer of high-speed gas flow with plain wall, and Kármán equation with Nikuradze constants. Results revealed cylindrical studs (with height-to-diameter ratio of 5:1) to be 1.5 times more efficient than rectangular fins of the same height. At the same time rectangular fins (with height-to-thickness ratio of 5:1) were tend to enhance heat transfer rate up to 2.67 times compared to bare walls from subsonic side of the pipe. Longitudinal parabolic fins have minuscule effect on combined efficiency of considered pipe since extra head losses void any gain of heat transfer. Obtained results provide perspective of increasing efficiency of supersonic tube for temperature stratification. This significantly broadens device applicability in thermostatting systems for equipment, cooling systems for energy converting machinery, turbine blades and aerotechnics.

  6. Aspects of reheating in first-order inflation

    NASA Technical Reports Server (NTRS)

    Watkins, Richard; Widrow, Lawrence M.

    1991-01-01

    Studied here is reheating in theories where inflation is completed by a first-order phase transition. In the scenarios, the Universe decays from its false vacuum state by bubble nucleation. In the first stage of reheating, vacuum energy is converted into kinetic energy for the bubble walls. To help understand this phase, researchers derive a simple expression for the equation of state of a universe filled with expanding bubbles. Eventually, the bubble walls collide. Researchers present numerical simulations of two-bubble collisions clarifying and extending previous work by Hawking, Moss, and Stewart. The researchers' results indicate that wall energy is efficiently converted into coherent scalar waves. Also discussed is particle production due to quantum effects. These effects lead to the decay of the coherent scalar waves. They also lead to direct particle production during bubble-wall collisions. Researchers calculate particle production for colliding walls in both sine-Gordon and theta (4) theories and show that it is far more efficient in the theta (4) case. The relevance of this work for recently proposed models of first order inflation is discussed.

  7. Stabilizing stored PuO2 with addition of metal impurities

    NASA Astrophysics Data System (ADS)

    Moten, Shafaq; Huda, Muhammad

    Plutonium oxides is of widespread significance due its application in nuclear fuels, space missions, as well as the long-termed storage of plutonium from spent fuel and nuclear weapons. The processes to refine and store plutonium bring many other elements in contact with the plutonium metal and thereby affect the chemistry of the plutonium. Pure plutonium metal corrodes to an oxide in air with the most stable form of this oxide is stoichiometric plutonium dioxide, PuO2. Defects such as impurities and vacancies can form in the plutonium dioxide before, during and after the refining processes as well as during storage. An impurity defect manifests itself at the bottom of the conduction band and affects the band gap of the unit cell. Studying the interaction between transition metals and plutonium dioxide is critical for better, more efficient storage plans as well as gaining insights to provide a better response to potential threats of exposure to the environment. Our study explores the interaction of a few metals within the plutonium dioxide structure which have a likelihood of being exposed to the plutonium dioxide powder. Using Density Functional Theory, we calculated a substituted metal impurity in PuO2 supercell. We repeated the calculations with an additional oxygen vacancy. Our results reveal interesting volume contraction of PuO2 supercell when one plutonium atom is substituted with a metal atom. The authors acknowledge the Texas Computing Center (TACC) at The University of Texas at Austin and High Performance Computing (HPC) at The University of Texas at Arlington.

  8. Porous Silicon as Antireflecting Layer

    NASA Astrophysics Data System (ADS)

    Kosoglu, Gulsen; Yumak, Mehmet; Okmen, Selim; Ozatay, Ozhan; Skarlatos, Yani; Garcia, Carlos

    2013-03-01

    The main aim in photovoltaic industry is to produce efficient and energy competitive solar cell modules at low cost. Efficient AntiReflection Coatings (ARC) improve light collection and thereby increase the current output of solar cells. Broadband ARCs are desirable for efficient application over the entire solar spectrum and porous silicon layers as antireflective coating layers provide successful light collection. In the study the most critical physical parameters of porous silicon are examined, homogeneous and uniform porous layers are produced. The photoluminescence spectrum and optical parameters of porous layers have been investigated, and we are now in the process of improving the efficiency of the device by modulating the structure of the porous silicon layers and studying its photovoltaic characteristics. We would like to thank to Mr. Aziz U. Caliskan and his group for their valuable support from TUBITAK YITAL. This Project is supported by Bogazici University Research Funding: 5782, TUBITAK Grant : 209T099, and Bogazici University Infrared Funding: 6121.

  9. NREL/industry interaction: Amorphous silicon alloy research team formation

    NASA Astrophysics Data System (ADS)

    Luft, Werner

    1994-06-01

    The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to significant penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) would help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.

  10. NREL/industry interaction: Amorphous silicon alloy research team formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luft, W.

    1994-06-30

    The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to [ital significant] penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) wouldmore » help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.« less

  11. RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA.

    PubMed

    Martinez, Hugo M; Maizel, Jacob V; Shapiro, Bruce A

    2008-06-01

    Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.

  12. Monitoring trends in civil engineering and their effect on indoor radon.

    PubMed

    Ringer, W

    2014-07-01

    In this paper, the importance of monitoring new building concepts is discussed. The effect of energy-efficient construction technologies on indoor radon is presented in more detail. Comparing the radon levels of about 100 low-energy and passive houses in Austria with radon levels in conventional new houses show that, in energy-efficient new houses, the radon level is about one-third lower than in conventional new houses. Nevertheless, certain features or bad practice may cause high radon levels in energy-efficient new houses. Recommendations to avoid adverse effects were set up. Furthermore, the paper deals with the effect of thermal retrofitting on indoor radon. Results from a Swiss study where 163 dwellings were measured before and after thermal retrofit yield an increase of the radon level of 26% in average. Among the various retrofit measures, replacing windows has the greatest impact on the indoor radon level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Plasmolysis for efficient CO2 -to-fuel conversion

    NASA Astrophysics Data System (ADS)

    van Rooij, Gerard

    2015-09-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrational modes. It is therefore a promising option for creating artificial solar fuels from CO2as raw material using (intermittently available) sustainable energy surpluses, which can easily be deployed within the present infrastructure for conventional fossil fuels. In this presentation, a common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures and conversion degrees, respectively. The results are interpreted on basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favourable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry still to dominate the initial experiments. Novel reactor approaches are proposed to tailor the plasma dynamics to achieve the non-equilibrium in which vibrational excitation is dominant. In collaboration with Dirk van den Bekerom, Niek den Harder, Teofil Minea, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands; Gield Berden, Institute for Molecules and Materials, FELIX facility, Radboud University, Nijmegen, Netherlands; Richard Engeln, Applied Physics, Plasma en Materials Processing, Eindhoven University of Technology; and Waldo Bongers, Martijn Graswinckel, Erwin Zoethout, Richard van de Sanden, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands.

  14. How America Can Look Within to Achieve Energy Security and Reduce Global Warming

    DTIC Science & Technology

    2008-09-01

    Linear Accelerator Center, Stanford University Maxine Savitz The Advisory Group Daniel Sperling University of California, Davis Study Group Members...Development Mr. Don Von Dollen, Electric Power Research Institute Mr. Anant Vyas, Argonne National Laboratory Dr. E.D. Tate, General Motors...other nation on Earth except China [EIA, 2007b]. Source: Lutsey and Sperling , 2005 Figure 6 U.S. fuel economy vs. fuel efficiency Passenger cars

  15. Evolution Of USDOE Performance Assessments Over 20 Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, Roger R.; Suttora, Linda C.

    2013-02-26

    Performance assessments (PAs) have been used for many years for the analysis of post-closure hazards associated with a radioactive waste disposal facility and to provide a reasonable expectation of the ability of the site and facility design to meet objectives for the protection of members of the public and the environment. The use of PA to support decision-making for LLW disposal facilities has been mandated in United States Department of Energy (USDOE) directives governing radioactive waste management since 1988 (currently DOE Order 435.1, Radioactive Waste Management). Prior to that time, PAs were also used in a less formal role. Overmore » the past 20+ years, the USDOE approach to conduct, review and apply PAs has evolved into an efficient, rigorous and mature process that includes specific requirements for continuous improvement and independent reviews. The PA process has evolved through refinement of a graded and iterative approach designed to help focus efforts on those aspects of the problem expected to have the greatest influence on the decision being made. Many of the evolutionary changes to the PA process are linked to the refinement of the PA maintenance concept that has proven to be an important element of USDOE PA requirements in the context of supporting decision-making for safe disposal of LLW. The PA maintenance concept represents the evolution of the graded and iterative philosophy and has helped to drive the evolution of PAs from a deterministic compliance calculation into a systematic approach that helps to focus on critical aspects of the disposal system in a manner designed to provide a more informed basis for decision-making throughout the life of a disposal facility (e.g., monitoring, research and testing, waste acceptance criteria, design improvements, data collection, model refinements). A significant evolution in PA modeling has been associated with improved use of uncertainty and sensitivity analysis techniques to support efficient implementation of the graded and iterative approach. Rather than attempt to exactly predict the migration of radionuclides in a disposal unit, the best PAs have evolved into tools that provide a range of results to guide decision-makers in planning the most efficient, cost effective, and safe disposal of radionuclides.« less

  16. Design and Implementation of Geothermal Energy Systems at West Chester University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuprak, Greg

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Departmentmore » of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less

  17. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  18. Solar breeder: Energy payback time for silicon photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  19. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  20. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  1. ARPA-E: Advancing the Electric Grid

    ScienceCinema

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2018-06-07

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  2. Fast-kick-off monotonically convergent algorithm for searching optimal control fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel

    2011-09-15

    This Rapid Communication presents a fast-kick-off search algorithm for quickly finding optimal control fields in the state-to-state transition probability control problems, especially those with poorly chosen initial control fields. The algorithm is based on a recently formulated monotonically convergent scheme [T.-S. Ho and H. Rabitz, Phys. Rev. E 82, 026703 (2010)]. Specifically, the local temporal refinement of the control field at each iteration is weighted by a fractional inverse power of the instantaneous overlap of the backward-propagating wave function, associated with the target state and the control field from the previous iteration, and the forward-propagating wave function, associated with themore » initial state and the concurrently refining control field. Extensive numerical simulations for controls of vibrational transitions and ultrafast electron tunneling show that the new algorithm not only greatly improves the search efficiency but also is able to attain good monotonic convergence quality when further frequency constraints are required. The algorithm is particularly effective when the corresponding control dynamics involves a large number of energy levels or ultrashort control pulses.« less

  3. A comparison between state-specific and linear-response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD-PCM method.

    PubMed

    Caricato, Marco

    2013-07-28

    The calculation of vertical electronic transition energies of molecular systems in solution with accurate quantum mechanical methods requires the use of approximate and yet reliable models to describe the effect of the solvent on the electronic structure of the solute. The polarizable continuum model (PCM) of solvation represents a computationally efficient way to describe this effect, especially when combined with coupled cluster (CC) methods. Two formalisms are available to compute transition energies within the PCM framework: State-Specific (SS) and Linear-Response (LR). The former provides a more complete account of the solute-solvent polarization in the excited states, while the latter is computationally very efficient (i.e., comparable to gas phase) and transition properties are well defined. In this work, I review the theory for the two formalisms within CC theory with a focus on their computational requirements, and present the first implementation of the LR-PCM formalism with the coupled cluster singles and doubles method (CCSD). Transition energies computed with LR- and SS-CCSD-PCM are presented, as well as a comparison between solvation models in the LR approach. The numerical results show that the two formalisms provide different absolute values of transition energy, but similar relative solvatochromic shifts (from nonpolar to polar solvents). The LR formalism may then be used to explore the solvent effect on multiple states and evaluate transition probabilities, while the SS formalism may be used to refine the description of specific states and for the exploration of excited state potential energy surfaces of solvated systems.

  4. The unlikely high efficiency of a molecular motor based on active motion

    NASA Astrophysics Data System (ADS)

    Ebeling, W.

    2015-07-01

    The efficiency of a simple model of a motor converting chemical into mechanical energy is studied analytically. The model motor shows interesting properties corresponding qualitatively to motors investigated in experiments. The efficiency increases with the load and may for low loss reach high values near to 100 percent in a narrow regime of optimal load. It is shown that the optimal load and the maximal efficiency depend by universal power laws on the dimensionless loss parameter. Stochastic effects decrease the stability of motor regimes with high efficiency and make them unlikely. Numerical studies show efficiencies below the theoretical optimum and demonstrate that special ratchet profiles my stabilize efficient regimes.

  5. Monthly petroleum product price report. [January 1981-January 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riner, C.

    1982-01-01

    This report provides information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gasmore » plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia. Data are presented on the following: gasoline, No. 1 and No. 2 diesel fuels, No. 1 and No. 2 heating oils, residual fuel oil, aviation fuels, kerosene, and liquefied petroleum gases.« less

  6. Monthly petroleum product price report. [January 1981-February 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riner, C.

    1982-02-01

    This report provides information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gasmore » plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia. Data are presented on the following: gasoline, No. 1 and No. 2 diesel fuels, No. 1 and No. 2 heating oils, residual fuel oil, aviation fuels, kerosene, and liquefied petroleum gases.« less

  7. A Comparison of the Behaviour of AlTiB and AlTiC Grain Refiners

    NASA Astrophysics Data System (ADS)

    Schneider, W.; Kearns, M. A.; McGarry, M. J.; Whitehead, A. J.

    AlTiC master alloys present a new alternative to AlTiB grain refiners which have enjoyed pre-eminence in cast houses for several decades. Recent investigations have shown that, under defined casting conditions, AlTiC is a more efficient grain refiner than AlTiB, is less prone to agglomeration and is more resistant to poisoning by Zr, Cr. Moreover it is observed that there are differences in the mechanism of grain refinement for the different alloys. This paper describes the influence of melt temperature and addition rate on the performance of both types of grain refiner in DC casting tests on different wrought alloys. Furthermore the effects of combined additions of the grain refiners and the recycling behaviour of the treated alloys are presented. Results are compared with laboratory test data. Finally, mechanisms of grain refinement are discussed which are consistent with the observed differences in behaviour with AlTiC and AlTiB.

  8. Behavioral Initiatives for Energy Efficiency: Large-Scale Energy Reductions through Sensors, Feedback & Information Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Broad Funding Opportunity Announcement Project: A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Baymore » Area can be broadened to other parts of the country.« less

  9. Minimization of a Class of Matrix Trace Functions by Means of Refined Majorization.

    ERIC Educational Resources Information Center

    Kiers, Henk A. L.; ten Berge, Jos M. F.

    1992-01-01

    A procedure is described for minimizing a class of matrix trace functions, which is a refinement of an earlier procedure for minimizing the class of matrix trace functions using majorization. Several trial analyses demonstrate that the revised procedure is more efficient than the earlier majorization-based procedure. (SLD)

  10. Surface nanocrystalline and hardening effects of Ti-Al-V alloy by electropulsing ultrasonic shock

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoxin

    2015-04-01

    The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It's indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It's different from conventional experiments and theory. It's discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it's supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

  11. Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations

    NASA Astrophysics Data System (ADS)

    Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.

    2018-02-01

    While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.

  12. Performance enhancement using a balanced scorecard in a Patient-centered Medical Home.

    PubMed

    Fields, Scott A; Cohen, Deborah

    2011-01-01

    Oregon Health & Science University Family Medicine implemented a balanced scorecard within our clinics that embraces the inherent tensions between care quality, financial productivity, and operational efficiency. This data-driven performance improvement process involved: (1) consensus-building around specific indicators to be measured, (2) developing and refining the balanced scorecard, and (3) using the balanced scorecard in the quality improvement process. Developing and implementing the balanced scorecard stimulated an important culture shift among clinics; practice members now actively use data to recognize successes, understand emerging problems, and make changes in response to these problems. Our experience shows how Patient-centered Medical Homes can be enhanced through use of information technology and evidence-based tools that support improved decision making and performance and help practices develop into learning organizations.

  13. Repartitioning Strategies for Massively Parallel Simulation of Reacting Flow

    NASA Astrophysics Data System (ADS)

    Pisciuneri, Patrick; Zheng, Angen; Givi, Peyman; Labrinidis, Alexandros; Chrysanthis, Panos

    2015-11-01

    The majority of parallel CFD simulators partition the domain into equal regions and assign the calculations for a particular region to a unique processor. This type of domain decomposition is vital to the efficiency of the solver. However, as the simulation develops, the workload among the partitions often become uneven (e.g. by adaptive mesh refinement, or chemically reacting regions) and a new partition should be considered. The process of repartitioning adjusts the current partition to evenly distribute the load again. We compare two repartitioning tools: Zoltan, an architecture-agnostic graph repartitioner developed at the Sandia National Laboratories; and Paragon, an architecture-aware graph repartitioner developed at the University of Pittsburgh. The comparative assessment is conducted via simulation of the Taylor-Green vortex flow with chemical reaction.

  14. Implementation of a Refined Shear Rating Methodology for Prestressed Concrete Girder Bridges

    DOT National Transportation Integrated Search

    2017-12-01

    Lower than desirable shear ratings at the ends of prestressed concrete beams have been the topic of ongoing research between MnDOT and the University of Minnesota. A recent study by the University of Minnesota entitled Investigation of Shear Distribu...

  15. The green campus movement: Bringing pollution prevention programs to a college near you

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenstein, W.A.

    1999-07-01

    Two year community/technical colleges find themselves both the educators and communicators assessing and teaching the environmental mandates of business, government (local, state and federal), and industry. It is evident that many educational institutions are not always environmentally conscious (green) and may not always be in compliance with state and federal environmental laws and regulations. It is very difficult to educate students (both full time and continuing education) in programs designed to protect the environment when few campuses implement pollution prevention activities on site. With this in mind, it is imperative that the college campuses practice what is preached. One waymore » to accomplish this is to make college campuses green campuses, which may be defined as: An educational institution that has implemented environmentally beneficial programs and practices. This includes both pollution prevention activities to minimize the environmental impact of campus programs and administrative operations and the inclusion of environmental instructional materials in relevant courses. The PETE (Partnership for Environmental Technology Education) organization is currently working on grants from the Environmental Protection Agency and the Department of Energy to promote green campus activities at colleges around the country. This paper will detail the green campus activities being undertaken at colleges across the nation, especially PETE's Green Campus Initiative program. It will discuss the problems faced in the development, marketing, implementation, and evaluation of green campus pollution prevention and energy efficiency programs. Making a campus green can entail changes to many aspects of campus life, including looking at how an institution deals with such issues as: Waste Curriculum; Water Quality/Use; Building Design; Pest Control/Use of Agricultural Chemicals; Consciousness/Environmental Concern; Air Quality: Outdoor/Indoor; Energy Consumption; Investments; Transportation; Maintenance/Operations; Food Services; Landscaping; Procurement Policies/Contractors; and Endowment Investments/Donors. As microcosms of society, the nation's college campuses have incredible potential for making positive impacts on the environment and the economy. By instituting even simple, common-sense conservation practices--like recycling, using native plants when landscaping, running atmospherically safe transportation systems, creating fertilizer from kitchen food waste, selling surplus property and maintaining university vehicles with re-refined motor oil--colleges and universities are making major strides toward improving both the environment and their financial conditions.« less

  16. Post-recombination early Universe cooling by translation-internal inter-conversion: The role of minor constituents.

    PubMed

    McCaffery, Anthony J

    2015-09-14

    Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.

  17. Post-recombination early Universe cooling by translation–internal inter-conversion: The role of minor constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffery, Anthony J., E-mail: A.J.McCaffery@sussex.ac.uk

    Little is known of the mechanism by which H and H{sub 2}, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H{sub 2}, as Δj = − 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H{sub 2} in amore » H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H{sub 2} + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desroches, Louis-Benoit; Garbesi, Karina

    It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standardsmore » program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market components and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary analyses presented in this report are: Nevertheless, it is important to analyze best-on-market products, since data on truly max tech technologies are limited. (1) an analysis of the cross-cutting strategies most promising for reducing appliance and equipment energy use in the U.S.; (2) a macro-analysis of the U.S. energy-saving potential inherent in promising ultra-efficient appliance technologies; and (3) a product-level analysis of the energy-saving potential.« less

  19. Programming an Experiment Control System

    NASA Technical Reports Server (NTRS)

    Lange, Stuart

    2004-01-01

    As NASA develops plans for more and more ambitious missions into space, it is the job of NASA's researchers to develop the technologies that will make those planed missions feasible. One such technology is energy conversion. Energy is all around us; it is in the light that we see in the chemical bonds that hold compounds together, and in mass itself.Energy is the fundamental building block of our universe, yet it has always been straggle for humans to convert this energy into useable forms, like electricity. For space-based applications, NASA requires efficient energy conversion method that require little or no fuel.

  20. The origin of consistent protein structure refinement from structural averaging.

    PubMed

    Park, Hahnbeom; DiMaio, Frank; Baker, David

    2015-06-02

    Recent studies have shown that explicit solvent molecular dynamics (MD) simulation followed by structural averaging can consistently improve protein structure models. We find that improvement upon averaging is not limited to explicit water MD simulation, as consistent improvements are also observed for more efficient implicit solvent MD or Monte Carlo minimization simulations. To determine the origin of these improvements, we examine the changes in model accuracy brought about by averaging at the individual residue level. We find that the improvement in model quality from averaging results from the superposition of two effects: a dampening of deviations from the correct structure in the least well modeled regions, and a reinforcement of consistent movements towards the correct structure in better modeled regions. These observations are consistent with an energy landscape model in which the magnitude of the energy gradient toward the native structure decreases with increasing distance from the native state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A Tale of Three District Energy Systems: Metrics and Future Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pass, Rebecca Zarin; Wetter, Michael; Piette, Mary Ann

    Improving the sustainability of cities is crucial for meeting climate goals in the next several decades. One way this is being tackled is through innovation in district energy systems, which can take advantage of local resources and economies of scale to improve the performance of whole neighborhoods in ways infeasible for individual buildings. These systems vary in physical size, end use services, primary energy resources, and sophistication of control. They also vary enormously in their choice of optimization metrics while all under the umbrella-goal of improved sustainability. This paper explores the implications of choice of metric on district energy systemsmore » using three case studies: Stanford University, the University of California at Merced, and the Richmond Bay campus of the University of California at Berkeley. They each have a centralized authority to implement large-scale projects quickly, while maintaining data records, which makes them relatively effective at achieving their respective goals. Comparing the systems using several common energy metrics reveals significant differences in relative system merit. Additionally, a novel bidirectional heating and cooling system is presented. This system is highly energy-efficient, and while more analysis is required, may be the basis of the next generation of district energy systems.« less

  2. Trials advance low-salinity culture of cobia, pompano, other species

    USDA-ARS?s Scientific Manuscript database

    A collaborative effort between the Agricultural Research Service of USDA and Harbor Branch Oceanographic Institute of Florida Atlantic University, which was established to develop technologies for rearing marine fish in low-cost, energy efficient low-salinity recirculating aquaculture systems (RAS) ...

  3. One with the Environment

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2005-01-01

    As energy costs rise and resources dwindle, schools and universities can benefit greatly by taking an environmentally sensitive approach to construction, renovation and maintenance of facilities. Administrators free up needed budget resources by operating facilities more efficiently. Using sustainable-design strategies can set a good example for…

  4. Focus Groups Help To Focus the Marketing Strategy.

    ERIC Educational Resources Information Center

    Ashar, Hanna; Lane, Maureen

    1996-01-01

    A university-based degree completion program for adults conducted focus group research to refine market positioning and promotion. Focus groups averaged five current students and recent graduates who reflected, demographically, the current student population. Results gave insight into reasons for selecting the university, aspects of the program…

  5. Adaptive mesh strategies for the spectral element method

    NASA Technical Reports Server (NTRS)

    Mavriplis, Catherine

    1992-01-01

    An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.

  6. Hierarchical Poly Tree Configurations for the Solution of Dynamically Refined Finte Element Models

    NASA Technical Reports Server (NTRS)

    Gute, G. D.; Padovan, J.

    1993-01-01

    This paper demonstrates how a multilevel substructuring technique, called the Hierarchical Poly Tree (HPT), can be used to integrate a localized mesh refinement into the original finite element model more efficiently. The optimal HPT configurations for solving isoparametrically square h-, p-, and hp-extensions on single and multiprocessor computers is derived. In addition, the reduced number of stiffness matrix elements that must be stored when employing this type of solution strategy is quantified. Moreover, the HPT inherently provides localize 'error-trapping' and a logical, efficient means with which to isolate physically anomalous and analytically singular behavior.

  7. Characterization of Polycapillary Optics in a TES Microcalorimeter EDS System Installed on an SEM

    NASA Astrophysics Data System (ADS)

    Takano, A.; Maehata, K.; Iyomoto, N.; Yasuda, K.; Maeno, H.; Shiiyama, K.; Tanaka, K.

    2016-08-01

    Energy-dispersive spectroscopic measurements are performed using a superconducting transition-edge sensor (TES) microcalorimeter mounted on a scanning electron microscope (SEM) for advanced research at Kyushu University. Because the sensitive area of the TES microcalorimeter is about 0.02~mm2, polycapillary optics is used to collect the X-rays emitted by the SEM specimen on the TES microcalorimeter. The X-ray transmission efficiency of the polycapillary optics is obtained by analyzing the X-ray energy spectra measured by the TES microcalorimeter. The obtained transmission efficiency of the polycapillary optics is reproduced by the calculated results of the simulation.

  8. Words vs. deeds: Americans' energy concerns and implementation of green energy policies

    NASA Astrophysics Data System (ADS)

    Brinker, Garrett C.

    As the effects of climate change become increasingly clear, nations, international organizations, and corporations are working together to help mitigate these negative effects before they become irreversible. The United States, as the world's largest emitter per capita, has a responsibility to take quick and decisive action to decrease carbon emissions. And while an overwhelming majority of Americans believe that green energy policies are the right step forward, few have taken meaningful steps to actually implement these policies. Green and energy efficient technologies such as hybrid and electric cars, smart meters, and solar panels---technologies that would reduce our carbon footprint---are currently purchased or used by very few households. There is a clear gap between our words and deeds. Using the University of Texas at Austin Energy Poll dataset, this paper examines this gap and analyzes how income may influence what people say, versus how they act, seeking to better understand how income influences peoples' energy behaviors. Previous literature suggests that income has proven to be an inconsistent measure of concern for energy use. Through two OLS models, this paper finds that income is negatively correlated with Americans' concern for energy usage, while finding that there is a positive correlation between income and Americans' implementation of energy efficient technologies. Further, there is a nonlinear relationship between income groups and how Americans both think about their energy usage and actually implement more energy efficient measures.

  9. Finite element mesh refinement criteria for stress analysis

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1990-01-01

    This paper discusses procedures for finite-element mesh selection and refinement. The objective is to improve accuracy. The procedures are based on (1) the minimization of the stiffness matrix race (optimizing node location); (2) the use of h-version refinement (rezoning, element size reduction, and increasing the number of elements); and (3) the use of p-version refinement (increasing the order of polynomial approximation of the elements). A step-by-step procedure of mesh selection, improvement, and refinement is presented. The criteria for 'goodness' of a mesh are based on strain energy, displacement, and stress values at selected critical points of a structure. An analysis of an aircraft lug problem is presented as an example.

  10. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    DOE PAGES

    Wang, Hao; Dong, Xinglong; Lin, Junzhong; ...

    2018-05-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr 6O 4(OH) 4(bptc) 3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr 6O 4(OH) 8(H 2O) 4(abtc) 2, ismore » capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.« less

  11. Refining Collective Coordinates and Improving Free Energy Representation in Variational Enhanced Sampling.

    PubMed

    Yang, Yi Isaac; Parrinello, Michele

    2018-06-12

    Collective variables are used often in many enhanced sampling methods, and their choice is a crucial factor in determining sampling efficiency. However, at times, searching for good collective variables can be challenging. In a recent paper, we combined time-lagged independent component analysis with well-tempered metadynamics in order to obtain improved collective variables from metadynamics runs that use lower quality collective variables [ McCarty, J.; Parrinello, M. J. Chem. Phys. 2017 , 147 , 204109 ]. In this work, we extend these ideas to variationally enhanced sampling. This leads to an efficient scheme that is able to make use of the many advantages of the variational scheme. We apply the method to alanine-3 in water. From an alanine-3 variationally enhanced sampling trajectory in which all the six dihedral angles are biased, we extract much better collective variables able to describe in exquisite detail the protein complex free energy surface in a low dimensional representation. The success of this investigation is helped by a more accurate way of calculating the correlation functions needed in the time-lagged independent component analysis and from the introduction of a new basis set to describe the dihedral angles arrangement.

  12. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Dong, Xinglong; Lin, Junzhong

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr 6O 4(OH) 4(bptc) 3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr 6O 4(OH) 8(H 2O) 4(abtc) 2, ismore » capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.« less

  13. Consumer Views on Transportation and Advanced Vehicle Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers tomore » and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to researchers, policy makers, and the public. Planned reports will follow detailing data from new studies targeting the primary challenges to and opportunities for advanced vehicle technology deployment. The effort continually refines study content to maintain and improve the relevance and validity of results.« less

  14. Dissolution of methane bubbles with hydrate armoring in deep ocean conditions

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Margarita; Socolofsky, Scott

    2017-11-01

    The deep ocean is a storehouse of natural gas. Methane bubble moving upwards from marine sediments may become trapped in gas hydrates. It is uncertain precisely how hydrate armoring affects dissolution, or mass transfer from the bubble to the surrounding water column. The Texas A&M Oilspill Calculator was used to simulate a series of gas bubble dissolution experiments conducted in the United States Department of Energy National Energy Technology Laboratory High Pressure Water Tunnel. Several variations of the mass transfer coefficient were calculated based on gas or hydrate phase solubility and clean or dirty bubble correlations. Results suggest the mass transfer coefficient may be most closely modeled with gas phase solubility and dirty bubble correlation equations. Further investigation of hydrate bubble dissolution behavior will refine current numeric models which aid in understanding gas flux to the atmosphere and plumes such as oil spills. Research funded in part by the Texas A&M University 2017 Undergraduate Summer Research Grant and a Grant from the Methane Gas Hydrates Program of the US DOE National Energy Technology Laboratory.

  15. Electrostatic Separator for Beneficiation of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  16. An aspect-oriented approach for designing safety-critical systems

    NASA Astrophysics Data System (ADS)

    Petrov, Z.; Zaykov, P. G.; Cardoso, J. P.; Coutinho, J. G. F.; Diniz, P. C.; Luk, W.

    The development of avionics systems is typically a tedious and cumbersome process. In addition to the required functions, developers must consider various and often conflicting non-functional requirements such as safety, performance, and energy efficiency. Certainly, an integrated approach with a seamless design flow that is capable of requirements modelling and supporting refinement down to an actual implementation in a traceable way, may lead to a significant acceleration of development cycles. This paper presents an aspect-oriented approach supported by a tool chain that deals with functional and non-functional requirements in an integrated manner. It also discusses how the approach can be applied to development of safety-critical systems and provides experimental results.

  17. Rare earth metal-containing ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodius, Denis; Mudring, Anja-Verena

    As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less

  18. Rare earth metal-containing ionic liquids

    DOE PAGES

    Prodius, Denis; Mudring, Anja-Verena

    2018-03-07

    As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less

  19. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

    PubMed

    Lemkul, Justin A; MacKerell, Alexander D

    2017-05-09

    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  20. Method and apparatus for secondary laser pumping by electron beam excitation

    DOEpatents

    George, E. Victor; Krupke, William F.; Murray, John R.; Powell, Howard T.; Swingle, James C.; Turner, Jr., Charles E.; Rhodes, Charles K.

    1978-01-01

    An electron beam of energy typically 100 keV excites a fluorescer gas which emits ultraviolet radiation. This radiation excites and drives an adjacent laser gas by optical pumping or photolytic dissociation to produce high efficiency pulses. The invention described herein was made in the course of, or under, United States Energy Research and Development Administration Contract No. W-7405-Eng-48 with the University of California.

  1. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema

    Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

    2017-12-09

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  2. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halabi, Linda

    "Undergraduate Research at the Center for Energy Efficient Materials (CEEM)" was submitted by CEEM to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.« less

  3. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  4. Modeling of a data exchange process in the Automatic Process Control System on the base of the universal SCADA-system

    NASA Astrophysics Data System (ADS)

    Topolskiy, D.; Topolskiy, N.; Solomin, E.; Topolskaya, I.

    2016-04-01

    In the present paper the authors discuss some ways of solving energy saving problems in mechanical engineering. In authors' opinion one of the ways of solving this problem is integrated modernization of power engineering objects of mechanical engineering companies, which should be intended for the energy supply control efficiency increase and electric energy commercial accounting improvement. The author have proposed the usage of digital current and voltage transformers for these purposes. To check the compliance of this equipment with the IEC 61850 International Standard, we have built a mathematic model of the data exchange process between measuring transformers and a universal SCADA-system. The results of modeling show that the discussed equipment corresponds to the mentioned Standard requirements and the usage of the universal SCADA-system for these purposes is preferable and economically reasonable. In modeling the authors have used the following software: MasterScada, Master OPC_DI_61850, OPNET.

  5. Transactive Campus Energy Systems: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Corbin, Charles D.; Haack, Jereme N.

    Transactive energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. The fundamental purpose of transactive energy management is to seamlessly coordinate the operation of large numbers of new intelligent assets—such as distributed solar, energy storage and responsive building loads—to provide the flexibility needed to operate the power grid reliably and at minimum cost, particularly one filled with intermittent renewable generation such as the Pacific Northwest. It addresses the key challenge of providing smooth, stable, and predictable “control” of these assets, despite the fact that most are neither owned nor directly controlled by themore » power grid. The Clean Energy and Transactive Campus (CETC) work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) and the Washington State Department of Commerce (Commerce) through the Clean Energy Fund (CEF). The project team consisted of PNNL, the University of Washington (UW) and Washington State University (WSU), to connect the PNNL, UW, and WSU campuses to form a multi-campus testbed for transaction-based energy management—transactive—solutions. Building on the foundational transactive system established by the Pacific Northwest Smart Grid Demonstration (PNWSGD), the purpose of the project was to construct the testbed as both a regional flexibility resource and as a platform for research and development (R&D) on buildings/grid integration and information-based energy efficiency. This report provides a summary of the various tasks performed under the CRADA.« less

  6. On the use of LiF:Mg,Ti thermoluminescence dosemeters in space--a critical review.

    PubMed

    Horowitz, Y S; Satinger, D; Fuks, E; Oster, L; Podpalov, L

    2003-01-01

    The use of LiF:Mg,Ti thermoluminescence dosemeters (TLDs) in space radiation fields is reviewed. It is demonstrated in the context of modified track structure theory and microdosimetric track structure theory that there is no unique correlation between the relative thermoluminescence (TL) efficiency of heavy charged particles, neutrons of all energies and linear energy transfer (LET). Many experimental measurements dating back more than two decades also demonstrate the multivalued, non-universal, relationship between relative TL efficiency and LET. It is further demonstrated that the relative intensities of the dosimetric peaks and especially the high-temperature structure are dependent on a large number of variables, some controllable, some not. It is concluded that TL techniques employing the concept of LET (e.g. measurement of total dose, the high-temperature ratio (HTR) methods and other combinations of the relative TL efficiency of the various peaks used to estimate average Q or simulate Q-LET relationships) should be regarded as lacking a sound theoretical basis, highly prone to error and, as well, lack of reproducibility/universality due to the absence of a standardised experimental protocol essential to reliable experimental methodology.

  7. Cosmic-Ray Feedback Heating of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.

    2017-07-01

    Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We find that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (I) CRs come into contact with the ambient ICM and efficiently heat it, (II) streaming instability heating dominates over Coulomb and hadronic heating, (III) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (IV) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.

  8. Privacy Issues in the Development of a Virtual Mental Health Clinic for University Students: A Qualitative Study.

    PubMed

    Gulliver, Amelia; Bennett, Kylie; Bennett, Anthony; Farrer, Louise M; Reynolds, Julia; Griffiths, Kathleen M

    2015-01-01

    There is a growing need to develop online services for university students with the capacity to complement existing services and efficiently address student mental health problems. Previous research examining the development and acceptability of online interventions has revealed that issues such as privacy critically impact user willingness to engage with these services. To explore university student perspectives on privacy issues related to using an online mental health service within the context of the development of an online, university-based virtual mental health clinic. There were two stages of data collection. The first stage consisted of four 1.5-hour focus groups conducted with university students (n=19; 10 female, 9 male, mean age = 21.6 years) to determine their ideas about the virtual clinic including privacy issues. The second stage comprised three 1-hour prototype testing sessions conducted with university students (n=6; 3 male, 3 female, mean age = 21.2 years) using participatory design methods to develop and refine a service model for the virtual clinic and determine student views on privacy within this context. The students raised a number of issues related to privacy in relation to the development of the university virtual clinic. Major topics included the types of personal information they would be willing to provide (minimal information and optional mental health data), concern about potential access to their personal data by the university, the perceived stigma associated with registering for the service, and privacy and anonymity concerns related to online forums contained within the virtual clinic. Students would be more comfortable providing personal information and engaging with the virtual clinic if they trust the privacy and security of the service. Implications of this study include building the clinic in a flexible way to accommodate user preferences.

  9. Application of heterogeneous blading systems is the way for improving efficiency of centrifugal energy pumps

    NASA Astrophysics Data System (ADS)

    Pochylý, F.; Haluza, M.; Fialová, S.; Dobšáková, L.; Volkov, A. V.; Parygin, A. G.; Naumov, A. V.; Vikhlyantsev, A. A.; Druzhinin, A. A.

    2017-11-01

    The results of independent research implemented by the teams of authors representing the Brno University of technology (Czech Republic) and Moscow Power Engineering Institute National Research University (Russia) are presented and compared. The possibilities for improving the energy efficiency of slow-speed centrifugal pumps (with a specific speed coefficient n s < 80) widely used in power engineering—in thermal power stations, in heat electric-power stations, in nuclear power plants, and in boiler rooms—were investigated. These are supply pumps, condensate pumps, precharge pumps, etc. The pumps with such values of n s are widely used in some technological cycles of oil-and-gas and chemical industries too. The research was focused on achieving the shape of the pump efficiency characteristics providing a significant extension of its effective working zone and increasing its integrated efficiency. The results were obtained based on new approaches to the formation of a blading system of an impeller of a slow-speed centrifugal pump different from the traditional blading system. The analytical dependences illustrating the influence of individual geometry of a blading system on the efficiency were presented. The possibilities of purposeful changing of its structure were demonstrated. It was experimentally confirmed that use of the innovative blading system makes it possible to increase the pump efficiency by 1-4% (in the experiments for the pumps with n s = 33 and 55) and to extend its efficient working zone approximately by 15-20% (in the experiment for the pumps with n s = 33 and 66). The latter is especially important for the supply pumps of NPP power units. The experimental results for all investigated pumps are presented in comparison with the characteristics of the efficiency provided by the blading systems designed by traditional methods.

  10. 78 FR 20176 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... electricity from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small irrigation..., geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower... from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and solar energy...

  11. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qui, Songgang; Galbraith, Ross

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 tomore » 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.« less

  13. Monthly Petroleum Product Price Report, October 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Data are reported on the prices of petroleum products for the period January 1980 through October 1981. The following products are included in the survey: gasoline, diesel fuels, residual fuels, aviation fuels, kerosene, liquefied petroleum gases heating oils, and No. 5 and No. 6 fuel oils. This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. Inmore » addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 States and the District of Columbia.« less

  14. CSP: A Multifaceted Hybrid Architecture for Space Computing

    NASA Technical Reports Server (NTRS)

    Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron

    2014-01-01

    Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.

  15. Technique for identifying, tracing, or tracking objects in image data

    DOEpatents

    Anderson, Robert J [Albuquerque, NM; Rothganger, Fredrick [Albuquerque, NM

    2012-08-28

    A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

  16. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds

    NASA Astrophysics Data System (ADS)

    Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian

    2018-03-01

    Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)

  17. Refined Sulfur Nanoparticles Immobilized in Metal-Organic Polyhedron as Stable Cathodes for Li-S Battery.

    PubMed

    Bai, Linyi; Chao, Dongliang; Xing, Pengyao; Tou, Li Juan; Chen, Zhen; Jana, Avijit; Shen, Ze Xiang; Zhao, Yanli

    2016-06-15

    The lithium-sulfur (Li-S) battery presents a promising rechargeable energy storage technology for the increasing energy demand in a worldwide range. However, current main challenges in Li-S battery are structural degradation and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling, resulting in the corrosion and loss of active materials. Herein, we developed novel hybrids by employing metal-organic polyhedron (MOP) encapsulated PVP-functionalized sulfur nanoparticles (S@MOP), where the active sulfur component was efficiently encapsulated within the core of MOP and PVP as a surfactant was helpful to stabilize the sulfur nanoparticles and control the size and shape of corresponding hybrids during their syntheses. The amount of sulfur embedded into MOP could be controlled according to requirements. By using the S@MOP hybrids as cathodes, an obvious enhancement in the performance of Li-S battery was achieved, including high specific capacity with good cycling stability. The MOP encapsulation could enhance the utilization efficiency of sulfur. Importantly, the structure of the S@MOP hybrids was very stable, and they could last for almost 1000 cycles as cathodes in Li-S battery. Such high performance has rarely been obtained using metal-organic framework systems. The present approach opens up a promising route for further applications of MOP as host materials in electrochemical and energy storage fields.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanloz, R.; Stone, H.

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labsmore » and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.« less

  19. Improved cryoEM-Guided Iterative Molecular Dynamics–Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction

    PubMed Central

    2016-01-01

    Many excellent methods exist that incorporate cryo-electron microscopy (cryoEM) data to constrain computational protein structure prediction and refinement. Previously, it was shown that iteration of two such orthogonal sampling and scoring methods – Rosetta and molecular dynamics (MD) simulations – facilitated exploration of conformational space in principle. Here, we go beyond a proof-of-concept study and address significant remaining limitations of the iterative MD–Rosetta protein structure refinement protocol. Specifically, all parts of the iterative refinement protocol are now guided by medium-resolution cryoEM density maps, and previous knowledge about the native structure of the protein is no longer necessary. Models are identified solely based on score or simulation time. All four benchmark proteins showed substantial improvement through three rounds of the iterative refinement protocol. The best-scoring final models of two proteins had sub-Ångstrom RMSD to the native structure over residues in secondary structure elements. Molecular dynamics was most efficient in refining secondary structure elements and was thus highly complementary to the Rosetta refinement which is most powerful in refining side chains and loop regions. PMID:25883538

  20. Satellite SAR geocoding with refined RPC model

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Balz, Timo; Liao, Mingsheng

    2012-04-01

    Recent studies have proved that the Rational Polynomial Camera (RPC) model is able to act as a reliable replacement of the rigorous Range-Doppler (RD) model for the geometric processing of satellite SAR datasets. But its capability in absolute geolocation of SAR images has not been evaluated quantitatively. Therefore, in this article the problems of error analysis and refinement of SAR RPC model are primarily investigated to improve the absolute accuracy of SAR geolocation. Range propagation delay and azimuth timing error are identified as two major error sources for SAR geolocation. An approach based on SAR image simulation and real-to-simulated image matching is developed to estimate and correct these two errors. Afterwards a refined RPC model can be built from the error-corrected RD model and then used in satellite SAR geocoding. Three experiments with different settings are designed and conducted to comprehensively evaluate the accuracies of SAR geolocation with both ordinary and refined RPC models. All the experimental results demonstrate that with RPC model refinement the absolute location accuracies of geocoded SAR images can be improved significantly, particularly in Easting direction. In another experiment the computation efficiencies of SAR geocoding with both RD and RPC models are compared quantitatively. The results show that by using the RPC model such efficiency can be remarkably improved by at least 16 times. In addition the problem of DEM data selection for SAR image simulation in RPC model refinement is studied by a comparative experiment. The results reveal that the best choice should be using the proper DEM datasets of spatial resolution comparable to that of the SAR images.

  1. Adaptability in the Development of Data Archiving Services at Johns Hopkins University

    NASA Astrophysics Data System (ADS)

    Petters, J.; DiLauro, T.; Fearon, D.; Pralle, B.

    2015-12-01

    Johns Hopkins University (JHU) Data Management Services provides archiving services for institutional researchers through the JHU Data Archive, thereby increasing the access to and use of their research data. From its inception our unit's archiving service has evolved considerably. While some of these changes have been internally driven so that our unit can archive quality data collections more efficiently, we have also developed archiving policies and procedures on the fly in response to researcher needs. Providing our archiving services for JHU research groups from a variety of research disciplines have surfaced different sets of expectations and needs. We have used each interaction to help us refine our services and quickly satisfy the researchers we serve (following the first agile principle). Here we discuss the development of our newest archiving service model, its implementation over the past several months, and the processes by which we have continued to refine and improve our archiving services since its implementation. Through this discussion we will illustrate the benefits of planning, structure and flexibility in development of archiving services that maximize the potential value of research data. We will describe interactions with research groups, including those from environmental engineering and international health, and how we were able to rapidly modify and develop our archiving services to meet their needs (e.g. in an 'agile' way). For example, our interactions with both of these research groups led first to discussion in regular standing meetings and eventually development of new archiving policies and procedures. These policies and procedures centered on limiting access to archived research data while associated manuscripts progress through peer-review and publication.

  2. Energy requirement for the production of silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wihl, M.; Scheinne, A.; Morrison, A. D.

    1977-01-01

    Photovoltaics is subject of an extensive technology assessment in terms of its net energy potential as an alternate energy source. Reduction of quartzite pebbles, refinement, crystal growth, cell processing and panel building are evaluated for energy expenditure compared to direct, indirect, and overhead energies.

  3. Search for the ANSER (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, Michael R.; ANSER Staff

    2011-05-01

    'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy'smore » Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less

  4. Search for the ANSER (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema

    Wasielewski, Michael R. (Director, Argonne-Northwestern Solar Energy Research Center); ANSER Staff

    2017-12-09

    'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

  5. Sustainable Chemistry at Sungkyunkwan University.

    PubMed

    Park, Nam-Gyu

    2015-07-20

    Special Issue: Sustainable Chemistry at Sungkyunkwan University. Sustainable chemistry is key to the development of efficient renewable energies, which will become more and more important in order to combat global warming. In this Editorial, guest editor Prof. Nam-Gyu Park describes the context of this Special Issue on top-quality research towards sustainability performed at Sungkyunkwan University (SKKU) in Korea. Scientists at SKKU work on, for example, photovoltaic solar cells to generate low-cost electricity, lithium batteries and capacitors to store electricity, piezoelectric nanogenerators, thermoelectric devices, hydrogen generation, and fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  7. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    NASA Astrophysics Data System (ADS)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  8. 75 FR 16576 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  9. 77 FR 21835 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  10. 76 FR 21947 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  11. Simulations of a Molecular Cloud experiment using CRASH

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Keiter, Paul; Vandervort, Robert; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent laboratory experiments explore molecular cloud radiation hydrodynamics. The experiment irradiates a gold foil with a laser producing x-rays to drive the implosion or explosion of a foam ball. The CRASH code, an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction developed at the University of Michigan to design and analyze high-energy-density experiments, is used to perform a parameter search in order to identify optically thick, optically thin and transition regimes suitable for these experiments. Specific design issues addressed by the simulations are the x-ray drive temperature, foam density, distance from the x-ray source to the ball, as well as other complicating issues such as the positioning of the stalk holding the foam ball. We present the results of this study and show ways the simulations helped improve the quality of the experiment. This work is funded by the LLNL under subcontract B614207 and NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  12. [MODIS Investigation

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.

    1998-01-01

    The objectives of the last six months were: (1) Revise the algorithms for the Fluorescence Line Height (FLH) and Chlorophyll Fluorescence Efficiency (CFE) products, especially the data quality flags; (2) Revise the MOCEAN validation plan; (3) Deploy and recover bio-optical instrumentation at the Hawaii Ocean Time-series (HOT) site as part of the Joint Global Ocean Flux Study (JGOFS); (4) Prepare for field work in the Antarctic Polar Frontal Zone as part of JGOFS; (5) Submit manuscript on bio-optical time scales as estimated from Lagrangian drifters; (6) Conduct chemostat experiments on fluorescence; (7) Interface with the Global Imager (GLI) science team; and (8) Continue development of advanced data system browser. We are responsible for the delivery of two at-launch products for AM-1: Fluorescence line height (FLH) and chlorophyll fluorescence efficiency (CFE). We also considered revising the input chlorophyll, which is used to determine the degree of binning. We have refined the quality flags for the Version 2 algorithms. We have acquired and installed a Silicon Graphics Origin 200. We are working with the University of Miami team to develop documentation that will describe how the MODIS ocean components are linked together.

  13. Construction and Application of a Refined Hospital Management Chain.

    PubMed

    Lihua, Yi

    2016-01-01

    Large scale development was quite common in the later period of hospital industrialization in China. Today, Chinese hospital management faces such problems as service inefficiency, high human resources cost, and low rate of capital use. This study analyzes the refined management chain of Wuxi No.2 People's Hospital. This consists of six gears namely, "organizational structure, clinical practice, outpatient service, medical technology, and nursing care and logistics." The gears are based on "flat management system targets, chief of medical staff, centralized outpatient service, intensified medical examinations, vertical nursing management and socialized logistics." The core concepts of refined hospital management are optimizing flow process, reducing waste, improving efficiency, saving costs, and taking good care of patients as most important. Keywords: Hospital, Refined, Management chain

  14. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newbold, Kenneth F.

    2013-11-26

    Led by James Madison University, Valley 25x?25 promotes using a diverse energy portfolio to achieve the goal of 25 percent renewable energy by 2025, including renewables like wind, biomass, solar, and geothermal. A primary emphasis is energy efficiency, which offers the best opportunities to decrease the use and impact of non-renewable energy sources. Endorsed by the national 25x?25 organization, Valley 25x?25 serves as an East Coast Demonstration Project, and as such, partners with regional businesses, local and state governments, institutions of higher education, and K-12 schools to explore how Valley resources can contribute to the development of innovative energy solutions.

  15. Developing a Nuclear Grade of Alloy 617 for Gen IV Nuclear Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Swindeman, Robert W; Santella, Michael L

    2010-01-01

    Alloy 617, an attractive material not particularly developed for nuclear use, is now being considered as a leading candidate alloy by several countries for applications in the Gen IV Nuclear Energy Systems. An extensive review of its existing data suggests that it would be beneficial to refine the alloy s specification to a nuclear grade for the intended Gen IV systems. In this paper, rationale for developing a nuclear grade of the alloy is first discussed through an analysis on existing data from various countries. Then initial experiments for refining the alloy specification are described. Preliminary results have suggested themore » feasibility of the refinement approach, as well as the possibility for achieving a desirable nuclear grade. Based on the results, further research activities are recommended.« less

  16. Center for Macromolecular Crystallography, University of Alabama in Birmingham

    NASA Technical Reports Server (NTRS)

    Navia, Manuel A.

    1991-01-01

    Porcine pancreatic elastase (PPE) crystals grown under microgravity conditions on mission STS-26 of the Space Shuttle Discovery were shown to diffract to considerably higher resolution than the best PPE crystals grown by us on the ground. We have now independently refined both the microgravity and ground-based data. Preliminary results of these refinements are summarized. These results show nearly a doubling of experimental diffraction data for this structure, exceeding 1.3 A resolution. Improved phase information derived from the refined structure of PPE based on this microgravity data has allowed us to interpret previously-uninterpretable electron density obtained from ground-based crystals of a complex of PPE with a chemically-reactive inhibitor. Intermediate stages in the enzyme-inhibitor reaction mechanism in the crystal can now be directly observed. Further refinement of PPE structures is in progress.

  17. Ultra fine grained Ti prepared by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R. K.

    2016-01-01

    The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.

  18. Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork; Bell, Nicole F.; Fuller, George M.; Wong, Yvonne Y. Y.

    2005-09-01

    We study post weak decoupling coherent active-sterile and active-active matter-enhanced neutrino flavor transformation in the early Universe. We show that flavor conversion efficiency at Mikheyev-Smirnov-Wolfenstein resonances is likely to be high (adiabatic evolution) for relevant neutrino parameters and energies. However, we point out that these resonances cannot sweep smoothly and continuously with the expansion of the Universe. We show how neutrino flavor conversion in this way can leave both the active and sterile neutrinos with nonthermal energy spectra, and how, in turn, these distorted energy spectra can affect the neutron-to-proton ratio, primordial nucleosynthesis, and cosmological mass/closure constraints on sterile neutrinos. We demonstrate that the existence of a light sterile neutrino which mixes with active neutrinos can change fundamentally the relationship between the cosmological lepton numbers and the primordial nucleosynthesis He4 yield.

  19. Profex: a graphical user interface for the Rietveld refinement program BGMN.

    PubMed

    Doebelin, Nicola; Kleeberg, Reinhard

    2015-10-01

    Profex is a graphical user interface for the Rietveld refinement program BGMN . Its interface focuses on preserving BGMN 's powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems.

  20. Profex: a graphical user interface for the Rietveld refinement program BGMN

    PubMed Central

    Doebelin, Nicola; Kleeberg, Reinhard

    2015-01-01

    Profex is a graphical user interface for the Rietveld refinement program BGMN. Its interface focuses on preserving BGMN’s powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems. PMID:26500466

  1. Meshfree truncated hierarchical refinement for isogeometric analysis

    NASA Astrophysics Data System (ADS)

    Atri, H. R.; Shojaee, S.

    2018-05-01

    In this paper truncated hierarchical B-spline (THB-spline) is coupled with reproducing kernel particle method (RKPM) to blend advantages of the isogeometric analysis and meshfree methods. Since under certain conditions, the isogeometric B-spline and NURBS basis functions are exactly represented by reproducing kernel meshfree shape functions, recursive process of producing isogeometric bases can be omitted. More importantly, a seamless link between meshfree methods and isogeometric analysis can be easily defined which provide an authentic meshfree approach to refine the model locally in isogeometric analysis. This procedure can be accomplished using truncated hierarchical B-splines to construct new bases and adaptively refine them. It is also shown that the THB-RKPM method can provide efficient approximation schemes for numerical simulations and represent a promising performance in adaptive refinement of partial differential equations via isogeometric analysis. The proposed approach for adaptive locally refinement is presented in detail and its effectiveness is investigated through well-known benchmark examples.

  2. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light‐Emitting Diodes

    PubMed Central

    Song, Wook; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2017-01-01

    Abstract A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light‐emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole‐type host and a triazine‐type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light‐emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light‐emitting diodes. PMID:29610726

  3. Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials

    PubMed Central

    Han, Tae-Hee; Choi, Mi-Ri; Jeon, Chan-Woo; Kim, Yun-Hi; Kwon, Soon-Ki; Lee, Tae-Woo

    2016-01-01

    Although solution processing of small-molecule organic light-emitting diodes (OLEDs) has been considered as a promising alternative to standard vacuum deposition requiring high material and processing cost, the devices have suffered from low luminous efficiency and difficulty of multilayer solution processing. Therefore, high efficiency should be achieved in simple-structured small-molecule OLEDs fabricated using a solution process. We report very efficient solution-processed simple-structured small-molecule OLEDs that use novel universal electron-transporting host materials based on tetraphenylsilane with pyridine moieties. These materials have wide band gaps, high triplet energy levels, and good solution processabilities; they provide balanced charge transport in a mixed-host emitting layer. Orange-red (~97.5 cd/A, ~35.5% photons per electron), green (~101.5 cd/A, ~29.0% photons per electron), and white (~74.2 cd/A, ~28.5% photons per electron) phosphorescent OLEDs exhibited the highest recorded electroluminescent efficiencies of solution-processed OLEDs reported to date. We also demonstrate a solution-processed flexible solid-state lighting device as a potential application of our devices. PMID:27819053

  4. U. of Delaware Abandons Sessions on Diversity

    ERIC Educational Resources Information Center

    Hoover, Eric

    2007-01-01

    The University of Delaware spent years refining its residence-life education program. One week of public criticism unraveled it. Late last month, the Foundation for Individual Rights in Education, a free-speech group, accused the university of promoting specific views on race, sexuality, and morality in a series of discussions held in dormitories.…

  5. Articulating Performance Expectations for Scholarship at an Australian Regional University

    ERIC Educational Resources Information Center

    Crookes, Patrick A.; Smith, Kylie M.; Else, Fabienne C.; Crookes, Ellie

    2016-01-01

    With an academic workforce undergoing transformation, it is vital that universities rethink how they define and value scholarship through their processes for academic promotion. A key part of this rethink is to review and refine existing documentation about promotion to reflect changing conceptions of scholarly work, in a way that enables scholars…

  6. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  7. Biomechanical pulping of kenaf

    Treesearch

    Aziz Ahmed; Masood Akhtar; Gary C. Myers; Gary M. Scott

    1999-01-01

    The objective of this study was to investigate the effect of fungal pretreatment of whole kenaf prior to refining on refiner electrical energy consumption, paper strength, and optical properties. We also explored the suitability of whole kenaf biomechanical pulp for making newsprint in terms of ISO brightness and strength properties. Kenaf was sterilized by autoclaving...

  8. A Systems Approach to Develop Sustainable Water Supply Infrastructure and Management

    EPA Science Inventory

    In a visit to Zhejiang University, China, Dr. Y. Jeffrey Yang will discuss in this presentation the system approach for urban water infrastructure sustainability. Through a system analysis, it becomes clear at an urban scale that the energy and water efficiencies of a water supp...

  9. Campus Buildings that Teach Lessons.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2002-01-01

    Describes how Brown University has begun looking at building design and performance as a shadow curriculum that supports or argues with the principles being taught in a building's classroom. Discusses the energy-efficient design and construction of W. Duncan MacMillan Hall, a building serving the geology, chemistry, and environmental sciences…

  10. Waste Not

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    When schools and universities look at saving energy in their facilities, they are likely to review the efficiency of their heating and cooling systems, or the quality of their building envelopes. When facility managers focus attention on school bathrooms, they are more likely to consider issues such as cleanliness and safety as more critical than…

  11. Rooms with a View

    ERIC Educational Resources Information Center

    Hourihan, Peter; Berry, Millard, III

    2006-01-01

    When well-designed and integrated into a campus living or learning space, an atrium can function as the heart and spirit of a building, connecting interior rooms and public spaces with the outside environment. However, schools and universities should seek technological and HVAC solutions that maximize energy efficiency. This article discusses how…

  12. Investment Primer for Green Revolving Funds

    ERIC Educational Resources Information Center

    Weisbord, Dano

    2012-01-01

    Developing return-oriented green revolving funds (GRFs) is a rapidly growing trend at colleges and universities. A green revolving fund (GRF) is a special account designated for investment in on-campus projects that improve energy efficiency or decrease material use. GRFs invest in a variety of cost-saving initiatives, resulting in significant…

  13. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department ofmore » Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.« less

  14. Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.; Ovall, J.; Holst, M.

    2014-12-01

    We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented adaptive refinement code named MARE2DEM. We demonstrate the performance and parallel scaling of this algorithm on a medium-scale computing cluster with a marine controlled-source EM example that includes a 3D array of receivers located over a 3D model that includes significant seafloor bathymetry variations and a heterogeneous subsurface.

  15. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of application on geothermal systems. The history of this multidisciplinary research of geothermal modeling performed by German universities is shown in this paper. Outstanding geothermal research programs of German universities and state aided organizations (BGR, LBEG, GGA) are pointed out. Actual geothermal modeling programs based on the Finite-Element-Method or the Finite-Differences-Method as well as analytical programs are introduced. National and international geothermal projects supported by German universities and state aided organizations are described. Examples of supervised shallow and deep geothermal systems are given. Actually the Technical University Darmstadt is performing a research program supported by a national organization, the Ministry of Economics and Technology (BMWi). Main aim of this research program titled experimental investigation for the verification of a Finite-Element-Multiphase-Model is to analyze the subsoil as a three-phases-model with separated consideration of conduction, convection and advection and their subsequent interaction. The latest developments of numerical projects as well as the actual state of the before mentioned research program are pointed out in the paper. REFERENCES Quick, H., Arslan, U., Meißner, S., Michael, J. 2007. Deep foundations and geothermal energy - a multi-purpose solution, IFHS: 8. International conference on multi-purpose high-rise towers and tall buildings, Abu Dhabi, 2007 Arslan, U. and Huber, H. 2008. Application of geothermal energy. University of Istanbul, Yapistanbul No. 3 / 2008, Turkey, 2008 Quick, Q., Michael, J., Arslan, U., Huber, H. 2010. History of International Geothermal Power Plants and Geothermal Projects in Germany, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Arslan, U., Huber, H. 2010. Education of Geothermal Sciences in Germany as part of an application orientated research, Proceedings European Civil Engineering Education and Training (EUCEET III) Special Volume, 2010

  16. An Experimental Study of an Ultra-Mobile Vehicle for Off-Road Transportation

    DTIC Science & Technology

    1984-05-01

    Adaptaive Hexapod Vehicle. M.S. thesis , The &io State University, August, 1982. 7. Tsai, C.K., Computer Control Design of an Energy-Efficient Leg, M.S...Applications, ASME, 1982. 9. Kao, M.L., A Reliable Multi-Microcomputer System for Real Time Control , M.S. thesis , The Ohio State University, December...13. Broerman, K.R., Development of a Proximity Sensor System for Foot Altitude Control of a Terrain-Adaptive Hexapod Robot, M.S. thesis , The Ohio State

  17. Development of a fuel cell plug-in hybrid electric vehicle and vehicle simulator for energy management assessment

    NASA Astrophysics Data System (ADS)

    Meintz, Andrew Lee

    This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.

  18. Summary of LET spectra and dose measurements on ten STS missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A comparison of linear energy transfer (LET) spectra measurements made with plastic nuclear track detectors (PNTD's) from area passive dosimeters (APD's), was made for ten different STS missions under similar shielding. The results show that integral flux, dose rate and equivalent dose rate values follow a general increase with respect to increasing orbital inclination and altitude but that there are large variations from a simple relationship. This is to be expected since it has been shown that Shuttle attitude variations, combined with the anisotropic particle flux at the South Atlantic Anomaly (SAA), can result in differences of a factor of 2 in dose rate inside the Shuttle (Badhwar et al., 1995). Solar cycle and shielding differences also result in variations in radiation dose between STS missions. Spaceflight dosimeters from the STS missions are also being used in the development of a method for increasing LET spectra measurement accuracy by extending LET measurements to particle tracks of ranges 10-80 microns. Refinements in processing and measurement techniques for the flight PNTD's have yielded increased detection efficiencies for the short tracks when LET spectra determined by using the standard and refined methods were intercompared.

  19. FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry

    NASA Astrophysics Data System (ADS)

    Dai, Jisheng; Liu, An; Lau, Vincent K. N.

    2018-05-01

    This paper addresses the problem of downlink channel estimation in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the cdownlink channel. However, there are at least two shortcomings of these DFT-based methods: 1) they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs, and 2) they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary 2D-array antenna geometry, and propose an efficient sparse Bayesian learning (SBL) approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization (MM) algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.

  20. Elastic and inelastic neutron scattering cross sections for 12C at En = 5.9, 6.1, and 7.0 MeV

    NASA Astrophysics Data System (ADS)

    Lyons, Elizabeth; Hicks, Sally; Morin, Theodore; Derdeyn, Elizabeth; Peters, Erin

    2017-09-01

    Measurements of neutron elastic and inelastic scattering differential cross sections from 12C have been performed at incident neutron energies of 5.9, 6.1, and 7.0 MeV. Comparisons of existing experimental cross sections (NNDC) at these incident neutron energies reveal large discrepancies. Accurate measurements of 12C cross sections are vital to facilitate precise calculations regarding criticality conditions for nuclear reactors, advances in security screening methods, and better understanding astrophysical and nuclear phenomenon. During preliminary measurements of 12C cross sections at the University of Kentucky Accelerator Laboratory (UKAL), we realized the relative efficiency of the deuterated benzene (main) detector was needed over an unusually large range of neutron energies due to the high Q value of the first excited state of 12C. Those experiments were repeated during the summer of 2017 to measure in situ the relative detector efficiency with better beam conditions and a better understanding of background observed from the 2H(d, n)3He source reaction. The resulting improved detector efficiency was used in determining the neutron elastic and inelastic scattering cross sections. While the former were found to be in excellent agreement with evaluated cross sections from ENDF, the latter show some discrepancies, especially at 6.1 MeV. Our results will be presented. Research is supported by USDOE-NNSA-SSAP: NA0002931, NSF: PHY-1606890, and the Donald A. Cowan Physics Institute at the University of Dallas.

  1. Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos.

    PubMed

    Midic, Uros; Hung, Pei-Hsuan; Vincent, Kailey A; Goheen, Benjamin; Schupp, Patrick G; Chen, Diane D; Bauer, Daniel E; VandeVoort, Catherine A; Latham, Keith E

    2017-07-15

    Gene editing technologies offer new options for developing novel biomedical research models and for gene and stem cell based therapies. However, applications in many species demand high efficiencies, specificity, and a thorough understanding of likely editing outcomes. To date, overall efficiencies, rates of off-targeting and degree of genetic mosaicism have not been well-characterized for most species, limiting our ability to optimize methods. As a model gene for measuring these parameters of the CRISPR/Cas9 application in a primate species (rhesus monkey), we selected the β-hemoglobin gene (HBB), which also has high relevance to the potential application of gene editing and stem-cell technologies for treating human disease. Our data demonstrate an ability to achieve a high efficiency of gene editing in rhesus monkey zygotes, with no detected off-target effects at selected off-target loci. Considerable genetic mosaicism and variation in the fraction of embryonic cells bearing targeted alleles are observed, and the timing of editing events is revealed using a new model. The uses of Cas9-WT protein combined with optimized concentrations of sgRNAs are two likely areas for further refinement to enhance efficiency while limiting unfavorable outcomes that can be exceedingly costly for application of gene editing in primate species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. A small-scale dynamo in feedback-dominated galaxies - III. Cosmological simulations

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2017-12-01

    Magnetic fields are widely observed in the Universe in virtually all astrophysical objects, from individual stars to entire galaxies, even in the intergalactic medium, but their specific genesis has long been debated. Due to the development of more realistic models of galaxy formation, viable scenarios are emerging to explain cosmic magnetism, thanks to both deeper observations and more efficient and accurate computer simulations. We present here a new cosmological high-resolution zoom-in magnetohydrodynamic (MHD) simulation, using the adaptive mesh refinement technique, of a dwarf galaxy with an initially weak and uniform magnetic seed field that is amplified by a small-scale dynamo (SSD) driven by supernova-induced turbulence. As first structures form from the gravitational collapse of small density fluctuations, the frozen-in magnetic field separates from the cosmic expansion and grows through compression. In a second step, star formation sets in and establishes a strong galactic fountain, self-regulated by supernova explosions. Inside the galaxy, the interstellar medium becomes highly turbulent, dominated by strong supersonic shocks, as demonstrated by the spectral analysis of the gas kinetic energy. In this turbulent environment, the magnetic field is quickly amplified via a SSD process and is finally carried out into the circumgalactic medium by a galactic wind. This realistic cosmological simulation explains how initially weak magnetic seed fields can be amplified quickly in early, feedback-dominated galaxies, and predicts, as a consequence of the SSD process, that high-redshift magnetic fields are likely to be dominated by their small-scale components.

  3. Electrolyser and fuel cells, key elements for energy and life support

    NASA Astrophysics Data System (ADS)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated experience gained from testing will be presented, complemented by an outlook on next development steps preparatory to the application of electrolyser and fuel cell technology in human and robotic exploration building blocks.

  4. Surface nanocrystalline and hardening effects of Ti-Al-V alloy by electropulsing ultrasonic shock

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoxin; Tang, Guoyi

    2015-03-01

    The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It's indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It's different from conventional experiments and theory. It's discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it's supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management. The work is supported by National Natural Science Foundation of China (No. 50571048) and Shenzhen science and technology research funding project of China (No. SGLH20121008144756946).

  5. Digging for the Truth: Photon Archeology with GLAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stecker, F. W.

    2007-07-12

    Stecker, Malkan and Scully, have shown how ongoing deep surveys of galaxy luminosity functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities for energies from 0.03 eV to the Lyman limit at 13.6 eV and for redshifts out to 6 (called here the intergalactic background light or IBL). From these calculations of the IBL at various redshifts, they predict the present and past optical depth of the universe to high energy {gamma}-rays owing to interactions with photons of the IBL and the 2.7 K CMB.more » We discuss here how this proceedure can be reversed by looking for sharp cutoffs in the spectra of extragalactic {gamma}-ray sources such as blazars at high redshifts in the multi-GeV energy range with GLAST (Gamma-Ray Large Are Space Telescope). By determining the cutoff energies of sources with known redshifts, we can refine our determination of the IBL photon densities in the past, i.e., the archeo-IBL, and therefore get a better measure of the past history of the total star formation rate. Conversely, observations of sharp high energy cutoffs in the {gamma}-ray spectra of sources at unknown redshifts can be used instead of spectral lines to give a measure of their redshifts.« less

  6. 45 CFR 1388.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... additional resources, for example, grants, space, and volunteer manpower; and (3) Carrying out systems... UAP refines its activities on the basis of evaluation results. As members of the university community...

  7. 45 CFR 1388.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... additional resources, for example, grants, space, and volunteer manpower; and (3) Carrying out systems... UAP refines its activities on the basis of evaluation results. As members of the university community...

  8. 45 CFR 1388.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... additional resources, for example, grants, space, and volunteer manpower; and (3) Carrying out systems... UAP refines its activities on the basis of evaluation results. As members of the university community...

  9. 45 CFR 1388.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... additional resources, for example, grants, space, and volunteer manpower; and (3) Carrying out systems... UAP refines its activities on the basis of evaluation results. As members of the university community...

  10. Case Study for the ARRA-funded GSHP Demonstration at University at Albany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This report highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects—a distributed GSHP system at a new 500-bed apartment-style student residence hall at the University at Albany. This case studymore » is based on the analysis of detailed design documents, measured performance data, published catalog data of heat pump equipment, and actual construction costs. Simulations with a calibrated computer model are performed for both the demonstrated GSHP system and a baseline heating, ventilation, and airconditioning (HVAC) system to determine the energy savings and other related benefits achieved by the GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, as well as the pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the demonstrated GSHP system compared with the baseline HVAC system. This case study also identifies opportunities for improving the operational efficiency of the demonstrated GSHP system.« less

  11. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  12. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  13. Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction

    DOE PAGES

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less

  14. Evolution of US DOE Performance Assessments Over 20 Years - 13597

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suttora, Linda C.; Seitz, Roger R.

    2013-07-01

    Performance assessments (PAs) have been used for many years for the analysis of post-closure hazards associated with a radioactive waste disposal facility and to provide a reasonable expectation of the ability of the site and facility design to meet objectives for the protection of members of the public and the environment. The use of PA to support decision-making for LLW disposal facilities has been mandated in United States Department of Energy (US DOE) directives governing radioactive waste management since 1988 (currently DOE Order 435.1, Radioactive Waste Management). Prior to that time, PAs were also used in a less formal role.more » Over the past 20+ years, the US DOE approach to conduct, review and apply PAs has evolved into an efficient, rigorous and mature process that includes specific requirements for continuous improvement and independent reviews. The PA process has evolved through refinement of a graded and iterative approach designed to help focus efforts on those aspects of the problem expected to have the greatest influence on the decision being made. Many of the evolutionary changes to the PA process are linked to the refinement of the PA maintenance concept that has proven to be an important element of US DOE PA requirements in the context of supporting decision-making for safe disposal of LLW. The PA maintenance concept is central to the evolution of the graded and iterative philosophy and has helped to drive the evolution of PAs from a deterministic compliance calculation into a systematic approach that helps to focus on critical aspects of the disposal system in a manner designed to provide a more informed basis for decision-making throughout the life of a disposal facility (e.g., monitoring, research and testing, waste acceptance criteria, design improvements, data collection, model refinements). A significant evolution in PA modeling has been associated with improved use of uncertainty and sensitivity analysis techniques to support efficient implementation of the graded and iterative approach. Rather than attempt to exactly predict the migration of radionuclides in a disposal unit, the best PAs have evolved into tools that provide a range of results to guide decision-makers in planning the most efficient, cost effective, and safe disposal of radionuclides. (authors)« less

  15. Solution of free-boundary problems using finite-element/Newton methods and locally refined grids - Application to analysis of solidification microstructure

    NASA Technical Reports Server (NTRS)

    Tsiveriotis, K.; Brown, R. A.

    1993-01-01

    A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.

  16. Study on the Removal of Gases in RH Refining Progress through Experiments Using Vacuum Induction Furnace

    NASA Astrophysics Data System (ADS)

    Niu, Deliang; Liu, Qingcai; Wang, Zhu; Ren, Shan; Lan, Yuanpei; Xu, Minren

    Removal of gas is the major function of RH degasser. To optimize the RH refining craft in Chongqing Iron and Steel Co. Ltd, the degassing effect of RH degasser at different degrees of vacuum was investigated using a vacuum induction furnace. In addition, the effect of processing time on the gas content dissolved in molten steel was also studied. The results showed that degree of vacuum was one of the important factors that determined the degassing efficiency in RH refining process. High vacuum degree is helpful in the removal of gas, especially in the removal of [H] dissolved in molten steel. The processing time could be reduced from 25-30 min to 15 minutes and gas content could also meet the demand of RH refining.

  17. Developing and modifying behavioral coding schemes in pediatric psychology: a practical guide.

    PubMed

    Chorney, Jill MacLaren; McMurtry, C Meghan; Chambers, Christine T; Bakeman, Roger

    2015-01-01

    To provide a concise and practical guide to the development, modification, and use of behavioral coding schemes for observational data in pediatric psychology. This article provides a review of relevant literature and experience in developing and refining behavioral coding schemes. A step-by-step guide to developing and/or modifying behavioral coding schemes is provided. Major steps include refining a research question, developing or refining the coding manual, piloting and refining the coding manual, and implementing the coding scheme. Major tasks within each step are discussed, and pediatric psychology examples are provided throughout. Behavioral coding can be a complex and time-intensive process, but the approach is invaluable in allowing researchers to address clinically relevant research questions in ways that would not otherwise be possible. © The Author 2014. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Energy Perspective: Is Hydroelectricity Green?

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2009-01-01

    The current worldwide concern over energy is primarily related to imported oil, oil drilling and refining capacity, and transportation capacity. However, this concern has bolstered interest in a broader range of "green" energy technologies. In this article, the author discusses the use of hydroelectricity as an alternative energy source…

  19. Establishing Priorities for Postsecondary Energy-Related Technology Programs

    ERIC Educational Resources Information Center

    Brooking, Walter J.

    1977-01-01

    Data from a Shell Oil Company forecast of national energy requirements through 1990 and from a national invitational conference on energy-related postsecondary programs are presented under the following headings: Coal mining beneficiation and processing, petroleum extraction and refining, nuclear power production, solar energy, and energy…

  20. Sustaining Teacher Change through Participating in a Comprehensive Approach to Teaching Chinese Literacy

    ERIC Educational Resources Information Center

    Tse, Shek Kam; Ip, Olivia King Ming; Tan, Wei Xiong; Ko, Hwa-Wei

    2012-01-01

    An overview is presented of a three-year project aimed at helping Chinese language teachers in Taiwan refine ways that Chinese, an ideographic language that differs markedly from alphabetic English, is taught in primary schools. Guided by university staff in Taiwan, Hong Kong University and a Taiwanese non-government social enterprise, 20…

  1. "Teaching Is a Lot More than Just Showing up to Class and Grading Assignments": Preparing Middle-Level Teachers for Longevity in the Profession

    ERIC Educational Resources Information Center

    Van Overschelde, James P.; Saunders, Jane M.; Ash, Gwynne Ellen

    2017-01-01

    The university's teacher preparation program has implemented and continually refined a professional development school program, with extended university-school relationships in its middle-level certification program. This program offers dialogue, targeted learning activities, and intensive field-based experiences to help ease preservice teachers…

  2. Effective Online Lectures: Improving Practice through Design and Pedagogy

    ERIC Educational Resources Information Center

    Bese, Terry Lane

    2016-01-01

    The purpose of this research project was to improve the practice of using online lectures at a small private university. Using action research methodology, the researcher worked with a group of five university instructors to refine the use of online lectures through design and pedagogical practice. Beginning with a template or guide based on the…

  3. Disentangling the Predictive Validity of High School Grades for Academic Success in University

    ERIC Educational Resources Information Center

    Vulperhorst, Jonne; Lutz, Christel; de Kleijn, Renske; van Tartwijk, Jan

    2018-01-01

    To refine selective admission models, we investigate which measure of prior achievement has the best predictive validity for academic success in university. We compare the predictive validity of three core high school subjects to the predictive validity of high school grade point average (GPA) for academic achievement in a liberal arts university…

  4. Monthly petroleum-product price report. [January 1981 through June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    Data are reported on the prices of petroleum products for the period January 1981 through June 1982. The following products are included in the survey: gasoline, diesel fuels, No. 1 and No. 2 heating oils, No. 5 and No. 6 fuel oils, aviation fuels, kerosene, and liquified petroleum gases. Prices are also indexed according to ultimate consumer. This report provides Congress and the pubilc with information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Departmentmore » of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. The geographic coverage for this report is the 50 states and the District of Columbia. (DMC)« less

  5. Monthly petroleum product price report. [January 1981-March 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riner, C.

    1982-03-01

    Data are reported on the prices of petroleum products for the period January 1981 through March 1982. The following products are included in the survey: gasoline, diesel fuels, No. 1 and No. 2 heating oils, No. 5 and No. 6 fuel oils, aviation fuels, residual fuels, kerosene and liquefied petroleum gases. Prices are also indexed according to ultimate consumer. This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary formore » the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this pubication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. The geographic coverage for this report is the 50 states and the District of Columbia. (DMC)« less

  6. Monthly petroleum product price report. [January 1981-May 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-05-01

    Data are reported on the prices of petroleum products for the period January 1981 through May 1982. The following products are included in the survey: gasoline, diesel fuels, No. 1 and No. 2 heating oils, No. 5 and No. 6 fuel oils, aviation fuels, residual fuels, kerosene, and liquefied petroleum gases. Prices are also indexed according to ultimate consumer. This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary formore » the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. The geographic coverage for this report is the 50 states and the District of Columbia. (DMC)« less

  7. Host composition dependent tunable multicolor emission in the single-phase Ba2(Ln(1-z)Tb(z))(BO3)2Cl:Eu phosphors.

    PubMed

    Xia, Zhiguo; Zhuang, Jiaqing; Meijerink, Andries; Jing, Xiping

    2013-05-14

    A new strategy based on the host composition design has been adopted to obtain efficient color-tunable emission from Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu (Ln = Y, Gd and Lu, z = 0-0.97) phosphors. This study reveals that the single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl compounds can be applied to use allowed Eu(2+) absorption transitions to sensitize Eu(3+) emission via the energy transfer Eu(2+) → (Tb(3+))n → Eu(3+). The powder X-ray diffraction (XRD) and Rietveld refinement analysis shows single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl. As-prepared Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu phosphors show intense green, yellow, orange and red emission under 377 nm near ultraviolet (n-UV) excitation due to a variation in the relative intensities of the Eu(2+), Tb(3+) and Eu(3+) emission depending on the Tb content (z) in the host composition, allowing color tuning. The variation in emission color is explained by energy transfer and has been investigated by photoluminescence and lifetime measurements and is further characterized by the Commission Internationale de l'éclairage (CIE) chromaticity indexes. The quantum efficiencies of the phosphors are high, up to 74%, and show good thermal stabilities up to 150 °C. This investigation demonstrates the possibility to sensitize Eu(3+) line emission by Eu(2+)via energy migration over Tb(3+) resulting in efficient color tunable phosphors which are promising for use in solid-state white light-emitting diodes (w-LEDs).

  8. Cosmic-Ray Feedback Heating of the Intracluster Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S., E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: chris@astro.umd.edu

    2017-07-20

    Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We findmore » that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (i) CRs come into contact with the ambient ICM and efficiently heat it, (ii) streaming instability heating dominates over Coulomb and hadronic heating, (iii) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (iv) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.« less

  9. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies.

    PubMed

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-15

    Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8eV up to 10.6eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10eV and 10.6eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony D. Rollett; Hasso Weiland; Mohammed Alvi

    Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that willmore » provide a scientific basis for shortening processing times and consuming less energy during annealing.« less

  11. May 2003 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, R; Salari, K; Ortega, J

    2003-05-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on May 29-30, 2003. The purpose of the meeting was to present and discuss suggested guidance and direction for the design of drag reduction devices determined from experimental and computational studies. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Clarkson University,more » and PACCAR participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, provides some highlighted items, and outlines the future action items.« less

  12. Recovery Act - LADWP Smart Grid Regional Demonstration Program Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Sungly; Vohra, Surendra; Abdelshehid, Emil

    LADWP collaborated with its project partners to carry out this demonstration in the designated areas to include two university campuses – the University of California, Los Angeles (UCLA) and the University of Southern California (USC) – surrounding neighborhoods, City of Los Angeles facilities, and LADWP power system test labs. The last project partner, Jet Propulsion Laboratory (JPL) was responsible for the cyber security aspects of the project. The program’s use cases provided insightful information to understand triggers for customers, distributors, and generators to adapt their behavior which aid in reducing system demands and costs, increasing energy efficiency, and increasing gridmore » reliability.« less

  13. 10 CFR 209.31 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY OIL INTERNATIONAL VOLUNTARY AGREEMENTS Carrying Out of Voluntary Agreements and Developing... standards and procedures by which persons engaged in the business of producing, transporting, refining... International Energy Program. ...

  14. Petroleum marketing monthly, September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum product sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensuresmore » the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.« less

  15. Prospects for the U.S. energy and refining industries: Markets, profitability and key drivers for change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, B.F.

    The US refining industry has experienced an extended period of change covering the past 20 years. Growing regulatory requirements, combined with shifting market characteristics, have resulted in massive investments and significant and ongoing structural change. Despite excellent capacity utilization, recent profitability has been poor. Industry psychology can be described as depressed, with honest concern about the long-term attractiveness of domestic refining as an area for continued participation and investment. This paper provides an overview of how the industry arrived at these levels of poor profitability, examines the current situation and future drivers, and presents Chem Systems` views on the outlookmore » for domestic refining.« less

  16. Efficiency and biotechnological aspects of biogas production from microalgal substrates.

    PubMed

    Klassen, Viktor; Blifernez-Klassen, Olga; Wobbe, Lutz; Schlüter, Andreas; Kruse, Olaf; Mussgnug, Jan H

    2016-09-20

    Photosynthetic organisms like plants and algae can harvest, convert, and store solar energy and thus represent readily available sources for renewable biofuels production on a domestic or industrial scale. Anaerobic digestion (AD) of the organic biomass yields biogas, containing methane and carbon dioxide as major constituents. Combustion of the biogas or purification of the energy-rich methane fraction can be applied to provide electricity or fuel. AD procedures have been applied for several decades with organic waste, animal products, or higher plants and more recently, utilization of photosynthetic algae as substrates have gained considerable research interest. To provide an overview of recent research efforts made to characterize the AD process of microalgal biomass, we present extended summaries of experimentally determined biochemical methane potentials (BMP), biomass pretreatment options and digestion strategies in this article. We conclude that cultivation options, biomass composition and time of harvesting, application of biomass pretreatment strategies, and parameters of the digestion process are all important factors, which can significantly affect the AD process efficiency. The transition from batch to continuous microalgal biomass digestion trials, accompanied by state-of-the-art analytical techniques, is now in demand to refine the assessments of the overall process feasibility. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Electrorheology for energy production and conservation

    NASA Astrophysics Data System (ADS)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national security, we believe that our technology is important and will have a strong impact on energy production and conversation in the future.

  18. Paying for Itself

    ERIC Educational Resources Information Center

    Wilkinson, Ron

    2009-01-01

    Many schools and universities want the U.S. Green Building Council's LEED certification for their facilities, but they are concerned about cost. This certification is tangible evidence that a facility is designed to conserve resources and use energy more efficiently. "Low-cost/no-cost" upgrades can be worked into a capital plan that provides a 3-…

  19. A Wireless Platform for Energy Efficient Building Control Retrofits

    DTIC Science & Technology

    2012-08-01

    University of Illinois at Urbana Champaign UTRC United Technologies Research Center VFD variable frequency drive WSN wireless sensor network ...demonstration area. .............................................................. 16 Table 4. Cost model for wireless sensor network ...buildings with MPC-based whole-building optimal control and (2) reduction in first costs achievable with a wireless sensor network (WSN)-based

  20. Extraction and Refinement Strategy for Detection of Autism in 18-Month-Olds: A Guarantee of Higher Sensitivity and Specificity in the Process of Mass Screening

    ERIC Educational Resources Information Center

    Honda, Hideo; Shimizu, Yasuo; Nitto, Yukari; Imai, Miho; Ozawa, Takeshi; Iwasa, Mitsuaki; Shiga, Keiko; Hira, Tomoko

    2009-01-01

    Background: For early detection of autism, it is difficult to maintain an efficient level of sensitivity and specificity based on observational data from a single screening. The Extraction and Refinement (E&R) Strategy utilizes a public children's health surveillance program to produce maximum efficacy in early detection of autism. In the…

  1. Hydrodynamic study of plasma amplifiers for soft-x-ray lasers: a transition in hydrodynamic behavior for plasma columns with widths ranging from 20 μm to 2 mm.

    PubMed

    Oliva, Eduardo; Zeitoun, Philippe; Velarde, Pedro; Fajardo, Marta; Cassou, Kevin; Ros, David; Sebban, Stephan; Portillo, David; le Pape, Sebastien

    2010-11-01

    Plasma-based seeded soft-x-ray lasers have the potential to generate high energy and highly coherent short pulse beams. Due to their high density, plasmas created by the interaction of an intense laser with a solid target should store the highest amount of energy density among all plasma amplifiers. Our previous numerical work with a two-dimensional (2D) adaptive mesh refinement hydrodynamic code demonstrated that careful tailoring of plasma shapes leads to a dramatic enhancement of both soft-x-ray laser output energy and pumping efficiency. Benchmarking of our 2D hydrodynamic code in previous experiments demonstrated a high level of confidence, allowing us to perform a full study with the aim of the way for 10-100 μJ seeded soft-x-ray lasers. In this paper, we describe in detail the mechanisms that drive the hydrodynamics of plasma columns. We observed transitions between narrow plasmas, where very strong bidimensional flow prevents them from storing energy, to large plasmas that store a high amount of energy. Millimeter-sized plasmas are outstanding amplifiers, but they have the limitation of transverse lasing. In this paper, we provide a preliminary solution to this problem.

  2. Applying Best Practices to Florida Local Government Retrofit Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlvaine, J.; Sutherland, K.

    In some communities, local government and non-profit entities have funds to purchase and renovate distressed, foreclosed homes for resale in the affordable housing market. Numerous opportunities to improve whole house energy efficiency are inherent in these comprehensive renovations. BA-PIRC worked together in a multi-year field study making recommendations in individual homes, meanwhile compiling improvement costs, projected energy savings, practical challenges, and labor force factors surrounding common energy-related renovation measures. The field study, Phase 1 of this research, resulted in a set of best practices appropriate to the current labor pool and market conditions in central Florida to achieve projected annualmore » energy savings of 15-30% and higher. This report describes Phase 2 of the work where researchers worked with a local government partner to implement and refine the 'current best practices.' A simulation study was conducted to characterize savings potential under three sets of conditions representing varying replacement needs for energy-related equipment and envelope components. The three scenarios apply readily to the general remodeling industry as for renovation of foreclosed homes for the affordable housing market. Our new local government partner, the City of Melbourne, implemented the best practices in a community-scale renovation program that included ten homes in 2012.« less

  3. Existing Whole-House Solutions Case Study: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In some communities, local government and non-profit entities have funds to purchase and renovate distressed, foreclosed homes for resale in the affordable housing market. Numerous opportunities to improve whole house energy efficiency are inherent in these comprehensive renovations. BA-PIRC worked together in a multiyear field study making recommendations in individual homes, meanwhile compiling improvement costs, projected energy savings, practical challenges, and labor force factors surrounding common energy-related renovation measures. The field study, Phase 1 of this research, resulted in a set of best practices appropriate to the current labor pool and market conditions in central Florida to achieve projected annualmore » energy savings of 15%-30% and higher. This case study describes Phase 2 of the work where researchers worked with a local government partner to implement and refine the "current best practices". A simulation study was conducted to characterize savings potential under three sets of conditions representing varying replacement needs for energy-related equipment and envelope components. The three scenarios apply readily to the general remodeling industry as for renovation of foreclosed homes for the affordable housing market. The new local government partner, the City of Melbourne, implemented the best practices in a community-scale renovation program that included ten homes in 2012.« less

  4. Applying Best Practices to Florida Local Government Retrofit Programs, Central Florida (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    In some communities, local government and non-profit entities have funds to purchase and renovate distressed, foreclosed homes for resale in the affordable housing market. Numerous opportunities to improve whole house energy efficiency are inherent in these comprehensive renovations. BA-PIRC worked together in a multi-year field study making recommendations in individual homes, meanwhile compiling improvement costs, projected energy savings, practical challenges, and labor force factors surrounding common energy-related renovation measures. The field study, Phase 1 of this research, resulted in a set of best practices appropriate to the current labor pool and market conditions in central Florida to achieve projected annualmore » energy savings of 15-30% and higher. This report describes Phase 2 of the work where researchers worked with a local government partner to implement and refine the "current best practices". A simulation study was conducted to characterize savings potential under three sets of conditions representing varying replacement needs for energy-related equipment and envelope components. The three scenarios apply readily to the general remodeling industry as for renovation of foreclosed homes for the affordable housing market. Our new local government partner, the City of Melbourne, implemented the best practices in a community-scale renovation program that included ten homes in 2012.« less

  5. Applying Best Practices to Florida Local Government Retrofit Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlvaine, J.; Sutherland, K.

    In some communities, local government and non-profit entities have funds to purchase and renovate distressed, foreclosed homes for resale in the affordable housing market. Numerous opportunities to improve whole house energy efficiency are inherent in these comprehensive renovations. BA-PIRC worked together in a multiyear field study making recommendations in individual homes, meanwhile compiling improvement costs, projected energy savings, practical challenges, and labor force factors surrounding common energy-related renovation measures. The field study, Phase 1 of this research, resulted in a set of best practices appropriate to the current labor pool and market conditions in central Florida to achieve projected annualmore » energy savings of 15%-30% and higher. This report describes Phase 2 of the work where researchers worked with a local government partner to implement and refine the "current best practices". A simulation study was conducted to characterize savings potential under three sets of conditions representing varying replacement needs for energy-related equipment and envelope components. The three scenarios apply readily to the general remodeling industry as for renovation of foreclosed homes for the affordable housing market. The new local government partner, the City of Melbourne, implemented the best practices in a community-scale renovation program that included ten homes in 2012.« less

  6. Matrix Algebra for GPU and Multicore Architectures (MAGMA) for Large Petascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, Jack J.; Tomov, Stanimire

    2014-03-24

    The goal of the MAGMA project is to create a new generation of linear algebra libraries that achieve the fastest possible time to an accurate solution on hybrid Multicore+GPU-based systems, using all the processing power that future high-end systems can make available within given energy constraints. Our efforts at the University of Tennessee achieved the goals set in all of the five areas identified in the proposal: 1. Communication optimal algorithms; 2. Autotuning for GPU and hybrid processors; 3. Scheduling and memory management techniques for heterogeneity and scale; 4. Fault tolerance and robustness for large scale systems; 5. Building energymore » efficiency into software foundations. The University of Tennessee’s main contributions, as proposed, were the research and software development of new algorithms for hybrid multi/many-core CPUs and GPUs, as related to two-sided factorizations and complete eigenproblem solvers, hybrid BLAS, and energy efficiency for dense, as well as sparse, operations. Furthermore, as proposed, we investigated and experimented with various techniques targeting the five main areas outlined.« less

  7. Synthesis, purification and bulk crystal growth of radiation detector materials using melt growth technique

    NASA Astrophysics Data System (ADS)

    Surabhi, Raja Rahul Reddy

    In the past decade, there has been new and increased usage of radiation-detection technologies for applications in homeland security, non-proliferation, and national defense. Most of these applications require a portable device with high gamma-ray energy resolution and detection efficiency, compact size, room-temperature operation, and low cost. Consequently, there is a renewed understanding of the material limitations for these technologies and a great demand to develop next-generation radiation-detection materials that can operate at room temperature. Mercuric iodide (HgI2), Lead iodide (PbI2), and CdZnTe (CZT) are the current leading candidates for radiation detector applications. This is because of their high atomic number and large band gap that makes them particularly well suited for fabrication of high resolution and high efficiency compact devices. PbI2 is a promising material for room temperature nuclear radiation detectors, characterized by its wide band gap (EG=2.32eV) and high-density (rho=6.2g/cm3). It has been reported that PbI2 crystal detectors are able to detect gamma-ray in the range of 1KeV-1MeV, with good energy resolution. However, PbI 2 detectors have not been studied in detail because of non-availability of high quality single crystals. This study presents the synthesis, purification, growth and characterization of PbI2 single crystals grown. In this research, solid-state synthesis technique has been utilized for obtaining PbI2 as a starting material. For the first time, a unique low-temperature purification technique has been developed to obtain high-purity starting material. The crystals were grown using 2-zone Bridgman-Stockbarger (B.S) technique wherein growth rate and temperature gradient at the solid-liquid interface were optimized. Single crystals of PbI2 were successfully grown in quartz glass ampoule under different growth conditions. Material purity was determined by measuring the elemental concentration using the Inductively coupled plasma-optical emission spectroscopy (ICP-OES). ICP-OES is utilized for estimating impurities present in the low-temperature purified material, zone refined material and melt grown PbI2 crystals. The zone-refined material contains no traceable amounts of impurities, whereas the low-temperature purified material and melt grown PbI2 crystals show very low concentration of K (potassium) and Na (sodium) impurities. Crystal characterization has been performed for determining optical properties by UV-VIS spectroscopy. The energy band gap (EG) is an important parameter for materials used for room temperature gamma-ray detector applications. The absorption peak at 530nm is a characteristic of PbI2 and corresponds to the onset of the transitions from the valence band to the exciton level. From this absorption spectrum the calculated indirect band gap of PbI 2 was 2.33+/-0.025 eV at room temperature. For measuring the electrical properties (Dielectric and I-V characteristics) of the crystal, Ag (silver) contacts are applied to both sides of the sample. Dielectric analysis on melt grown PbI2 showed that space charge polarization was dominant at lower frequencies but stabilizes at higher frequencies over different operating temperatures. On the other hand, dielectric analysis for zone-refined material space charge polarization was constant over the operating range resulting in fewer lattice defects. Therefore the low temperature purified material followed by zone-refined purification provides detector grade material with fewer lattice defects. The measured electrical resistivity for melt grown PbI2 and zone-refined material are 3.185 x 10 10 O-cm and 0.754 x 109 O-cm at room temperature along (001) plane respectively.

  8. Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Bogomolov, Sergiy; Frehse, Goran; Greitschus, Marius; Grosu, Radu; Pasareanu, Corina S.; Podelski, Andreas; Strump, Thomas

    2014-01-01

    Compositional verification techniques in the assume- guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

  9. Conflicting energy and environmental policies: The portsmouth oil refinery

    NASA Astrophysics Data System (ADS)

    Choi, Yearn Hong

    1984-03-01

    This case study presents the series of decision-making processes surrounding a current environmental issue—the Portsmouth oil refinery in Virginia. Crude oil must be refined before it can be used as fuel. Additionally, some oil must be desulfurized for use other than as gasoline. In 1977, the nation imported about one million barrels of oil a day. Although the US Department of Energy has emphasized the critical need for greater east coast refinery capability, the east coast is to supply only 25% of its refined oil needs. In the same year, the east coast met its demands for petroleum products from three sources: (a) refinery production, 22.7%, (b) product imports, 28.0%, and (c) products from the Gulf Coast, 49.3%.1 The energy program after the Arab oil embargo has an objective of encouraging the construction of oil refineries and petrochemical plants in the United States rather than abroad. The tariff is higher on imports of refined oil products than of crude oil, and new refineries are allowed to import a large proportion of their requirements tarifffree. The US federal government does not directly regulate the locations for oil refineries or methods of desulfurization. The oil import program, however, does influence decisions concerning location of desulfurization facilities and refineries, and air and water pollution standards affect methods of refining, besides making desulfurization necessary.

  10. Final Report to the National Energy Technology Laboratory on FY14- FY15 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittal, Vijay; Lampis, Anna Rosa

    The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such asmore » renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting approximately 30 principal investigators and some 70 graduate students and other researchers. Its researchers are multi-disciplinary, conducting research in three principal areas: power systems, power markets and policy, and transmission and distribution technologies. The research is collaborative; each project involves researchers typically at two universities working with industry advisors who have expressed interest in the project. Examples of topics for recent PSERC research projects include grid integration of renewables and energy storage, new tools for taking advantage of increased penetration of real-time system measurements, advanced system protection methods to maintain grid reliability, and risk and reliability assessment of increasingly complex cyber-enabled power systems. A PSERC’s objective is to proactively address the technical and policy challenges of U.S. electric power systems. To achieve this objective, PSERC works with CERTS to conduct technical research on advanced applications and investigate the design of fair and transparent electricity markets; these research topics align with CERTS research areas 1 and 2: Real-time Grid Reliability Management (Area 1), and Reliability and Markets (Area 2). The CERTS research areas overlap with the PSERC research stems: Power Systems, Power Markets, and Transmission and Distribution Technologies, as described on the PSERC website (see http://www.pserc.org/research/research_program.aspx). The performers were with Arizona State University (ASU), Cornell University (CU), University of California at Berkeley (UCB), and University of Illinois at Urbana-Champaign (UIUC). PSERC research activities in the area of reliability and markets focused on electric market and power policy analyses. The resulting studies suggest ways to frame best practices using organized markets for managing U.S. grid assets reliably and to identify highest priority areas for improvement. PSERC research activities in the area of advanced applications focused on mid- to long-term software research and development, with anticipated outcomes that move innovative ideas toward real-world application. Under the CERTS research area of Real-time Grid Reliability Management, PSERC has been focused on Advanced Applications Research and Development (AARD), a subgroup of activities that works to develop advanced applications and tools to more effectively operate the electricity delivery system, by enabling advanced analysis, visualization, monitoring and alarming, and decision support capabilities for grid operators.« less

  11. Voltage Controller Saves Energy, Prolongs Life of Motors

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In 1985, Power Efficiency Corporation of Las Vegas licensed NASA voltage controller technology from Marshall Space Flight Center. In the following years, Power Efficiency made patented improvements to the technology and marketed the resulting products throughout the world as the Performance Controller and the Power Efficiency energy-saving soft start. Soft start gradually introduces power to an electric motor, thus eliminating the harsh, violent mechanical stresses of having the device go from a dormant state to one of full activity; prevents it from running too hot; and increases the motor's lifetime. The product can pay for itself through the reduction in electricity consumed (according to Power Efficiency, within 3 years), depending on the duty cycle of the motor and the prevailing power rates. In many instances, the purchaser is eligible for special utility rebates for the environmental protection it provides. Common applications of Power Efficiency's soft start include mixers, grinders, granulators, conveyors, crushers, stamping presses, injection molders, elevators with MG sets, and escalators. The device has been retrofitted onto equipment at major department store chains, hotels, airports, universities, and for various manufacturers

  12. Selection of axial hydraulic turbines for low-head microhydropower plants

    NASA Astrophysics Data System (ADS)

    Šoukal, J.; Pochylý, F.; Varchola, M.; Parygin, A. G.; Volkov, A. V.; Khovanov, G. P.; Naumov, A. V.

    2015-12-01

    The creation of highly efficient hydroturbines for low-head microhydropower plants is considered. The use of uncontrolled (propeller) hydroturbines is a promising means of minimizing costs and the time for their recoupment. As an example, experimental results from Brno University of Technology are presented. The model axial hydraulic turbine produced by Czech specialists performs well. The rotor diameter of this turbine is 194 mm. In the design of the working rotor, ANSYS Fluent software is employed. Means of improving the efficiency of microhydropower plants by optimal selection of the turbine parameters in the early stages of design are outlined. The energy efficiency of the hydroturbine designed for use in a microhydropower plant may be assessed on the basis of the coefficient of energy utilization, which is a function of the total losses in all the pipeline elements and losses in the channel including the hydroturbine rotor. The limit on the coefficient of energy utilization in the pressure pipeline is the hydraulic analog of the Betz-Joukowsky limit, which is widely used in the design of wind generators. The proposed approach is experimentally verified at Moscow Power Engineering Institute. A model axial hydraulic turbine with four different rotors is designed for the research. The diameter of all four rotors is the same: 80 mm. The pipeline takes the form of a siphon. Working rotor R2, designed with parameter optimization, is characterized by the highest coefficient of energy utilization of the pressure pipeline and maximum efficiency. That confirms that the proposed approach is a promising means of maximizing the overall energy efficiency of the microhydropower plant.

  13. Calculation of the dielectric properties of semiconductors

    NASA Astrophysics Data System (ADS)

    Engel, G. E.; Farid, Behnam

    1992-12-01

    We report on numerical calculations of the dynamical dielectric function in silicon, using a continued-fraction expansion of the polarizability and a recently proposed representation of the inverse dielectric function in terms of plasmonlike excitations. A number of important technical refinements to further improve the computational efficiency of the method are introduced, making the ab initio calculation of the full energy dependence of the dielectric function comparable in cost to calculation of its static value. Physical results include the observation of previously unresolved features in the random-phase approximated dielectric function and its inverse within the framework of density-functional theory in the local-density approximation, which may be accessible to experiment. We discuss the dispersion of plasmon energies in silicon along the Λ and Δ directions and find improved agreement with experiment compared to earlier calculations. We also present quantitative evidence indicating the degree of violation of the Johnson f-sum rule for the dielectric function due to the nonlocality of the one-electron potential used in the underlying band-structure calculations.

  14. Tribocharging Lunar Soil for Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  15. Structural, electronic and vibrational properties of LaF3 according to density functional theory and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oreshonkov, A. S.; Roginskii, E. M.; Krylov, A. S.; Ershov, A. A.; Voronov, V. N.

    2018-06-01

    Crystal structure of LaF3 single crystal is refined in tysonite-type trigonal unit cell P c1 using density functional theory calculations and Raman spectroscopy. It is shown that trigonal structure with P c1 space group is more energy-efficient than hexagonal structure with space group P63 cm. Simulated Raman spectra obtained using LDA approximation is in much better agreement with experimental data than that obtained with PBE and PBEsol functionals of GGA. The calculated frequency value of silent mode B 2 in case of hexagonal structure P63 cm was found to be imaginary (unstable mode), thus the energy surface obtains negative curvature with respect to the corresponding normal coordinates of the mode which leads to instability of the hexagonal structure in harmonic approximation. The A 1g line at 214 cm‑1 in Raman spectra of LaF3 related to the translation of F2 ions along c axis can be connected with F2 ionic conductivity.

  16. Materials for Better Li-based Storage Systems for a "Green Energy Society"

    ScienceCinema

    Jean-Marie Tarascon

    2017-12-09

    Li-ion batteries are strongly considered for powering the upcoming generations of HEVs and PHEVs, but there are still the issues of safety and costs in terms of materials resources and abundances, synthesis, and recycling processes. Notions of materials having minimum footprint in nature, made via eco-efficient processes, must be integrated in our new research towards the next generation of sustainable and "greener" Li-ion batteries. In this July 13, 2009 talk sponsored by Berkeley Lab's Environental Energy Technologies Division, Jean-Marie Tarascon, a professor at the University of Picardie (Amiens), discuss Eco-efficient synthesis via hydrothermal/solvothermal processes using latent bases as well as structure directing templates or other bio-related approaches of LiFePO4 nanopowders.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikes, Karen; Blackburn, Julia; Grubbs, Tyler

    Despite a steady record of energy efficiency improvements in residential refrigerators and freezers over recent decades, these products still account for 4% of the site energy consumption for the average U.S. household. The Oak Ridge National Laboratory (ORNL) – along with partners Sandia National Laboratories (SNL) and the University of Maryland – are pursuing further efficiency improvements in this market sector by using a novel/prototype rotating heat exchanger (RHX) based on a Sandia Cooler technology as an evaporator in a residential refrigerator-freezer. The purpose of this study is to investigate the market potential of refrigerator-freezer products equipped with RHX evaporatorsmore » in the United States, including projections of maximum annual market share and unit shipments and maximum direct and indirect job creation.« less

  18. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    PubMed

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time.

  19. Lawrence Berkeley Laboratory/University of California lighting program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, S.

    1981-12-01

    The objective of the Lighting Program is to assist and work in concert with the lighting community (composed of manufacturers, designers, and users) to achieve a more efficient lighting economy. To implement its objectives, the Lighting Program has been divided into three major categories: technical engineering, buildings applications, and human impacts (impacts on health and vision). The technical program aims to undertake research and development projects that are both long-range and high-risk and which the lighting industry has little interest in pursuing on its own, but from which significant benefits could accrue to both the public and the industry. Themore » building applications program studies the effects that introducing daylighting in commercial buildings has on lighting and cooling electrical energy requirements as well as on peak demand. This program also examines optimization strategies for integrating energy-efficient design, lighting hardware, daylighting, and overall building energy requirements. The impacts program examines relationships between the user and the physical lighting environment, in particular how new energy-efficient technologies relate to human productivity and health. These efforts are interdisciplinary, involving engineering, optometry, and medicine. The program facilities are described and the personnel in the program is identified.« less

  20. The high energy astronomy observatories

    NASA Technical Reports Server (NTRS)

    Neighbors, A. K.; Doolittle, R. F.; Halpers, R. E.

    1977-01-01

    The forthcoming NASA project of orbiting High Energy Astronomy Observatories (HEAO's) designed to probe the universe by tracing celestial radiations and particles is outlined. Solutions to engineering problems concerning HEAO's which are integrated, yet built to function independently are discussed, including the onboard digital processor, mirror assembly and the thermal shield. The principle of maximal efficiency with minimal cost and the potential capability of the project to provide explanations to black holes, pulsars and gamma-ray bursts are also stressed. The first satellite is scheduled for launch in April 1977.

Top