Sample records for unknown crystal structure

  1. Searching the Cambridge Structural Database for polymorphs.

    PubMed

    van de Streek, Jacco; Motherwell, Sam

    2005-10-01

    In order to identify all pairs of polymorphs in the Cambridge Structural Database (CSD), a method was devised to automatically compare two crystal structures. The comparison is based on simulated powder diffraction patterns, but with special provisions to deal with differences in unit-cell volumes caused by temperature or pressure. Among the 325,000 crystal structures in the Cambridge Structural Database, 35,000 pairs of crystal structures of the same chemical compound were identified and compared. A total of 7300 pairs of polymorphs were identified, of which 154 previously were unknown.

  2. Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental 129Xe NMR Spectroscopy

    PubMed Central

    Selent, Marcin; Nyman, Jonas; Roukala, Juho; Ilczyszyn, Marek; Oilunkaniemi, Raija; Bygrave, Peter J.; Laitinen, Risto; Jokisaari, Jukka

    2017-01-01

    Abstract An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o‐ and m‐fluorophenol, whose previously unknown clathrate structures have been studied by 129Xe NMR spectroscopy. The high sensitivity of the 129Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures. PMID:28111848

  3. Correlation of Intermolecular Acyl Transfer Reactivity with Noncovalent Lattice Interactions in Molecular Crystals: Toward Prediction of Reactivity of Organic Molecules in the Solid State.

    PubMed

    Krishnaswamy, Shobhana; Shashidhar, Mysore S

    2018-04-06

    Intermolecular acyl transfer reactivity in several molecular crystals was studied, and the outcome of the reactivity was analyzed in the light of structural information obtained from the crystals of the reactants. Minor changes in the molecular structure resulted in significant variations in the noncovalent interactions and packing of molecules in the crystal lattice, which drastically affected the facility of the intermolecular acyl transfer reactivity in these crystals. Analysis of the reactivity vs crystal structure data revealed dependence of the reactivity on electrophile···nucleophile interactions and C-H···π interactions between the reacting molecules. The presence of these noncovalent interactions augmented the acyl transfer reactivity, while their absence hindered the reactivity of the molecules in the crystal. The validity of these correlations allows the prediction of intermolecular acyl transfer reactivity in crystals and co-crystals of unknown reactivity. This crystal structure-reactivity correlation parallels the molecular structure-reactivity correlation in solution-state reactions, widely accepted as organic functional group transformations, and sets the stage for the development of a similar approach for reactions in the solid state.

  4. Isothermal Crystallization Behavior of Cocoa Butter at 17 and 20 °C with and without Limonene.

    PubMed

    Rigolle, Annelien; Goderis, Bart; Van Den Abeele, Koen; Foubert, Imogen

    2016-05-04

    Differential scanning calorimetry and real-time X-ray diffraction using synchrotron radiation were used to elucidate isothermal cocoa butter crystallization at 17 and 20 °C in the absence and presence of different limonene concentrations. At 17 °C, a three-step crystallization process was visible for pure cocoa butter, whereby first an unknown structure with long spacings between a 2L and 3L structure was formed that rapidly transformed into the more stable α structure, which in turn was converted into more stable β' crystals. At 20 °C, an α-mediated β' crystallization was observed. The addition of limonene resulted in a reduction of the amount of unstable crystals and an acceleration of polymorphic transitions. At 17 °C, the crystallization process was accelerated due to the acceleration of the formation of more stable polymorphic forms, whereas there were insufficient α crystals for an α-mediated β' nucleation at 20 °C, resulting in a slower crystallization process.

  5. Crystal Structure of Cocosin, A Potential Food Allergen from Coconut (Cocos nucifera).

    PubMed

    Jin, Tengchuan; Wang, Cheng; Zhang, Caiying; Wang, Yang; Chen, Yu-Wei; Guo, Feng; Howard, Andrew; Cao, Min-Jie; Fu, Tong-Jen; McHugh, Tara H; Zhang, Yuzhu

    2017-08-30

    Coconut (Cocos nucifera) is an important palm tree. Coconut fruit is widely consumed. The most abundant storage protein in coconut fruit is cocosin (a likely food allergen), which belongs to the 11S globulin family. Cocosin was crystallized near a century ago, but its structure remains unknown. By optimizing crystallization conditions and cryoprotectant solutions, we were able to obtain cocosin crystals that diffracted to 1.85 Å. The cocosin gene was cloned from genomic DNA isolated from dry coconut tissue. The protein sequence deduced from the predicted cocosin coding sequence was used to guide model building and structure refinement. The structure of cocosin was determined for the first time, and it revealed a typical 11S globulin feature of a double layer doughnut-shaped hexamer.

  6. The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenqian; Zhu, Qiang; Hu, Chunhua Tony

    2017-01-18

    Glycine, the simplest amino acid, is also the most polymorphous. Herein, we report the structure determination of an unknown phase of glycine which was firstly reported by Pyne and Suryanarayanan in 2001. To date, the new phase has only been prepared at 208 K as nanocrystals within ice. Through computational crystal structure prediction and powder X-ray diffraction methods, we identified this elusive phase as glycine dihydrate (GDH), representing a first report on a hydrated glycine structure. The structure of GDH has important implications for the state of glycine in aqueous solution, and the mechanisms of glycine crystallization. GDH may alsomore » be the form of glycine that comes to Earth from extraterrestrial sources.« less

  7. Atomic structures of corkscrew-forming segments of SOD1 reveal varied oligomer conformations.

    PubMed

    Sangwan, Smriti; Sawaya, Michael R; Murray, Kevin A; Hughes, Michael P; Eisenberg, David S

    2018-02-17

    The aggregation cascade of disease-related amyloidogenic proteins, terminating in insoluble amyloid fibrils, involves intermediate oligomeric states. The structural and biochemical details of these oligomers have been largely unknown. Here we report crystal structures of variants of the cytotoxic oligomer-forming segment residues 28-38 of the ALS-linked protein, SOD1. The crystal structures reveal three different architectures: corkscrew oligomeric structure, nontwisting curved sheet structure and a steric zipper proto-filament structure. Our work highlights the polymorphism of the segment 28-38 of SOD1 and identifies the molecular features of amyloidogenic entities. © 2018 The Protein Society.

  8. Intermediate phases in some rare earth-ruthenium systems

    NASA Technical Reports Server (NTRS)

    Sharifrazi, P.; Raman, A.; Mohanty, R. C.

    1984-01-01

    The phase equilibria and crystal structures of intermediate phases were investigated in eight representative RE-Ru systems using powder X-ray diffraction and metallographic techniques. The Fe3C, Mn5C2 and Er5Ru3 structures occur in all but the Ce-Ru systems. Phases analogous to Er5Ru3 possess an unknown crystal structure similar to Er5Rh3(I). MgCu2 and MgZn2 type Laves phases are encountered in the light rare earth and heavy rare earth systems, respectively, and RERu2 phases, where RE = Nd and Sm, possess both the Laves phase structures. An intermediate phase, NdRu, with an unknown structure, occurs only in the Nd-Ru system. A bcc structure with 40 atoms per unit cell is encountered in the phases Er3Ru2 and Y3Ru2. The behavior of cerium in Ce-Ru alloys is unique in that four unidentified structures, not encountered in other RE-Ru systems, have been encountered. Also a phase designated as Ce3Ru is found with the Th7Fe3 type structure.

  9. The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space.

    PubMed

    Xu, Wenqian; Zhu, Qiang; Hu, Chunhua Tony

    2017-02-13

    Glycine, the simplest amino acid, is also the most polymorphous. Herein, we report the structure determination of a long unknown phase of glycine, which was first reported by Pyne and Suryanarayanan in 2001. To date, this phase has only been prepared at 208 K as nanocrystals within ice. Through computational crystal-structure prediction and powder X-ray diffraction methods, we identified this elusive phase as glycine dihydrate (GDH), representing the first report on the structure of a hydrated glycine structure. The structure of GDH has important implications for the state of glycine in aqueous solution and the mechanisms of glycine crystallization. GDH may also be the form of glycine that comes to Earth from extraterrestrial sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Local Atomic Arrangements and Band Structure of Boron Carbide.

    PubMed

    Rasim, Karsten; Ramlau, Reiner; Leithe-Jasper, Andreas; Mori, Takao; Burkhardt, Ulrich; Borrmann, Horst; Schnelle, Walter; Carbogno, Christian; Scheffler, Matthias; Grin, Yuri

    2018-05-22

    Boron carbide, the simple chemical combination of boron and carbon, is one of the best-known binary ceramic materials. Despite that, a coherent description of its crystal structure and physical properties resembles one of the most challenging problems in materials science. By combining ab initio computational studies, precise crystal structure determination from diffraction experiments, and state-of-the-art high-resolution transmission electron microscopy imaging, this concerted investigation reveals hitherto unknown local structure modifications together with the known structural alterations. The mixture of different local atomic arrangements within the real crystal structure reduces the electron deficiency of the pristine structure CBC+B 12 , answering the question about electron precise character of boron carbide and introducing new electronic states within the band gap, which allow a better understanding of physical properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Crystal structure of Bacillus subtilis YabJ, a purine regulatory protein and member of the highly conserved YjgF family

    PubMed Central

    Sinha, Sangita; Rappu, Pekka; Lange, S. C.; Mäntsälä, Pekka; Zalkin, Howard; Smith, Janet L.

    1999-01-01

    The yabJ gene in Bacillus subtilis is required for adenine-mediated repression of purine biosynthetic genes in vivo and codes for an acid-soluble, 14-kDa protein. The molecular mechanism of YabJ is unknown. YabJ is a member of a large, widely distributed family of proteins of unknown biochemical function. The 1.7-Å crystal structure of YabJ reveals a trimeric organization with extensive buried hydrophobic surface and an internal water-filled cavity. The most important finding in the structure is a deep, narrow cleft between subunits lined with nine side chains that are invariant among the 25 most similar homologs. This conserved site is proposed to be a binding or catalytic site for a ligand or substrate that is common to YabJ and other members of the YER057c/YjgF/UK114 family of proteins. PMID:10557275

  12. Very unusual "needle- and pencil-like" uric acid crystals in the urine unmasked by infrared spectroscopy investigation.

    PubMed

    Baroni, S; Garigali, G; Primiano, A; Gervasoni, J; Fogazzi, G B

    2018-04-01

    In this paper we describe a case with very unusual "needle- and pencil-like" crystals, partly similar to those reported by other investigators, who considered them as due to uric acid. Quite importantly, infrared spectroscopy investigation which, to our knowledge, we have been the first to perform on this type of crystals, confirmed their nature as uric acid structures. This case demonstrates that the planet of urinary crystals still has several unknown facets and still deserves exploration. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    PubMed Central

    Shi, Dong; Qin, Xiang; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, Huanli; Xu, Wei; Li, Tao; Hu, Wenping; Brédas, Jean-Luc; Bakr, Osman M.

    2016-01-01

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells. PMID:27152342

  14. Novel Crystal Structure C60 Nanowire

    NASA Astrophysics Data System (ADS)

    Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex

    2003-03-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiang; Zhang, Shuai; Jiao, Fang

    Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct vs two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-stepmore » pathway that begins with creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for design of self-assembling polymer systems.« less

  16. Device for calorimetric measurement

    DOEpatents

    King, William P; Lee, Jungchul

    2015-01-13

    In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.

  17. Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire.

    PubMed

    Mezzadri, Francesco; Calestani, Gianluca; Boschi, Francesco; Delmonte, Davide; Bosi, Matteo; Fornari, Roberto

    2016-11-21

    The crystal structure and ferroelectric properties of ε-Ga 2 O 3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga 2 O 3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga 3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P6 3 mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga 2 O 3 [10-10] direction being parallel to the Al 2 O 3 direction [11-20], yielding a lattice mismatch of about 4.1%.

  18. Crystal structure of yeast allantoicase reveals a repeated jelly roll motif.

    PubMed

    Leulliot, Nicolas; Quevillon-Cheruel, Sophie; Sorel, Isabelle; Graille, Marc; Meyer, Philippe; Liger, Dominique; Blondeau, Karine; Janin, Joël; van Tilbeurgh, Herman

    2004-05-28

    Allantoicase (EC 3.5.3.4) catalyzes the conversion of allantoate into ureidoglycolate and urea, one of the final steps in the degradation of purines to urea. The mechanism of most enzymes involved in this pathway, which has been known for a long time, is unknown. In this paper we describe the three-dimensional crystal structure of the yeast allantoicase determined at a resolution of 2.6 A by single anomalous diffraction. This constitutes the first structure for an enzyme of this pathway. The structure reveals a repeated jelly roll beta-sheet motif, also present in proteins of unrelated biochemical function. Allantoicase has a hexameric arrangement in the crystal (dimer of trimers). Analysis of the protein sequence against the structural data reveals the presence of two totally conserved surface patches, one on each jelly roll motif. The hexameric packing concentrates these patches into conserved pockets that probably constitute the active site.

  19. A perspective on the structural studies of inner membrane electrochemical potential-driven transporters.

    PubMed

    Lemieux, M Joanne

    2008-09-01

    Electrochemical potential-driven transporters represent a vast array of proteins with varied substrate specificities. While diverse in size and substrate specificity, they are all driven by electrochemical potentials. Over the past five years there have been increasing numbers of X-ray structures reported for this family of transporters. Structural information is available for five subfamilies of electrochemical potential-driven transporters. No structural information exists for the remaining 91 subfamilies. In this review, the various subfamilies of electrochemical potential-driven transporters are discussed. The seven reported structures for the electrochemical potential-driven transporters and the methods for their crystallization are also presented. With a few exceptions, overall crystallization trends have been very similar for the transporters despite their differences in substrate specificity and topology. Also discussed is why the structural studies on these transporters were successful while others are not as fruitful. With the plethora of transporters with unknown structures, this review provides incentive for crystallization of transporters in the remaining subfamilies for which no structural information exists.

  20. Cauchy integral method for two-dimensional solidification interface shapes

    NASA Astrophysics Data System (ADS)

    Siegel, R.; Sosoka, D. J.

    1982-07-01

    A method is developed to determine the shape of steady state solidification interfaces formed when liquid above its freezing point circulates over a cold surface. The solidification interface, which is at uniform temperature, will form in a shape such that the non-uniform energy convected to it is locally balanced by conduction into the solid. The interface shape is of interest relative to the crystal structure formed during solidification; regulating the crystal structure has application in casting naturally strengthened metallic composites. The results also pertain to phase-change energy storage devices, where the solidified configuration and overall heat transfer are needed. The analysis uses a conformal mapping technique to relate the desired interface coordinates to the components of the temperature gradient at the interface. These components are unknown because the interface shape is unknown. A Cauchy integral formulation provides a second relation involving the components, and a simultaneous solution yields the interface shape.

  1. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  2. Crystal structure of the YDR533c S. cerevisiae protein, a class II member of the Hsp31 family.

    PubMed

    Graille, Marc; Quevillon-Cheruel, Sophie; Leulliot, Nicolas; Zhou, Cong-Zhao; Li de la Sierra Gallay, Ines; Jacquamet, Lilian; Ferrer, Jean-Luc; Liger, Dominique; Poupon, Anne; Janin, Joel; van Tilbeurgh, Herman

    2004-05-01

    The ORF YDR533c from Saccharomyces cerevisiae codes for a 25.5 kDa protein of unknown biochemical function. Transcriptome analysis of yeast has shown that this gene is activated in response to various stress conditions together with proteins belonging to the heat shock family. In order to clarify its biochemical function, we determined the crystal structure of YDR533c to 1.85 A resolution by the single anomalous diffraction method. The protein possesses an alpha/beta hydrolase fold and a putative Cys-His-Glu catalytic triad common to a large enzyme family containing proteases, amidotransferases, lipases, and esterases. The protein has strong structural resemblance with the E. coli Hsp31 protein and the intracellular protease I from Pyrococcus horikoshii, which are considered class I and class III members of the Hsp31 family, respectively. Detailed structural analysis strongly suggests that the YDR533c protein crystal structure is the first one of a class II member of the Hsp31 family.

  3. Role of local assembly in the hierarchical crystallization of associating colloidal hard hemispheres

    NASA Astrophysics Data System (ADS)

    Lei, Qun-li; Hadinoto, Kunn; Ni, Ran

    2017-10-01

    Hierarchical self-assembly consisting of local associations of simple building blocks for the formation of complex structures widely exists in nature, while the essential role of local assembly remains unknown. In this work, by using computer simulations, we study a simple model system consisting of associating colloidal hemispheres crystallizing into face-centered-cubic crystals comprised of spherical dimers of hemispheres, focusing on the effect of dimer formation on the hierarchical crystallization. We found that besides assisting the crystal nucleation because of increasing the symmetry of building blocks, the association between hemispheres can also induce both reentrant melting and reentrant crystallization depending on the range of interaction. Especially when the interaction is highly sticky, we observe a novel reentrant crystallization of identical crystals, which melt only in a certain temperature range. This offers another axis in fabricating responsive crystalline materials by tuning the fluctuation of local association.

  4. An overview of heavy-atom derivatization of protein crystals

    PubMed Central

    Pike, Ashley C. W.; Garman, Elspeth F.; Krojer, Tobias; von Delft, Frank; Carpenter, Elisabeth P.

    2016-01-01

    Heavy-atom derivatization is one of the oldest techniques for obtaining phase information for protein crystals and, although it is no longer the first choice, it remains a useful technique for obtaining phases for unknown structures and for low-resolution data sets. It is also valuable for confirming the chain trace in low-resolution electron-density maps. This overview provides a summary of the technique and is aimed at first-time users of the method. It includes guidelines on when to use it, which heavy atoms are most likely to work, how to prepare heavy-atom solutions, how to derivatize crystals and how to determine whether a crystal is in fact a derivative. PMID:26960118

  5. Purification, crystallization and preliminary X-ray analysis of uracil-DNA glycosylase from Sulfolobus tokodaii strain 7

    PubMed Central

    Kawai, Akito; Higuchi, Shigesada; Tsunoda, Masaru; Nakamura, Kazuo T.; Miyamoto, Shuichi

    2012-01-01

    Uracil-DNA glycosylase (UDG) specifically removes uracil from DNA by catalyzing hydrolysis of the N-glycosidic bond, thereby initiating the base-excision repair pathway. Although a number of UDG structures have been determined, the structure of archaeal UDG remains unknown. In this study, a deletion mutant of UDG isolated from Sulfolobus tokodaii strain 7 (stoUDGΔ) and stoUDGΔ complexed with uracil were crystallized and analyzed by X-ray crystallography. The crystals were found to belong to the orthorhombic space group P212121, with unit-cell parameters a = 52.2, b = 52.3, c = 74.7 Å and a = 52.1, b = 52.2, c = 74.1 Å for apo stoUDGΔ and stoUDGΔ complexed with uracil, respectively. PMID:22949205

  6. A crystal-chemical classification of borate structures with emphasis on hydrated borates

    USGS Publications Warehouse

    Christ, C.L.; Clark, J.R.

    1977-01-01

    The rules governing formation of hydrated borate polyanions that were proposed by C.L. Christ in 1960 are critically reviewed and new rules added on the basis of recent crystal structure determinations. Principles and classifications previously published by others are also critically reviewed briefly. The fundamental building blocks from which borate polyanions can be constructed are defined on the basis of the number n of boron atoms, and the fully hydrated polyanions are illustrated. Known structures are grouped accordingly, and a shorthand notation using n and symbols ?? = triangle, T = tetrahedron is introduced so that the polyanions can be easily characterized. For example, 3:??+2T describes [B3O3(OH)5]2-. Correct structural formulas are assigned borates with known structures whereas borates of unknown structure are grouped separately. ?? 1977 Springer-Verlag.

  7. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    PubMed

    De Yoreo, James J; Gilbert, Pupa U P A; Sommerdijk, Nico A J M; Penn, R Lee; Whitelam, Stephen; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D; Navrotsky, Alexandra; Banfield, Jillian F; Wallace, Adam F; Michel, F Marc; Meldrum, Fiona C; Cölfen, Helmut; Dove, Patricia M

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. Copyright © 2015, American Association for the Advancement of Science.

  8. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Yoreo, James J.; Gilbert, Pupa U.; Sommerdijk, Nico

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. These non-classical pathways to crystallization are diverse, in contrast to classical models that consider the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle attachment processes and show that multiple pathways result from the interplay of free energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects; particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemblemore » behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems and patterns of mineralization in natural environments.« less

  9. Structure of Lmaj006129AAA, a hypothetical protein from Leishmania major

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakaki, Tracy; Le Trong, Isolde; Structural Genomics of Pathogenic Protozoa

    2006-03-01

    The crystal structure of a conserved hypothetical protein from L. major, Pfam sequence family PF04543, structural genomics target ID Lmaj006129AAA, has been determined at a resolution of 1.6 Å. The gene product of structural genomics target Lmaj006129 from Leishmania major codes for a 164-residue protein of unknown function. When SeMet expression of the full-length gene product failed, several truncation variants were created with the aid of Ginzu, a domain-prediction method. 11 truncations were selected for expression, purification and crystallization based upon secondary-structure elements and disorder. The structure of one of these variants, Lmaj006129AAH, was solved by multiple-wavelength anomalous diffraction (MAD)more » using ELVES, an automatic protein crystal structure-determination system. This model was then successfully used as a molecular-replacement probe for the parent full-length target, Lmaj006129AAA. The final structure of Lmaj006129AAA was refined to an R value of 0.185 (R{sub free} = 0.229) at 1.60 Å resolution. Structure and sequence comparisons based on Lmaj006129AAA suggest that proteins belonging to Pfam sequence families PF04543 and PF01878 may share a common ligand-binding motif.« less

  10. The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity.

    PubMed

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T P; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-11-23

    Aldehyde oxidases have pharmacological relevance, and AOX3 is the major drug-metabolizing enzyme in rodents. The crystal structure of mouse AOX3 with kinetics and molecular docking studies provides insights into its enzymatic characteristics. Differences in substrate and inhibitor specificities can be rationalized by comparing the AOX3 and xanthine oxidase structures. The first aldehyde oxidase structure represents a major advance for drug design and mechanistic studies. Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.

  11. Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakata, M.; Aoyagi, S.; Ogura, T.

    2007-01-19

    Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kindmore » of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malet, Hélène; Dalle, Karen; Brémond, Nicolas

    The SARS-CoV macro domain was expressed, purified and crystallized. Selenomethionine-labelled crystals diffracted to 1.8 Å resolution. Macro domains or X domains are found as modules of multidomain proteins, but can also constitute a protein on their own. Recently, biochemical and structural studies of cellular macro domains have been performed, showing that they are active as ADP-ribose-1′′-phosphatases. Macro domains are also present in a number of positive-stranded RNA viruses, but their precise function in viral replication is still unknown. The major human pathogen severe acute respiratory syndrome coronavirus (SARS-CoV) encodes 16 non-structural proteins (nsps), one of which (nsp3) encompasses a macromore » domain. The SARS-CoV nsp3 gene region corresponding to amino acids 182–355 has been cloned, expressed in Escherichia coli, purified and crystallized. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 37.5, b = 55.6, c = 108.9 Å, β = 91.4°, and the asymmetric unit contains either two or three molecules. Both native and selenomethionine-labelled crystals diffract to 1.8 Å.« less

  13. Crystal structure of the protein At3g01520, a eukaryotic universal stress protein-like protein from Arabidopsis thaliana in complex with AMP.

    PubMed

    Kim, Do Jin; Bitto, Eduard; Bingman, Craig A; Kim, Hyun-Jung; Han, Byung Woo; Phillips, George N

    2015-07-01

    Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain-containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N-terminal portion of a multi-domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP-like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann-like α/β overall fold. The bound AMP and conservation of residues in the ATP-binding loop suggest that the protein At3g01520 also belongs to the ATP-binding USP subfamily members. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  14. Crystal structure of PAV1-137: a protein from the virus PAV1 that infects Pyrococcus abyssi.

    PubMed

    Leulliot, N; Quevillon-Cheruel, S; Graille, M; Geslin, C; Flament, D; Le Romancer, M; van Tilbeurgh, H

    2013-01-01

    Pyrococcus abyssi virus 1 (PAV1) was the first virus particle infecting a hyperthermophilic Euryarchaeota (Pyrococcus abyssi strain GE23) that has been isolated and characterized. It is lemon shaped and is decorated with a short fibered tail. PAV1 morphologically resembles the fusiform members of the family Fuselloviridae or the genus Salterprovirus. The 18 kb dsDNA genome of PAV1 contains 25 predicted genes, most of them of unknown function. To help assigning functions to these proteins, we have initiated structural studies of the PAV1 proteome. We determined the crystal structure of a putative protein of 137 residues (PAV1-137) at a resolution of 2.2 Å. The protein forms dimers both in solution and in the crystal. The fold of PAV1-137 is a four- α -helical bundle analogous to those found in some eukaryotic adhesion proteins such as focal adhesion kinase, suggesting that PAV1-137 is involved in protein-protein interactions.

  15. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  16. Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae.

    PubMed

    Zhang, Zhenyi; Li, Wenzhe; Frolet, Cecile; Bao, Rui; di Guilmi, Anne Marie; Vernet, Thierry; Chen, Yuxing

    2009-08-01

    Spr1274 is a putative choline-binding protein that is bound to the cell wall of Streptococcus pneumoniae through noncovalent interactions with the choline moieties of teichoic and lipoteichoic acids. Its function is still unknown. The crystal structure of the choline-binding domain of Spr1274 (residues 44-129) was solved at 2.38 A resolution with three molecules in the asymmetric unit. It may provide a structural basis for functional analysis of choline-binding proteins.

  17. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueser, Timothy C., E-mail: timothy.mueser@utoledo.edu; Griffith, Wendell P.; Kovalevsky, Andrey Y.

    2010-11-01

    X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-raymore » crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.« less

  18. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination.

    PubMed

    Avilov, A; Kuligin, K; Nicolopoulos, S; Nickolskiy, M; Boulahya, K; Portillo, J; Lepeshov, G; Sobolev, B; Collette, J P; Martin, N; Robins, A C; Fischione, P

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession "Spinning Star" system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF(2) as revealed for the first time by precise electron diffractometry.

  19. Matrix- and tensor-based recommender systems for the discovery of currently unknown inorganic compounds

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Hayashi, Hiroyuki; Kashima, Hisashi; Tanaka, Isao

    2018-01-01

    Chemically relevant compositions (CRCs) and atomic arrangements of inorganic compounds have been collected as inorganic crystal structure databases. Machine learning is a unique approach to search for currently unknown CRCs from vast candidates. Herein we propose matrix- and tensor-based recommender system approaches to predict currently unknown CRCs from database entries of CRCs. Firstly, the performance of the recommender system approaches to discover currently unknown CRCs is examined. A Tucker decomposition recommender system shows the best discovery rate of CRCs as the majority of the top 100 recommended ternary and quaternary compositions correspond to CRCs. Secondly, systematic density functional theory (DFT) calculations are performed to investigate the phase stability of the recommended compositions. The phase stability of the 27 compositions reveals that 23 currently unknown compounds are newly found to be stable. These results indicate that the recommender system has great potential to accelerate the discovery of new compounds.

  20. Determination of Other Related Carotenoids Substances in Astaxanthin Crystals Extracted from Adonis amurensis.

    PubMed

    Zhang, Li-hua; Peng, Yong-jian; Xu, Xin-de; Wang, Sheng-nan; Yu, Lei-ming; Hong, Yi-min; Ma, Jin-ping

    2015-01-01

    Astaxanthin is a kind of important carotenoids with powerful antioxidation capacity and other health functions. Extracting from Adonis amurensis is a promising way to obtain natural astaxanthin. However, how to ensure the high purity and to investigate related substances in astaxanthin crystals are necessary issues. In this study, to identify possible impurities, astaxanthin crystal was first extracted from Adonis amurensis, then purified by saponification and separation. The concentration of total carotenoids in purified astaxanthin crystals was as high as 97% by weight when analyzed by UV-visible absorption spectra. After identified with TLC, HPLC and MS, besides free astaxanthin as main ingredient in the crystals, there existed four other unknown related substances, which were further investigated by HPLC/ESI/MS with the positive ion mode combining with other auxiliary reference data obtained in stress tests, at last it was confirmed that four related carotenoids substances were three structural isomers of semi-astacene and adonirubin.

  1. On the correlation between hydrogen bonding and melting points in the inositols

    PubMed Central

    Bekö, Sándor L.; Alig, Edith; Schmidt, Martin U.; van de Streek, Jacco

    2014-01-01

    Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006 ▶). CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting. Several previously reported melting points were shown to be solid-to-solid phase transitions or decomposition points. Our experiments have revealed a complex picture of phases, rotator phases and phase transitions, in which a simple correlation between melting points and hydrogen-bonding patterns is not feasible. PMID:25075320

  2. Crystal structure of a cytochrome P450 2B6 genetic variant in complex with the inhibitor 4-(4-chlorophenyl)imidazole at 2.0-A resolution.

    PubMed

    Gay, Sean C; Shah, Manish B; Talakad, Jyothi C; Maekawa, Keiko; Roberts, Arthur G; Wilderman, P Ross; Sun, Ling; Yang, Jane Y; Huelga, Stephanie C; Hong, Wen-Xu; Zhang, Qinghai; Stout, C David; Halpert, James R

    2010-04-01

    The structure of the K262R genetic variant of human cytochrome P450 2B6 in complex with the inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) has been determined using X-ray crystallography to 2.0-A resolution. Production of diffraction quality crystals was enabled through a combination of protein engineering, chaperone coexpression, modifications to the purification protocol, and the use of unique facial amphiphiles during crystallization. The 2B6-4-CPI complex is virtually identical to the rabbit 2B4 structure bound to the same inhibitor with respect to the arrangement of secondary structural elements and the placement of active site residues. The structure supports prior P450 2B6 homology models based on other mammalian cytochromes P450 and is consistent with the limited site-directed mutagenesis studies on 2B6 and extensive studies on P450 2B4 and 2B1. Although the K262R genetic variant shows unaltered binding of 4-CPI, altered binding affinity, kinetics, and/or product profiles have been previously shown with several other ligands. On the basis of new P450 2B6 crystal structure and previous 2B4 structures, substitutions at residue 262 affect a hydrogen-bonding network connecting the G and H helices, where subtle differences could be transduced to the active site. Docking experiments indicate that the closed protein conformation allows smaller ligands such as ticlopidine to bind to the 2B6 active site in the expected orientation. However, it is unknown whether 2B6 undergoes structural reorganization to accommodate bulkier molecules, as previously inferred from multiple P450 2B4 crystal structures.

  3. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, R. Alexandra; Arbing, Mark A.; Shin, Annie

    The structure of Msmeg_6760, a protein of unknown function, has been determined. Biochemical and bioinformatics analyses determined that Msmeg_6760 interacts with a protein encoded in the same operon, Msmeg_6762, and predicted that the operon is a toxin–antitoxin (TA) system. Structural comparison of Msmeg_6760 with proteins of known function suggests that Msmeg_6760 binds a hydrophobic ligand in a buried cavity lined by large hydrophobic residues. Access to this cavity could be controlled by a gate–latch mechanism. The function of the Msmeg_6760 toxin is unknown, but structure-based predictions revealed that Msmeg_6760 and Msmeg_6762 are homologous to Rv2034 and Rv2035, a predicted novelmore » TA system involved inMycobacterium tuberculosislatency during macrophage infection. The Msmeg_6760 toxin fold has not been previously described for bacterial toxins and its unique structural features suggest that toxin activation is likely to be mediated by a novel mechanism.« less

  4. Crystal structure of the human glucose transporter GLUT1

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Xu, Chao; Sun, Pengcheng; Wu, Jianping; Yan, Chuangye; Hu, Mingxu; Yan, Nieng

    2014-06-01

    The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.

  5. Ab initio solution of macromolecular crystal structures without direct methods.

    PubMed

    McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J

    2017-04-04

    The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.

  6. 1.55 Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Bharat G.; Moates, Derek B.; Kim, Heung-Bok

    The 1.55 Å resolution X-ray crystal structure of Rv3902c from M. tuberculosis reveals a novel fold. The crystallographic structure of the Mycobacterium tuberculosis (TB) protein Rv3902c (176 residues; molecular mass of 19.8 kDa) was determined at 1.55 Å resolution. The function of Rv3902c is unknown, although several TB genes involved in bacterial pathogenesis are expressed from the operon containing the Rv3902c gene. The unique structural fold of Rv3902c contains two domains, each consisting of antiparallel β-sheets and α-helices, creating a hand-like binding motif with a small binding pocket in the palm. Structural homology searches reveal that Rv3902c has an overallmore » structure similar to that of the Salmonella virulence-factor chaperone InvB, with an r.m.s.d. for main-chain atoms of 2.3 Å along an aligned domain.« less

  7. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Israel S.; Ständker, Ludger; Hannover Medical School, Center of Pharmacology, 30625 Hannover

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer.more » In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.« less

  8. Crystal structural characterization reveals novel oligomeric interactions of human voltage-dependent anion channel 1.

    PubMed

    Hosaka, Toshiaki; Okazaki, Masateru; Kimura-Someya, Tomomi; Ishizuka-Katsura, Yoshiko; Ito, Kaori; Yokoyama, Shigeyuki; Dodo, Kosuke; Sodeoka, Mikiko; Shirouzu, Mikako

    2017-09-01

    Voltage-dependent anion channel 1 (VDAC1), which is located in the outer mitochondrial membrane, plays important roles in various cellular processes. For example, oligomerization of VDAC1 is involved in the release of cytochrome c to the cytoplasm, leading to apoptosis. However, it is unknown how VDAC1 oligomerization occurs in the membrane. In the present study, we determined high-resolution crystal structures of oligomeric human VDAC1 (hVDAC1) prepared by using an Escherichia coli cell-free protein synthesis system, which avoided the need for denaturation and refolding of the protein. Broad-range screening using a bicelle crystallization method produced crystals in space groups C222 and P22 1 2 1 , which diffracted to a resolution of 3.10 and 3.15 Å, respectively. Each crystal contained two hVDAC1 protomers in the asymmetric unit. Dimer within the asymmetrical unit of the crystal in space group C222 were oriented parallel, whereas those of the crystal in space group P22 1 2 1 were oriented anti-parallel. From a model of the crystal in space group C222, which we constructed by using crystal symmetry operators, a heptameric structure with eight patterns of interaction between protomers, including hydrophobic interactions with β-strands, hydrophilic interactions with loop regions, and protein-lipid interactions, was observed. It is possible that by having multiple patterns of interaction, VDAC1 can form homo- or hetero-oligomers not only with other VDAC1 protomers but also with other proteins such as VDAC2, VDAC3 and apoptosis-regulating proteins in the Bcl-2 family. © 2017 The Protein Society.

  9. Engineering calcium oxalate crystal formation in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  10. Structure of the toxic core of α-synuclein from invisible crystals

    DOE PAGES

    Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.; ...

    2015-09-09

    We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less

  11. Structure of N-acetyl-[beta]-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langley, David B.; Harty, Derek W.S.; Jacques, Nicholas A.

    2008-09-17

    The crystal structure of GcnA, an N-acetyl-{beta}-D-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal {alpha}-helical domain has not been observed previously and forms a large dimerization interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical ({beta}/{alpha}){sub 8} TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a familymore » 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-{beta}-D-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.« less

  12. Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved

    NASA Astrophysics Data System (ADS)

    Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.

    2017-07-01

    The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.

  13. Crystal structure of Bombyx mori arylphorins reveals a 3:3 heterohexamer with multiple papain cleavage sites

    PubMed Central

    Hou, Yong; Li, Jianwei; Li, Yi; Dong, Zhaoming; Xia, Qingyou; Yuan, Y Adam

    2014-01-01

    In holometabolous insects, the accumulation and utilization of storage proteins (SPs), including arylphorins and methionine-rich proteins, are critical for the insect metamorphosis. SPs function as amino acids reserves, which are synthesized in fat body, secreted into the larval hemolymph and taken up by fat body shortly before pupation. However, the detailed molecular mechanisms of digestion and utilization of SPs during development are largely unknown. Here, we report the crystal structure of Bombyx mori arylphorins at 2.8 Å, which displays a heterohexameric structural arrangement formed by trimerization of dimers comprising two structural similar arylphorins. Our limited proteolysis assay and microarray data strongly suggest that papain-like proteases are the major players for B. mori arylphorins digestion in vitro and in vivo. Consistent with the biochemical data, dozens of papain cleavage sites are mapped on the surface of the heterohexameric structure of B. mori arylphorins. Hence, our results provide the insightful information to understand the metamorphosis of holometabolous insects at molecular level. PMID:24639361

  14. Purification, crystallization and preliminary crystallographic analysis of Streptococcus pyogenes laminin-binding protein Lbp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, Christian, E-mail: clin180@ec.auckland.ac.nz; Caradoc-Davies, Tom T.; Australian Synchrotron, Clayton, Victoria 3168

    2008-02-01

    The S. pyogenes laminin-binding protein Lbp, which is essential for adhesion to human laminin, has been expressed, purified and crystallized. The laminin-binding protein Lbp (Spy2007) from Streptococcus pyogenes (a group A streptococcus) mediates adhesion to the human basal lamina glycoprotein laminin. Accordingly, Lbp is essential in in vitro models of cell adhesion and invasion. However, the molecular and structural basis of laminin binding by bacteria remains unknown. Therefore, the lbp gene has been cloned for recombinant expression in Escherichia coli. Lbp has been purified and crystallized from 30%(w/v) PEG 1500 by the sitting-drop vapour-diffusion method. The crystals belonged to themore » monoclinic space group P2{sub 1}, with unit-cell parameters a = 42.62, b = 92.16, c = 70.61 Å, β = 106.27°, and diffracted to 2.5 Å resolution.« less

  15. Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase

    PubMed Central

    Purohit, Rahul; Weichsel, Andrzej; Montfort, William R

    2013-01-01

    Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ∼150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme-Nitric Oxide Oxygen (H-NOX), Per-ARNT-Sim (PAS), coiled-coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H-NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction. PMID:23934793

  16. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE PAGES

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; ...

    2017-05-30

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  17. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    PubMed Central

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; Liu, Zhiyong; Wang, Xiangxiang; Dai, Xing; Liu, Shengtang; Zhang, Linjuan; Gao, Yang; Chen, Lanhua; Sheng, Daopeng; Wang, Yanlong; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism. PMID:28555656

  18. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  19. A semi-supervised learning approach for RNA secondary structure prediction.

    PubMed

    Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki

    2015-08-01

    RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE PAGES

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  1. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  2. Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyashenko, Andrey V.; Zhukhlistova, Nadegda E.; Gabdoulkhakov, Azat G.

    2006-10-01

    The crystallization and preliminary X-ray structure at 1.9 Å resolution of the fungal laccase from C. maxima are presented. Laccases are members of the blue multi-copper oxidase family that oxidize substrate molecules by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear centre. Dioxygen binds to the trinuclear centre and, following the transfer of four electrons, is reduced to two molecules of water. Crystals of the laccase from Cerrena maxima have been obtained and X-ray data were collected to 1.9 Å resolution using synchrotron radiation. A preliminary analysis shows that the enzyme has the typical laccasemore » structure and several carbohydrate sites have been identified. The carbohydrate chains appear to be involved in stabilization of the intermolecular contacts in the crystal structure, thus promoting the formation of well ordered crystals of the enzyme. Here, the results of an X-ray crystallographic study on the laccase from the fungus Cerrena maxima are reported. Crystals that diffract well to a resolution of at least 1.9 Å (R factor = 18.953%; R{sub free} = 23.835; r.m.s.d. bond lengths, 0.06 Å; r.m.s.d. bond angles, 1.07°) have been obtained despite the presence of glycan moieties. The overall spatial organization of C. maxima laccase and the structure of its copper-containing active centre have been determined by the molecular-replacement method using the laccase from Trametes versicolor (Piontek et al., 2002 ▶) as a structural template. In addition, four glycan-binding sites were identified and the 1.9 Å X-ray data were used to determine the previously unknown primary structure of this protein. The identity (calculated from sequence alignment) between the C. maxima laccase and the T. versicolor laccase is about 87%. Tyr196 and Tyr372 show significant extra density at the ortho positions and this has been interpreted in terms of NO{sub 2} substituents.« less

  3. Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre

    PubMed Central

    Guardado Calvo, Pablo; Llamas-Saiz, Antonio L.; Langlois, Patrick; van Raaij, Mark J.

    2006-01-01

    Avian adenovirus CELO contains two different fibres: fibre 1, the long fibre, and fibre 2, the short fibre. The short fibre is responsible for binding to an unknown avian receptor and is essential for infection of birds. The long fibre is not essential, but is known to bind the coxsackievirus and adenovirus receptor protein. Both trimeric fibres are attached to the same penton base, of which each icosahedral virus contains 12 copies. The short fibre extends straight outwards, while the long fibre emerges at an angle. The carboxy-terminal amino acids 579–793 of the avian adenovirus long fibre have been expressed with an amino-terminal hexahistidine tag and the expressed trimeric protein has been purified by nickel-affinity chromatography and crystallized. Crystals were grown at low pH using PEG 10 000 as precipitant and belonged to space group C2. The crystals diffracted rotating-anode Cu Kα radiation to at least 1.9 Å resolution and a complete data set was collected from a single crystal to 2.2 Å resolution. Unit-cell parameters were a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°, suggesting one trimer per asymmetric unit and a solvent content of 46%. The long fibre head does not have significant sequence homology to any other protein of known structure and molecular-replacement attempts with known fibre-head structures were unsuccessful. However, a map calculated using SIRAS phasing shows a clear trimer with a shape similar to known adenovirus fibre-head structures. Structure solution is in progress. PMID:16682773

  4. Crystallization and preliminary X-ray diffraction analysis of mouse galectin-4 N-terminal carbohydrate recognition domain in complex with lactose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krejčiříková, Veronika; Fábry, Milan; Marková, Vladimíra

    2008-07-01

    Mouse galectin-4 carbohydrate binding domain was overexpressed in E. coli and crystallized in the presence of lactose. The crystals belong to tetragonal space group P42{sub 1}2 and diffraction data were collected to 2.1 Å resolution. Galectin-4 is thought to play a role in the process of tumour conversion of cells of the alimentary tract and the breast tissue; however, its exact function remains unknown. With the aim of elucidating the structural basis of mouse galectin-4 (mGal-4) binding specificity, we have undertaken X-ray analysis of the N-terminal domain, CRD1, of mGal-4 in complex with lactose (the basic building block of knownmore » galectin-4 carbohydrate ligands). Crystals of CRD1 in complex with lactose were obtained using vapour-diffusion techniques. The crystals belong to tetragonal space group P42{sub 1}2 with unit-cell parameters a = 91.1, b = 91.16, c = 57.10 Å and preliminary X-ray diffraction data were collected to 3.2 Å resolution. An optimized crystallization procedure and cryocooling protocol allowed us to extend resolution to 2.1 Å. Structure refinement is currently under way; the initial electron-density maps clearly show non-protein electron density in the vicinity of the carbohydrate binding site, indicating the presence of one lactose molecule. The structure will help to improve understanding of the binding specificity and function of the potential colon cancer marker galectin-4.« less

  5. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Christopher W.; Chaney, Joseph; Korbel, Gregory

    2012-07-25

    UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketonemore » inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 {angstrom} resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1{prime} (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.« less

  6. An approach to crystallizing proteins by metal-mediated synthetic symmetrization

    PubMed Central

    Laganowsky, Arthur; Zhao, Minglei; Soriaga, Angela B; Sawaya, Michael R; Cascio, Duilio; Yeates, Todd O

    2011-01-01

    Combining the concepts of synthetic symmetrization with the approach of engineering metal-binding sites, we have developed a new crystallization methodology termed metal-mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose-binding protein (MBP) mutants and cocrystallized them with one of three metal ions: copper (Cu2+), nickel (Ni2+), or zinc (Zn2+). The approach resulted in 16 new crystal structures—eight for T4L and eight for MBP—displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization-prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest. PMID:21898649

  7. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domainmore » of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.« less

  8. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations

    PubMed Central

    Brodie, Nicholas I.; Popov, Konstantin I.; Petrotchenko, Evgeniy V.; Dokholyan, Nikolay V.; Borchers, Christoph H.

    2017-01-01

    We present an integrated experimental and computational approach for de novo protein structure determination in which short-distance cross-linking data are incorporated into rapid discrete molecular dynamics (DMD) simulations as constraints, reducing the conformational space and achieving the correct protein folding on practical time scales. We tested our approach on myoglobin and FK506 binding protein—models for α helix–rich and β sheet–rich proteins, respectively—and found that the lowest-energy structures obtained were in agreement with the crystal structure, hydrogen-deuterium exchange, surface modification, and long-distance cross-linking validation data. Our approach is readily applicable to other proteins with unknown structures. PMID:28695211

  9. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations.

    PubMed

    Brodie, Nicholas I; Popov, Konstantin I; Petrotchenko, Evgeniy V; Dokholyan, Nikolay V; Borchers, Christoph H

    2017-07-01

    We present an integrated experimental and computational approach for de novo protein structure determination in which short-distance cross-linking data are incorporated into rapid discrete molecular dynamics (DMD) simulations as constraints, reducing the conformational space and achieving the correct protein folding on practical time scales. We tested our approach on myoglobin and FK506 binding protein-models for α helix-rich and β sheet-rich proteins, respectively-and found that the lowest-energy structures obtained were in agreement with the crystal structure, hydrogen-deuterium exchange, surface modification, and long-distance cross-linking validation data. Our approach is readily applicable to other proteins with unknown structures.

  10. Crystal Structure of VC0702 at 2.0 angstrom: A Conserved Hypothetical Protein from Vibrio Cholerae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Shuisong; Forouhar, Farhad; Bussiere, Dirksen E.

    2006-06-01

    VC0702, a conserved hypothetical protein of unknown function from Vibrio cholerae, resides in a putative three-gene operon containing the MbaA gene, which is involved in regulating formation of the extracellular matrix of biofilms in Vibrio cholerae. The VC0702 crystal structure has been determined at 2.0? and refined to Rwork=22.8% and Rfree=26.3%. VC0702 crystallized in an orthorhombic crystal lattice in the C2221 space group with dimensions of a=66.61 ?, b=88.118 ?, and c=118.35 ? with a homodimer in the asymmetric unit. VC0702 belongs to the Pfam DUF84 and COG1986 family of proteins. Sequence conservation within the DUF84 and COG1986 families wasmore » used to identify a conserved patch of surface residues that define a cleft and potential substrate-binding site in VC0702. The three-dimensional structure of VC0702 is similar to that of Mj0226 from Methanococcus janeshii, which has been identified as a novel NTPase. The NTP-binding site in Mj0226 is similarly located in comparison to the conserved patch of surface residues in VC0702. Furthermore, the NTP binds to MJ0226 in a cleft and deep cavity, features that are present in the VC0702 structure as well, suggesting that VC0702 may have a biochemical function involving NTP binding that is associated with a cellular function of regulating biofilm formation in Vibrio cholerae.« less

  11. Crystal structure of the YGR205w protein from Saccharomyces cerevisiae: close structural resemblance to E. coli pantothenate kinase.

    PubMed

    Li de La Sierra-Gallay, Ines; Collinet, Bruno; Graille, Marc; Quevillon-Cheruel, Sophie; Liger, Dominique; Minard, Philippe; Blondeau, Karine; Henckes, Gilles; Aufrère, Robert; Leulliot, Nicolas; Zhou, Cong-Zhao; Sorel, Isabelle; Ferrer, Jean-Luc; Poupon, Anne; Janin, Joël; van Tilbeurgh, Herman

    2004-03-01

    The protein product of the YGR205w gene of Saccharomyces cerevisiae was targeted as part of our yeast structural genomics project. YGR205w codes for a small (290 amino acids) protein with unknown structure and function. The only recognizable sequence feature is the presence of a Walker A motif (P loop) indicating a possible nucleotide binding/converting function. We determined the three-dimensional crystal structure of Se-methionine substituted protein using multiple anomalous diffraction. The structure revealed a well known mononucleotide fold and strong resemblance to the structure of small metabolite phosphorylating enzymes such as pantothenate and phosphoribulo kinase. Biochemical experiments show that YGR205w binds specifically ATP and, less tightly, ADP. The structure also revealed the presence of two bound sulphate ions, occupying opposite niches in a canyon that corresponds to the active site of the protein. One sulphate is bound to the P-loop in a position that corresponds to the position of beta-phosphate in mononucleotide protein ATP complex, suggesting the protein is indeed a kinase. The nature of the phosphate accepting substrate remains to be determined. Copyright 2004 Wiley-Liss, Inc.

  12. SIMBAD : a sequence-independent molecular-replacement pipeline

    DOE PAGES

    Simpkin, Adam J.; Simkovic, Felix; Thomas, Jens M. H.; ...

    2018-06-08

    The conventional approach to finding structurally similar search models for use in molecular replacement (MR) is to use the sequence of the target to search against those of a set of known structures. Sequence similarity often correlates with structure similarity. Given sufficient similarity, a known structure correctly positioned in the target cell by the MR process can provide an approximation to the unknown phases of the target. An alternative approach to identifying homologous structures suitable for MR is to exploit the measured data directly, comparing the lattice parameters or the experimentally derived structure-factor amplitudes with those of known structures. Here,more » SIMBAD , a new sequence-independent MR pipeline which implements these approaches, is presented. SIMBAD can identify cases of contaminant crystallization and other mishaps such as mistaken identity (swapped crystallization trays), as well as solving unsequenced targets and providing a brute-force approach where sequence-dependent search-model identification may be nontrivial, for example because of conformational diversity among identifiable homologues. The program implements a three-step pipeline to efficiently identify a suitable search model in a database of known structures. The first step performs a lattice-parameter search against the entire Protein Data Bank (PDB), rapidly determining whether or not a homologue exists in the same crystal form. The second step is designed to screen the target data for the presence of a crystallized contaminant, a not uncommon occurrence in macromolecular crystallography. Solving structures with MR in such cases can remain problematic for many years, since the search models, which are assumed to be similar to the structure of interest, are not necessarily related to the structures that have actually crystallized. To cater for this eventuality, SIMBAD rapidly screens the data against a database of known contaminant structures. Where the first two steps fail to yield a solution, a final step in SIMBAD can be invoked to perform a brute-force search of a nonredundant PDB database provided by the MoRDa MR software. Through early-access usage of SIMBAD , this approach has solved novel cases that have otherwise proved difficult to solve.« less

  13. SIMBAD : a sequence-independent molecular-replacement pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpkin, Adam J.; Simkovic, Felix; Thomas, Jens M. H.

    The conventional approach to finding structurally similar search models for use in molecular replacement (MR) is to use the sequence of the target to search against those of a set of known structures. Sequence similarity often correlates with structure similarity. Given sufficient similarity, a known structure correctly positioned in the target cell by the MR process can provide an approximation to the unknown phases of the target. An alternative approach to identifying homologous structures suitable for MR is to exploit the measured data directly, comparing the lattice parameters or the experimentally derived structure-factor amplitudes with those of known structures. Here,more » SIMBAD , a new sequence-independent MR pipeline which implements these approaches, is presented. SIMBAD can identify cases of contaminant crystallization and other mishaps such as mistaken identity (swapped crystallization trays), as well as solving unsequenced targets and providing a brute-force approach where sequence-dependent search-model identification may be nontrivial, for example because of conformational diversity among identifiable homologues. The program implements a three-step pipeline to efficiently identify a suitable search model in a database of known structures. The first step performs a lattice-parameter search against the entire Protein Data Bank (PDB), rapidly determining whether or not a homologue exists in the same crystal form. The second step is designed to screen the target data for the presence of a crystallized contaminant, a not uncommon occurrence in macromolecular crystallography. Solving structures with MR in such cases can remain problematic for many years, since the search models, which are assumed to be similar to the structure of interest, are not necessarily related to the structures that have actually crystallized. To cater for this eventuality, SIMBAD rapidly screens the data against a database of known contaminant structures. Where the first two steps fail to yield a solution, a final step in SIMBAD can be invoked to perform a brute-force search of a nonredundant PDB database provided by the MoRDa MR software. Through early-access usage of SIMBAD , this approach has solved novel cases that have otherwise proved difficult to solve.« less

  14. The crystal structure of the Yersinia pestis iron chaperone YiuA reveals a basic triad binding motif for the chelated metal

    PubMed Central

    2017-01-01

    Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron–siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron–siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron–siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2–3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs. PMID:29095164

  15. The structure of the cyanobactin domain of unknown function from PatG in the patellamide gene cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Greg; Koehnke, Jesko; Bent, Andrew F.

    The highly conserved domain of unknown function in the cyanobactin superfamily has a novel fold. The protein does not appear to bind the most plausible substrates, leaving questions as to its role. Patellamides are members of the cyanobactin family of ribosomally synthesized and post-translationally modified cyclic peptide natural products, many of which, including some patellamides, are biologically active. A detailed mechanistic understanding of the biosynthetic pathway would enable the construction of a biotechnological ‘toolkit’ to make novel analogues of patellamides that are not found in nature. All but two of the protein domains involved in patellamide biosynthesis have been characterized.more » The two domains of unknown function (DUFs) are homologous to each other and are found at the C-termini of the multi-domain proteins PatA and PatG. The domain sequence is found in all cyanobactin-biosynthetic pathways characterized to date, implying a functional role in cyanobactin biosynthesis. Here, the crystal structure of the PatG DUF domain is reported and its binding interactions with plausible substrates are investigated.« less

  16. Investigations on the Crystal Structure and the Stability Field of FCAM-I (Ca3MgAl6Fe10O28), an Iso-structure to SFCA-I

    NASA Astrophysics Data System (ADS)

    Zöll, Klaus; Manninger, Tanja; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2017-08-01

    In a study on parts of the system Fe2O3-CaO-Al2O3-MgO, the previously unknown compound Ca3MgAl6Fe10O28 or FCAM-I (iso-structural with SFCA-I) has been synthesized. The two principal aims of our investigations have been (i) analysis of the stability field of the new phase as a function of T and fO2 and (ii) determination of its crystal structure. Two experimental series in air and under controlled oxygen fugacity via the hematite-magnetite buffer were conducted. Pure polycrystalline FCAM-I has been obtained at 1463.15 K (1190 °C) in air. While increasing the temperature from 1573.15 K to 1673.15 K (1300 °C to 1400 °C), the FCAM-I phase breaks down forming a variety of new compounds depending on T and fO2. Ca3MgAl6Fe10O28 has a triclinic crystal structure (space group P \\overline{1} ). Basic crystallographic data are as follows: a = 10.2980(4) Å, b = 10.4677(4) Å, c = 11.6399(4) Å, α = 94.363(3)°, β = 111.498(3)°, γ = 109.744(3)°, V = 1069.81(7) Å3, Z = 2.

  17. Structure and Properties of Sn2Se3, a mixed valent tin selenium compound

    NASA Astrophysics Data System (ADS)

    Xing, Guangzong; Li, Yuwei; Fan, Xiaofeng; Zhang, Lijun; Singh, David

    Sn2Se3 is a possibly expected phase based on analogy with Sn2S3 but it has never been reported. It is of interest due to reported phase change memories using this composition using transitions between an amorphous phase and an unknown crystalline phase. We identify the crystal structure Sn2Se3 and report its properties at ambient pressure based on the ab initio evolutionary methodology for crystal structure prediction implemented in the Calypso code. We find a structure based on Sn-Se ribbons with clear Sn(II)and Sn(IV)sites similar to the structure of Sn2S3. Compared with the known phase SnSe (Pnma) +SnSe2 (P-3m1), the energy is only 2.3meV/atom higher. The electronic structure of this phase shows mixed valent tins Sn2+ and Sn4+ in this compound. A small band gap of 0.023 eV is obtained from the band structure consistent with the small resistance reported by Kyung-Min Chung et al. Work at the University of Missouri is supported by DOE through the S3TEC EFRC.

  18. Crystal Structure of Garnet-Related Li-Ion Conductor Li7–3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification?

    PubMed Central

    2016-01-01

    Li-oxide garnets such as Li7La3Zr2O12 (LLZO) are among the most promising candidates for solid-state electrolytes to be used in next-generation Li-ion batteries. The garnet-structured cubic modification of LLZO, showing space group Ia-3d, has to be stabilized with supervalent cations. LLZO stabilized with Ga3+ shows superior properties compared to LLZO stabilized with similar cations; however, the reason for this behavior is still unknown. In this study, a comprehensive structural characterization of Ga-stabilized LLZO is performed by means of single-crystal X-ray diffraction. Coarse-grained samples with crystal sizes of several hundred micrometers are obtained by solid-state reaction. Single-crystal X-ray diffraction results show that Li7–3xGaxLa3Zr2O12 with x > 0.07 crystallizes in the acentric cubic space group I-43d. This is the first definite record of this cubic modification for LLZO materials and might explain the superior electrochemical performance of Ga-stabilized LLZO compared to its Al-stabilized counterpart. The phase transition seems to be caused by the site preference of Ga3+. 7Li NMR spectroscopy indicates an additional Li-ion diffusion process for LLZO with space group I-43d compared to space group Ia-3d. Despite all efforts undertaken to reveal structure–property relationships for this class of materials, this study highlights the potential for new discoveries. PMID:27019548

  19. X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa

    DOE PAGES

    Welner, Ditte Hededam; Tsai, Alex Yi-Lin; DeGiovanni, Andy M.; ...

    2017-03-29

    The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstratemore » DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.« less

  20. Structural and mutational analyses of dipeptidyl peptidase 11 from Porphyromonas gingivalis reveal the molecular basis for strict substrate specificity

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Yamada, Mitsugu; Ohta, Kazunori; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada

    2015-01-01

    The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double β-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms. PMID:26057589

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.

    We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less

  2. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  3. In situ observations of a high-pressure phase of H2O ice

    USGS Publications Warehouse

    Chou, I.-Ming; Blank, J.G.; Goncharov, A.F.; Mao, Ho-kwang; Hemley, R.J.

    1998-01-01

    A previously unknown solid phase of H2O has been identified by its peculiar growth patterns, distinct pressure-temperature melting relations, and vibrational Raman spectra. Morphologies of ice crystals and their pressure-temperature melting relations were directly observed in a hydrothermal diamond-anvil cell for H2O bulk densities between 1203 and 1257 kilograms per cubic meter at temperatures between -10??and 50??C. Under these conditions, four different ice forms were observed to melt: two stable phases, ice V and ice VI, and two metastable phases, ice IV and the new ice phase. The Raman spectra and crystal morphology are consistent with a disordered anisotropic structure with some similarities to ice VI.

  4. Ten Good Reasons for the Use of the Tellurium-Centered Anderson-Evans Polyoxotungstate in Protein Crystallography.

    PubMed

    Bijelic, Aleksandar; Rompel, Annette

    2017-06-20

    Protein crystallography represents at present the most productive and most widely used method to obtain structural information on target proteins and protein-ligand complexes within the atomic resolution range. The knowledge obtained in this way is essential for understanding the biology, chemistry, and biochemistry of proteins and their functions but also for the development of compounds of high pharmacological and medicinal interest. Here, we address the very central problem in protein crystallography: the unpredictability of the crystallization process. Obtaining protein crystals that diffract to high resolutions represents the essential step to perform any structural study by X-ray crystallography; however, this method still depends basically on trial and error making it a very time- and resource-consuming process. The use of additives is an established process to enable or improve the crystallization of proteins in order to obtain high quality crystals. Therefore, a more universal additive addressing a wider range of proteins is desirable as it would represent a huge advance in protein crystallography and at the same time drastically impact multiple research fields. This in turn could add an overall benefit for the entire society as it profits from the faster development of novel or improved drugs and from a deeper understanding of biological, biochemical, and pharmacological phenomena. With this aim in view, we have tested several compounds belonging to the emerging class of polyoxometalates (POMs) for their suitability as crystallization additives and revealed that the tellurium-centered Anderson-Evans polyoxotungstate [TeW 6 O 24 ] 6- (TEW) was the most suitable POM-archetype. After its first successful application as a crystallization additive, we repeatedly reported on TEW's positive effects on the crystallization behavior of proteins with a particular focus on the protein-TEW interactions. As electrostatic interactions are the main force for TEW binding to proteins, TEW with its highly negative charge addresses in principle all proteins possessing positively charged patches. Furthermore, due to its high structural and chemical diversity, TEW exhibits major advantages over some commonly used crystallization additives. Therefore, we summarized all features of TEW, which are beneficial for protein crystallization, and present ten good reasons to promote the use of TEW in protein crystallography as a powerful additive. Our results demonstrate that TEW is a compound that is, in many respects, predestined as a crystallization additive. We assume that many crystallographers and especially researchers, who are not experts in this field but willing to crystallize their structurally unknown target protein, could benefit from the use of TEW as it is able to promote both the crystallization process itself and the subsequent structure elucidation by providing valuable anomalous signals, which are helpful for the phasing step.

  5. Ten Good Reasons for the Use of the Tellurium-Centered Anderson–Evans Polyoxotungstate in Protein Crystallography

    PubMed Central

    2017-01-01

    Conspectus Protein crystallography represents at present the most productive and most widely used method to obtain structural information on target proteins and protein–ligand complexes within the atomic resolution range. The knowledge obtained in this way is essential for understanding the biology, chemistry, and biochemistry of proteins and their functions but also for the development of compounds of high pharmacological and medicinal interest. Here, we address the very central problem in protein crystallography: the unpredictability of the crystallization process. Obtaining protein crystals that diffract to high resolutions represents the essential step to perform any structural study by X-ray crystallography; however, this method still depends basically on trial and error making it a very time- and resource-consuming process. The use of additives is an established process to enable or improve the crystallization of proteins in order to obtain high quality crystals. Therefore, a more universal additive addressing a wider range of proteins is desirable as it would represent a huge advance in protein crystallography and at the same time drastically impact multiple research fields. This in turn could add an overall benefit for the entire society as it profits from the faster development of novel or improved drugs and from a deeper understanding of biological, biochemical, and pharmacological phenomena. With this aim in view, we have tested several compounds belonging to the emerging class of polyoxometalates (POMs) for their suitability as crystallization additives and revealed that the tellurium-centered Anderson–Evans polyoxotungstate [TeW6O24]6– (TEW) was the most suitable POM-archetype. After its first successful application as a crystallization additive, we repeatedly reported on TEW’s positive effects on the crystallization behavior of proteins with a particular focus on the protein–TEW interactions. As electrostatic interactions are the main force for TEW binding to proteins, TEW with its highly negative charge addresses in principle all proteins possessing positively charged patches. Furthermore, due to its high structural and chemical diversity, TEW exhibits major advantages over some commonly used crystallization additives. Therefore, we summarized all features of TEW, which are beneficial for protein crystallization, and present ten good reasons to promote the use of TEW in protein crystallography as a powerful additive. Our results demonstrate that TEW is a compound that is, in many respects, predestined as a crystallization additive. We assume that many crystallographers and especially researchers, who are not experts in this field but willing to crystallize their structurally unknown target protein, could benefit from the use of TEW as it is able to promote both the crystallization process itself and the subsequent structure elucidation by providing valuable anomalous signals, which are helpful for the phasing step. PMID:28562014

  6. The Structure and Composition Statistics of 6A Binary and Ternary Crystalline Materials.

    PubMed

    Hever, Alon; Oses, Corey; Curtarolo, Stefano; Levy, Ohad; Natan, Amir

    2018-01-16

    The fundamental principles underlying the arrangement of elements into solid compounds with an enormous variety of crystal structures are still largely unknown. This study presents a general overview of the structure types appearing in an important subset of the solid compounds, i.e., binary and ternary compounds of the 6A column oxides, sulfides and selenides. It contains an analysis of these compounds, including the prevalence of various structure types, their symmetry properties, compositions, stoichiometries and unit cell sizes. It is found that these compound families include preferred stoichiometries and structure types that may reflect both their specific chemistry and research bias in the available empirical data. Identification of nonoverlapping gaps and missing stoichiometries in these structure populations may be used as guidance in the search for new materials.

  7. Molybdenum Oxide Nitrides of the Mo2(O,N,□)5 Type: On the Way to Mo2O5.

    PubMed

    Weber, Dominik; Huber, Manop; Gorelik, Tatiana E; Abakumov, Artem M; Becker, Nils; Niehaus, Oliver; Schwickert, Christian; Culver, Sean P; Boysen, Hans; Senyshyn, Anatoliy; Pöttgen, Rainer; Dronskowski, Richard; Ressler, Thorsten; Kolb, Ute; Lerch, Martin

    2017-08-07

    Blue-colored molybdenum oxide nitrides of the Mo 2 (O,N,□) 5 type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting Mo V O 6 units. The new materials are stable up to ∼773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb 9 O 24.9 -type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo 2 O 5 . On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo 2 O 5 , backed by electronic-structure and phonon calculations from first principles, is given.

  8. Functional and Structural Characterization of Zebrafish ASC.

    PubMed

    Li, Yajuan; Huang, Yi; Cao, Xiaocong; Yin, Xueying; Jin, Xiangyu; Liu, Sheng; Jiang, Jiansheng; Jiang, Wei; Xiao, Tsan Sam; Zhou, Rongbin; Cai, Gang; Hu, Bing; Jin, Tengchuan

    2018-05-23

    The zebrafish genome encodes homologs for most of the proteins involved in inflammatory pathways; however, the molecular components and activation mechanisms of fish inflammasomes are largely unknown. ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)) is the only adaptor involved in the formation of multiple types of inflammasomes. Here, we demonstrate that zASC is also involved in inflammasome activation in zebrafish. When overexpressed in vitro and in vivo in zebrafish, both the zASC and zASC pyrin domain (PYD) proteins form speck and filament structures. Importantly, the crystal structures of the N-terminal PYD and C-terminal CARD of zebrafish ASC were determined independently as two separate entities fused to maltose-binding protein (MBP). Structure-guided mutagenesis revealed the functional relevance of the PYD hydrophilic surface found in the crystal lattice. Finally, the fish caspase-1 homolog Caspy, but not the caspase-4/11 homolog Caspy2, interacts with zASC through homotypic PYD-PYD interactions, which differ from those in mammals. These observations establish the conserved and unique structural/functional features of the zASC-dependent inflammasome pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Single crystal X-ray structure of the artists' pigment zinc yellow

    NASA Astrophysics Data System (ADS)

    Simonsen, Kim Pilkjær; Christiansen, Marie Bitsch; Vinum, Morten Gotthold; Sanyova, Jana; Bendix, Jesper

    2017-08-01

    The artists' pigment zinc yellow is in general described as a complex potassium zinc chromate with the empirical formula 4ZnCrO4·K2O·3H2O. Even though the pigment has been in use since the second half of the 19th century also in large-scale industrial applications, the exact structure had hitherto been unknown. In this work, zinc yellow was synthesised by precipitation from an aqueous solution of zinc nitrate and potassium chromate under both neutral and basic conditions, and the products were compared with the pigment used in industrial paints. Analyses by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and powder X-ray diffraction (PXRD), showed that the synthesised products and the industrial pigment were identical. Single-crystal X-ray crystallography determined the structure of zinc yellow as KZn2(CrO4)2(H2O)(OH) or as KZn2(CrO4)2(H3O2) emphasizing the μ-H3O2- moiety. Notably, the zinc yellow is isostructural to the recently structurally characterized cadmium analog and both belong to the natrochalcite structure type.

  10. Crystal structure of the Escherichia coli regulator of sigma70, Rsd, in complex with sigma70 domain 4.

    PubMed

    Patikoglou, Georgia A; Westblade, Lars F; Campbell, Elizabeth A; Lamour, Valérie; Lane, William J; Darst, Seth A

    2007-09-21

    The Escherichia coli Rsd protein binds tightly and specifically to the RNA polymerase (RNAP) sigma(70) factor. Rsd plays a role in alternative sigma factor-dependent transcription by biasing the competition between sigma(70) and alternative sigma factors for the available core RNAP. Here, we determined the 2.6 A-resolution X-ray crystal structure of Rsd bound to sigma(70) domain 4 (sigma(70)(4)), the primary determinant for Rsd binding within sigma(70). The structure reveals that Rsd binding interferes with the two primary functions of sigma(70)(4), core RNAP binding and promoter -35 element binding. Interestingly, the most highly conserved Rsd residues form a network of interactions through the middle of the Rsd structure that connect the sigma(70)(4)-binding surface with three cavities exposed on distant surfaces of Rsd, suggesting functional coupling between sigma(70)(4) binding and other binding surfaces of Rsd, either for other proteins or for as yet unknown small molecule effectors. These results provide a structural basis for understanding the role of Rsd, as well as its ortholog, AlgQ, a positive regulator of Pseudomonas aeruginosa virulence, in transcription regulation.

  11. Crystal structure of the Escherichia coli regulator of σ70, Rsd, in complex with σ70 domain 4

    PubMed Central

    Patikoglou, Georgia A.; Westblade, Lars F.; Campbell, Elizabeth A.; Lamour, Valérie; Lane, William J.; Darst, Seth A.

    2007-01-01

    Summary The Escherichia coli Rsd protein binds tightly and specifically to the RNA polymerase (RNAP) σ70 factor. Rsd plays a role in alternative σ factor-dependent transcription by biasing the competition between σ70 and alternative σ factors for the available core RNAP. Here, we determined the 2.6 Å-resolution X-ray crystal structure of Rsd bound to σ70 domain 4 (σ704), the primary determinant for Rsd binding within σ70. The structure reveals that Rsd binding interferes with the two primary functions of σ704, core RNAP binding and promoter –35 element binding. Interestingly, the most highly conserved Rsd residues form a network of interactions through the middle of the Rsd structure that connect the σ704-binding surface with three cavities exposed on distant surfaces of Rsd, suggesting functional coupling between σ704 binding and other binding surfaces of Rsd, either for other proteins or for as yet unknown small molecule effectors. These results provide a structural basis for understanding the role of Rsd, as well as its ortholog, AlgQ, a positive regulator of Pseudomonas aeruginosa virulence, in transcription regulation. PMID:17681541

  12. Crystallization of the Nonameric Small Terminase Subunit of Bacteriophage P22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A Roy; A Bhardwaj; G Cingolani

    2011-12-31

    The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometrymore » of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.« less

  13. Crystallization of the Nonameric Small Terminase Subunit of bacteriophage P22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A Roy; A Bhardwaj; G Cingoloni

    2011-12-31

    The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometrymore » of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.« less

  14. The three-dimensional structure of "Lonely Guy" from Claviceps purpurea provides insights into the phosphoribohydrolase function of Rossmann fold-containing lysine decarboxylase-like proteins.

    PubMed

    Dzurová, Lenka; Forneris, Federico; Savino, Simone; Galuszka, Petr; Vrabka, Josef; Frébort, Ivo

    2015-08-01

    The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function. © 2015 Wiley Periodicals, Inc.

  15. Crystal structure of an unknown tetra­hydro­furan solvate of tetra­kis­(μ 3-cyanato-κ3 N:N:N)tetra­kis­[(triphenyl­phosphane-κP)­silver(I)

    PubMed Central

    Frenzel, Peter; Schaarschmidt, Dieter; Jakob, Alexander; Lang, Heinrich

    2015-01-01

    In the title compound, [{[(C6H5)3P]Ag}4{NCO}4], a distorted Ag4N4-heterocubane core is set up by four AgI ions being coordinated by the N atoms of the cyanato anions in a μ 3-bridging mode. In addition, a tri­phenyl­phosphine ligand is datively bonded to each of the AgI ions. Intra­molecular Ag⋯Ag distances as short as 3.133 (9) Å suggest the presence of argentophilic (d 10⋯d 10) inter­actions. Five moderate-to-weak C—H⋯O hydrogen-bonding inter­actions are observed in the crystal structure, spanning a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as being part of disordered tetra­hydro­furan solvent mol­ecules. The given chemical formula and other crystal data do not take into account these solvent mol­ecules. PMID:26594421

  16. Crystallization and preliminary X-ray analysis of Der f 2, a potent allergen derived from the house dust mite (Dermatophagoides farinae)

    NASA Technical Reports Server (NTRS)

    Roeber, Dana; Achari, Aniruddha; Takai, Toshiro; Okumura, Yasushi; Scott, David L.

    2003-01-01

    Although a number of allergens have been identified and isolated, the underlying molecular basis for the potent immune response is poorly understood. House dust mites (Dermatophagoides sp.) are ubiquitous contributors to atopy in developed countries. The rhinitis, dermatitis and asthma associated with allergic reactions to these arthropods are frequently caused by relatively small (125-129 amino acids) mite proteins of unknown biological function. Der f 2, a major allergen from the mite D. farinae, has been recombinantly expressed, characterized and crystallized. The crystals belong to the tetragonal space group I4(1)22, with unit-cell parameters a = b = 95.2, c = 103.3 A. An essentially complete (97.2%) data set has been collected to 2.4 A at a synchrotron source. Attempts to solve the crystal structure of Der f 2 by molecular replacement using the NMR coordinates for either Der f 2 or Der p 2 (the homologous protein from D. pteronyssinus) failed, but preliminary searches using the crystalline Der p 2 atomic coordinates appear to be promising.

  17. Novel conduction behavior in nanopores coated with hydrophobic molecules

    NASA Astrophysics Data System (ADS)

    Balagurusamy, Venkat; Stolovitzky, Gustavo; Afzali-Ardakani, Ali

    2015-03-01

    We obtain (Bi0.7Pb0.3)Sr2Ca2Cu3O10 nano-crystals by sol-gel improved with acrylamide and microwaves, not reported in the literature. TGA gives an idea of the reaction temperatures (200-550 ° C) for the formation of binary, ternary and unknown materials. SEM and TEM shows morphology and crystal size 30-33 nm. We studied the thermodynamic and kinetic stability of the gel quenching, by varying the temperature and time according to a previous thermal analysis. Starting compounds (bismuth oxide, strontium carbonate, copper acetate, lead nitrate and calcium sulfate) were analyzed by XRD. By AFM we observed the dehydrated gel surface absorbed water from the environment. From the micrographs we measured the size of the fibers, grains and nano-crystals. We found at 560 ° C Bi1.6Pb0.4Sr2Ca2Cu3Ox compound with tetragonal crystal structure, corresponding to the 2:2:2:3 compound, with Tc 110 K. At 860 ° C seen a shift of some reflections corresponding to two phases. Xerogel magnetic measurement shows antiferromagnetic behavior at 63 K.

  18. Classification of crystal structure using a convolutional neural network

    PubMed Central

    Park, Woon Bae; Chung, Jiyong; Sohn, Keemin; Pyo, Myoungho

    2017-01-01

    A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds. PMID:28875035

  19. Classification of crystal structure using a convolutional neural network.

    PubMed

    Park, Woon Bae; Chung, Jiyong; Jung, Jaeyoung; Sohn, Keemin; Singh, Satendra Pal; Pyo, Myoungho; Shin, Namsoo; Sohn, Kee-Sun

    2017-07-01

    A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.

  20. 125Te NMR Probes of Tellurium Oxide Crystals: Shielding-Structure Correlations.

    PubMed

    Garaga, Mounesha N; Werner-Zwanziger, Ulrike; Zwanziger, Josef W

    2018-01-16

    The local environments around tellurium atoms in a series of tellurium oxide crystals were probed by 125 Te solid-state NMR spectroscopy. Crystals with distinct TeO n units (n from 3 to 6), including Na 2 TeO 3 , α-TeO 2 and γ-TeO 2 , Te 2 O(PO 4 ) 2 , K 3 LaTe 2 O 9 , BaZnTe 2 O 7 , and CsYTe 3 O 8 were studied. The latter four were synthesized through a solid-state process. X-ray diffraction was used to confirm the successful syntheses. The 125 Te chemical shift was found to exhibit a strong linear correlation with the Te coordination number. The 125 Te chemical-shift components (δ 11 , δ 22 , and δ 33 ) of the TeO 4 units were further correlated to the O-Te-O-bond angles. With the aid of 125 Te NMR, it is likely that these relations can be used to estimate the coordination states of Te atoms in unknown Te crystals and glasses.

  1. Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate

    NASA Astrophysics Data System (ADS)

    Zhou, Rulong; Qu, Bingyan; Dai, Jun; Zeng, Xiao Cheng

    2014-03-01

    Although CO2 and SiO2 both belong to group-IV oxides, they exhibit remarkably different bonding characteristics and phase behavior at ambient conditions. At room temperature, CO2 is a gas, whereas SiO2 is a covalent solid with rich polymorphs. A recent successful synthesis of the silicon-carbonate solid from the reaction between CO2 and SiO2 under high pressure [M. Santoro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 7689 (2011)] has resolved a long-standing puzzle regarding whether a SixC1-xO2 compound between CO2 and SiO2 exists in nature. Nevertheless, the detailed atomic structure of the SixC1-xO2 crystal is still unknown. Here, we report an extensive search for the high-pressure crystalline structures of the SixC1-xO2 compound with various stoichiometric ratios (SiO2:CO2) using an evolutionary algorithm. Based on the low-enthalpy structures obtained for each given stoichiometric ratio, several generic structural features and bonding characteristics of Si and C in the high-pressure phases are identified. The computed formation enthalpies show that the SiC2O6 compound with a multislab three-dimensional (3D) structure is energetically the most favorable at 20 GPa. Hence, a stable crystalline structure of the elusive SixC1-xO2 compound under high pressure is predicted and awaiting future experimental confirmation. The SiC2O6 crystal is an insulator with elastic constants comparable to typical hard solids, and it possesses nearly isotropic tensile strength as well as extremely low shear strength in the 2D plane, suggesting that the multislab 3D crystal is a promising solid lubricant. These valuable mechanical and electronic properties endow the SiC2O6 crystal for potential applications in tribology and nanoelectronic devices, or as a stable solid-state form for CO2 sequestration.

  2. Crystal structures of MW1337R and lin2004: Representatives of a novel protein family that adopt a four-helical bundle fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozbial, Piotr; Xu, Qingping; Chiu, Hsiu-Ju

    2009-08-28

    To extend the structural coverage of proteins with unknown functions, we targeted a novel protein family (Pfam accession number PF08807, DUF1798) for which we proposed and determined the structures of two representative members. The MW1337R gene of Staphylococcus aureus subsp. aureus Rosenbach (Wood 46) encodes a protein with a molecular weight of 13.8 kDa (residues 1-116) and a calculated isoelectric point of 5.15. The lin2004 gene of the nonspore-forming bacterium Listeria innocua Clip11262 encodes a protein with a molecular weight of 14.6 kDa (residues 1-121) and a calculated isoelectric point of 5.45. MW1337R and lin2004, as well as their homologs,more » which, so far, have been found only in Bacillus, Staphylococcus, Listeria, and related genera (Geobacillus, Exiguobacterium, and Oceanobacillus), have unknown functions and are annotated as hypothetical proteins. The genomic contexts of MW1337R and lin2004 are similar and conserved in related species. In prokaryotic genomes, most often, functionally interacting proteins are coded by genes, which are colocated in conserved operons. Proteins from the same operon as MW1337R and lin2004 either have unknown functions (i.e., belong to DUF1273, Pfam accession number PF06908) or are similar to ypsB from Bacillus subtilis. The function of ypsB is unclear, although it has a strong similarity to the N-terminal region of DivIVA, which was characterized as a bifunctional protein with distinct roles during vegetative growth and sporulation. In addition, members of the DUF1273 family display distant sequence similarity with the DprA/Smf protein, which acts downstream of the DNA uptake machinery, possibly in conjunction with RecA. The RecA activities in Bacillus subtilis are modulated by RecU Holliday-junction resolvase. In all analyzed cases, the gene coding for RecU is in the vicinity of MW1337R, lin2004, or their orthologs, but on a different operon located in the complementary DNA strand. Here, we report the crystal structures of MW1337R and lin2004, which were determined using the semiautomated, high-throughput pipeline of the Joint Center for Structural Genomics (JCSG), part of the National Institute of General Medical Sciences Protein Structure Initiative.« less

  3. Structure of the substrate-binding b′ domain of the Protein disulfide isomerase-like protein of the testis

    PubMed Central

    Bastos-Aristizabal, Sara; Kozlov, Guennadi; Gehring, Kalle

    2014-01-01

    Protein Disulfide Isomerase-Like protein of the Testis (PDILT) is a testis-specific member of the PDI family. PDILT displays similar domain architecture to PDIA1, the founding member of this protein family, but lacks catalytic cysteines needed for oxidoreduction reactions. This suggests special importance of chaperone activity of PDILT, but how it recognizes misfolded protein substrates is unknown. Here, we report the high-resolution crystal structure of the b′ domain of human PDILT. The structure reveals a conserved hydrophobic pocket, which is likely a principal substrate-binding site in PDILT. In the crystal, this pocket is occupied by side chains of tyrosine and tryptophan residues from another PDILT molecule, suggesting a preference for binding exposed aromatic residues in protein substrates. The lack of interaction of the b′ domain with the P-domains of calreticulin-3 and calmegin hints at a novel way of interaction between testis-specific lectin chaperones and PDILT. Further studies of this recently discovered PDI member would help to understand the important role that PDILT plays in the differentiation and maturation of spermatozoids. PMID:24662985

  4. The structure of the exopolyphsophatase (PPX) from Escherchia coli O157:H7 suggests a binding mode for long polyphosphate chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangarajan,E.; Nadeau, G.; Li, Y.

    2006-01-01

    Polyphosphate (polyP) is a linear polymer consisting of tens to hundreds of phosphate molecules joined together by high-energy anhydride bonds. These polymers are found in virtually all prokaryotic and eukaryotic cells and perform many functions; prominent among them are the responses to many stresses. Polyphosphate is synthesized by polyP kinase (PPK), using the terminal phosphate of ATP as the substrate, and degraded to inorganic phosphate by both endo- and exopolyphosphatases. Here we report the crystal structure and analysis of the polyphosphate phosphatase PPX from Escherichia coli O157:H7 refined at 2.2 Angstroms resolution. PPX is made of four domains. Domains Imore » and II display structural similarity with one another and share the ribonuclease-H-like fold. Domain III bears structural similarity to the N-terminal, HD domain of SpoT. Domain IV, the smallest domain, has structural counterparts in cold-shock associated RNA-binding proteins but is of unknown function in PPX. The putative PPX active site is located at the interface between domains I and II. In the crystal structure of PPX these two domains are close together and represent the 'closed' state. Comparison with the crystal structure of PPX/GPPA from Aquifex aeolicus reveals close structural similarity between domains I and II of the two enzymes, with the PPX/GPPA representing an 'open' state. A striking feature of the dimer is a deep S-shaped canyon extending along the dimer interface and lined with positively charged residues. The active site region opens to this canyon. We postulate that this is a likely site of polyP binding.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu; Loukas, Alex; Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Brisbane, QLD 4006

    In order to clarify the structural basis of the pathogenesis-related-1 domain, Na-ASP-1, the first multi-domain ASP from the human hookworm parasite N. americanus, has been crystallized. 2.2 Å resolution data have been collected from a crystal belonging to the monoclinic space group P2{sub 1}. Human hookworm infection is a major cause of anemia and malnutrition in the developing world. In an effort to control hookworm infection, the Human Hookworm Vaccine Initiative has identified candidate vaccine antigens from the infective larval stage (L3) of the parasite, including a family of pathogenesis-related-1 (PR-1) proteins known as the ancylostoma-secreted proteins (ASPs). The functionsmore » of the ASPs are unknown. In addition, it is unclear why some ASPs have one while others have multiple PR-1 domains. There are no known structures of a multi-domain ASP and in an effort to remedy this situation, recombinant Na-ASP-1 has been expressed, purified and crystallized. Na-ASP-1 is a 406-amino-acid multi-domain ASP from the prevalent human hookworm parasite Necator americanus. Useful X-ray data to 2.2 Å have been collected from a crystal that belongs to the monoclinic space group P2{sub 1} with unit-cell parameters a = 67.7, b = 74.27, c = 84.60 Å, β = 112.12°. An initial molecular-replacement solution has been obtained with one monomer in the asymmetric unit.« less

  6. Photonic crystal fiber-based plasmonic biosensor with external sensing approach

    NASA Astrophysics Data System (ADS)

    Rifat, Ahmmed A.; Hasan, Md. Rabiul; Ahmed, Rajib; Butt, Haider

    2018-01-01

    We propose a simple photonic crystal fiber (PCF) biosensor based on the surface plasmon resonance effect. The sensing properties are characterized using the finite element method. Chemically stable gold material is deposited on the outer surface of the PCF to realize the practical sensing approach. The performance of the modeled biosensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of structural parameters. In the sensing range of 1.33 to 1.37, maximum sensitivities of 4000 nm/RIU and 478 are achieved with the high sensor resolutions of 2.5×10-5 and 2.1×10-5 RIU using wavelength and amplitude interrogation methods, respectively. The designed biosensor will reduce fabrication complexity due to its simple and realistic hexagonal lattice structure. It is anticipated that the proposed biosensor may find possible applications for unknown biological and biochemical analyte detections with a high degree of accuracy.

  7. The crystal structure of a bacterial Sufu-like protein defines a novel group of bacterial proteins that are similar to the N-terminal domain of human Sufu

    PubMed Central

    Das, Debanu; Finn, Robert D; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Lam, Winnie W; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2010-01-01

    Sufu (Suppressor of Fused), a two-domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu-like proteins have previously been identified based on sequence similarity to the N-terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu-like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu-like protein. The structure revealed a striking similarity to the N-terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ∼15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu-like proteins that are present in ∼200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam. PMID:20836087

  8. FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein

    DOE PAGES

    Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; ...

    2015-05-01

    Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is amore » paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.« less

  9. Structural and functional characterization of the enantiomers of the antischistosomal drug oxamniquine

    DOE PAGES

    Taylor, Alexander B.; Pica-Mattoccia, Livia; Polcaro, Chiara M.; ...

    2015-10-20

    For over two decades, a racemic mixture of oxamniquine (OXA) was administered to patients infected by Schistosoma mansoni, but whether one or both enantiomers exert antischistosomal activity was unknown. Recently, a ~30 kDa S. mansoni sulfotransferase (SmSULT) was identified as the target of OXA action. Here, we separate the OXA enantiomers using chromatographic methods and assign their optical activities as dextrorotary [(+)-OXA] or levorotary [(-)-OXA]. Crystal structures of the parasite enzyme in complex with optically pure (+)-OXA and (-)-OXA) reveal their absolute configurations as S- and R-, respectively. When tested in vitro, S-OXA demonstrated the bulk of schistosomicidal activity, whilemore » R-OXA had antischistosomal effects when present at relatively high concentrations. Crystal structures R-OXA•SmSULT and S-OXA•SmSULT complexes reveal similarities in the modes of OXA binding, but only the S-OXA enantiomer is observed in the structure of the enzyme exposed to racemic OXA. Together the data suggest the higher schistosomicidal activity of S-OXA is correlated with its ability to outcompete R-OXA binding the sulfotransferase active site. In conclusion, these findings have important implications for the design, syntheses, and dosing of new OXA-based antischistosomal compounds.« less

  10. Structure of the N-terminal fragment of Escherichia coli Lon protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Gustchina, Alla; Rasulova, Fatima S.

    2010-10-22

    The structure of a recombinant construct consisting of residues 1-245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 {angstrom} resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very long C-terminal {alpha}-helix. The structure of the first subdomain (residues 1-117), which consists mostly of {beta}-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas themore » second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.« less

  11. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design.

    PubMed

    Ronin, Céline; Costa, David Mendes; Tavares, Joana; Faria, Joana; Ciesielski, Fabrice; Ciapetti, Paola; Smith, Terry K; MacDougall, Jane; Cordeiro-da-Silva, Anabela; Pemberton, Iain K

    2018-01-01

    The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation.

  12. Crenactin from Pyrobaculum calidifontis is closely related to actin in structure and forms steep helical filaments

    PubMed Central

    Izoré, Thierry; Duman, Ramona; Kureisaite-Ciziene, Danguole; Löwe, Jan

    2014-01-01

    Polymerising proteins of the actin family are nearly ubiquitous. Crenactins, restricted to Crenarchaea, are more closely related to actin than bacterial MreB. Crenactins occur in gene clusters hinting at an unknown, but conserved function. We solved the crystal structure of crenactin at 3.2 Å resolution. The protein crystallises as a continuous right-handed helix with 8 subunits per complete turn, spanning 419 Å. The structure of crenactin shows several loops that are longer than in actin, but overall, crenactin is closely related to eukaryotic actin, with an RMSD of 1.6 Å. Crenactin filaments imaged by electron microscopy showed polymers with very similar helical parameters. PMID:24486010

  13. Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase*

    PubMed Central

    Xie, Jin; Cai, Kun; Hu, Hai-Xi; Jiang, Yong-Liang; Yang, Feng; Hu, Peng-Fei; Cao, Dong-Dong; Li, Wei-Fang; Chen, Yuxing; Zhou, Cong-Zhao

    2016-01-01

    Invertases catalyze the hydrolysis of sucrose to glucose and fructose, thereby playing a key role in primary metabolism and plant development. According to the optimum pH, invertases are classified into acid invertases (Ac-Invs) and alkaline/neutral invertases (A/N-Invs), which share no sequence homology. Compared with Ac-Invs that have been extensively studied, the structure and catalytic mechanism of A/N-Invs remain unknown. Here we report the crystal structures of Anabaena alkaline invertase InvA, which was proposed to be the ancestor of modern plant A/N-Invs. These structures are the first in the GH100 family. InvA exists as a hexamer in both crystal and solution. Each subunit consists of an (α/α)6 barrel core structure in addition to an insertion of three helices. A couple of structures in complex with the substrate or products enabled us to assign the subsites −1 and +1 specifically binding glucose and fructose, respectively. Structural comparison combined with enzymatic assays indicated that Asp-188 and Glu-414 are putative catalytic residues. Further analysis of the substrate binding pocket demonstrated that InvA possesses a stringent substrate specificity toward the α1,2-glycosidic bond of sucrose. Together, we suggest that InvA and homologs represent a novel family of glucosidases. PMID:27777307

  14. Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase.

    PubMed

    Xie, Jin; Cai, Kun; Hu, Hai-Xi; Jiang, Yong-Liang; Yang, Feng; Hu, Peng-Fei; Cao, Dong-Dong; Li, Wei-Fang; Chen, Yuxing; Zhou, Cong-Zhao

    2016-12-02

    Invertases catalyze the hydrolysis of sucrose to glucose and fructose, thereby playing a key role in primary metabolism and plant development. According to the optimum pH, invertases are classified into acid invertases (Ac-Invs) and alkaline/neutral invertases (A/N-Invs), which share no sequence homology. Compared with Ac-Invs that have been extensively studied, the structure and catalytic mechanism of A/N-Invs remain unknown. Here we report the crystal structures of Anabaena alkaline invertase InvA, which was proposed to be the ancestor of modern plant A/N-Invs. These structures are the first in the GH100 family. InvA exists as a hexamer in both crystal and solution. Each subunit consists of an (α/α) 6 barrel core structure in addition to an insertion of three helices. A couple of structures in complex with the substrate or products enabled us to assign the subsites -1 and +1 specifically binding glucose and fructose, respectively. Structural comparison combined with enzymatic assays indicated that Asp-188 and Glu-414 are putative catalytic residues. Further analysis of the substrate binding pocket demonstrated that InvA possesses a stringent substrate specificity toward the α1,2-glycosidic bond of sucrose. Together, we suggest that InvA and homologs represent a novel family of glucosidases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    PubMed Central

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmaiah, Srinivasa; Tener, Zachary; Lamichhane, Tej N.

    Here, the γ-region of the Mn–Al phase diagram between 45 and 70 at.% Al was re-investigated by a combination of powder and single crystal X-ray diffraction as well as EDS analysis to establish the distribution of Mn and Al atoms. Single crystals of γ-Mn 5–x Al 8+x were grown using Sn-flux at 650 °C. The crystal structure, atomic coordinates and site occupancy parameters of γ-Mn 5–x Al 8+x phases were refined from single crystal X-ray data. The γ-Mn 5-x Al 8+x phase adopts the rhombohedral Cr 5Al 8-type structure rather than a cubic γ-brass structure. The refined compositions from twomore » crystals extracted from the Al-rich and Mn-rich sides are, respectively, Mn 4.76Al 8.24(2) (I) and Mn 6.32Al 6.68(2) (II). The structure was refined in the acentric R3m space group (No.160, Z=6), in order to compare with other reported rhombohedral γ-brasses. In addition, according to X-ray powder diffraction analysis, at the Al-rich side the γ-phase coexists with LT–Mn 4Al 11 and, at the Mn-rich side, with a hitherto unknown phase. The refined lattice parameters from powder patterns fall in the range a=12.6814(7)–12.6012(5) Å and c=7.9444(2)–7.9311(2) Å from Al-rich to Mn-rich loadings, and the corresponding rhombohedral angles distorted from a pseudo-cubic cell were found to be 89.1(1)°–88.9(1)°. Magnetic susceptibility and magnetization studies of Mn 4.92Al 8.08(2) are consistent with moment bearing Mn and suggest a spin glass state below 27 K. Tight-binding electronic structure calculations (LMTO-ASA with LSDA) showed that the calculated Fermi level for γ-“Mn 5Al 8” falls within a pseudogap of the density of states, a result which is in accordance with a Hume-Rothery stabilization mechanism γ-brass type phases.« less

  17. Structure of the bacteriophage T4 long tail fiber receptor-binding tip

    PubMed Central

    Bartual, Sergio G.; Otero, José M.; Garcia-Doval, Carmela; Llamas-Saiz, Antonio L.; Kahn, Richard; Fox, Gavin C.; van Raaij, Mark J.

    2010-01-01

    Bacteriophages are the most numerous organisms in the biosphere. In spite of their biological significance and the spectrum of potential applications, little high-resolution structural detail is available on their receptor-binding fibers. Here we present the crystal structure of the receptor-binding tip of the bacteriophage T4 long tail fiber, which is highly homologous to the tip of the bacteriophage lambda side tail fibers. This structure reveals an unusual elongated six-stranded antiparallel beta-strand needle domain containing seven iron ions coordinated by histidine residues arranged colinearly along the core of the biological unit. At the end of the tip, the three chains intertwine forming a broader head domain, which contains the putative receptor interaction site. The structure reveals a previously unknown beta-structured fibrous fold, provides insights into the remarkable stability of the fiber, and suggests a framework for mutations to expand or modulate receptor-binding specificity. PMID:21041684

  18. Crystallization and preliminary X-ray analysis of the complex of human α-thrombin with a modified thrombin-binding aptamer

    PubMed Central

    Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Mazzarella, Lelio; Sica, Filomena

    2010-01-01

    The thrombin-binding aptamer (TBA) is a consensus DNA 15-mer that binds specifically to human α-thrombin at nanomolar concentrations and inhibits its procoagulant functions. Recently, a modified TBA (mTBA) containing a 5′–5′ inversion-of-polarity site has been shown to be more stable and to possess a higher thrombin affinity than its unmodified counterpart. The structure of the thrombin–TBA complex has previously been determined at low resolution, but did not provide a detailed picture of the aptamer conformation or of the protein–DNA assembly, while that of the complex with mTBA is unknown. Crystallographic analysis of the thrombin–mTBA complex has been attempted. The crystals diffracted to 2.15 Å resolution and belonged to space group I222. PMID:20693681

  19. Structure of a Burkholderia pseudomallei Trimeric Autotransporter Adhesin Head

    PubMed Central

    Edwards, Thomas E.; Phan, Isabelle; Abendroth, Jan; Dieterich, Shellie H.; Masoudi, Amir; Guo, Wenjin; Hewitt, Stephen N.; Kelley, Angela; Leibly, David; Brittnacher, Mitch J.; Staker, Bart L.; Miller, Samuel I.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.

    2010-01-01

    Background Pathogenic bacteria adhere to the host cell surface using a family of outer membrane proteins called Trimeric Autotransporter Adhesins (TAAs). Although TAAs are highly divergent in sequence and domain structure, they are all conceptually comprised of a C-terminal membrane anchoring domain and an N-terminal passenger domain. Passenger domains consist of a secretion sequence, a head region that facilitates binding to the host cell surface, and a stalk region. Methodology/Principal Findings Pathogenic species of Burkholderia contain an overabundance of TAAs, some of which have been shown to elicit an immune response in the host. To understand the structural basis for host cell adhesion, we solved a 1.35 Å resolution crystal structure of a BpaA TAA head domain from Burkholderia pseudomallei, the pathogen that causes melioidosis. The structure reveals a novel fold of an intricately intertwined trimer. The BpaA head is composed of structural elements that have been observed in other TAA head structures as well as several elements of previously unknown structure predicted from low sequence homology between TAAs. These elements are typically up to 40 amino acids long and are not domains, but rather modular structural elements that may be duplicated or omitted through evolution, creating molecular diversity among TAAs. Conclusions/Significance The modular nature of BpaA, as demonstrated by its head domain crystal structure, and of TAAs in general provides insights into evolution of pathogen-host adhesion and may provide an avenue for diagnostics. PMID:20862217

  20. Liquid-liquid diffusion crystallization improves the X-ray diffraction of EndoS, an endo-β-N-acetylglucosaminidase from Streptococcus pyogenes with activity on human IgG.

    PubMed

    Trastoy, Beatriz; Lomino, Joseph V; Wang, Lai Xi; Sundberg, Eric J

    2013-12-01

    Endoglycosidase S (EndoS) is an enzyme secreted by Streptococcus pyogenes that specifically hydrolyzes the β-1,4-di-N-acetylchitobiose core glycan on immunoglobulin G (IgG) antibodies. One of the most common human pathogens and the cause of group A streptococcal infections, S. pyogenes secretes EndoS in order to evade the host immune system by rendering IgG effector mechanisms dysfunctional. On account of its specificity for IgG, EndoS has also been used extensively for chemoenzymatic synthesis of homogeneous IgG glycoprotein preparations and is being developed as a novel therapeutic for a wide range of autoimmune diseases. The structural basis of its enzymatic activity and substrate specificity, however, remains unknown. Here, the purification and crystallization of EndoS are reported. Using traditional hanging-drop and sitting-drop vapor-diffusion crystallization, crystals of EndoS were grown that diffracted to a maximum of 3.5 Å resolution but suffered from severe anisotropy, the data from which could only be reasonably processed to 7.5 Å resolution. When EndoS was crystallized by liquid-liquid diffusion, it was possible to grow crystals with a different space group to those obtained by vapor diffusion. Crystals of wild-type endoglycosidase and glycosynthase constructs of EndoS grown by liquid-liquid diffusion diffracted to 2.6 and 1.9 Å resolution, respectively, with a greatly diminished anisotropy. Despite extensive efforts, the failure to reproduce these liquid-liquid diffusion-grown crystals by vapor diffusion suggests that these crystallization methods each sample a distinct crystallization space.

  1. Super-resolution biomolecular crystallography with low-resolution data.

    PubMed

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.

  2. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis*

    PubMed Central

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-01-01

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. PMID:27815501

  3. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry aremore » precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.« less

  4. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab.

    PubMed

    Lee, Hyun Tae; Lee, Ju Yeon; Lim, Heejin; Lee, Sang Hyung; Moon, Yu Jeong; Pyo, Hyo Jeong; Ryu, Seong Eon; Shin, Woori; Heo, Yong-Seok

    2017-07-17

    In 2016 and 2017, monoclonal antibodies targeting PD-L1, including atezolizumab, durvalumab, and avelumab, were approved by the FDA for the treatment of multiple advanced cancers. And many other anti-PD-L1 antibodies are under clinical trials. Recently, the crystal structures of PD-L1 in complex with BMS-936559 and avelumab have been determined, revealing details of the antigen-antibody interactions. However, it is still unknown how atezolizumab and durvalumab specifically recognize PD-L1, although this is important for investigating novel binding sites on PD-L1 targeted by other therapeutic antibodies for the design and improvement of anti-PD-L1 agents. Here, we report the crystal structures of PD-L1 in complex with atezolizumab and durvalumab to elucidate the precise epitopes involved and the structural basis for PD-1/PD-L1 blockade by these antibodies. A comprehensive comparison of PD-L1 interactions with anti-PD-L1 antibodies provides a better understanding of the mechanism of PD-L1 blockade as well as new insights into the rational design of improved anti-PD-L1 therapeutics.

  5. Crystal structure analysis of human serum albumin complexed with sodium 4-phenylbutyrate.

    PubMed

    Kawai, Akito; Yamasaki, Keishi; Enokida, Taisuke; Miyamoto, Shuichi; Otagiri, Masaki

    2018-03-01

    Sodium 4-phenylbutyrate (PB) is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA) in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA-PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug-HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings.

  6. Structure Biology of Membrane Bound Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Dax

    The overall goal of the proposed research is to understand the membrane-associated active processes catalyzed by an alkanemore » $$\\square$$-hydroxylase (AlkB) from eubacterium Pseudomonase oleovorans. AlkB performs oxygenation of unactivated hydrocarbons found in crude oils. The enzymatic reaction involves energy-demanding steps in the membrane with the uses of structurally unknown metal active sites featuring a diiron [FeFe] center. At present, a critical barrier to understanding the membrane-associated reaction mechanism is the lack of structural information. The structural biology efforts have been challenged by technical difficulties commonly encountered in crystallization and structural determination of membrane proteins. The specific aims of the current budget cycle are to crystalize AlkB and initiate X-ray analysis to set the stage for structural determination. The long-term goals of our structural biology efforts are to provide an atomic description of AlkB structure, and to uncover the mechanisms of selective modification of hydrocarbons. The structural information will help elucidating how the unactivated C-H bonds of saturated hydrocarbons are oxidized to initiate biodegradation and biotransformation processes. The knowledge gained will be fundamental to biotechnological applications to biofuel transformation of non-edible oil feedstock. Renewable biodiesel is a promising energy carry that can be used to reduce fossil fuel dependency. The proposed research capitalizes on prior BES-supported efforts on over-expression and purification of AlkB to explore the inner workings of a bioenergy-relevant membrane-bound enzyme.« less

  7. Stability, electronic structures and thermoelectric properties of binary Zn–Sb materials

    DOE PAGES

    He, Xin; Fu, Yuhao; Singh, David J.; ...

    2016-11-03

    We report first principles studies of the binary Zn–Sb phases in relation to thermoelectric properties and chemical stability. We identify the unknown structure of the Zn 3Sb 2 phase using particle swarm optimization, finding a tetragonal structure different from the hexagonal Mg 3Sb 2 and the hexagonal or cubic Ca 3Sb 2 phases. All the phases are found to be semiconducting with bandgaps in the range of 0.06–0.77 eV. This semiconducting behavior is understood in Zintl terms as a balance between the Zn:Sb and Sb 3-:½(Sb 2) 4- ratios in the stable crystal structures. With the exception of Zn 3Sbmore » 2, which has a small gap, all the compounds have electronic properties favorable for thermoelectric performance.« less

  8. Fragile X Mental Retardation Syndrome: Structure of the KH1-KH2 Domains of Fragile X Mental Retardation Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valverde,R.; Poznyakova, I.; Kajander, T.

    Fragile X syndrome is the most common form of inherited mental retardation in humans, with an estimated prevalence of about 1 in 4000 males. Although several observations indicate that the absence of functional Fragile X Mental Retardation Protein (FMRP) is the underlying basis of Fragile X syndrome, the structure and function of FMRP are currently unknown. Here, we present an X-ray crystal structure of the tandem KH domains of human FMRP, which reveals the relative orientation of the KH1 and KH2 domains and the location of residue Ile304, whose mutation to Asn is associated with a particularly severe incidence ofmore » Fragile X syndrome. We show that the Ile304Asn mutation both perturbs the structure and destabilizes the protein.« less

  9. Crystal structure and RNA-binding properties of an Hfq homolog from the deep-branching Aquificae: conservation of the lateral RNA-binding mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanek, Kimberly A.; Patterson-West, Jennifer; Randolph, Peter S.

    The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homologmore » has been identified in the phylogenetically deep-branching thermophileAquifex aeolicus(Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore,AaeHfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures ofAaeHfq were determined in space groupsP1 andP6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U 6RNA reveals that the outer rim of theAaeHfq hexamer features a well defined binding pocket that is selective for uracil. ThisAaeHfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.« less

  10. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Tasuku; Saikawa, Kyo; Kim, Seonah

    2014-04-25

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system ofmore » hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.« less

  11. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins.

    PubMed

    Heuck, Alexander; Schleiffer, Alexander; Clausen, Tim

    2011-03-11

    β-Barrel proteins are frequently found in the outer membrane of mitochondria, chloroplasts and Gram-negative bacteria. In Escherichia coli, these proteins are inserted in the outer membrane by the Bam (β-barrel assembly machinery) complex, a multiprotein machinery formed by the β-barrel protein BamA and the four peripheral membrane proteins BamB, BamC, BamD and BamE. The periplasmic part of BamA binds prefolded β-barrel proteins by a β-augmentation mechanism, thereby stabilizing the precursors prior to their membrane insertion. However, the role of the associated proteins within the Bam complex remains unknown. Here, we describe the crystal structure of BamB, a nonessential component of the Bam complex. The structure shows a typical eight-bladed β-propeller fold. Two sequence stretches of BamB were previously identified to be important for interaction with BamA. In our structure, both motifs are located in close proximity to each other and contribute to a conserved region forming a narrow groove on the top of the propeller. Moreover, crystal contacts reveal two interaction modes of how BamB might bind unfolded β-barrel proteins. In the crystal lattice, BamB binds to exposed β-strands by β-augmentation, whereas peptide stretches rich in aromatic residues can be accommodated in hydrophobic pockets located at the bottom of the propeller. Thus, BamB could simultaneously bind to BamA and prefolded β-barrel proteins, thereby enhancing the folding and membrane insertion capability of the Bam complex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osiry, H.; Cano, A.; Reguera, L.

    The pentacyanonitrosylferrate complex anion, [Fe(CN){sub 5}NO]{sup 2−}, forms an insoluble solid with Hg(I) ion, of formula unit Hg{sub 2}[Fe(CN){sub 5}NO]·2H{sub 2}O, whose crystal structure and related properties are unknown. This contribution reports the preparation of that compound by the precipitation method and its structural study from X-ray powder patterns complemented with spectroscopic information from IR, Raman, and UV–vis techniques. The crystal structure was solved ab initio and then refined using the Rietveld method. The solid crystallizes with a triclinic unit cell, in the P−1 space group, with cell parameters a=10.1202(12), b=10.1000(13), c=7.4704(11) Å; α=110.664(10), β=110.114(10), γ=104.724(8) °. Within the unitmore » cell, two formula units are accommodated (Z=2). It adopts a layered structure related with the coordination of the equatorial CN groups at their N end to the Hg atoms while the axial CN ligand remains unlinked. Within the layers neighboring Hg{sub 2}[Fe(CN){sub 5}NO] building units remain linked through four relatively strong Hg–Hg interactions, with an interatomic distance of 2.549(3) Å. The charge donation from the equatorial CN groups through their 5σ orbitals results into an increase for the electron density on the Hg atoms, which strengths the Hg–Hg bond. In the Raman spectrum, that metal–metal bond is detected as a stretching vibration band at 167 cm{sup −1}. The available free volume between neighboring layers accommodates two water molecules, which are stabilized within the framework through hydrogen bonds with the N end of the unlinked axial CN group. The removal of these weakly bonded water molecules results in structural disorder for the material 3D framework. - Graphical abstract: Assembling of Hg{sub 2}[Fe(CN){sub 5}NO] units through Hg–Hg interactions. - Highlights: • Homometallic Hg–Hg interactions in metal nitroprusside. • 2D structure supported on metal–metal interactions. • Crystal structure and related properties for mercury (I) nitroprusside. • IR and UV–vis spectral features for mercury (I) nitroprusside.« less

  13. Structural Insights Into the Evolutionary Paths of Oxylipin Biosynthetic Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.-S.; Nioche, P.; Hamberg, M.

    2009-05-20

    The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactionsmore » with an aromatic {pi}-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.« less

  14. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  15. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier

    2008-05-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. Themore » β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA.« less

  16. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.

    PubMed

    Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L

    2015-10-08

    Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.

  17. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1992-01-01

    A study is presented of the crystallization of isocitrate lyase (ICL) and the influence of the lack of thermal solutal convection in microgravity on the morphology of ICL crystals is discussed. The latest results of studies with thermonucleation are presented. These include the nucleation of a protein with retrograde solubility and an unknown solubility curve. A new design for a more microgravity compatible thermonuclear is presented.

  18. The Crystallization Clinic-A TA Orientation Exercise

    NASA Astrophysics Data System (ADS)

    Kandel, Marjorie

    1999-01-01

    Our orientation exercise for TAs in the organic laboratories is a Crystallization Clinic, and the main feature is a contest. Each TA has a different unknown solid to recrystallize. The products are judged by the students in the organic lab courses. Beauty of the crystals is the single criterion. The contest serves to refresh the TAs' technique and to give them empathy with the beginning students.

  19. Crystal Structures of Penicillin-Binding Protein 2 From Penicillin-Susceptible And -Resistant Strains of Neisseria Gonorrhoeae Reveal An Unexpectedly Subtle Mechanism for Antibiotic Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, A.J.; Tomberg, J.; Deacon, A.M.

    Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for {beta}-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from themore » penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by {beta}-lactam antibiotics.« less

  20. Crystal structure of bis­[tetra­kis­(tri­phenyl­phosphane-κP)silver(I)] (nitrilo­tri­acetato-κ4 N,O,O′,O′′)(tri­phenyl­phosphane-κP)argentate(I) with an unknown amount of methanol as solvate

    PubMed Central

    Noll, Julian; Korb, Marcus; Lang, Heinrich

    2016-01-01

    The structure of the title compound, [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], exhibits trigonal (P-3) symmetry, with a C 3 axis through all three complex ions, resulting in an asymmetric unit that contains one third of the atoms present in the formula unit. The formula unit thus contains two of the cations, one anion and disordered mol­ecules of methanol as the packing solvent. Attempts to refine the solvent model were unsuccessful, indicating uninter­pretable disorder. Thus, the SQUEEZE procedure in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9–18] was applied, accounting for 670 electrons per unit cell, representing approximately 18 mol­ecules of methanol in the formula unit. The stated crystal data for M r, μ etc do not take these into account. PMID:27006796

  1. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenck, Craig A.; Holland, Cynthia K.; Schneider, Matthew R.

    L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that definesmore » TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.« less

  2. Binding Leverage as a Molecular Basis for Allosteric Regulation

    PubMed Central

    Mitternacht, Simon; Berezovsky, Igor N.

    2011-01-01

    Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug design. PMID:21935347

  3. Vascular Calcification and Stone Disease: A New Look towards the Mechanism

    PubMed Central

    Yiu, Allen J.; Callaghan, Daniel; Sultana, Razia; Bandyopadhyay, Bidhan C.

    2015-01-01

    Calcium phosphate (CaP) crystals are formed in pathological calcification as well as during stone formation. Although there are several theories as to how these crystals can develop through the combined interactions of biochemical and biophysical factors, the exact mechanism of such mineralization is largely unknown. Based on the published scientific literature, we found that common factors can link the initial stages of stone formation and calcification in anatomically distal tissues and organs. For example, changes to the spatiotemporal conditions of the fluid flow in tubular structures may provide initial condition(s) for CaP crystal generation needed for stone formation. Additionally, recent evidence has provided a meaningful association between the active participation of proteins and transcription factors found in the bone forming (ossification) mechanism that are also involved in the early stages of kidney stone formation and arterial calcification. Our review will focus on three topics of discussion (physiological influences—calcium and phosphate concentration—and similarities to ossification, or bone formation) that may elucidate some commonality in the mechanisms of stone formation and calcification, and pave the way towards opening new avenues for further research. PMID:26185749

  4. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of human histidine triad nucleotide-binding protein 2 (hHINT2)

    PubMed Central

    Dolot, Rafał; Włodarczyk, Artur; Bujacz, Grzegorz D.; Nawrot, Barbara

    2013-01-01

    Histidine triad nucleotide-binding protein 2 (HINT2) is a mitochondrial adenosine phosphoramidase mainly expressed in the pancreas, liver and adrenal gland. HINT2 possibly plays a role in apoptosis, as well as being involved in steroid biosynthesis, hepatic lipid metabolism and regulation of hepatic mitochondria function. The expression level of HINT2 is significantly down-regulated in hepatocellular carcinoma patients. To date, endogenous substrates for this enzyme, as well as the three-dimensional structure of human HINT2, are unknown. In this study, human HINT2 was cloned, overexpressed in Escherichia coli and purified. Crystallization was performed at 278 K using PEG 4000 as the main precipitant; the crystals, which belonged to the tetragonal space group P41212 with unit-cell parameters a = b = 76.38, c = 133.25 Å, diffracted to 2.83 Å resolution. Assuming two molecules in the asymmetric unit, the Matthews coefficient and the solvent content were calculated to be 2.63 Å3 Da−1 and 53.27%, respectively. PMID:23832208

  5. Synthesis and structural characterization of the Zintl phases Na{sub 3}Ca{sub 3}TrPn{sub 4}, Na{sub 3}Sr{sub 3}TrPn{sub 4}, and Na{sub 3}Eu{sub 3}TrPn{sub 4} (Tr=Al, Ga, In; Pn=P, As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Suen, Nian-Tzu; College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002

    15 new quaternary Zintl phases have been synthesized by solid-state reactions from the respective elements, and their structures have been determined by single-crystal X-ray diffraction. Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) crystallize in the hexagonal crystal system with the non-centrosymmetric space group P6{sub 3}mc (No. 186). The structure represents a variant of the K{sub 6}HgS{sub 4} structure type (Pearson index hP22) and features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. The nominal formula rationalization [Na{sup +}]{sub 3}[E{sup 2+}]{sub 3}[TrPn{sub 4}]{sup 9–} follows themore » octet rule, suggesting closed-shell configurations for all atoms and intrinsic semiconducting behavior. However, structure refinements for several members hint at disorder and mixing of cations that potentially counteract the optimal valence electron count. - Graphical abstract: The hexagonal, non-centrosymmetric structure of Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. - Highlights: • 15 quaternary phosphides, arsenides, and antimonides are synthesized and structurally characterized. • The structure is a variant of the hexagonal K{sub 6}HgS{sub 4}-type, with distinctive pattern for the cations. • Occupational and/or positional disorder of yet unknown origin exists for some members of the series.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramelot, Theresa A.; Rossi, Paolo M.; Forouhar, Farhad

    The solution nuclear magnetic resonance (NMR) structures and backbone (15)N dynamics of the specialized acyl carrier protein (ACP), RpAcpXL, from Rhodopseudomonas palustris, in both the apo form and holo form modified by covalent attachment of 4'-phosphopantetheine at S37, are virtually identical, monomeric, and correspond to the closed conformation. The structures have an extra α-helix compared to the archetypical ACP from Escherichia coli, which has four helices, resulting in a larger opening to the hydrophobic cavity. Chemical shift differences between apo- and holo-RpAcpXL indicated some differences in the hinge region between α2 and α3 and in the hydrophobic cavity environment, butmore » corresponding changes in nuclear Overhauser effect cross-peak patterns were not detected. In contrast to the NMR structures, apo-RpAcpXL was observed in an open conformation in crystals that diffracted to 2.0 Å resolution, which resulted from movement of α3. On the basis of the crystal structure, the predicted biological assembly is a homodimer. Although the possible biological significance of dimerization is unknown, there is potential that the resulting large shared hydrophobic cavity could accommodate the very long-chain fatty acid (28-30 carbons) that this specialized ACP is known to synthesize and transfer to lipid A. These structures are the first representatives of the AcpXL family and the first to indicate that dimerization may be important for the function of these specialized ACPs.« less

  7. Compositional descriptor-based recommender system for the materials discovery

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Hayashi, Hiroyuki; Tanaka, Isao

    2018-06-01

    Structures and properties of many inorganic compounds have been collected historically. However, it only covers a very small portion of possible inorganic crystals, which implies the presence of numerous currently unknown compounds. A powerful machine-learning strategy is mandatory to discover new inorganic compounds from all chemical combinations. Herein we propose a descriptor-based recommender-system approach to estimate the relevance of chemical compositions where crystals can be formed [i.e., chemically relevant compositions (CRCs)]. In addition to data-driven compositional similarity used in the literature, the use of compositional descriptors as a prior knowledge is helpful for the discovery of new compounds. We validate our recommender systems in two ways. First, one database is used to construct a model, while another is used for the validation. Second, we estimate the phase stability for compounds at expected CRCs using density functional theory calculations.

  8. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Langelier; J Planck; S Roy

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNAmore » interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.« less

  9. "Daisy-like" crystals: A rare and unknown type of urinary crystal.

    PubMed

    Fogazzi, G B; Anderlini, R; Canovi, S; Covarelli, C; Gras, J; Kučera, J; Proietti, A; Rogic, D; Teboul, R; Ferraris Fusarini, C; de Liso, F; Garigali, G; Daudon, M

    2017-08-01

    Crystals are well known structures of urinary sediment, most of which are identified by the combined knowledge of crystal morphology, birefringence features at polarized light, and urine pH. In this paper, we report on a cohort of subjects whose urine contained a very rare type of crystal, which we first described in 2004 and which, based on its peculiar morphology, we define as "daisy-like crystal" (DLcr). Reports on DLcr were spontaneously sent to our laboratory over a 10.5-year period by different laboratory professionals and by one veterinary clinician who, in their everyday work, had come across DLcr. After the examination of DLcr images submitted, a number of other information were requested and partly obtained. DLcr were found in 9 human beings in 7 different laboratories, located in 4 countries (Italy, Belgium, Croatia, France). DLcr were found mostly in female (8/9), at all ages (3.5 to 93years), mostly in alkaline urine (pH6.0 to 7.5), at variable specific gravity values (1.010 to 1.030), either as isolated particles (2/8) or in association with other crystals (5/8) and/or leucocytes or bacteria (3/8). In addition, DLcr were found in the urine of a 1-year-old dog, examined in a veterinary clinic of Czech Republic. In 3 cases, DLcr were identified by manual microscopy, while in 7 cases by automated urine sediment analyzers. This paper confirms the possible presence in the urine of DLcr. However, further cases are needed to clarify their frequency, clinical meaning, and composition. Copyright © 2017. Published by Elsevier B.V.

  10. Structure of the N-terminal fragment of Escherichia coli Lon protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Basic Research Program, SAIC-Frederick, Frederick, MD 21702; Gustchina, Alla

    2010-08-01

    The medium-resolution structure of the N-terminal fragment of E. coli Lon protease shows that this part of the enzyme consists of two compact domains and a very long α-helix. The structure of a recombinant construct consisting of residues 1–245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 Å resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very longmore » C-terminal α-helix. The structure of the first subdomain (residues 1–117), which consists mostly of β-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.« less

  11. Structure of the MazF-mt9 toxin, a tRNA-specific endonuclease from Mycobacterium tuberculosis.

    PubMed

    Chen, Ran; Tu, Jie; Liu, Zhihui; Meng, Fanrong; Ma, Pinyun; Ding, Zhishan; Yang, Chengwen; Chen, Lei; Deng, Xiangyu; Xie, Wei

    2017-05-06

    Tuberculosis (TB) is a severe disease caused by Mycobacterium tuberculosis (M. tb) and the well-characterized M. tb MazE/F proteins play important roles in stress adaptation. Recently, the MazF-mt9 toxin has been found to display endonuclease activities towards tRNAs but the mechanism is unknown. We hereby present the crystal structure of apo-MazF-mt9. The enzyme recognizes tRNA Lys with a central UUU motif within the anticodon loop, but is insensitive to the sequence context outside of the loop. Based on our crystallographic and biochemical studies, we identified key residues for catalysis and proposed the potential tRNA-binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases

    DOE PAGES

    Manthei, Kelly A.; Hill, Morgan C.; Burke, Jordan E.; ...

    2015-03-23

    RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. In this paper, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3' single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots ~90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATPmore » hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. Finally, this bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures.« less

  13. Structure of the Repulsive Guidance Molecule (RGM)—Neogenin Signaling Hub

    PubMed Central

    Bell, Christian H.; Bishop, Benjamin; Tang, Chenxiang; Gilbert, Robert J.C.; Aricescu, A. Radu; Pasterkamp, R. Jeroen; Siebold, Christian

    2016-01-01

    Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways. PMID:23744777

  14. Crystal structure of an essential enzyme in seed starch degradation: barley limit dextrinase in complex with cyclodextrins.

    PubMed

    Vester-Christensen, Malene Bech; Abou Hachem, Maher; Svensson, Birte; Henriksen, Anette

    2010-11-12

    Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)(8)-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites +1 and +2. A glycerol and three water molecules mimic a glucose residue at subsite -1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite -4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Structural studies on a high-pressure polymorph of NaYSi 2O 6

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Konzett, Jürgen; Kaindl, Reinhard

    2007-06-01

    High-pressure synthesis experiments in the system Na 2O-Y 2O 3-SiO 2 revealed the existence of a previously unknown polymorph of NaYSi 2O 6 or Na 3Y 3[Si 3O 9] 2 which was quenched from 3.0 GPa and 1000 °C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi 2O 6 crystallizes in the centrosymmetric space group C2/ c with 12 formula units per cell ( a=8.2131(9) Å, b=10.3983(14) Å, c=17.6542(21) Å, β=100.804(9)°, V=1481.0(3) Å 3, R(| F|)=0.033 for 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si 3O 9] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up ( U) or down ( D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed.

  16. Quasi-Dual-Packed-Kerneled Au49 (2,4-DMBT)27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap.

    PubMed

    Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun

    2017-10-02

    Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The crystal structure of red fluorescent protein TagRFP-T reveals the mechanism of its superior photostability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rui; Liang, Qing-Nan; Du, Shu-Qi

    2016-08-19

    The red fluorescent protein variant TagRFP-T has greatly improved photostability over its parent molecule, TagRFP, but the underlying mechanism leading to this improvement is to date unknown. The 1.95 Å resolution crystallographic structure of TagRFP-T showed that its chromophore exists as a mixture of cis and trans coplanar isomers in roughly equal proportions. Interestingly, both isomers are able to fluoresce, a property that has never been observed in any other fluorescent protein. We propose a “circular restoration model” for TagRFP-T to explain its superior photostability: There are four co-existing chromophore states (cis/trans protonated/ionized state) that can be driven by light tomore » transform from one state into another. This model also explains how TagRPF-T essentially eliminates the temporary dark state (reversible photobleaching). - Highlights: • The 1.95 Å resolution crystal structure of TagRFP-T was determined. • The chromophore of TagRFP-T contains a mixture of cis and trans coplanar isomers. • A “circular restoration model” was proposed to explain the superior photostability. • The chromophore can reversibly convert between cis/trans protonated/ionized states. • The light-driven conversion reduce the dark state (reversible photobleaching).« less

  18. Single-crystal Raman spectroscopy and X-ray crystallography at beamline X26-C of the NSLS

    PubMed Central

    Stoner-Ma, Deborah; Skinner, John M.; Schneider, Dieter K.; Cowan, Matt; Sweet, Robert M.; Orville, Allen M.

    2011-01-01

    Three-dimensional structures derived from X-ray diffraction of protein crystals provide a wealth of information. Features and interactions important for the function of macromolecules can be deduced and catalytic mechanisms postulated. Still, many questions can remain, for example regarding metal oxidation states and the interpretation of ‘mystery density’, i.e. ambiguous or unknown features within the electron density maps, especially at ∼2 Å resolutions typical of most macromolecular structures. Beamline X26-C at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), provides researchers with the opportunity to not only determine the atomic structure of their samples but also to explore the electronic and vibrational characteristics of the sample before, during and after X-ray diffraction data collection. When samples are maintained under cryo-conditions, an opportunity to promote and follow photochemical reactions in situ as a function of X-ray exposure is also provided. Plans are in place to further expand the capabilities at beamline X26-C and to develop beamlines at NSLS-II, currently under construction at BNL, which will provide users access to a wide array of complementary spectroscopic methods in addition to high-quality X-ray diffraction data. PMID:21169688

  19. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme.

    PubMed

    Park, Ha Ju; Lee, Chang Woo; Kim, Dockyu; Do, Hackwon; Han, Se Jong; Kim, Jung Eun; Koo, Bon-Hun; Lee, Jun Hyuck; Yim, Joung Han

    2018-01-01

    Enzymes isolated from organisms found in cold habitats generally exhibit higher catalytic activity at low temperatures than their mesophilic homologs and are therefore known as cold-active enzymes. Cold-active proteases are very useful in a variety of biotechnological applications, particularly as active ingredients in laundry and dishwashing detergents, where they provide strong protein-degrading activity in cold water. We identified a cold-active protease (Pro21717) from a psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, and determined the crystal structure of its catalytic domain (CD) at a resolution of 1.4 Å. The Pro21717-CD structure shows a conserved subtilisin-like fold with a typical catalytic triad (Asp185, His244, and Ser425) and contains four calcium ions and three disulfide bonds. Interestingly, we observed an unexpected electron density at the substrate-binding site from a co-purified peptide. Although the sequence of this peptide is unknown, analysis of the peptide-complexed structure nonetheless provides some indication of the substrate recognition and binding mode of Pro21717. Moreover, various parameters, including a wide substrate pocket size, an abundant active-site loop content, and a flexible structure provide potential explanations for the cold-adapted properties of Pro21717. In conclusion, this is first structural characterization of a cold-adapted subtilisin-like protease, and these findings provide a structural and functional basis for industrial applications of Pro21717 as a cold-active laundry or dishwashing detergent enzyme.

  20. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme

    PubMed Central

    Do, Hackwon; Han, Se Jong; Kim, Jung Eun; Koo, Bon-Hun; Yim, Joung Han

    2018-01-01

    Enzymes isolated from organisms found in cold habitats generally exhibit higher catalytic activity at low temperatures than their mesophilic homologs and are therefore known as cold-active enzymes. Cold-active proteases are very useful in a variety of biotechnological applications, particularly as active ingredients in laundry and dishwashing detergents, where they provide strong protein-degrading activity in cold water. We identified a cold-active protease (Pro21717) from a psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, and determined the crystal structure of its catalytic domain (CD) at a resolution of 1.4 Å. The Pro21717-CD structure shows a conserved subtilisin-like fold with a typical catalytic triad (Asp185, His244, and Ser425) and contains four calcium ions and three disulfide bonds. Interestingly, we observed an unexpected electron density at the substrate-binding site from a co-purified peptide. Although the sequence of this peptide is unknown, analysis of the peptide-complexed structure nonetheless provides some indication of the substrate recognition and binding mode of Pro21717. Moreover, various parameters, including a wide substrate pocket size, an abundant active-site loop content, and a flexible structure provide potential explanations for the cold-adapted properties of Pro21717. In conclusion, this is first structural characterization of a cold-adapted subtilisin-like protease, and these findings provide a structural and functional basis for industrial applications of Pro21717 as a cold-active laundry or dishwashing detergent enzyme. PMID:29466378

  1. Identification, isolation, and synthesis of seven novel impurities of anti-diabetic drug Repaglinide.

    PubMed

    Kancherla, Prasad; Keesari, Srinivas; Alegete, Pallavi; Khagga, Mukkanti; Das, Parthasarathi

    2018-01-01

    Seven unknown impurities in Repaglinide bulk drug batches at below 0.1% (ranging from 0.05 to 0.10%) were detected by an ultra-performance liquid chromatographic (UPLC) method. These impurities were isolated from the crude sample of Repaglinide using preparative high performance liquid chromatography (prep-HPLC). Based on liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI/MS) study, the chemical structures of seven new impurities (8, 9, 10, 11, 13, 14, and 16) were presumed and characterized as 4-(cyanomethyl)-2-ethoxybenzoic acid (8), 4-(cyanomethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)benzamide (9), 4-(2-amino-2-oxoethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) benzamide (10) and 2-(3-ethoxy-4-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) carbamoyl) phenyl) acetic acid (11) and 4-(cyanomethyl)-N-cyclohexyl-2-ethoxybenzamide (13), 2-(4-(cyclohexylcarbamoyl)-3-ethoxyphenyl) acetic acid (14) and N-cyclohexyl-4-(2-(cyclohexylamino)-2-oxoethyl)-2-ethoxybenzamide (16). The complete spectral analysis, proton nuclear magnetic resonance ( 1 H NMR), 13 C NMR, MS, and infrared (IR) confirmed the proposed chemical structures of impurities. Identification, structural characterization, formation, and their synthesis was first reported in this study. The impurity 11 was crystallized and structure was solved by single crystal X-ray diffraction. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Free-standing mesoporous silica films with tunable chiral nematic structures.

    PubMed

    Shopsowitz, Kevin E; Qi, Hao; Hamad, Wadood Y; Maclachlan, Mark J

    2010-11-18

    Chirality at the molecular level is found in diverse biological structures, such as polysaccharides, proteins and DNA, and is responsible for many of their unique properties. Introducing chirality into porous inorganic solids may produce new types of materials that could be useful for chiral separation, stereospecific catalysis, chiral recognition (sensing) and photonic materials. Template synthesis of inorganic solids using the self-assembly of lyotropic liquid crystals offers access to materials with well-defined porous structures, but only recently has chirality been introduced into hexagonal mesostructures through the use of a chiral surfactant. Efforts to impart chirality at a larger length scale using self-assembly are almost unknown. Here we describe the development of a photonic mesoporous inorganic solid that is a cast of a chiral nematic liquid crystal formed from nanocrystalline cellulose. These materials may be obtained as free-standing films with high surface area. The peak reflected wavelength of the films can be varied across the entire visible spectrum and into the near-infrared through simple changes in the synthetic conditions. To the best of our knowledge these are the first materials to combine mesoporosity with long-range chiral ordering that produces photonic properties. Our findings could lead to the development of new materials for applications in, for example, tuneable reflective filters and sensors. In addition, this type of material could be used as a hard template to generate other new materials with chiral nematic structures.

  3. Structural Insight into Activation Mechanism of Toxoplasma gondii Nucleoside Triphosphate Diphosphohydrolases by Disulfide Reduction*

    PubMed Central

    Krug, Ulrike; Zebisch, Matthias; Krauss, Michel; Sträter, Norbert

    2012-01-01

    The intracellular parasite Toxoplasma gondii produces two nucleoside triphosphate diphosphohydrolases (NTPDase1 and -3). These tetrameric, cysteine-rich enzymes require activation by reductive cleavage of a hitherto unknown disulfide bond. Despite a 97% sequence identity, both isozymes differ largely in their ability to hydrolyze ATP and ADP. Here, we present crystal structures of inactive NTPDase3 as an apo form and in complex with the product AMP to resolutions of 2.0 and 2.2 Å, respectively. We find that the enzyme is present in an open conformation that precludes productive substrate binding and catalysis. The cysteine bridge 258–268 is identified to be responsible for locking of activity. Crystal structures of constitutively active variants of NTPDase1 and -3 generated by mutation of Cys258–Cys268 show that opening of the regulatory cysteine bridge induces a pronounced contraction of the whole tetramer. This is accompanied by a 12° domain closure motion resulting in the correct arrangement of all active site residues. A complex structure of activated NTPDase3 with a non-hydrolyzable ATP analog and the cofactor Mg2+ to a resolution of 2.85 Å indicates that catalytic differences between the NTPDases are primarily dictated by differences in positioning of the adenine base caused by substitution of Arg492 and Glu493 in NTPDase1 by glycines in NTPDase3. PMID:22130673

  4. Facile hydrothermal crystallization of NaLn(WO4)2 (Ln=La-Lu, and Y), phase/morphology evolution, and photoluminescence

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofei; Li, Ji-Guang; Wang, Xuejiao; Zhu, Qi; Kim, Byung-Nam; Sun, Xudong

    2017-12-01

    Hydrothermal reaction of Ln nitrate and Na2WO4 at pH=8 and 200 °C for 24 hours, in the absence of any additive, has directly produced the scheelite-type sodium lanthanide tungstate of NaLn(WO4)2 for the larger Ln3+ of Ln=La-Dy (including Y, Group I) and an unknown compound that can be transformed into NaLn(WO4)2 by calcination at the low temperature of 600 °C for the smaller Ln3+ of Ln=Ho-Lu (Group II). With the successful synthesis of NaLn(WO4)2 for the full spectrum of Ln, the effects of lanthanide contraction on the structural features, crystal morphology, and IR responses of the compounds were clarified. The temperature- and time-course phase/morphology evolutions and the phase conversion upon calcination were thoroughly studied for the Group I and Group II compounds with Ln=La and Lu for example, respectively. Unknown intermediates were characterized by elemental analysis, IR absorption, thermogravimetry, and differential scanning calorimetry to better understand their chemical composition and coordination. The photoluminescence properties of NaEu(WO4)2 and NaTb(WO4)2, including excitation, emission, fluorescence decay, and quantum efficiency of luminescence, were also comparatively studied for the as-synthesized and calcination products.

  5. Magnetite Equation of State: Implications for Mars' Interior and Magnetization

    NASA Astrophysics Data System (ADS)

    Gant, P.; Walsh, J.; Lazarz, J. D.; Jacobsen, S. D.; Jurdy, D. M.

    2017-12-01

    Mars once had a global magnetic field, although it no longer has an active dynamo. Mars Global Surveyor (MGS) unexpectedly measured a strongly magnetized crust. However, the magnetic carrier as well as the nature and depth of magnetization remain unknown. Downward continuation of the surface magnetization suggests the possibility of great depth of magnetization, as much as 100-200 km, far exceeding that of Earth's. The interior composition and structure of Mars remain unknown. Magnetite offers a likely candidate for Martian magnetization. Experiments with magnetite crystals - one naturally-occurring, the other a laboratory-fabricated single domain crystal, determine its equation of state. NASA's upcoming InSight (INterior Exploration using Seismic Investigations, Geodesy, and Heat Transport) mission to Mars will be the first dedicated to study of the Martian interior. It will land in the Elysium Planitia with a 3-component broadband and short period seismometer, heatflow probe, and a magnetometer to monitor the local, atmospheric, and crustal magnetic field. The planned InSight measurements of Martian heatflow will establish its current temperature gradient. The first step in understanding Mars' magnetization requires knowing both temperature and pressure conditions for its interior, along with the equation of state for magnetite - and other possible magnetic minerals. Laboratory experiments with a range of compositions for the Martian interior could provide critical comparisons with the InSight mission's seismic data.

  6. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung,M.; Rangarajan, E.; Munger, C.

    2006-01-01

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence {yields}(3)-{alpha}-D-Fuc4NAc-(1{yields}4)-{beta}-D-ManNAcA-(1{yields}4)-{alpha}-D-GlcNAc-(1{yields}). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structuremore » of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.« less

  7. Strain Analysis of Stretched Tourmaline Crystals Using ImageJ, Microsoft Excel and PowerPoint

    NASA Astrophysics Data System (ADS)

    Bosbyshell, H.

    2012-12-01

    This poster describes an undergraduate structural geology lab exercise utilizing the Mohr's circle diagram for finite strain, constructed using measurements obtained from stretched tourmaline crystals. A small building housing HVAC equipment at the south end of West Chester University's Recitation Hall (itself made of serpentinite) is constructed of early-Cambrian Chickies Quartzite. Stretched tourmaline crystals, with segments joined by fibrous quartz, are visible on many surfaces (presumably originally bedding). While the original orientation of any stone is unknown, these rocks provide an opportunity for a short field exercise during a two-hour lab period and a great base for conducting strain analysis. It is always fun to ask how many in the class have ever noticed the tourmaline (few have). Students take photos using their cell phones or cameras. Since strain is a ratio the absolute size of the tourmaline crystals is immaterial. Nonetheless, this is a good opportunity to remind students of the importance of including a scale in their photographs. The photos are opened in ImageJ and the line tool is used to determine the original and final lengths of selected crystals. Students calculate strain parameters using Microsoft Excel. Then, we use Adobe Illustrator or the drafting capabilities of Microsoft PowerPoint 2010 to follow Ramsay and Huber's techniques using a Mohr's circle construction to determine the finite strain ellipse. If a stretching direction can be estimated, elongation of two crystals is all that is required to determine the strain ratio. If no stretching direction is apparent, three crystals are required for a more complicated analysis that allows for determination of the stretching direction, as well as the strain ratio.

  8. Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad.

    PubMed

    Suzuki, Kentaro; Hori, Akane; Kawamoto, Kazusa; Thangudu, Ratna Rajesh; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Yamada, Chihaya; Arakawa, Takatoshi; Wakagi, Takayoshi; Koseki, Takuya; Fushinobu, Shinya

    2014-10-01

    Feruloyl esterase (FAE) catalyzes the hydrolysis of the ferulic and diferulic acids present in plant cell wall polysaccharides, and tannase catalyzes the hydrolysis of tannins to release gallic acid. The fungal tannase family in the ESTHER database contains various enzymes, including FAEs and tannases. Despite the importance of FAEs and tannases in bioindustrial applications, three-dimensional structures of the fungal tannase family members have been unknown. Here, we determined the crystal structure of FAE B from Aspergillus oryzae (AoFaeB), which belongs to the fungal tannase family, at 1.5 Å resolution. AoFaeB consists of a catalytic α/β-hydrolase fold domain and a large lid domain, and the latter has a novel fold. To estimate probable binding models of substrates in AoFaeB, an automated docking analysis was performed. In the active site pocket of AoFaeB, residues responsible for the substrate specificity of the FAE activity were identified. The catalytic triad of AoFaeB comprises Ser203, Asp417, and His457, and the serine and histidine residues are directly connected by a disulfide bond of the neighboring cysteine residues, Cys202 and Cys458. This structural feature, the "CS-D-HC motif," is unprecedented in serine hydrolases. A mutational analysis indicated that the novel structural motif plays essential roles in the function of the active site. © 2014 Wiley Periodicals, Inc.

  9. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, William J.; Public Health England, Porton Down, Salisbury SP4 0JG; Kirby, Jonathan M.

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA)more » into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.« less

  10. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions

    DOE PAGES

    Jiang, Jiansen; Chan, Henry; Cash, Darian D.; ...

    2015-10-15

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less

  11. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jiansen; Chan, Henry; Cash, Darian D.

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less

  12. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel

    PubMed Central

    La Fontaine, Alexandre; Zavgorodniy, Alexander; Liu, Howgwei; Zheng, Rongkun; Swain, Michael; Cairney, Julie

    2016-01-01

    Human dental enamel, the hardest tissue in the body, plays a vital role in protecting teeth from wear as a result of daily grinding and chewing as well as from chemical attack. It is well established that the mechanical strength and fatigue resistance of dental enamel are derived from its hierarchical structure, which consists of periodically arranged bundles of hydroxyapatite (HAP) nanowires. However, we do not yet have a full understanding of the in vivo HAP crystallization process that leads to this structure. Mg2+ ions, which are present in many biological systems, regulate HAP crystallization by stabilizing its precursor, amorphous calcium phosphate (ACP), but their atomic-scale distribution within HAP is unknown. We use atom probe tomography to provide the first direct observations of an intergranular Mg-rich ACP phase between the HAP nanowires in mature human dental enamel. We also observe Mg-rich elongated precipitates and pockets of organic material among the HAP nanowires. These observations support the postclassical theory of amelogenesis (that is, enamel formation) and suggest that decay occurs via dissolution of the intergranular phase. This information is also useful for the development of more accurate models to describe the mechanical behavior of teeth. PMID:27617291

  13. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel.

    PubMed

    La Fontaine, Alexandre; Zavgorodniy, Alexander; Liu, Howgwei; Zheng, Rongkun; Swain, Michael; Cairney, Julie

    2016-09-01

    Human dental enamel, the hardest tissue in the body, plays a vital role in protecting teeth from wear as a result of daily grinding and chewing as well as from chemical attack. It is well established that the mechanical strength and fatigue resistance of dental enamel are derived from its hierarchical structure, which consists of periodically arranged bundles of hydroxyapatite (HAP) nanowires. However, we do not yet have a full understanding of the in vivo HAP crystallization process that leads to this structure. Mg(2+) ions, which are present in many biological systems, regulate HAP crystallization by stabilizing its precursor, amorphous calcium phosphate (ACP), but their atomic-scale distribution within HAP is unknown. We use atom probe tomography to provide the first direct observations of an intergranular Mg-rich ACP phase between the HAP nanowires in mature human dental enamel. We also observe Mg-rich elongated precipitates and pockets of organic material among the HAP nanowires. These observations support the postclassical theory of amelogenesis (that is, enamel formation) and suggest that decay occurs via dissolution of the intergranular phase. This information is also useful for the development of more accurate models to describe the mechanical behavior of teeth.

  14. Crystal structure of the Vibrio cholerae colonization factor TcpF and identification of a functional immunogenic site.

    PubMed

    Megli, Christina J; Yuen, Alex S W; Kolappan, Subramaniapillai; Richardson, Malcolm R; Dharmasena, Madushini N; Krebs, Shelly J; Taylor, Ronald K; Craig, Lisa

    2011-06-03

    Vibrio cholerae relies on two main virulence factors--toxin-coregulated pilus (TCP) and cholera toxin--to cause the gastrointestinal disease cholera. TCP is a type IV pilus that mediates bacterial autoagglutination and colonization of the intestine. TCP is encoded by the tcp operon, which also encodes TcpF, a protein of unknown function that is secreted by V. cholerae in a TCP-dependent manner. Although TcpF is not required for TCP biogenesis, a tcpF mutant has a colonization defect in the infant mouse cholera model that is as severe as a pilus mutant. Furthermore, TcpF antisera protect against V. cholerae infection. TcpF has no apparent sequence homology to any known protein. Here, we report the de novo X-ray crystal structure of TcpF and the identification of an epitope that is critical for its function as a colonization factor. A monoclonal antibody recognizing this epitope is protective against V. cholerae challenge and adds to the protection provided by an anti-TcpA antibody. These data suggest that TcpF has a novel function in V. cholerae colonization and define a region crucial for this function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. First-Principles Characterization of the Unknown Crystal Structure and Ionic Conductivity of Li7P2S8I as a Solid Electrolyte for High-Voltage Li Ion Batteries.

    PubMed

    Kang, Joonhee; Han, Byungchan

    2016-07-21

    Using first-principles density functional theory calculations and ab initio molecular dynamics (AIMD) simulations, we demonstrate the crystal structure of the Li7P2S8I (LPSI) and Li ionic conductivity at room temperature with its atomic-level mechanism. By successively applying three rigorous conceptual approaches, we identify that the LPSI has a similar symmetry class as Li10GeP2S12 (LGPS) material and estimate the Li ionic conductivity to be 0.3 mS cm(-1) with an activation energy of 0.20 eV, similar to the experimental value of 0.63 mS cm(-1). Iodine ions provide an additional path for Li ion diffusion, but a strong Li-I attractive interaction degrades the Li ionic transport. Calculated density of states (DOS) for LPSI indicate that electrochemical instability can be substantially improved by incorporating iodine at the Li metallic anode via forming a LiI compound. Our methods propose the computational design concept for a sulfide-based solid electrolyte with heteroatom doping for high-voltage Li ion batteries.

  16. Proximity-Directed Labeling Reveals a New Rapamycin-Induced Heterodimer of FKBP25 and FRB in Live Cells

    PubMed Central

    2016-01-01

    Mammalian target of rapamycin (mTOR) signaling is a core pathway in cellular metabolism, and control of the mTOR pathway by rapamycin shows potential for the treatment of metabolic diseases. In this study, we employed a new proximity biotin-labeling method using promiscuous biotin ligase (pBirA) to identify unknown elements in the rapamycin-induced interactome on the FK506-rapamycin binding (FRB) domain in living cells. FKBP25 showed the strongest biotin labeling by FRB–pBirA in the presence of rapamycin. Immunoprecipitation and immunofluorescence experiments confirmed that endogenous FKBP25 has a rapamycin-induced physical interaction with the FRB domain. Furthermore, the crystal structure of the ternary complex of FRB–rapamycin–FKBP25 was determined at 1.67-Å resolution. In this crystal structure we found that the conformational changes of FRB generate a hole where there is a methionine-rich space, and covalent metalloid coordination was observed at C2085 of FRB located at the bottom of the hole. Our results imply that FKBP25 might have a unique physiological role related to metallomics in mTOR signaling. PMID:27610411

  17. Crystallization and preliminary X-ray analysis of Na-ASP-1, a multi-domain pathogenesis-related-1 protein from the human hookworm parasite Necator americanus

    PubMed Central

    Asojo, Oluwatoyin A.; Loukas, Alex; Inan, Mehmet; Barent, Rick; Huang, Jicai; Plantz, Brad; Swanson, Amber; Gouthro, Mark; Meagher, Michael M.; Hotez, Peter J.

    2005-01-01

    Human hookworm infection is a major cause of anemia and malnutrition in the developing world. In an effort to control hookworm infection, the Human Hookworm Vaccine Initiative has identified candidate vaccine antigens from the infective larval stage (L3) of the parasite, including a family of pathogenesis-related-1 (PR-1) proteins known as the ancylostoma-secreted proteins (ASPs). The functions of the ASPs are unknown. In addition, it is unclear why some ASPs have one while others have multiple PR-1 domains. There are no known structures of a multi-domain ASP and in an effort to remedy this situation, recombinant Na-ASP-1 has been expressed, purified and crystallized. Na-ASP-1 is a 406-amino-acid multi-domain ASP from the prevalent human hookworm parasite Necator americanus. Useful X-ray data to 2.2 Å have been collected from a crystal that belongs to the monoclinic space group P21 with unit-cell parameters a = 67.7, b = 74.27, c = 84.60 Å, β = 112.12°. An initial molecular-replacement solution has been obtained with one monomer in the asymmetric unit. PMID:16511050

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, J.-P.; Stehle, T.; Zhang, R.

    The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less

  19. Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family

    PubMed Central

    Ehrnstorfer, Ines A.; Manatschal, Cristina; Arnold, Fabian M.; Laederach, Juerg; Dutzler, Raimund

    2017-01-01

    Secondary active transporters of the SLC11/NRAMP family catalyse the uptake of iron and manganese into cells. These proteins are highly conserved across all kingdoms of life and thus likely share a common transport mechanism. Here we describe the structural and functional properties of the prokaryotic SLC11 transporter EcoDMT. Its crystal structure reveals a previously unknown outward-facing state of the protein family. In proteoliposomes EcoDMT mediates proton-coupled uptake of manganese at low micromolar concentrations. Mutants of residues in the transition-metal ion-binding site severely affect transport, whereas a mutation of a conserved histidine located near this site results in metal ion transport that appears uncoupled to proton transport. Combined with previous results, our study defines the conformational changes underlying transition-metal ion transport in the SLC11 family and it provides molecular insight to its coupling to protons. PMID:28059071

  20. Visualizing autophosphorylation in histidine kinases.

    PubMed

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.

  1. An Enzyme-Catalyzed Multistep DNA Refolding Mechanism in Hairpin Telomere Formation

    PubMed Central

    Shi, Ke; Huang, Wai Mun; Aihara, Hideki

    2013-01-01

    Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting–rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions. PMID:23382649

  2. Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide

    DOE PAGES

    Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu; ...

    2017-06-20

    Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less

  3. Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu

    Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less

  4. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis.

    PubMed

    Goblirsch, Brandon R; Jensen, Matthew R; Mohamed, Fatuma A; Wackett, Lawrence P; Wilmot, Carrie M

    2016-12-23

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys 143 ) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C 12 and C 14 ) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ 117 ) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Multigap superconductivity and Shubnikov-de Haas oscillations in single crystals of the layered boride OsB2

    NASA Astrophysics Data System (ADS)

    Singh, Yogesh; Martin, C.; Bud'Ko, S. L.; Ellern, A.; Prozorov, R.; Johnston, D. C.

    2010-10-01

    Single crystals of superconducting OsB2 [Tc=2.10(5)K] have been grown using a Cu-B eutectic flux. We confirm that OsB2 crystallizes in the reported orthorhombic structure (space group Pmmn ) at room temperature. Both the normal and superconducting state properties of the crystals are studied using various techniques. Heat capacity versus temperature C(T) measurements yield the normal state electronic specific heat coefficient γ=1.95(1)mJ/molK2 and the Debye temperature ΘD=539(2)K . The measured frequencies of Shubnikov-de Haas oscillations are in good agreement with those predicted by band structure calculations. Magnetic susceptibility χ(T,H) , electrical resistivity ρ(T) , and C(T,H) measurements ( H is the magnetic field) demonstrate that OsB2 is a bulk low- κ [κ(Tc)=2(1)] type-II superconductor that is intermediate between the clean and dirty limits [(ξ(T=0)/ℓ=0.97)] with a small upper critical magnetic field Hc2(T=0)=186(4)Oe . The penetration depth is λ(T=0)=0.300μm . An anomalous (not single-gap BCS) T dependence of λ was fitted by a two-gap model with Δ1(T=0)/kBTc=1.9 and Δ2(T=0)/kBTc=1.25 , respectively. The discontinuity in the heat capacity at Tc , ΔC/γTc=1.32 , is smaller than the weak-coupling BCS value of 1.43, consistent with the two-gap nature of the superconductivity in OsB2 . An anomalous increase in ΔC at Tc of unknown origin is found in finite H ; e.g., ΔC/γTc≈2.5 for H≈25Oe .

  6. Identification and properties of the non-cubic phases of Mg 2Pb

    DOE PAGES

    Li, Yuwei; Bian, Guang; Singh, David J.

    2016-12-20

    Mg 2Pb occurs in the cubic fluorite structure and is a semimetal with a band structure strongly affected by spin-orbit interaction on the Pb p states. Its properties are therefore of interest in the context of topological materials. In addition a different phase of Mg 2Pb was experimentally reported, but its crystal structure and properties remain unknown. Here we determine the structure of this phase using ab initio evolutionary methods and report its properties. The energy of one tetragonal phase, space group P4/ nmm, is 2 meV per atom higher than that of the ground state structure supporting the experimentalmore » observation. We find this tetragonal phase to be a compenstated anisotropic metal with strong spin orbit effects. As a result, many other metastable structures have also been identified, especially one orthorhombic structure, space group Pnma, of which energy is 17 meV per atom higher than that of ground state structure and which perhaps could be the phase that was reported based on similarity of lattice parameters.« less

  7. Packing C60 in Boron Nitride Nanotubes

    NASA Astrophysics Data System (ADS)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  8. Compositional zoning and its significance in pyroxenes from three coarse-grained lunar samples.

    PubMed

    Hargraves, R B; Hollister, L S; Otalora, G

    1970-01-30

    The calcium-rich pyroxenes in lunar samples 10047, 10058, and 10062 show pronounced sectoral and radial compositional variations which correlate with sharp to gradual variations in color and optical properties. The pyroxenes apparently grew as nearly euhedral crystals from melts of approximately the same composition as that of the samples. The coupled substitutions determined across sector boundaries suggest that Al is predominantly in the tetrahedral site and that Ti is predominantly quadrivalent. The pyroxene differentiation trend (unknown in terrestrial pyroxenes) is toward extreme enrichment in the ferrosilite molecule. The iron-enriched portions of the pyroxene grains may have grown with a triclinic pyroxenoid structure.

  9. Calcium aluminate in alumina

    NASA Astrophysics Data System (ADS)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to complement the studies carried out on the calcium aluminate phases, energy-loss near-edge structure (ELNES) fingerprints of CA2 and CA6 were obtained. It was shown that it is possible to distinguish these phases from each other by comparing the ELNES fingerprints. Theoretical calculations of ELNES were used to assign spectral features to certain symmetry environments that can later be used to understand the structures of unknown materials.

  10. Site-directed spin labeling reveals a conformational switch in the phosphorylation domain of smooth muscle myosin.

    PubMed

    Nelson, Wendy D; Blakely, Sarah E; Nesmelov, Yuri E; Thomas, David D

    2005-03-15

    We have used site-directed spin labeling and EPR spectroscopy to detect structural changes within the regulatory light chain (RLC) of smooth muscle myosin upon phosphorylation. Smooth muscle contraction is activated by phosphorylation of S19 on RLC, but the structural basis of this process is unknown. There is no crystal structure containing a phosphorylated RLC, and there is no crystal structure for the N-terminal region of any RLC. Therefore, we have prepared single-Cys mutations throughout RLC, exchanged each mutant onto smooth muscle heavy meromyosin, verified normal regulatory function, and used EPR to determine dynamics and solvent accessibility at each site. A survey of spin-label sites throughout the RLC revealed that only the N-terminal region (first 24 aa) shows a significant change in dynamics upon phosphorylation, with most of the first 17 residues showing an increase in rotational amplitude. Therefore, we focused on this N-terminal region. Additional structural information was obtained from the pattern of oxygen accessibility along the sequence. In the absence of phosphorylation, little or no periodicity was observed, suggesting a lack of secondary structural order in this region. However, phosphorylation induced a strong helical pattern (3.6-residue periodicity) in the first 17 residues, while increasing accessibility throughout the first 24 residues. We have identified a domain within RLC, the N-terminal phosphorylation domain, in which phosphorylation increases helical order, internal dynamics, and accessibility. These results support a model in which this disorder-to-order transition within the phosphorylation domain results in decreased head-head interactions, activating myosin in smooth muscle.

  11. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations.

    PubMed Central

    Hodel, A.; Rice, L. M.; Simonson, T.; Fox, R. O.; Brünger, A. T.

    1995-01-01

    Staphylococcal nuclease A exists in two folded forms that differ in the isomerization state of the Lys 116-Pro 117 peptide bond. The dominant form (90% occupancy) adopts a cis peptide bond, which is observed in the crystal structure. NMR studies show that the relatively small difference in free energy between the cis and trans forms (delta Gcis-->trans approximately 1.2 kcal/mol) results from large and nearly compensating differences in enthalpy and entropy (delta Hcis-->trans approximately delta TScis-->trans approximately 10 kcal/mol). There is evidence from X-ray crystal structures that the structural differences between the cis and the trans forms of nuclease are confined to the conformation of residues 112-117, a solvated protein loop. Here, we obtain a thermodynamic and structural description of the conformational equilibrium of this protein loop through an exhaustive conformational search that identified several substates followed by free energy simulations between the substrates. By partitioning the search into conformational substates, we overcame the multiple minima problem in this particular case and obtained precise and reproducible free energy values. The protein and water environment was implicitly modeled by appropriately chosen nonbonded terms between the explicitly treated loop and the rest of the protein. These simulations correctly predicted a small free energy difference between the cis and trans forms composed of larger, compensating differences in enthalpy and entropy. The structural predictions of these simulations were qualitatively consistent with known X-ray structures of nuclease variants and yield a model of the unknown minor trans conformation. PMID:7613463

  12. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1

    PubMed Central

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J. Preben; Andreasen, Peter A.; Jensen, Jan K.

    2016-01-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). PMID:27189939

  13. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, Ana; Hai, Tran; Tchigvintsev, Anatoly

    Metagenomics has made accessible an enormous reserve of global biochemical diversity. In order to tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. Here, we validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalyticmore » residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools.« less

  14. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families

    DOE PAGES

    Popovic, Ana; Hai, Tran; Tchigvintsev, Anatoly; ...

    2017-03-08

    Metagenomics has made accessible an enormous reserve of global biochemical diversity. In order to tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. Here, we validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalyticmore » residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools.« less

  15. Multi-Step Crystallization of Barium Carbonate: Rapid Interconversion of Amorphous and Crystalline Precursors.

    PubMed

    Whittaker, Michael L; Smeets, Paul J M; Asayesh-Ardakani, Hasti; Shahbazian-Yassar, Reza; Joester, Derk

    2017-12-11

    The direct observation of amorphous barium carbonate (ABC), which transforms into a previously unknown barium carbonate hydrate (herewith named gortatowskite) within a few hundred milliseconds of formation, is described. In situ X-ray scattering, cryo-, and low-dose electron microscopy were used to capture the transformation of nanoparticulate ABC into gortatowskite crystals, highly anisotropic sheets that are up to 1 μm in width, yet only about 10 nm in thickness. Recrystallization of gortatowskite to witherite starts within 30 seconds. We describe a bulk synthesis and report a first assessment of the composition, vibrational spectra, and structure of gortatowskite. Our findings indicate that transient amorphous and crystalline precursors can play a role in aqueous precipitation pathways that may often be overlooked owing to their extremely short lifetimes and small dimensions. However, such transient precursors may be integral to the formation of more stable phases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Searching for “LiCrIIPO4”

    NASA Astrophysics Data System (ADS)

    Mosymow, E.; Glaum, R.; Kremer, R. K.

    2014-10-01

    The two new phosphates LiCrII4(PO4)3 and Li5CrII2CrIII(PO4)4 are discovered as equilibrium phases (ϑ=800 °C) in the quarternary system Li/Cr/P/O. Their crystal structures have been determined from single-crystal X-ray diffraction data {LiCrII4(PO4)3: violet-blue, Pnma (no. 62), Z=4, a=6.175(1) Å, b=14.316(3) Å, c=10.277(2) Å, 100 parameters, R1=0.028, wR2=0.08, 2060 unique reflections with Fo>4σ(Fo); Li5CrII2CrIII(PO4)4: greyish-green, P1bar (no. 2), Z=1, a=4.9379(7) Å, b=7.917(2) Å, c=8.426(2) Å, α=109.98(2)°, β=90.71(1)°, γ=104.91(1)°, 131 parameters, R1=0.022, wR2=0.067, 1594 unique reflections with Fo>4σ(Fo)}. Li5CrII2CrIII(PO4)4 adopts an hitherto unknown structure type. The crystal structure of LiCrII4(PO4)3 is isotypic to that of NaCdII4(PO4)3 and related to that of the mineral silicocarnotite Ca5(PO4)2(SiO4). Significant disorder between Li+ and Cr2+ is observed for both crystal structures. The oxidation states assigned to chromium in these two phosphates are in agreement with UV/vis/NIR absorption spectra and magnetic susceptibility data recorded for both compounds. Instead of “LiCrIIPO4” mixtures of LiCrII4(PO4)3, Li5CrII2CrIII(PO4)4, Cr2O3, and CrP are observed at equilibrium. Instead of “Li2CrIIP2O7” four-phase mixtures consisting of Li9CrIII3(P2O7)3(PO4)2, Li3CrIII2(PO4)3, LiCrP2O7, and CrP were obtained.

  17. Interaction of copper with dinitrogen tetroxide in 1-butyl-3-methylimidazolium-based ionic liquids.

    PubMed

    Morozov, I V; Deeva, E B; Glazunova, T Yu; Troyanov, S I; Guseinov, F I; Kustov, L M

    2017-03-27

    Ionic liquids that are stable toward oxidation and nitration and are based on the 1-n-butyl-3-methylimidazolium cation (BMIm + ) can be used as solvents and reaction media for copper dissolution in liquid dinitrogen tetraoxide N 2 O 4 . The ionic liquid not only favors the dissociation of N 2 O 4 into NO + and NO 3 - , but also takes part in the formation of different crystalline products. Thus, NO[BF 4 ], NO[Cu(NO 3 ) 3 ] and (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were prepared using (BMIm)A, A - = [BF 4 ] - , (CF 3 SO 2 ) 2 N - , CF 3 COO - , respectively. The formation of a certain product is determined by the nature of the anion A - and the relative solubility of the reaction products in the ionic liquid. Crystals of NO[BF 4 ] were also prepared directly from a mixture of N 2 O 4 and BMImBF 4 . According to XRD single-crystal structure analysis, the structure of NO[BF 4 ] consists of tetrahedral [BF 4 ] - anions and nitrosonium NO + cations; the formation of these ions prove the heterolytic dissociation of N 2 O 4 dissolved in the ionic liquid. The crystal structure of the earlier unknown binuclear copper trifluoroacetate (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were determined by X-ray diffraction. The peculiarity of this dimer compared to the majority of known dimeric copper(ii) carboxylates is the unusually long CuCu distance (3.15 Å), with Cu(ii) ions demonstrating an atypical coordination of a distorted trigonal bipyramid formed by five O atoms of five trifluoroacetate groups.

  18. Structural mechanism of laforin function in glycogen dephosphorylation and lafora disease.

    PubMed

    Raththagala, Madushi; Brewer, M Kathryn; Parker, Matthew W; Sherwood, Amanda R; Wong, Brian K; Hsu, Simon; Bridges, Travis M; Paasch, Bradley C; Hellman, Lance M; Husodo, Satrio; Meekins, David A; Taylor, Adam O; Turner, Benjamin D; Auger, Kyle D; Dukhande, Vikas V; Chakravarthy, Srinivas; Sanz, Pascual; Woods, Virgil L; Li, Sheng; Vander Kooi, Craig W; Gentry, Matthew S

    2015-01-22

    Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations

    DOE PAGES

    Yu, Hongjun; Takeuchi, Hideyuki; Takeuchi, Megumi; ...

    2016-07-18

    We present Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development, including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi's critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary and ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence, C-X-S-X-(P/A)-C and amore » conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling–Degos disease are clustered around the enzyme active site and adversely affect its activity. In conclusion, our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling.« less

  20. Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations

    PubMed Central

    Yu, Hongjun; Takeuchi, Hideyuki; Takeuchi, Megumi; Liu, Qun; Kantharia, Joshua; Haltiwanger, Robert S.; Li, Huilin

    2016-01-01

    Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi’s critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary or ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism, and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence, C-X-S-X-(P/A)-C and a conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling-Degos disease are clustered around the enzyme active site and adversely affect its activity. Our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling. PMID:27428513

  1. Kinetic gating mechanism of DNA damage recognition by Rad4/XPC

    NASA Astrophysics Data System (ADS)

    Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; Park, Beomseok; Shim, Yoonjung; Kim, Youngchang; Liu, Lili; van Houten, Bennett; He, Chuan; Ansari, Anjum; Min, Jung-Hyun

    2015-01-01

    The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivity arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.

  2. Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Christine A.; Zhou, Mowei; Song, Yang

    Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase, Mnx, in Bacillus sp. PL-12 is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. However, MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant tomore » crystallization, so its structure is unknown. In this study, native mass spectrometry defines the subunit topology and copper binding of the Mnx complex, while high resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for conceptualizing how Mnx produces nanoparticulate Mn oxides.« less

  3. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaoming; Gelinas, Amy D.; von Carlowitz, Ira

    IL-1α is an essential cytokine that contributes to inflammatory responses and is implicated in various forms of pathogenesis and cancer. Here we report a naphthyl modified DNA aptamer that specifically binds IL-1α and inhibits its signaling pathway. By solving the crystal structure of the IL-1α/aptamer, we provide a high-resolution structure of this critical cytokine and we reveal its functional interaction interface with high-affinity ligands. The non-helical aptamer, which represents a highly compact nucleic acid structure, contains a wealth of new conformational features, including an unknown form of G-quadruplex. The IL-1α/aptamer interface is composed of unusual polar and hydrophobic elements, alongmore » with an elaborate hydrogen bonding network that is mediated by sodium ion. IL-1α uses the same interface to interact with both the aptamer and its cognate receptor IL-1RI, thereby suggesting a novel route to immunomodulatory therapeutics.« less

  4. Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hongjun; Takeuchi, Hideyuki; Takeuchi, Megumi

    We present Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development, including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi's critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary and ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence, C-X-S-X-(P/A)-C and amore » conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling–Degos disease are clustered around the enzyme active site and adversely affect its activity. In conclusion, our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling.« less

  5. Kinetic gating mechanism of DNA damage recognition by Rad4/XPC

    DOE PAGES

    Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; ...

    2015-01-06

    The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivitymore » arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Lastly, kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.« less

  6. Structure of human Niemann–Pick C1 protein

    PubMed Central

    Li, Xiaochun; Wang, Jiawei; Coutavas, Elias; Shi, Hang; Hao, Qi; Blobel, Günter

    2016-01-01

    Niemann–Pick C1 protein (NPC1) is a late-endosomal membrane protein involved in trafficking of LDL-derived cholesterol, Niemann–Pick disease type C, and Ebola virus infection. NPC1 contains 13 transmembrane segments (TMs), five of which are thought to represent a “sterol-sensing domain” (SSD). Although present also in other key regulatory proteins of cholesterol biosynthesis, uptake, and signaling, the structure and mechanism of action of the SSD are unknown. Here we report a crystal structure of a large fragment of human NPC1 at 3.6 Å resolution, which reveals internal twofold pseudosymmetry along TM 2–13 and two structurally homologous domains that protrude 60 Å into the endosomal lumen. Strikingly, NPC1's SSD forms a cavity that is accessible from both the luminal bilayer leaflet and the endosomal lumen; computational modeling suggests that this cavity is large enough to accommodate one cholesterol molecule. We propose a model for NPC1 function in cholesterol sensing and transport. PMID:27307437

  7. The inner workings of the hydrazine synthase multiprotein complex.

    PubMed

    Dietl, Andreas; Ferousi, Christina; Maalcke, Wouter J; Menzel, Andreas; de Vries, Simon; Keltjens, Jan T; Jetten, Mike S M; Kartal, Boran; Barends, Thomas R M

    2015-11-19

    Anaerobic ammonium oxidation (anammox) has a major role in the Earth's nitrogen cycle and is used in energy-efficient wastewater treatment. This bacterial process combines nitrite and ammonium to form dinitrogen (N2) gas, and has been estimated to synthesize up to 50% of the dinitrogen gas emitted into our atmosphere from the oceans. Strikingly, the anammox process relies on the highly unusual, extremely reactive intermediate hydrazine, a compound also used as a rocket fuel because of its high reducing power. So far, the enzymatic mechanism by which hydrazine is synthesized is unknown. Here we report the 2.7 Å resolution crystal structure, as well as biophysical and spectroscopic studies, of a hydrazine synthase multiprotein complex isolated from the anammox organism Kuenenia stuttgartiensis. The structure shows an elongated dimer of heterotrimers, each of which has two unique c-type haem-containing active sites, as well as an interaction point for a redox partner. Furthermore, a system of tunnels connects these active sites. The crystal structure implies a two-step mechanism for hydrazine synthesis: a three-electron reduction of nitric oxide to hydroxylamine at the active site of the γ-subunit and its subsequent condensation with ammonia, yielding hydrazine in the active centre of the α-subunit. Our results provide the first, to our knowledge, detailed structural insight into the mechanism of biological hydrazine synthesis, which is of major significance for our understanding of the conversion of nitrogenous compounds in nature.

  8. Structural insights of the MLF1/14-3-3 interaction.

    PubMed

    Molzan, Manuela; Weyand, Michael; Rose, Rolf; Ottmann, Christian

    2012-02-01

    Myeloid leukaemia factor 1 (MLF1) binds to 14-3-3 adapter proteins by a sequence surrounding Ser34 with the functional consequences of this interaction largely unknown. We present here the high-resolution crystal structure of this binding motif [MLF1(29-42)pSer34] in complex with 14-3-3ε and analyse the interaction with isothermal titration calorimetry. Fragment-based ligand discovery employing crystals of the binary 14-3-3ε/MLF1(29-42)pSer34 complex was used to identify a molecule that binds to the interface rim of the two proteins, potentially representing the starting point for the development of a small molecule that stabilizes the MLF1/14-3-3 protein-protein interaction. Such a compound might be used as a chemical biology tool to further analyse the 14-3-3/MLF1 interaction without the use of genetic methods. Database Structural data are available in the Protein Data Bank under the accession number(s) 3UAL [14-3-3ε/MLF1(29-42)pSer34 complex] and 3UBW [14-3-3ε/MLF1(29-42)pSer34/3-pyrrolidinol complex] Structured digital abstract •  14-3-3 epsilon and MLF1 bind by x-ray crystallography (View interaction) •  14-3-3 epsilon and MLF1 bind by isothermal titration calorimetry (View Interaction: 1, 2). © 2011 The Authors Journal compilation © 2011 FEBS.

  9. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor.

    PubMed

    Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min

    2015-06-18

    Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xing; Zhang, Lei; Tong, Huimin

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  11. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterialmore » and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.« less

  12. Open Access Internet Resources for Nano-Materials Physics Education

    NASA Astrophysics Data System (ADS)

    Moeck, Peter; Seipel, Bjoern; Upreti, Girish; Harvey, Morgan; Garrick, Will

    2006-05-01

    Because a great deal of nano-material science and engineering relies on crystalline materials, materials physicists have to provide their own specific contributions to the National Nanotechnology Initiative. Here we briefly review two freely accessible internet-based crystallographic databases, the Nano-Crystallography Database (http://nanocrystallography.research.pdx.edu) and the Crystallography Open Database (http://crystallography.net). Information on over 34,000 full structure determinations are stored in these two databases in the Crystallographic Information File format. The availability of such crystallographic data on the internet in a standardized format allows for all kinds of web-based crystallographic calculations and visualizations. Two examples of which that are dealt with in this paper are: interactive crystal structure visualizations in three dimensions and calculations of lattice-fringe fingerprints for the identification of unknown nanocrystals from their atomic-resolution transmission electron microscopy images.

  13. Electronic structure of multi-walled carbon fullerenes

    NASA Astrophysics Data System (ADS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V.; Kidd, Tim E.; Stollenwerk, Andrew J.

    2017-02-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahlenberg, Volker; Konzett, Juergen; Kaindl, Reinhard

    High-pressure synthesis experiments in the system Na{sub 2}O-Y{sub 2}O{sub 3}-SiO{sub 2} revealed the existence of a previously unknown polymorph of NaYSi{sub 2}O{sub 6} or Na{sub 3}Y{sub 3}[Si{sub 3}O{sub 9}]{sub 2} which was quenched from 3.0 GPa and 1000 deg. C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi{sub 2}O{sub 6} crystallizes in the centrosymmetric space group C2/c with 12 formula units per cell (a=8.2131(9) A, b=10.3983(14) A, c=17.6542(21) A, {beta}=100.804(9){sup o}, V=1481.0(3) A{sup 3}, R(|F|)=0.033 formore » 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si{sub 3}O{sub 9}] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up (U) or down (D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed. - Graphical abstract: Projection of the whole structure of high-P NaYSi{sub 2}O{sub 6} parallel to [100].« less

  15. Expanding pH screening space using multiple droplets with secondary buffers for protein crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Chen-Yan; Dong, Chen; Lu, Xiao-Li; Wang, Bei; He, Tian-Yuan; Yang, Rui-Zeng; Lin, Hua-Long; Yang, Xue-Zhou; Yin, Da-Chuan

    2017-04-01

    We have proposed a rational strategy for selecting a suitable pH of protein solution based on protein biochemical properties. However, it is difficult to use this strategy for biochemical properties unknown proteins. In this paper, a simpler and faster pH buffer strategy was proposed. An additional pH-controlling buffer was added to crystallization droplet mixed with protein solution and commercial crystallization reagents to adjust its pH. The results revealed that protein crystallization success rates were enhanced by this strategy due to expansion of the pH screening space, which was closely related with protein solubility. Thus, the possibility of reaching supersaturation was increased by using this strategy.

  16. Crystal structure of cobalt hydroxide carbonate Co2CO3(OH)2: density functional theory and X-ray diffraction investigation.

    PubMed

    González-López, Jorge; Cockcroft, Jeremy K; Fernández-González, Ángeles; Jimenez, Amalia; Grau-Crespo, Ricardo

    2017-10-01

    The cobalt carbonate hydroxide Co 2 CO 3 (OH) 2 is a technologically important solid which is used as a precursor for the synthesis of cobalt oxides in a wide range of applications. It also has relevance as a potential immobilizer of the toxic element cobalt in the natural environment, but its detailed crystal structure is so far unknown. The structure of Co 2 CO 3 (OH) 2 has now been investigated using density functional theory (DFT) simulations and powder X-ray diffraction (PXRD) measurements on samples synthesized via deposition from aqueous solution. Two possible monoclinic phases are considered, with closely related but symmetrically different crystal structures, based on those of the minerals malachite [Cu 2 CO 3 (OH) 2 ] and rosasite [Cu 1.5 Zn 0.5 CO 3 (OH) 2 ], as well as an orthorhombic phase that can be seen as a common parent structure for the two monoclinic phases, and a triclinic phase with the structure of the mineral kolwezite [Cu 1.34 Co 0.66 CO 3 (OH) 2 ]. The DFT simulations predict that the rosasite-like and malachite-like phases are two different local minima of the potential energy landscape for Co 2 CO 3 (OH) 2 and are practically degenerate in energy, while the orthorhombic and triclinic structures are unstable and experience barrierless transformations to the malachite phase upon relaxation. The best fit to the PXRD data is obtained using a rosasite model [monoclinic with space group P112 1 /n and cell parameters a = 3.1408 (4) Å, b = 12.2914 (17) Å, c = 9.3311 (16) Å and γ = 82.299 (16)°]. However, some features of the PXRD pattern are still not well accounted for by this refinement and the residual parameters are relatively poor. The relationship between the rosasite and malachite phases of Co 2 CO 3 (OH) 2 is discussed and it is shown that they can be seen as polytypes. Based on the similar calculated stabilities of these two polytypes, it is speculated that some level of stacking disorder could account for the poor fit of the PXRD data. The possibility that Co 2 CO 3 (OH) 2 could crystallize, under different growth conditions, as either rosasite or malachite, or even as a stacking-disordered phase intermediate between the two, requires further investigation.

  17. Characterization, crystallization and preliminary X-ray diffraction analysis of an (S)-specific esterase (pfEstA) from Pseudomonas fluorescens KCTC 1767: enantioselectivity for potential industrial applications.

    PubMed

    Kim, Seulgi; Ngo, Tri Duc; Kim, Kyeong Kyu; Kim, T Doohun

    2012-11-01

    The structures and reaction mechanisms of enantioselective hydrolases, which can be used in industrial applications such as biotransformations, are largely unknown. Here, the X-ray crystallographic study of a novel (S)-specific esterase (pfEstA) from Pseudomonas fluorescens KCTC 1767, which can be used in the production of (S)-ketoprofen, is described. Multiple sequence alignments with other hydrolases revealed that pfEstA contains a conserved Ser67 within the S-X-X-K motif as well as a highly conserved Tyr156. Recombinant protein containing an N-terminal His tag was expressed in Escherichia coli, purified to homogeneity and characterized using SDS-PAGE, MALDI-TOF MS and enantioselective analysis. pfEstA was crystallized using a solution consisting of 1 M sodium citrate, 0.1 M CHES pH 9.5, and X-ray diffraction data were collected to a resolution of 1.9 Å with an Rmerge of 7.9%. The crystals of pfEstA belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=65.31, b=82.13, c=100.41 Å, α=β=γ=90°.

  18. Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method

    NASA Astrophysics Data System (ADS)

    Kodera, Masako; Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Yoshioka, Akira; Sugiyama, Toru; Hamamoto, Takeshi; Miyashita, Naoto

    2018-04-01

    Recently, we have developed a two-dimensional (2D) fast-Fourier-transform (FFT) sampling Moiré technique to visually and quantitatively determine the locations of minute defects in a transmission electron microscopy (TEM) image. We applied this technique for defect detection with GaN high electron mobility transistor (HEMT) devices, and successfully and clearly visualized atom-size defects in AlGaN/GaN crystalline structures. The defect density obtained in the AlGaN/GaN structures is ∼1013 counts/cm2. In addition, we have successfully confirmed that the distribution and number of defects closely depend on the process conditions. Thus, this technique is quite useful for a device development. Moreover, the strain fields in an AlGaN/GaN crystal were effectively calculated with nm-scale resolution using this method. We also demonstrated that this sampling Moiré technique is applicable to silicon devices, which have principal directions different from those of AlGaN/GaN crystals. As a result, we believe that the 2D FFT sampling Moiré method has great potential applications to the discovery of new as yet unknown phenomena occurring between the characteristics of a crystalline material and device performance.

  19. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    PubMed

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. In search of the elusive IrB{sub 2}: Can mechanochemistry help?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Department of Physics, University of Central Florida, Orlando, FL 32816

    The previously unknown hexagonal ReB{sub 2}-type IrB{sub 2} diboride and orthorhombic IrB monoboride phases were produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. In addition to XRD, scanning electron microscopy and transmission electron microscopy were employed to further characterize the microstructure of the phases produced. - Graphical abstract: ReB{sub 2}-type IrB{submore » 2} and a new IrB have been successfully synthesized for the first time using mechanochemical method. Crystal structures of IrB{sub 2} and IrB were studied by synchrotron X-ray diffraction. Microstructures of the new phases were characterized by SEM and TEM. - Highlights: • ReB{sub 2}-type IrB{sub 2} and a new IrB have been synthesized by mechanochemical method. • Crystal structures of IrB{sub 2} and IrB were studied by synchrotron XRD. • Microstructures of the new phases were characterized by SEM and TEM.« less

  1. Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys

    NASA Astrophysics Data System (ADS)

    Jin, Moon-Seog; Kim, Chang-Dae; Jang, Kiwan; Park, Sang-An; Kim, Duck-Tae; Kim, Hyung-Gon; Kim, Wha-Tek

    2006-09-01

    Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys were investigated in the composition region of 0.0 x 0.4 and in the wavelength region of 300 to 2500 nm at 4.8 K and 290 K. We observed several absorption bands in the wavelength regions corresponding to the 4A2(4F) 4T1(4P) transition and the 4A2(4F) 4T1(4F) transition of Co2+ at a tetrahedral Td point symmetry point in the host crystals, as well as unknown absorption bands. The several absorption bands were analyzed in the framework of the crystal-field theory along with the second-order spin-orbit coupling. The unknown absorption bands were assigned as due to phonon-assisted absorption bands. We also investigated the variations of the crystal-field parameter Dq and the Racah parameter B with composition x in the Mgx Cd1-x Se system. The results showed that the crystal-field parameter (Dq ) increases, on the other hand, the Racah parameter (B ) decreases with increasing composition x, which may be connected with an increase in the covalency of the metal-ligand bond with increasing composition x in the Mgx Cd1-x Se system.

  2. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booe, Jason M.; Walker, Christopher S.; Barwell, James

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less

  3. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor

    DOE PAGES

    Booe, Jason M.; Walker, Christopher S.; Barwell, James; ...

    2015-05-14

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less

  4. Prediction of a common beta-propeller catalytic domain for fructosyltransferases of different origin and substrate specificity.

    PubMed

    Pons, T; Hernández, L; Batista, F R; Chinea, G

    2000-11-01

    The three-dimensional (3D) structure of fructan biosynthetic enzymes is still unknown. Here, we have explored folding similarities between reported microbial and plant enzymes that catalyze transfructosylation reactions. A sequence-structure compatibility search using TOPITS, SDP, 3D-PSSM, and SAM-T98 programs identified a beta-propeller fold with scores above the confidence threshold that indicate a structurally conserved catalytic domain in fructosyltransferases (FTFs) of diverse origin and substrate specificity. The predicted fold appeared related to that of neuraminidase and sialidase, of glycoside hydrolase families 33 and 34, respectively. The most reliable structural model was obtained using the crystal structure of neuraminidase (Protein Data Bank file: 5nn9) as template, and it is consistent with the location of previously identified functional residues of bacterial levansucrases (Batista et al., 1999; Song & Jacques, 1999). The sequence-sequence analysis presented here reinforces the recent inclusion of fungal and plant FTFs into glycoside hydrolase family 32, and suggests a modified sequence pattern H-x (2)-[PTV]-x (4)-[LIVMA]-[NSCAYG]-[DE]-P-[NDSC][GA]3 for this family.

  5. Prediction of a common beta-propeller catalytic domain for fructosyltransferases of different origin and substrate specificity.

    PubMed Central

    Pons, T.; Hernández, L.; Batista, F. R.; Chinea, G.

    2000-01-01

    The three-dimensional (3D) structure of fructan biosynthetic enzymes is still unknown. Here, we have explored folding similarities between reported microbial and plant enzymes that catalyze transfructosylation reactions. A sequence-structure compatibility search using TOPITS, SDP, 3D-PSSM, and SAM-T98 programs identified a beta-propeller fold with scores above the confidence threshold that indicate a structurally conserved catalytic domain in fructosyltransferases (FTFs) of diverse origin and substrate specificity. The predicted fold appeared related to that of neuraminidase and sialidase, of glycoside hydrolase families 33 and 34, respectively. The most reliable structural model was obtained using the crystal structure of neuraminidase (Protein Data Bank file: 5nn9) as template, and it is consistent with the location of previously identified functional residues of bacterial levansucrases (Batista et al., 1999; Song & Jacques, 1999). The sequence-sequence analysis presented here reinforces the recent inclusion of fungal and plant FTFs into glycoside hydrolase family 32, and suggests a modified sequence pattern H-x (2)-[PTV]-x (4)-[LIVMA]-[NSCAYG]-[DE]-P-[NDSC][GA]3 for this family. PMID:11305239

  6. Structure-Based Annotation of a Novel Sugar Isomerase from the Pathogenic E. coli O157:H7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Staalduinen, L.; Park, C; Yeom, S

    2010-01-01

    Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a 'hypothetical' protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 {angstrom} resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable ofmore » acting on D-lyxose and D-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.« less

  7. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    DOE PAGES

    McGuire, Michael A.; Rios, Orlando

    2015-02-05

    Amorphous Hf 2Co 11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo 7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo 7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °Cmore » contains HfCo3B 2, Hf 6Co 23 and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf 2Co 11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo 7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.« less

  8. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  9. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1: FUNCTIONAL INTERACTIONS BETWEEN THE KUNITZ-TYPE INHIBITOR DOMAIN-1 AND THE NEIGHBORING POLYCYSTIC KIDNEY DISEASE-LIKE DOMAIN.

    PubMed

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J Preben; Andreasen, Peter A; Jensen, Jan K

    2016-07-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Impact of Chemical Substitutions on Interfacial Properties of REE Orthophosphates (Monazite, Xenotime)

    NASA Astrophysics Data System (ADS)

    Gamage McEvoy, J.; Thibault, Y.

    2016-12-01

    Mineral surface properties strongly influence liquid-solid interface behaviour in the presence of various ligands, and can significantly affect processes of natural (ex. fluids, melts) and industrial (ex. oil recovery) relevance. Many Rare Earth Element (REE)-bearing minerals display extensive solid solutions resulting in significant chemical variations which influence their crystal and surface properties and, can consequently impact the interfacial features of their interaction with substances such as organic molecules (i.e. reactivity and sorption). For example, the surface charge properties of some REE orthophosphates show an uncharacteristically wide variation in reported values, where large differences in literature are commonly attributed to compositional differences between samples. However the impact of these chemical substitutions remains largely unknown. As such, the aim of this research was to systematically investigate the influence of mineralogical variation within the compositional space of the REE orthophosphates on their surface chemistry and resulting interaction with organic molecules. To better isolate the chemical, structural, and morphological variables, the synthesis of REE orthophosphate crystals along a number of defined substitutions was conducted, and their surface chemistry characteristics benchmarked against well-characterized natural monazite and xenotime from various localities. The interaction of these crystal surfaces with model organic molecules (long chain carboxylic acids and alkyl hydroxamic acids, respectively) was then studied and characterized via surface (X-ray photoelectron) and near-surface (vibrational) spectroscopic techniques. The implications of crystal surface-organic molecule interactions to mineral processing through flotation were also experimentally investigated.

  11. Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major.

    PubMed

    Meleppattu, Shimi; Arthanari, Haribabu; Zinoviev, Alexandra; Boeszoermenyi, Andras; Wagner, Gerhard; Shapira, Michal; Léger-Abraham, Mélissa

    2018-03-19

    Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites' life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5' mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.

  12. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor.

    PubMed

    Burg, John S; Ingram, Jessica R; Venkatakrishnan, A J; Jude, Kevin M; Dukkipati, Abhiram; Feinberg, Evan N; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O; Ploegh, Hidde L; Garcia, K Christopher

    2015-03-06

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor's inactive state. Copyright © 2015, American Association for the Advancement of Science.

  13. Architecture of the Synaptotagmin-SNARE Machinery for Neuronal Exocytosis

    PubMed Central

    Zhou, Qiangjun; Lai, Ying; Bacaj, Taulant; Zhao, Minglei; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Brewster, Aaron S.; Sauter, Nicholas K.; Cohen, Aina E.; Soltis, S. Michael; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Pfuetzner, Richard A.; Choi, Ucheor B.; Weis, William I.; Diao, Jiajie; Südhof, Thomas C.; Brunger, Axel T.

    2015-01-01

    Summary Synaptotagmin-1 and neuronal SNARE proteins play key roles in evoked synchronous neurotransmitter release. However, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca2+- and Mg2+-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many sidechains. The structures revealed several interfaces, including a large, specific, Ca2+-independent, and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca2+-triggered neurotransmitter release in neuronal synapses and for Ca2+-triggered vesicle fusion in a reconstituted system. We propose that this interface forms prior to Ca2+-triggering, and moves en bloc as Ca2+ influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces. PMID:26280336

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremin, N. N., E-mail: neremin@geol.msu.ru; Grechanovsky, A. E.; Marchenko, E. I.

    Semi-empirical and ab initio theoretical investigation of crystal structure geometry, interatomic distances, phase densities and elastic properties for some CaAl{sub 2}O{sub 4} phases under pressures up to 200 GPa was performed. Two independent simulation methods predicted the appearance of a still unknown super-dense CaAl{sub 2}O{sub 4} modification. In this structure, the Al coordination polyhedron might be described as distorted one with seven vertices. Ca atoms were situated inside polyhedra with ten vertices and Ca–O distances from 1.96 to 2.49 Å. It became the densest modification under pressures of 170 GPa (density functional theory prediction) or 150 GPa (semi-empirical prediction). Bothmore » approaches indicated that this super-dense CaAl{sub 2}O{sub 4} modification with a “stuffed α-PbO{sub 2}” type structure could be a probable candidate for mutual accumulation of Ca and Al in the lower mantle. The existence of this phase can be verified experimentally using high pressure techniques.« less

  15. Genetically Encoded Chemical Probes In Cells Reveal the Binding Path of Urocortin-I to CRF Class B GPCR

    PubMed Central

    Coin, Irene; Katritch, Vsevolod; Sun, Tingting; Xiang, Zheng; Siu, Fai Yiu; Beyermann, Michael; Stevens, Raymond C.; Wang, Lei

    2014-01-01

    SUMMARY Molecular determinants regulating the activation of class B G-protein coupled receptors (GPCRs) by native peptide agonists are largely unknown. We have investigated here the interaction between the corticotropin releasing factor receptor type 1 (CRF1R) and its native 40-mer peptide ligand Urocortin-I directly in mammalian cells. By incorporating unnatural amino acid photo-chemical and new click-chemical probes into the receptor, 44 inter-molecular spatial constraints have been derived for the ligand-receptor interaction. The data were analyzed in the context of the recently resolved crystal structure of CRF1R transmembrane domain and existing extracellular domain structures, yielding a complete conformational model for the peptide-receptor complex. Structural features of the receptor-ligand complex yield molecular insights on the mechanism of receptor activation. The experimental strategy provides unique information on full-length post-translationally modified GPCRs in the native membrane of the live cell, complementing in vitro biophysical reductionist approaches. PMID:24290358

  16. Crystal Structure of the ERp44-Peroxiredoxin 4 Complex Reveals the Molecular Mechanisms of Thiol-Mediated Protein Retention.

    PubMed

    Yang, Kai; Li, De-Feng; Wang, Xi'e; Liang, Jinzhao; Sitia, Roberto; Wang, Chih-Chen; Wang, Xi

    2016-10-04

    ERp44 controls the localization and transport of diverse proteins in the early secretory pathway. The mechanisms that allow client recognition and the source of the oxidative power for forming intermolecular disulfides are as yet unknown. Here we present the structure of ERp44 bound to a client, peroxiredoxin 4. Our data reveal that ERp44 binds the oxidized form of peroxiredoxin 4 via thiol-disulfide interchange reactions. The structure explains the redox-dependent recognition and characterizes the essential non-covalent interactions at the interface. The ERp44-Prx4 covalent complexes can be reduced by glutathione and protein disulfide isomerase family members in the ER, allowing the two components to recycle. This work provides insights into the mechanisms of thiol-mediated protein retention and indicates the key roles of ERp44 in this biochemical cycle to optimize oxidative folding and redox homeostasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Mechanisms of action of voltage-gated sodium channel ligands].

    PubMed

    Tikhonov, D B

    2007-05-01

    The voltage-gated sodium channels play a key role in the generation of action potential in excitable cells. Sodium channels are targeted by a number of modulating ligands. Despite numerous studies, the mechanisms of action of many ligands are still unknown. The main cause of the problem is the absence of the channel structure. Sodium channels belong to the superfamily of P-loop channels that also the data abowt includes potassium and calcium channels and the channels of ionotropic glutamate receptors. Crystallization of several potassium channels has opened a possibility to analyze the structure of other members of the superfamily using the homology modeling approach. The present study summarizes the results of several recent modelling studies of such sodium channel ligands as tetrodotoxin, batrachotoxin and local anesthetics. Comparison of available experimental data with X-ray structures of potassium channels has provided a new level of understanding of the mechanisms of action of sodium channel ligands and has allowed proposing several testable hypotheses.

  18. Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis

    DOE PAGES

    Zhou, Qiangjun; Lai, Ying; Bacaj, Taulant; ...

    2015-08-17

    Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. We report atomic-resolution crystal structures of Ca 2+- and Mg 2+-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca 2+-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca 2+-triggered neurotransmitter releasemore » in mouse hippocampal neuronal synapses and for Ca 2+-triggered vesicle fusion in a reconstituted system. Lastly, we propose that this interface forms before Ca 2+ triggering, moves en bloc as Ca 2+ influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.« less

  19. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  20. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.

  1. Molecular Determinants for Antibody Binding on Group 1 House Dust Mite Allergens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chruszcz, Maksymilian; Pomés, Anna; Glesner, Jill

    2012-07-11

    House dust mites produce potent allergens, Der p 1 and Der f 1, that cause allergic sensitization and asthma. Der p 1 and Der f 1 are cysteine proteases that elicit IgE responses in 80% of mite-allergic subjects and have proinflammatory properties. Their antigenic structure is unknown. Here, we present crystal structures of natural Der p 1 and Der f 1 in complex with a monoclonal antibody, 4C1, which binds to a unique cross-reactive epitope on both allergens associated with IgE recognition. The 4C1 epitope is formed by almost identical amino acid sequences and contact residues. Mutations of the contactmore » residues abrogate mAb 4C1 binding and reduce IgE antibody binding. These surface-exposed residues are molecular targets that can be exploited for development of recombinant allergen vaccines.« less

  2. Structure of the Get3 targeting factor in complex with its membrane protein cargo

    DOE PAGES

    Mateja, Agnieszka; Paduch, Marcin; Chang, Hsin-Yang; ...

    2015-03-06

    Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. In this paper, we reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans themore » Get3 homodimer. Finally, our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.« less

  3. Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in Arabidopsis.

    PubMed

    Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie

    2017-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis , presumably by perception of unknown ligand(s).

  4. Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in Arabidopsis

    PubMed Central

    Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie

    2017-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis, presumably by perception of unknown ligand(s). PMID:29213277

  5. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.

    PubMed

    Allen, Frank H; Motherwell, W D Samuel

    2002-06-01

    The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.

  6. A comparison of the primal and semi-dual variational formats of gradient-extended crystal inelasticity

    NASA Astrophysics Data System (ADS)

    Carlsson, Kristoffer; Runesson, Kenneth; Larsson, Fredrik; Ekh, Magnus

    2017-10-01

    In this paper we discuss issues related to the theoretical as well as the computational format of gradient-extended crystal viscoplasticity. The so-called primal format uses the displacements, the slip of each slip system and the dissipative stresses as the primary unknown fields. An alternative format is coined the semi-dual format, which in addition includes energetic microstresses among the primary unknown fields. We compare the primal and semi-dual variational formats in terms of advantages and disadvantages from modeling as well as numerical viewpoints. Finally, we perform a series of representative numerical tests to investigate the rate of convergence with finite element mesh refinement. In particular, it is shown that the commonly adopted microhard boundary condition poses a challenge in the special case that the slip direction is parallel to a grain boundary.

  7. Synthesis of bimetallic trifluoroacetates through a crystallochemical investigation of their monometallic counterparts: the case of (A, A')(CF3COO)2·nH2O (A, A' = Mg, Ca, Sr, Ba, Mn).

    PubMed

    Dulani Dhanapala, B; Mannino, Natalie A; Mendoza, Laura M; Tauni Dissanayake, K; Martin, Philip D; Suescun, Leopoldo; Rabuffetti, Federico A

    2017-01-31

    Owing to their potential as single-source precursors for compositionally complex materials, there is growing interest in the rational design of multimetallic compounds containing fluorinated ligands. In this work, we show that chemical and structural principles for a materials-by-design approach to bimetallic trifluoroacetates can be established through a systematic investigation of the crystal-chemistry of their monometallic counterparts. A(CF 3 COO) 2 ·nH 2 O (A = Mg, Ca, Sr, Ba, Mn) monometallic trifluoroacetates were employed to demonstrate the feasibility of this approach. The crystal-chemistry of monometallic trifluoroacetates was mapped using variable-temperature single-crystal X-ray diffraction, powder X-ray diffraction, and thermal analysis. The evolution with temperature of the previously unknown crystal structure of Mg(CF 3 COO) 2 ·4H 2 O was found to be identical to that of Mn(CF 3 COO) 2 ·4H 2 O. More important, the flexibility of Mn x (CF 3 COO) 2x ·4H 2 O (x = 1, 3) to adopt two structures, one isostructural to Mg(CF 3 COO) 2 ·4H 2 O, the other isostructural to Ca 3 (CF 3 COO) 6 ·4H 2 O, enabled the synthesis of Mg-Mn and Ca-Mn bimetallic trifluoroacetates. Mg 0.45 Mn 0.55 (CF 3 COO) 2 ·4H 2 O was found to be isostructural to Mg(CF 3 COO) 2 ·4H 2 O and exhibited isolated metal-oxygen octahedra with Mg 2+ and Mn 2+ nearly equally distributed over the metal sites (Mg/Mn: 45/55). Ca 1.72 Mn 1.28 (CF 3 COO) 6 ·4H 2 O was isostructural to Ca 3 (CF 3 COO) 6 ·4H 2 O and displayed trimers of metal-oxygen corner-sharing octahedra; Ca 2+ and Mn 2+ were unequally distributed over the central (Ca/Mn: 96/4) and terminal (Ca/Mn: 38/62) octahedral sites.

  8. Structural and chemical variations in phlogopite from lamproitic rocks of the Central Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lepore, Giovanni O.; Bindi, Luca; Pedrazzi, Giuseppe; Conticelli, Sandro; Bonazzi, Paola

    2017-08-01

    Micas from mafic ultrapotassic rocks with lamproitic affinity from several localities of the Central Mediterranean region were studied through single-crystal X-ray diffraction (SC-XRD), electron microprobe analysis (EMPA) and Secondary Ion Mass Spectrometry (SIMS); Mössbauer Spectroscopy (MöS), when feasible, was also applied to minimise the number of unknown variables and uncertainties. Analysed lamproitic samples cover the most important Central Mediterranean type localities, from Plan d'Albard (Western Alps) to Sisco (Corsica), Montecatini Val di Cecina and Orciatico (Tuscany, Italy) and Torre Alfina (Northern Latium, Italy). The studied crystals show distinctive chemical and structural features; all of them belong to the phlogopite-annite join and crystallise in the 1M polytype, except for micas from Torre Alfina, where both 1M and 2M1 polytypes were found. Studied micas have variable but generally high F and Ti contents, with Mg/(Mg + Fe) ranging from 0.5 to 0.9; 2M1 crystals from Torre Alfina radically differ in chemical composition, showing high contents of Ti and Fe as well as of Al in both tetrahedra and octahedra, leading to distinctive structural distortions, especially in tetrahedral sites. SIMS data indicate that studied micas are generally dehydrogenated with OH contents ranging from 0.2 apfu (atoms per formula unit) for Orciatico and Torre Alfina to 1.4 for Plan d'Albard crystals; this feature is also testified by the length of the c parameter, which decreases with the loss of hydrogen and/or the increase of the F → OH substitution. Chemical and structural data suggest that the entry of high charge octahedral cations is mainly balanced by an oxy mechanism and, to a lesser extent, by a M3 +,4 +-Tschermak substitution. Our data confirm that Ti preferentially partitions into the M2 site and that different Ti and F contents, as well as different K/Al values, are both dependant upon fH2O and the composition of magma rather than controlled by P and T crystallisation conditions. The obtained data help to discriminate among lamproite-like rocks formed within a complex geodynamic framework but still related to a destructive tectonic margin and evidence different trends for micas from the youngest Torre Alfina (Northern Latium) lamproites, referred to the Apennine orogeny and those of the older lamproites from Orciatico, Montecatini Val di Cecina (Tuscany), Western Alps, and Corsica, the latter referred to the Alpine orogeny. Phlogopite crystals from the older lamproites fall within the compositional and structural field of worldwide phlogopites from both within-plate and subduction-related settings. Phlogopite from the Plio-Pleistocene lamproite-like occurrence in Tuscany and Northern Latium, despite crystals with low Mg# of the Torre Alfina rock plot well within the general field of the other crystals in less evolved samples, follows a different evolution trend similar to that of shoshonites from Tuscany and Northern Latium. On this basis, we argue that the observed differences are inherited by slight differences in the magma compositions that are related to different genetic and evolution pathways.

  9. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  10. Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4;#8201;Å

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Zachary Lee; Cheong, Cheom-Gil; Lee, Seok-Yong

    2012-07-11

    Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes. A wide range of nucleoside-derived drugs, including anticancer drugsmore » (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4 {angstrom}. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.« less

  11. Crystal structure of prethrombin-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhiwei; Pelc, Leslie A.; Di Cera, Enrico

    2010-11-15

    Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-{angstrom} resolution shows an overall conformation significantly different (rmsd = 3.6 {angstrom}) from that of its active form meizothrombin desF1 carrying a cleavage atmore » R320. Fragment 2 is rotated around the y axis by 29{sup o} and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na{sup +} binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 {angstrom} apart in meizothrombin desF1, to come within 3.3 {angstrom} of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen {yields} protease conversion in trypsin-like proteases.« less

  12. Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals

    DOE PAGES

    Azadmanesh, Jahaun; Trickel, Scott R.; Weiss, Kevin L.; ...

    2017-03-29

    Superoxide dismutases (SODs) are enzymes that protect against oxidative stress by dismutation of superoxide into oxygen and hydrogen peroxide through cyclic reduction and oxidation of the active-site metal. The complete enzymatic mechanisms of SODs are unknown since data on the positions of hydrogen are limited. Here, we present, methods for large crystal growth and neutron data collection of human manganese SOD (MnSOD) using perdeuteration and the MaNDi beamline at Oak Ridge National Laboratory. Furthermore, The crystal from which the human MnSOD data set was obtained is the crystal with the largest unit-cell edge (240 Å) from which data have beenmore » collectedvianeutron diffraction to sufficient resolution (2.30 Å) where hydrogen positions can be observed.« less

  13. Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadmanesh, Jahaun; Trickel, Scott R.; Weiss, Kevin L.

    Superoxide dismutases (SODs) are enzymes that protect against oxidative stress by dismutation of superoxide into oxygen and hydrogen peroxide through cyclic reduction and oxidation of the active-site metal. The complete enzymatic mechanisms of SODs are unknown since data on the positions of hydrogen are limited. Here, we present, methods for large crystal growth and neutron data collection of human manganese SOD (MnSOD) using perdeuteration and the MaNDi beamline at Oak Ridge National Laboratory. Furthermore, The crystal from which the human MnSOD data set was obtained is the crystal with the largest unit-cell edge (240 Å) from which data have beenmore » collectedvianeutron diffraction to sufficient resolution (2.30 Å) where hydrogen positions can be observed.« less

  14. In-situ and real-time growth observation of high-quality protein crystals under quasi-microgravity on earth.

    PubMed

    Nakamura, Akira; Ohtsuka, Jun; Kashiwagi, Tatsuki; Numoto, Nobutaka; Hirota, Noriyuki; Ode, Takahiro; Okada, Hidehiko; Nagata, Koji; Kiyohara, Motosuke; Suzuki, Ei-Ichiro; Kita, Akiko; Wada, Hitoshi; Tanokura, Masaru

    2016-02-26

    Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment. In addition, in-situ and real-time observation and time-lapse imaging of crystal growth are feasible for over 200 solution samples independently. In this paper, we also report results of crystallization experiments for two protein samples. Crystals grown in the system exhibited magnetic orientation and showed higher and more homogeneous quality compared with the control crystals. The structural analysis reveals that making use of the magnetic microgravity during the crystallization process helps us to build a well-refined protein structure model, which has no significant structural differences with a control structure. Therefore, the system contributes to improvement in efficiency of structural analysis for "difficult" proteins, such as membrane proteins and supermolecular complexes.

  15. Mechanistic Implications of the Unique Structural Features and Dimerization of the Cytoplasmic Domain of the Pseudomonas Sigma Regulator, PupR

    DOE PAGES

    Jensen, Jaime L.; Balbo, Andrea; Neau, David B.; ...

    2015-09-29

    Gram-negative bacteria tightly regulate intracellular levels of iron, an essential nutrient. To ensure this tight regulation, some outer membrane TonB-dependent transporters (TBDTs) that are responsible for iron import stimulate their own transcription in response to extracellular binding by an iron-laden siderophore. This process is mediated by an inner membrane sigma regulator protein (an anti-sigma factor) that transduces an unknown periplasmic signal from the TBDT to release an intracellular sigma factor from the inner membrane, which ultimately upregulates TBDT transcription. Here we use the Pseudomonas putida ferric-pseudobactin BN7/BN8 sigma regulator, PupR, as a model system to understand the molecular mechanism ofmore » this conserved class of sigma regulators. We have determined the X-ray crystal structure of the cytoplasmic anti-sigma domain (ASD) of PupR to 2.0 Å. Size exclusion chromatography, small angle X-ray scattering, and sedimentation velocity analytical ultracentrifugation, all indicate that in contrast to other ASDs, the PupR-ASD exists as a dimer in solution. Mutagenesis of residues at the dimer interface identified from the crystal structure disrupts dimerization and protein stability, as determined by sedimentation velocity analytical ultracentrifugation and thermal denaturation circular dichroism spectroscopy. Lastly, these combined results suggest that this type of inner membrane sigma regulator may utilize an unusual mechanism to sequester their cognate sigma factors and prevent transcription activation.« less

  16. Structure of Full-length Drosophila Cryptochrome

    PubMed Central

    Zoltowski, Brian D.; Vaidya, Anand T.; Top, Deniz; Widom, Joanne; Young, Michael W.; Crane, Brian R.

    2011-01-01

    The Cryptochrome/Photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to UV and blue light exposure in all kingdoms of life 1; 2; 3; 4; 5. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs)and 6-4 photolesions caused by UV radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks1; 2; 3; 4; 5. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism3; 6. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalyzed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable C-terminal tail that appends the conserved PL homology domain (PHD) and is important for function 7; 8; 9; 10; 11; 12. Herein, we report a 2.3 Å resolution crystal structure of Drosophila CRY with an intact C-terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp536 juts into the CRY catalytic center to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture, and photochemistry can be elaborated into a range of light-driven functions. PMID:22080955

  17. Mechanistic Implications of the Unique Structural Features and Dimerization of the Cytoplasmic Domain of the Pseudomonas Sigma Regulator, PupR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Jaime L.; Balbo, Andrea; Neau, David B.

    Gram-negative bacteria tightly regulate intracellular levels of iron, an essential nutrient. To ensure this tight regulation, some outer membrane TonB-dependent transporters (TBDTs) that are responsible for iron import stimulate their own transcription in response to extracellular binding by an iron-laden siderophore. This process is mediated by an inner membrane sigma regulator protein (an anti-sigma factor) that transduces an unknown periplasmic signal from the TBDT to release an intracellular sigma factor from the inner membrane, which ultimately upregulates TBDT transcription. Here we use the Pseudomonas putida ferric-pseudobactin BN7/BN8 sigma regulator, PupR, as a model system to understand the molecular mechanism ofmore » this conserved class of sigma regulators. We have determined the X-ray crystal structure of the cytoplasmic anti-sigma domain (ASD) of PupR to 2.0 Å. Size exclusion chromatography, small angle X-ray scattering, and sedimentation velocity analytical ultracentrifugation, all indicate that in contrast to other ASDs, the PupR-ASD exists as a dimer in solution. Mutagenesis of residues at the dimer interface identified from the crystal structure disrupts dimerization and protein stability, as determined by sedimentation velocity analytical ultracentrifugation and thermal denaturation circular dichroism spectroscopy. Lastly, these combined results suggest that this type of inner membrane sigma regulator may utilize an unusual mechanism to sequester their cognate sigma factors and prevent transcription activation.« less

  18. A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP.

    PubMed

    Vigil, Dominico; Lin, Jung-Hsin; Sotriffer, Christoph A; Pennypacker, Juniper K; McCammon, J Andrew; Taylor, Susan S

    2006-01-01

    Cyclic AMP activates protein kinase A by binding to an inhibitory regulatory (R) subunit and releasing inhibition of the catalytic (C) subunit. Even though crystal structures of regulatory and catalytic subunits have been solved, the precise molecular mechanism by which cyclic AMP activates the kinase remains unknown. The dynamic properties of the cAMP binding domain in the absence of cAMP or C-subunit are also unknown. Here we report molecular-dynamics simulations and mutational studies of the RIalpha R-subunit that identify the C-helix as a highly dynamic switch which relays cAMP binding to the helical C-subunit binding regions. Furthermore, we identify an important salt bridge which links cAMP binding directly to the C-helix that is necessary for normal activation. Additional mutations show that a hydrophobic "hinge" region is not as critical for the cross-talk in PKA as it is in the homologous EPAC protein, illustrating how cAMP can control diverse functions using the evolutionarily conserved cAMP-binding domains.

  19. Were komatiites wet?

    NASA Astrophysics Data System (ADS)

    Arndt, N.; Ginibre, C.; Chauvel, C.; Albarède, F.; Cheadle, M.; Herzberg, C.; Jenner, G.; Lahaye, Y.

    1998-08-01

    The main arguments used to support the concept that komatiites form by melting of hydrous mantle are as follows: (1) Water reduces liquidus temperatures from extreme values to lower, more “normal” temperatures. (2) Some komatiites are pyroclastic and some contain vesicles, features that have been attributed to magmatic volatiles. (3) It is claimed from experimental studies of peridotite melting that the chemical composition of komatiite requires the presence of water, as does their characteristic spinifex textures. Counterarguments are the following: (1) Loss of volatiles as hydrous komatiite approaches the surface should produce degassing textures and structures, which, though not unknown, are rare in komatiites. Degassing should produce a highly supercooled liquid that partially crystallizes to porphyritic magma; komatiites commonly erupt as phenocryst-poor, highly magnesian lavas. (2) Chemical and isotopic compositions of most komatiites indicate that their mantle source became depleted in incompatible elements soon before magma formation. Such depletion removes water, leaving a dry source. (3) The experimental data are at best ambiguous; neither the chemical composition of komatiites, nor the crystallization of spinifex, requires the presence of water. We conclude that although some rare komatiites may be hydrous, most are dry.

  20. Perfect merohedral twinning combined with noncrystallographic symmetry potentially causes the failure of molecular replacement with low-homology search models for the flavin-dependent halogenase HalX from Xanthomonas campestris.

    PubMed

    Buss, Maren; Geerds, Christina; Patschkowski, Thomas; Niehaus, Karsten; Niemann, Hartmut H

    2018-06-01

    Flavin-dependent halogenases can be used as biocatalysts because they regioselectively halogenate their substrates under mild reaction conditions. New halogenases with novel substrate specificities will add to the toolbox of enzymes available to organic chemists. HalX, the product of the xcc-b100_4193 gene, is a putative flavin-dependent halogenase from Xanthomonas campestris. The enzyme was recombinantly expressed and crystallized in order to aid in identifying its hitherto unknown substrate. Native data collected to a resolution of 2.5 Å showed indications of merohedral twinning in a hexagonal lattice. Attempts to solve the phase problem by molecular replacement failed. Here, a detailed analysis of the suspected twinning is presented. It is most likely that the crystals are trigonal (point group 3) and exhibit perfect hemihedral twinning so that they appear to be hexagonal (point group 6). As there are several molecules in the asymmetric unit, noncrystallographic symmetry may complicate twinning analysis and structure determination.

  1. High-speed prediction of crystal structures for organic molecules

    NASA Astrophysics Data System (ADS)

    Obata, Shigeaki; Goto, Hitoshi

    2015-02-01

    We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.

  2. New Elastic Moduli for Amphiboles and Feldspars: Impact on Interpretations of Seismic Velocities

    NASA Astrophysics Data System (ADS)

    Brown, J. M.; Angel, R. J.

    2016-12-01

    Seismic properties (both isotropic and anisotropic) of the crust and upper mantle require re-evaluation in light of improved single crystal properties for feldspars and amphiboles as a function of elemental partitioning. Together these minerals constitute more than half of the crust and are locally important in the lithospheric mantle. Their contribution in understanding seismic structures (both in the crust and mantle) has long been recognized. However, published single crystal elastic moduli, required in predictions of seismic velocities based on mineral properties, have remained inadequate for over 50 years. For example, the contribution of amphiboles to seismic velocities has often been approximated on the basis of the reported moduli for two hornblende crystals of unknown composition. New measurements now accurately characterize the plagioclase feldspars, the potassium feldspars, and the calcium and calcium-sodium amphiboles (including a range of compositions for common hornblende). The new moduli allow successful predictions of rock velocities with and without crystal preferred orientations. In contrast, the older moduli required inappropriate use of the Voigt upper aggregate bound in order to rationalize laboratory measurements. These minerals are also more anisotropic than suggested on the basis of the earlier work where cracks and open cleavage surfaces may have artificially depressed the apparent anisotropy. Both feldspars and amphiboles are nearly as anisotropic as sheet silicates with compressional velocity anisotropy of greater than 50%. The plagioclase feldspars show strong compositional trends with small discontinuities between minor structural transitions. In contrast, potassium substitution for sodium and differences in aluminum ordering have little impact on elastic moduli. In the amphiboles, elastic properties are strongly dependent on total aluminum and iron composition. The bulk modulus is most sensitive to aluminum and the shear modulus is more sensitive to iron. Variations in Poisson's ratio (which depends on the ratio of isotropic compressional and shear wave velocities) associated with compositions within the amphiboles and the feldspars are larger than previously predicted. The extent of modifications to seismic interpretations is evaluated.

  3. Structural Effect of the Asp345a Insertion in Penicillin-Binding Protein 2 from Penicillin-Resistant Strains of Neisseria gonorrhoeae

    PubMed Central

    2015-01-01

    A hallmark of penicillin-binding protein 2 (PBP2) from penicillin-resistant strains of Neisseria gonorrhoeae is insertion of an aspartate after position 345. The insertion resides on a loop near the active site and is immediately adjacent to an existing aspartate (Asp346) that forms a functionally important hydrogen bond with Ser363 of the SxN conserved motif. Insertion of other amino acids, including Glu and Asn, can also lower the rate of acylation by penicillin, but these insertions abolish transpeptidase function. Although the kinetic consequences of the Asp insertion are well-established, how it impacts the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution crystal structure of a truncated construct of PBP2 containing all five mutations present in PBP2 from the penicillin-resistant strain 6140, including the Asp insertion. Commensurate with the strict specificity for the Asp insertion over similar amino acids, the insertion does not cause disordering of the structure, but rather induces localized flexibility in the β2c−β2d loop. The crystal structure resolves the ambiguity of whether the insertion is Asp345a or Asp346a (due to the adjacent Asp) because the hydrogen bond between Asp346 and Ser362 is preserved and the insertion is therefore Asp346a. The side chain of Asp346a projects directly toward the β-lactam-binding site near Asn364 of the SxN motif. The Asp insertion may lower the rate of acylation by sterically impeding binding of the antibiotic or by hindering breakage of the β-lactam ring during acylation because of the negative charge of its side chain. PMID:25403720

  4. Structural effect of the Asp345a insertion in penicillin-binding protein 2 from penicillin-resistant strains of Neisseria gonorrhoeae.

    PubMed

    Fedarovich, Alena; Cook, Edward; Tomberg, Joshua; Nicholas, Robert A; Davies, Christopher

    2014-12-09

    A hallmark of penicillin-binding protein 2 (PBP2) from penicillin-resistant strains of Neisseria gonorrhoeae is insertion of an aspartate after position 345. The insertion resides on a loop near the active site and is immediately adjacent to an existing aspartate (Asp346) that forms a functionally important hydrogen bond with Ser363 of the SxN conserved motif. Insertion of other amino acids, including Glu and Asn, can also lower the rate of acylation by penicillin, but these insertions abolish transpeptidase function. Although the kinetic consequences of the Asp insertion are well-established, how it impacts the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution crystal structure of a truncated construct of PBP2 containing all five mutations present in PBP2 from the penicillin-resistant strain 6140, including the Asp insertion. Commensurate with the strict specificity for the Asp insertion over similar amino acids, the insertion does not cause disordering of the structure, but rather induces localized flexibility in the β2c-β2d loop. The crystal structure resolves the ambiguity of whether the insertion is Asp345a or Asp346a (due to the adjacent Asp) because the hydrogen bond between Asp346 and Ser362 is preserved and the insertion is therefore Asp346a. The side chain of Asp346a projects directly toward the β-lactam-binding site near Asn364 of the SxN motif. The Asp insertion may lower the rate of acylation by sterically impeding binding of the antibiotic or by hindering breakage of the β-lactam ring during acylation because of the negative charge of its side chain.

  5. Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic£ξ

    PubMed Central

    Yao, Huili; Rui, Huan; Kumar, Ritesh; Eshelman, Kate; Lovell, Scott; Battaile, Kevin P.; Im, Wonpil; Rivera, Mario

    2015-01-01

    X-ray crystallography, molecular dynamics (MD) simulations and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility, and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral. PMID:25640193

  6. Structural Basis for Inhibitor-Induced Hydrogen Peroxide Production by Kynurenine 3-Monooxygenase.

    PubMed

    Kim, Hyun Tae; Na, Byeong Kwan; Chung, Jiwoung; Kim, Sulhee; Kwon, Sool Ki; Cha, Hyunju; Son, Jonghyeon; Cho, Joong Myung; Hwang, Kwang Yeon

    2018-04-19

    Kynurenine 3-monooxygenase (KMO) inhibitors have been developed for the treatment of neurodegenerative disorders. The mechanisms of flavin reduction and hydrogen peroxide production by KMO inhibitors are unknown. Herein, we report the structure of human KMO and crystal structures of Saccharomyces cerevisiae (sc) and Pseudomonas fluorescens (pf) KMO with Ro 61-8048. Proton transfer in the hydrogen bond network triggers flavin reduction in p-hydroxybenzoate hydroxylase, but the mechanism triggering flavin reduction in KMO is different. Conformational changes via π-π interactions between the loop above the flavin and substrate or non-substrate effectors lead to disorder of the C-terminal α helix in scKMO and shifts of domain III in pfKMO, stimulating flavin reduction. Interestingly, Ro 61-8048 has two different binding modes. It acts as a competitive inhibitor in scKMO and as a non-substrate effector in pfKMO. These findings provide understanding of the catalytic cycle of KMO and insight for structure-based drug design of KMO inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The structure of SV40 large T hexameric helicase in complex with AT-rich origin DNA

    PubMed Central

    Gai, Dahai; Wang, Damian; Li, Shu-Xing; Chen, Xiaojiang S

    2016-01-01

    DNA replication is a fundamental biological process. The initial step in eukaryotic DNA replication is the assembly of the pre-initiation complex, including the formation of two head-to-head hexameric helicases around the replication origin. How these hexameric helicases interact with their origin dsDNA remains unknown. Here, we report the co-crystal structure of the SV40 Large-T Antigen (LT) hexameric helicase bound to its origin dsDNA. The structure shows that the six subunits form a near-planar ring that interacts with the origin, so that each subunit makes unique contacts with the DNA. The origin dsDNA inside the narrower AAA+ domain channel shows partial melting due to the compression of the two phosphate backbones, forcing Watson-Crick base-pairs within the duplex to flip outward. This structure provides the first snapshot of a hexameric helicase binding to origin dsDNA, and suggests a possible mechanism of origin melting by LT during SV40 replication in eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.18129.001 PMID:27921994

  8. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-04-15

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compoundsmore » with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.« less

  9. Likelihood-based modification of experimental crystal structure electron density maps

    DOEpatents

    Terwilliger, Thomas C [Sante Fe, NM

    2005-04-16

    A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.

  10. Asp133 Residue in NhaA Na+/H+ Antiporter Is Required for Stability Cation Binding and Transport.

    PubMed

    Rimon, Abraham; Dwivedi, Manish; Friedler, Assaf; Padan, Etana

    2018-03-16

    Na + /H + antiporters have a crucial role in pH and Na + homeostasis in cells. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and revealed a previously unknown structural fold, which has since been identified in several secondary active transporters. This unique structural fold is very delicately electrostatically balanced. Asp133 and Lys 300 have been ascribed essential roles in this balance and, more generally, in the structure and function of the antiporter. In this work, we show the multiple roles of Asp133 in NhaA: (i) The residue's negative charge is critical for the stability of the NhaA structure. (ii) Its main chain is part of the active site. (iii) Its side chain functions as an alkaline-pH-dependent gate, changing the protein's conformation from an inward-facing conformation at acidic pH to an outward-open conformation at alkaline pH, opening the periplasm funnel. On the basis of the experimental data, we propose a tentative mechanism integrating the structural and functional roles of Asp133. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A rapid and rational approach to generating isomorphous heavy-atom phasing derivatives

    PubMed Central

    Lu, Jinghua; Sun, Peter D.

    2014-01-01

    In attempts to replace the conventional trial-and-error heavy-atom derivative search method with a rational approach, we previously defined heavy metal compound reactivity against peptide ligands. Here, we assembled a composite pH and buffer-dependent peptide reactivity profile for each heavy metal compound to guide rational heavy-atom derivative search. When knowledge of the best-reacting heavy-atom compound is combined with mass spectrometry-assisted derivatization, and with a quick-soak method to optimize phasing, it is likely that the traditional heavy-atom compounds could meet the demand of modern high-throughput X-ray crystallography. As an example, we applied this rational heavy-atom phasing approach to determine a previously unknown mouse serum amyloid A2 crystal structure. PMID:25040395

  12. Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response

    NASA Astrophysics Data System (ADS)

    Stauber, T.; Parida, P.; Trushin, M.; Ulybyshev, M. V.; Boyda, D. L.; Schliemann, J.

    2017-06-01

    We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function) that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement with the experimental data is obtained assuming static self-screening including local field effects. As an application of the model, we derive an explicit expression for the optical conductivity and discuss the renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum Monte Carlo calculations which compares well to our mean-field approach.

  13. SABRE - A test of DAMA with high-purity NaI(Tl) crystals

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Calaprice, Frank; Froborg, Francis; Shields, Emily; Suerfu, Burkhant

    2015-08-01

    The dark matter claim by DAMA is both significant and controversial. Several experiments have claimed to rule out DAMA/LIBRA, but the comparisons are made based on dark matter halo and dark matter-interaction models that are currently unknown. Therefore, an unambiguous test of DAMA/LIBRA is best made using NaI(Tl) crystals with lower residual background than that of DAMA/LIBRA, and the SABRE experiment is designed to achieve this goal. In this paper we will discuss the development of high-purity SABRE NaI(Tl) crystals and detectors, and progress of the SABRE experiment toward testing DAMA/LIBRA.

  14. Polymer-Induced Heteronucleation for Protein Single Crystal Growth: Structural Elucidation of Bovine Liver Catalase and Concanavalin A Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalasemore » (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.« less

  15. Physical and Structural Studies on the Cryo-cooling of Insulin Crystals

    NASA Technical Reports Server (NTRS)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    Reflection profiles were analyzed from microgravity-(mg) and earth-grown insulin crystals to measure mosaicity (h) and to reveal mosaic domain structure and composition. The effects of cryocooling on single and multi-domain crystals were compared. The effects of cryocooling on insulin structure were also re-examined. Microgravity crystals were larger, more homogeneous, and more perfect than earth crystals. Several mg crystals contained primarily a single mosaic domain with havg of 0.005deg. The earth crystals varied in quality and all contained multiple domains with havg of 0.031deg. Cryocooling caused a 43-fold increase in h for mg crystals (havg=0.217deg) and an %fold increase for earth crystals (havg=0.246deg). These results indicate that very well-ordered crystals are not completely protected from the stresses associated with cryocooling, especially when structural perturbations occur. However, there were differences in the reflection profiles. For multi-mosaic domain crystals, each domain individually broadened and separated from the other domains upon cryo-cooling. Cryo-cooling did not cause an increase in the number of domains. A crystal composed of a single domain retained this domain structure and the reflection profiles simply broadened. Therefore, an improved signal-to-noise ratio for each reflection was measured from cryo-cooled single domain crystals relative to cryo-cooled multi-domain crystals. This improved signal, along with the increase in crystal size, facilitated the measurement of the weaker high- resolution reflections. The observed broadening of reflection profiles indicates increased variation in unit cell dimensions which may be linked to cryo-cooling-associated structural changes and disorder.

  16. Crystal structure of minoxidil at low temperature and polymorph prediction.

    PubMed

    Martín-Islán, Africa P; Martín-Ramos, Daniel; Sainz-Díaz, C Ignacio

    2008-02-01

    An experimental and theoretical investigation on crystal forms of the popular and ubiquitous pharmaceutical Minoxidil is presented here. A new crystallization method is presented for Minoxidil (6-(1-piperidinyl)-2,4-pyrimidinediamide 3-oxide) in ethanol-poly(ethylene glycol), yielding crystals with good quality. The crystal structure is determined at low temperature, with a final R value of 0.035, corresponding to space group P2(1) (monoclinic) with cell dimensions a = 9.357(1) A, b = 8.231(1) A, c = 12.931(2) A, and beta = 90.353(4) degrees . Theoretical calculations of the molecular structure of Minoxidil are set forward using empirical force fields and quantum-mechanical methods. A theoretical prediction for Minoxidil crystal structure shows many possible polymorphs. The predicted crystal structures are compared with X-ray experimental data obtained in our laboratory, and the experimental crystal form is found to be one of the lowest energy polymorphs.

  17. Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems

    PubMed Central

    Phan, Isabelle Q. H.; Scheib, Holger; Subramanian, Sandhya; Edwards, Thomas E.; Lehman, Stephanie S.; Piitulainen, Hanna; Sayeedur Rahman, M.; Rennoll-Bankert, Kristen E.; Staker, Bart L.; Taira, Suvi; Stacy, Robin; Myler, Peter J.; Azad, Abdu F.

    2015-01-01

    ABSTRACT Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatiotemporal for Bartonella trw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium. PMID:26646013

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkendir, Osman Murat, E-mail: ozkendir@gmail.com

    Highlights: • Crystal and electronic structure properties of Nd{sub x}Ti{sub 1−x}BO{sub 2+d} structure were investigated. • New crystal structures for Nd–Ti complexes are determined. • Distortions in the crystal structure were observed as a result of Boron shortage. • Prominent change in electronic properties of the samples with the increasing Nd amount. - Abstract: Neodymium substituted TiBO{sub 3} samples were investigated according to their crystal, electric and electronic properties. Studies were conducted by X-ray absorption fine structure spectroscopy (XAFS) technique for the samples with different substitutions in the preparation processes. To achieve better crystal structure results during the study, XRDmore » pattern results were supported by extended-XAFS (EXAFS) analysis. The electronic structure analysis were studied by X-ray absorption near-edge structure spectroscopy (XANES) measurements at the room temperatures. Due to the substituted Nd atoms, prominent changes in crystal structure, new crystal geometries for Nd-Ti complexes, phase transitions in the crystals structure were detected according to the increasing Nd substitutions in the samples. In the entire stages of the substitutions, Nd atoms were observed as governing the whole phenomena due to their dominant characteristics in Ti geometries. Besides, electrical resistivity decay was determined in the materials with the increasing amount of Nd substitution.« less

  19. Effects of Cr 3+ impurity concentration on the crystallography of synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Huang, Eugene; Lee, Jan-Shing; Yu, Shu-Cheng

    2011-06-01

    Flux method has been adopted for the synthesis of emerald crystals using PbO-V 2O 5 as a flux in order to study the crystallography of the synthetic crystals. In general, the hue of green color of emerald deepens with the addition of Cr 3+. The molar volume of the synthesized crystals was found to increase with the incorporation of Cr 2O 3 dopant. The substitution of Cr 3+ for Al 3+ in the octahedral sites of beryl results in the expansion of a-axis, while c-axis remains nearly unchanged. The maximum Cr 2O 3-content allowed in the crystal lattice of emerald has been found to be about 3.5 wt%. When the doping Cr 2O 3-content exceeds 3.5 wt%, a significant anomaly in lattice parameters starts to take place, accompanying the precipitation of an unknown phase in the emerald matrix.

  20. Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhaoming; Pan, Haihua; Zhu, Genxing

    2016-07-19

    Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less

  1. High-throughput crystallization screening.

    PubMed

    Skarina, Tatiana; Xu, Xiaohui; Evdokimova, Elena; Savchenko, Alexei

    2014-01-01

    Protein structure determination by X-ray crystallography is dependent on obtaining a single protein crystal suitable for diffraction data collection. Due to this requirement, protein crystallization represents a key step in protein structure determination. The conditions for protein crystallization have to be determined empirically for each protein, making this step also a bottleneck in the structure determination process. Typical protein crystallization practice involves parallel setup and monitoring of a considerable number of individual protein crystallization experiments (also called crystallization trials). In these trials the aliquots of purified protein are mixed with a range of solutions composed of a precipitating agent, buffer, and sometimes an additive that have been previously successful in prompting protein crystallization. The individual chemical conditions in which a particular protein shows signs of crystallization are used as a starting point for further crystallization experiments. The goal is optimizing the formation of individual protein crystals of sufficient size and quality to make them suitable for diffraction data collection. Thus the composition of the primary crystallization screen is critical for successful crystallization.Systematic analysis of crystallization experiments carried out on several hundred proteins as part of large-scale structural genomics efforts allowed the optimization of the protein crystallization protocol and identification of a minimal set of 96 crystallization solutions (the "TRAP" screen) that, in our experience, led to crystallization of the maximum number of proteins.

  2. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    PubMed

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  3. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    NASA Astrophysics Data System (ADS)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  4. A novel structure of gel grown strontium cyanurate crystal and its structural, optical, electrical characterization

    NASA Astrophysics Data System (ADS)

    Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra

    2017-12-01

    Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.

  5. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  6. Microgravity

    NASA Image and Video Library

    1992-06-25

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  7. Zeolites

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  8. From molecule to solid: The prediction of organic crystal structures

    NASA Astrophysics Data System (ADS)

    Dzyabchenko, A. V.

    2008-10-01

    A method for predicting the structure of a molecular crystal based on the systematic search for a global potential energy minimum is considered. The method takes into account unequal occurrences of the structural classes of organic crystals and symmetry of the multidimensional configuration space. The programs of global minimization PMC, comparison of crystal structures CRYCOM, and approximation to the distributions of the electrostatic potentials of molecules FitMEP are presented as tools for numerically solving the problem. Examples of predicted structures substantiated experimentally and the experience of author’s participation in international tests of crystal structure prediction organized by the Cambridge Crystallographic Data Center (Cambridge, UK) are considered.

  9. Crystals of Janus colloids at various interaction ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preisler, Z.; Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht; Vissers, T.

    We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete withmore » the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.« less

  10. Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus

    PubMed Central

    Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni

    2014-01-01

    Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris–HCl pH 8.5. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å. PMID:24419623

  11. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  12. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    NASA Astrophysics Data System (ADS)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  13. A top-down approach to crystal engineering of a racemic Δ2-isoxazoline.

    PubMed

    Lombardo, Giuseppe M; Rescifina, Antonio; Chiacchio, Ugo; Bacchi, Alessia; Punzo, Francesco

    2014-02-01

    The crystal structure of racemic dimethyl (4RS,5RS)-3-(4-nitrophenyl)-4,5-dihydroisoxazole-4,5-dicarboxylate, C13H12N2O7, has been determined by single-crystal X-ray diffraction. By analysing the degree of growth of the morphologically important crystal faces, a ranking of the most relevant non-covalent interactions determining the crystal structure can be inferred. The morphological information is considered with an approach opposite to the conventional one: instead of searching inside the structure for the potential key interactions and using them to calculate the crystal habit, the observed crystal morphology is used to define the preferential lines of growth of the crystal, and then this information is interpreted by means of density functional theory (DFT) calculations. Comparison with the X-ray structure confirms the validity of the strategy, thus suggesting this top-down approach to be a useful tool for crystal engineering.

  14. Mis16 Independently Recognizes Histone H4 and the CENP-ACnp1-Specific Chaperone Scm3sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Sojin; Kim, Hanseong; Cho, Uhn-Soo

    2015-09-04

    CENP-A is a centromere-specific histone H3 variant that is required for kinetochore assembly and accurate chromosome segregation. For it to function properly, CENP-A must be specifically localized to centromeres. In fission yeast, Scm3sp and the Mis18 complex, composed of Mis16, Eic1, and Mis18, function as a CENP-ACnp1-specific chaperone and a recruiting factor, respectively, and together ensure accurate delivery of CENP-ACnp1 to centromeres. Although how Scm3sp specifically recognizes CENP-ACnp1 has been revealed recently, the recruiting mechanism of CENP-ACnp1 via the Mis18 complex remains unknown. In this study, we have determined crystal structures of Schizosaccharomyces japonicus Mis16 alone and in complex withmore » the helix 1 of histone H4 (H4α1). Crystal structures followed by mutant analysis and affinity pull-downs have revealed that Mis16 recognizes both H4α1 and Scm3sp independently within the CENP-ACnp1/H4:Scm3sp complex. This observation suggests that Mis16 gains CENP-ACnp1 specificity by recognizing both Scm3sp and histone H4. Our studies provide insights into the molecular mechanisms underlying specific recruitment of CENP-ACnp1/H4:Scm3sp into centromeres.« less

  15. Salvage of failed protein targets by reductive alkylation.

    PubMed

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  16. Salvage of Failed Protein Targets by Reductive Alkylation

    PubMed Central

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  17. Unique Structural Features and Sequence Motifs of Proline Utilization A (PutA)

    PubMed Central

    Singh, Ranjan K.; Tanner, John J.

    2013-01-01

    Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20–30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100–200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA. PMID:22201760

  18. Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.

    PubMed

    Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M

    2017-09-29

    Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.

  19. Structural intermediates and directionality of the swiveling motion of Pyruvate Phosphate Dikinase

    NASA Astrophysics Data System (ADS)

    Minges, Alexander; Ciupka, Daniel; Winkler, Christian; Höppner, Astrid; Gohlke, Holger; Groth, Georg

    2017-03-01

    Pyruvate phosphate dikinase (PPDK) is a vital enzyme in cellular energy metabolism catalyzing the ATP- and Pi-dependent formation of phosphoenolpyruvate from pyruvate in C4 -plants, but the reverse reaction forming ATP in bacteria and protozoa. The multi-domain enzyme is considered an efficient molecular machine that performs one of the largest single domain movements in proteins. However, a comprehensive understanding of the proposed swiveling domain motion has been limited by not knowing structural intermediates or molecular dynamics of the catalytic process. Here, we present crystal structures of PPDKs from Flaveria, a model genus for studying the evolution of C4 -enzymes from phylogenetic ancestors. These structures resolve yet unknown conformational intermediates and provide the first detailed view on the large conformational transitions of the protein in the catalytic cycle. Independently performed unrestrained MD simulations and configurational free energy calculations also identified these intermediates. In all, our experimental and computational data reveal strict coupling of the CD swiveling motion to the conformational state of the NBD. Moreover, structural asymmetries and nucleotide binding states in the PPDK dimer support an alternate binding change mechanism for this intriguing bioenergetic enzyme.

  20. Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds

    PubMed Central

    Sato, Toyoto; Takagi, Shigeyuki; Deledda, Stefano; Hauback, Bjørn C.; Orimo, Shin-ichi

    2016-01-01

    Crystal structure determination is essential for characterizing materials and their properties, and can be facilitated by various tools and indicators. For instance, the Goldschmidt tolerance factor (T) for perovskite compounds is acknowledged for evaluating crystal structures in terms of the ionic packing. However, its applicability is limited to perovskite compounds. Here, we report on extending the applicability of T to ionic compounds with arbitrary ionic arrangements and compositions. By focussing on the occupancy of constituent spherical ions in the crystal structure, we define the ionic filling fraction (IFF), which is obtained from the volumes of crystal structure and constituent ions. Ionic compounds, including perovskites, are arranged linearly by the IFF, providing consistent results with T. The linearity guides towards finding suitable unit cell and composition, thus tackling the main obstacle for determining new crystal structures. We demonstrate the utility of the IFF by solving the structure of three hydrides with new crystal structures. PMID:27032978

  1. Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds.

    PubMed

    Sato, Toyoto; Takagi, Shigeyuki; Deledda, Stefano; Hauback, Bjørn C; Orimo, Shin-ichi

    2016-04-01

    Crystal structure determination is essential for characterizing materials and their properties, and can be facilitated by various tools and indicators. For instance, the Goldschmidt tolerance factor (T) for perovskite compounds is acknowledged for evaluating crystal structures in terms of the ionic packing. However, its applicability is limited to perovskite compounds. Here, we report on extending the applicability of T to ionic compounds with arbitrary ionic arrangements and compositions. By focussing on the occupancy of constituent spherical ions in the crystal structure, we define the ionic filling fraction (IFF), which is obtained from the volumes of crystal structure and constituent ions. Ionic compounds, including perovskites, are arranged linearly by the IFF, providing consistent results with T. The linearity guides towards finding suitable unit cell and composition, thus tackling the main obstacle for determining new crystal structures. We demonstrate the utility of the IFF by solving the structure of three hydrides with new crystal structures.

  2. From screen to structure with a harvestable microfluidic device.

    PubMed

    Stojanoff, Vivian; Jakoncic, Jean; Oren, Deena A; Nagarajan, V; Poulsen, Jens-Christian Navarro; Adams-Cioaba, Melanie A; Bergfors, Terese; Sommer, Morten O A

    2011-08-01

    Advances in automation have facilitated the widespread adoption of high-throughput vapour-diffusion methods for initial crystallization screening. However, for many proteins, screening thousands of crystallization conditions fails to yield crystals of sufficient quality for structural characterization. Here, the rates of crystal identification for thaumatin, catalase and myoglobin using microfluidic Crystal Former devices and sitting-drop vapour-diffusion plates are compared. It is shown that the Crystal Former results in a greater number of identified initial crystallization conditions compared with vapour diffusion. Furthermore, crystals of thaumatin and lysozyme obtained in the Crystal Former were used directly for structure determination both in situ and upon harvesting and cryocooling. On the basis of these results, a crystallization strategy is proposed that uses multiple methods with distinct kinetic trajectories through the protein phase diagram to increase the output of crystallization pipelines.

  3. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  4. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  5. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure.

    PubMed

    Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd

    2017-09-25

    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.

  6. Use of Crystal Structure Informatics for Defining the Conformational Space Needed for Predicting Crystal Structures of Pharmaceutical Molecules.

    PubMed

    Iuzzolino, Luca; Reilly, Anthony M; McCabe, Patrick; Price, Sarah L

    2017-10-10

    Determining the range of conformations that a flexible pharmaceutical-like molecule could plausibly adopt in a crystal structure is a key to successful crystal structure prediction (CSP) studies. We aim to use conformational information from the crystal structures in the Cambridge Structural Database (CSD) to facilitate this task. The conformations produced by the CSD Conformer Generator are reduced in number by considering the underlying rotamer distributions, an analysis of changes in molecular shape, and a minimal number of molecular ab initio calculations. This method is tested for five pharmaceutical-like molecules where an extensive CSP study has already been performed. The CSD informatics-derived set of crystal structure searches generates almost all the low-energy crystal structures previously found, including all experimental structures. The workflow effectively combines information on individual torsion angles and then eliminates the combinations that are too high in energy to be found in the solid state, reducing the resources needed to cover the solid-state conformational space of a molecule. This provides insights into how the low-energy solid-state and isolated-molecule conformations are related to the properties of the individual flexible torsion angles.

  7. Two distinct crystallization processes in supercooled liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tane, Masakazu, E-mail: mtane@sanken.osaka-u.ac.jp; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-21

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al{sub 2}O{sub 3} model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al{sub 2}O{sub 3} exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquidmore » does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.« less

  8. The Inner Membrane Complex Sub-compartment Proteins Critical for Replication of the Apicomplexan Parasite Toxoplasma gondii Adopt a Pleckstrin Homology Fold*

    PubMed Central

    Tonkin, Michelle L.; Beck, Josh R.; Bradley, Peter J.; Boulanger, Martin J.

    2014-01-01

    Toxoplasma gondii, an apicomplexan parasite prevalent in developed nations, infects up to one-third of the human population. The success of this parasite depends on several unique structures including an inner membrane complex (IMC) that lines the interior of the plasma membrane and contains proteins important for gliding motility and replication. Of these proteins, the IMC sub-compartment proteins (ISPs) have recently been shown to play a role in asexual T. gondii daughter cell formation, yet the mechanism is unknown. Complicating mechanistic characterization of the ISPs is a lack of sequence identity with proteins of known structure or function. In support of elucidating the function of ISPs, we first determined the crystal structures of representative members TgISP1 and TgISP3 to a resolution of 2.10 and 2.32 Å, respectively. Structural analysis revealed that both ISPs adopt a pleckstrin homology fold often associated with phospholipid binding or protein-protein interactions. Substitution of basic for hydrophobic residues in the region that overlays with phospholipid binding in related pleckstrin homology domains, however, suggests that ISPs do not retain phospholipid binding activity. Consistent with this observation, biochemical assays revealed no phospholipid binding activity. Interestingly, mapping of conserved surface residues combined with crystal packing analysis indicates that TgISPs have functionally repurposed the phospholipid-binding site likely to coordinate protein partners. Recruitment of larger protein complexes may also be aided through avidity-enhanced interactions resulting from multimerization of the ISPs. Overall, we propose a model where TgISPs recruit protein partners to the IMC to ensure correct progression of daughter cell formation. PMID:24675080

  9. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins.

    PubMed

    Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A

    2017-05-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Molecular Dynamics Study of the Opening Mechanism for DNA Polymerase I

    PubMed Central

    Miller, Bill R.; Parish, Carol A.; Wu, Eugene Y.

    2014-01-01

    During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme∶DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics. PMID:25474643

  11. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korasick, David A.; Singh, Harkewal; Pemberton, Travis A.

    2017-08-01

    Many enzymes form homooligomers, yet the functional significance of self-association is seldom obvious. Herein, we examine the connection between oligomerization and catalytic function for proline utilization A (PutA) enzymes. PutAs are bifunctional enzymes that catalyze both reactions of proline catabolism. Type A PutAs are the smallest members of the family, possessing a minimal domain architecture consisting of N-terminal proline dehydrogenase and C-terminal l-glutamate-γ-semialdehyde dehydrogenase modules. Type A PutAs form domain-swapped dimers, and in one case (Bradyrhizobium japonicum PutA), two of the dimers assemble into a ring-shaped tetramer. Whereas the dimer has a clear role in substrate channeling, the functional significancemore » of the tetramer is unknown. To address this question, we performed structural studies of four-type A PutAs from two clades of the PutA tree. The crystal structure of Bdellovibrio bacteriovorus PutA covalently inactivated by N-propargylglycine revealed a fold and substrate-channeling tunnel similar to other PutAs. Small-angle X-ray scattering (SAXS) and analytical ultracentrifugation indicated that Bdellovibrio PutA is dimeric in solution, in contrast to the prediction from crystal packing of a stable tetrameric assembly. SAXS studies of two other type A PutAs from separate clades also suggested that the dimer predominates in solution. To assess whether the tetramer of B. japonicum PutA is necessary for catalytic function, a hot spot disruption mutant that cleanly produces dimeric protein was generated. The dimeric variant exhibited kinetic parameters similar to the wild-type enzyme. These results implicate the domain-swapped dimer as the core structural and functional unit of type A PutAs.« less

  12. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, wemore » report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.« less

  13. Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications.

    PubMed

    Atahan-Evrenk, Sule; Aspuru-Guzik, Alán

    2014-01-01

    The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

  14. Crystal Structure of the MACPF Domain of Human Complement Protein C8[alpha] in Complex with the C8[gamma] Subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slade, Daniel J.; Lovelace, Leslie L.; Chruszcz, Maksymilian

    2010-03-04

    Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that assemble on bacterial membranes to form a porelike structure referred to as the 'membrane attack complex' (MAC). C8 contains three genetically distinct subunits (C8{alpha}, C8{beta}, C8{gamma}) arranged as a disulfide-linked C8{alpha}-{gamma} dimer that is noncovalently associated with C8{beta}. C6, C7 C8{alpha}, C8{beta}, and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8{gamma} subunit is unrelated and belongs to the lipocalin family of proteins that display a {beta}-barrel fold andmore » generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8{alpha} MACPF domain were recently reported and both display a fold similar to those of the bacterial pore-forming cholesterol-dependent cytolysins (CDCs). In the present study, we determined the crystal structure of the human C8{alpha} MACPF domain disulfide-linked to C8{gamma} ({alpha}MACPF-{gamma}) at 2.15 {angstrom} resolution. The {alpha}MACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8{gamma}. One is in a previously characterized 19-residue insertion (indel) in C8{alpha} and fills the entrance to the putative C8{gamma} ligand-binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8{gamma} {beta}-barrel. The latter interaction induces conformational changes in {alpha}MACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X{sub 6}-G-G in {alpha}MACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for refolding and pore formation by CDCs.« less

  15. The potential for the indirect crystal structure verification of methyl glycosides based on acetates' parent structures: GIPAW and solid-state NMR approaches

    NASA Astrophysics Data System (ADS)

    Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna

    2017-10-01

    A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.

  16. Low Gravity Rapid Thermal Analysis of Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.

    2004-01-01

    It has been observed by two research groups that ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass crystallization is suppressed in microgravity. The mechanism for this phenomenon is unknown at the present time. In order to better understand the mechanism, an experiment was performed on NASA's KC135 reduced gravity aircraft to obtain quantitative crystallization data. An apparatus was designed and constructed for performing rapid thermal analysis of milligram quantities of ZBLAN glass. The apparatus employs an ellipsoidal furnace allowing for rapid heating and cooling. Using this apparatus nucleation and crystallization kinetic data was obtained leading to the construction of time-temperature-transformation curves for ZBLAN in microgravity and unit gravity.

  17. Residue Phe112 of the Human-Type Corrinoid Adenosyltransferase (PduO) Enzyme of Lactobacillus reuteri Is Critical to the Formation of the Four-Coordinate Co(II) Corrinoid Substrate and to the Activity of the Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mera, Paola E.; St. Maurice, Martin; Rayment, Ivan

    2009-06-08

    ATP:Corrinoid adenosyltransferases (ACAs) catalyze the transfer of the adenosyl moiety from ATP to cob(I)alamin via a four-coordinate cob(II)alamin intermediate. At present, it is unknown how ACAs promote the formation of the four-coordinate corrinoid species needed for activity. The published high-resolution crystal structure of the ACA from Lactobacillus reuteri (LrPduO) in complex with ATP and cob(II)alamin shows that the environment around the alpha face of the corrin ring consists of bulky hydrophobic residues. To understand how these residues promote the generation of the four-coordinate cob(II)alamin, variants of the human-type ACA enzyme from L. reuteri (LrPduO) were kinetically and structurally characterized. Thesemore » studies revealed that residue Phe112 is critical in the displacement of 5,6-dimethylbenzimidazole (DMB) from its coordination bond with the Co ion of the ring, resulting in the formation of the four-coordinate species. An F112A substitution resulted in a 80% drop in the catalytic efficiency of the enzyme. The explanation for this loss of activity was obtained from the crystal structure of the mutant protein, which showed cob(II)alamin bound in the active site with DMB coordinated to the cobalt ion. The crystal structure of an LrPduO(F112H) variant showed a DMB-off/His-on interaction between the corrinoid and the enzyme, whose catalytic efficiency was 4 orders of magnitude lower than that of the wild-type protein. The analysis of the kinetic parameters of LrPduO(F112H) suggests that the F112H substitution negatively impacts product release. Substitutions of other hydrophobic residues in the Cbl binding pocket did not result in significant defects in catalytic efficiency in vitro; however, none of the variant enzymes analyzed in this work supported AdoCbl biosynthesis in vivo.« less

  18. Experimental and theoretical investigations of the polar intermetallics SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegemann, Frank; Benndorf, Christopher; Touzani, Rachid St.

    SrPt{sub 3}Al{sub 2}, a CaCu{sub 5} relative (P6/mmm; a = 566.29(3), c = 389.39(3) pm; wR{sub 2} = 0.0202, 121 F{sup 2} values, 9 parameters), and Sr{sub 2}Pd{sub 2}Al, isostructural to Ca{sub 2}Pt{sub 2}Ge (Fdd2; a = 1041.45(5), b = 1558.24(7), c = 604.37(3) pm; wR{sub 2} = 0.0291, 844 F{sup 2} values, 25 parameters) have been prepared from the elements. The crystal structures have been investigated by single crystal X-ray diffraction. Structural relaxation confirmed the electronic stability of SrPt{sub 3}Al{sub 2}, while orthorhombic Sr{sub 2}Pd{sub 2}Al might be a metastable polymorph as it is energetically competitive to its monoclinicmore » variant. Both compounds are predicted to be metallic conductors as their density-of-states (DOS) are non-zero at the Fermi level. COHP bonding analysis coupled with Bader effective charge analysis suggest that the title compounds are polar intermetallic phases in which strong Pt–Al and Pd–Al covalent bonds are present, while a significant electron transfer from Sr atoms to the [Pt{sub 3}Al{sub 2}]{sup δ–} or [Pd{sub 2}Al]{sup δ–} network is found. - Graphical abstract: Chains of Pd atoms in the crystal structure of Sr{sub 2}Pd{sub 2}Al get connected by Al atoms in the shape of a distorted tetrahedra. The band structure calculations confirm weak Pd–Pd interactions. - Highlights: • SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al discovered and crystallographically investigated. • DFT predicts the here reported orthorhombic Sr{sub 2}Pd{sub 2}Al to be competitive in energy to the presently unknown monoclinic Sr{sub 2}Pd{sub 2}Al. • Bader charge analysis indicates SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al are polar intermetallics.« less

  19. Structural properties of a family of hydrogen-bonded co-crystals formed between gemfibrozil and hydroxy derivatives of t-butylamine, determined directly from powder X-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter

    2007-03-01

    We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.

  20. Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9)

    PubMed Central

    Fu, Qinqin; Yuan, Y. Adam

    2013-01-01

    Intensive research interest has focused on small RNA-processing machinery and the RNA-induced silencing complex (RISC), key cellular machines in RNAi pathways. However, the structural mechanism regarding RISC assembly, the primary step linking small RNA processing and RNA-mediated gene silencing, is largely unknown. Human RNA helicase A (DHX9) was reported to function as an RISC-loading factor, and such function is mediated mainly by its dsRNA-binding domains (dsRBDs). Here, we report the crystal structures of human RNA helicase A (RHA) dsRBD1 and dsRBD2 domains in complex with dsRNAs, respectively. Structural analysis not only reveals higher siRNA duplex-binding affinity displayed by dsRBD1, but also identifies a crystallographic dsRBD1 pair of physiological significance in cooperatively recognizing dsRNAs. Structural observations are further validated by isothermal titration calorimetric (ITC) assay. Moreover, co-immunoprecipitation (co-IP) assay coupled with mutagenesis demonstrated that both dsRBDs are required for RISC association, and such association is mediated by dsRNA. Hence, our structural and functional efforts have revealed a potential working model for siRNA recognition by RHA tandem dsRBDs, and together they provide direct structural insights into RISC assembly facilitated by RHA. PMID:23361462

  1. Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9).

    PubMed

    Fu, Qinqin; Yuan, Y Adam

    2013-03-01

    Intensive research interest has focused on small RNA-processing machinery and the RNA-induced silencing complex (RISC), key cellular machines in RNAi pathways. However, the structural mechanism regarding RISC assembly, the primary step linking small RNA processing and RNA-mediated gene silencing, is largely unknown. Human RNA helicase A (DHX9) was reported to function as an RISC-loading factor, and such function is mediated mainly by its dsRNA-binding domains (dsRBDs). Here, we report the crystal structures of human RNA helicase A (RHA) dsRBD1 and dsRBD2 domains in complex with dsRNAs, respectively. Structural analysis not only reveals higher siRNA duplex-binding affinity displayed by dsRBD1, but also identifies a crystallographic dsRBD1 pair of physiological significance in cooperatively recognizing dsRNAs. Structural observations are further validated by isothermal titration calorimetric (ITC) assay. Moreover, co-immunoprecipitation (co-IP) assay coupled with mutagenesis demonstrated that both dsRBDs are required for RISC association, and such association is mediated by dsRNA. Hence, our structural and functional efforts have revealed a potential working model for siRNA recognition by RHA tandem dsRBDs, and together they provide direct structural insights into RISC assembly facilitated by RHA.

  2. In-situ study on growth units of Ba2Mg(B3O6)2 crystal

    NASA Astrophysics Data System (ADS)

    Lv, X. S.; Sun, Y. L.; Tang, X. L.; Wan, S. M.; Zhang, Q. L.; You, J. L.; Yin, S. T.

    2013-05-01

    BMBO (Ba2Mg(B3O6)2 crystal) is an excellent birefringent crystal and a potential stimulated Raman scattering (SRS) crystal. In this paper, high temperature Raman spectroscopy was used to in-situ study the melt structure near a BMBO crystal-melt interface. [B3O6]3- groups were found in this region. The result reveals that both of BaO bonds and MgO bonds are the weak bonds in the BMBO crystal structure. During the melting process, the crystal structure broke into Ba2+ ions, Mg2+ ions and [B3O6]3- groups. Our experimental results confirmed that the well-developed faces of BMBO crystals are the (001), (101) and (012) faces. Based on attachment energy theory, the crystal growth habit was discussed. The (001) (101) and (012) crystal faces linked by the weak BaO bonds and MgO bonds have smaller attachment energies and slower growth rates, and thus present in the final morphology. The (012) crystal face has a multi-terrace structure, which suggests that BMBO crystal grows with a layer-by-layer mode.

  3. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure

    PubMed Central

    Nakabayashi, Makoto; Kataoka, Misumi; Mishima, Yumiko; Maeno, Yuka; Ishikawa, Kazuhiko

    2014-01-01

    β-Glucosidase from Pyrococcus furiosus (BGLPf) is a hyperthermophilic tetrameric enzyme which can degrade cellooligosaccharides to glucose under hyperthermophilic conditions and thus holds promise for the saccharification of lignocellulosic biomass at high temperature. Prior to the production of large amounts of this enzyme, detailed information regarding the oligomeric structure of the enzyme is required. Several crystals of BGLPf have been prepared over the past ten years, but its crystal structure had not been solved until recently. In 2011, the first crystal structure of BGLPf was solved and a model was constructed at somewhat low resolution (2.35 Å). In order to obtain more detailed structural data on BGLPf, the relationship between its tetrameric structure and the quality of the crystal was re-examined. A dimeric form of BGLPf was constructed and its crystal structure was solved at a resolution of 1.70 Å using protein-engineering methods. Furthermore, using the high-resolution crystal structural data for the dimeric form, a monomeric form of BGLPf was constructed which retained the intrinsic activity of the tetrameric form. The thermostability of BGLPf is affected by its oligomeric structure. Here, the biophysical and biochemical properties of engineered dimeric and monomeric BGLPfs are reported, which are promising prototype models to apply to the saccharification reaction. Furthermore, details regarding the oligomeric structures of BGLPf and the reasons why the mutations yielded improved crystal structures are discussed. PMID:24598756

  4. Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis.

    PubMed

    Wang, Qiantao; Edupuganti, Ramakrishna; Tavares, Clint D J; Dalby, Kevin N; Ren, Pengyu

    2015-01-01

    A-484954 is a known eEF2K inhibitor with submicromolar IC50 potency. However, the binding mechanism and the crystal structure of the kinase remains unknown. Here, we employ a homology eEF2K model, docking and alchemical free energy simulations to probe the binding mechanism of eEF2K, and in turn, guide the optimization of potential lead compounds. The inhibitor was docked into the ATP-binding site of a homology model first. Three different binding poses, hypothesis 1, 2, and 3, were obtained and subsequently applied to molecular dynamics (MD) based alchemical free energy simulations. The calculated relative binding free energy of the analogs of A-484954 using the binding pose of hypothesis 1 show a good correlation with the experimental IC50 values, yielding an r (2) coefficient of 0.96 after removing an outlier (compound 5). Calculations using another two poses show little correlation with experimental data, (r (2) of less than 0.5 with or without removing any outliers). Based on hypothesis 1, the calculated relative free energy suggests that bigger cyclic groups, at R1 e.g., cyclobutyl and cyclopentyl promote more favorable binding than smaller groups, such as cyclopropyl and hydrogen. Moreover, this study also demonstrates the ability of the alchemical free energy approach in combination with docking and homology modeling to prioritize compound synthesis. This can be an effective means of facilitating structure-based drug design when crystal structures are not available.

  5. In silico predictions of LH2 ring sizes from the crystal structure of a single subunit using molecular dynamics simulations.

    PubMed

    Janosi, Lorant; Keer, Harindar; Cogdell, Richard J; Ritz, Thorsten; Kosztin, Ioan

    2011-07-01

    Most of the currently known light-harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like "what factors govern the LH2 ring size?" and "are there other ring sizes possible?" remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8-ring from Rs. moliscianum (MOLI) and a 9-ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8-, 9-, and 10-ring geometries. After inserting each of the dimers into a lipid-water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9-ring, while MOLI is more likely to form an 8-ring than a 9-ring. Finally, we discuss both the merits and limitations of all three prediction methods. Copyright © 2011 Wiley-Liss, Inc.

  6. Multiple solvent crystal structures of ribonuclease A: An assessment of the method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechene, Michelle; Wink, Glenna; Smith, Mychal

    2010-11-12

    The multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) andmore » with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS.« less

  7. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification ofmore » several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.« less

  8. A hybrid phononic crystal for roof application.

    PubMed

    Wan, Qingmian; Shao, Rong

    2017-11-01

    Phononic crystal is a type of acoustic material, and the study of phononic crystals has attracted great attention from national research institutions. Meanwhile, noise reduction in the low-frequency range has always encountered difficulties and troubles in the engineering field. In order to obtain a unique and effective low-frequency noise reduction method, in this paper a low frequency noise attenuation system based on phononic crystal structure is proposed and demonstrated. The finite element simulation of the band gap is consistent with the final test results. The effects of structure parameters on the band gaps were studied by changing the structure parameters and the band gaps can be controlled by suitably tuning structure parameters. The structure and results provide a good support for phononic crystal structures engineering application.

  9. Crystallized N-terminal domain of influenza virus matrix protein M1 and method of determining and using same

    NASA Technical Reports Server (NTRS)

    Luo, Ming (Inventor); Sha, Bingdong (Inventor)

    2000-01-01

    The matrix protein, M1, of influenza virus strain A/PR/8/34 has been purified from virions and crystallized. The crystals consist of a stable fragment (18 Kd) of the M1 protein. X-ray diffraction studies indicated that the crystals have a space group of P3.sub.t 21 or P3.sub.2 21. Vm calculations showed that there are two monomers in an asymmetric unit. A crystallized N-terminal domain of M1, wherein the N-terminal domain of M1 is crystallized such that the three dimensional structure of the crystallized N-terminal domain of M1 can be determined to a resolution of about 2.1 .ANG. or better, and wherein the three dimensional structure of the uncrystallized N-terminal domain of M1 cannot be determined to a resolution of about 2.1 .ANG. or better. A method of purifying M1 and a method of crystallizing M1. A method of using the three-dimensional crystal structure of M1 to screen for antiviral, influenza virus treating or preventing compounds. A method of using the three-dimensional crystal structure of M1 to screen for improved binding to or inhibition of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the manufacture of an inhibitor of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the screening of candidates for inhibition of influenza virus M1.

  10. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    NASA Astrophysics Data System (ADS)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-04-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  11. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.

    PubMed

    Zhou, X Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Suino-Powell, Kelly M; Boutet, Sébastien; Williams, Garth J; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2016-04-12

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  12. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  13. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    PubMed Central

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C.H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998

  14. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE PAGES

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; ...

    2016-04-12

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  15. Statistical Analysis of Crystallization Database Links Protein Physico-Chemical Features with Crystallization Mechanisms

    PubMed Central

    Fusco, Diana; Barnum, Timothy J.; Bruno, Andrew E.; Luft, Joseph R.; Snell, Edward H.; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis. PMID:24988076

  16. Statistical analysis of crystallization database links protein physico-chemical features with crystallization mechanisms.

    PubMed

    Fusco, Diana; Barnum, Timothy J; Bruno, Andrew E; Luft, Joseph R; Snell, Edward H; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.

  17. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.

    PubMed

    Lemieux, M Joanne

    2007-01-01

    The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.

  18. Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A.

    PubMed

    McClary, Brandon; Zinshteyn, Boris; Meyer, Mélanie; Jouanneau, Morgan; Pellegrino, Simone; Yusupova, Gulnara; Schuller, Anthony; Reyes, Jeremy Chris P; Lu, Junyan; Guo, Zufeng; Ayinde, Safiat; Luo, Cheng; Dang, Yongjun; Romo, Daniel; Yusupov, Marat; Green, Rachel; Liu, Jun O

    2017-05-18

    Protein synthesis plays an essential role in cell proliferation, differentiation, and survival. Inhibitors of eukaryotic translation have entered the clinic, establishing the translation machinery as a promising target for chemotherapy. A recently discovered, structurally unique marine sponge-derived brominated alkaloid, (-)-agelastatin A (AglA), possesses potent antitumor activity. Its underlying mechanism of action, however, has remained unknown. Using a systematic top-down approach, we show that AglA selectively inhibits protein synthesis. Using a high-throughput chemical footprinting method, we mapped the AglA-binding site to the ribosomal A site. A 3.5 Å crystal structure of the 80S eukaryotic ribosome from S. cerevisiae in complex with AglA was obtained, revealing multiple conformational changes of the nucleotide bases in the ribosome accompanying the binding of AglA. Together, these results have unraveled the mechanism of inhibition of eukaryotic translation by AglA at atomic level, paving the way for future structural modifications to develop AglA analogs into novel anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres

    PubMed Central

    Wan, Bingbing; Yin, Jinhu; Horvath, Kent; Sarkar, Jaya; Chen, Yong; Wu, Jian; Wan, Ke; Lu, Jian; Gu, Peili; Yu, Eun Young; Lue, Neal F.; Chang, Sandy

    2014-01-01

    Summary SLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown. Here, we report the crystal structure of the TRF2-binding motif of SLX4 (SLX4TBM) in complex with the TRFH domain of TRF2 (TRF2TRFH) and map the interactions of SLX4 with endonucleases SLX1, XPF, and MUS81. TRF2 recognizes a unique HxLxP motif on SLX4 via the peptide-binding site in its TRFH domain. Telomeric localization of SLX4 and associated nucleases depend on the SLX4-endonuclease and SLX4-TRF2 interactions and the protein levels of SLX4 and TRF2. SLX4 assembles an endonuclease toolkit that negatively regulates telomere length via SLX1-catalyzed nucleolytic resolution of telomere DNA structures. We propose that the SLX4-TRF2 complex serves as a double-layer scaffold bridging multiple endonucleases with telomeres for recombination-based telomere maintenance. PMID:24012755

  20. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein

    PubMed Central

    Hwang, Jungwon; Suh, Hyun-Woo; Jeon, Young Ho; Hwang, Eunha; Nguyen, Loi T.; Yeom, Jeonghun; Lee, Seung-Goo; Lee, Cheolju; Kim, Kyung Jin; Kang, Beom Sik; Jeong, Jin-Ok; Oh, Tae-Kwang; Choi, Inpyo; Lee, Jie-Oh; Kim, Myung Hee

    2014-01-01

    The redox-dependent inhibition of thioredoxin (TRX) by thioredoxin-interacting protein (TXNIP) plays a pivotal role in various cancers and metabolic syndromes. However, the molecular mechanism of this regulation is largely unknown. Here, we present the crystal structure of the TRX–TXNIP complex and demonstrate that the inhibition of TRX by TXNIP is mediated by an intermolecular disulphide interaction resulting from a novel disulphide bond-switching mechanism. Upon binding to TRX, TXNIP undergoes a structural rearrangement that involves switching of a head-to-tail interprotomer Cys63-Cys247 disulphide between TXNIP molecules to an interdomain Cys63-Cys190 disulphide, and the formation of a de novo intermolecular TXNIP Cys247-TRX Cys32 disulphide. This disulphide-switching event unexpectedly results in a domain arrangement of TXNIP that is entirely different from those of other arrestin family proteins. We further show that the intermolecular disulphide bond between TRX and TXNIP dissociates in the presence of high concentrations of reactive oxygen species. This study provides insight into TRX and TXNIP-dependent cellular regulation. PMID:24389582

  1. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.

    PubMed

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene

    2017-03-06

    The distribution of potassium (K + ) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K + ions prefer to minimize the number of nearest neighbour K + ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K + distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  2. Comparison between layering NbSe2 and rod characteristic of MgB2 by investigation of elastic constants

    NASA Astrophysics Data System (ADS)

    Shokri, Asiye; Yazdani, Ahmad; Barakati, Behrad

    2018-03-01

    The delicate balancing of strong anisotropy on strength of hybridisation resulted to CDW- order “TCDW=33K” and finally emerging superconductivity at “Tc = 7.2K” are the most intriguing question in characteristic behaviour of NbSe2. On other hand, the original mechanism of MgB2 old superconductor, which has unlike the cuprates a lower anisotropy on strength hybridisation is still unknown. We believe this could result to bond exchange and larger coherence length of the grain boundary to current. Since the cause and the mechanism of band strengths of two original layering and rod structures are consequence of bond- rupturing-atomic displacement, here the stability of crystalline structure of inter atomic potential through the elasticity-compressibility is investigated. Consequently, in order to clear out the strong difference between the layering NbSe2 and domination of rod-character of MgB2 the stability of both crystal structures through the cohesive energy c/a, czz and c33 are investigated. The proposed investigations are more evident on different characteristic behaviour of calculated parameters.

  3. Structural basis for Mob1-dependent activation of the core Mst–Lats kinase cascade in Hippo signaling

    DOE PAGES

    Ni, Lisheng; Zheng, Yonggang; Hara, Mayuko; ...

    2015-06-24

    The Mst–Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conformational activation and binds to Lats1. We determine the crystal structures of phospho-Mst2–Mob1 and phospho-Mob1–Lats1 complexes, revealing the structural basis of both phosphorylation-dependent binding events. Further biochemical and functional analyses demonstrate that Mob1 mediates Lats1 activation through dynamic scaffolding and allosteric mechanisms. Thus, Mob1more » acts as a phosphorylation-regulated coupler of kinase activation by virtue of its ability to engage multiple ligands. We propose that stepwise, phosphorylation-triggered docking interactions of nonkinase elements enhance the specificity and robustness of kinase signaling cascades.« less

  4. Comparative structural analysis of human DEAD-box RNA helicases.

    PubMed

    Schütz, Patrick; Karlberg, Tobias; van den Berg, Susanne; Collins, Ruairi; Lehtiö, Lari; Högbom, Martin; Holmberg-Schiavone, Lovisa; Tempel, Wolfram; Park, Hee-Won; Hammarström, Martin; Moche, Martin; Thorsell, Ann-Gerd; Schüler, Herwig

    2010-09-30

    DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.

  5. Comparative Structural Analysis of Human DEAD-Box RNA Helicases

    PubMed Central

    Schütz, Patrick; Karlberg, Tobias; van den Berg, Susanne; Collins, Ruairi; Lehtiö, Lari; Högbom, Martin; Holmberg-Schiavone, Lovisa; Tempel, Wolfram; Park, Hee-Won; Hammarström, Martin; Moche, Martin; Thorsell, Ann-Gerd; Schüler, Herwig

    2010-01-01

    DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members. PMID:20941364

  6. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less

  7. Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Wei; Wernimont, Amy; Tang, Keliang

    2009-09-29

    Serine/threonine kinases secreted from rhoptry organelles constitute important virulence factors of Toxoplasma gondii. Rhoptry kinases are highly divergent and their structures and regulatory mechanism are hitherto unknown. Here, we report the X-ray crystal structures of two related pseudokinases named ROP2 and ROP8, which differ primarily in their substrate-binding site. ROP kinases contain a typical bilobate kinase fold and a novel N-terminal extension that both stabilizes the N-lobe and provides a unique means of regulation. Although ROP2 and ROP8 were catalytically inactive, they provided a template for homology modelling of the active kinase ROP18, a major virulence determinant of T. gondii.more » Autophosphorylation of key residues in the N-terminal extension resulted in ROP18 activation, which in turn phosphorylated ROP2 and ROP8. Mutagenesis and mass spectrometry experiments revealed that ROP18 was maximally activated when this phosphorylated N-terminus relieved autoinhibition resulting from extension of aliphatic side chains into the ATP-binding pocket. This novel means of regulation governs ROP kinases implicated in parasite virulence.« less

  8. Structure of the dimerization domain of DiGeorge Critical Region 8

    PubMed Central

    Senturia, Rachel; Faller, Michael; Yin, Sheng; Loo, Joseph A; Cascio, Duilio; Sawaya, Michael R; Hwang, Daniel; Clubb, Robert T; Guo, Feng

    2010-01-01

    Maturation of microRNAs (miRNAs, ∼22nt) from long primary transcripts [primary miRNAs (pri-miRNAs)] is regulated during development and is altered in diseases such as cancer. The first processing step is a cleavage mediated by the Microprocessor complex containing the Drosha nuclease and the RNA-binding protein DiGeorge critical region 8 (DGCR8). We previously reported that dimeric DGCR8 binds heme and that the heme-bound DGCR8 is more active than the heme-free form. Here, we identified a conserved dimerization domain in DGCR8. Our crystal structure of this domain (residues 298–352) at 1.7 Å resolution demonstrates a previously unknown use of a WW motif as a platform for extensive dimerization interactions. The dimerization domain of DGCR8 is embedded in an independently folded heme-binding domain and directly contributes to association with heme. Heme-binding-deficient DGCR8 mutants have reduced pri-miRNA processing activity in vitro. Our study provides structural and biochemical bases for understanding how dimerization and heme binding of DGCR8 may contribute to regulation of miRNA biogenesis. PMID:20506313

  9. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    DOE PAGES

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; ...

    2016-03-18

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less

  10. The use of small-molecule structures to complement protein–ligand crystal structures in drug discovery

    PubMed Central

    Cole, Jason C.

    2017-01-01

    Many ligand-discovery stories tell of the use of structures of protein–ligand complexes, but the contribution of structural chemistry is such a core part of finding and improving ligands that it is often overlooked. More than 800 000 crystal structures are available to the community through the Cambridge Structural Database (CSD). Individually, these structures can be of tremendous value and the collection of crystal structures is even more helpful. This article provides examples of how small-molecule crystal structures have been used to complement those of protein–ligand complexes to address challenges ranging from affinity, selectivity and bioavailability though to solubility. PMID:28291759

  11. Why don't we find more polymorphs?

    PubMed

    Price, Sarah L

    2013-08-01

    Crystal structure prediction (CSP) studies are not limited to being a search for the most thermodynamically stable crystal structure, but play a valuable role in understanding polymorphism, as shown by interdisciplinary studies where the crystal energy landscape has been explored experimentally and computationally. CSP usually produces more thermodynamically plausible crystal structures than known polymorphs. This article illustrates some reasons why: because (i) of approximations in the calculations, particularly the neglect of thermal effects (see §1.1); (ii) of the molecular rearrangement during nucleation and growth (see §1.2); (iii) the solid-state structures observed show dynamic or static disorder, stacking faults, other defects or are not crystalline and so represent more than one calculated structure (see §1.3); (iv) the structures are metastable relative to other molecular compositions (see §1.4); (v) the right crystallization experiment has not yet been performed (see §1.5) or (vi) cannot be performed (see §1.6) and the possibility (vii) that the polymorphs are not detected or structurally characterized (see §1.7). Thus, we can only aspire to a general predictive theory for polymorphism, as this appears to require a quantitative understanding of the kinetic factors involved in all possible multi-component crystallizations. For a specific molecule, analysis of the crystal energy landscape shows the potential complexity of its crystallization behaviour.

  12. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    PubMed

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  13. X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination

    DOE PAGES

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; ...

    2014-08-21

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. In addition, we validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  14. X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.

    2014-10-01

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  15. Toward Fully in Silico Melting Point Prediction Using Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Maginn, EJ

    2013-03-01

    Melting point is one of the most fundamental and practically important properties of a compound. Molecular computation of melting points. However, all of these methods simulation methods have been developed for the accurate need an experimental crystal structure as input, which means that such calculations are not really predictive since the melting point can be measured easily in experiments once a crystal structure is known. On the other hand, crystal structure prediction (CSP) has become an active field and significant progress has been made, although challenges still exist. One of the main challenges is the existence of many crystal structuresmore » (polymorphs) that are very close in energy. Thermal effects and kinetic factors make the situation even more complicated, such that it is still not trivial to predict experimental crystal structures. In this work, we exploit the fact that free energy differences are often small between crystal structures. We show that accurate melting point predictions can be made by using a reasonable crystal structure from CSP as a starting point for a free energy-based melting point calculation. The key is that most crystal structures predicted by CSP have free energies that are close to that of the experimental structure. The proposed method was tested on two rigid molecules and the results suggest that a fully in silico melting point prediction method is possible.« less

  16. Integrative interactive visualization of crystal structure, band structure, and Brillouin zone

    NASA Astrophysics Data System (ADS)

    Hanson, Robert; Hinke, Ben; van Koevering, Matthew; Oses, Corey; Toher, Cormac; Hicks, David; Gossett, Eric; Plata Ramos, Jose; Curtarolo, Stefano; Aflow Collaboration

    The AFLOW library is an open-access database for high throughput ab-initio calculations that serves as a resource for the dissemination of computational results in the area of materials science. Our project aims to create an interactive web-based visualization of any structure in the AFLOW database that has associate band structure data in a way that allows novel simultaneous exploration of the crystal structure, band structure, and Brillouin zone. Interactivity is obtained using two synchronized JSmol implementations, one for the crystal structure and one for the Brillouin zone, along with a D3-based band-structure diagram produced on the fly from data obtained from the AFLOW database. The current website portal (http://aflowlib.mems.duke.edu/users/jmolers/matt/website) allows interactive access and visualization of crystal structure, Brillouin zone and band structure for more than 55,000 inorganic crystal structures. This work was supported by the US Navy Office of Naval Research through a Broad Area Announcement administered by Duke University.

  17. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-03-27

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P212121, with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 {angstrom}. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedronmore » motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies.« less

  18. Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state.

    PubMed

    Kypr, J; Chládková, J; Zimulová, M; Vorlícková, M

    1999-09-01

    We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.

  19. Self-powdering and nonlinear optical domain structures in ferroelastic beta'-Gd{sub 2}(MoO{sub 4}){sub 3} crystals formed in glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukada, Y.; Honma, T.; Komatsu, T., E-mail: komatsu@mst.nagaokaut.ac.j

    Ferroelastic beta'-Gd{sub 2}(MoO{sub 4}){sub 3}, (GMO), crystals are formed through the crystallization of 21.25Gd{sub 2}O{sub 3}-63.75MoO{sub 3}-15B{sub 2}O{sub 3} glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 {mu}m spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called 'self-powdering phenomenon during crystallization' in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and amore » spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO{sub 4}){sup 2-} tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals. - Graphical abstract: This figure shows the polarized optical photograph at room temperature for a particle (piece) obtained by a heat treatment of the glass at 590 deg. C for 2 h in an electric furnace in air. This particle was obtained through the self-powdering behavior in the crystallization of glass. The periodic domain structure is observed. Ferroelastic beta'-Gd{sub 2}(MoO{sub 4}){sub 3} crystals are formed in the particle, and second harmonic generations are detected, depending on the domain structure.« less

  20. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered.

  1. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornaby, Sterling; CHESS; Szebenyi, Doletha M. E.

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Lauemore » technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.« less

  2. Construction of crystal structure prototype database: methods and applications.

    PubMed

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  3. Construction of crystal structure prototype database: methods and applications

    NASA Astrophysics Data System (ADS)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  4. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    PubMed Central

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the impact of mutations to the C-terminal domain on the thermal stability of Tb-MscL using circular dichroism and performed molecular dynamics simulations of the original and the revised crystal structures of Tb-MscL. Our results imply that this region is helical and adopts an α-helical bundle conformation similar to that observed in the E. coli MscL model and the revised Tb-MscL crystal structure. PMID:18326638

  5. Structure and Functional Characterization of the RNA-Binding Element of the NLRX1 Innate Immune Modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Minsun; Yoon, Sung-il; Wilson, Ian A.

    2012-06-20

    Mitochondrial NLRX1 is a member of the family of nucleotide-binding domain and leucine-rich-repeat-containing proteins (NLRs) that mediate host innate immunity as intracellular surveillance sensors against common molecular patterns of invading pathogens. NLRX1 functions in antiviral immunity, but the molecular mechanism of its ligand-induced activation is largely unknown. The crystal structure of the C-terminal fragment (residues 629975) of human NLRX1 (cNLRX1) at 2.65 {angstrom} resolution reveals that cNLRX1 consists of an N-terminal helical (LRRNT) domain, central leucine-rich repeat modules (LRRM), and a C-terminal three-helix bundle (LRRCT). cNLRX1 assembles into a compact hexameric architecture that is stabilized by intersubunit and interdomain interactionsmore » of LRRNT and LRRCT in the trimer and dimer components of the hexamer, respectively. Furthermore, we find that cNLRX1 interacts directly with RNA and supports a role for NLRX1 in recognition of intracellular viral RNA in antiviral immunity.« less

  6. S46 Peptidases are the First Exopeptidases to be Members of Clan PA

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Masaki, Mika; Ohta, Kazunori; Okada, Hirofumi; Nonaka, Takamasa; Morikawa, Yasushi; Nakamura, Kazuo T.; Ogasawara, Wataru; Tanaka, Nobutada

    2014-01-01

    The dipeptidyl aminopeptidase BII (DAP BII) belongs to a serine peptidase family, S46. The amino acid sequence of the catalytic unit of DAP BII exhibits significant similarity to those of clan PA endopeptidases, such as chymotrypsin. However, the molecular mechanism of the exopeptidase activity of family S46 peptidase is unknown. Here, we report crystal structures of DAP BII. DAP BII contains a peptidase domain including a typical double β-barrel fold and previously unreported α-helical domain. The structures of peptide complexes revealed that the α-helical domain covers the active-site cleft and the side chain of Asn330 in the domain forms hydrogen bonds with the N-terminus of the bound peptide. These observations indicate that the α-helical domain regulates the exopeptidase activity of DAP BII. Because S46 peptidases are not found in mammals, we expect that our study will be useful for the design of specific inhibitors of S46 peptidases from pathogens. PMID:24827749

  7. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography.

    PubMed

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-08-22

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

  8. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography

    PubMed Central

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-01-01

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. PMID:27548043

  9. Chemical nature of the barrier in Pb/YBa2Cu3O(7-x) tunneling structures

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Foote, M. C.; Hunt, B. D.; Bajuk, L.

    1991-01-01

    Several reports of reproducible tunneling measurements on YBa2Cu3O(7-x) thin films or single crystals with a Pb counterelectrode have recently appeared. The nature of the tunnel barrier, formed by air exposure, in these structures has been unknown. In the present work, the chemical nature of the tunnel barrier is studied with X-ray photoelectron spectroscopy (XPS). Laser-ablated films grown on LaAlO3 which have been chemically etched and heated in air are found to form nonsuperconducting surface Ba species, evident in an increase of the high binding energy Ba 3d and O 1s signals. A deposited Pb film about 10 A thick is found to be oxidized, and Cu(+2) is partially reduced to Cu(+1). The tunneling barrier thus appears to consist of species resulting from a combination of the air exposure and a reaction between the superconductor and the deposited Pb counterelectrode.

  10. Searching for “LiCr{sup II}PO{sub 4}”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosymow, E.; Glaum, R., E-mail: rglaum@uni-bonn.de; Kremer, R.K.

    The two new phosphates LiCr{sup II}{sub 4}(PO{sub 4}){sub 3} and Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4} are discovered as equilibrium phases (ϑ=800 °C) in the quarternary system Li/Cr/P/O. Their crystal structures have been determined from single-crystal X-ray diffraction data (LiCr{sup II}{sub 4}(PO{sub 4}){sub 3}: violet-blue, Pnma (no. 62), Z=4, a=6.175(1) Å, b=14.316(3) Å, c=10.277(2) Å, 100 parameters, R{sub 1}=0.028, wR{sub 2}=0.08, 2060 unique reflections with F{sub o}>4σ(F{sub o}); Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4}: greyish-green, P1{sup ¯} (no. 2), Z=1, a=4.9379(7) Å, b=7.917(2) Å, c=8.426(2) Å, α=109.98(2)°, β=90.71(1)°, γ=104.91(1)°, 131 parameters, R{sub 1}=0.022, wR{sub 2}=0.067, 1594 unique reflectionsmore » with F{sub o}>4σ(F{sub o})). Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4} adopts an hitherto unknown structure type. The crystal structure of LiCr{sup II}{sub 4}(PO{sub 4}){sub 3} is isotypic to that of NaCd{sup II}{sub 4}(PO{sub 4}){sub 3} and related to that of the mineral silicocarnotite Ca{sub 5}(PO{sub 4}){sub 2}(SiO{sub 4}). Significant disorder between Li{sup +} and Cr{sup 2+} is observed for both crystal structures. The oxidation states assigned to chromium in these two phosphates are in agreement with UV/vis/NIR absorption spectra and magnetic susceptibility data recorded for both compounds. Instead of “LiCr{sup II}PO{sub 4}” mixtures of LiCr{sup II}{sub 4}(PO{sub 4}){sub 3}, Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4}, Cr{sub 2}O{sub 3}, and CrP are observed at equilibrium. Instead of “Li{sub 2}Cr{sup II}P{sub 2}O{sub 7}” four-phase mixtures consisting of Li{sub 9}Cr{sup III}{sub 3}(P{sub 2}O{sub 7}){sub 3}(PO{sub 4}){sub 2}, Li{sub 3}Cr{sup III}{sub 2}(PO{sub 4}){sub 3}, LiCrP{sub 2}O{sub 7}, and CrP were obtained. - Graphical abstract: Investigations on the equilibrium relations in the system Li/Cr/P/O revealed the two hitherto unknown phosphates Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4} and LiCr{sup II}{sub 4}(PO{sub 4}){sub 3}. They form instead of “LiCr{sup II}PO{sub 4}”. The crystal structures, magnetic behavior and optical spectra of these phosphates are reported. - Highlights: • The two new phosphates Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4} and LiCr{sup II}{sub 4}(PO{sub 4}){sub 3} have been characterized. • Optical spectra and paramagnetism of the these phosphates are explained by AOM. • Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4}, LiCr{sup II}{sub 4}(PO{sub 4}){sub 3}, Cr{sub 2}O{sub 3}, and CrP occur instead of “LiCr{sup II}PO{sub 4}”. • LiCr{sup II}{sub 4}(PO{sub 4}){sub 3} is structurally closely related to Silicocarnotite Ca{sub 5}(PO{sub 4}){sub 2}(SiO{sub 4}). • Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4} and LiCr{sup II}{sub 4}(PO{sub 4}){sub 3} exhibit significant cation disorder Li{sup +}/Cr{sup 2+}.« less

  11. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    NASA Astrophysics Data System (ADS)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  12. A Study of Crystalline Mechanism of Penetration Sealer Materials.

    PubMed

    Teng, Li-Wei; Huang, Ran; Chen, Jie; Cheng, An; Hsu, Hui-Mi

    2014-01-14

    It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM) onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO₃. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0-10 mm of sealer layer beneath the concrete surface.

  13. Crystal structure of secretory abundant heat soluble protein 4 from one of the toughest “water bears” micro‐animals Ramazzottius Varieornatus

    PubMed Central

    Fukuda, Yohta

    2018-01-01

    Abstract Though anhydrobiotic tardigrades (micro‐animals also known as water bears) possess many genes of secretory abundant heat soluble (SAHS) proteins unique to Tardigrada, their functions are unknown. A previous crystallographic study revealed that a SAHS protein (RvSAHS1) from one of the toughest tardigrades, Ramazzottius varieornatus, has a β‐barrel architecture similar to fatty acid binding proteins (FABPs) and two putative ligand binding sites (LBS1 and LBS2) where fatty acids can bind. However, some SAHS proteins such as RvSAHS4 have different sets of amino acid residues at LBS1 and LBS2, implying that they prefer other ligands and have different functions. Here RvSAHS4 was crystallized and analyzed under a condition similar to that for RvSAHS1. There was no electron density corresponding to a fatty acid at LBS1 of RvSAHS4, where a putative fatty acid was observed in RvSAHS1. Instead, LBS2 of RvSAHS4, which was composed of uncharged residues, captured a putative polyethylene glycol molecule. These results suggest that RvSAHS4 mainly uses LBS2 for the binding of uncharged molecules. PMID:29493034

  14. [Fine stereo structure for natural organic molecules, a preliminary study. II. Melting point influenced by structure factors].

    PubMed

    Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y

    1995-06-01

    Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.

  15. On crystal versus fiber formation in dipeptide hydrogelator systems.

    PubMed

    Houton, Kelly A; Morris, Kyle L; Chen, Lin; Schmidtmann, Marc; Jones, James T A; Serpell, Louise C; Lloyd, Gareth O; Adams, Dave J

    2012-06-26

    Naphthalene dipeptides have been shown to be useful low-molecular-weight gelators. Here we have used a library to explore the relationship between the dipeptide sequence and the hydrogelation efficiency. A number of the naphthalene dipeptides are crystallizable from water, enabling us to investigate the comparison between the gel/fiber phase and the crystal phase. We succeeded in crystallizing one example directly from the gel phase. Using X-ray crystallography, molecular modeling, and X-ray fiber diffraction, we show that the molecular packing of this crystal structure differs from the structure of the gel/fiber phase. Although the crystal structures may provide important insights into stabilizing interactions, our analysis indicates a rearrangement of structural packing within the fibers. These observations are consistent with the fibrillar interactions and interatomic separations promoting 1D assembly whereas in the crystals the peptides are aligned along multiple axes, allowing 3D growth. This observation has an impact on the use of crystal structures to determine supramolecular synthons for gelators.

  16. A STUDY OF DISLOCATION STRUCTURE OF SUBBOUNDARIES IN MOLYBDENUM SINGLE CRYSTALS,

    DTIC Science & Technology

    MOLYBDENUM, *DISLOCATIONS), GRAIN STRUCTURES(METALLURGY), SINGLE CRYSTALS, ZONE MELTING, ELECTRON BEAM MELTING, GRAIN BOUNDARIES, MATHEMATICAL ANALYSIS, ETCHED CRYSTALS, ETCHING, ELECTROEROSIVE MACHINING, CHINA

  17. Structure-based functional annotation: yeast ymr099c codes for a D-hexose-6-phosphate mutarotase.

    PubMed

    Graille, Marc; Baltaze, Jean-Pierre; Leulliot, Nicolas; Liger, Dominique; Quevillon-Cheruel, Sophie; van Tilbeurgh, Herman

    2006-10-06

    Despite the generation of a large amount of sequence information over the last decade, more than 40% of well characterized enzymatic functions still lack associated protein sequences. Assigning protein sequences to documented biochemical functions is an interesting challenge. We illustrate here that structural genomics may be a reasonable approach in addressing these questions. We present the crystal structure of the Saccharomyces cerevisiae YMR099cp, a protein of unknown function. YMR099cp adopts the same fold as galactose mutarotase and shares the same catalytic machinery necessary for the interconversion of the alpha and beta anomers of galactose. The structure revealed the presence in the active site of a sulfate ion attached by an arginine clamp made by the side chain from two strictly conserved arginine residues. This sulfate is ideally positioned to mimic the phosphate group of hexose 6-phosphate. We have subsequently successfully demonstrated that YMR099cp is a hexose-6-phosphate mutarotase with broad substrate specificity. We solved high resolution structures of some substrate enzyme complexes, further confirming our functional hypothesis. The metabolic role of a hexose-6-phosphate mutarotase is discussed. This work illustrates that structural information has been crucial to assign YMR099cp to the orphan EC activity: hexose-phosphate mutarotase.

  18. Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo2 -yAs2

    NASA Astrophysics Data System (ADS)

    Sangeetha, N. S.; Anand, V. K.; Cuervo-Reyes, Eduardo; Smetana, V.; Mudring, A.-V.; Johnston, D. C.

    2018-04-01

    The compound EuCo2 -yAs2 with the tetragonal ThCr2Si2 structure is known to contain Eu+2 ions with spin S =7/2 that order below a temperature TN≈47 K into an antiferromagnetic (AFM) proper helical structure with the ordered moments aligned in the tetragonal a b plane, perpendicular to the helix axis along the c axis, with no contribution from the Co atoms. Here we carry out a detailed investigation of the properties of single crystals. We consistently find about 5% vacancies on the Co site from energy-dispersive x-ray analysis and x-ray diffraction refinements. Enhanced ordered and effective moments of the Eu spins are found in most of our crystals. Electronic structure calculations indicate that the enhanced moments arise from polarization of the d bands, as occurs in ferromagnetic Gd metal. Electrical resistivity measurements indicate metallic behavior. The low-field in-plane magnetic susceptibilities χa b(T

  19. Self-powdering and nonlinear optical domain structures in ferroelastic β‧-Gd2(MoO4)3 crystals formed in glass

    NASA Astrophysics Data System (ADS)

    Tsukada, Y.; Honma, T.; Komatsu, T.

    2009-08-01

    Ferroelastic β'-Gd 2(MoO 4) 3, (GMO), crystals are formed through the crystallization of 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called "self-powdering phenomenon during crystallization" in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals.

  20. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.

    PubMed

    Lin, Naibo; Liu, Xiang Yang

    2015-11-07

    This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted according to the synergistically correlated hierarchical structures of the domain and crystal networks, which can be quantified by the hierarchical structural correlation and the four structural parameters. Based on the concept of crystal networks, the new understanding acquired will transfer the research and engineering of mesoscopic materials, particularly, soft functional materials, to a new phase.

  1. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism.

    PubMed

    Price, Sarah Sally L

    2009-01-20

    The phenomenon of polymorphism, the ability of a molecule to adopt more than one crystal structure, is a well-established property of crystalline solids. The possible variations in physical properties between polymorphs make the reliable reproduction of a crystalline form essential for all research using organic materials, as well as quality control in manufacture. Thus, the last two decades have seen both an increase in interest in polymorphism and the availability of the computer power needed to make the computational prediction of organic crystal structures a practical possibility. In the past decade, researchers have made considerable improvements in the theoretical basis for calculating the sets of structures that are within the energy range of possible polymorphism, called crystal energy landscapes. It is common to find that a molecule has a wide variety of ways of packing with lattice energy within a few kilojoules per mole of the most stable structure. However, as we develop methods to search for and characterize "all" solid forms, it is also now usual for polymorphs and solvates to be found. Thus, the computed crystal energy landscape reflects and to an increasing extent "predicts" the emerging complexity of the solid state observed for many organic molecules. This Account will discuss the ways in which the calculation of the crystal energy landscape of a molecule can be used as a complementary technique to solid form screening for polymorphs. Current methods can predict the known crystal structure, even under "blind test" conditions, but such successes are generally restricted to those structures that are the most stable over a wide range of thermodynamic conditions. The other low-energy structures can be alternative polymorphs, which have sometimes been found in later experimental studies. Examining the computed structures reveals the various compromises between close packing, hydrogen bonding, and pi-pi stacking that can result in energetically feasible structures. Indeed, we have observed that systems with many almost equi-energetic structures that contain a common interchangeable motif correlate with a tendency to disorder and problems with control of the crystallization product. Thus, contrasting the computed crystal energy landscape with the known crystal structures of a given molecule provides a valuable complement to solid form screening, and the examination of the low-energy structures often leads to a rationalization of the forms found.

  2. Uveitic crystalline maculopathy.

    PubMed

    Or, Chris; Kirker, Andrew W; Forooghian, Farzin

    2015-01-01

    The purpose of this case report is to present a novel cause of crystalline maculopathy. A 52-year-old Japanese female presented with a 4-month history of decreased vision in the left eye. Best corrected visual acuity in the left eye was 20/40. Dilated fundus examination of the right eye was unremarkable, but that of the left eye demonstrated foveal yellow-green intraretinal crystals and mild vitritis. Optical coherence tomography of the left eye revealed small intraretinal fluid cysts and intraretinal crystals. Ultra-widefield fluorescein angiography was normal in the right eye, but that of the left eye demonstrated features of intermediate uveitis. There was no history or findings to suggest any cause for the crystals other than the uveitis. We propose that this may represent a novel category of crystalline retinopathy, termed uveitic crystalline maculopathy. We hypothesize that breakdown of the blood-retinal barrier as seen in uveitis may contribute to the deposition of crystals in the macula, although the precise composition of the crystals is unknown.

  3. Modeling of protein electrophoresis in silica colloidal crystals having brush layers of polyacrylamide

    PubMed Central

    Birdsall, Robert E.; Koshel, Brooke M.; Hua, Yimin; Ratnayaka, Saliya N.; Wirth, Mary J.

    2013-01-01

    Sieving of proteins in silica colloidal crystals of mm dimensions is characterized for particle diameters of nominally 350 and 500 nm, where the colloidal crystals are chemically modified with a brush layer of polyacrylamide. A model is developed that relates the reduced electrophoretic mobility to the experimentally measurable porosity. The model fits the data with no adjustable parameters for the case of silica colloidal crystals packed in capillaries, for which independent measurements of the pore radii were made from flow data. The model also fits the data for electrophoresis in a highly ordered colloidal crystal formed in a channel, where the unknown pore radius was used as a fitting parameter. Plate heights as small as 0.4 μm point to the potential for miniaturized separations. Band broadening increases as the pore radius approaches the protein radius, indicating that the main contribution to broadening is the spatial heterogeneity of the pore radius. The results quantitatively support the notion that sieving occurs for proteins in silica colloidal crystals, and facilitate design of new separations that would benefit from miniaturization. PMID:23229163

  4. Crystallographic Topology 2: Overview and Work in Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.K.

    1999-08-01

    This overview describes an application of contemporary geometric topology and stochastic process concepts to structural crystallography. In this application, crystallographic groups become orbifolds, crystal structures become Morse functions on orbifolds, and vibrating atoms in a crystal become vector valued Gaussian measures with the Radon-Nikodym property. Intended crystallographic benefits include new methods for visualization of space groups and crystal structures, analysis of the thermal motion patterns seen in ORTEP drawings, and a classification scheme for crystal structures based on their Heegaard splitting properties.

  5. Structure of Drosophila Oskar reveals a novel RNA binding protein

    PubMed Central

    Yang, Na; Yu, Zhenyu; Hu, Menglong; Wang, Mingzhu; Lehmann, Ruth; Xu, Rui-Ming

    2015-01-01

    Oskar (Osk) protein plays critical roles during Drosophila germ cell development, yet its functions in germ-line formation and body patterning remain poorly understood. This situation contrasts sharply with the vast knowledge about the function and mechanism of osk mRNA localization. Osk is predicted to have an N-terminal LOTUS domain (Osk-N), which has been suggested to bind RNA, and a C-terminal hydrolase-like domain (Osk-C) of unknown function. Here, we report the crystal structures of Osk-N and Osk-C. Osk-N shows a homodimer of winged-helix–fold modules, but without detectable RNA-binding activity. Osk-C has a lipase-fold structure but lacks critical catalytic residues at the putative active site. Surprisingly, we found that Osk-C binds the 3′UTRs of osk and nanos mRNA in vitro. Mutational studies identified a region of Osk-C important for mRNA binding. These results suggest possible functions of Osk in the regulation of stability, regulation of translation, and localization of relevant mRNAs through direct interaction with their 3′UTRs, and provide structural insights into a novel protein–RNA interaction motif involving a hydrolase-related domain. PMID:26324911

  6. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.

    PubMed

    Nishimasu, Hiroshi; Yamano, Takashi; Gao, Linyi; Zhang, Feng; Ishitani, Ryuichiro; Nureki, Osamu

    2017-07-06

    The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Solution structure of the catalytic domain of RICH protein from goldfish.

    PubMed

    Kozlov, Guennadi; Denisov, Alexey Y; Pomerantseva, Ekaterina; Gravel, Michel; Braun, Peter E; Gehring, Kalle

    2007-03-01

    Regeneration-induced CNPase homolog (RICH) is an axonal growth-associated protein, which is induced in teleost fish upon optical nerve injury. RICH consists of a highly acidic N-terminal domain, a catalytic domain with 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity and a C-terminal isoprenylation site. In vitro RICH and mammalian brain CNPase specifically catalyze the hydrolysis of 2',3'-cyclic nucleotides to produce 2'-nucleotides, but the physiologically relevant in vivo substrate remains unknown. Here, we report the NMR structure of the catalytic domain of goldfish RICH and describe its binding to CNPase inhibitors. The structure consists of a twisted nine-stranded antiparallel beta-sheet surrounded by alpha-helices on both sides. Despite significant local differences mostly arising from a seven-residue insert in the RICH sequence, the active site region is highly similar to that of human CNPase. Likewise, refinement of the catalytic domain of rat CNPase using residual dipolar couplings gave improved agreement with the published crystal structure. NMR titrations of RICH with inhibitors point to a similar catalytic mechanism for RICH and CNPase. The results suggest a functional importance for the evolutionarily conserved phosphodiesterase activity and hint of a link with pre-tRNA splicing.

  8. Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP.

    PubMed

    Colletier, Jacques-Philippe; Sliwa, Michel; Gallat, François-Xavier; Sugahara, Michihiro; Guillon, Virginia; Schirò, Giorgio; Coquelle, Nicolas; Woodhouse, Joyce; Roux, Laure; Gotthard, Guillaume; Royant, Antoine; Uriarte, Lucas Martinez; Ruckebusch, Cyril; Joti, Yasumasa; Byrdin, Martin; Mizohata, Eiichi; Nango, Eriko; Tanaka, Tomoyuki; Tono, Kensuke; Yabashi, Makina; Adam, Virgile; Cammarata, Marco; Schlichting, Ilme; Bourgeois, Dominique; Weik, Martin

    2016-03-03

    Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.

  9. Ab initio study of properties of BaBiO3 at high pressure

    NASA Astrophysics Data System (ADS)

    Martoňák, Roman; Ceresoli, Davide; Kagayama, Tomoko; Tosatti, Erio

    BaBiO3 is a mixed-valence perovskite which escapes metallic state by creating a Bi-O bond disproportionation or CDW pattern, resulting in a Peierls semiconductor with gap of nearly 1 eV at zero pressure. Evolution of structural and electronic properties at high pressure is, however, largely unknown. Pressure, it might be natural to expect, could reduce the bond-disproportionation and bring the system closer to metalicity or even superconductivity. We address this question by ab initio DFT methods based on GGA and hybrid functionals in combination with crystal structure prediction techniques based on genetic algorithms. We analyze the pressure evolution of bond disproportionation as well as other order parameters related to octahedra rotation for various phases in connection with corresponding evolution of the electronic structure. Results indicate that BaBiO3 continues to resist metalization also under pressure, through structural phase transitions which sustain and in fact increase the diversity of length of Bi-O bonds for neighboring Bi ions, in agreement with preliminary high pressure resistivity data. R.M. Slovak Research and Development Agency Contract APVV-15-0496, VEGA project No. 1-0904-15; E.T. ERC MODPHYSFRICT Advanced Grant No. 320796.

  10. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs.

    PubMed

    Navarro, Gemma; Cordomí, Arnau; Zelman-Femiak, Monika; Brugarolas, Marc; Moreno, Estefania; Aguinaga, David; Perez-Benito, Laura; Cortés, Antoni; Casadó, Vicent; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Pardo, Leonardo; García-Sáez, Ana J; McCormick, Peter J; Franco, Rafael

    2016-04-05

    G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patikoglou,G.; Westblade, L.; Campbell, E.

    The Escherichia coli Rsd protein binds tightly and specifically to the RNA polymerase (RNAP) {sigma}{sup 70} factor. Rsd plays a role in alternative {sigma} factor-dependent transcription by biasing the competition between {sigma}{sup 70} and alternative {sigma} factors for the available core RNAP. Here, we determined the 2.6 {angstrom}-resolution X-ray crystal structure of Rsd bound to {sigma}{sup 70} domain 4 ({sigma}{sup 70}{sub 4}), the primary determinant for Rsd binding within {sigma}{sup 70}. The structure reveals that Rsd binding interferes with the two primary functions of {sigma}{sup 70}{sub 4}, core RNAP binding and promoter -35 element binding. Interestingly, the most highly conservedmore » Rsd residues form a network of interactions through the middle of the Rsd structure that connect the {sigma}{sup 70}{sub 4}-binding surface with three cavities exposed on distant surfaces of Rsd, suggesting functional coupling between {sigma}{sup 70}{sub 4} binding and other binding surfaces of Rsd, either for other proteins or for as yet unknown small molecule effectors. These results provide a structural basis for understanding the role of Rsd, as well as its ortholog, AlgQ, a positive regulator of Pseudomonas aeruginosa virulence, in transcription regulation.« less

  12. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Anna W.; Satyshur, Kenneth A.; Moreno Morales, Neydis

    2016-02-01

    ABSTRACT Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulatormore » (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRR mon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCEBphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these proteins, rather than on signal transduction or the resultant phenotypes. To begin to address this knowledge gap, we solved the crystal structures of two single-domain response regulators encoded by a region immediately downstream of that encoding BphPs. We observed a previously unknown arm-in-arm dimer linkage. Monomerization via deletion of the C-terminal dimerization motif had an inhibitory effect on net response regulator phosphorylation, underlining the importance of these unusual dimers for signal transduction.« less

  13. [Crystal structure of SMU.2055 protein from Streptococcus mutans and its small molecule inhibitors design and selection].

    PubMed

    Xiaodan, Chen; Xiurong, Zhan; Xinyu, Wu; Chunyan, Zhao; Wanghong, Zhao

    2015-04-01

    The aim of this study is to analyze the three-dimensional crystal structure of SMU.2055 protein, a putative acetyltransferase from the major caries pathogen Streptococcus mutans (S. mutans). The design and selection of the structure-based small molecule inhibitors are also studied. The three-dimensional crystal structure of SMU.2055 protein was obtained by structural genomics research methods of gene cloning and expression, protein purification with Ni²⁺-chelating affinity chromatography, crystal screening, and X-ray diffraction data collection. An inhibitor virtual model matching with its target protein structure was set up using computer-aided drug design methods, virtual screening and fine docking, and Libdock and Autodock procedures. The crystal of SMU.2055 protein was obtained, and its three-dimensional crystal structure was analyzed. This crystal was diffracted to a resolution of 0.23 nm. It belongs to orthorhombic space group C222(1), with unit cell parameters of a = 9.20 nm, b = 9.46 nm, and c = 19.39 nm. The asymmetric unit contained four molecules, with a solvent content of 56.7%. Moreover, five small molecule compounds, whose structure matched with that of the target protein in high degree, were designed and selected. Protein crystallography research of S. mutans SMU.2055 helps to understand the structures and functions of proteins from S. mutans at the atomic level. These five compounds may be considered as effective inhibitors to SMU.2055. The virtual model of small molecule inhibitors we built will lay a foundation to the anticaries research based on the crystal structure of proteins.

  14. Correlation among far-infrared reflection modes, crystal structures and dielectric properties of Ba(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–CaTiO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Feng, E-mail: sf751106@sina.com.cn; Sun, Haiqing; Liu, Hongquan

    Highlights: • Crystal symmetry decreases with CT concentration from cubic to hexagonal structure. • Lattice constants as well as the ordered degree change with CT concentration. • Ordered structures turn from 1:1 to 1:2 ordering with change of crystal structures. • There is a correlation between FIR phonon modes and dielectric properties. • There is a correlation between FIR phonon modes and crystal structures. - Abstract: Ba(Zn{sub 1/3}Nb{sub 2/3})O{sub 3} (BZN)–CaTiO{sub 3} (CT) microwave dielectric ceramics were synthesized at 1395 °C for 4 h using conventional solid-state sintering technique with different CT contents. The ceramics were characterized by X-ray diffractionmore » (XRD) and far-infrared reflection (FIR) spectroscopy to evaluate correlations among crystal structures, dielectric properties, and infrared modes. XRD results showed that crystal symmetry decreased with increased CT concentration from cubic to hexagonal structure, and lattice constants and ordered degree changed accordingly. Ordered phases transformed from 1:1 to 1:2 ordered structure with crystal-structure change. FIR results demonstrated that two new IR active modes appeared at 300 cm{sup −1}, and another new mode appeared at 600 cm{sup −1} for the x ≥ 0.60 sample, which agreed with the change in crystal structures as confirmed by XRD results. Correlations between FIR modes and dielectric properties were established.« less

  15. Discovery of a meta-stable Al-Sm phase with unknown stoichiometry using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; McBrearty, Ian; Ott, R. T.

    Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al 5Sm phase identified by simultaneously searching Al-rich compositions of the Al–Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al 90Sm 10 alloys.

  16. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    DOEpatents

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  17. Synthesis and structural study of 4-(2-chlorophenyl)-2-ethoxy-5,6,7,8,9,10-hexahydrocycloocta[B]pyridine-3-carbonitrile

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Vasumathi, M.; Anitha, K.

    2016-05-01

    The novel organic material C20H21ClN2O was synthesized by One-Pot synthesis method and the single crystals were grown by slow evaporation solution growth technique. The crystal structure was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R=0.039 for 2746 reflections. Crystal system of the grown crystal was found to be monoclinic with the space group P21/a and a=9.196(4) Å, b=13.449(4) Å, c=14.818(4) Å, β= 101.542(3)°, V=1795.6(11) Å3 and Z=4. In this crystal structure, cyclooctanone prefers to reside in a chair-boat conformation. The structure is stabilized by attractive molecular force such as CH/π interaction called hydrophobic interaction.

  18. Structural properties and defects of GaN crystals grown at ultra-high pressures: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Xie, Quan; Tian, Zean; Chen, Qian; Liang, Yongchao; Ren, Lei; Hu, Xuechen

    2018-01-01

    The growth of GaN crystals at different pressures was studied by molecular dynamics simulation employing the Stillinger-Weber potential, and their structural properties and defects were characterized using the radial distribution function, the Voronoi polyhedron index method, and a suitable visualization technology. Crystal structures formed at 0, 1, 5, 10, and 20 GPa featured an overwhelming number of <4 0 0 0> Voronoi polyhedra, whereas amorphous structures comprising numerous disordered polyhedra were produced at 50 GPa. During quenching, coherent twin boundaries were easily formed between zinc-blende and wurtzite crystal structures in GaN. Notably, point defects usually appeared at low pressure, whereas dislocations were observed at high pressure, since the simultaneous growth of two crystal grains with different crystal orientations and their boundary expansion was hindered in the latter case, resulting in the formation of a dislocation between these grains.

  19. Maintenance of supersaturation I: indomethacin crystal growth kinetic modeling using an online second-derivative ultraviolet spectroscopic method.

    PubMed

    Patel, Dhaval D; Joguparthi, Vijay; Wang, Zeren; Anderson, Bradley D

    2011-07-01

    Formulations that produce supersaturated solutions after their oral administration have received increased attention as a means to improve bioavailability of poorly water-soluble drugs. Although it is widely recognized that excipients can prolong supersaturation, the mechanisms by which these beneficial effects are realized are generally unknown. Difficulties in separately measuring the kinetics of nucleation and crystal growth have limited progress in understanding the mechanisms by which excipients contribute to the supersaturation maintenance. This paper describes the crystal growth kinetic modeling of indomethacin, a poorly water-soluble drug, from supersaturated aqueous suspensions using a newly developed, online second-derivative ultraviolet spectroscopic method. The apparent indomethacin equilibrium solubility after crystal growth at a high degree of supersaturation (S=6) was approximately 55% higher than the indomethacin equilibrium solubility determined prior to growth, which was attributed to the deposition of a higher energy indomethacin form on the seed crystals. The indomethacin crystal growth kinetics (S=6) was of first order. By comparing the mass transfer coefficients from indomethacin dissolution and crystal growth, it was shown that the indomethacin crystal growth kinetics at S=6 was bulk diffusion controlled. The change in indomethacin seed crystal size distribution before and after crystal growth was determined and modeled using a mass-balance relationship. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Discovering H-bonding rules in crystals with inductive logic programming.

    PubMed

    Ando, Howard Y; Dehaspe, Luc; Luyten, Walter; Van Craenenbroeck, Elke; Vandecasteele, Henk; Van Meervelt, Luc

    2006-01-01

    In the domain of crystal engineering, various schemes have been proposed for the classification of hydrogen bonding (H-bonding) patterns observed in 3D crystal structures. In this study, the aim is to complement these schemes with rules that predict H-bonding in crystals from 2D structural information only. Modern computational power and the advances in inductive logic programming (ILP) can now provide computational chemistry with the opportunity for extracting structure-specific rules from large databases that can be incorporated into expert systems. ILP technology is here applied to H-bonding in crystals to develop a self-extracting expert system utilizing data in the Cambridge Structural Database of small molecule crystal structures. A clear increase in performance was observed when the ILP system DMax was allowed to refer to the local structural environment of the possible H-bond donor/acceptor pairs. This ability distinguishes ILP from more traditional approaches that build rules on the basis of global molecular properties.

  1. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  2. Development and photoelectric properties of In/p-Ag{sub 3}AsS{sub 3} surface-barrier structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rud', V. Yu., E-mail: rudvas@spbstu.ru; Rud', Yu. V.; Terukov, E. I.

    2010-08-15

    Homogeneous p-Ag{sub 3}AsS{sub 3} bulk single crystals with rhombic structure have been grown by planar crystallization from melts with atomic composition corresponding to this ternary compound. Photosensitive surface-barrier structures based on the interface between the surface of these crystals and thin films of pure indium are fabricated for the first time. The photosensitivity of fabricated structures is studied in natural and linearly polarized light. Photosensitivity spectra of In/p-Ag{sub 3}AsS{sub 3} structures are measured for the first time and used to determine the nature and energy of interband transitions in p-Ag{sub 3}AsS{sub 3} crystals. The phenomenon of natural photopleochroism is studiedmore » for surface-barrier structures grown on oriented p-Ag{sub 3}AsS{sub 3} single crystals. It is concluded that Ag{sub 3}AsS{sub 3} single crystals can be used in photoconverters of natural and linearly polarized light.« less

  3. Generation of crystal structures using known crystal structures as analogues

    PubMed Central

    Cole, Jason C.; Groom, Colin R.; Read, Murray G.; Giangreco, Ilenia; McCabe, Patrick; Reilly, Anthony M.; Shields, Gregory P.

    2016-01-01

    This analysis attempts to answer the question of whether similar molecules crystallize in a similar manner. An analysis of structures in the Cambridge Structural Database shows that the answer is yes – sometimes they do, particularly for single-component structures. However, one does need to define what we mean by similar in both cases. Building on this observation we then demonstrate how this correlation between shape similarity and packing similarity can be used to generate potential lattices for molecules with no known crystal structure. Simple intermolecular interaction potentials can be used to minimize these potential lattices. Finally we discuss the many limitations of this approach. PMID:27484374

  4. Microgravity protein crystallization

    PubMed Central

    McPherson, Alexander; DeLucas, Lawrence James

    2015-01-01

    Over the past 20 years a variety of technological advances in X-ray crystallography have shortened the time required to determine the structures of large macromolecules (i.e., proteins and nucleic acids) from several years to several weeks or days. However, one of the remaining challenges is the ability to produce diffraction-quality crystals suitable for a detailed structural analysis. Although the development of automated crystallization systems combined with protein engineering (site-directed mutagenesis to enhance protein solubility and crystallization) have improved crystallization success rates, there remain hundreds of proteins that either cannot be crystallized or yield crystals of insufficient quality to support X-ray structure determination. In an attempt to address this bottleneck, an international group of scientists has explored use of a microgravity environment to crystallize macromolecules. This paper summarizes the history of this international initiative along with a description of some of the flight hardware systems and crystallization results. PMID:28725714

  5. Ultratight crystal packing of a 10 kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trillo-Muyo, Sergio; Jasilionis, Andrius; Domagalski, Marcin J.

    2013-03-01

    The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.

  6. A Two-Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure.

    PubMed

    Pellach, Michal; Mondal, Sudipta; Harlos, Karl; Mance, Deni; Baldus, Marc; Gazit, Ehud; Shimon, Linda J W

    2017-03-13

    The crystal structure of a designed phospholipid-inspired amphiphilic phosphopeptide at 0.8 Å resolution is presented. The phosphorylated β-hairpin peptide crystallizes to form a lamellar structure that is stabilized by intra- and intermolecular hydrogen bonding, including an extended β-sheet structure, as well as aromatic interactions. This first reported crystal structure of a two-tailed peptidic bilayer reveals similarities in thickness to a typical phospholipid bilayer. However, water molecules interact with the phosphopeptide in the hydrophilic region of the lattice. Additionally, solid-state NMR was used to demonstrate correlation between the crystal structure and supramolecular nanostructures. The phosphopeptide was shown to self-assemble into semi-elliptical nanosheets, and solid-state NMR provides insight into the self-assembly mechanisms. This work brings a new dimension to the structural study of biomimetic amphiphilic peptides with determination of molecular organization at the atomic level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  8. Stochastic generation of complex crystal structures combining group and graph theory with application to carbon

    NASA Astrophysics Data System (ADS)

    Shi, Xizhi; He, Chaoyu; Pickard, Chris J.; Tang, Chao; Zhong, Jianxin

    2018-01-01

    A method is introduced to stochastically generate crystal structures with defined structural characteristics. Reasonable quotient graphs for symmetric crystals are constructed using a random strategy combined with space group and graph theory. Our algorithm enables the search for large-size and complex crystal structures with a specified connectivity, such as threefold sp2 carbons, fourfold sp3 carbons, as well as mixed sp2-sp3 carbons. To demonstrate the method, we randomly construct initial structures adhering to space groups from 75 to 230 and a range of lattice constants, and we identify 281 new sp3 carbon crystals. First-principles optimization of these structures show that most of them are dynamically and mechanically stable and are energetically comparable to those previously proposed. Some of the new structures can be considered as candidates to explain the experimental cold compression of graphite.

  9. Life in the fast lane for protein crystallization and X-ray crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.

    2005-01-01

    The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).

  10. Life in the Fast Lane for Protein Crystallization and X-Ray Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.

    2004-01-01

    The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today s high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).

  11. Theoretical exploration of various lithium peroxide crystal structures in a Li-air battery

    DOE PAGES

    Lau, Kah; Qiu, Dantong; Luo, Xiangyi; ...

    2015-01-14

    We describe a series of metastable Li₂O₂ crystal structures involving different orientations and displacements of the O₂²⁻ peroxy ions based on the known Li₂O₂ crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li₂O₂ crystal structure (i.e., Föppl structure), all of these newly found metastable Li₂O₂ crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O₂²⁻ O-O vibration mode (ω ~ 799–865 cm⁻¹), which is in the range of that commonly observed in Li-air battery experiments, regardless of themore » random O₂²⁻ orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li₂O₂ powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li₂O₂ compounds that are grown electrochemically under the environment of Li-O₂ cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li₂O₂ crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O₂²⁻ vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li₂O₂ crystal structures, as all of them similarly share the similar O₂²⁻ vibration mode. However considering that the discharge voltage in most Li-O₂ cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li₂O₂ crystal structures appears to be thermodynamically feasible.« less

  12. Crystal Structure and Crystal Chemistry of Some Common REE Minerals and Nanpingite

    NASA Astrophysics Data System (ADS)

    Ni, Yunxiang

    1995-01-01

    Part I. Crystal structure and crystal chemistry of fluorocarbonate minerals. The crystal structure of bastnasite-(Ce) have been solved in P-62c and refined to R = 0.018. The structure is composed of (001) (CeF) layers interspersed with (CO_3) layers in a 1:1 ratio. The Ce atom is coordinated in rm CeO_6F_3 polyhedra. The atomic arrangement of synchysite-(Ce) has been solved and refined to R = 0.036 with a monoclinic space group C2/c. It possesses a (001) layer structure, with layers of (Ca) and (CeF) separated by layers of carbonate groups. The layers stack in a manner analogous to C2/c muscovite. Polytypism similar to the micas may exist in synchysite. The crystal structures of cordylite-(Ce) have been solved in P6 _3/mmc and refined to R = 0.023. The structure and chemical formula are different from those deduced by Oftedal. The formula is rm MBaCe_2(CO _3)_4F, where M is rm Na^+, Ca^{2+}_{1/2 }+ O_{1/2}, or any solution. The presence of (NaF) layer in the structure is the key difference from the Oftedal's structure. This redefinition of the chemical formula and crystal structure of cordylite will be proposed to IMA-CNMMN. Part II. Crystal structure and crystal chemistry of monazite-xenotime series. Monazite is monoclinic, P2 _1/n, and xenotime is isostructural with zircon (I4_1/amd). Both atomic arrangements are based on (001) chains of intervening phosphate tetrahedra and RE polyhedra, with a REO_8 polyhedron in xenotime that accommodates HRE (Tb - Lu) and a REO_9 polyhedron in monazite that preferentially incorporates LRE (La - Gd). As the structure "transforms" from xenotime to monazite, the crystallographic properties are comparable along the (001) chains, with structural adjustments of 2.2 A along (010) to accommodate the different size RE atoms. Part III. Crystal structure of nanpingite-2M _2, the Cs end-member of muscovite. The crystal structure of nanpingite has been refined to R = 0.058. Compared to K^+ in muscovite, the largest interlayer Cs^+ in nanpingite increases (001) separation between adjacent 2:1 layers, but has little effect on the dimensions in (001). The existence of rare 2M_2 polytype in nanpingite is attributed to this large layer separation, which minimizes the repulsion of the superimposed (along (001)) basal oxygens in neighboring tetrahedral layers.

  13. Inorganic Crystal Structure Database (ICSD) and Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (TYPIX)—Two Tools for Inorganic Chemists and Crystallographers

    PubMed Central

    Fluck, Ekkehard

    1996-01-01

    The two databases ICSD and TYPIX are described. ICSD is a comprehensive compilation of crystal structure data of inorganic compounds (about 39 000 entries). TYPIX contains 3600 critically evaluated data sets representative of structure types formed by inorganic compounds. PMID:27805158

  14. Characterising laser beams with liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Naidoo, Darryl; Forbes, Andrew

    2016-02-01

    We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.

  15. Recent advances and progress in photonic crystal-based gas sensors

    NASA Astrophysics Data System (ADS)

    Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan

    2017-05-01

    This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.

  16. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    PubMed

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  17. Rare-earth metal gallium silicides via the gallium self-flux method. Synthesis, crystal structures, and magnetic properties of RE(Ga 1–xSi x)₂ (RE=Y, La–Nd, Sm, Gd–Yb, Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darone, Gregory M.; Hmiel, Benjamin; Zhang, Jiliang

    Fifteen ternary rare-earth metal gallium silicides have been synthesized using molten Ga as a molten flux. They have been structurally characterized by single-crystal and powder X-ray diffraction to form with three different structures—the early to mid-late rare-earth metals RE=La–Nd, Sm, Gd–Ho, Yb and Y form compounds with empirical formulae RE(Ga xSi 1–x)₂ (0.38≤x≤0.63), which crystallize with the tetragonal α-ThSi₂ structure type (space group I4₁/amd, No. 141; Pearson symbol tI12). The compounds of the late rare-earth crystallize with the orthorhombic α-GdSi₂ structure type (space group Imma, No. 74; Pearson symbol oI12), with refined empirical formula REGa xSi 2–x–y (RE=Ho, Er, Tm;more » 0.33≤x≤0.40, 0.10≤y≤0.18). LuGa₀.₃₂₍₁₎Si₁.₄₃₍₁₎ crystallizes with the orthorhombic YbMn₀.₁₇Si₁.₈₃ structure type (space group Cmcm, No. 63; Pearson symbol oC24). Structural trends are reviewed and analyzed; the magnetic susceptibilities of the grown single-crystals are presented. - Graphical abstract: This article details the exploration of the RE–Ga–Si ternary system with the aim to systematically investigate the structural “boundaries” between the α-ThSi₂ and α-GdSi₂-type structures, and studies of the magnetic properties of the newly synthesized single-crystalline materials. Highlights: • Light rare-earth gallium silicides crystallize in α-ThSi₂ structure type. • Heavy rare-earth gallium silicides crystallize in α-GdSi₂ structure type. • LuGaSi crystallizes in a defect variant of the YbMn₀.₁₇Si₁.₈₃ structure type.« less

  18. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  19. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE PAGES

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.; ...

    2017-05-15

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  20. Birefringent Crystals and Abdominal Discoloration in the Predatory Mite Phytoseiulus persimilis (Acari: Phytoseiidae)

    PubMed

    Bjørnson; Steiner; Keddie

    1997-03-01

    In response to grower complaints of poor performance of Phytoseiulus persimilis, mites from 14 commercial insectaries and research colonies were examined for pathogens. Some were found to have abdominal discolorations, manifested initially as two white stripes along the dorsal sides of the body within the Malpighian tubules. Advanced signs appeared as a large, centrally located, white spot or U-shaped discoloration in the distal opisthosoma within the rectum/anal atrium. White material often accumulated and hardened within the anus and formed a rectal plug that inhibited further excretion. Most affected mites were lethargic. Adults and immatures with abdominal discoloration contained numerous densely packed, birefringent, dumbbell-shaped entities. Though occasionally observed in the colon, they occurred most frequently within the Malpighian tubules and/or rectum and anal atrium. Dumbbells measured 2-4 &mgr;m long and contained prominent concentric rings. When observed by transmission electron microscopy, the entities lacked cellular organelles. Asymptomatic mites contained few or no such entities. Dumbbell-shaped inclusions were observed in P. persimilis from all sources examined. High levels of potassium, low levels of phosphorous and sulfur, and traces of chlorine were detected by energy-dispersive X-ray analysis. Guanine and uric acid, known nitrogenous wastes of arachnids, do not contain these elements. The chemical composition and structure indicate that the dumbbells are crystals. Both asymptomatic mites and those specimens exhibiting abdominal discoloration were examined for pathogens using light and transmission electron microscopy. Microsporidia, virus-like particles, and a rickettsia (genus Wolbachia) were observed in some mites but showed no correlation with white abdominal discoloration or associated crystal formation. Neither were pathogens always detected in symptomatic mites. Although birefringent crystals may be naturally occurring excretory products, the cause of white abdominal signs associated with crystal accumulation in P. persimilis is unknown. These signs indicate overall poor health.

  1. Crystal structure, spectral, thermal and dielectric studies of a new zinc benzoate single crystal

    NASA Astrophysics Data System (ADS)

    Bijini, B. R.; Prasanna, S.; Deepa, M.; Nair, C. M. K.; Rajendra Babu, K.

    2012-11-01

    Single crystals of zinc benzoate with a novel structure were grown in gel media. Sodium metasilicate of gel density 1.04 g/cc at pH 6 was employed to yield transparent single crystals. The crystal structure of the compound was ascertained by single crystal X-ray diffractometry. It was noted that the crystal belongs to monoclinic system with space group P21/c with unit cell parameters a = 10.669(1) Å, b = 12.995(5) Å, c = 19.119(3) Å, and β = 94.926(3)°. The crystal was seen to possess a linear polymeric structure along b-axis; with no presence of coordinated or lattice water. CHN analysis established the stoichiometric composition of the crystal. The existence of functional groups present in the single crystal system was confirmed by FT-IR studies. The thermal characteristic of the sample was analysed by TGA-DTA techniques, and the sample was found to be thermally stable up to 280 °C. The kinetic and thermodynamic parameters were also determined. UV-Vis spectroscopy corroborated the transparency of the crystal and revealed the optical band gap to be 4 eV. Dielectric studies showed decrease in the dielectric constant of the sample with increase in frequency.

  2. Construction of nanostructures for selective lithium ion conduction using self-assembled molecular arrays in supramolecular solids

    NASA Astrophysics Data System (ADS)

    Moriya, Makoto

    2017-12-01

    In the development of innovative molecule-based materials, the identification of the structural features in supramolecular solids and the understanding of the correlation between structure and function are important factors. The author investigated the development of supramolecular solid electrolytes by constructing ion conduction paths using a supramolecular hierarchical structure in molecular crystals because the ion conduction path is an attractive key structure due to its ability to generate solid-state ion diffusivity. The obtained molecular crystals exhibited selective lithium ion diffusion via conduction paths consisting of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and small molecules such as ether or amine compounds. In the present review, the correlation between the crystal structure and ion conductivity of the obtained molecular crystals is addressed based on the systematic structural control of the ionic conduction paths through the modification of the component molecules. The relationship between the crystal structure and ion conductivity of the molecular crystals provides a guideline for the development of solid electrolytes based on supramolecular solids exhibiting rapid and selective lithium ion conduction.

  3. Probing the crystal structure landscape by doping: 4-bromo, 4-chloro and 4-methylcinnamic acids.

    PubMed

    Desiraju, Gautam R; Chakraborty, Shaunak; Joseph, Sumy

    2018-06-11

    Accessing the data points in the crystal structure landscape of a molecule is a challenging task, either experimentally or computationally. We have charted the crystal structure landscape of 4-bromocinnamic acid (4BCA) experimentally and computationally: experimental doping is achieved with 4-methylcinnamic acid (4MCA) to obtain new crystal structures; computational doping is performed with 4-chlorocinnamic acid (4CCA) as a model system, because of the difficulties associated in parameterizing the Br-atom. The landscape of 4CCA is explored experimentally in turn, also by doping it with 4MCA, and is found to bear a close resemblance to the landscape of 4BCA, justifying the ready miscibility of these two halogenated cinnamic acids to form solid solutions without any change in crystal structure. In effect, 4MCA, 4CCA and 4BCA form a commutable group of crystal structures, which may be realized experimentally or computationally, and constitute the landscape. Unlike the results obtained by Kitaigorodskii and others, all but two of the multiple solid solutions obtained in the methyl-doping experiments take structures that are different from the hitherto observed crystal forms of the parent compounds. Even granted that the latter might be inherently polymorphic, this unusual observation provokes the suggestion that solid solution formation may be used to probe the crystal structure landscape. The influence of pi...pi interactions, weak hydrogen bonds and halogen bonds in directing the formation of these new structures is also seen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Functional materials discovery using energy-structure-function maps

    NASA Astrophysics Data System (ADS)

    Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A.; Chong, Samantha Y.; Slater, Benjamin J.; McMahon, David P.; Bonillo, Baltasar; Stackhouse, Chloe J.; Stephenson, Andrew; Kane, Christopher M.; Clowes, Rob; Hasell, Tom; Cooper, Andrew I.; Day, Graeme M.

    2017-03-01

    Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.

  5. Functional materials discovery using energy-structure-function maps.

    PubMed

    Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A; Chong, Samantha Y; Slater, Benjamin J; McMahon, David P; Bonillo, Baltasar; Stackhouse, Chloe J; Stephenson, Andrew; Kane, Christopher M; Clowes, Rob; Hasell, Tom; Cooper, Andrew I; Day, Graeme M

    2017-03-30

    Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.

  6. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales

    PubMed Central

    Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.

    2014-01-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  7. Crystal-to-Crystal Transition of Ultrasoft Colloids under Shear

    NASA Astrophysics Data System (ADS)

    Ruiz-Franco, J.; Marakis, J.; Gnan, N.; Kohlbrecher, J.; Gauthier, M.; Lettinga, M. P.; Vlassopoulos, D.; Zaccarelli, E.

    2018-02-01

    Ultrasoft colloids typically do not spontaneously crystallize, but rather vitrify, at high concentrations. Combining in situ rheo-small-angle-neutron-scattering experiments and numerical simulations we show that shear facilitates crystallization of colloidal star polymers in the vicinity of their glass transition. With increasing shear rate well beyond rheological yielding, a transition is found from an initial bcc-dominated structure to an fcc-dominated one. This crystal-to-crystal transition is not accompanied by intermediate melting but occurs via a sudden reorganization of the crystal structure. Our results provide a new avenue to tailor colloidal crystallization and the crystal-to-crystal transition at the molecular level by coupling softness and shear.

  8. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  9. Novel protein crystal growth technology: Proof of concept

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz

    1989-01-01

    A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.

  10. Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity

    PubMed Central

    Hollergschwandtner, Elena; Schwaha, Thomas; Neumüller, Josef; Kaindl, Ulrich; Gruber, Daniela; Eckhard, Margret; Stöger-Pollach, Michael

    2017-01-01

    Background Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis in vitro require understanding the principles of their self-assembly in vivo. One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into Artemia franciscana (Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures. Results EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of A. franciscana. Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly. Conclusions The ovisac lining of A. franciscana is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of A. franciscana. In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing Artemia as feed for fish farming. We propose Artemia ovisacs as an in vivo model system for studying mesostructure formation. PMID:29093995

  11. Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity.

    PubMed

    Hollergschwandtner, Elena; Schwaha, Thomas; Neumüller, Josef; Kaindl, Ulrich; Gruber, Daniela; Eckhard, Margret; Stöger-Pollach, Michael; Reipert, Siegfried

    2017-01-01

    Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis in vitro require understanding the principles of their self-assembly in vivo . One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into Artemia franciscana (Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures. EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of A. franciscana . Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly. The ovisac lining of A. franciscana is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of A. franciscana . In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing Artemia as feed for fish farming. We propose Artemia ovisacs as an in vivo model system for studying mesostructure formation.

  12. Structure of the two-domain hexameric APS kinase from Thiobacillus denitrificans: structural basis for the absence of ATP sulfurylase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, Sean C.; Segel, Irwin H.; Fisher, Andrew J., E-mail: fisher@chem.ucdavis.edu

    2009-10-01

    APS kinase from Thiobacillus denitrificans contains an inactive N-terminal ATP sulfurylase domain. The structure presented unveils the first hexameric assembly for an APS kinase, and reveals that structural changes in the N-terminal domain disrupt the ATP sulfurylase active site thus prohibiting activity. The Tbd-0210 gene of the chemolithotrophic bacterium Thiobacillus denitrificans is annotated to encode a 60.5 kDa bifunctional enzyme with ATP sulfurylase and APS kinase activity. This putative bifunctional enzyme was cloned, expressed and structurally characterized. The 2.95 Å resolution X-ray crystal structure reported here revealed a hexameric assembly with D{sub 3} symmetry. Each subunit contains a large N-terminalmore » sulfurylase-like domain and a C-terminal APS kinase domain reminiscent of the two-domain fungal ATP sulfurylases of Penicillium chrysogenum and Saccharomyces cerevisiae, which also exhibit a hexameric assembly. However, the T. denitrificans enzyme exhibits numerous structural and sequence differences in the N-terminal domain that render it inactive with respect to ATP sulfurylase activity. Surprisingly, the C-terminal domain does indeed display APS kinase activity, indicating that this gene product is a true APS kinase. Therefore, these results provide the first structural insights into a unique hexameric APS kinase that contains a nonfunctional ATP sulfurylase-like domain of unknown function.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipiuk, J.; Gornicki, P.; Maj, L.

    The structure of the YlxR protein of unknown function from Streptococcus pneumonia was determined to 1.35 Angstroms. YlxR is expressed from the nusA/infB operon in bacteria and belongs to a small protein family (COG2740) that shares a conserved sequence motif GRGA(Y/W). The family shows no significant amino-acid sequence similarity with other proteins. Three-wavelength diffraction MAD data were collected to 1.7 Angstroms from orthorhombic crystals using synchrotron radiation and the structure was determined using a semi-automated approach. The YlxR structure resembles a two-layer {alpha}/{beta} sandwich with the overall shape of a cylinder and shows no structural homology to proteins of knownmore » structure. Structural analysis revealed that the YlxR structure represents a new protein fold that belongs to the {alpha}-{beta} plait superfamily. The distribution of the electrostatic surface potential shows a large positively charged patch on one side of the protein, a feature often found in nucleic acid-binding proteins. Three sulfate ions bind to this positively charged surface. Analysis of potential binding sites uncovered several substantial clefts, with the largest spanning 3/4 of the protein. A similar distribution of binding sites and a large sharply bent cleft are observed in RNA-binding proteins that are unrelated in sequence and structure. It is proposed that YlxR is an RNA-binding protein.« less

  14. Streptococcus pneumonia YlxR at 1.35 A shows a putative new fold.

    PubMed

    Osipiuk, J; Górnicki, P; Maj, L; Dementieva, I; Laskowski, R; Joachimiak, A

    2001-11-01

    The structure of the YlxR protein of unknown function from Streptococcus pneumonia was determined to 1.35 A. YlxR is expressed from the nusA/infB operon in bacteria and belongs to a small protein family (COG2740) that shares a conserved sequence motif GRGA(Y/W). The family shows no significant amino-acid sequence similarity with other proteins. Three-wavelength diffraction MAD data were collected to 1.7 A from orthorhombic crystals using synchrotron radiation and the structure was determined using a semi-automated approach. The YlxR structure resembles a two-layer alpha/beta sandwich with the overall shape of a cylinder and shows no structural homology to proteins of known structure. Structural analysis revealed that the YlxR structure represents a new protein fold that belongs to the alpha-beta plait superfamily. The distribution of the electrostatic surface potential shows a large positively charged patch on one side of the protein, a feature often found in nucleic acid-binding proteins. Three sulfate ions bind to this positively charged surface. Analysis of potential binding sites uncovered several substantial clefts, with the largest spanning 3/4 of the protein. A similar distribution of binding sites and a large sharply bent cleft are observed in RNA-binding proteins that are unrelated in sequence and structure. It is proposed that YlxR is an RNA-binding protein.

  15. Heteroaryldihydropyrimidine (HAP) and Sulfamoylbenzamide (SBA) Inhibit Hepatitis B Virus Replication by Different Molecular Mechanisms

    PubMed Central

    Zhou, Zheng; Hu, Taishan; Zhou, Xue; Wildum, Steffen; Garcia-Alcalde, Fernando; Xu, Zhiheng; Wu, Daitze; Mao, Yi; Tian, Xiaojun; Zhou, Yuan; Shen, Fang; Zhang, Zhisen; Tang, Guozhi; Najera, Isabel; Yang, Guang; Shen, Hong C.; Young, John A. T.; Qin, Ning

    2017-01-01

    Heteroaryldihydropyrimidine (HAP) and sulfamoylbenzamide (SBA) are promising non-nucleos(t)ide HBV replication inhibitors. HAPs are known to promote core protein mis-assembly, but the molecular mechanism of abnormal assembly is still elusive. Likewise, the assembly status of core protein induced by SBA remains unknown. Here we show that SBA, unlike HAP, does not promote core protein mis-assembly. Interestingly, two reference compounds HAP_R01 and SBA_R01 bind to the same pocket at the dimer-dimer interface in the crystal structures of core protein Y132A hexamer. The striking difference lies in a unique hydrophobic subpocket that is occupied by the thiazole group of HAP_R01, but is unperturbed by SBA_R01. Photoaffinity labeling confirms the HAP_R01 binding pose at the dimer-dimer interface on capsid and suggests a new mechanism of HAP-induced mis-assembly. Based on the common features in crystal structures we predict that T33 mutations generate similar susceptibility changes to both compounds. In contrast, mutations at positions in close contact with HAP-specific groups (P25A, P25S, or V124F) only reduce susceptibility to HAP_R01, but not to SBA_R01. Thus, HAP and SBA are likely to have distinctive resistance profiles. Notably, P25S and V124F substitutions exist in low-abundance quasispecies in treatment-naïve patients, suggesting potential clinical relevance. PMID:28205569

  16. X-ray structure investigation of some substituted indoles, and the x-ray crystal of 1,1'-bishomocubane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarles, William G.

    1970-05-01

    The crystal structures of 5-methoxytryptamine, melatonin, and the p-bromobenzoate of 1,1'-bishomocubane have been solved by x-ray diffraction methods. A computer program for the trial and error solution of crystal structures is also described here.

  17. Two Crystallographic Laboratory and Computational Exercises for Undergraduates.

    ERIC Educational Resources Information Center

    Lessinger, Leslie

    1988-01-01

    Describes two introductory exercises designed to teach the fundamental ideas and methods of crystallography, and to convey some important features of inorganic and organic crystal structures to students in an advanced laboratory course. Exercises include "The Crystal Structure of NiO" and "The Crystal Structure of Beta-Fumaric Acid." (CW)

  18. The rotational order-disorder structure of the reversibly photoswitchable red fluorescent protein rsTagRFP.

    PubMed

    Pletnev, Sergei; Subach, Fedor V; Verkhusha, Vladislav V; Dauter, Zbigniew

    2014-01-01

    The rotational order-disorder (OD) structure of the reversibly photoswitchable fluorescent protein rsTagRFP is discussed in detail. The structure is composed of tetramers of 222 symmetry incorporated into the lattice in two different orientations rotated 90° with respect to each other around the crystal c axis and with tetramer axes coinciding with the crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates the rotational OD structure with statistically averaged I422 symmetry. Despite order-disorder pathology, the structure of rsTagRFP has electron-density maps of good quality for both non-overlapping and overlapping parts of the model. The crystal contacts, crystal internal architecture and a possible mechanism of rotational OD crystal formation are discussed.

  19. Effects of cyclic structure inhibitors on the morphology and growth of tetrahydrofuran hydrate crystals

    NASA Astrophysics Data System (ADS)

    Li, Sijia; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2013-08-01

    Morphology and growth of hydrate crystals with cyclic structure inhibitors at a hydrate-liquid interface were directly observed through a microscopic manipulating apparatus. Tetrahydrofuran (THF) hydrate was employed as an objective. The effects of four kind of cyclic structure inhibitors, polyvinylpyrrolidone (PVP), poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine) (PVPP), poly(2-vinyl pyridine-co-N-vinylcaprolactam) (PVPC) and poly(N-vinylcaprolactam) (PVCap), were investigated. Morphological patterns between each hydrate crystal growth from hydrate-liquid interface into droplet were found differ significantly. Lamellar structure growth of hydrate crystal was observed without inhibitor, while with PVP was featheriness-like, PVPP was like long dendritic crystal, PVPC was Mimosa pudica leaf-like and PVCap was like weeds. The growth rate of hydrate crystal without inhibitor was 0.00498 mm3/s, while with PVPP, PVPC and PVCap, were 0.00339 mm3/s, 0.00350 mm3/s, 0.00386 mm3/s and 0.00426 mm3/s, respectively. Cyclic structure inhibitors can decrease the growth rate, degree of reduction in growth rate of hydrate crystals decrease with the increase of cylinder number.

  20. Non-destructive identification of unknown minor phases in polycrystalline bulk alloys using three-dimensional X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yiming, E-mail: yangyiming1988@outlook.com

    Minor phases make considerable contributions to the mechanical and physical properties of metals and alloys. Unfortunately, it is difficult to identify unknown minor phases in a bulk polycrystalline material using conventional metallographic methods. Here, a non-destructive method based on three-dimensional X-ray diffraction (3DXRD) is developed to solve this problem. Simulation results demonstrate that this method is simultaneously able to identify minor phase grains and reveal their positions, orientations and sizes within bulk alloys. According to systematic simulations, the 3DXRD method is practicable for an extensive sample set, including polycrystalline alloys with hexagonal, orthorhombic and cubic minor phases. Experiments were alsomore » conducted to confirm the simulation results. The results for a bulk sample of aluminum alloy AA6061 show that the crystal grains of an unexpected γ-Fe (austenite) phase can be identified, three-dimensionally and nondestructively. Therefore, we conclude that the 3DXRD method is a powerful tool for the identification of unknown minor phases in bulk alloys belonging to a variety of crystal systems. This method also has the potential to be used for in situ observations of the effects of minor phases on the crystallographic behaviors of alloys. - Highlights: •A method based on 3DXRD is developed for identification of unknown minor phase. •Grain position, orientation and size, is simultaneously acquired. •A systematic simulation demonstrated the applicability of the proposed method. •Experimental results on a AA6061 sample confirmed the practicability of the method.« less

  1. Polarizability of acetanilide and RDX in the crystal: effect of molecular geometry

    NASA Astrophysics Data System (ADS)

    Tsiaousis, D.; Munn, R. W.; Smith, P. J.; Popelier, P. L. A.

    2004-10-01

    Density-functional theory with the B3LYP functional at the 6-311++G** level is used to calculate the dipole moment and the static polarizability for acetanilide and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) in their in-crystal structures. For acetanilide the dipole moment is 2{1}/{2}% larger than for the gas-phase structure and for RDX (where there is a gross geometry change) it is 15% larger. The polarizability for the in-crystal structure is smaller than for the gas-phase structure by 3% for both species, whereas the in-crystal effective optical polarizability is larger than the gas-phase static polarizability for both crystals. Hence, effects in addition to the molecular geometry change in the crystal must be considered in order to interpret the effective polarizability completely.

  2. Crystal Structures of the Novel Cytosolic 5′-Nucleotidase IIIB Explain Its Preference for m7GMP

    PubMed Central

    Monecke, Thomas; Buschmann, Juliane; Neumann, Piotr; Wahle, Elmar; Ficner, Ralf

    2014-01-01

    5′-nucleotidases catalyze the hydrolytic dephosphorylation of nucleoside monophosphates. As catabolic enzymes they contribute significantly to the regulation of cellular nucleotide levels; misregulation of nucleotide metabolism and nucleotidase deficiencies are associated with a number of diseases. The seven human 5′-nucleotidases differ with respect to substrate specificity and cellular localization. Recently, the novel cytosolic 5′-nucleotidase III-like protein, or cN-IIIB, has been characterized in human and Drosophila. cN-IIIB exhibits a strong substrate preference for the modified nucleotide 7-methylguanosine monophosphate but the structural reason for this preference was unknown. Here, we present crystal structures of cN-IIIB from Drosophila melanogaster bound to the reaction products 7-methylguanosine or cytidine. The structural data reveal that the cytosine- and 7-methylguanine moieties of the products are stacked between two aromatic residues in a coplanar but off-centered position. 7-methylguanosine is specifically bound through π-π interactions and distinguished from unmodified guanosine by additional cation-π coulomb interactions between the aromatic side chains and the positively charged 7-methylguanine. Notably, the base is further stabilized by T-shaped edge-to-face stacking of an additional tryptophan packing perpendicularly against the purine ring and forming, together with the other aromates, an aromatic slot. The structural data in combination with site-directed mutagenesis experiments reveal the molecular basis for the broad substrate specificity of cN-IIIB but also explain the substrate preference for 7-methylguanosine monophosphate. Analyzing the substrate specificities of cN-IIIB and the main pyrimidine 5′-nucleotidase cN-IIIA by mutagenesis studies, we show that cN-IIIA dephosphorylates the purine m7GMP as well, hence redefining its substrate spectrum. Docking calculations with cN-IIIA and m7GMP as well as biochemical data reveal that Asn69 does not generally exclude the turnover of purine substrates thus correcting previous suggestions. PMID:24603684

  3. Amplified Emission and Field-Effect Transistor Characteristics of One-Dimensionally Structured 2,5-Bis(4-biphenylyl)thiophene Crystals.

    PubMed

    Hashimoto, Kazumasa; Sasaki, Fumio; Hotta, Shu; Yanagi, Hisao

    2016-04-01

    One-dimensional (1D) structures of 2,5-bis(4-biphenylyl)thiophene (BP1T) crystals are fabricated for light amplification and field-effect transistor (FET) measurements. A strip-shaped 1D structure (10 µm width) made by photolitography of a vapor-deposited polycrystalline film shows amplified spontaneous emission and lasing oscillations under optical pumping. An FET fabricated with this 1D structure exhibits hole-conduction with a mobility of µh = 8.0 x 10(-3) cm2/Vs. Another 1 D-structured FET is fabricated with epitaxially grown needle-like crystals of BP1T. This needle-crystal FET exhibits higher mobility of µh = 0.34 cm2/Vs. This improved hole mobility is attributed to the single-crystal channel of epitaxial needles while the grain boudaries in the polycrystalline 1 D-structure decrease the carrier transport.

  4. The heterodimeric assembly of the CD94-NKG2 receptor family and implications for human leukocyte antigen-E recognition.

    PubMed

    Sullivan, Lucy C; Clements, Craig S; Beddoe, Travis; Johnson, Darryl; Hoare, Hilary L; Lin, Jie; Huyton, Trevor; Hopkins, Emma J; Reid, Hugh H; Wilce, Matthew C J; Kabat, Juraj; Borrego, Francisco; Coligan, John E; Rossjohn, Jamie; Brooks, Andrew G

    2007-12-01

    The CD94-NKG2 receptor family that regulates NK and T cells is unique among the lectin-like receptors encoded within the natural killer cell complex. The function of the CD94-NKG2 receptors is dictated by the pairing of the invariant CD94 polypeptide with specific NKG2 isoforms to form a family of functionally distinct heterodimeric receptors. However, the structural basis for this selective pairing and how they interact with their ligand, HLA-E, is unknown. We describe the 2.5 A resolution crystal structure of CD94-NKG2A in which the mode of dimerization contrasts with that of other homodimeric NK receptors. Despite structural homology between the CD94 and NKG2A subunits, the dimer interface is asymmetric, thereby providing a structural basis for the preferred heterodimeric assembly. Structure-based sequence comparisons of other CD94-NKG2 family members, combined with extensive mutagenesis studies on HLA-E and CD94-NKG2A, allows a model of the interaction between CD94-NKG2A and HLA-E to be established, in which the invariant CD94 chain plays a more dominant role in interacting with HLA-E in comparison to the variable NKG2 chain.

  5. Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2

    NASA Astrophysics Data System (ADS)

    Kalinić, Marko; Zloh, Mire; Erić, Slavica

    2014-11-01

    Enhancer of Zeste Homolog 2 (EZH2) is a SET domain protein lysine methyltransferase (PKMT) which has recently emerged as a chemically tractable and therapeutically promising epigenetic target, evidenced by the discovery and characterization of potent and highly selective EZH2 inhibitors. However, no experimental structures of the inhibitors co-crystallized to EZH2 have been resolved, and the structural basis for their activity and selectivity remains unknown. Considering the need to minimize cross-reactivity between prospective PKMT inhibitors, much can be learned from understanding the molecular basis for selective inhibition of EZH2. Thus, to elucidate the binding of small-molecule inhibitors to EZH2, we have developed a model of its fully-formed cofactor binding site and used it to carry out molecular dynamics simulations of protein-ligand complexes, followed by molecular mechanics/generalized born surface area calculations. The obtained results are in good agreement with biochemical inhibition data and reflect the structure-activity relationships of known ligands. Our findings suggest that the variable and flexible post-SET domain plays an important role in inhibitor binding, allowing possibly distinct binding modes of inhibitors with only small variations in their structure. Insights from this study present a good basis for design of novel and optimization of existing compounds targeting the cofactor binding site of EZH2.

  6. Realization of a complementary medium using dielectric photonic crystals.

    PubMed

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  7. Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Terabe, K.; Takekawa, S.; Nakamura, M.; Kitamura, K.; Higuchi, S.; Gotoh, Y.; Gruverman, A.

    2002-09-01

    We have investigated the ferroelectric domain structure formed in a Sr0.61Ba0.39Nb2O6 single crystal by cooling the crystal through the Curie point. Imaging the etched surface structure using a scanning force microscope (SFM) in both the topographic mode and the piezoresponse mode revealed that a multidomain structure of nanoscale islandlike domains was formed. The islandlike domains could be inverted by applying an appropriate voltage using a conductive SFM tip. Furthermore, a nanoscale periodically inverted-domain structure was artificially fabricated using the crystal which underwent poling treatment.

  8. Crystallization of PTP Domains.

    PubMed

    Levy, Colin; Adams, James; Tabernero, Lydia

    2016-01-01

    Protein crystallography is the most powerful method to obtain atomic resolution information on the three-dimensional structure of proteins. An essential step towards determining the crystallographic structure of a protein is to produce good quality crystals from a concentrated sample of purified protein. These crystals are then used to obtain X-ray diffraction data necessary to determine the 3D structure by direct phasing or molecular replacement if the model of a homologous protein is available. Here, we describe the main approaches and techniques to obtain suitable crystals for X-ray diffraction. We include tools and guidance on how to evaluate and design the protein construct, how to prepare Se-methionine derivatized protein, how to assess the stability and quality of the sample, and how to crystallize and prepare crystals for diffraction experiments. While general strategies for protein crystallization are summarized, specific examples of the application of these strategies to the crystallization of PTP domains are discussed.

  9. The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels.

    PubMed

    Ni, Xuewen; Ke, Fan; Xiao, Man; Wu, Kao; Kuang, Ying; Corke, Harold; Jiang, Fatang

    2016-11-01

    Konjac glucomannan (KGM)-based aerogels were prepared using a combination of sol-gel and freeze-drying methods. Preparation conditions were chosen to control ice crystal growth and aerogel structure formation. The ice crystals formed during pre-freezing were observed by low temperature polarizing microscopy, and images of aerogel pores were obtained by scanning electron microscopy. The size of ice crystals were calculated and size distribution maps were drawn, and similarly for aerogel pores. Results showed that ice crystal growth and aerogel pore sizes may be controlled by varying pre-freezing temperatures, KGM concentration and glyceryl monostearate concentration. The impact of pre-freezing temperatures on ice crystal growth was explained as combining ice crystal growth rate with nucleation rate, while the impacts of KGM and glyceryl monostearate concentration on ice crystal growth were interpreted based on their influences on sol network structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Investigation of selected structural parameters in Fe 95Si 5 amorphous alloy during crystallization process

    NASA Astrophysics Data System (ADS)

    Fronczyk, Adam

    2007-04-01

    In this study, we report on a crystallization behavior of the Fe 95Si 5 metallic glasses using a differential scanning cabrimetry (DSC), and X-ray diffraction. The paper presents the results of experimental investigation of Fe 95Si 5 amorphous alloy, subjected to the crystallizing process by the isothermal annealing. The objective of the experiment was to determine changes in the structural parameters during crystallization process of the examined alloy. Crystalline diameter and the lattice constant of the crystallizing phase were used as parameters to evaluate structural changes in material.

  11. A historical perspective on protein crystallization from 1840 to the present day.

    PubMed

    Giegé, Richard

    2013-12-01

    Protein crystallization has been known since 1840 and can prove to be straightforward but, in most cases, it constitutes a real bottleneck. This stimulated the birth of the biocrystallogenesis field with both 'practical' and 'basic' science aims. In the early years of biochemistry, crystallization was a tool for the preparation of biological substances. Today, biocrystallogenesis aims to provide efficient methods for crystal fabrication and a means to optimize crystal quality for X-ray crystallography. The historical development of crystallization methods for structural biology occurred first in conjunction with that of biochemical and genetic methods for macromolecule production, then with the development of structure determination methodologies and, recently, with routine access to synchrotron X-ray sources. Previously, the identification of conditions that sustain crystal growth occurred mostly empirically but, in recent decades, this has moved progressively towards more rationality as a result of a deeper understanding of the physical chemistry of protein crystal growth and the use of idea-driven screening and high-throughput procedures. Protein and nucleic acid engineering procedures to facilitate crystallization, as well as crystallization methods in gelled-media or by counter-diffusion, represent recent important achievements, although the underlying concepts are old. The new nanotechnologies have brought a significant improvement in the practice of protein crystallization. Today, the increasing number of crystal structures deposited in the Protein Data Bank could mean that crystallization is no longer a bottleneck. This is not the case, however, because structural biology projects always become more challenging and thereby require adapted methods to enable the growth of the appropriate crystals, notably macromolecular assemblages. © 2013 FEBS.

  12. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific disciplines in coordination networks, especially porous coordination networks, the ability to determine crystal structures when the crystals are not suitable for single crystal X-ray analysis is of paramount importance. In this Account, we report the potential of kinetic control to synthesize new coordination networks and we describe ab initio XRPD structure determination to characterize these networks' crystal structures. We describe our recent work on selective instant synthesis to yield kinetically controlled porous coordination networks. We demonstrate that instant synthesis can selectively produce metastable networks that are not possible to synthesize by conventional solution chemistry. Using kinetic products, we provide mechanistic insights into thermally induced (573-723 K) (i.e., annealing method) structural transformations in porous coordination networks as well as examples of guest exchange/inclusion reactions. Finally, we describe a memory effect that allows the transfer of structural information from kinetic precursor structures to thermally stable structures through amorphous intermediate phases. We believe that ab initio XRPD structure determination will soon be used to investigate chemical processes that lead intrinsically to microcrystalline solids, which up to now have not been fully understood due to the unavailability of single crystals. For example, only recently have researchers used single-crystal X-ray diffraction to elucidate crystal-to-crystal chemical reactions taking place in the crystalline scaffold of coordination networks. The potential of ab initio X-ray powder diffraction analysis goes beyond single-crystal-to-single-crystal processes, potentially allowing members of this field to study intriguing in situ reactions, such as reactions within pores.

  13. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    ERIC Educational Resources Information Center

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  14. Aperiodic crystals and beyond.

    PubMed

    Grimm, Uwe

    2015-06-01

    Crystals are paradigms of ordered structures. While order was once seen as synonymous with lattice periodic arrangements, the discoveries of incommensurate crystals and quasicrystals led to a more general perception of crystalline order, encompassing both periodic and aperiodic crystals. The current definition of crystals rests on their essentially point-like diffraction. Considering a number of recently investigated toy systems, with particular emphasis on non-crystalline ordered structures, the limits of the current definition are explored.

  15. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.

    PubMed

    Li, Xiaofang; Zhen, Xiuzheng; Meng, Sugang; Xian, Jiangjun; Shao, Yu; Fu, Xianzhi; Li, Danzhen

    2013-09-03

    Coupling photocatalysts with photonic crystals structure is based on the unique property of photonic crystals in confining, controlling, and manipulating the incident photons. This combination enhances the light absorption in photocatalysts and thus greatly improves their photocatalytic performance. In this study, Ga2O3 photonic crystals with well-arranged skeleton structures were prepared via a dip-coating infiltration method. The positions of the electronic band absorption for Ga2O3 photonic crystals could be made to locate on the red edge, on the blue edge, and away from the edge of their photonic band gaps by changing the pore sizes of the samples, respectively. Particularly, the electronic band absorption of the Ga2O3 photonic crystal with a pore size of 135 nm was enhanced more than other samples by making it locate on the red edge of its photonic band gap, which was confirmed by the higher instantaneous photocurrent and photocatalytic activity for the degradation of various organic pollutants under ultraviolet light irradiation. Furthermore, the degradation mechanism over Ga2O3 photonic crystals was discussed. The design of Ga2O3 photonic crystals presents a prospective application of photonic crystals in photocatalysis to address light harvesting and quantum efficiency problems through manipulating photons or constructing photonic crystal structure as groundwork.

  16. New Directions in Biotechnology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.

  17. Synthesis, crystal structure, thermal and nonlinear optical properties of new metal-organic single crystal: Tetrabromo (piperazinium) zincate (II) (TBPZ)

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.

    2018-04-01

    Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.

  18. Atomic density functional and diagram of structures in the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankudinov, V. E., E-mail: vladimir@ankudinov.org; Galenko, P. K.; Kropotin, N. V.

    2016-02-15

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindricalmore » tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.« less

  19. Synthesis and structural study of 4-(2-chlorophenyl)-2-ethoxy-5,6,7,8,9,10-hexahydrocycloocta[B] pyridine-3-carbonitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fathima, K. Saiadali; Vasumathi, M.; Anitha, K., E-mail: singlecrystalxrd@gmail.com

    2016-05-23

    The novel organic material C{sub 20}H{sub 21}ClN{sub 2}O was synthesized by One-Pot synthesis method and the single crystals were grown by slow evaporation solution growth technique. The crystal structure was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R=0.039 for 2746 reflections. Crystal system of the grown crystal was found to be monoclinic with the space group P2{sub 1}/a and a=9.196(4) Å, b=13.449(4) Å, c=14.818(4) Å, β= 101.542(3)°, V=1795.6(11) Å{sup 3} and Z=4. In this crystal structure, cyclooctanone prefers to reside in a chair-boat conformation. Themore » structure is stabilized by attractive molecular force such as CH/π interaction called hydrophobic interaction.« less

  20. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less

  1. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    NASA Astrophysics Data System (ADS)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  2. Towards the Structure Determination of a Modulated Protein Crystal: The Semicrystalline State of Profilin:Actin

    NASA Technical Reports Server (NTRS)

    Borgstahl, G.; Lovelace, J.; Snell, E. H.; Bellamy, H.

    2003-01-01

    One of the remaining challenges to structural biology is the solution of modulated structures. While small molecule crystallographers have championed this type of structure, to date, no modulated macromolecular structures have been determined. Modulation of the molecular structures within the crystal can produce satellite reflections or a superlattice of reflections in reciprocal space. We have developed the data collection methods and strategies that are needed to collect and analyze these data. If the macromolecule's crystal lattice is composed of physiologically relevant packing contacts, structural changes induced under physiological conditions can cause distortion relevant to the function and biophysical processes of the molecule making up the crystal. By careful measurement of the distortion, and the corresponding three-dimensional structure of the distorted molecule, we will visualize the motion and mechanism of the biological macromolecule(s). We have measured the modulated diffraction pattern produced by the semicrystalline state of profilin:actin crystals using highly parallel and highly monochromatic synchrotron radiation coupled with fine phi slicing (0.001-0.010 degrees) for structure determination. These crystals present these crystals present a unique opportunity to address an important question in structural biology. The modulation is believed to be due to the formation of actin helical filaments from the actin beta ribbon upon the pH-induced dissociation of profilin. To date, the filamentous state of actin has resisted crystallization and no detailed structures are available. The semicrystalline state profilin:actin crystals provides a unique opportunity to understand the many conformational states of actin. This knowledge is essential for understanding the dynamics underlying shape changes and motility of eukaryotic cells. Many essential processes, such as cytokinesis, phagocytosis, and cellular migration depend upon the capacity of the actin microfilament system to be restructured in a controlled manner via polymerization, depolymerization, severing, cross-linking, and anchorage. The structure the semicrystalline state of profilin:actin will challenge and validate current models of muscle contraction and cell motility. The methodology and theory under development will be easily extendable to other systems.

  3. Conjugation in multi-tetrazole derivatives: a new design direction for energetic materials.

    PubMed

    Sun, Shuyang; Lu, Ming

    2018-06-23

    Multi-tetrazole derivatives with conjugated structures were designed and investigated in this study. Using quantum chemistry methods, the crystal structures, electrostatic potentials (ESPs), multicenter bond orders, HOMO-LUMO energy gaps, and detonation properties of the derivatives were calculated. As expected, these molecules with conjugated structures showed low energies of their crystal structures, molecular layering in their crystals, high average ESPs, high multicenter bond order values, and enhanced detonation properties. The derivative 1,2-di(1H-tetrazol-5-yl)diazene (N2) was predicted to have the best density (1.87 g/cm 3 ), detonation velocity (9006 m/s), and detonation pressure (36.8 GPa) of the designed molecules, while its total crystal energy was low, suggesting that it is relatively stable. Its sensitivity was also low, as the molecular stacking that occurs in its crystal allows external forces to be dissipated into movements of crystal layers. Finally, its multicenter bond order was high, indicating a highly conjugated structure.

  4. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    NASA Astrophysics Data System (ADS)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, Ziya S., E-mail: ziyasaliev@gmail.com; Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku; Donostia International Physics Center

    Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and aremore » narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.« less

  6. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors.

    PubMed

    Hubálek, Frantisek; Binda, Claudia; Khalil, Ashraf; Li, Min; Mattevi, Andrea; Castagnoli, Neal; Edmondson, Dale E

    2005-04-22

    Several reversible inhibitors selective for human monoamine oxidase B (MAO B) that do not inhibit MAO A have been described in the literature. The following compounds: 8-(3-chlorostyryl)caffeine, 1,4-diphenyl-2-butene, and trans,trans-farnesol are shown to inhibit competitively human, horse, rat, and mouse MAO B with K(i) values in the low micromolar range but are without effect on either bovine or sheep MAO B or human MAO A. In contrast, the reversible competitive inhibitor isatin binds to all known MAO B and MAO A with similar affinities. Sequence alignments and the crystal structures of human MAO B in complex with 1,4-diphenyl-2-butene or with trans,trans-farnesol provide molecular insights into these specificities. These inhibitors span the substrate and entrance cavities with the side chain of Ile-199 rotated out of its normal conformation suggesting that Ile-199 is gating the substrate cavity. Ile-199 is conserved in all known MAO B sequences except bovine MAO B, which has Phe in this position (the sequence of sheep MAO B is unknown). Phe is conserved in the analogous position in MAO A sequences. The human MAO B I199F mutant protein of MAO B binds to isatin (K(i) = 3 microM) but not to the three inhibitors listed above. The crystal structure of this mutant demonstrates that the side chain of Phe-199 interferes with the binding of those compounds. This suggests that the Ile-199 "gate" is a determinant for the specificity of these MAO B inhibitors and provides a molecular basis for the development of MAO B-specific reversible inhibitors without interference with MAO A function in neurotransmitter metabolism.

  7. Structural basis for androgen specificity and oestrogen synthesis in human aromatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debashis; Griswold, Jennifer; Erman, Mary

    2009-03-06

    Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyse the biosynthesis of all oestrogens from androgens. Aromatase inhibitors therefore constitute a frontline therapy for oestrogen-dependent breast cancer. In a three-step process, each step requiring 1 mol of O{sub 2}, 1 mol of NADPH, and coupling with its redox partner cytochrome P450 reductase, aromatase converts androstenedione, testosterone and 16{alpha}-hydroxytestosterone to oestrone, 17{beta}-oestradiol and 17{beta},16{alpha}-oestriol, respectively. The first two steps are C19-methyl hydroxylation steps, and the third involves the aromatization of the steroid A-ring, unique to aromatase. Whereas most P450s are not highly substrate selective, it is the hallmarkmore » androgenic specificity that sets aromatase apart. The structure of this enzyme of the endoplasmic reticulum membrane has remained unknown for decades, hindering elucidation of the biochemical mechanism. Here we present the crystal structure of human placental aromatase, the only natural mammalian, full-length P450 and P450 in hormone biosynthetic pathways to be crystallized so far. Unlike the active sites of many microsomal P450s that metabolize drugs and xenobiotics, aromatase has an androgen-specific cleft that binds the androstenedione molecule snugly. Hydrophobic and polar residues exquisitely complement the steroid backbone. The locations of catalytically important residues shed light on the reaction mechanism. The relative juxtaposition of the hydrophobic amino-terminal region and the opening to the catalytic cleft shows why membrane anchoring is necessary for the lipophilic substrates to gain access to the active site. The molecular basis for the enzyme's androgenic specificity and unique catalytic mechanism can be used for developing next-generation aromatase inhibitors.« less

  8. Fluid synthesis and structure of a new polymorphic modification of boron nitride

    NASA Astrophysics Data System (ADS)

    Pokropivny, V. V.; Smolyar, A. S.; Ovsiannikova, L. I.; Pokropivny, A. V.; Kuts, V. A.; Lyashenko, V. I.; Nesterenko, Yu. V.

    2013-04-01

    A new previously unknown phase of boron nitride with a hardness of 0.41-0.63 GPa has been pre-pared by the supercritical fluid synthesis. The presence of a new phase is confirmed by the X-ray spectra and IR absorption spectra, where new reflections and bands are distinguished. The fundamental reflection of the X-ray diffraction pattern is d = 0.286-0.291 nm, and the characteristic band in the infrared absorption spectrum is observed at 704 cm-1. The X-ray diffraction pattern and the experimental and theoretical infrared absorption spectra show that a new synthesized boron nitride phase can be a cluster crystal (space group 211) with a simple cubic lattice. Cage clusters of a fullerene-like morphology B24N24 with point symmetry O are arranged in lattice sites.

  9. A hetero-micro-seeding strategy for readily crystallizing closely related protein variants.

    PubMed

    Islam, Mohammad M; Kuroda, Yutaka

    2017-11-04

    Protein crystallization remains difficult to rationalize and screening for optimal crystallization conditions is a tedious and time consuming procedure. Here, we report a hetero-micro-seeding strategy for producing high resolution crystals of closely related protein variants, where micro crystals from a readily crystallized variant are used as seeds to develop crystals of other variants less amenable to crystallization. We applied this strategy to Bovine Pancreatic Trypsin Inhibitor (BPTI) variants, which would not crystallize using standard crystallization practice. Out of six variants in our analysis, only one called BPTI-[5,55]A14G formed well behaving crystals; and the remaining five (A14GA38G, A14GA38V, A14GA38L, A14GA38I, and A14GA38K) could be crystallized only using micro-seeds from the BPTI-[5,55]A14G crystal. All hetero-seeded crystals diffracted at high resolution with minimum mosaicity, retaining the same space group and cell dimension. Moreover, hetero-micro-seeding did not introduce any biases into the mutant's structure toward the seed structure, as demonstrated by A14GA38I structures solved using micro-seeds from A14GA38G, A14GA38L and A14GA38I. Though hetero-micro-seeding is a simple and almost naïve strategy, this is the first direct demonstration of its workability. We believe that hetero-micro-seeding, which is contrasting with the popular idea that crystallization requires highly purified proteins, could contribute a new tool for rapidly solving protein structures in mutational analysis studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy.

    PubMed

    Vázquez-Fernández, Ester; Vos, Matthijn R; Afanasyev, Pavel; Cebey, Lino; Sevillano, Alejandro M; Vidal, Enric; Rosa, Isaac; Renault, Ludovic; Ramos, Adriana; Peters, Peter J; Fernández, José Jesús; van Heel, Marin; Young, Howard S; Requena, Jesús R; Wille, Holger

    2016-09-01

    The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.

  11. Structure and Stability of Molecular Crystals with Many-Body Dispersion-Inclusive Density Functional Tight Binding.

    PubMed

    Mortazavi, Majid; Brandenburg, Jan Gerit; Maurer, Reinhard J; Tkatchenko, Alexandre

    2018-01-18

    Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semiempirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. We combine the Tkatchenko-Scheffler van der Waals method (TS) and the many-body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared with a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction.

  12. Characterization of photonic colloidal crystals in real and reciprocal space

    NASA Astrophysics Data System (ADS)

    Thijssen, J. H. J.

    2007-05-01

    In this thesis, we present experimental work on the characterization of photonic colloidal crystals in real and reciprocal space. Photonic crystals are structures in which the refractive index varies periodically in space on the length scale of the wavelength of light. Self-assembly of colloidal particles is a promising route towards three-dimensional (3-D) photonic crystals. However, fabrication of photonic band-gap materials remains challenging, so calculations that predict their optical properties are indispensable. Our photonic band-structure calculations on binary Laves phases have led to a proposed route towards photonic colloidal crystals with a band gap in the visible region. Furthermore, contrary to results in literature, we found that there is no photonic band gap for inverse BCT crystals. Finally, optical spectra of colloidal crystals were analyzed using band-structure calculations. Self-assembled photonic crystals are fabricated in multiple steps. Each of these steps can significantly affect the 3-D structure of the resulting crystal. X-rays are an excellent probe of the internal structure of photonic crystals, even if the refractive-index contrast is large. In Chapter 3, we demonstrate that an angular resolution of 0.002 mrad is achievable at a third-generation synchrotron using compound refractive optics. As a result, the position and the width of Bragg reflections in 2D diffraction patterns can be resolved, even for lattice spacings larger than a micrometer (corresponding to approximately 0.1 mrad). X-ray diffraction patterns and electron-microscopy images are used in Chapter 4 to determine the orientation of hexagonal layers in convective-assembly colloidal crystals. Quantitative analysis revealed that, in our samples, the layers were not exactly hexagonal and the stacking sequence was that of face-centered cubic (FCC) crystals, though stacking faults may have been present. In Chapter 5, binary colloidal crystals of organic spheres (polystyrene, PMMA) and/or inorganic spheres (silica) are introduced as promising templates for strongly photonic crystals. To prevent melting of the template, we used atomic layer deposition (ALD) to infiltrate polystyrene and PMMA templates with alumina, after which chemical vapor deposition (CVD) was used to further enhance the refractive-index contrast. Binary colloidal crystals of silica spheres can be infiltrated by CVD directly, but they often have a layer of colloidal fluid on top. Preliminary etching experiments demonstrated that it may be possible to etch silica templates with plasmas or with adhesive tape. As described in Chapter 6, sedimentation of colloidal silica spheres in an external, high-frequency electric field lead to mm-scale BCT crystals with up to 25 layers. In addition, electric fields were used as an external control to switch between BCT and close-packed (CP) crystal structures within seconds. We also developed two procedures to invert BCT crystals without loss of structure - colloidal particles were immobilized by diffusion-polymerization or photo-induced polymerization of the surrounding solvent. Some BCT crystals were even infiltrated with silicon using CVD. We demonstrate in Chapter 7 that X-ray diffraction can be used to determine the 3-D structure of such photonic colloidal crystals at the various stages of their fabrication. Excellent agreement was found with confocal and electron-microscopy images.

  13. Concerted ligand exchange and the roles of counter anions in the reversible structural switching of crystalline peptide metallo-macrocycles.

    PubMed

    Miyake, Ryosuke; Shionoya, Mitsuhiko

    2014-06-02

    To understand reversible structural switching in crystalline materials, we studied the mechanism of reversible crystal-to-crystal transformation of a tetranuclear Ni(II) macrocycle consisting of artificial β-dipeptides. On the basis of detailed structural analyses and thermodynamic measurements made in a comparison of pseudo-isostructural crystals (NO3 and BF4 salts), we herein discuss how ligand-exchange reactions take place in the crystal due to changes in water content and temperature. Observations of the structural transformation of NO3 salt indicated that a pseudo crystalline phase transformation takes place through concerted ligand-exchange reactions at the four Ni(II) centers of the macrocycle with hydrogen bond switching. A mechanism for this ligand exchange was supported by IR spectroscopy. Thermodynamic measurements suggested that the favorable compensation relationship of the enthalpy changes due to water uptake and structural changes are keys to the reversible structural transformation. On the basis of a comparison with the pseudo-isostructural crystals, it is apparent that the crystal packing structure and the types of counter anions are important factors for facilitating reversible ligand exchange with single crystallinity.

  14. Failures of fractional crystallization: ordered co-crystals of isomers and near isomers.

    PubMed

    Kelley, Steven P; Fábián, László; Brock, Carolyn Pratt

    2011-02-01

    A list of 270 structures of ordered co-crystals of isomers, near isomers and molecules that are almost the same has been compiled. Searches for structures containing isomers could be automated by the use of IUPAC International Chemical Identifier (InChI™) strings but searches for co-crystals of very similar molecules were more labor intensive. Compounds in which the heteromolecular A···B interactions are clearly better than the average of the homomolecular A···A and B···B interactions were excluded. The two largest structural classes found include co-crystals of configurational diastereomers and of quasienantiomers (or quasiracemates). These two groups overlap. There are 114 co-crystals of diastereomers and the same number of quasiracemates, with 71 structures being counted in both groups; together the groups account for 157 structures or 58% of the total. The large number of quasiracemates is strong evidence for inversion symmetry being very favorable for crystal packing. Co-crystallization of two diastereomers is especially likely if a 1,1 switch of a methyl group and an H atom, or of an inversion of a [2.2.1] or [2.2.2] cage, in one of the diastereomers would make the two molecules enantiomers.

  15. The application of crystal soaking technique to study the effect of zinc and cresol on insulinotropin crystals grown from a saline solution.

    PubMed

    Kim, Y; Haren, A M

    1995-11-01

    The purpose of this study is to investigate the effect of zinc and cresol on the structure of insulinotropin crystals. Insulinotropin crystals grown from a saline solution were treated with zinc and/or m-cresol using a crystal soaking technique. The effects of these additives on the crystal structure were investigated with powder X-ray diffraction, photomicrography, and differential scanning calorimetry. The molecular interaction between insulinotropin and m-trifluorocresol in solution was also studied by 19F NMR: The data suggest that the original crystals grown from a saline solution have relatively weak lattice forces. After the addition of m-cresol to the suspension of the insulinotropin crystals, the crystals were immediately rendered amorphous. The m-cresol molecules which diffused into the crystals through solvent channels may have disturbed the lattice interactions that maintain the integrity of the crystal. In contrast, the zinc added to the suspension stabilized the crystal lattice so that the subsequent addition of m-cresol did not alter the integrity of the crystals. A marked increase in melting point (206 degrees versus 184 degrees) and heat of fusion (24.6 J/g versus 1.4 J/g) of the crystals was observed after the treatment with zinc. The solubility of the zinc treated crystals in a pH 7.1 phosphate buffered saline was 1/20 of that of the original crystals. When the insulinotropin crystals were treated with the additives using a crystal soaking method, the crystals underwent structural changes. Zinc stabilized the crystal lattice, and reduced the solubility of the peptide.

  16. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less

  17. Characterization of molecular associations involving L-ornithine and α-ketoglutaric acid: crystal structure of L-ornithinium α-ketoglutarate.

    PubMed

    Allouchi, H; Céolin, R; Berthon, L; Tombret, F; Rietveld, I B

    2014-07-01

    The crystal structure of L-ornithinium α-ketoglutarate (C5H13N2O2, C5H5O5) has been solved by direct methods using single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group P21, unit cell parameters a=15.4326(3), b=5.2015(1), c=16.2067(3) Å and β=91.986(1)°, containing two independent pairs of molecular ions in the asymmetric unit. An extensive hydrogen-bond network and electrostatic charges due to proton transfer provide an important part of the cohesive energy of the crystal. The conformational versatility of L-ornithine and α-ketoglutaric acid is illustrated by the present results and crystal structures available from the Cambridge Structural Database. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. An Overview of Biological Macromolecule Crystallization

    PubMed Central

    Krauss, Irene Russo; Merlino, Antonello; Vergara, Alessandro; Sica, Filomena

    2013-01-01

    The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality. PMID:23727935

  19. Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy.

    PubMed

    Kekilli, Demet; Dworkowski, Florian S N; Pompidor, Guillaume; Fuchs, Martin R; Andrew, Colin R; Antonyuk, Svetlana; Strange, Richard W; Eady, Robert R; Hasnain, S Samar; Hough, Michael A

    2014-05-01

    It is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when applied in situ at macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochrome c' from Alcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals.

  20. Stress Tuning of Laser Crystals

    NASA Technical Reports Server (NTRS)

    Carty, Atherton A.

    1995-01-01

    The topic of stress tunable laser crystals is addressed in this study with the purpose of determining the piezo-optic coefficients of a new laser material. This data was collected using a quadruple pass birefringence technique because of its high degree of sensitivity relative to the other methods examined including fringe shift analysis using a Mach-Zender interferometer. A green He-Ne laser was passed through a light chopper and Glan-Thompson prism before entering a crystal of Erbium doped Yttrium Aluminum Garnet (Er:YAG) (used in order to validate the experimental technique). The Er:YAG crystal is mounted in a press mechanism and the laser is quadruple passed through test specimen before being returned through the prism and the orthogonally polarized portion of the beam measured with a optical sensor. At a later stage, the Er:YAG crystal was replaced with a new crystal in order to determine the piezo-optic coefficients of this uncharacterized material. The applied load was monitored with the use of a 50 lb. load cell placed in line with the press. Light transmission readings were taken using a lock-in amplifier while load cell measurements were taken with a voltmeter from a 5 volt, 0.5 amp power supply. Despite the fact that an effective crystal press damping system was developed, size limitations precluded the use of the complete system. For this reason, data points were taken only once per full turn so as to minimize the effect of non uniform load application on the collected data. Good correlation was found in the transmission data between the experimentally determined Er:YAG and the previously known peizo-optic constants of non-doped crystal with which it was compared. The variation which was found between the two could be accounted for by the aforementioned presence of Erbium in the experimental sample (for which exact empirical data was not known). The same test procedure was then carried out on a Yttrium Gallium Aluminum garnet (YGAG) for the purpose of establishing values of its unknown piezo-optic constant tensor using experimentally collected transmission data. Significant variation between the piezo-optic constants of YAG and YGAG crystals was found however, the excellent data correlation of separate experimental runs carried out on the YGAG sample demonstrates the validity of these results. The data collected during the stressing of the YGAG was of high quality, however the amount of data collected was somewhat limited by a fracture of YGAG specimen which undoubted altered the crystalline lattice structure and hence precluded any further testing.

  1. Discovery of a diamond-based photonic crystal structure in beetle scales.

    PubMed

    Galusha, Jeremy W; Richey, Lauren R; Gardner, John S; Cha, Jennifer N; Bartl, Michael H

    2008-05-01

    We investigated the photonic crystal structure inside iridescent scales of the weevil Lamprocyphus augustus. By combining a high-resolution structure analysis technique based on sequential focused ion beam milling and scanning electron microscopy imaging with theoretical modeling and photonic band-structure calculations, we discovered a natural three-dimensional photonic structure with a diamond-based crystal lattice operating at visible wavelengths. Moreover, we found that within individual scales, the diamond-based structure is assembled in the form of differently oriented single-crystalline micrometer-sized pixels with only selected lattice planes facing the scales' top surface. A comparison of results obtained from optical microreflectance measurements with photonic band-structure calculations reveals that it is this sophisticated microassembly of the diamond-based crystal lattice that lends Lamprocyphus augustus its macroscopically near angle-independent green coloration.

  2. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate

    NASA Astrophysics Data System (ADS)

    Worthy, Anna; Grosjean, Arnaud; Pfrunder, Michael C.; Xu, Yanan; Yan, Cheng; Edwards, Grant; Clegg, Jack K.; McMurtrie, John C.

    2018-01-01

    Single crystals are typically brittle, inelastic materials. Such mechanical responses limit their use in practical applications, particularly in flexible electronics and optical devices. Here we describe single crystals of a well-known coordination compound—copper(II) acetylacetonate—that are flexible enough to be reversibly tied into a knot. Mechanical measurements indicate that the crystals exhibit an elasticity similar to that of soft materials such as nylon, and thus display properties normally associated with both hard and soft matter. Using microfocused synchrotron radiation, we mapped the changes in crystal structure that occur on bending, and determined the mechanism that allows this flexibility with atomic precision. We show that, under strain, the molecules in the crystal reversibly rotate, and thus reorganize to allow the mechanical compression and expansion required for elasticity and still maintain the integrity of the crystal structure.

  3. The influence of growth environment on the crystallization of nortriptyline hydrochloride, a tricyclic antidepressant

    NASA Astrophysics Data System (ADS)

    MacCalman, M. L.; Roberts, K. J.; Hendriksen, B. A.

    1993-03-01

    The preparation of the nortriptyline hydrochloride, an important pharmaceutical product, by crystallization from both alcohol and aqueous solutions is presented. At low temperatures this material shows a higher solubility in absolute alcohol compared to aqueous solutions in a trend which reverses at higher temperatures. Examination of crystals prepared from alcohol solutions reveal essentially a needle-like crystal habit which is in excellent agreement with morphological predictions based on the bulk crystallographic structure. In contrast crystals prepared from aqueous solution at high temperatures reveal a particulate structure dominated by heavily agglomerated crystallites with plate-like morphology. When this material is crystallized at the lower temperatures, where the solubility curve is steep, X-ray and thermal analysis appear to show that crystallization results in a new polymorphic structure associated with a less agglomerated product.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajian, Hodjat, E-mail: hodjat.hajian@bilkent.edu.tr; Ozbay, Ekmel; Department of Physics, Bilkent University, 06800 Ankara

    Certain types of photonic crystals with Dirac cones at the Γ point of their band structure have a zero effective index of refraction at Dirac cone frequency. Here, by an appropriate design of the photonic structure, we obtain a strong coupling between modes around the Dirac cone frequency of an all-dielectric zero-index photonic crystal and the guided ones supported by a photonic crystal waveguide. Consequently, we experimentally demonstrate that the presence of the zero-index photonic crystal at the inner side of the photonic crystal waveguide leads to an enhancement in the transmission of some of the guided waves passing throughmore » this hybrid system. Moreover, those electromagnetic waves extracted from the structure with enhanced transmission exhibit high directional beaming due to the presence of the zero-index photonic crystal at the outer side of the photonic crystal waveguide.« less

  5. Monomer structure of a hyperthermophilic β-glucosidase mutant forming a dodecameric structure in the crystal form

    PubMed Central

    Nakabayashi, Makoto; Kataoka, Misumi; Watanabe, Masahiro; Ishikawa, Kazuhiko

    2014-01-01

    One of the β-glucosidases from Pyrococcus furiosus (BGLPf) is found to be a hyperthermophilic tetrameric enzyme that can degrade cellooligosaccharides. Recently, the crystal structures of the tetrameric and dimeric forms were solved. Here, a new monomeric form of BGLPf was constructed by removing the C-terminal region of the enzyme and its crystal structure was solved at a resolution of 2.8 Å in space group P1. It was discovered that the mutant enzyme forms a unique dodecameric structure consisting of two hexameric rings in the asymmetric unit of the crystal. Under biological conditions, the mutant enzyme forms a monomer. This result helps explain how BGLPf has attained its oligomeric structure and thermostability. PMID:25005077

  6. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.

    PubMed

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy

    2010-05-20

    Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.

  7. Formation of crystal-like structures and branched networks from nonionic spherical micelles

    NASA Astrophysics Data System (ADS)

    Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.

    2015-12-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

  8. Crystal and molecular structure of 2,6-dibromo-3-chloro-4-fluoroaniline

    NASA Astrophysics Data System (ADS)

    Betz, R.

    2015-12-01

    The crystal and molecular structure of 2,6-dibromo-3-chloro-4-fluoroaniline is determined. The crystals are monoclinic, a = 3.8380(3), b = 13.1010(12), c = 8.0980(8) Å, β = 96.010(4)°, V = 404.94(6) Å3, Z = 2, sp. gr. P21. Classical intra- and intermolecular hydrogen bonds of the N-H··· Hal type are observed next to a series of dispersive halogen···halogen interactions in the crystal structure.

  9. Selenium Derivatization of Nucleic Acids for Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang,J.; Sheng, J.; Carrasco, N.

    2007-01-01

    The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 {angstrom} resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 {angstrom}). To directly compare with the conventional bromine derivatization, we incorporated bromine into the 5-postion of T4, determined the bromine-derivatized DNA structure at 1.5 {angstrom} resolution, and found that the local backbone torsion angles and solvent hydration patterns were altered in the structure with the Br incorporation in the major groove. Furthermore, while the native andmore » Br-derivatized DNAs needed over a week to form reasonable-size crystals, we observed that the Se-derivatized DNAs grew crystals overnight with high-diffraction quality, suggesting that the Se derivatization facilitated the crystal formation. In addition, the Se-derivatized DNA sequences crystallized under a broader range of buffer conditions, and generally had a faster crystal growth rate. Our experimental results indicate that the selenium derivatization of DNAs may facilitate the determination of nucleic acid X-ray crystal structures in phasing and high-quality crystal growth. In addition, our results suggest that the Se derivatization can be an alternative to the conventional Br derivatization.« less

  10. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  11. Electrochemical deposition of silver crystals aboard Skylab 4

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.; Johnston, M. H.; Gates, D. W.

    1976-01-01

    Silver crystals were grown aboard Skylab 4 by an electro-chemical reaction and subsequently returned to earth for comparison with crystals grown at 1- and 5-g. Both the Skylab and earth-grown crystals show a variety of structures. Certain tendencies in structure dependency on gravity level, however, can be discerned. In addition, downward growing dendrite streamers; upward growing chunky crystal streamers; growth along an air/liquid interface; and ribbon, film, and fiber crystal habits were observed in experiments conducted on the ground with solutions of varying concentrations. It was also observed that the crystal structures of space and ground electro-deposited silver crystals were very similar to the structures of germanium selenide and germanium telluride crystals grown in space and on the ground by a vapor transport technique. Consideration of the data leads to the conclusions that: (1) the rate of electrochemical displacement of silver ions from a 5 percent aqueous solution by copper is predominantly diffussion controlled in space and kinetically controlled in 1- and higher-g because of augmentation of mass transport by convection; (2) downward and upward crystal streamers are the result of gravity-driven convection, the flow patterns of which can be delineated. Lateral growths along an air/liquid interface are the result of surface-tension-driven convection, the pattern of which also can be delineated; (3) electrolysis in space or low-g environments can produce either dendritic crystals with more perfect microcrystalline structures or massive, single crystals with fewer defects than those grown on ground or at higher g-levels. Ribbons or films of space-grown silicon crystals would find a ready market for electronic substrate and photocell applications. Space-grown dendritic, metal crystals present the possibility of unique catalysts. Large perfect crystals of various materials are desired for a number of electronic and optical applications; and (4) vapor transport growth of germanium selenide and germanium telluride is affected by convection mechanisms similar to the mechanisms hypothesized for the electrochemical deposition of silver crystals. Evidence and considerations leading to the preceding summaries and conclusions are presented. The implications of the findings and conclusions for technological applications are discussed, and recommendations for further experiments are presented.

  12. Discovery of a meta-stable Al–Sm phase with unknown stoichiometry using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; McBrearty, Ian; Ott, R T

    Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al5Sm phase identified by simultaneously searching Al-rich compositions of the Al-Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al90Sm10 alloys. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  13. TaRh2B2 and NbRh2B2: Superconductors with a chiral noncentrosymmetric crystal structure.

    PubMed

    Carnicom, Elizabeth M; Xie, Weiwei; Klimczuk, Tomasz; Lin, Jingjing; Górnicka, Karolina; Sobczak, Zuzanna; Ong, Nai Phuan; Cava, Robert J

    2018-05-01

    It is a fundamental truth in solid compounds that the physical properties follow the symmetry of the crystal structure. Nowhere is the effect of symmetry more pronounced than in the electronic and magnetic properties of materials-even the projection of the bulk crystal symmetry onto different crystal faces is known to have a substantial impact on the surface electronic states. The effect of bulk crystal symmetry on the properties of superconductors is widely appreciated, although its study presents substantial challenges. The effect of a lack of a center of symmetry in a crystal structure, for example, has long been understood to necessitate that the wave function of the collective electron state that gives rise to superconductivity has to be more complex than usual. However, few nonhypothetical materials, if any, have actually been proven to display exotic superconducting properties as a result. We introduce two new superconductors that in addition to having noncentrosymmetric crystal structures also have chiral crystal structures. Because the wave function of electrons in solids is particularly sensitive to the host material's symmetry, crystal structure chirality is expected to have a substantial effect on their superconducting wave functions. Our two experimentally obtained chiral noncentrosymmetric superconducting materials have transition temperatures to superconductivity that are easily experimentally accessible, and our basic property characterization suggests that their superconducting properties may be unusual. We propose that their study may allow for a more in-depth understanding of how chirality influences the properties of superconductors and devices that incorporate them.

  14. Synthesis and Crystal Structure Study of 2’-Se-Adenosine-Derivatized DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, J.; Salon, J; Gan, J

    2010-01-01

    The selenium derivatization of nucleic acids is a novel and promising strategy for 3D structure determination of nucleic acids. Selenium can serve as an excellent anomalous scattering center to solve the phase problem, which is one of the two major bottlenecks in macromolecule X-ray crystallography. The other major bottleneck is crystallization. It has been demonstrated that the incorporated selenium functionality at the 2'-positions of the nucleosides and nucleotides is stable and does not cause significant structure perturbation. Furthermore, it was observed that the 2'-Se-derivatization could facilitate crystallization of oligonucleotides with fast crystal growth and high diffraction quality. Herein, we describemore » a convenient synthesis of the 2'-Se-adenosine phosphoramidite, and report the first synthesis and X-ray crystal structure determination of the DNA containing the 2'-Se-A derivatization. The 3D structure of 2'-Se-A-DNA decamer [5'-GTACGCGT(2'-Se-A)C-3']{sub 2} was determined at 1.75 {angstrom} resolution, the 2'-Se-functionality points to the minor groove, and the Se-modified and native structures are virtually identical. Moreover, we have observed that the 2'-Se-A modification can greatly facilitate the crystal growth with high diffraction quality. In conjunction with the crystallization facilitation by the 2'-Se-U and 2'-Se-T, this novel observation on the 2'-Se-A functionality suggests that the 2'-Se moiety is sole responsible for the crystallization facilitation and the identity of nucleobases does not influence the crystal growth significantly.« less

  15. How to tackle protein structural data from solution and solid state: An integrated approach.

    PubMed

    Carlon, Azzurra; Ravera, Enrico; Andrałojć, Witold; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio

    2016-02-01

    Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Glassy nature and glass-to-crystal transition in the binary metallic glass CuZr

    NASA Astrophysics Data System (ADS)

    Wei, Zi-Yang; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan

    2017-06-01

    The prediction for the stability of glassy material is a key challenge in physical science. Here, we report a theoretical framework to predict the glass stability based on stochastic surface walking global optimization and reaction pathway sampling. This is demonstrated by revealing for the first time the global potential energy surface (PES) of two systems, CuZr binary metallic glass and nonglassy pure Cu systems, and establishing the lowest energy pathways linking glassy/amorphous structures with crystalline structures. The CuZr system has a significant number of glassy structures on PES that are ˜0.045 eV /atom above the crystal structure. Two clear trends are identified from global PES in the glass-to-crystal transition of the CuZr system: (i) the local Zr-Cu coordination (nearest neighbor) increases, and (ii) the local Zr bonding environment becomes homogeneous. This allows us to introduce quantitative structural and energetics conditions to distinguish the glassy structures from the crystalline structures. Because of the local Zr-Cu exchange in the glass-to-crystal transition, a high reaction barrier (>0.048 eV /atom ) is present to separate the glassy structures and the crystals in CuZr. By contrast, the Cu system, although it does possess amorphous structures that appear at much higher energy (˜0.075 eV /atom ) with respect to the crystal structure, has very low reaction barriers for the crystallization of amorphous structures, i.e. <0.011 eV /atom . The quantitative data on PES now available from global optimization techniques deepens our understanding on the microscopic nature of glassy material and might eventually facilitate the design of stable glassy materials.

  17. Band structures in fractal grading porous phononic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  18. Synthesis, structural and optical properties of (ALa)(FeMn)O6 (A = Ba and Sr) double perovskites

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Sudarshan, V.; Singh, Akhilesh Kumar

    2018-05-01

    Here, we report structural and optical properties of ALaFeMnO6 (A = Ba and Sr) double perovskite synthesized via auto-combustion followed by calcinations process. Rietveld refinement of structure using x-ray diffraction data reveals that BaLaFeMnO6 crystallizes into cubic crystal structure with space group Pm-3m while SrLaFeMnO6 crystallizes into rhombohedral crystal structure having space group R-3c. The absorption spectrum measurement using UV-Vis spectroscopy reveals that these samples are prefect insulator having energy band gap between conduction and valence band of the order of 6 eV.

  19. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  20. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

Top