Sample records for unknown probability distribution

  1. A least squares approach to estimating the probability distribution of unobserved data in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salama, Paul

    2008-02-01

    Multi-photon microscopy has provided biologists with unprecedented opportunities for high resolution imaging deep into tissues. Unfortunately deep tissue multi-photon microscopy images are in general noisy since they are acquired at low photon counts. To aid in the analysis and segmentation of such images it is sometimes necessary to initially enhance the acquired images. One way to enhance an image is to find the maximum a posteriori (MAP) estimate of each pixel comprising an image, which is achieved by finding a constrained least squares estimate of the unknown distribution. In arriving at the distribution it is assumed that the noise is Poisson distributed, the true but unknown pixel values assume a probability mass function over a finite set of non-negative values, and since the observed data also assumes finite values because of low photon counts, the sum of the probabilities of the observed pixel values (obtained from the histogram of the acquired pixel values) is less than one. Experimental results demonstrate that it is possible to closely estimate the unknown probability mass function with these assumptions.

  2. A Dasymetric-Based Monte Carlo Simulation Approach to the Probabilistic Analysis of Spatial Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, April M; Piburn, Jesse O; McManamay, Ryan A

    2017-01-01

    Monte Carlo simulation is a popular numerical experimentation technique used in a range of scientific fields to obtain the statistics of unknown random output variables. Despite its widespread applicability, it can be difficult to infer required input probability distributions when they are related to population counts unknown at desired spatial resolutions. To overcome this challenge, we propose a framework that uses a dasymetric model to infer the probability distributions needed for a specific class of Monte Carlo simulations which depend on population counts.

  3. Bayesian statistics and Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Koch, K. R.

    2018-03-01

    The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.

  4. Optimal minimal measurements of mixed states

    NASA Astrophysics Data System (ADS)

    Vidal, G.; Latorre, J. I.; Pascual, P.; Tarrach, R.

    1999-07-01

    The optimal and minimal measuring strategy is obtained for a two-state system prepared in a mixed state with a probability given by any isotropic a priori distribution. We explicitly construct the specific optimal and minimal generalized measurements, which turn out to be independent of the a priori probability distribution, obtaining the best guesses for the unknown state as well as a closed expression for the maximal mean-average fidelity. We do this for up to three copies of the unknown state in a way that leads to the generalization to any number of copies, which we then present and prove.

  5. Stationary properties of maximum-entropy random walks.

    PubMed

    Dixit, Purushottam D

    2015-10-01

    Maximum-entropy (ME) inference of state probabilities using state-dependent constraints is popular in the study of complex systems. In stochastic systems, how state space topology and path-dependent constraints affect ME-inferred state probabilities remains unknown. To that end, we derive the transition probabilities and the stationary distribution of a maximum path entropy Markov process subject to state- and path-dependent constraints. A main finding is that the stationary distribution over states differs significantly from the Boltzmann distribution and reflects a competition between path multiplicity and imposed constraints. We illustrate our results with particle diffusion on a two-dimensional landscape. Connections with the path integral approach to diffusion are discussed.

  6. Computer program determines exact two-sided tolerance limits for normal distributions

    NASA Technical Reports Server (NTRS)

    Friedman, H. A.; Webb, S. R.

    1968-01-01

    Computer program determines by numerical integration the exact statistical two-sided tolerance limits, when the proportion between the limits is at least a specified number. The program is limited to situations in which the underlying probability distribution for the population sampled is the normal distribution with unknown mean and variance.

  7. Spatial probability models of fire in the desert grasslands of the southwestern USA

    USDA-ARS?s Scientific Manuscript database

    Fire is an important driver of ecological processes in semiarid environments; however, the role of fire in desert grasslands of the Southwestern US is controversial and the regional fire distribution is largely unknown. We characterized the spatial distribution of fire in the desert grassland region...

  8. Qualitative fusion technique based on information poor system and its application to factor analysis for vibration of rolling bearings

    NASA Astrophysics Data System (ADS)

    Xia, Xintao; Wang, Zhongyu

    2008-10-01

    For some methods of stability analysis of a system using statistics, it is difficult to resolve the problems of unknown probability distribution and small sample. Therefore, a novel method is proposed in this paper to resolve these problems. This method is independent of probability distribution, and is useful for small sample systems. After rearrangement of the original data series, the order difference and two polynomial membership functions are introduced to estimate the true value, the lower bound and the supper bound of the system using fuzzy-set theory. Then empirical distribution function is investigated to ensure confidence level above 95%, and the degree of similarity is presented to evaluate stability of the system. Cases of computer simulation investigate stable systems with various probability distribution, unstable systems with linear systematic errors and periodic systematic errors and some mixed systems. The method of analysis for systematic stability is approved.

  9. Universality of optimal measurements

    NASA Astrophysics Data System (ADS)

    Tarrach, Rolf; Vidal, Guifré

    1999-11-01

    We present optimal and minimal measurements on identical copies of an unknown state of a quantum bit when the quality of measuring strategies is quantified with the gain of information (Kullback-or mutual information-of probability distributions). We also show that the maximal gain of information occurs, among isotropic priors, when the state is known to be pure. Universality of optimal measurements follows from our results: using the fidelity or the gain of information, two different figures of merits, leads to exactly the same conclusions for isotropic distributions. We finally investigate the optimal capacity of N copies of an unknown state as a quantum channel of information.

  10. Methods to elicit probability distributions from experts: a systematic review of reported practice in health technology assessment.

    PubMed

    Grigore, Bogdan; Peters, Jaime; Hyde, Christopher; Stein, Ken

    2013-11-01

    Elicitation is a technique that can be used to obtain probability distribution from experts about unknown quantities. We conducted a methodology review of reports where probability distributions had been elicited from experts to be used in model-based health technology assessments. Databases including MEDLINE, EMBASE and the CRD database were searched from inception to April 2013. Reference lists were checked and citation mapping was also used. Studies describing their approach to the elicitation of probability distributions were included. Data was abstracted on pre-defined aspects of the elicitation technique. Reports were critically appraised on their consideration of the validity, reliability and feasibility of the elicitation exercise. Fourteen articles were included. Across these studies, the most marked features were heterogeneity in elicitation approach and failure to report key aspects of the elicitation method. The most frequently used approaches to elicitation were the histogram technique and the bisection method. Only three papers explicitly considered the validity, reliability and feasibility of the elicitation exercises. Judged by the studies identified in the review, reports of expert elicitation are insufficient in detail and this impacts on the perceived usability of expert-elicited probability distributions. In this context, the wider credibility of elicitation will only be improved by better reporting and greater standardisation of approach. Until then, the advantage of eliciting probability distributions from experts may be lost.

  11. Distributed Adaptive Neural Network Output Tracking of Leader-Following High-Order Stochastic Nonlinear Multiagent Systems With Unknown Dead-Zone Input.

    PubMed

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2017-01-01

    This paper studies the problem of distributed output tracking consensus control for a class of high-order stochastic nonlinear multiagent systems with unknown nonlinear dead-zone under a directed graph topology. The adaptive neural networks are used to approximate the unknown nonlinear functions and a new inequality is used to deal with the completely unknown dead-zone input. Then, we design the controllers based on backstepping method and the dynamic surface control technique. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of semiglobally uniform ultimate boundedness and the tracking errors between the leader and the followers approach to a small residual set based on Lyapunov stability theory. Finally, two simulation examples are presented to show the effectiveness and the advantages of the proposed techniques.

  12. Polynomial probability distribution estimation using the method of moments

    PubMed Central

    Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram–Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation. PMID:28394949

  13. Polynomial probability distribution estimation using the method of moments.

    PubMed

    Munkhammar, Joakim; Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram-Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation.

  14. On the issues of probability distribution of GPS carrier phase observations

    NASA Astrophysics Data System (ADS)

    Luo, X.; Mayer, M.; Heck, B.

    2009-04-01

    In common practice the observables related to Global Positioning System (GPS) are assumed to follow a Gauss-Laplace normal distribution. Actually, full knowledge of the observables' distribution is not required for parameter estimation by means of the least-squares algorithm based on the functional relation between observations and unknown parameters as well as the associated variance-covariance matrix. However, the probability distribution of GPS observations plays a key role in procedures for quality control (e.g. outlier and cycle slips detection, ambiguity resolution) and in reliability-related assessments of the estimation results. Under non-ideal observation conditions with respect to the factors impacting GPS data quality, for example multipath effects and atmospheric delays, the validity of the normal distribution postulate of GPS observations is in doubt. This paper presents a detailed analysis of the distribution properties of GPS carrier phase observations using double difference residuals. For this purpose 1-Hz observation data from the permanent SAPOS

  15. Probabilistic Open Set Recognition

    NASA Astrophysics Data System (ADS)

    Jain, Lalit Prithviraj

    Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary support vector machines. Building from the success of statistical EVT based recognition methods such as PI-SVM and W-SVM on the open set problem, we present a new general supervised learning algorithm for multi-class classification and multi-class open set recognition called the Extreme Value Local Basis (EVLB). The design of this algorithm is motivated by the observation that extrema from known negative class distributions are the closest negative points to any positive sample during training, and thus should be used to define the parameters of a probabilistic decision model. In the EVLB, the kernel distribution for each positive training sample is estimated via an EVT distribution fit over the distances to the separating hyperplane between positive training sample and closest negative samples, with a subset of the overall positive training data retained to form a probabilistic decision boundary. Using this subset as a frame of reference, the probability of a sample at test time decreases as it moves away from the positive class. Possessing this property, the EVLB is well-suited to open set recognition problems where samples from unknown or novel classes are encountered at test. Our experimental evaluation shows that the EVLB provides a substantial improvement in scalability compared to standard radial basis function kernel machines, as well as P I-SVM and W-SVM, with improved accuracy in many cases. We evaluate our algorithm on open set variations of the standard visual learning benchmarks, as well as with an open subset of classes from Caltech 256 and ImageNet. Our experiments show that PI-SVM, WSVM and EVLB provide significant advances over the previous state-of-the-art solutions for the same tasks.

  16. ATTITUDE FILTERING ON SO(3)

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2005-01-01

    A new method is presented for the simultaneous estimation of the attitude of a spacecraft and an N-vector of bias parameters. This method uses a probability distribution function defined on the Cartesian product of SO(3), the group of rotation matrices, and the Euclidean space W N .The Fokker-Planck equation propagates the probability distribution function between measurements, and Bayes s formula incorporates measurement update information. This approach avoids all the issues of singular attitude representations or singular covariance matrices encountered in extended Kalman filters. In addition, the filter has a consistent initialization for a completely unknown initial attitude, owing to the fact that SO(3) is a compact space.

  17. Lake bed classification using acoustic data

    USGS Publications Warehouse

    Yin, Karen K.; Li, Xing; Bonde, John; Richards, Carl; Cholwek, Gary

    1998-01-01

    As part of our effort to identify the lake bed surficial substrates using remote sensing data, this work designs pattern classifiers by multivariate statistical methods. Probability distribution of the preprocessed acoustic signal is analyzed first. A confidence region approach is then adopted to improve the design of the existing classifier. A technique for further isolation is proposed which minimizes the expected loss from misclassification. The devices constructed are applicable for real-time lake bed categorization. A mimimax approach is suggested to treat more general cases where the a priori probability distribution of the substrate types is unknown. Comparison of the suggested methods with the traditional likelihood ratio tests is discussed.

  18. Failure probability under parameter uncertainty.

    PubMed

    Gerrard, R; Tsanakas, A

    2011-05-01

    In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.

  19. Statistical computation of tolerance limits

    NASA Technical Reports Server (NTRS)

    Wheeler, J. T.

    1993-01-01

    Based on a new theory, two computer codes were developed specifically to calculate the exact statistical tolerance limits for normal distributions within unknown means and variances for the one-sided and two-sided cases for the tolerance factor, k. The quantity k is defined equivalently in terms of the noncentral t-distribution by the probability equation. Two of the four mathematical methods employ the theory developed for the numerical simulation. Several algorithms for numerically integrating and iteratively root-solving the working equations are written to augment the program simulation. The program codes generate some tables of k's associated with the varying values of the proportion and sample size for each given probability to show accuracy obtained for small sample sizes.

  20. Predicting species distributions from checklist data using site-occupancy models

    USGS Publications Warehouse

    Kery, M.; Gardner, B.; Monnerat, C.

    2010-01-01

    Aim: (1) To increase awareness of the challenges induced by imperfect detection, which is a fundamental issue in species distribution modelling; (2) to emphasize the value of replicate observations for species distribution modelling; and (3) to show how 'cheap' checklist data in faunal/floral databases may be used for the rigorous modelling of distributions by site-occupancy models. Location: Switzerland. Methods: We used checklist data collected by volunteers during 1999 and 2000 to analyse the distribution of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly in Switzerland. We used data from repeated visits to 1-ha pixels to derive 'detection histories' and apply site-occupancy models to estimate the 'true' species distribution, i.e. corrected for imperfect detection. We modelled blue hawker distribution as a function of elevation and year and its detection probability of elevation, year and season. Results: The best model contained cubic polynomial elevation effects for distribution and quadratic effects of elevation and season for detectability. We compared the site-occupancy model with a conventional distribution model based on a generalized linear model, which assumes perfect detectability (p = 1). The conventional distribution map looked very different from the distribution map obtained using site-occupancy models that accounted for the imperfect detection. The conventional model underestimated the species distribution by 60%, and the slope parameters of the occurrence-elevation relationship were also underestimated when assuming p = 1. Elevation was not only an important predictor of blue hawker occurrence, but also of the detection probability, with a bell-shaped relationship. Furthermore, detectability increased over the season. The average detection probability was estimated at only 0.19 per survey. Main conclusions: Conventional species distribution models do not model species distributions per se but rather the apparent distribution, i.e. an unknown proportion of species distributions. That unknown proportion is equivalent to detectability. Imperfect detection in conventional species distribution models yields underestimates of the extent of distributions and covariate effects that are biased towards zero. In addition, patterns in detectability will erroneously be ascribed to species distributions. In contrast, site-occupancy models applied to replicated detection/non-detection data offer a powerful framework for making inferences about species distributions corrected for imperfect detection. The use of 'cheap' checklist data greatly enhances the scope of applications of this useful class of models. ?? 2010 Blackwell Publishing Ltd.

  1. A Measure Approximation for Distributionally Robust PDE-Constrained Optimization Problems

    DOE PAGES

    Kouri, Drew Philip

    2017-12-19

    In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. Here in this work, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robustmore » optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. Finally, we prove consistency of our approximated min-max problem and conclude with numerical results.« less

  2. Exact solutions for the selection-mutation equilibrium in the Crow-Kimura evolutionary model.

    PubMed

    Semenov, Yuri S; Novozhilov, Artem S

    2015-08-01

    We reformulate the eigenvalue problem for the selection-mutation equilibrium distribution in the case of a haploid asexually reproduced population in the form of an equation for an unknown probability generating function of this distribution. The special form of this equation in the infinite sequence limit allows us to obtain analytically the steady state distributions for a number of particular cases of the fitness landscape. The general approach is illustrated by examples; theoretical findings are compared with numerical calculations. Copyright © 2015. Published by Elsevier Inc.

  3. Preferences for equity in health behind a veil of ignorance.

    PubMed

    Andersson, F; Lyttkens, C H

    1999-08-01

    Individual attitudes to distributions of life years between two groups in a society are explored by means of an experiment. Subjects are asked to place themselves behind a veil of ignorance which is specified in terms of risk (known probabilities) for some subjects and in terms of uncertainty (unknown probabilities) for some subjects. The latter is argued to be the appropriate interpretation of Rawls' notion. It is found that subjects exhibit convex preferences over life years for the two groups, and that preferences do not differ between the risk and the uncertainty specifications.

  4. A mathematical model for evolution and SETI.

    PubMed

    Maccone, Claudio

    2011-12-01

    Darwinian evolution theory may be regarded as a part of SETI theory in that the factor f(l) in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor f(l) is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.

  5. Modelling Evolution and SETI Mathematically

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2012-05-01

    Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factor increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions constrained between the time axis and the exponential growth curve. Finally, since each lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.

  6. A Mathematical Model for Evolution and SETI

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2011-12-01

    Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.

  7. Newsvendor problem under complete uncertainty: a case of innovative products.

    PubMed

    Gaspars-Wieloch, Helena

    2017-01-01

    The paper presents a new scenario-based decision rule for the classical version of the newsvendor problem (NP) under complete uncertainty (i.e. uncertainty with unknown probabilities). So far, NP has been analyzed under uncertainty with known probabilities or under uncertainty with partial information (probabilities known incompletely). The novel approach is designed for the sale of new, innovative products, where it is quite complicated to define probabilities or even probability-like quantities, because there are no data available for forecasting the upcoming demand via statistical analysis. The new procedure described in the contribution is based on a hybrid of Hurwicz and Bayes decision rules. It takes into account the decision maker's attitude towards risk (measured by coefficients of optimism and pessimism) and the dispersion (asymmetry, range, frequency of extremes values) of payoffs connected with particular order quantities. It does not require any information about the probability distribution.

  8. Method for removing atomic-model bias in macromolecular crystallography

    DOEpatents

    Terwilliger, Thomas C [Santa Fe, NM

    2006-08-01

    Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.

  9. Bayesian alternative to the ISO-GUM's use of the Welch Satterthwaite formula

    NASA Astrophysics Data System (ADS)

    Kacker, Raghu N.

    2006-02-01

    In certain disciplines, uncertainty is traditionally expressed as an interval about an estimate for the value of the measurand. Development of such uncertainty intervals with a stated coverage probability based on the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) requires a description of the probability distribution for the value of the measurand. The ISO-GUM propagates the estimates and their associated standard uncertainties for various input quantities through a linear approximation of the measurement equation to determine an estimate and its associated standard uncertainty for the value of the measurand. This procedure does not yield a probability distribution for the value of the measurand. The ISO-GUM suggests that under certain conditions motivated by the central limit theorem the distribution for the value of the measurand may be approximated by a scaled-and-shifted t-distribution with effective degrees of freedom obtained from the Welch-Satterthwaite (W-S) formula. The approximate t-distribution may then be used to develop an uncertainty interval with a stated coverage probability for the value of the measurand. We propose an approximate normal distribution based on a Bayesian uncertainty as an alternative to the t-distribution based on the W-S formula. A benefit of the approximate normal distribution based on a Bayesian uncertainty is that it greatly simplifies the expression of uncertainty by eliminating altogether the need for calculating effective degrees of freedom from the W-S formula. In the special case where the measurand is the difference between two means, each evaluated from statistical analyses of independent normally distributed measurements with unknown and possibly unequal variances, the probability distribution for the value of the measurand is known to be a Behrens-Fisher distribution. We compare the performance of the approximate normal distribution based on a Bayesian uncertainty and the approximate t-distribution based on the W-S formula with respect to the Behrens-Fisher distribution. The approximate normal distribution is simpler and better in this case. A thorough investigation of the relative performance of the two approximate distributions would require comparison for a range of measurement equations by numerical methods.

  10. Inverse and forward modeling under uncertainty using MRE-based Bayesian approach

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Rubin, Y.

    2004-12-01

    A stochastic inverse approach for subsurface characterization is proposed and applied to shallow vadose zone at a winery field site in north California and to a gas reservoir at the Ormen Lange field site in the North Sea. The approach is formulated in a Bayesian-stochastic framework, whereby the unknown parameters are identified in terms of their statistical moments or their probabilities. Instead of the traditional single-valued estimation /prediction provided by deterministic methods, the approach gives a probability distribution for an unknown parameter. This allows calculating the mean, the mode, and the confidence interval, which is useful for a rational treatment of uncertainty and its consequences. The approach also allows incorporating data of various types and different error levels, including measurements of state variables as well as information such as bounds on or statistical moments of the unknown parameters, which may represent prior information. To obtain minimally subjective prior probabilities required for the Bayesian approach, the principle of Minimum Relative Entropy (MRE) is employed. The approach is tested in field sites for flow parameters identification and soil moisture estimation in the vadose zone and for gas saturation estimation at great depth below the ocean floor. Results indicate the potential of coupling various types of field data within a MRE-based Bayesian formalism for improving the estimation of the parameters of interest.

  11. On estimating the phase of periodic waveform in additive Gaussian noise, part 2

    NASA Astrophysics Data System (ADS)

    Rauch, L. L.

    1984-11-01

    Motivated by advances in signal processing technology that support more complex algorithms, a new look is taken at the problem of estimating the phase and other parameters of a periodic waveform in additive Gaussian noise. The general problem was introduced and the maximum a posteriori probability criterion with signal space interpretation was used to obtain the structures of optimum and some suboptimum phase estimators for known constant frequency and unknown constant phase with an a priori distribution. Optimal algorithms are obtained for some cases where the frequency is a parameterized function of time with the unknown parameters and phase having a joint a priori distribution. In the last section, the intrinsic and extrinsic geometry of hypersurfaces is introduced to provide insight to the estimation problem for the small noise and large noise cases.

  12. On Estimating the Phase of Periodic Waveform in Additive Gaussian Noise, Part 2

    NASA Technical Reports Server (NTRS)

    Rauch, L. L.

    1984-01-01

    Motivated by advances in signal processing technology that support more complex algorithms, a new look is taken at the problem of estimating the phase and other parameters of a periodic waveform in additive Gaussian noise. The general problem was introduced and the maximum a posteriori probability criterion with signal space interpretation was used to obtain the structures of optimum and some suboptimum phase estimators for known constant frequency and unknown constant phase with an a priori distribution. Optimal algorithms are obtained for some cases where the frequency is a parameterized function of time with the unknown parameters and phase having a joint a priori distribution. In the last section, the intrinsic and extrinsic geometry of hypersurfaces is introduced to provide insight to the estimation problem for the small noise and large noise cases.

  13. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    PubMed

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  14. Bayesian source tracking via focalization and marginalization in an uncertain Mediterranean Sea environment.

    PubMed

    Dosso, Stan E; Wilmut, Michael J; Nielsen, Peter L

    2010-07-01

    This paper applies Bayesian source tracking in an uncertain environment to Mediterranean Sea data, and investigates the resulting tracks and track uncertainties as a function of data information content (number of data time-segments, number of frequencies, and signal-to-noise ratio) and of prior information (environmental uncertainties and source-velocity constraints). To track low-level sources, acoustic data recorded for multiple time segments (corresponding to multiple source positions along the track) are inverted simultaneously. Environmental uncertainty is addressed by including unknown water-column and seabed properties as nuisance parameters in an augmented inversion. Two approaches are considered: Focalization-tracking maximizes the posterior probability density (PPD) over the unknown source and environmental parameters. Marginalization-tracking integrates the PPD over environmental parameters to obtain a sequence of joint marginal probability distributions over source coordinates, from which the most-probable track and track uncertainties can be extracted. Both approaches apply track constraints on the maximum allowable vertical and radial source velocity. The two approaches are applied for towed-source acoustic data recorded at a vertical line array at a shallow-water test site in the Mediterranean Sea where previous geoacoustic studies have been carried out.

  15. Post-glacial redistribution and shifts in productivity of giant kelp forests

    PubMed Central

    Graham, Michael H.; Kinlan, Brian P.; Grosberg, Richard K.

    2010-01-01

    Quaternary glacial–interglacial cycles create lasting biogeographic, demographic and genetic effects on ecosystems, yet the ecological effects of ice ages on benthic marine communities are unknown. We analysed long-term datasets to develop a niche-based model of southern Californian giant kelp (Macrocystis pyrifera) forest distribution as a function of oceanography and geomorphology, and synthesized palaeo-oceanographic records to show that late Quaternary climate change probably drove high millennial variability in the distribution and productivity of this foundation species. Our predictions suggest that kelp forest biomass increased up to threefold from the glacial maximum to the mid-Holocene, then rapidly declined by 40–70 per cent to present levels. The peak in kelp forest productivity would have coincided with the earliest coastal archaeological sites in the New World. Similar late Quaternary changes in kelp forest distribution and productivity probably occurred in coastal upwelling systems along active continental margins worldwide, which would have resulted in complex shifts in the relative productivity of terrestrial and marine components of coastal ecosystems. PMID:19846450

  16. Stochastic Inversion of 2D Magnetotelluric Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, itmore » provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  17. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    PubMed

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Uncertainty analysis in fault tree models with dependent basic events.

    PubMed

    Pedroni, Nicola; Zio, Enrico

    2013-06-01

    In general, two types of dependence need to be considered when estimating the probability of the top event (TE) of a fault tree (FT): "objective" dependence between the (random) occurrences of different basic events (BEs) in the FT and "state-of-knowledge" (epistemic) dependence between estimates of the epistemically uncertain probabilities of some BEs of the FT model. In this article, we study the effects on the TE probability of objective and epistemic dependences. The well-known Frèchet bounds and the distribution envelope determination (DEnv) method are used to model all kinds of (possibly unknown) objective and epistemic dependences, respectively. For exemplification, the analyses are carried out on a FT with six BEs. Results show that both types of dependence significantly affect the TE probability; however, the effects of epistemic dependence are likely to be overwhelmed by those of objective dependence (if present). © 2012 Society for Risk Analysis.

  19. Supervised Detection of Anomalous Light Curves in Massive Astronomical Catalogs

    NASA Astrophysics Data System (ADS)

    Nun, Isadora; Pichara, Karim; Protopapas, Pavlos; Kim, Dae-Won

    2014-09-01

    The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge, machine learning techniques become necessary. Here we present a new methodology to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. By leaving out one of the classes on the training set, we perform a validity test and show that when the random forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability. Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates. After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs. Within these candidates we identified certain known but rare objects such as eclipsing Cepheids, blue variables, cataclysmic variables, and X-ray sources. For some outliers there was no additional information. Among them we identified three unknown variability types and a few individual outliers that will be followed up in order to perform a deeper analysis.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nun, Isadora; Pichara, Karim; Protopapas, Pavlos

    The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge, machine learning techniques become necessary. Here we present a new methodology to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each ofmore » the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. By leaving out one of the classes on the training set, we perform a validity test and show that when the random forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability. Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates. After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs. Within these candidates we identified certain known but rare objects such as eclipsing Cepheids, blue variables, cataclysmic variables, and X-ray sources. For some outliers there was no additional information. Among them we identified three unknown variability types and a few individual outliers that will be followed up in order to perform a deeper analysis.« less

  1. Bernoulli, Darwin, and Sagan: the probability of life on other planets

    NASA Astrophysics Data System (ADS)

    Rossmo, D. Kim

    2017-04-01

    The recent discovery that billions of planets in the Milky Way Galaxy may be in circumstellar habitable zones has renewed speculation over the possibility of extraterrestrial life. The Drake equation is a probabilistic framework for estimating the number of technological advanced civilizations in our Galaxy; however, many of the equation's component probabilities are either unknown or have large error intervals. In this paper, a different method of examining this question is explored, one that replaces the various Drake factors with the single estimate for the probability of life existing on Earth. This relationship can be described by the binomial distribution if the presence of life on a given number of planets is equated to successes in a Bernoulli trial. The question of exoplanet life may then be reformulated as follows - given the probability of one or more independent successes for a given number of trials, what is the probability of two or more successes? Some of the implications of this approach for finding life on exoplanets are discussed.

  2. Global diversity of aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in marine and brackish sea water.

    PubMed

    Agatha, Sabine

    2011-01-01

    Oligotrichids and choreotrichids are ciliate taxa contributing to the multi-step microbial food web and episodically dominating the marine microzooplankton. The global diversity and distribution of aloricate Oligotrichea are unknown. Here, the geographic ranges of the 141 accepted species and their synonyms in marine and brackish sea water are analyzed, using hundreds of taxonomical and ecological studies; the quality of the records is simultaneously evaluated. The aloricate Oligotrichea match the moderate endemicity model, i.e., the majority (94) of morphospecies has a wide, occasionally cosmopolitan distribution, while 47 morphospecies show biogeographic patterns: they are restricted to single geographic regions and probably include 12 endemic morphospecies. These endemics are found in the Antarctic, North Pacific, and Black Sea, whereas the "flagship" species Strombidinopsis cercionis is confined to the Caribbean Sea. Concerning genera, again several geographic patterns are recognizable. The species richness is distinctly lower in the southern hemisphere than in the northern, ranging from nine morphospecies in the South Pacific to 95 in the North Atlantic; however, this pattern is probably caused by undersampling. Since the loss of species might affect higher trophical levels substantially, the aloricate Oligotrichea should not any longer be ignored in conservation issues. The ecophysiological diversity is considerably larger than the morphological, and even tops the richness of SSrRNA and ITS haplotypes, indicating that probably more than 83-89% of the diversity in aloricate Oligotrichea are unknown. The huge challenge to discover all these species can only be managed by combining the expertises of morphological taxonomists, molecular biologists, ecologists, and physiologists.

  3. Global Diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in Marine and Brackish Sea Water

    PubMed Central

    Agatha, Sabine

    2011-01-01

    Oligotrichids and choreotrichids are ciliate taxa contributing to the multi-step microbial food web and episodically dominating the marine microzooplankton. The global diversity and distribution of aloricate Oligotrichea are unknown. Here, the geographic ranges of the 141 accepted species and their synonyms in marine and brackish sea water are analyzed, using hundreds of taxonomical and ecological studies; the quality of the records is simultaneously evaluated. The aloricate Oligotrichea match the moderate endemicity model, i.e., the majority (94) of morphospecies has a wide, occasionally cosmopolitan distribution, while 47 morphospecies show biogeographic patterns: they are restricted to single geographic regions and probably include 12 endemic morphospecies. These endemics are found in the Antarctic, North Pacific, and Black Sea, whereas the “flagship” species Strombidinopsis cercionis is confined to the Caribbean Sea. Concerning genera, again several geographic patterns are recognizable. The species richness is distinctly lower in the southern hemisphere than in the northern, ranging from nine morphospecies in the South Pacific to 95 in the North Atlantic; however, this pattern is probably caused by undersampling. Since the loss of species might affect higher trophical levels substantially, the aloricate Oligotrichea should not any longer be ignored in conservation issues. The ecophysiological diversity is considerably larger than the morphological, and even tops the richness of SSrRNA and ITS haplotypes, indicating that probably more than 83–89% of the diversity in aloricate Oligotrichea are unknown. The huge challenge to discover all these species can only be managed by combining the expertises of morphological taxonomists, molecular biologists, ecologists, and physiologists. PMID:21853034

  4. Estimation of descriptive statistics for multiply censored water quality data

    USGS Publications Warehouse

    Helsel, Dennis R.; Cohn, Timothy A.

    1988-01-01

    This paper extends the work of Gilliom and Helsel (1986) on procedures for estimating descriptive statistics of water quality data that contain “less than” observations. Previously, procedures were evaluated when only one detection limit was present. Here we investigate the performance of estimators for data that have multiple detection limits. Probability plotting and maximum likelihood methods perform substantially better than simple substitution procedures now commonly in use. Therefore simple substitution procedures (e.g., substitution of the detection limit) should be avoided. Probability plotting methods are more robust than maximum likelihood methods to misspecification of the parent distribution and their use should be encouraged in the typical situation where the parent distribution is unknown. When utilized correctly, less than values frequently contain nearly as much information for estimating population moments and quantiles as would the same observations had the detection limit been below them.

  5. A General Classification Rule for Probability Measures

    DTIC Science & Technology

    1993-08-12

    1989) proposed an estimator based on relative entropy, related it to the Lempel - Ziv compression algorithm , and proved its asymptotic optimality in...327, 1991. 19 [12] Merhav, N., Gutman, M. and Ziv , J. (1989). On the determination of the order of a Markov chain and universal data compression ...over some compact Polish space E, we want to decide whether or not the unknown distribution belongs to A or its complement. We propose an algorithm which

  6. Development of a European Ensemble System for Seasonal Prediction: Application to crop yield

    NASA Astrophysics Data System (ADS)

    Terres, J. M.; Cantelaube, P.

    2003-04-01

    Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.

  7. Early efforts in modeling the incubation period of infectious diseases with an acute course of illness.

    PubMed

    Nishiura, Hiroshi

    2007-05-11

    The incubation period of infectious diseases, the time from infection with a microorganism to onset of disease, is directly relevant to prevention and control. Since explicit models of the incubation period enhance our understanding of the spread of disease, previous classic studies were revisited, focusing on the modeling methods employed and paying particular attention to relatively unknown historical efforts. The earliest study on the incubation period of pandemic influenza was published in 1919, providing estimates of the incubation period of Spanish flu using the daily incidence on ships departing from several ports in Australia. Although the study explicitly dealt with an unknown time of exposure, the assumed periods of exposure, which had an equal probability of infection, were too long, and thus, likely resulted in slight underestimates of the incubation period. After the suggestion that the incubation period follows lognormal distribution, Japanese epidemiologists extended this assumption to estimates of the time of exposure during a point source outbreak. Although the reason why the incubation period of acute infectious diseases tends to reveal a right-skewed distribution has been explored several times, the validity of the lognormal assumption is yet to be fully clarified. At present, various different distributions are assumed, and the lack of validity in assuming lognormal distribution is particularly apparent in the case of slowly progressing diseases. The present paper indicates that (1) analysis using well-defined short periods of exposure with appropriate statistical methods is critical when the exact time of exposure is unknown, and (2) when assuming a specific distribution for the incubation period, comparisons using different distributions are needed in addition to estimations using different datasets, analyses of the determinants of incubation period, and an understanding of the underlying disease mechanisms.

  8. Airborne CH 2O measurements over the North Atlantic during the 1997 NARE campaign: Instrument comparisons and distributions

    DOE PAGES

    Fried, Alan; Lee, Yin -Nan; Frost, Greg; ...

    2002-02-27

    Here, formaldehyde measurements from two independent instruments are compared with photochemical box model calculations. The measurements were made on the NOAA P-3 aircraft as part of the 1997 North Atlantic Regional Experiment (NARE 1997). After examining the possible reasons for the model-measurement discrepancy, we conclude that there are probably one or more additional unknown sources of CH 2O in the North Atlantic troposphere.

  9. Identification of cloud fields by the nonparametric algorithm of pattern recognition from normalized video data recorded with the AVHRR instrument

    NASA Astrophysics Data System (ADS)

    Protasov, Konstantin T.; Pushkareva, Tatyana Y.; Artamonov, Evgeny S.

    2002-02-01

    The problem of cloud field recognition from the NOAA satellite data is urgent for solving not only meteorological problems but also for resource-ecological monitoring of the Earth's underlying surface associated with the detection of thunderstorm clouds, estimation of the liquid water content of clouds and the moisture of the soil, the degree of fire hazard, etc. To solve these problems, we used the AVHRR/NOAA video data that regularly displayed the situation in the territory. The complexity and extremely nonstationary character of problems to be solved call for the use of information of all spectral channels, mathematical apparatus of testing statistical hypotheses, and methods of pattern recognition and identification of the informative parameters. For a class of detection and pattern recognition problems, the average risk functional is a natural criterion for the quality and the information content of the synthesized decision rules. In this case, to solve efficiently the problem of identifying cloud field types, the informative parameters must be determined by minimization of this functional. Since the conditional probability density functions, representing mathematical models of stochastic patterns, are unknown, the problem of nonparametric reconstruction of distributions from the leaning samples arises. To this end, we used nonparametric estimates of distributions with the modified Epanechnikov kernel. The unknown parameters of these distributions were determined by minimization of the risk functional, which for the learning sample was substituted by the empirical risk. After the conditional probability density functions had been reconstructed for the examined hypotheses, a cloudiness type was identified using the Bayes decision rule.

  10. Semiparametric Bayesian classification with longitudinal markers

    PubMed Central

    De la Cruz-Mesía, Rolando; Quintana, Fernando A.; Müller, Peter

    2013-01-01

    Summary We analyse data from a study involving 173 pregnant women. The data are observed values of the β human chorionic gonadotropin hormone measured during the first 80 days of gestational age, including from one up to six longitudinal responses for each woman. The main objective in this study is to predict normal versus abnormal pregnancy outcomes from data that are available at the early stages of pregnancy. We achieve the desired classification with a semiparametric hierarchical model. Specifically, we consider a Dirichlet process mixture prior for the distribution of the random effects in each group. The unknown random-effects distributions are allowed to vary across groups but are made dependent by using a design vector to select different features of a single underlying random probability measure. The resulting model is an extension of the dependent Dirichlet process model, with an additional probability model for group classification. The model is shown to perform better than an alternative model which is based on independent Dirichlet processes for the groups. Relevant posterior distributions are summarized by using Markov chain Monte Carlo methods. PMID:24368871

  11. Probabilistic graphs as a conceptual and computational tool in hydrology and water management

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit

    2014-05-01

    Originally developed in the fields of machine learning and artificial intelligence, probabilistic graphs constitute a general framework for modeling complex systems in the presence of uncertainty. The framework consists of three components: 1. Representation of the model as a graph (or network), with nodes depicting random variables in the model (e.g. parameters, states, etc), which are joined together by factors. Factors are local probabilistic or deterministic relations between subsets of variables, which, when multiplied together, yield the joint distribution over all variables. 2. Consistent use of probability theory for quantifying uncertainty, relying on basic rules of probability for assimilating data into the model and expressing unknown variables as a function of observations (via the posterior distribution). 3. Efficient, distributed approximation of the posterior distribution using general-purpose algorithms that exploit model structure encoded in the graph. These attributes make probabilistic graphs potentially useful as a conceptual and computational tool in hydrology and water management (and beyond). Conceptually, they can provide a common framework for existing and new probabilistic modeling approaches (e.g. by drawing inspiration from other fields of application), while computationally they can make probabilistic inference feasible in larger hydrological models. The presentation explores, via examples, some of these benefits.

  12. Variations on Bayesian Prediction and Inference

    DTIC Science & Technology

    2016-05-09

    inference 2.2.1 Background There are a number of statistical inference problems that are not generally formulated via a full probability model...problem of inference about an unknown parameter, the Bayesian approach requires a full probability 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...the problem of inference about an unknown parameter, the Bayesian approach requires a full probability model/likelihood which can be an obstacle

  13. Uncertainty Analysis via Failure Domain Characterization: Unrestricted Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. The methods developed herein, which are based on nonlinear constrained optimization, are applicable to requirement functions whose functional dependency on the uncertainty is arbitrary and whose explicit form may even be unknown. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the assumed uncertainty model (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  14. Propagating Mixed Uncertainties in Cyber Attacker Payoffs: Exploration of Two-Phase Monte Carlo Sampling and Probability Bounds Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Samrat; Tipireddy, Ramakrishna; Oster, Matthew R.

    Securing cyber-systems on a continual basis against a multitude of adverse events is a challenging undertaking. Game-theoretic approaches, that model actions of strategic decision-makers, are increasingly being applied to address cybersecurity resource allocation challenges. Such game-based models account for multiple player actions and represent cyber attacker payoffs mostly as point utility estimates. Since a cyber-attacker’s payoff generation mechanism is largely unknown, appropriate representation and propagation of uncertainty is a critical task. In this paper we expand on prior work and focus on operationalizing the probabilistic uncertainty quantification framework, for a notional cyber system, through: 1) representation of uncertain attacker andmore » system-related modeling variables as probability distributions and mathematical intervals, and 2) exploration of uncertainty propagation techniques including two-phase Monte Carlo sampling and probability bounds analysis.« less

  15. Calculation of Cumulative Distributions and Detection Probabilities in Communications and Optics.

    DTIC Science & Technology

    1986-03-31

    result, Figure 3.1 shows the additional SNR required (often called the CFAR loss) for the MLD, CMLD , and OSD in a multiple target environment to...Notice that although the CFAR loss increases with INR for the MLD, the CMLD and OSD have a bounded loss as the INR + w. These results have been more...false-alarm rate ( CFAR ) when the background noise level is unknown. In Section 2 we described the application of saddlepoint integration techniques to

  16. Influence of multiple categories on the prediction of unknown properties

    PubMed Central

    Verde, Michael F.; Murphy, Gregory L.; Ross, Brian H.

    2006-01-01

    Knowing an item's category helps us predict its unknown properties. Previous studies suggest that when asked to evaluate the probability of an unknown property, people tend to consider only an item's most likely category, ignoring alternative categories. In the present study, property prediction took the form of either a probability rating or a speeded, binary-choice judgment. Consistent with past findings, subjects ignored alternative categories in their probability ratings. However, their binary-choice judgments were influenced by alternative categories. This novel finding suggests that the way category knowledge is used in prediction depends critically on the form of the prediction. PMID:16156183

  17. Quantity Competition in a Differentiated Duopoly

    NASA Astrophysics Data System (ADS)

    Ferreira, Fernanda A.; Ferreira, Flávio; Ferreira, Miguel; Pinto, Alberto A.

    In this paper, we consider a Stackelberg duopoly competition with differentiated goods, linear and symmetric demand and with unknown costs. In our model, the two firms play a non-cooperative game with two stages: in a first stage, firm F 1 chooses the quantity, q 1, that is going to produce; in the second stage, firm F 2 observes the quantity q 1 produced by firm F 1 and chooses its own quantity q 2. Firms choose their output levels in order to maximise their profits. We suppose that each firm has two different technologies, and uses one of them following a certain probability distribution. The use of either one or the other technology affects the unitary production cost. We show that there is exactly one perfect Bayesian equilibrium for this game. We analyse the variations of the expected profits with the parameters of the model, namely with the parameters of the probability distributions, and with the parameters of the demand and differentiation.

  18. The Inverse Bagging Algorithm: Anomaly Detection by Inverse Bootstrap Aggregating

    NASA Astrophysics Data System (ADS)

    Vischia, Pietro; Dorigo, Tommaso

    2017-03-01

    For data sets populated by a very well modeled process and by another process of unknown probability density function (PDF), a desired feature when manipulating the fraction of the unknown process (either for enhancing it or suppressing it) consists in avoiding to modify the kinematic distributions of the well modeled one. A bootstrap technique is used to identify sub-samples rich in the well modeled process, and classify each event according to the frequency of it being part of such sub-samples. Comparisons with general MVA algorithms will be shown, as well as a study of the asymptotic properties of the method, making use of a public domain data set that models a typical search for new physics as performed at hadronic colliders such as the Large Hadron Collider (LHC).

  19. Estimation of the incubation period of invasive aspergillosis by survival models in acute myeloid leukemia patients.

    PubMed

    Bénet, Thomas; Voirin, Nicolas; Nicolle, Marie-Christine; Picot, Stephane; Michallet, Mauricette; Vanhems, Philippe

    2013-02-01

    The duration of the incubation of invasive aspergillosis (IA) remains unknown. The objective of this investigation was to estimate the time interval between aplasia onset and that of IA symptoms in acute myeloid leukemia (AML) patients. A single-centre prospective survey (2004-2009) included all patients with AML and probable/proven IA. Parametric survival models were fitted to the distribution of the time intervals between aplasia onset and IA. Overall, 53 patients had IA after aplasia, with the median observed time interval between the two being 15 days. Based on log-normal distribution, the median estimated IA incubation period was 14.6 days (95% CI; 12.8-16.5 days).

  20. Using known populations of pronghorn to evaluate sampling plans and estimators

    USGS Publications Warehouse

    Kraft, K.M.; Johnson, D.H.; Samuelson, J.M.; Allen, S.H.

    1995-01-01

    Although sampling plans and estimators of abundance have good theoretical properties, their performance in real situations is rarely assessed because true population sizes are unknown. We evaluated widely used sampling plans and estimators of population size on 3 known clustered distributions of pronghorn (Antilocapra americana). Our criteria were accuracy of the estimate, coverage of 95% confidence intervals, and cost. Sampling plans were combinations of sampling intensities (16, 33, and 50%), sample selection (simple random sampling without replacement, systematic sampling, and probability proportional to size sampling with replacement), and stratification. We paired sampling plans with suitable estimators (simple, ratio, and probability proportional to size). We used area of the sampling unit as the auxiliary variable for the ratio and probability proportional to size estimators. All estimators were nearly unbiased, but precision was generally low (overall mean coefficient of variation [CV] = 29). Coverage of 95% confidence intervals was only 89% because of the highly skewed distribution of the pronghorn counts and small sample sizes, especially with stratification. Stratification combined with accurate estimates of optimal stratum sample sizes increased precision, reducing the mean CV from 33 without stratification to 25 with stratification; costs increased 23%. Precise results (mean CV = 13) but poor confidence interval coverage (83%) were obtained with simple and ratio estimators when the allocation scheme included all sampling units in the stratum containing most pronghorn. Although areas of the sampling units varied, ratio estimators and probability proportional to size sampling did not increase precision, possibly because of the clumped distribution of pronghorn. Managers should be cautious in using sampling plans and estimators to estimate abundance of aggregated populations.

  1. Moving on From Representativeness: Testing the Utility of the Global Drug Survey.

    PubMed

    Barratt, Monica J; Ferris, Jason A; Zahnow, Renee; Palamar, Joseph J; Maier, Larissa J; Winstock, Adam R

    2017-01-01

    A decline in response rates in traditional household surveys, combined with increased internet coverage and decreased research budgets, has resulted in increased attractiveness of web survey research designs based on purposive and voluntary opt-in sampling strategies. In the study of hidden or stigmatised behaviours, such as cannabis use, web survey methods are increasingly common. However, opt-in web surveys are often heavily criticised due to their lack of sampling frame and unknown representativeness. In this article, we outline the current state of the debate about the relevance of pursuing representativeness, the state of probability sampling methods, and the utility of non-probability, web survey methods especially for accessing hidden or minority populations. Our article has two aims: (1) to present a comprehensive description of the methodology we use at Global Drug Survey (GDS), an annual cross-sectional web survey and (2) to compare the age and sex distributions of cannabis users who voluntarily completed (a) a household survey or (b) a large web-based purposive survey (GDS), across three countries: Australia, the United States, and Switzerland. We find that within each set of country comparisons, the demographic distributions among recent cannabis users are broadly similar, demonstrating that the age and sex distributions of those who volunteer to be surveyed are not vastly different between these non-probability and probability methods. We conclude that opt-in web surveys of hard-to-reach populations are an efficient way of gaining in-depth understanding of stigmatised behaviours and are appropriate, as long as they are not used to estimate drug use prevalence of the general population.

  2. Moving on From Representativeness: Testing the Utility of the Global Drug Survey

    PubMed Central

    Barratt, Monica J; Ferris, Jason A; Zahnow, Renee; Palamar, Joseph J; Maier, Larissa J; Winstock, Adam R

    2017-01-01

    A decline in response rates in traditional household surveys, combined with increased internet coverage and decreased research budgets, has resulted in increased attractiveness of web survey research designs based on purposive and voluntary opt-in sampling strategies. In the study of hidden or stigmatised behaviours, such as cannabis use, web survey methods are increasingly common. However, opt-in web surveys are often heavily criticised due to their lack of sampling frame and unknown representativeness. In this article, we outline the current state of the debate about the relevance of pursuing representativeness, the state of probability sampling methods, and the utility of non-probability, web survey methods especially for accessing hidden or minority populations. Our article has two aims: (1) to present a comprehensive description of the methodology we use at Global Drug Survey (GDS), an annual cross-sectional web survey and (2) to compare the age and sex distributions of cannabis users who voluntarily completed (a) a household survey or (b) a large web-based purposive survey (GDS), across three countries: Australia, the United States, and Switzerland. We find that within each set of country comparisons, the demographic distributions among recent cannabis users are broadly similar, demonstrating that the age and sex distributions of those who volunteer to be surveyed are not vastly different between these non-probability and probability methods. We conclude that opt-in web surveys of hard-to-reach populations are an efficient way of gaining in-depth understanding of stigmatised behaviours and are appropriate, as long as they are not used to estimate drug use prevalence of the general population. PMID:28924351

  3. A Statistical Treatment of Bioassay Pour Fractions

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack; Hughes, David W.

    2014-01-01

    The binomial probability distribution is used to treat the statistics of a microbiological sample that is split into two parts, with only one part evaluated for spore count. One wishes to estimate the total number of spores in the sample based on the counts obtained from the part that is evaluated (pour fraction). Formally, the binomial distribution is recharacterized as a function of the observed counts (successes), with the total number (trials) an unknown. The pour fraction is the probability of success per spore (trial). This distribution must be renormalized in terms of the total number. Finally, the new renormalized distribution is integrated and mathematically inverted to yield the maximum estimate of the total number as a function of a desired level of confidence ( P(

  4. Probabilistic Damage Characterization Using the Computationally-Efficient Bayesian Approach

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Hochhalter, Jacob D.

    2016-01-01

    This work presents a computationally-ecient approach for damage determination that quanti es uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes' Theorem to combine any prior knowledge an analyst may have about the nature of the damage with information provided implicitly by the strain sensor data to form a posterior probability distribution over possible damage states. The unknown damage parameters are then estimated based on samples drawn numerically from this distribution using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modi cations are made to the traditional Bayesian inference approach to provide signi cant computational speedup. First, an ecient surrogate model is constructed using sparse grid interpolation to replace a costly nite element model that must otherwise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian posterior distribution is modi ed using a weighted likelihood formulation, which is shown to improve the convergence of the sampling process. Finally, a robust MCMC algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sample the probability distribution more eciently. Numerical examples demonstrate that the proposed framework e ectively provides damage estimates with uncertainty quanti cation and can yield orders of magnitude speedup over standard Bayesian approaches.

  5. On the distribution of interspecies correlation for Markov models of character evolution on Yule trees.

    PubMed

    Mulder, Willem H; Crawford, Forrest W

    2015-01-07

    Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains mostly unknown how these properties affect sequence and trait patterns observed at the tips of the phylogenetic tree. Understanding the interplay between speciation and mutation under simple models of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the optimal design of phylogenetic studies. In this work, we derive the probability distribution of interspecies covariance under Brownian motion and Ornstein-Uhlenbeck models of phenotypic change on a Yule tree. We compute the probability distribution of the number of mutations shared between two randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest summary measures of phylogenetic information content, illuminate the correlation between site patterns in sequences or traits of related organisms, and provide heuristics for experimental design and reconstruction of phylogenetic trees. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The Approximate Bayesian Computation methods in the localization of the atmospheric contamination source

    NASA Astrophysics Data System (ADS)

    Kopka, P.; Wawrzynczak, A.; Borysiewicz, M.

    2015-09-01

    In many areas of application, a central problem is a solution to the inverse problem, especially estimation of the unknown model parameters to model the underlying dynamics of a physical system precisely. In this situation, the Bayesian inference is a powerful tool to combine observed data with prior knowledge to gain the probability distribution of searched parameters. We have applied the modern methodology named Sequential Approximate Bayesian Computation (S-ABC) to the problem of tracing the atmospheric contaminant source. The ABC is technique commonly used in the Bayesian analysis of complex models and dynamic system. Sequential methods can significantly increase the efficiency of the ABC. In the presented algorithm, the input data are the on-line arriving concentrations of released substance registered by distributed sensor network from OVER-LAND ATMOSPHERIC DISPERSION (OLAD) experiment. The algorithm output are the probability distributions of a contamination source parameters i.e. its particular location, release rate, speed and direction of the movement, start time and duration. The stochastic approach presented in this paper is completely general and can be used in other fields where the parameters of the model bet fitted to the observable data should be found.

  7. Hyperostosis frontalis interna: criteria for sexing and aging a skeleton.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Cohen, Haim; Abbas, Janan; Medlej, Bahaa; Hershkovitz, Israel

    2011-09-01

    Estimation of sex and age in skeletons is essential in anthropological and forensic medicine investigations. The aim of the current study was to examine the potential of hyperostosis frontalis interna (HFI) as a criterion for determining sex and age in forensic cases. Macroscopic examination of the inner aspect of the frontal bone of 768 skulls (326 males and 442 females) aged 1 to 103, which had undergone a head computerized tomography scan, was carried out using the volume rendering technique. HFI was divided into two categories: minor and major. HFI is a sex- and age-dependent phenomena, with females manifesting significantly higher prevalence than males (p<0.01). In both females and males, prevalence of HFI increases as age increases (p<0.01). We present herein the probabilities of designating an unknown skull to a specific sex and age cohort according to the presence of HFI (standardized to age distribution in an Israeli population). Moreover, we present the probability of an individual belonging to a specific sex or age cohort according to age or sex (respectively) and severity of HFI. We suggest a valid, reliable, and easy method for sex and age identification of unknown skulls.

  8. Statistical properties of two sine waves in Gaussian noise.

    NASA Technical Reports Server (NTRS)

    Esposito, R.; Wilson, L. R.

    1973-01-01

    A detailed study is presented of some statistical properties of a stochastic process that consists of the sum of two sine waves of unknown relative phase and a normal process. Since none of the statistics investigated seem to yield a closed-form expression, all the derivations are cast in a form that is particularly suitable for machine computation. Specifically, results are presented for the probability density function (pdf) of the envelope and the instantaneous value, the moments of these distributions, and the relative cumulative density function (cdf).

  9. Several Modified Goodness-Of-Fit Tests for the Cauchy Distribution with Unknown Scale and Location Parameters

    DTIC Science & Technology

    1994-03-01

    labels of a, which is called significance levels. The hypothesis tests are done based on the a levels . The maximum probabilities of making type II error...critical values at specific a levels . This procedure is done for each of the 50,000 samples. The number of the samples passing each test at those specific... a levels is counted. The ratio of the number of accepted samples to 50,000 gives the percentage point. Then, subtracting that value from one would

  10. Decentralized learning in Markov games.

    PubMed

    Vrancx, Peter; Verbeeck, Katja; Nowé, Ann

    2008-08-01

    Learning automata (LA) were recently shown to be valuable tools for designing multiagent reinforcement learning algorithms. One of the principal contributions of the LA theory is that a set of decentralized independent LA is able to control a finite Markov chain with unknown transition probabilities and rewards. In this paper, we propose to extend this algorithm to Markov games--a straightforward extension of single-agent Markov decision problems to distributed multiagent decision problems. We show that under the same ergodic assumptions of the original theorem, the extended algorithm will converge to a pure equilibrium point between agent policies.

  11. Time‐dependent renewal‐model probabilities when date of last earthquake is unknown

    USGS Publications Warehouse

    Field, Edward H.; Jordan, Thomas H.

    2015-01-01

    We derive time-dependent, renewal-model earthquake probabilities for the case in which the date of the last event is completely unknown, and compare these with the time-independent Poisson probabilities that are customarily used as an approximation in this situation. For typical parameter values, the renewal-model probabilities exceed Poisson results by more than 10% when the forecast duration exceeds ~20% of the mean recurrence interval. We also derive probabilities for the case in which the last event is further constrained to have occurred before historical record keeping began (the historic open interval), which can only serve to increase earthquake probabilities for typically applied renewal models.We conclude that accounting for the historic open interval can improve long-term earthquake rupture forecasts for California and elsewhere.

  12. Bayesian multiple-source localization in an uncertain ocean environment.

    PubMed

    Dosso, Stan E; Wilmut, Michael J

    2011-06-01

    This paper considers simultaneous localization of multiple acoustic sources when properties of the ocean environment (water column and seabed) are poorly known. A Bayesian formulation is developed in which the environmental parameters, noise statistics, and locations and complex strengths (amplitudes and phases) of multiple sources are considered to be unknown random variables constrained by acoustic data and prior information. Two approaches are considered for estimating source parameters. Focalization maximizes the posterior probability density (PPD) over all parameters using adaptive hybrid optimization. Marginalization integrates the PPD using efficient Markov-chain Monte Carlo methods to produce joint marginal probability distributions for source ranges and depths, from which source locations are obtained. This approach also provides quantitative uncertainty analysis for all parameters, which can aid in understanding of the inverse problem and may be of practical interest (e.g., source-strength probability distributions). In both approaches, closed-form maximum-likelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionality and difficulty of the inversion. Examples are presented of both approaches applied to single- and multi-frequency localization of multiple sources in an uncertain shallow-water environment, and a Monte Carlo performance evaluation study is carried out. © 2011 Acoustical Society of America

  13. A mass reconstruction technique for a heavy resonance decaying to τ + τ -

    NASA Astrophysics Data System (ADS)

    Xia, Li-Gang

    2016-11-01

    For a resonance decaying to τ + τ -, it is difficult to reconstruct its mass accurately because of the presence of neutrinos in the decay products of the τ leptons. If the resonance is heavy enough, we show that its mass can be well determined by the momentum component of the τ decay products perpendicular to the velocity of the τ lepton, p ⊥, and the mass of the visible/invisible decay products, m vis/inv, for τ decaying to hadrons/leptons. By sampling all kinematically allowed values of p ⊥ and m vis/inv according to their joint probability distributions determined by the MC simulations, the mass of the mother resonance is assumed to lie at the position with the maximal probability. Since p ⊥ and m vis/inv are invariant under the boost in the τ lepton direction, the joint probability distributions are independent upon the τ’s origin. Thus this technique is able to determine the mass of an unknown resonance with no efficiency loss. It is tested using MC simulations of the physics processes pp → Z/h(125)/h(750) + X → ττ + X at 13 TeV. The ratio of the full width at half maximum and the peak value of the reconstructed mass distribution is found to be 20%-40% using the information of missing transverse energy. Supported by General Financial Grant from the China Postdoctoral Science Foundation (2015M581062)

  14. Neural substrates of updating the prediction through prediction error during decision making.

    PubMed

    Wang, Ying; Ma, Ning; He, Xiaosong; Li, Nan; Wei, Zhengde; Yang, Lizhuang; Zha, Rujing; Han, Long; Li, Xiaoming; Zhang, Daren; Liu, Ying; Zhang, Xiaochu

    2017-08-15

    Learning of prediction error (PE), including reward PE and risk PE, is crucial for updating the prediction in reinforcement learning (RL). Neurobiological and computational models of RL have reported extensive brain activations related to PE. However, the occurrence of PE does not necessarily predict updating the prediction, e.g., in a probability-known event. Therefore, the brain regions specifically engaged in updating the prediction remain unknown. Here, we conducted two functional magnetic resonance imaging (fMRI) experiments, the probability-unknown Iowa Gambling Task (IGT) and the probability-known risk decision task (RDT). Behavioral analyses confirmed that PEs occurred in both tasks but were only used for updating the prediction in the IGT. By comparing PE-related brain activations between the two tasks, we found that the rostral anterior cingulate cortex/ventral medial prefrontal cortex (rACC/vmPFC) and the posterior cingulate cortex (PCC) activated only during the IGT and were related to both reward and risk PE. Moreover, the responses in the rACC/vmPFC and the PCC were modulated by uncertainty and were associated with reward prediction-related brain regions. Electric brain stimulation over these regions lowered the performance in the IGT but not in the RDT. Our findings of a distributed neural circuit of PE processing suggest that the rACC/vmPFC and the PCC play a key role in updating the prediction through PE processing during decision making. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Measuring public opinion on alcohol policy: a factor analytic study of a US probability sample.

    PubMed

    Latimer, William W; Harwood, Eileen M; Newcomb, Michael D; Wagenaar, Alexander C

    2003-03-01

    Public opinion has been one factor affecting change in policies designed to reduce underage alcohol use. Extant research, however, has been criticized for using single survey items of unknown reliability to define adult attitudes on alcohol policy issues. The present investigation addresses a critical gap in the literature by deriving scales on public attitudes, knowledge, and concerns pertinent to alcohol policies designed to reduce underage drinking using a US probability sample survey of 7021 adults. Five attitudinal scales were derived from exploratory and confirmatory factor analyses addressing policies to: (1) regulate alcohol marketing, (2) regulate alcohol consumption in public places, (3) regulate alcohol distribution, (4) increase alcohol taxes, and (5) regulate youth access. The scales exhibited acceptable psychometric properties and were largely consistent with a rational framework which guided the survey construction.

  16. Nonparametric density estimation and optimal bandwidth selection for protein unfolding and unbinding data

    NASA Astrophysics Data System (ADS)

    Bura, E.; Zhmurov, A.; Barsegov, V.

    2009-01-01

    Dynamic force spectroscopy and steered molecular simulations have become powerful tools for analyzing the mechanical properties of proteins, and the strength of protein-protein complexes and aggregates. Probability density functions of the unfolding forces and unfolding times for proteins, and rupture forces and bond lifetimes for protein-protein complexes allow quantification of the forced unfolding and unbinding transitions, and mapping the biomolecular free energy landscape. The inference of the unknown probability distribution functions from the experimental and simulated forced unfolding and unbinding data, as well as the assessment of analytically tractable models of the protein unfolding and unbinding requires the use of a bandwidth. The choice of this quantity is typically subjective as it draws heavily on the investigator's intuition and past experience. We describe several approaches for selecting the "optimal bandwidth" for nonparametric density estimators, such as the traditionally used histogram and the more advanced kernel density estimators. The performance of these methods is tested on unimodal and multimodal skewed, long-tailed distributed data, as typically observed in force spectroscopy experiments and in molecular pulling simulations. The results of these studies can serve as a guideline for selecting the optimal bandwidth to resolve the underlying distributions from the forced unfolding and unbinding data for proteins.

  17. Decoding and modelling of time series count data using Poisson hidden Markov model and Markov ordinal logistic regression models.

    PubMed

    Sebastian, Tunny; Jeyaseelan, Visalakshi; Jeyaseelan, Lakshmanan; Anandan, Shalini; George, Sebastian; Bangdiwala, Shrikant I

    2018-01-01

    Hidden Markov models are stochastic models in which the observations are assumed to follow a mixture distribution, but the parameters of the components are governed by a Markov chain which is unobservable. The issues related to the estimation of Poisson-hidden Markov models in which the observations are coming from mixture of Poisson distributions and the parameters of the component Poisson distributions are governed by an m-state Markov chain with an unknown transition probability matrix are explained here. These methods were applied to the data on Vibrio cholerae counts reported every month for 11-year span at Christian Medical College, Vellore, India. Using Viterbi algorithm, the best estimate of the state sequence was obtained and hence the transition probability matrix. The mean passage time between the states were estimated. The 95% confidence interval for the mean passage time was estimated via Monte Carlo simulation. The three hidden states of the estimated Markov chain are labelled as 'Low', 'Moderate' and 'High' with the mean counts of 1.4, 6.6 and 20.2 and the estimated average duration of stay of 3, 3 and 4 months, respectively. Environmental risk factors were studied using Markov ordinal logistic regression analysis. No significant association was found between disease severity levels and climate components.

  18. Full statistical mode reconstruction of a light field via a photon-number-resolved measurement

    NASA Astrophysics Data System (ADS)

    Burenkov, I. A.; Sharma, A. K.; Gerrits, T.; Harder, G.; Bartley, T. J.; Silberhorn, C.; Goldschmidt, E. A.; Polyakov, S. V.

    2017-05-01

    We present a method to reconstruct the complete statistical mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate that this method evaluates classical and nonclassical properties using a single measurement technique and is well suited for quantum mesoscopic state characterization. We obtain a nearly perfect reconstruction of a field comprised of up to ten modes based on a minimal set of assumptions. To show the utility of this method, we use it to reconstruct the mode structure of an unknown bright parametric down-conversion source.

  19. On the proportional abundance of species: Integrating population genetics and community ecology.

    PubMed

    Marquet, Pablo A; Espinoza, Guillermo; Abades, Sebastian R; Ganz, Angela; Rebolledo, Rolando

    2017-12-01

    The frequency of genes in interconnected populations and of species in interconnected communities are affected by similar processes, such as birth, death and immigration. The equilibrium distribution of gene frequencies in structured populations is known since the 1930s, under Wright's metapopulation model known as the island model. The equivalent distribution for the species frequency (i.e. the species proportional abundance distribution (SPAD)), at the metacommunity level, however, is unknown. In this contribution, we develop a stochastic model to analytically account for this distribution (SPAD). We show that the same as for genes SPAD follows a beta distribution, which provides a good description of empirical data and applies across a continuum of scales. This stochastic model, based upon a diffusion approximation, provides an alternative to neutral models for the species abundance distribution (SAD), which focus on number of individuals instead of proportions, and demonstrate that the relative frequency of genes in local populations and of species within communities follow the same probability law. We hope our contribution will help stimulate the mathematical and conceptual integration of theories in genetics and ecology.

  20. Can different quantum state vectors correspond to the same physical state? An experimental test

    NASA Astrophysics Data System (ADS)

    Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan

    2016-01-01

    A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.

  1. Applications of Genomic Selection in Breeding Wheat for Rust Resistance.

    PubMed

    Ornella, Leonardo; González-Camacho, Juan Manuel; Dreisigacker, Susanne; Crossa, Jose

    2017-01-01

    There are a lot of methods developed to predict untested phenotypes in schemes commonly used in genomic selection (GS) breeding. The use of GS for predicting disease resistance has its own particularities: (a) most populations shows additivity in quantitative adult plant resistance (APR); (b) resistance needs effective combinations of major and minor genes; and (c) phenotype is commonly expressed in ordinal categorical traits, whereas most parametric applications assume that the response variable is continuous and normally distributed. Machine learning methods (MLM) can take advantage of examples (data) that capture characteristics of interest from an unknown underlying probability distribution (i.e., data-driven). We introduce some state-of-the-art MLM capable to predict rust resistance in wheat. We also present two parametric R packages for the reader to be able to compare.

  2. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage.

  3. Identification of probabilities.

    PubMed

    Vitányi, Paul M B; Chater, Nick

    2017-02-01

    Within psychology, neuroscience and artificial intelligence, there has been increasing interest in the proposal that the brain builds probabilistic models of sensory and linguistic input: that is, to infer a probabilistic model from a sample. The practical problems of such inference are substantial: the brain has limited data and restricted computational resources. But there is a more fundamental question: is the problem of inferring a probabilistic model from a sample possible even in principle? We explore this question and find some surprisingly positive and general results. First, for a broad class of probability distributions characterized by computability restrictions, we specify a learning algorithm that will almost surely identify a probability distribution in the limit given a finite i.i.d. sample of sufficient but unknown length. This is similarly shown to hold for sequences generated by a broad class of Markov chains, subject to computability assumptions. The technical tool is the strong law of large numbers. Second, for a large class of dependent sequences, we specify an algorithm which identifies in the limit a computable measure for which the sequence is typical, in the sense of Martin-Löf (there may be more than one such measure). The technical tool is the theory of Kolmogorov complexity. We analyze the associated predictions in both cases. We also briefly consider special cases, including language learning, and wider theoretical implications for psychology.

  4. Joint Bayesian Estimation of Quasar Continua and the Lyα Forest Flux Probability Distribution Function

    NASA Astrophysics Data System (ADS)

    Eilers, Anna-Christina; Hennawi, Joseph F.; Lee, Khee-Gan

    2017-08-01

    We present a new Bayesian algorithm making use of Markov Chain Monte Carlo sampling that allows us to simultaneously estimate the unknown continuum level of each quasar in an ensemble of high-resolution spectra, as well as their common probability distribution function (PDF) for the transmitted Lyα forest flux. This fully automated PDF regulated continuum fitting method models the unknown quasar continuum with a linear principal component analysis (PCA) basis, with the PCA coefficients treated as nuisance parameters. The method allows one to estimate parameters governing the thermal state of the intergalactic medium (IGM), such as the slope of the temperature-density relation γ -1, while marginalizing out continuum uncertainties in a fully Bayesian way. Using realistic mock quasar spectra created from a simplified semi-numerical model of the IGM, we show that this method recovers the underlying quasar continua to a precision of ≃ 7 % and ≃ 10 % at z = 3 and z = 5, respectively. Given the number of principal component spectra, this is comparable to the underlying accuracy of the PCA model itself. Most importantly, we show that we can achieve a nearly unbiased estimate of the slope γ -1 of the IGM temperature-density relation with a precision of +/- 8.6 % at z = 3 and +/- 6.1 % at z = 5, for an ensemble of ten mock high-resolution quasar spectra. Applying this method to real quasar spectra and comparing to a more realistic IGM model from hydrodynamical simulations would enable precise measurements of the thermal and cosmological parameters governing the IGM, albeit with somewhat larger uncertainties, given the increased flexibility of the model.

  5. Continental-scale, seasonal movements of a heterothermic migratory tree bat

    USGS Publications Warehouse

    Cryan, Paul M.; Stricker, Craig A.; Wunder, Michael B.

    2014-01-01

    Long-distance migration evolved independently in bats and unique migration behaviors are likely, but because of their cryptic lifestyles, many details remain unknown. North American hoary bats (Lasiurus cinereus cinereus) roost in trees year-round and probably migrate farther than any other bats, yet we still lack basic information about their migration patterns and wintering locations or strategies. This information is needed to better understand unprecedented fatality of hoary bats at wind turbines during autumn migration and to determine whether the species could be susceptible to an emerging disease affecting hibernating bats. Our aim was to infer probable seasonal movements of individual hoary bats to better understand their migration and seasonal distribution in North America. We analyzed the stable isotope values of non-exchangeable hydrogen in the keratin of bat hair and combined isotopic results with prior distributional information to derive relative probability density surfaces for the geographic origins of individuals. We then mapped probable directions and distances of seasonal movement. Results indicate that hoary bats summer across broad areas. In addition to assumed latitudinal migration, we uncovered evidence of longitudinal movement by hoary bats from inland summering grounds to coastal regions during autumn and winter. Coastal regions with nonfreezing temperatures may be important wintering areas for hoary bats. Hoary bats migrating through any particular area, such as a wind turbine facility in autumn, are likely to have originated from a broad expanse of summering grounds from which they have traveled in no recognizable order. Better characterizing migration patterns and wintering behaviors of hoary bats sheds light on the evolution of migration and provides context for conserving these migrants.

  6. Novel Data on the Ecology of Cochranella mache (Anura: Centrolenidae) and the Importance of Protected Areas for This Critically Endangered Glassfrog in the Neotropics

    PubMed Central

    Ortega-Andrade, H. Mauricio; Rojas-Soto, Octavio; Paucar, Christian

    2013-01-01

    We studied a population of the endangered glassfrog, Cochranella mache, at Bilsa Biological Station, northwestern Ecuador, from 2008 and 2009. We present information on annual abundance patterns, behavioral ecology, habitat use and a species distribution model performed with MaxEnt. We evaluate the importance of the National System of Protected Areas (SNAP) in Colombia and Ecuador, under scenarios of climate change and habitat loss. We predicted a restricted environmental suitability area from 48,509 Km2 to 65,147 Km2 along western Ecuador and adjacent Colombia; ∼8% of the potential distribution occurs within SNAP. We examined four aspects of C. mache ecology: (1) ecological data suggests a strong correlation between relative abundance and rainfall, with a high probability to observe frogs through rainy months (February–May); (2) habitat use and the species distribution model suggest that this canopy dweller is restricted to small streams and rivulets in primary and old secondary forest in evergreen lowland and piedmont forest of western Ecuador, with predictions of suitability areas in adjacent southern Colombia; (3) the SNAP of Colombia and Ecuador harbor a minimum portion of the predicted model of distribution (<10%); and (4) synergetic effects of habitat loss and climate change reduces in about 95% the suitability areas for this endangered frog along its distributional range in Protected Areas. The resulting model allows the recognition of areas to undertake conservation efforts and plan future field surveys, as well as forecasting regions with high probability of C. mache occurrence in western Ecuador and southern Colombia. Further research is required to assess population tendencies, habitat fragmentation and target survey zones to accelerate the discovery of unknown populations in unexplored areas with high probability of suitability. We recommend that Cochranella mache must be re-categorized as “Critically Endangered” species in national and global status, according with criteria and sub-criteria A4, B1ab(i,ii,iii,iv),E. PMID:24339973

  7. Calculation of the number of Monte Carlo histories for a planetary protection probability of impact estimation

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack

    2016-07-01

    Monte Carlo (MC) is a common method to estimate probability, effectively by a simulation. For planetary protection, it may be used to estimate the probability of impact P{}_{I} by a launch vehicle (upper stage) of a protected planet. The object of the analysis is to provide a value for P{}_{I} with a given level of confidence (LOC) that the true value does not exceed the maximum allowed value of P{}_{I}. In order to determine the number of MC histories required, one must also guess the maximum number of hits that will occur in the analysis. This extra parameter is needed because a LOC is desired. If more hits occur, the MC analysis would indicate that the true value may exceed the specification value with a higher probability than the LOC. (In the worst case, even the mean value of the estimated P{}_{I} might exceed the specification value.) After the analysis is conducted, the actual number of hits is, of course, the mean. The number of hits arises from a small probability per history and a large number of histories; these are the classic requirements for a Poisson distribution. For a known Poisson distribution (the mean is the only parameter), the probability for some interval in the number of hits is calculable. Before the analysis, this is not possible. Fortunately, there are methods that can bound the unknown mean for a Poisson distribution. F. Garwoodfootnote{ F. Garwood (1936), ``Fiduciary limits for the Poisson distribution.'' Biometrika 28, 437-442.} published an appropriate method that uses the Chi-squared function, actually its inversefootnote{ The integral chi-squared function would yield probability α as a function of the mean µ and an actual value n.} (despite the notation used): This formula for the upper and lower limits of the mean μ with the two-tailed probability 1-α depends on the LOC α and an estimated value of the number of "successes" n. In a MC analysis for planetary protection, only the upper limit is of interest, i.e., the single-tailed distribution. (Smaller actual P{}_{I }is no problem.) {}_{ } One advantage of this method is that this function is available in EXCEL. Note that care must be taken with the definition of the CHIINV function (the inverse of the integral chi-squared distribution). The equivalent inequality in EXCEL is μ < CHIINV[1-α, 2(n+1)] In practice, one calculates this upper limit for a specified LOC, α , and a guess of how many hits n will be found after the MC analysis. Then the estimate of the number of histories required is this upper limit divided by the specification for the allowed P{}_{I} (rounded up). However, if the number of hits actually exceeds the guess, the P{}_{I} requirement will be met only with a smaller LOC. A disadvantage is that the intervals about the mean are "in general too wide, yielding coverage probabilities much greater than 1- α ." footnote{ G. Casella and C. Robert (1988), Purdue University-Technical Report #88-7 or Cornell University-Technical Report BU-903-M.} For planetary protection, this technical issue means that the upper limit of the interval and the probability associated with the interval (i.e., the LOC) are conservative.

  8. From image captioning to video summary using deep recurrent networks and unsupervised segmentation

    NASA Astrophysics Data System (ADS)

    Morosanu, Bogdan-Andrei; Lemnaru, Camelia

    2018-04-01

    Automatic captioning systems based on recurrent neural networks have been tremendously successful at providing realistic natural language captions for complex and varied image data. We explore methods for adapting existing models trained on large image caption data sets to a similar problem, that of summarising videos using natural language descriptions and frame selection. These architectures create internal high level representations of the input image that can be used to define probability distributions and distance metrics on these distributions. Specifically, we interpret each hidden unit inside a layer of the caption model as representing the un-normalised log probability of some unknown image feature of interest for the caption generation process. We can then apply well understood statistical divergence measures to express the difference between images and create an unsupervised segmentation of video frames, classifying consecutive images of low divergence as belonging to the same context, and those of high divergence as belonging to different contexts. To provide a final summary of the video, we provide a group of selected frames and a text description accompanying them, allowing a user to perform a quick exploration of large unlabeled video databases.

  9. Network analysis of the hominin origin of Herpes Simplex virus 2 from fossil data

    PubMed Central

    Underdown, Simon J.; Kumar, Krishna

    2017-01-01

    Abstract Herpes simplex virus 2 (HSV2) is a human herpesvirus found worldwide that causes genital lesions and more rarely causes encephalitis. This pathogen is most common in Africa, and particularly in central and east Africa, an area of particular significance for the evolution of modern humans. Unlike HSV1, HSV2 has not simply co-speciated with humans from their last common ancestor with primates. HSV2 jumped the species barrier between 1.4 and 3 MYA, most likely through intermediate but unknown hominin species. In this article, we use probability-based network analysis to determine the most probable transmission path between intermediate hosts of HSV2, from the ancestors of chimpanzees to the ancestors of modern humans, using paleo-environmental data on the distribution of African tropical rainforest over the last 3 million years and data on the age and distribution of fossil species of hominin present in Africa between 1.4 and 3 MYA. Our model identifies Paranthropus boisei as the most likely intermediate host of HSV2, while Homo habilis may also have played a role in the initial transmission of HSV2 from the ancestors of chimpanzees to P.boisei. PMID:28979799

  10. Network analysis of the hominin origin of Herpes Simplex virus 2 from fossil data.

    PubMed

    Underdown, Simon J; Kumar, Krishna; Houldcroft, Charlotte

    2017-07-01

    Herpes simplex virus 2 (HSV2) is a human herpesvirus found worldwide that causes genital lesions and more rarely causes encephalitis. This pathogen is most common in Africa, and particularly in central and east Africa, an area of particular significance for the evolution of modern humans. Unlike HSV1, HSV2 has not simply co-speciated with humans from their last common ancestor with primates. HSV2 jumped the species barrier between 1.4 and 3 MYA, most likely through intermediate but unknown hominin species. In this article, we use probability-based network analysis to determine the most probable transmission path between intermediate hosts of HSV2, from the ancestors of chimpanzees to the ancestors of modern humans, using paleo-environmental data on the distribution of African tropical rainforest over the last 3 million years and data on the age and distribution of fossil species of hominin present in Africa between 1.4 and 3 MYA. Our model identifies Paranthropus boisei as the most likely intermediate host of HSV2, while Homo habilis may also have played a role in the initial transmission of HSV2 from the ancestors of chimpanzees to P.boisei .

  11. Demography of the Early Neolithic Population in Central Balkans: Population Dynamics Reconstruction Using Summed Radiocarbon Probability Distributions

    PubMed Central

    2016-01-01

    The Central Balkans region is of great importance for understanding the spread of the Neolithic in Europe but the Early Neolithic population dynamics of the region is unknown. In this study we apply the method of summed calibrated probability distributions to a set of published radiocarbon dates from the Republic of Serbia in order to reconstruct population dynamics in the Early Neolithic in this part of the Central Balkans. The results indicate that there was a significant population growth after ~6200 calBC, when the Neolithic was introduced into the region, followed by a bust at the end of the Early Neolithic phase (~5400 calBC). These results are broadly consistent with the predictions of the Neolithic Demographic Transition theory and the patterns of population booms and busts detected in other regions of Europe. These results suggest that the cultural process that underlies the patterns observed in Central and Western Europe was also in operation in the Central Balkan Neolithic and that the population increase component of this process can be considered as an important factor for the spread of the Neolithic as envisioned in the demic diffusion hypothesis. PMID:27508413

  12. The potential effect of global warming on the geographic and seasonal distribution of Phlebotomus papatasi in Southwest Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, E.R.; Hyams, K.C.

    1996-07-01

    The distribution of Phlebotomus papatasi in Southwest Asia is thought to be highly dependent on temperature and relative humidity. A discriminant analysis model based on weather data and reported vector surveys was developed to predict the seasonal and geographic distribution of P. papatasi in this region. To simulate global warming, temperature values for 115 weather stations were increased by 1 {degrees}C, 3{degrees}C, and 5{degrees}C, and the outcome variable coded as unknown in the model. Probability of occurrence values were then predicted for each location with a weather station. Stations with positive probability of occurrence values for May, June, July, andmore » August were considered locations where two or more life cycles of P. papatasi could occur and which could support endemic transmission of leishmaniasis and sandfly fever. Among 115 weather stations, 71 (62%) would be considered endemic with current temperature conditions; 14 (12%) additional station could become endemic with an increase of 1 {degrees}C; 17 (15%) more than a 3{degrees}C increase; and 12 (10%) more (all but one station) with a t{degrees}C increase. In addition to increased geographic distribution, seasonality of disease transmission could be extended throughout 12 months of the year in 7 (6%) locations with at least a 3{degrees}C rise in temperature and in 29 (25%) locations with a 5{degrees}C rise. 15 refs., 4 figs.« less

  13. Teleporting an unknown quantum state with unit fidelity and unit probability via a non-maximally entangled channel and an auxiliary system

    NASA Astrophysics Data System (ADS)

    Rashvand, Taghi

    2016-11-01

    We present a new scheme for quantum teleportation that one can teleport an unknown state via a non-maximally entangled channel with certainly, using an auxiliary system. In this scheme depending on the state of the auxiliary system, one can find a class of orthogonal vectors set as a basis which by performing von Neumann measurement in each element of this class Alice can teleport an unknown state with unit fidelity and unit probability. A comparison of our scheme with some previous schemes is given and we will see that our scheme has advantages that the others do not.

  14. A Bayesian method for inferring transmission chains in a partially observed epidemic.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef M.; Ray, Jaideep

    2008-10-01

    We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historicalmore » data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.« less

  15. Probabilistic brains: knowns and unknowns

    PubMed Central

    Pouget, Alexandre; Beck, Jeffrey M; Ma, Wei Ji; Latham, Peter E

    2015-01-01

    There is strong behavioral and physiological evidence that the brain both represents probability distributions and performs probabilistic inference. Computational neuroscientists have started to shed light on how these probabilistic representations and computations might be implemented in neural circuits. One particularly appealing aspect of these theories is their generality: they can be used to model a wide range of tasks, from sensory processing to high-level cognition. To date, however, these theories have only been applied to very simple tasks. Here we discuss the challenges that will emerge as researchers start focusing their efforts on real-life computations, with a focus on probabilistic learning, structural learning and approximate inference. PMID:23955561

  16. Notes on SAW Tag Interrogation Techniques

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2010-01-01

    We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only provide guidelines for proper interrogator design, but also provide some insight on the validity of the assumed signal model. It should be noted that the assumption that the impulse response of the tag of interest is known precisely implies that the temperature and range of the tag are also known precisely, which is generally not the case in practice. However, analyzing interrogator performance under this simplifying assumption is much more straightforward and still provides a great deal of insight into the nature of the problem.

  17. Estimating JPEG2000 compression for image forensics using Benford's Law

    NASA Astrophysics Data System (ADS)

    Qadir, Ghulam; Zhao, Xi; Ho, Anthony T. S.

    2010-05-01

    With the tremendous growth and usage of digital images nowadays, the integrity and authenticity of digital content is becoming increasingly important, and a growing concern to many government and commercial sectors. Image Forensics, based on a passive statistical analysis of the image data only, is an alternative approach to the active embedding of data associated with Digital Watermarking. Benford's Law was first introduced to analyse the probability distribution of the 1st digit (1-9) numbers of natural data, and has since been applied to Accounting Forensics for detecting fraudulent income tax returns [9]. More recently, Benford's Law has been further applied to image processing and image forensics. For example, Fu et al. [5] proposed a Generalised Benford's Law technique for estimating the Quality Factor (QF) of JPEG compressed images. In our previous work, we proposed a framework incorporating the Generalised Benford's Law to accurately detect unknown JPEG compression rates of watermarked images in semi-fragile watermarking schemes. JPEG2000 (a relatively new image compression standard) offers higher compression rates and better image quality as compared to JPEG compression. In this paper, we propose the novel use of Benford's Law for estimating JPEG2000 compression for image forensics applications. By analysing the DWT coefficients and JPEG2000 compression on 1338 test images, the initial results indicate that the 1st digit probability of DWT coefficients follow the Benford's Law. The unknown JPEG2000 compression rates of the image can also be derived, and proved with the help of a divergence factor, which shows the deviation between the probabilities and Benford's Law. Based on 1338 test images, the mean divergence for DWT coefficients is approximately 0.0016, which is lower than DCT coefficients at 0.0034. However, the mean divergence for JPEG2000 images compression rate at 0.1 is 0.0108, which is much higher than uncompressed DWT coefficients. This result clearly indicates a presence of compression in the image. Moreover, we compare the results of 1st digit probability and divergence among JPEG2000 compression rates at 0.1, 0.3, 0.5 and 0.9. The initial results show that the expected difference among them could be used for further analysis to estimate the unknown JPEG2000 compression rates.

  18. Iterative updating of model error for Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Calvetti, Daniela; Dunlop, Matthew; Somersalo, Erkki; Stuart, Andrew

    2018-02-01

    In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations when the data is finite dimensional. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit under a simplifying assumption. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.

  19. A Genealogical Look at Shared Ancestry on the X Chromosome.

    PubMed

    Buffalo, Vince; Mount, Stephen M; Coop, Graham

    2016-09-01

    Close relatives can share large segments of their genome identical by descent (IBD) that can be identified in genome-wide polymorphism data sets. There are a range of methods to use these IBD segments to identify relatives and estimate their relationship. These methods have focused on sharing on the autosomes, as they provide a rich source of information about genealogical relationships. We hope to learn additional information about recent ancestry through shared IBD segments on the X chromosome, but currently lack the theoretical framework to use this information fully. Here, we fill this gap by developing probability distributions for the number and length of X chromosome segments shared IBD between an individual and an ancestor k generations back, as well as between half- and full-cousin relationships. Due to the inheritance pattern of the X and the fact that X homologous recombination occurs only in females (outside of the pseudoautosomal regions), the number of females along a genealogical lineage is a key quantity for understanding the number and length of the IBD segments shared among relatives. When inferring relationships among individuals, the number of female ancestors along a genealogical lineage will often be unknown. Therefore, our IBD segment length and number distributions marginalize over this unknown number of recombinational meioses through a distribution of recombinational meioses we derive. By using Bayes' theorem to invert these distributions, we can estimate the number of female ancestors between two relatives, giving us details about the genealogical relations between individuals not possible with autosomal data alone. Copyright © 2016 by the Genetics Society of America.

  20. Multivariate Bayesian modeling of known and unknown causes of events--an application to biosurveillance.

    PubMed

    Shen, Yanna; Cooper, Gregory F

    2012-09-01

    This paper investigates Bayesian modeling of known and unknown causes of events in the context of disease-outbreak detection. We introduce a multivariate Bayesian approach that models multiple evidential features of every person in the population. This approach models and detects (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A contribution of this paper is that it introduces a multivariate Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has general applicability in domains where the space of known causes is incomplete. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    NASA Astrophysics Data System (ADS)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  2. Discovering Peripheral Arterial Disease Cases from Radiology Notes Using Natural Language Processing

    PubMed Central

    Savova, Guergana K.; Fan, Jin; Ye, Zi; Murphy, Sean P.; Zheng, Jiaping; Chute, Christopher G.; Kullo, Iftikhar J.

    2010-01-01

    As part of the Electronic Medical Records and Genomics Network, we applied, extended and evaluated an open source clinical Natural Language Processing system, Mayo’s Clinical Text Analysis and Knowledge Extraction System, for the discovery of peripheral arterial disease cases from radiology reports. The manually created gold standard consisted of 223 positive, 19 negative, 63 probable and 150 unknown cases. Overall accuracy agreement between the system and the gold standard was 0.93 as compared to a named entity recognition baseline of 0.46. Sensitivity for the positive, probable and unknown cases was 0.93–0.96, and for the negative cases was 0.72. Specificity and negative predictive value for all categories were in the 90’s. The positive predictive value for the positive and unknown categories was in the high 90’s, for the negative category was 0.84, and for the probable category was 0.63. We outline the main sources of errors and suggest improvements. PMID:21347073

  3. Fishnet statistics for probabilistic strength and scaling of nacreous imbricated lamellar materials

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bažant, Zdeněk P.

    2017-12-01

    Similar to nacre (or brick masonry), imbricated (or staggered) lamellar structures are widely found in nature and man-made materials, and are of interest for biomimetics. They can achieve high defect insensitivity and fracture toughness, as demonstrated in previous studies. But the probability distribution with a realistic far-left tail is apparently unknown. Here, strictly for statistical purposes, the microstructure of nacre is approximated by a diagonally pulled fishnet with quasibrittle links representing the shear bonds between parallel lamellae (or platelets). The probability distribution of fishnet strength is calculated as a sum of a rapidly convergent series of the failure probabilities after the rupture of one, two, three, etc., links. Each of them represents a combination of joint probabilities and of additive probabilities of disjoint events, modified near the zone of failed links by the stress redistributions caused by previously failed links. Based on previous nano- and multi-scale studies at Northwestern, the strength distribution of each link, characterizing the interlamellar shear bond, is assumed to be a Gauss-Weibull graft, but with a deeper Weibull tail than in Type 1 failure of non-imbricated quasibrittle materials. The autocorrelation length is considered equal to the link length. The size of the zone of failed links at maximum load increases with the coefficient of variation (CoV) of link strength, and also with fishnet size. With an increasing width-to-length aspect ratio, a rectangular fishnet gradually transits from the weakest-link chain to the fiber bundle, as the limit cases. The fishnet strength at failure probability 10-6 grows with the width-to-length ratio. For a square fishnet boundary, the strength at 10-6 failure probability is about 11% higher, while at fixed load the failure probability is about 25-times higher than it is for the non-imbricated case. This is a major safety advantage of the fishnet architecture over particulate or fiber reinforced materials. There is also a strong size effect, partly similar to that of Type 1 while the curves of log-strength versus log-size for different sizes could cross each other. The predicted behavior is verified by about a million Monte Carlo simulations for each of many fishnet geometries, sizes and CoVs of link strength. In addition to the weakest-link or fiber bundle, the fishnet becomes the third analytically tractable statistical model of structural strength, and has the former two as limit cases.

  4. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Licatta, Angelo; Griffin, Devon

    2007-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  5. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  6. Estimation of the diagnostic threshold accounting for decision costs and sampling uncertainty.

    PubMed

    Skaltsa, Konstantina; Jover, Lluís; Carrasco, Josep Lluís

    2010-10-01

    Medical diagnostic tests are used to classify subjects as non-diseased or diseased. The classification rule usually consists of classifying subjects using the values of a continuous marker that is dichotomised by means of a threshold. Here, the optimum threshold estimate is found by minimising a cost function that accounts for both decision costs and sampling uncertainty. The cost function is optimised either analytically in a normal distribution setting or empirically in a free-distribution setting when the underlying probability distributions of diseased and non-diseased subjects are unknown. Inference of the threshold estimates is based on approximate analytically standard errors and bootstrap-based approaches. The performance of the proposed methodology is assessed by means of a simulation study, and the sample size required for a given confidence interval precision and sample size ratio is also calculated. Finally, a case example based on previously published data concerning the diagnosis of Alzheimer's patients is provided in order to illustrate the procedure.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Paul B.

    Paralleling our recent computationally intensive (quasi-Monte Carlo) work for the case N=4 (e-print quant-ph/0308037), we undertake the task for N=6 of computing to high numerical accuracy, the formulas of Sommers and Zyczkowski (e-print quant-ph/0304041) for the (N{sup 2}-1)-dimensional volume and (N{sup 2}-2)-dimensional hyperarea of the (separable and nonseparable) NxN density matrices, based on the Bures (minimal monotone) metric--and also their analogous formulas (e-print quant-ph/0302197) for the (nonmonotone) flat Hilbert-Schmidt metric. With the same seven 10{sup 9} well-distributed ('low-discrepancy') sample points, we estimate the unknown volumes and hyperareas based on five additional (monotone) metrics of interest, including the Kubo-Mori and Wigner-Yanase.more » Further, we estimate all of these seven volume and seven hyperarea (unknown) quantities when restricted to the separable density matrices. The ratios of separable volumes (hyperareas) to separable plus nonseparable volumes (hyperareas) yield estimates of the separability probabilities of generically rank-6 (rank-5) density matrices. The (rank-6) separability probabilities obtained based on the 35-dimensional volumes appear to be--independently of the metric (each of the seven inducing Haar measure) employed--twice as large as those (rank-5 ones) based on the 34-dimensional hyperareas. (An additional estimate--33.9982--of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite clearly close to integral too.) The doubling relationship also appears to hold for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit simple exact formulas to our estimates of the Hilbert-Schmidt separable volumes and hyperareas in both the N=4 and N=6 cases.« less

  8. Rheology of U-Shaped Granular Particles

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Franklin, Scott

    We study the response of cylindrical samples of U-shaped granular particles (staples) to extensional loads. Samples elongate in discrete bursts (events) corresponding to particles rearranging and re-entangling. Previous research on samples of constant cross-sectional area found a Weibullian weakest-link theory could explain the distribution of yield points. We now vary the cross-sectional area, and find that the maximum yield pressure (force/area) is a function of particle number density and independent of area. The probability distribution function of important event characteristics -- the stress increase before an event and stress released during an event -- both fall of inversely with magnitude, reminiscent of avalanche dynamics. Fourier transforms of the fluctuating force (or stress) scales inversely with frequency, suggesting dry friction plays a role in the rearrangements. Finally, there is some evidence that dynamics are sensitive to the stiffness of the tensile testing machine, although an explanation for this behavior is unknown.

  9. Tin Whisker Electrical Short Circuit Characteristics. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Lawrence L.; Wright, Maria C.

    2009-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  10. cosmoabc: Likelihood-free inference for cosmology

    NASA Astrophysics Data System (ADS)

    Ishida, Emille E. O.; Vitenti, Sandro D. P.; Penna-Lima, Mariana; Trindade, Arlindo M.; Cisewski, Jessi; M.; de Souza, Rafael; Cameron, Ewan; Busti, Vinicius C.

    2015-05-01

    Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogs. cosmoabc is a Python Approximate Bayesian Computation (ABC) sampler featuring a Population Monte Carlo variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code can be coupled to an external simulator to allow incorporation of arbitrary distance and prior functions. When coupled with the numcosmo library, it has been used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function.

  11. Evidence of Climate-Induced Range Contractions in Bull Trout Salvelinus confluentus in a Rocky Mountain Watershed, U.S.A

    PubMed Central

    Eby, Lisa A.; Helmy, Olga; Holsinger, Lisa M.; Young, Michael K.

    2014-01-01

    Many freshwater fish species are considered vulnerable to stream temperature warming associated with climate change because they are ectothermic, yet there are surprisingly few studies documenting changes in distributions. Streams and rivers in the U.S. Rocky Mountains have been warming for several decades. At the same time these systems have been experiencing an increase in the severity and frequency of wildfires, which often results in habitat changes including increased water temperatures. We resampled 74 sites across a Rocky Mountain watershed 17 to 20 years after initial samples to determine whether there were trends in bull trout occurrence associated with temperature, wildfire, or other habitat variables. We found that site abandonment probabilities (0.36) were significantly higher than colonization probabilities (0.13), which indicated a reduction in the number of occupied sites. Site abandonment probabilities were greater at low elevations with warm temperatures. Other covariates, such as the presence of wildfire, nonnative brook trout, proximity to areas with many adults, and various stream habitat descriptors, were not associated with changes in probability of occupancy. Higher abandonment probabilities at low elevation for bull trout provide initial evidence validating the predictions made by bioclimatic models that bull trout populations will retreat to higher, cooler thermal refuges as water temperatures increase. The geographic breadth of these declines across the region is unknown but the approach of revisiting historical sites using an occupancy framework provides a useful template for additional assessments. PMID:24897341

  12. Evidence of climate-induced range contractions in bull trout Salvelinus confluentus in a Rocky Mountain watershed, U.S.A.

    PubMed

    Eby, Lisa A; Helmy, Olga; Holsinger, Lisa M; Young, Michael K

    2014-01-01

    Many freshwater fish species are considered vulnerable to stream temperature warming associated with climate change because they are ectothermic, yet there are surprisingly few studies documenting changes in distributions. Streams and rivers in the U.S. Rocky Mountains have been warming for several decades. At the same time these systems have been experiencing an increase in the severity and frequency of wildfires, which often results in habitat changes including increased water temperatures. We resampled 74 sites across a Rocky Mountain watershed 17 to 20 years after initial samples to determine whether there were trends in bull trout occurrence associated with temperature, wildfire, or other habitat variables. We found that site abandonment probabilities (0.36) were significantly higher than colonization probabilities (0.13), which indicated a reduction in the number of occupied sites. Site abandonment probabilities were greater at low elevations with warm temperatures. Other covariates, such as the presence of wildfire, nonnative brook trout, proximity to areas with many adults, and various stream habitat descriptors, were not associated with changes in probability of occupancy. Higher abandonment probabilities at low elevation for bull trout provide initial evidence validating the predictions made by bioclimatic models that bull trout populations will retreat to higher, cooler thermal refuges as water temperatures increase. The geographic breadth of these declines across the region is unknown but the approach of revisiting historical sites using an occupancy framework provides a useful template for additional assessments.

  13. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, Rachel; Young, Katherine

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operatingmore » geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.« less

  14. Data-driven probability concentration and sampling on manifold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu

    2016-09-15

    A new methodology is proposed for generating realizations of a random vector with values in a finite-dimensional Euclidean space that are statistically consistent with a dataset of observations of this vector. The probability distribution of this random vector, while a priori not known, is presumed to be concentrated on an unknown subset of the Euclidean space. A random matrix is introduced whose columns are independent copies of the random vector and for which the number of columns is the number of data points in the dataset. The approach is based on the use of (i) the multidimensional kernel-density estimation methodmore » for estimating the probability distribution of the random matrix, (ii) a MCMC method for generating realizations for the random matrix, (iii) the diffusion-maps approach for discovering and characterizing the geometry and the structure of the dataset, and (iv) a reduced-order representation of the random matrix, which is constructed using the diffusion-maps vectors associated with the first eigenvalues of the transition matrix relative to the given dataset. The convergence aspects of the proposed methodology are analyzed and a numerical validation is explored through three applications of increasing complexity. The proposed method is found to be robust to noise levels and data complexity as well as to the intrinsic dimension of data and the size of experimental datasets. Both the methodology and the underlying mathematical framework presented in this paper contribute new capabilities and perspectives at the interface of uncertainty quantification, statistical data analysis, stochastic modeling and associated statistical inverse problems.« less

  15. Detecting fission from special nuclear material sources

    DOEpatents

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  16. Dealing with Unknown Variables in Policy/Program Evaluation.

    ERIC Educational Resources Information Center

    Nagel, Stuart S.

    1983-01-01

    Threshold analysis (TA) is introduced as an evaluation model. TA converts unknown variables into questions as to whether a given benefit, cost, or success probability is more or less than a threshold, above which the proposed project would be profitable, and below which it would be unprofitable. (Author/PN)

  17. 30. Photocopy of blueprint. PLAN, ELEVATION, END SECTION, DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of blueprint. PLAN, ELEVATION, END SECTION, DETAIL OF DECK SYSTEM AND LOAD COMPUTATION. Preparer unknown, date unknown, but probably ca. 1932. (Original in possession of the Washington County Highway Department.) - Hegeman-Hill Street Bridge, Spanning Batten Kill, .65 mile West of Greenwich, Easton, Washington County, NY

  18. Metocean design parameter estimation for fixed platform based on copula functions

    NASA Astrophysics Data System (ADS)

    Zhai, Jinjin; Yin, Qilin; Dong, Sheng

    2017-08-01

    Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.

  19. Models of multidimensional discrete distribution of probabilities of random variables in information systems

    NASA Astrophysics Data System (ADS)

    Gromov, Yu Yu; Minin, Yu V.; Ivanova, O. G.; Morozova, O. N.

    2018-03-01

    Multidimensional discrete distributions of probabilities of independent random values were received. Their one-dimensional distribution is widely used in probability theory. Producing functions of those multidimensional distributions were also received.

  20. Growing and navigating the small world Web by local content

    PubMed Central

    Menczer, Filippo

    2002-01-01

    Can we model the scale-free distribution of Web hypertext degree under realistic assumptions about the behavior of page authors? Can a Web crawler efficiently locate an unknown relevant page? These questions are receiving much attention due to their potential impact for understanding the structure of the Web and for building better search engines. Here I investigate the connection between the linkage and content topology of Web pages. The relationship between a text-induced distance metric and a link-based neighborhood probability distribution displays a phase transition between a region where linkage is not determined by content and one where linkage decays according to a power law. This relationship is used to propose a Web growth model that is shown to accurately predict the distribution of Web page degree, based on textual content and assuming only local knowledge of degree for existing pages. A qualitatively similar phase transition is found between linkage and semantic distance, with an exponential decay tail. Both relationships suggest that efficient paths can be discovered by decentralized Web navigation algorithms based on textual and/or categorical cues. PMID:12381792

  1. Growing and navigating the small world Web by local content

    NASA Astrophysics Data System (ADS)

    Menczer, Filippo

    2002-10-01

    Can we model the scale-free distribution of Web hypertext degree under realistic assumptions about the behavior of page authors? Can a Web crawler efficiently locate an unknown relevant page? These questions are receiving much attention due to their potential impact for understanding the structure of the Web and for building better search engines. Here I investigate the connection between the linkage and content topology of Web pages. The relationship between a text-induced distance metric and a link-based neighborhood probability distribution displays a phase transition between a region where linkage is not determined by content and one where linkage decays according to a power law. This relationship is used to propose a Web growth model that is shown to accurately predict the distribution of Web page degree, based on textual content and assuming only local knowledge of degree for existing pages. A qualitatively similar phase transition is found between linkage and semantic distance, with an exponential decay tail. Both relationships suggest that efficient paths can be discovered by decentralized Web navigation algorithms based on textual and/or categorical cues.

  2. Growing and navigating the small world Web by local content.

    PubMed

    Menczer, Filippo

    2002-10-29

    Can we model the scale-free distribution of Web hypertext degree under realistic assumptions about the behavior of page authors? Can a Web crawler efficiently locate an unknown relevant page? These questions are receiving much attention due to their potential impact for understanding the structure of the Web and for building better search engines. Here I investigate the connection between the linkage and content topology of Web pages. The relationship between a text-induced distance metric and a link-based neighborhood probability distribution displays a phase transition between a region where linkage is not determined by content and one where linkage decays according to a power law. This relationship is used to propose a Web growth model that is shown to accurately predict the distribution of Web page degree, based on textual content and assuming only local knowledge of degree for existing pages. A qualitatively similar phase transition is found between linkage and semantic distance, with an exponential decay tail. Both relationships suggest that efficient paths can be discovered by decentralized Web navigation algorithms based on textual and/or categorical cues.

  3. Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements.

    PubMed

    Herman, Benjamin R; Gross, Barry; Moshary, Fred; Ahmed, Samir

    2008-04-01

    We investigate the assessment of uncertainty in the inference of aerosol size distributions from backscatter and extinction measurements that can be obtained from a modern elastic/Raman lidar system with a Nd:YAG laser transmitter. To calculate the uncertainty, an analytic formula for the correlated probability density function (PDF) describing the error for an optical coefficient ratio is derived based on a normally distributed fractional error in the optical coefficients. Assuming a monomodal lognormal particle size distribution of spherical, homogeneous particles with a known index of refraction, we compare the assessment of uncertainty using a more conventional forward Monte Carlo method with that obtained from a Bayesian posterior PDF assuming a uniform prior PDF and show that substantial differences between the two methods exist. In addition, we use the posterior PDF formalism, which was extended to include an unknown refractive index, to find credible sets for a variety of optical measurement scenarios. We find the uncertainty is greatly reduced with the addition of suitable extinction measurements in contrast to the inclusion of extra backscatter coefficients, which we show to have a minimal effect and strengthens similar observations based on numerical regularization methods.

  4. Effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model output

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.

    2012-04-01

    This study analyses the effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model's discharge estimates. Prediction uncertainty bounds are derived using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation (at a single station within the catchment) and a precipitation factor FPi. Thus, these factors provide a simplified representation of the spatial variation of precipitation, specifically the shape of the functional relationship between precipitation and height. In the absence of information about appropriate values of the precipitation factors FPi, these are estimated through standard calibration procedures. The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. Monte Carlo samples of the model output are obtained by randomly varying the model parameters within their feasible ranges. In the first experiment, the precipitation factors FPi are considered unknown and thus included in the sampling process. The total number of unknown parameters in this case is 16. In the second experiment, precipitation factors FPi are estimated a priori, by means of a long term water balance between observed discharge at the catchment outlet, evapotranspiration estimates and observed precipitation. In this case, the number of unknown parameters reduces to 11. The feasible ranges assigned to the precipitation factors in the first experiment are slightly wider than the range of fixed precipitation factors used in the second experiment. The mean squared error of the Box-Cox transformed discharge during the calibration period is used for the evaluation of the goodness of fit of the model realizations. GLUE-type uncertainty bounds during the verification period are derived at the probability levels p=85%, 90% and 95%. Results indicate that, as expected, prediction uncertainty bounds indeed change if precipitation factors FPi are estimated a priori rather than being allowed to vary, but that this change is not dramatic. Firstly, the width of the uncertainty bounds at the same probability level only slightly reduces compared to the case where precipitation factors are allowed to vary. Secondly, the ability to enclose the observations improves, but the decrease in the fraction of outliers is not significant. These results are probably due to the narrow range of variability allowed to the precipitation factors FPi in the first experiment, which implies that although they indicate the shape of the functional relationship between precipitation and height, the magnitude of precipitation estimates were mainly determined by the magnitude of the observations at the available raingauge. It is probable that the situation where no prior information is available on the realistic ranges of variation of the precipitation factors, and the inclusion of precipitation data uncertainty, would have led to a different conclusion. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279.

  5. Distributed Optimization Design of Continuous-Time Multiagent Systems With Unknown-Frequency Disturbances.

    PubMed

    Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu

    2017-05-24

    In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.

  6. Evaluation of a Class of Simple and Effective Uncertainty Methods for Sparse Samples of Random Variables and Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Vicente; Bonney, Matthew; Schroeder, Benjamin

    When very few samples of a random quantity are available from a source distribution of unknown shape, it is usually not possible to accurately infer the exact distribution from which the data samples come. Under-estimation of important quantities such as response variance and failure probabilities can result. For many engineering purposes, including design and risk analysis, we attempt to avoid under-estimation with a strategy to conservatively estimate (bound) these types of quantities -- without being overly conservative -- when only a few samples of a random quantity are available from model predictions or replicate experiments. This report examines a classmore » of related sparse-data uncertainty representation and inference approaches that are relatively simple, inexpensive, and effective. Tradeoffs between the methods' conservatism, reliability, and risk versus number of data samples (cost) are quantified with multi-attribute metrics use d to assess method performance for conservative estimation of two representative quantities: central 95% of response; and 10 -4 probability of exceeding a response threshold in a tail of the distribution. Each method's performance is characterized with 10,000 random trials on a large number of diverse and challenging distributions. The best method and number of samples to use in a given circumstance depends on the uncertainty quantity to be estimated, the PDF character, and the desired reliability of bounding the true value. On the basis of this large data base and study, a strategy is proposed for selecting the method and number of samples for attaining reasonable credibility levels in bounding these types of quantities when sparse samples of random variables or functions are available from experiments or simulations.« less

  7. Statistical tests for whether a given set of independent, identically distributed draws comes from a specified probability density.

    PubMed

    Tygert, Mark

    2010-09-21

    We discuss several tests for determining whether a given set of independent and identically distributed (i.i.d.) draws does not come from a specified probability density function. The most commonly used are Kolmogorov-Smirnov tests, particularly Kuiper's variant, which focus on discrepancies between the cumulative distribution function for the specified probability density and the empirical cumulative distribution function for the given set of i.i.d. draws. Unfortunately, variations in the probability density function often get smoothed over in the cumulative distribution function, making it difficult to detect discrepancies in regions where the probability density is small in comparison with its values in surrounding regions. We discuss tests without this deficiency, complementing the classical methods. The tests of the present paper are based on the plain fact that it is unlikely to draw a random number whose probability is small, provided that the draw is taken from the same distribution used in calculating the probability (thus, if we draw a random number whose probability is small, then we can be confident that we did not draw the number from the same distribution used in calculating the probability).

  8. Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes

    NASA Technical Reports Server (NTRS)

    Lewis, Timothy A.

    2016-01-01

    With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.

  9. Does the probability of developing ocular trauma-related visual deficiency differ between genders?

    PubMed

    Blanco-Hernández, Dulce Milagros Razo; Valencia-Aguirre, Jessica Daniela; Lima-Gómez, Virgilio

    2011-01-01

    Ocular trauma affects males more often than females, but the impact of this condition regarding visual prognosis is unknown. We undertook this study to compare the probability of developing ocular trauma-related visual deficiency between genders, as estimated by the ocular trauma score (OTS). We designed an observational, retrospective, comparative, cross-sectional and open-label study. Female patients aged ≥6 years with ocular trauma were included and matched by age and ocular wall status with male patients at a 1:2 male/female ratio. Initial trauma features and the probability of developing visual deficiency (best corrected visual acuity <20/40) 6 months after the injury, as estimated by the OTS, were compared between genders. The proportion and 95% confidence intervals (95% CI) of visual deficiency 6 months after the injury were estimated. Ocular trauma features and the probability of developing visual deficiency were compared between genders (χ(2) and Fisher's exact test); p value <0.05 was considered significant. Included were 399 eyes (133 from females and 266 from males). Mean age of patients was 25.7 ± 14.6 years. Statistical differences existed in the proportion of zone III in closed globe trauma (p = 0.01) and types A (p = 0.04) and type B (p = 0.02) in open globe trauma. The distribution of the OTS categories was similar for both genders (category 5: p = 0.9); the probability of developing visual deficiency was 32.6% (95% CI = 24.6 to 40.5) in females and 33.2% (95% CI = 27.6 to 38.9) in males (p = 0.9). The probability of developing ocular trauma-related visual deficiency was similar for both genders. The same standard is required.

  10. A Robust Deconvolution Method based on Transdimensional Hierarchical Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Kolb, J.; Lekic, V.

    2012-12-01

    Analysis of P-S and S-P conversions allows us to map receiver side crustal and lithospheric structure. This analysis often involves deconvolution of the parent wave field from the scattered wave field as a means of suppressing source-side complexity. A variety of deconvolution techniques exist including damped spectral division, Wiener filtering, iterative time-domain deconvolution, and the multitaper method. All of these techniques require estimates of noise characteristics as input parameters. We present a deconvolution method based on transdimensional Hierarchical Bayesian inference in which both noise magnitude and noise correlation are used as parameters in calculating the likelihood probability distribution. Because the noise for P-S and S-P conversion analysis in terms of receiver functions is a combination of both background noise - which is relatively easy to characterize - and signal-generated noise - which is much more difficult to quantify - we treat measurement errors as an known quantity, characterized by a probability density function whose mean and variance are model parameters. This transdimensional Hierarchical Bayesian approach has been successfully used previously in the inversion of receiver functions in terms of shear and compressional wave speeds of an unknown number of layers [1]. In our method we used a Markov chain Monte Carlo (MCMC) algorithm to find the receiver function that best fits the data while accurately assessing the noise parameters. In order to parameterize the receiver function we model the receiver function as an unknown number of Gaussians of unknown amplitude and width. The algorithm takes multiple steps before calculating the acceptance probability of a new model, in order to avoid getting trapped in local misfit minima. Using both observed and synthetic data, we show that the MCMC deconvolution method can accurately obtain a receiver function as well as an estimate of the noise parameters given the parent and daughter components. Furthermore, we demonstrate that this new approach is far less susceptible to generating spurious features even at high noise levels. Finally, the method yields not only the most-likely receiver function, but also quantifies its full uncertainty. [1] Bodin, T., M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, and N. Rawlinson (2012), Transdimensional inversion of receiver functions and surface wave dispersion, J. Geophys. Res., 117, B02301

  11. On Space Exploration and Human Error: A Paper on Reliability and Safety

    NASA Technical Reports Server (NTRS)

    Bell, David G.; Maluf, David A.; Gawdiak, Yuri

    2005-01-01

    NASA space exploration should largely address a problem class in reliability and risk management stemming primarily from human error, system risk and multi-objective trade-off analysis, by conducting research into system complexity, risk characterization and modeling, and system reasoning. In general, in every mission we can distinguish risk in three possible ways: a) known-known, b) known-unknown, and c) unknown-unknown. It is probably almost certain that space exploration will partially experience similar known or unknown risks embedded in the Apollo missions, Shuttle or Station unless something alters how NASA will perceive and manage safety and reliability

  12. Pup Mortality in a Rapidly Declining Harbour Seal (Phoca vitulina) Population

    PubMed Central

    Hanson, Nora; Thompson, Dave; Duck, Callan; Moss, Simon; Lonergan, Mike

    2013-01-01

    The harbour seal population in Orkney, off the north coast of Scotland, has reduced by 65% between 2001 and 2010. The cause(s) of this decline are unknown but must affect the demographic parameters of the population. Here, satellite telemetry data were used to test the hypothesis that increased pup mortality could be a primary driver of the decline in Orkney. Pup mortality and tag failure parameters were estimated from the duration of operation of satellite tags deployed on harbour seal pups from the Orkney population (n = 24) and from another population on the west coast of Scotland (n = 24) where abundance was stable. Survival probabilities from both populations were best represented by a common gamma distribution and were not different from one another, suggesting that increased pup mortality is unlikely to be the primary agent in the Orkney population decline. The estimated probability of surviving to 6 months was 0.390 (95% CI 0.297 – 0.648) and tag failure was represented by a Gaussian distribution, with estimated mean 270 (95% CI = 198 – 288) and s.d. 21 (95% CI = 1 – 66) days. These results suggest that adult survival is the most likely proximate cause of the decline. They also demonstrate a novel technique for attaining age-specific mortality rates from telemetry data. PMID:24312239

  13. Maximum Entropy Approach in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

    PubMed

    Farsani, Zahra Amini; Schmid, Volker J

    2017-01-01

    In the estimation of physiological kinetic parameters from Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) data, the determination of the arterial input function (AIF) plays a key role. This paper proposes a Bayesian method to estimate the physiological parameters of DCE-MRI along with the AIF in situations, where no measurement of the AIF is available. In the proposed algorithm, the maximum entropy method (MEM) is combined with the maximum a posterior approach (MAP). To this end, MEM is used to specify a prior probability distribution of the unknown AIF. The ability of this method to estimate the AIF is validated using the Kullback-Leibler divergence. Subsequently, the kinetic parameters can be estimated with MAP. The proposed algorithm is evaluated with a data set from a breast cancer MRI study. The application shows that the AIF can reliably be determined from the DCE-MRI data using MEM. Kinetic parameters can be estimated subsequently. The maximum entropy method is a powerful tool to reconstructing images from many types of data. This method is useful for generating the probability distribution based on given information. The proposed method gives an alternative way to assess the input function from the existing data. The proposed method allows a good fit of the data and therefore a better estimation of the kinetic parameters. In the end, this allows for a more reliable use of DCE-MRI. Schattauer GmbH.

  14. A new approach to aid the characterisation and identification of metabolites of a model drug; partial isotope enrichment combined with novel formula elucidation software.

    PubMed

    Hobby, Kirsten; Gallagher, Richard T; Caldwell, Patrick; Wilson, Ian D

    2009-01-01

    This work describes the identification of 'isotopically enriched' metabolites of 4-cyanoaniline using the unique features of the software package 'Spectral Simplicity'. The software is capable of creating the theoretical mass spectra for partially isotope-enriched compounds, and subsequently performing an elemental composition analysis to give the elemental formula for the 'isotopically enriched' metabolite. A novel mass spectral correlation method, called 'FuzzyFit', was employed. 'FuzzyFit' utilises the expected experimental distribution of errors in both mass accuracy and isotope pattern and enables discrimination between statistically probable and improbable candidate formulae. The software correctly determined the molecular formulae of ten previously described metabolites of 4-cyanoaniline confirming the technique of partial isotope enrichment can produce results analogous to standard methodologies. Six previously unknown species were also identified, based on the presence of the unique 'designer' isotope ratio. Three of the unknowns were tentatively identified as N-acetylglutamine, O-methyl-N acetylglucuronide and a putative fatty acid conjugate. The discovery of a significant number of unknown species of a model drug with a comprehensive history of investigation highlights the potential for enhancement to the analytical process by the use of 'designer' isotope ratio compounds. The 'FuzzyFit' methodology significantly aided the elucidation of candidate formulae, by provision of a vastly simplified candidate formula data set. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. Investigation of Dielectric Breakdown Characteristics for Double-break Vacuum Interrupter and Dielectric Breakdown Probability Distribution in Vacuum Interrupter

    NASA Astrophysics Data System (ADS)

    Shioiri, Tetsu; Asari, Naoki; Sato, Junichi; Sasage, Kosuke; Yokokura, Kunio; Homma, Mitsutaka; Suzuki, Katsumi

    To investigate the reliability of equipment of vacuum insulation, a study was carried out to clarify breakdown probability distributions in vacuum gap. Further, a double-break vacuum circuit breaker was investigated for breakdown probability distribution. The test results show that the breakdown probability distribution of the vacuum gap can be represented by a Weibull distribution using a location parameter, which shows the voltage that permits a zero breakdown probability. The location parameter obtained from Weibull plot depends on electrode area. The shape parameter obtained from Weibull plot of vacuum gap was 10∼14, and is constant irrespective non-uniform field factor. The breakdown probability distribution after no-load switching can be represented by Weibull distribution using a location parameter. The shape parameter after no-load switching was 6∼8.5, and is constant, irrespective of gap length. This indicates that the scatter of breakdown voltage was increased by no-load switching. If the vacuum circuit breaker uses a double break, breakdown probability at low voltage becomes lower than single-break probability. Although potential distribution is a concern in the double-break vacuum cuicuit breaker, its insulation reliability is better than that of the single-break vacuum interrupter even if the bias of the vacuum interrupter's sharing voltage is taken into account.

  16. Seismic event classification system

    DOEpatents

    Dowla, F.U.; Jarpe, S.P.; Maurer, W.

    1994-12-13

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

  17. Estimating distributions with increasing failure rate in an imperfect repair model.

    PubMed

    Kvam, Paul H; Singh, Harshinder; Whitaker, Lyn R

    2002-03-01

    A failed system is repaired minimally if after failure, it is restored to the working condition of an identical system of the same age. We extend the nonparametric maximum likelihood estimator (MLE) of a system's lifetime distribution function to test units that are known to have an increasing failure rate. Such items comprise a significant portion of working components in industry. The order-restricted MLE is shown to be consistent. Similar results hold for the Brown-Proschan imperfect repair model, which dictates that a failed component is repaired perfectly with some unknown probability, and is otherwise repaired minimally. The estimators derived are motivated and illustrated by failure data in the nuclear industry. Failure times for groups of emergency diesel generators and motor-driven pumps are analyzed using the order-restricted methods. The order-restricted estimators are consistent and show distinct differences from the ordinary MLEs. Simulation results suggest significant improvement in reliability estimation is available in many cases when component failure data exhibit the IFR property.

  18. Seismic event classification system

    DOEpatents

    Dowla, Farid U.; Jarpe, Stephen P.; Maurer, William

    1994-01-01

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

  19. Statistical modeling of optical attenuation measurements in continental fog conditions

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saeed; Amin, Muhammad; Awan, Muhammad Saleem; Minhas, Abid Ali; Saleem, Jawad; Khan, Rahimdad

    2017-03-01

    Free-space optics is an innovative technology that uses atmosphere as a propagation medium to provide higher data rates. These links are heavily affected by atmospheric channel mainly because of fog and clouds that act to scatter and even block the modulated beam of light from reaching the receiver end, hence imposing severe attenuation. A comprehensive statistical study of the fog effects and deep physical understanding of the fog phenomena are very important for suggesting improvements (reliability and efficiency) in such communication systems. In this regard, 6-months real-time measured fog attenuation data are considered and statistically investigated. A detailed statistical analysis related to each fog event for that period is presented; the best probability density functions are selected on the basis of Akaike information criterion, while the estimates of unknown parameters are computed by maximum likelihood estimation technique. The results show that most fog attenuation events follow normal mixture distribution and some follow the Weibull distribution.

  20. Using a Betabinomial distribution to estimate the prevalence of adherence to physical activity guidelines among children and youth.

    PubMed

    Garriguet, Didier

    2016-04-01

    Estimates of the prevalence of adherence to physical activity guidelines in the population are generally the result of averaging individual probability of adherence based on the number of days people meet the guidelines and the number of days they are assessed. Given this number of active and inactive days (days assessed minus days active), the conditional probability of meeting the guidelines that has been used in the past is a Beta (1 + active days, 1 + inactive days) distribution assuming the probability p of a day being active is bounded by 0 and 1 and averages 50%. A change in the assumption about the distribution of p is required to better match the discrete nature of the data and to better assess the probability of adherence when the percentage of active days in the population differs from 50%. Using accelerometry data from the Canadian Health Measures Survey, the probability of adherence to physical activity guidelines is estimated using a conditional probability given the number of active and inactive days distributed as a Betabinomial(n, a + active days , β + inactive days) assuming that p is randomly distributed as Beta(a, β) where the parameters a and β are estimated by maximum likelihood. The resulting Betabinomial distribution is discrete. For children aged 6 or older, the probability of meeting physical activity guidelines 7 out of 7 days is similar to published estimates. For pre-schoolers, the Betabinomial distribution yields higher estimates of adherence to the guidelines than the Beta distribution, in line with the probability of being active on any given day. In estimating the probability of adherence to physical activity guidelines, the Betabinomial distribution has several advantages over the previously used Beta distribution. It is a discrete distribution and maximizes the richness of accelerometer data.

  1. Music-evoked incidental happiness modulates probability weighting during risky lottery choices

    PubMed Central

    Schulreich, Stefan; Heussen, Yana G.; Gerhardt, Holger; Mohr, Peter N. C.; Binkofski, Ferdinand C.; Koelsch, Stefan; Heekeren, Hauke R.

    2014-01-01

    We often make decisions with uncertain consequences. The outcomes of the choices we make are usually not perfectly predictable but probabilistic, and the probabilities can be known or unknown. Probability judgments, i.e., the assessment of unknown probabilities, can be influenced by evoked emotional states. This suggests that also the weighting of known probabilities in decision making under risk might be influenced by incidental emotions, i.e., emotions unrelated to the judgments and decisions at issue. Probability weighting describes the transformation of probabilities into subjective decision weights for outcomes and is one of the central components of cumulative prospect theory (CPT) that determine risk attitudes. We hypothesized that music-evoked emotions would modulate risk attitudes in the gain domain and in particular probability weighting. Our experiment featured a within-subject design consisting of four conditions in separate sessions. In each condition, the 41 participants listened to a different kind of music—happy, sad, or no music, or sequences of random tones—and performed a repeated pairwise lottery choice task. We found that participants chose the riskier lotteries significantly more often in the “happy” than in the “sad” and “random tones” conditions. Via structural regressions based on CPT, we found that the observed changes in participants' choices can be attributed to changes in the elevation parameter of the probability weighting function: in the “happy” condition, participants showed significantly higher decision weights associated with the larger payoffs than in the “sad” and “random tones” conditions. Moreover, elevation correlated positively with self-reported music-evoked happiness. Thus, our experimental results provide evidence in favor of a causal effect of incidental happiness on risk attitudes that can be explained by changes in probability weighting. PMID:24432007

  2. Music-evoked incidental happiness modulates probability weighting during risky lottery choices.

    PubMed

    Schulreich, Stefan; Heussen, Yana G; Gerhardt, Holger; Mohr, Peter N C; Binkofski, Ferdinand C; Koelsch, Stefan; Heekeren, Hauke R

    2014-01-07

    We often make decisions with uncertain consequences. The outcomes of the choices we make are usually not perfectly predictable but probabilistic, and the probabilities can be known or unknown. Probability judgments, i.e., the assessment of unknown probabilities, can be influenced by evoked emotional states. This suggests that also the weighting of known probabilities in decision making under risk might be influenced by incidental emotions, i.e., emotions unrelated to the judgments and decisions at issue. Probability weighting describes the transformation of probabilities into subjective decision weights for outcomes and is one of the central components of cumulative prospect theory (CPT) that determine risk attitudes. We hypothesized that music-evoked emotions would modulate risk attitudes in the gain domain and in particular probability weighting. Our experiment featured a within-subject design consisting of four conditions in separate sessions. In each condition, the 41 participants listened to a different kind of music-happy, sad, or no music, or sequences of random tones-and performed a repeated pairwise lottery choice task. We found that participants chose the riskier lotteries significantly more often in the "happy" than in the "sad" and "random tones" conditions. Via structural regressions based on CPT, we found that the observed changes in participants' choices can be attributed to changes in the elevation parameter of the probability weighting function: in the "happy" condition, participants showed significantly higher decision weights associated with the larger payoffs than in the "sad" and "random tones" conditions. Moreover, elevation correlated positively with self-reported music-evoked happiness. Thus, our experimental results provide evidence in favor of a causal effect of incidental happiness on risk attitudes that can be explained by changes in probability weighting.

  3. Quantification of type I error probabilities for heterogeneity LOD scores.

    PubMed

    Abreu, Paula C; Hodge, Susan E; Greenberg, David A

    2002-02-01

    Locus heterogeneity is a major confounding factor in linkage analysis. When no prior knowledge of linkage exists, and one aims to detect linkage and heterogeneity simultaneously, classical distribution theory of log-likelihood ratios does not hold. Despite some theoretical work on this problem, no generally accepted practical guidelines exist. Nor has anyone rigorously examined the combined effect of testing for linkage and heterogeneity and simultaneously maximizing over two genetic models (dominant, recessive). The effect of linkage phase represents another uninvestigated issue. Using computer simulation, we investigated type I error (P value) of the "admixture" heterogeneity LOD (HLOD) score, i.e., the LOD score maximized over both recombination fraction theta and admixture parameter alpha and we compared this with the P values when one maximizes only with respect to theta (i.e., the standard LOD score). We generated datasets of phase-known and -unknown nuclear families, sizes k = 2, 4, and 6 children, under fully penetrant autosomal dominant inheritance. We analyzed these datasets (1) assuming a single genetic model, and maximizing the HLOD over theta and alpha; and (2) maximizing the HLOD additionally over two dominance models (dominant vs. recessive), then subtracting a 0.3 correction. For both (1) and (2), P values increased with family size k; rose less for phase-unknown families than for phase-known ones, with the former approaching the latter as k increased; and did not exceed the one-sided mixture distribution xi = (1/2) chi1(2) + (1/2) chi2(2). Thus, maximizing the HLOD over theta and alpha appears to add considerably less than an additional degree of freedom to the associated chi1(2) distribution. We conclude with practical guidelines for linkage investigators. Copyright 2002 Wiley-Liss, Inc.

  4. Drift simulation of MH370 debris using superensemble techniques

    NASA Astrophysics Data System (ADS)

    Jansen, Eric; Coppini, Giovanni; Pinardi, Nadia

    2016-07-01

    On 7 March 2014 (UTC), Malaysia Airlines flight 370 vanished without a trace. The aircraft is believed to have crashed in the southern Indian Ocean, but despite extensive search operations the location of the wreckage is still unknown. The first tangible evidence of the accident was discovered almost 17 months after the disappearance. On 29 July 2015, a small piece of the right wing of the aircraft was found washed up on the island of Réunion, approximately 4000 km from the assumed crash site. Since then a number of other parts have been found in Mozambique, South Africa and on Rodrigues Island. This paper presents a numerical simulation using high-resolution oceanographic and meteorological data to predict the movement of floating debris from the accident. Multiple model realisations are used with different starting locations and wind drag parameters. The model realisations are combined into a superensemble, adjusting the model weights to best represent the discovered debris. The superensemble is then used to predict the distribution of marine debris at various moments in time. This approach can be easily generalised to other drift simulations where observations are available to constrain unknown input parameters. The distribution at the time of the accident shows that the discovered debris most likely originated from the wide search area between 28 and 35° S. This partially overlaps with the current underwater search area, but extends further towards the north. Results at later times show that the most probable locations to discover washed-up debris are along the African east coast, especially in the area around Madagascar. The debris remaining at sea in 2016 is spread out over a wide area and its distribution changes only slowly.

  5. Estimated Accuracy of Three Common Trajectory Statistical Methods

    NASA Technical Reports Server (NTRS)

    Kabashnikov, Vitaliy P.; Chaikovsky, Anatoli P.; Kucsera, Tom L.; Metelskaya, Natalia S.

    2011-01-01

    Three well-known trajectory statistical methods (TSMs), namely concentration field (CF), concentration weighted trajectory (CWT), and potential source contribution function (PSCF) methods were tested using known sources and artificially generated data sets to determine the ability of TSMs to reproduce spatial distribution of the sources. In the works by other authors, the accuracy of the trajectory statistical methods was estimated for particular species and at specified receptor locations. We have obtained a more general statistical estimation of the accuracy of source reconstruction and have found optimum conditions to reconstruct source distributions of atmospheric trace substances. Only virtual pollutants of the primary type were considered. In real world experiments, TSMs are intended for application to a priori unknown sources. Therefore, the accuracy of TSMs has to be tested with all possible spatial distributions of sources. An ensemble of geographical distributions of virtual sources was generated. Spearman s rank order correlation coefficient between spatial distributions of the known virtual and the reconstructed sources was taken to be a quantitative measure of the accuracy. Statistical estimates of the mean correlation coefficient and a range of the most probable values of correlation coefficients were obtained. All the TSMs that were considered here showed similar close results. The maximum of the ratio of the mean correlation to the width of the correlation interval containing the most probable correlation values determines the optimum conditions for reconstruction. An optimal geographical domain roughly coincides with the area supplying most of the substance to the receptor. The optimal domain s size is dependent on the substance decay time. Under optimum reconstruction conditions, the mean correlation coefficients can reach 0.70 0.75. The boundaries of the interval with the most probable correlation values are 0.6 0.9 for the decay time of 240 h and 0.5 0.95 for the decay time of 12 h. The best results of source reconstruction can be expected for the trace substances with a decay time on the order of several days. Although the methods considered in this paper do not guarantee high accuracy they are computationally simple and fast. Using the TSMs in optimum conditions and taking into account the range of uncertainties, one can obtain a first hint on potential source areas.

  6. Probability Distributome: A Web Computational Infrastructure for Exploring the Properties, Interrelations, and Applications of Probability Distributions.

    PubMed

    Dinov, Ivo D; Siegrist, Kyle; Pearl, Dennis K; Kalinin, Alexandr; Christou, Nicolas

    2016-06-01

    Probability distributions are useful for modeling, simulation, analysis, and inference on varieties of natural processes and physical phenomena. There are uncountably many probability distributions. However, a few dozen families of distributions are commonly defined and are frequently used in practice for problem solving, experimental applications, and theoretical studies. In this paper, we present a new computational and graphical infrastructure, the Distributome , which facilitates the discovery, exploration and application of diverse spectra of probability distributions. The extensible Distributome infrastructure provides interfaces for (human and machine) traversal, search, and navigation of all common probability distributions. It also enables distribution modeling, applications, investigation of inter-distribution relations, as well as their analytical representations and computational utilization. The entire Distributome framework is designed and implemented as an open-source, community-built, and Internet-accessible infrastructure. It is portable, extensible and compatible with HTML5 and Web2.0 standards (http://Distributome.org). We demonstrate two types of applications of the probability Distributome resources: computational research and science education. The Distributome tools may be employed to address five complementary computational modeling applications (simulation, data-analysis and inference, model-fitting, examination of the analytical, mathematical and computational properties of specific probability distributions, and exploration of the inter-distributional relations). Many high school and college science, technology, engineering and mathematics (STEM) courses may be enriched by the use of modern pedagogical approaches and technology-enhanced methods. The Distributome resources provide enhancements for blended STEM education by improving student motivation, augmenting the classical curriculum with interactive webapps, and overhauling the learning assessment protocols.

  7. Probability Distributome: A Web Computational Infrastructure for Exploring the Properties, Interrelations, and Applications of Probability Distributions

    PubMed Central

    Dinov, Ivo D.; Siegrist, Kyle; Pearl, Dennis K.; Kalinin, Alexandr; Christou, Nicolas

    2015-01-01

    Probability distributions are useful for modeling, simulation, analysis, and inference on varieties of natural processes and physical phenomena. There are uncountably many probability distributions. However, a few dozen families of distributions are commonly defined and are frequently used in practice for problem solving, experimental applications, and theoretical studies. In this paper, we present a new computational and graphical infrastructure, the Distributome, which facilitates the discovery, exploration and application of diverse spectra of probability distributions. The extensible Distributome infrastructure provides interfaces for (human and machine) traversal, search, and navigation of all common probability distributions. It also enables distribution modeling, applications, investigation of inter-distribution relations, as well as their analytical representations and computational utilization. The entire Distributome framework is designed and implemented as an open-source, community-built, and Internet-accessible infrastructure. It is portable, extensible and compatible with HTML5 and Web2.0 standards (http://Distributome.org). We demonstrate two types of applications of the probability Distributome resources: computational research and science education. The Distributome tools may be employed to address five complementary computational modeling applications (simulation, data-analysis and inference, model-fitting, examination of the analytical, mathematical and computational properties of specific probability distributions, and exploration of the inter-distributional relations). Many high school and college science, technology, engineering and mathematics (STEM) courses may be enriched by the use of modern pedagogical approaches and technology-enhanced methods. The Distributome resources provide enhancements for blended STEM education by improving student motivation, augmenting the classical curriculum with interactive webapps, and overhauling the learning assessment protocols. PMID:27158191

  8. Random Partition Distribution Indexed by Pairwise Information

    PubMed Central

    Dahl, David B.; Day, Ryan; Tsai, Jerry W.

    2017-01-01

    We propose a random partition distribution indexed by pairwise similarity information such that partitions compatible with the similarities are given more probability. The use of pairwise similarities, in the form of distances, is common in some clustering algorithms (e.g., hierarchical clustering), but we show how to use this type of information to define a prior partition distribution for flexible Bayesian modeling. A defining feature of the distribution is that it allocates probability among partitions within a given number of subsets, but it does not shift probability among sets of partitions with different numbers of subsets. Our distribution places more probability on partitions that group similar items yet keeps the total probability of partitions with a given number of subsets constant. The distribution of the number of subsets (and its moments) is available in closed-form and is not a function of the similarities. Our formulation has an explicit probability mass function (with a tractable normalizing constant) so the full suite of MCMC methods may be used for posterior inference. We compare our distribution with several existing partition distributions, showing that our formulation has attractive properties. We provide three demonstrations to highlight the features and relative performance of our distribution. PMID:29276318

  9. A brief introduction to probability.

    PubMed

    Di Paola, Gioacchino; Bertani, Alessandro; De Monte, Lavinia; Tuzzolino, Fabio

    2018-02-01

    The theory of probability has been debated for centuries: back in 1600, French mathematics used the rules of probability to place and win bets. Subsequently, the knowledge of probability has significantly evolved and is now an essential tool for statistics. In this paper, the basic theoretical principles of probability will be reviewed, with the aim of facilitating the comprehension of statistical inference. After a brief general introduction on probability, we will review the concept of the "probability distribution" that is a function providing the probabilities of occurrence of different possible outcomes of a categorical or continuous variable. Specific attention will be focused on normal distribution that is the most relevant distribution applied to statistical analysis.

  10. The living Drake equation of the Tau Zero Foundation

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2011-03-01

    The living Drake equation is our statistical generalization of the Drake equation such that it can take into account any number of factors. This new result opens up the possibility to enrich the equation by inserting more new factors as long as the scientific learning increases. The adjective "Living" refers just to this continuous enrichment of the Drake equation and is the goal of a new research project that the Tau Zero Foundation has entrusted to this author as the discoverer of the statistical Drake equation described hereafter. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be arbitrarily distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov form of the CLT, or the Lindeberg form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the lognormal distribution. Then, the mean value, standard deviation, mode, median and all the moments of this lognormal N can be derived from the means and standard deviations of the seven input random variables. In fact, the seven factors in the ordinary Drake equation now become seven independent positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) distance between any two neighbouring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, this distance now becomes a new random variable. We derive the relevant probability density function, apparently previously unknown (dubbed "Maccone distribution" by Paul Davies). Data Enrichment Principle. It should be noticed that any positive number of random variables in the statistical Drake equation is compatible with the CLT. So, our generalization allows for many more factors to be added in the future as long as more refined scientific knowledge about each factor will be known to the scientists. This capability to make room for more future factors in the statistical Drake equation we call the "Data Enrichment Principle", and regard as the key to more profound, future results in Astrobiology and SETI.

  11. Can we expect to predict climate if we cannot shadow weather?

    NASA Astrophysics Data System (ADS)

    Smith, Leonard

    2010-05-01

    What limits our ability to predict (or project) useful statistics of future climate? And how might we quantify those limits? In the early 1960s, Ed Lorenz illustrated one constraint on point forecasts of the weather (chaos) while noting another (model imperfections). In the mid-sixties he went on to discuss climate prediction, noting that chaos, per se, need not limit accurate forecasts of averages and the distributions that define climate. In short, chaos might place draconian limits on what we can say about a particular summer day in 2010 (or 2040), but it need not limit our ability to make accurate and informative statements about the weather over this summer as a whole, or climate distributions of the 2040's. If not chaos, what limits our ability to produce decision relevant probability distribution functions (PDFs)? Is this just a question of technology (raw computer power) and uncertain boundary conditions (emission scenarios)? Arguably, current model simulations of the Earth's climate are limited by model inadequacy: not that the initial or boundary conditions are unknown but that state-of-the-art models would not yield decision-relevant probability distributions even if they were known. Or to place this statement in an empirically falsifiable format: that in 2100 when the boundary conditions are known and computer power is (hopefully) sufficient to allow exhaustive exploration of today's state-of-the-art models: we will find today's models do not admit a trajectory consistent with our knowledge of the state of the earth in 2009 which would prove of decision support relevance for, say, 25 km, hourly resolution. In short: today's models cannot shadow the weather of this century even after the fact. Restating this conjecture in a more positive frame: a 2100 historian of science will be able to determine the highest space and time scales on which 2009 models could have (i) produced trajectories plausibly consistent with the (by then) observed twenty-first century and (ii) produced probability distributions useful as such for decision support. As it will be some time until such conjectures can be refuted, how might we best advise decision makers of the detail (specifically, space and time resolution of a quantity of interest as a function of lead-time) that it is rational to interpret model-based PDFs as decision-relevant probability distributions? Given the nonlinearities already incorporated in our models, how far into the future can one expect a simulation to get the temperature "right" given the simulation has precipitation badly "wrong"? When can biases in local temperature which melt model-ice no longer be dismissed, and neglected by presenting model-anomalies? At what lead times will feedbacks due to model inadequacies cause the 2007 model simulations to drift away from what today's basic science (and 2100 computer power) would suggest? How might one justify quantitative claims regarding "extreme events" (or NUMB weather)? Models are unlikely to forecast things they cannot shadow, or at least track. There is no constraint on rational scientists to take model distributions as their subjective probabilities, unless they believe the model is empirically adequate. How then are we to use today's simulations to inform today's decisions? Two approaches are considered. The first augments the model-based PDF with an explicit subjective-probability of a "Big Surprise". The second is to look not for a PDF but, following Solvency II, consider the risk from any event that cannot be ruled out at, say, the one in 200 level. The fact that neither approach provides the simplicity and apparent confidence of interpreting model-based PDFs as if they were objective probabilities does not contradict the claim that either might lead to better decision-making.

  12. Comparative genomics approaches to understanding and manipulating plant metabolism.

    PubMed

    Bradbury, Louis M T; Niehaus, Tom D; Hanson, Andrew D

    2013-04-01

    Over 3000 genomes, including numerous plant genomes, are now sequenced. However, their annotation remains problematic as illustrated by the many conserved genes with no assigned function, vague annotations such as 'kinase', or even wrong ones. Around 40% of genes of unknown function that are conserved between plants and microbes are probably metabolic enzymes or transporters; finding functions for these genes is a major challenge. Comparative genomics has correctly predicted functions for many such genes by analyzing genomic context, and gene fusions, distributions and co-expression. Comparative genomics complements genetic and biochemical approaches to dissect metabolism, continues to increase in power and decrease in cost, and has a pivotal role in modeling and engineering by helping identify functions for all metabolic genes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Impact of meteorological inflow uncertainty on tracer transport and source estimation in urban atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Donald D.; Gowardhan, Akshay; Cameron-Smith, Philip

    2015-08-08

    Here, a computational Bayesian inverse technique is used to quantify the effects of meteorological inflow uncertainty on tracer transport and source estimation in a complex urban environment. We estimate a probability distribution of meteorological inflow by comparing wind observations to Monte Carlo simulations from the Aeolus model. Aeolus is a computational fluid dynamics model that simulates atmospheric and tracer flow around buildings and structures at meter-scale resolution. Uncertainty in the inflow is propagated through forward and backward Lagrangian dispersion calculations to determine the impact on tracer transport and the ability to estimate the release location of an unknown source. Ourmore » uncertainty methods are compared against measurements from an intensive observation period during the Joint Urban 2003 tracer release experiment conducted in Oklahoma City.« less

  14. Observation of Turbulent Intermittency Scaling with Magnetic Helicity in an MHD Plasma Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.; Wan, A.; Brown, M. R.

    2014-04-01

    The intermittency in turbulent magnetic field fluctuations has been observed to scale with the amount of magnetic helicity injected into a laboratory plasma. An unstable spheromak injected into the MHD wind tunnel of the Swarthmore Spheromak Experiment displays turbulent magnetic and plasma fluctuations as it relaxes into a Taylor state. The level of intermittency of this turbulence is determined by finding the flatness of the probability distribution function of increments for magnetic pickup coil fluctuations B˙(t). The intermittency increases with the injected helicity, but spectral indices are unaffected by this variation. While evidence is provided which supports the hypothesis that current sheets and reconnection sites are related to the generation of this intermittent signal, the true nature of the observed intermittency remains unknown.

  15. Extreme events and natural hazards: The complexity perspective

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-10-01

    Advanced societies have become quite proficient at defending against moderate-size earthquakes, hurricanes, floods, or other natural assaults. What still pose a significant threat, however, are the unknowns, the extremes, the natural phenomena encompassed by the upper tail of the probability distribution. Alongside the large or powerful events, truly extreme natural disasters are those that tie different systems together: an earthquake that causes a tsunami, which leads to flooding, which takes down a nuclear reactor. In the geophysical monograph Extreme Events and Natural Hazards: The Complexity Perspective, editors A. Surjalal Sharma, Armin Bunde, Vijay P. Dimro, and Daniel N. Baker present a lens through which such multidisciplinary phenomena can be understood. In this interview, Eos talks to Sharma about complexity science, predicting extreme events and natural hazards, and the push for "big data."

  16. 42 CFR 81.23 - Guidelines for cancers for which primary site is unknown.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Guidelines for cancers for which primary site is... Estimate Probability of Causation § 81.23 Guidelines for cancers for which primary site is unknown. (a) In claims for which the primary cancer site cannot be determined, but a site of metastasis is known, DOL...

  17. 42 CFR 81.23 - Guidelines for cancers for which primary site is unknown.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Guidelines for cancers for which primary site is... Estimate Probability of Causation § 81.23 Guidelines for cancers for which primary site is unknown. (a) In claims for which the primary cancer site cannot be determined, but a site of metastasis is known, DOL...

  18. 11. Photocopy of photograph in the collection of Photographic Branch, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph in the collection of Photographic Branch, Puget Sound Naval Shipyard, Bremerton, WA. Original is labelled: Yard Photo 42. Date unknown, probably 1940's. Photographer unknown. HABS negative is a 4x5' copy negative. Perspective view of NE corner of Building 78. - Puget Sound Naval Shipyard, Administration Building, Farragut Avenue, Bremerton, Kitsap County, WA

  19. 42 CFR 81.23 - Guidelines for cancers for which primary site is unknown.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Guidelines for cancers for which primary site is... Estimate Probability of Causation § 81.23 Guidelines for cancers for which primary site is unknown. (a) In claims for which the primary cancer site cannot be determined, but a site of metastasis is known, DOL...

  20. 42 CFR 81.23 - Guidelines for cancers for which primary site is unknown.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Guidelines for cancers for which primary site is... Estimate Probability of Causation § 81.23 Guidelines for cancers for which primary site is unknown. (a) In claims for which the primary cancer site cannot be determined, but a site of metastasis is known, DOL...

  1. 42 CFR 81.23 - Guidelines for cancers for which primary site is unknown.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Guidelines for cancers for which primary site is... Estimate Probability of Causation § 81.23 Guidelines for cancers for which primary site is unknown. (a) In claims for which the primary cancer site cannot be determined, but a site of metastasis is known, DOL...

  2. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  3. The global impact distribution of Near-Earth objects

    NASA Astrophysics Data System (ADS)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter M.

    2016-02-01

    Asteroids that could collide with the Earth are listed on the publicly available Near-Earth object (NEO) hazard web sites maintained by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The impact probability distribution of 69 potentially threatening NEOs from these lists that produce 261 dynamically distinct impact instances, or Virtual Impactors (VIs), were calculated using the Asteroid Risk Mitigation and Optimization Research (ARMOR) tool in conjunction with OrbFit. ARMOR projected the impact probability of each VI onto the surface of the Earth as a spatial probability distribution. The projection considers orbit solution accuracy and the global impact probability. The method of ARMOR is introduced and the tool is validated against two asteroid-Earth collision cases with objects 2008 TC3 and 2014 AA. In the analysis, the natural distribution of impact corridors is contrasted against the impact probability distribution to evaluate the distributions' conformity with the uniform impact distribution assumption. The distribution of impact corridors is based on the NEO population and orbital mechanics. The analysis shows that the distribution of impact corridors matches the common assumption of uniform impact distribution and the result extends the evidence base for the uniform assumption from qualitative analysis of historic impact events into the future in a quantitative way. This finding is confirmed in a parallel analysis of impact points belonging to a synthetic population of 10,006 VIs. Taking into account the impact probabilities introduced significant variation into the results and the impact probability distribution, consequently, deviates markedly from uniformity. The concept of impact probabilities is a product of the asteroid observation and orbit determination technique and, thus, represents a man-made component that is largely disconnected from natural processes. It is important to consider impact probabilities because such information represents the best estimate of where an impact might occur.

  4. Effect of reaction-step-size noise on the switching dynamics of stochastic populations

    NASA Astrophysics Data System (ADS)

    Be'er, Shay; Heller-Algazi, Metar; Assaf, Michael

    2016-05-01

    In genetic circuits, when the messenger RNA lifetime is short compared to the cell cycle, proteins are produced in geometrically distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a priori unknown and, in general, may fluctuate in time with a given correlation time and statistics, introduces an additional nondemographic reaction-step-size noise into the system. Employing the probability-generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that compared to the "usual case" of single-step influx, bursty influx exponentially decreases the population's mean escape time from its long-lived metastable state. In particular, close to bifurcation we find a simple analytical expression for the mean escape time which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte Carlo simulations.

  5. Predicting the geographic distribution of a species from presence-only data subject to detection errors

    USGS Publications Warehouse

    Dorazio, Robert M.

    2012-01-01

    Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.

  6. The Statistical Drake Equation

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2010-12-01

    We provide the statistical generalization of the Drake equation. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov Form of the CLT, or the Lindeberg Form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the LOGNORMAL distribution. Then, as a consequence, the mean value of this lognormal distribution is the ordinary N in the Drake equation. The standard deviation, mode, and all the moments of this lognormal N are also found. The seven factors in the ordinary Drake equation now become seven positive random variables. The probability distribution of each random variable may be ARBITRARY. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) DISTANCE between any two neighboring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, in our approach, this distance becomes a new random variable. We derive the relevant probability density function, apparently previously unknown and dubbed "Maccone distribution" by Paul Davies. DATA ENRICHMENT PRINCIPLE. It should be noticed that ANY positive number of random variables in the Statistical Drake Equation is compatible with the CLT. So, our generalization allows for many more factors to be added in the future as long as more refined scientific knowledge about each factor will be known to the scientists. This capability to make room for more future factors in the statistical Drake equation, we call the "Data Enrichment Principle," and we regard it as the key to more profound future results in the fields of Astrobiology and SETI. Finally, a practical example is given of how our statistical Drake equation works numerically. We work out in detail the case, where each of the seven random variables is uniformly distributed around its own mean value and has a given standard deviation. For instance, the number of stars in the Galaxy is assumed to be uniformly distributed around (say) 350 billions with a standard deviation of (say) 1 billion. Then, the resulting lognormal distribution of N is computed numerically by virtue of a MathCad file that the author has written. This shows that the mean value of the lognormal random variable N is actually of the same order as the classical N given by the ordinary Drake equation, as one might expect from a good statistical generalization.

  7. Psychophysics of the probability weighting function

    NASA Astrophysics Data System (ADS)

    Takahashi, Taiki

    2011-03-01

    A probability weighting function w(p) for an objective probability p in decision under risk plays a pivotal role in Kahneman-Tversky prospect theory. Although recent studies in econophysics and neuroeconomics widely utilized probability weighting functions, psychophysical foundations of the probability weighting functions have been unknown. Notably, a behavioral economist Prelec (1998) [4] axiomatically derived the probability weighting function w(p)=exp(-() (0<α<1 and w(0)=1,w(1e)=1e,w(1)=1), which has extensively been studied in behavioral neuroeconomics. The present study utilizes psychophysical theory to derive Prelec's probability weighting function from psychophysical laws of perceived waiting time in probabilistic choices. Also, the relations between the parameters in the probability weighting function and the probability discounting function in behavioral psychology are derived. Future directions in the application of the psychophysical theory of the probability weighting function in econophysics and neuroeconomics are discussed.

  8. Target intersection probabilities for parallel-line and continuous-grid types of search

    USGS Publications Warehouse

    McCammon, R.B.

    1977-01-01

    The expressions for calculating the probability of intersection of hidden targets of different sizes and shapes for parallel-line and continuous-grid types of search can be formulated by vsing the concept of conditional probability. When the prior probability of the orientation of a widden target is represented by a uniform distribution, the calculated posterior probabilities are identical with the results obtained by the classic methods of probability. For hidden targets of different sizes and shapes, the following generalizations about the probability of intersection can be made: (1) to a first approximation, the probability of intersection of a hidden target is proportional to the ratio of the greatest dimension of the target (viewed in plane projection) to the minimum line spacing of the search pattern; (2) the shape of the hidden target does not greatly affect the probability of the intersection when the largest dimension of the target is small relative to the minimum spacing of the search pattern, (3) the probability of intersecting a target twice for a particular type of search can be used as a lower bound if there is an element of uncertainty of detection for a particular type of tool; (4) the geometry of the search pattern becomes more critical when the largest dimension of the target equals or exceeds the minimum spacing of the search pattern; (5) for elongate targets, the probability of intersection is greater for parallel-line search than for an equivalent continuous square-grid search when the largest dimension of the target is less than the minimum spacing of the search pattern, whereas the opposite is true when the largest dimension exceeds the minimum spacing; (6) the probability of intersection for nonorthogonal continuous-grid search patterns is not greatly different from the probability of intersection for the equivalent orthogonal continuous-grid pattern when the orientation of the target is unknown. The probability of intersection for an elliptically shaped target can be approximated by treating the ellipse as intermediate between a circle and a line. A search conducted along a continuous rectangular grid can be represented as intermediate between a search along parallel lines and along a continuous square grid. On this basis, an upper and lower bound for the probability of intersection of an elliptically shaped target for a continuous rectangular grid can be calculated. Charts have been constructed that permit the values for these probabilities to be obtained graphically. The use of conditional probability allows the explorationist greater flexibility in considering alternate search strategies for locating hidden targets. ?? 1977 Plenum Publishing Corp.

  9. Optimum detection of tones transmitted by a spacecraft

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Shihabi, M. M.; Moon, T.

    1995-01-01

    The performance of a scheme proposed for automated routine monitoring of deep-space missions is presented. The scheme uses four different tones (sinusoids) transmitted from the spacecraft (S/C) to a ground station with the positive identification of each of them used to indicate different states of the S/C. Performance is measured in terms of detection probability versus false alarm probability with detection signal-to-noise ratio as a parameter. The cases where the phase of the received tone is unknown and where both the phase and frequency of the received tone are unknown are treated separately. The decision rules proposed for detecting the tones are formulated from average-likelihood ratio and maximum-likelihood ratio tests, the former resulting in optimum receiver structures.

  10. Determinants of Pseudogymnoascus destructans within bat hibernacula: implications for surveillance and management of white-nose syndrome.

    PubMed

    Verant, Michelle L; Bohuski, Elizabeth A; Richgels, Katherine L D; Olival, Kevin J; Epstein, Jonathan H; Blehert, David S

    2018-01-01

    1. Fungal diseases are an emerging global problem affecting human health, food security and biodiversity. Ability of many fungal pathogens to persist within environmental reservoirs can increase extinction risks for host species and presents challenges for disease control. Understanding factors that regulate pathogen spread and persistence in these reservoirs is critical for effective disease management. 2. White-nose syndrome (WNS) is a disease of hibernating bats caused by Pseudogymnoascus destructans ( Pd ), a fungus that establishes persistent environmental reservoirs within bat hibernacula, which contribute to seasonal disease transmission dynamics in bats. However, host and environmental factors influencing distribution of Pd within these reservoirs are unknown. 3. We used model selection on longitudinally collected field data to test multiple hypotheses describing presence-absence and abundance of Pd in environmental substrates and on bats within hibernacula at different stages of WNS. 4. First detection of Pd in the environment lagged up to one year after first detection on bats within that hibernaculum. Once detected, the probability of detecting Pd within environmental samples from a hibernaculum increased over time and was higher in sediment compared to wall surfaces. Temperature had marginal effects on the distribution of Pd . For bats, prevalence and abundance of Pd were highest on Myotis lucifugus and on bats with visible signs of WNS. 5. Synthesis and applications . Our results indicate that distribution of Pseudogymnoascus destructans ( Pd ) within a hibernaculum is driven primarily by bats with delayed establishment of environmental reservoirs. Thus, collection of samples from Myotis lucifugus , or from sediment if bats cannot be sampled, should be prioritized to improve detection probabilities for Pd surveillance. Long-term persistence of Pd in sediment suggests that disease management for white-nose syndrome should address risks of sustained transmission from environmental reservoirs.

  11. Global Pyrogeography: the Current and Future Distribution of Wildfire

    PubMed Central

    Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494

  12. Capture-recapture studies for multiple strata including non-markovian transitions

    USGS Publications Warehouse

    Brownie, C.; Hines, J.E.; Nichols, J.D.; Pollock, K.H.; Hestbeck, J.B.

    1993-01-01

    We consider capture-recapture studies where release and recapture data are available from each of a number of strata on every capture occasion. Strata may, for example, be geographic locations or physiological states. Movement of animals among strata occurs with unknown probabilities, and estimation of these unknown transition probabilities is the objective. We describe a computer routine for carrying out the analysis under a model that assumes Markovian transitions and under reduced parameter versions of this model. We also introduce models that relax the Markovian assumption and allow 'memory' to operate (i.e., allow dependence of the transition probabilities on the previous state). For these models, we sugg st an analysis based on a conditional likelihood approach. Methods are illustrated with data from a large study on Canada geese (Branta canadensis) banded in three geographic regions. The assumption of Markovian transitions is rejected convincingly for these data, emphasizing the importance of the more general models that allow memory.

  13. Nonadditive entropies yield probability distributions with biases not warranted by the data.

    PubMed

    Pressé, Steve; Ghosh, Kingshuk; Lee, Julian; Dill, Ken A

    2013-11-01

    Different quantities that go by the name of entropy are used in variational principles to infer probability distributions from limited data. Shore and Johnson showed that maximizing the Boltzmann-Gibbs form of the entropy ensures that probability distributions inferred satisfy the multiplication rule of probability for independent events in the absence of data coupling such events. Other types of entropies that violate the Shore and Johnson axioms, including nonadditive entropies such as the Tsallis entropy, violate this basic consistency requirement. Here we use the axiomatic framework of Shore and Johnson to show how such nonadditive entropy functions generate biases in probability distributions that are not warranted by the underlying data.

  14. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. ProbOnto: ontology and knowledge base of probability distributions.

    PubMed

    Swat, Maciej J; Grenon, Pierre; Wimalaratne, Sarala

    2016-09-01

    Probability distributions play a central role in mathematical and statistical modelling. The encoding, annotation and exchange of such models could be greatly simplified by a resource providing a common reference for the definition of probability distributions. Although some resources exist, no suitably detailed and complex ontology exists nor any database allowing programmatic access. ProbOnto, is an ontology-based knowledge base of probability distributions, featuring more than 80 uni- and multivariate distributions with their defining functions, characteristics, relationships and re-parameterization formulas. It can be used for model annotation and facilitates the encoding of distribution-based models, related functions and quantities. http://probonto.org mjswat@ebi.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  17. PRODIGEN: visualizing the probability landscape of stochastic gene regulatory networks in state and time space.

    PubMed

    Ma, Chihua; Luciani, Timothy; Terebus, Anna; Liang, Jie; Marai, G Elisabeta

    2017-02-15

    Visualizing the complex probability landscape of stochastic gene regulatory networks can further biologists' understanding of phenotypic behavior associated with specific genes. We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN was designed in collaboration with bioinformaticians who research stochastic gene networks. The analysis tool combines in a novel way existing, expanded, and new visual encodings to capture the time-varying characteristics of probability distributions: spaghetti plots over one dimensional projection, heatmaps of distributions over 2D projections, enhanced with overlaid time curves to display temporal changes, and novel individual glyphs of state information corresponding to particular peaks. We demonstrate the effectiveness of the tool through two case studies on the computed probabilistic landscape of a gene regulatory network and of a toggle-switch network. Domain expert feedback indicates that our visual approach can help biologists: 1) visualize probabilities of stable states, 2) explore the temporal probability distributions, and 3) discover small peaks in the probability landscape that have potential relation to specific diseases.

  18. Comparision of the different probability distributions for earthquake hazard assessment in the North Anatolian Fault Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr; Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr

    In this study we examined and compared the three different probabilistic distribution methods for determining the best suitable model in probabilistic assessment of earthquake hazards. We analyzed a reliable homogeneous earthquake catalogue between a time period 1900-2015 for magnitude M ≥ 6.0 and estimated the probabilistic seismic hazard in the North Anatolian Fault zone (39°-41° N 30°-40° E) using three distribution methods namely Weibull distribution, Frechet distribution and three-parameter Weibull distribution. The distribution parameters suitability was evaluated Kolmogorov-Smirnov (K-S) goodness-of-fit test. We also compared the estimated cumulative probability and the conditional probabilities of occurrence of earthquakes for different elapsed timemore » using these three distribution methods. We used Easyfit and Matlab software to calculate these distribution parameters and plotted the conditional probability curves. We concluded that the Weibull distribution method was the most suitable than other distribution methods in this region.« less

  19. Effect of Reinforcement Probability and Prize Size on Cocaine and Heroin Abstinence in Prize-Based Contingency Management

    ERIC Educational Resources Information Center

    Ghitza, Udi E.; Epstein, David H.; Schmittner, John; Vahabzadeh, Massoud; Lin, Jia-Ling; Preston, Kenzie L.

    2008-01-01

    Although treatment outcome in prize-based contingency management has been shown to depend on reinforcement schedule, the optimal schedule is still unknown. Therefore, we conducted a retrospective analysis of data from a randomized clinical trial (Ghitza et al., 2007) to determine the effects of the probability of winning a prize (low vs. high) and…

  20. The known unknowns: neural representation of second-order uncertainty, and ambiguity

    PubMed Central

    Bach, Dominik R.; Hulme, Oliver; Penny, William D.; Dolan, Raymond J.

    2011-01-01

    Predictions provided by action-outcome probabilities entail a degree of (first-order) uncertainty. However, these probabilities themselves can be imprecise and embody second-order uncertainty. Tracking second-order uncertainty is important for optimal decision making and reinforcement learning. Previous functional magnetic resonance imaging investigations of second-order uncertainty in humans have drawn on an economic concept of ambiguity, where action-outcome associations in a gamble are either known (unambiguous) or completely unknown (ambiguous). Here, we relaxed the constraints associated with a purely categorical concept of ambiguity and varied the second-order uncertainty of gambles continuously, quantified as entropy over second-order probabilities. We show that second-order uncertainty influences decisions in a pessimistic way by biasing second-order probabilities, and that second-order uncertainty is negatively correlated with posterior cingulate cortex activity. The category of ambiguous (compared to non-ambiguous) gambles also biased choice in a similar direction, but was associated with distinct activation of a posterior parietal cortical area; an activation that we show reflects a different computational mechanism. Our findings indicate that behavioural and neural responses to second-order uncertainty are distinct from those associated with ambiguity and may call for a reappraisal of previous data. PMID:21451019

  1. Integrated survival analysis using an event-time approach in a Bayesian framework

    USGS Publications Warehouse

    Walsh, Daniel P.; Dreitz, VJ; Heisey, Dennis M.

    2015-01-01

    Event-time or continuous-time statistical approaches have been applied throughout the biostatistical literature and have led to numerous scientific advances. However, these techniques have traditionally relied on knowing failure times. This has limited application of these analyses, particularly, within the ecological field where fates of marked animals may be unknown. To address these limitations, we developed an integrated approach within a Bayesian framework to estimate hazard rates in the face of unknown fates. We combine failure/survival times from individuals whose fates are known and times of which are interval-censored with information from those whose fates are unknown, and model the process of detecting animals with unknown fates. This provides the foundation for our integrated model and permits necessary parameter estimation. We provide the Bayesian model, its derivation, and use simulation techniques to investigate the properties and performance of our approach under several scenarios. Lastly, we apply our estimation technique using a piece-wise constant hazard function to investigate the effects of year, age, chick size and sex, sex of the tending adult, and nesting habitat on mortality hazard rates of the endangered mountain plover (Charadrius montanus) chicks. Traditional models were inappropriate for this analysis because fates of some individual chicks were unknown due to failed radio transmitters. Simulations revealed biases of posterior mean estimates were minimal (≤ 4.95%), and posterior distributions behaved as expected with RMSE of the estimates decreasing as sample sizes, detection probability, and survival increased. We determined mortality hazard rates for plover chicks were highest at <5 days old and were lower for chicks with larger birth weights and/or whose nest was within agricultural habitats. Based on its performance, our approach greatly expands the range of problems for which event-time analyses can be used by eliminating the need for having completely known fate data.

  2. Integrated survival analysis using an event-time approach in a Bayesian framework.

    PubMed

    Walsh, Daniel P; Dreitz, Victoria J; Heisey, Dennis M

    2015-02-01

    Event-time or continuous-time statistical approaches have been applied throughout the biostatistical literature and have led to numerous scientific advances. However, these techniques have traditionally relied on knowing failure times. This has limited application of these analyses, particularly, within the ecological field where fates of marked animals may be unknown. To address these limitations, we developed an integrated approach within a Bayesian framework to estimate hazard rates in the face of unknown fates. We combine failure/survival times from individuals whose fates are known and times of which are interval-censored with information from those whose fates are unknown, and model the process of detecting animals with unknown fates. This provides the foundation for our integrated model and permits necessary parameter estimation. We provide the Bayesian model, its derivation, and use simulation techniques to investigate the properties and performance of our approach under several scenarios. Lastly, we apply our estimation technique using a piece-wise constant hazard function to investigate the effects of year, age, chick size and sex, sex of the tending adult, and nesting habitat on mortality hazard rates of the endangered mountain plover (Charadrius montanus) chicks. Traditional models were inappropriate for this analysis because fates of some individual chicks were unknown due to failed radio transmitters. Simulations revealed biases of posterior mean estimates were minimal (≤ 4.95%), and posterior distributions behaved as expected with RMSE of the estimates decreasing as sample sizes, detection probability, and survival increased. We determined mortality hazard rates for plover chicks were highest at <5 days old and were lower for chicks with larger birth weights and/or whose nest was within agricultural habitats. Based on its performance, our approach greatly expands the range of problems for which event-time analyses can be used by eliminating the need for having completely known fate data.

  3. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2010-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .

  4. Developing an Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  5. Incorporating Skew into RMS Surface Roughness Probability Distribution

    NASA Technical Reports Server (NTRS)

    Stahl, Mark T.; Stahl, H. Philip.

    2013-01-01

    The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.

  6. The Mass Distribution of Companions to Low-mass White Dwarfs

    NASA Astrophysics Data System (ADS)

    Andrews, Jeff J.; Price-Whelan, Adrian M.; Agüeros, Marcel A.

    2014-12-01

    Measuring the masses of companions to single-line spectroscopic binary stars is (in general) not possible because of the unknown orbital plane inclination. Even when the mass of the visible star can be measured, only a lower limit can be placed on the mass of the unseen companion. However, since these inclination angles should be isotropically distributed, for a large enough, unbiased sample, the companion mass distribution can be deconvolved from the distribution of observables. In this work, we construct a hierarchical probabilistic model to infer properties of unseen companion stars given observations of the orbital period and projected radial velocity of the primary star. We apply this model to three mock samples of low-mass white dwarfs (LMWDs; M <~ 0.45 M ⊙) and a sample of post-common-envelope binaries. We use a mixture of two Gaussians to model the WD and neutron star (NS) companion mass distributions. Our model successfully recovers the initial parameters of these test data sets. We then apply our model to 55 WDs in the extremely low-mass (ELM) WD Survey. Our maximum a posteriori model for the WD companion population has a mean mass μWD = 0.74 M ⊙, with a standard deviation σWD = 0.24 M ⊙. Our model constrains the NS companion fraction f NS to be <16% at 68% confidence. We make samples from the posterior distribution publicly available so that future observational efforts may compute the NS probability for newly discovered LMWDs.

  7. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders

    PubMed Central

    Koppel, Barbara S.; Brust, John C.M.; Fife, Terry; Bronstein, Jeff; Youssof, Sarah; Gronseth, Gary; Gloss, David

    2014-01-01

    Objective: To determine the efficacy of medical marijuana in several neurologic conditions. Methods: We performed a systematic review of medical marijuana (1948–November 2013) to address treatment of symptoms of multiple sclerosis (MS), epilepsy, and movement disorders. We graded the studies according to the American Academy of Neurology classification scheme for therapeutic articles. Results: Thirty-four studies met inclusion criteria; 8 were rated as Class I. Conclusions: The following were studied in patients with MS: (1) Spasticity: oral cannabis extract (OCE) is effective, and nabiximols and tetrahydrocannabinol (THC) are probably effective, for reducing patient-centered measures; it is possible both OCE and THC are effective for reducing both patient-centered and objective measures at 1 year. (2) Central pain or painful spasms (including spasticity-related pain, excluding neuropathic pain): OCE is effective; THC and nabiximols are probably effective. (3) Urinary dysfunction: nabiximols is probably effective for reducing bladder voids/day; THC and OCE are probably ineffective for reducing bladder complaints. (4) Tremor: THC and OCE are probably ineffective; nabiximols is possibly ineffective. (5) Other neurologic conditions: OCE is probably ineffective for treating levodopa-induced dyskinesias in patients with Parkinson disease. Oral cannabinoids are of unknown efficacy in non–chorea-related symptoms of Huntington disease, Tourette syndrome, cervical dystonia, and epilepsy. The risks and benefits of medical marijuana should be weighed carefully. Risk of serious adverse psychopathologic effects was nearly 1%. Comparative effectiveness of medical marijuana vs other therapies is unknown for these indications. PMID:24778283

  8. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology.

    PubMed

    Koppel, Barbara S; Brust, John C M; Fife, Terry; Bronstein, Jeff; Youssof, Sarah; Gronseth, Gary; Gloss, David

    2014-04-29

    To determine the efficacy of medical marijuana in several neurologic conditions. We performed a systematic review of medical marijuana (1948-November 2013) to address treatment of symptoms of multiple sclerosis (MS), epilepsy, and movement disorders. We graded the studies according to the American Academy of Neurology classification scheme for therapeutic articles. Thirty-four studies met inclusion criteria; 8 were rated as Class I. The following were studied in patients with MS: (1) Spasticity: oral cannabis extract (OCE) is effective, and nabiximols and tetrahydrocannabinol (THC) are probably effective, for reducing patient-centered measures; it is possible both OCE and THC are effective for reducing both patient-centered and objective measures at 1 year. (2) Central pain or painful spasms (including spasticity-related pain, excluding neuropathic pain): OCE is effective; THC and nabiximols are probably effective. (3) Urinary dysfunction: nabiximols is probably effective for reducing bladder voids/day; THC and OCE are probably ineffective for reducing bladder complaints. (4) Tremor: THC and OCE are probably ineffective; nabiximols is possibly ineffective. (5) Other neurologic conditions: OCE is probably ineffective for treating levodopa-induced dyskinesias in patients with Parkinson disease. Oral cannabinoids are of unknown efficacy in non-chorea-related symptoms of Huntington disease, Tourette syndrome, cervical dystonia, and epilepsy. The risks and benefits of medical marijuana should be weighed carefully. Risk of serious adverse psychopathologic effects was nearly 1%. Comparative effectiveness of medical marijuana vs other therapies is unknown for these indications.

  9. The Estimation of Tree Posterior Probabilities Using Conditional Clade Probability Distributions

    PubMed Central

    Larget, Bret

    2013-01-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample. [Bayesian phylogenetics; conditional clade distributions; improved accuracy; posterior probabilities of trees.] PMID:23479066

  10. Vertical changes in the probability distribution of downward irradiance within the near-surface ocean under sunny conditions

    NASA Astrophysics Data System (ADS)

    Gernez, Pierre; Stramski, Dariusz; Darecki, Miroslaw

    2011-07-01

    Time series measurements of fluctuations in underwater downward irradiance, Ed, within the green spectral band (532 nm) show that the probability distribution of instantaneous irradiance varies greatly as a function of depth within the near-surface ocean under sunny conditions. Because of intense light flashes caused by surface wave focusing, the near-surface probability distributions are highly skewed to the right and are heavy tailed. The coefficients of skewness and excess kurtosis at depths smaller than 1 m can exceed 3 and 20, respectively. We tested several probability models, such as lognormal, Gumbel, Fréchet, log-logistic, and Pareto, which are potentially suited to describe the highly skewed heavy-tailed distributions. We found that the models cannot approximate with consistently good accuracy the high irradiance values within the right tail of the experimental distribution where the probability of these values is less than 10%. This portion of the distribution corresponds approximately to light flashes with Ed > 1.5?, where ? is the time-averaged downward irradiance. However, the remaining part of the probability distribution covering all irradiance values smaller than the 90th percentile can be described with a reasonable accuracy (i.e., within 20%) with a lognormal model for all 86 measurements from the top 10 m of the ocean included in this analysis. As the intensity of irradiance fluctuations decreases with depth, the probability distribution tends toward a function symmetrical around the mean like the normal distribution. For the examined data set, the skewness and excess kurtosis assumed values very close to zero at a depth of about 10 m.

  11. Viscoelasticity, postseismic slip, fault interactions, and the recurrence of large earthquakes

    USGS Publications Warehouse

    Michael, A.J.

    2005-01-01

    The Brownian Passage Time (BPT) model for earthquake recurrence is modified to include transient deformation due to either viscoelasticity or deep post seismic slip. Both of these processes act to increase the rate of loading on the seismogenic fault for some time after a large event. To approximate these effects, a decaying exponential term is added to the BPT model's uniform loading term. The resulting interevent time distributions remain approximately lognormal, but the balance between the level of noise (e.g., unknown fault interactions) and the coefficient of variability of the interevent time distribution changes depending on the shape of the loading function. For a given level of noise in the loading process, transient deformation has the effect of increasing the coefficient of variability of earthquake interevent times. Conversely, the level of noise needed to achieve a given level of variability is reduced when transient deformation is included. Using less noise would then increase the effect of known fault interactions modeled as stress or strain steps because they would be larger with respect to the noise. If we only seek to estimate the shape of the interevent time distribution from observed earthquake occurrences, then the use of a transient deformation model will not dramatically change the results of a probability study because a similar shaped distribution can be achieved with either uniform or transient loading functions. However, if the goal is to estimate earthquake probabilities based on our increasing understanding of the seismogenic process, including earthquake interactions, then including transient deformation is important to obtain accurate results. For example, a loading curve based on the 1906 earthquake, paleoseismic observations of prior events, and observations of recent deformation in the San Francisco Bay region produces a 40% greater variability in earthquake recurrence than a uniform loading model with the same noise level.

  12. Appraisal of geodynamic inversion results: a data mining approach

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.

    2016-11-01

    Bayesian sampling based inversions require many thousands or even millions of forward models, depending on how nonlinear or non-unique the inverse problem is, and how many unknowns are involved. The result of such a probabilistic inversion is not a single `best-fit' model, but rather a probability distribution that is represented by the entire model ensemble. Often, a geophysical inverse problem is non-unique, and the corresponding posterior distribution is multimodal, meaning that the distribution consists of clusters with similar models that represent the observations equally well. In these cases, we would like to visualize the characteristic model properties within each of these clusters of models. However, even for a moderate number of inversion parameters, a manual appraisal for a large number of models is not feasible. This poses the question whether it is possible to extract end-member models that represent each of the best-fit regions including their uncertainties. Here, I show how a machine learning tool can be used to characterize end-member models, including their uncertainties, from a complete model ensemble that represents a posterior probability distribution. The model ensemble used here results from a nonlinear geodynamic inverse problem, where rheological properties of the lithosphere are constrained from multiple geophysical observations. It is demonstrated that by taking vertical cross-sections through the effective viscosity structure of each of the models, the entire model ensemble can be classified into four end-member model categories that have a similar effective viscosity structure. These classification results are helpful to explore the non-uniqueness of the inverse problem and can be used to compute representative data fits for each of the end-member models. Conversely, these insights also reveal how new observational constraints could reduce the non-uniqueness. The method is not limited to geodynamic applications and a generalized MATLAB code is provided to perform the appraisal analysis.

  13. Predicting the probability of slip in gait: methodology and distribution study.

    PubMed

    Gragg, Jared; Yang, James

    2016-01-01

    The likelihood of a slip is related to the available and required friction for a certain activity, here gait. Classical slip and fall analysis presumed that a walking surface was safe if the difference between the mean available and required friction coefficients exceeded a certain threshold. Previous research was dedicated to reformulating the classical slip and fall theory to include the stochastic variation of the available and required friction when predicting the probability of slip in gait. However, when predicting the probability of a slip, previous researchers have either ignored the variation in the required friction or assumed the available and required friction to be normally distributed. Also, there are no published results that actually give the probability of slip for various combinations of required and available frictions. This study proposes a modification to the equation for predicting the probability of slip, reducing the previous equation from a double-integral to a more convenient single-integral form. Also, a simple numerical integration technique is provided to predict the probability of slip in gait: the trapezoidal method. The effect of the random variable distributions on the probability of slip is also studied. It is shown that both the required and available friction distributions cannot automatically be assumed as being normally distributed. The proposed methods allow for any combination of distributions for the available and required friction, and numerical results are compared to analytical solutions for an error analysis. The trapezoidal method is shown to be highly accurate and efficient. The probability of slip is also shown to be sensitive to the input distributions of the required and available friction. Lastly, a critical value for the probability of slip is proposed based on the number of steps taken by an average person in a single day.

  14. Integrated-Circuit Pseudorandom-Number Generator

    NASA Technical Reports Server (NTRS)

    Steelman, James E.; Beasley, Jeff; Aragon, Michael; Ramirez, Francisco; Summers, Kenneth L.; Knoebel, Arthur

    1992-01-01

    Integrated circuit produces 8-bit pseudorandom numbers from specified probability distribution, at rate of 10 MHz. Use of Boolean logic, circuit implements pseudorandom-number-generating algorithm. Circuit includes eight 12-bit pseudorandom-number generators, outputs are uniformly distributed. 8-bit pseudorandom numbers satisfying specified nonuniform probability distribution are generated by processing uniformly distributed outputs of eight 12-bit pseudorandom-number generators through "pipeline" of D flip-flops, comparators, and memories implementing conditional probabilities on zeros and ones.

  15. The accumulation mechanism of the hypoxia imaging probe "FMISO" by imaging mass spectrometry: possible involvement of low-molecular metabolites.

    PubMed

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Tanaka, Yukari; Nishijima, Ken-Ichi; Zhao, Songji; Higashino, Kenichi; Sakamoto, Shingo; Numata, Yoshito; Yamaguchi, Yoshitaka; Tamaki, Nagara; Kuge, Yuji

    2015-11-19

    (18)F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules.

  16. Systematic search for major genes in schizophrenia: Methodological issues and results from chromosome 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, E.; Powell, J.F.; Sham, P.

    1995-10-09

    We describe a method of systematically searching for major genes in disorders of unknown mode of inheritance, using linkage analysis. Our method is designed to minimize the probability of missing linkage due to inadequate exploration of data. We illustrate this method with the results of a search for a locus for schizophrenia on chromosome 12 using 22 highly polymorphic markers in 23 high density pedigrees. The markers span approximately 85-90% of the chromosome and are on average 9.35 cM apart. We have analysed the data using the most plausible current genetic models and allowing for the presence of genetic heterogeneity.more » None of the markers was supportive of linkage and the distribution of the heterogeneity statistics was in accordance with the null hypothesis. 53 refs., 2 figs., 4 tabs.« less

  17. Cyber-Physical Trade-Offs in Distributed Detection Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Yao, David K. Y.; Chin, J. C.

    2010-01-01

    We consider a network of sensors that measure the scalar intensity due to the background or a source combined with background, inside a two-dimensional monitoring area. The sensor measurements may be random due to the underlying nature of the source and background or due to sensor errors or both. The detection problem is infer the presence of a source of unknown intensity and location based on sensor measurements. In the conventional approach, detection decisions are made at the individual sensors, which are then combined at the fusion center, for example using the majority rule. With increased communication and computation costs,more » we show that a more complex fusion algorithm based on measurements achieves better detection performance under smooth and non-smooth source intensity functions, Lipschitz conditions on probability ratios and a minimum packing number for the state-space. We show that these conditions for trade-offs between the cyber costs and physical detection performance are applicable for two detection problems: (i) point radiation sources amidst background radiation, and (ii) sources and background with Gaussian distributions.« less

  18. Variational Bayesian Inversion of Quasi-Localized Seismic Attributes for the Spatial Distribution of Geological Facies

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad Atif; Curtis, Andrew

    2018-04-01

    We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.

  19. Affecting the supply of rural physicians.

    PubMed Central

    Cooper, J K; Heald, K; Samuels, M

    1977-01-01

    A model describing physician supply and distribution is described. Two surveys obtained information to examine elements of the model. The first survey identified a group of primary care physicians that had considered rural locations but ultimately selected an urban location. This sub-group, 29 per cent of the primary care supply pool, received a follow-up survey to provide more information about how they made their choice. About one-half of them finally chose on the basis of factors other than metropolitan/non-metropolitan considerations. For this half, some of the factors that entered into the decision were the availability of physician specialists, nearby hospital facilities, and access to medical school programs. Such factors could be affected by future policy decisions, but the cost is unknown. Even if such policy decisions were made, and appropriate programs instituted, the results would probably not solve the problem of disproportionate physician distribution. The most likely-to-succeed approach to increasing the number of rural physicians remains that of increasing the number of entrants to medical school with a rural background. PMID:888993

  20. Canopy Spectral Invariants. Part 2; Application to Classification of Forest Types from Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Schull, M. A.; Knyazikhin, Y.; Xu, L.; Samanta, A.; Carmona, P. L.; Lepine, L.; Jenkins, J. P.; Ganguly, S.; Myneni, R. B.

    2011-01-01

    Many studies have been conducted to demonstrate the ability of hyperspectral data to discriminate plant dominant species. Most of them have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing or unknown land cover. In this paper we propose a physically based approach for separation of dominant forest type using hyperspectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy reflectance in terms of the leaf spectral scattering and two spectrally invariant and structurally varying variables - recollision and directional escape probabilities. The methodology is based on the idea of retrieving spectrally invariant parameters from hyperspectral data first, and then relating their values to structural characteristics of three-dimensional canopy structure. Theoretical and empirical analyses of ground and airborne data acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over two sites in New England, USA, suggest that the canopy spectral invariants convey information about canopy structure at both the macro- and micro-scales. The total escape probability (one minus recollision probability) varies as a power function with the exponent related to the number of nested hierarchical levels present in the pixel. Its base is a geometrical mean of the local total escape probabilities and accounts for the cumulative effect of canopy structure over a wide range of scales. The ratio of the directional to the total escape probability becomes independent of the number of hierarchical levels and is a function of the canopy structure at the macro-scale such as tree spatial distribution, crown shape and size, within-crown foliage density and ground cover. These properties allow for the natural separation of dominant forest classes based on the location of points on the total escape probability vs the ratio log-log plane.

  1. A reversible-jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Mandolesi, Eric; Ogaya, Xenia; Campanyà, Joan; Piana Agostinetti, Nicola

    2018-04-01

    This paper presents a new computer code developed to solve the 1D magnetotelluric (MT) inverse problem using a Bayesian trans-dimensional Markov chain Monte Carlo algorithm. MT data are sensitive to the depth-distribution of rock electric conductivity (or its reciprocal, resistivity). The solution provided is a probability distribution - the so-called posterior probability distribution (PPD) for the conductivity at depth, together with the PPD of the interface depths. The PPD is sampled via a reversible-jump Markov Chain Monte Carlo (rjMcMC) algorithm, using a modified Metropolis-Hastings (MH) rule to accept or discard candidate models along the chains. As the optimal parameterization for the inversion process is generally unknown a trans-dimensional approach is used to allow the dataset itself to indicate the most probable number of parameters needed to sample the PPD. The algorithm is tested against two simulated datasets and a set of MT data acquired in the Clare Basin (County Clare, Ireland). For the simulated datasets the correct number of conductive layers at depth and the associated electrical conductivity values is retrieved, together with reasonable estimates of the uncertainties on the investigated parameters. Results from the inversion of field measurements are compared with results obtained using a deterministic method and with well-log data from a nearby borehole. The PPD is in good agreement with the well-log data, showing as a main structure a high conductive layer associated with the Clare Shale formation. In this study, we demonstrate that our new code go beyond algorithms developend using a linear inversion scheme, as it can be used: (1) to by-pass the subjective choices in the 1D parameterizations, i.e. the number of horizontal layers in the 1D parameterization, and (2) to estimate realistic uncertainties on the retrieved parameters. The algorithm is implemented using a simple MPI approach, where independent chains run on isolated CPU, to take full advantage of parallel computer architectures. In case of a large number of data, a master/slave appoach can be used, where the master CPU samples the parameter space and the slave CPUs compute forward solutions.

  2. Bivariate normal, conditional and rectangular probabilities: A computer program with applications

    NASA Technical Reports Server (NTRS)

    Swaroop, R.; Brownlow, J. D.; Ashwworth, G. R.; Winter, W. R.

    1980-01-01

    Some results for the bivariate normal distribution analysis are presented. Computer programs for conditional normal probabilities, marginal probabilities, as well as joint probabilities for rectangular regions are given: routines for computing fractile points and distribution functions are also presented. Some examples from a closed circuit television experiment are included.

  3. Assessment of source probabilities for potential tsunamis affecting the U.S. Atlantic coast

    USGS Publications Warehouse

    Geist, E.L.; Parsons, T.

    2009-01-01

    Estimating the likelihood of tsunamis occurring along the U.S. Atlantic coast critically depends on knowledge of tsunami source probability. We review available information on both earthquake and landslide probabilities from potential sources that could generate local and transoceanic tsunamis. Estimating source probability includes defining both size and recurrence distributions for earthquakes and landslides. For the former distribution, source sizes are often distributed according to a truncated or tapered power-law relationship. For the latter distribution, sources are often assumed to occur in time according to a Poisson process, simplifying the way tsunami probabilities from individual sources can be aggregated. For the U.S. Atlantic coast, earthquake tsunami sources primarily occur at transoceanic distances along plate boundary faults. Probabilities for these sources are constrained from previous statistical studies of global seismicity for similar plate boundary types. In contrast, there is presently little information constraining landslide probabilities that may generate local tsunamis. Though there is significant uncertainty in tsunami source probabilities for the Atlantic, results from this study yield a comparative analysis of tsunami source recurrence rates that can form the basis for future probabilistic analyses.

  4. Multinomial mixture model with heterogeneous classification probabilities

    USGS Publications Warehouse

    Holland, M.D.; Gray, B.R.

    2011-01-01

    Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.

  5. How many species of flowering plants are there?

    PubMed Central

    Joppa, Lucas N.; Roberts, David L.; Pimm, Stuart L.

    2011-01-01

    We estimate the probable number of flowering plants. First, we apply a model that explicitly incorporates taxonomic effort over time to estimate the number of as-yet-unknown species. Second, we ask taxonomic experts their opinions on how many species are likely to be missing, on a family-by-family basis. The results are broadly comparable. We show that the current number of species should grow by between 10 and 20 per cent. There are, however, interesting discrepancies between expert and model estimates for some families, suggesting that our model does not always completely capture patterns of taxonomic activity. The as-yet-unknown species are probably similar to those taxonomists have described recently—overwhelmingly rare and local, and disproportionately in biodiversity hotspots, where there are high levels of habitat destruction. PMID:20610425

  6. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friar, James Lewis; Goldman, Terrance J.; Pérez-Mercader, J.

    In this paper, we apply the Law of Total Probability to the construction of scale-invariant probability distribution functions (pdf's), and require that probability measures be dimensionless and unitless under a continuous change of scales. If the scale-change distribution function is scale invariant then the constructed distribution will also be scale invariant. Repeated application of this construction on an arbitrary set of (normalizable) pdf's results again in scale-invariant distributions. The invariant function of this procedure is given uniquely by the reciprocal distribution, suggesting a kind of universality. Finally, we separately demonstrate that the reciprocal distribution results uniquely from requiring maximum entropymore » for size-class distributions with uniform bin sizes.« less

  8. Positive phase space distributions and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kruger, Jan

    1993-01-01

    In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.

  9. Ubiquity of Benford's law and emergence of the reciprocal distribution

    DOE PAGES

    Friar, James Lewis; Goldman, Terrance J.; Pérez-Mercader, J.

    2016-04-07

    In this paper, we apply the Law of Total Probability to the construction of scale-invariant probability distribution functions (pdf's), and require that probability measures be dimensionless and unitless under a continuous change of scales. If the scale-change distribution function is scale invariant then the constructed distribution will also be scale invariant. Repeated application of this construction on an arbitrary set of (normalizable) pdf's results again in scale-invariant distributions. The invariant function of this procedure is given uniquely by the reciprocal distribution, suggesting a kind of universality. Finally, we separately demonstrate that the reciprocal distribution results uniquely from requiring maximum entropymore » for size-class distributions with uniform bin sizes.« less

  10. Spatial Probability Distribution of Strata's Lithofacies and its Impacts on Land Subsidence in Huairou Emergency Water Resources Region of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gong, H.; Zhu, L.; Guo, L.; Gao, M.; Zhou, C.

    2016-12-01

    Continuous over-exploitation of groundwater causes dramatic drawdown, and leads to regional land subsidence in the Huairou Emergency Water Resources region, which is located in the up-middle part of the Chaobai river basin of Beijing. Owing to the spatial heterogeneity of strata's lithofacies of the alluvial fan, ground deformation has no significant positive correlation with groundwater drawdown, and one of the challenges ahead is to quantify the spatial distribution of strata's lithofacies. The transition probability geostatistics approach provides potential for characterizing the distribution of heterogeneous lithofacies in the subsurface. Combined the thickness of clay layer extracted from the simulation, with deformation field acquired from PS-InSAR technology, the influence of strata's lithofacies on land subsidence can be analyzed quantitatively. The strata's lithofacies derived from borehole data were generalized into four categories and their probability distribution in the observe space was mined by using the transition probability geostatistics, of which clay was the predominant compressible material. Geologically plausible realizations of lithofacies distribution were produced, accounting for complex heterogeneity in alluvial plain. At a particular probability level of more than 40 percent, the volume of clay defined was 55 percent of the total volume of strata's lithofacies. This level, equaling nearly the volume of compressible clay derived from the geostatistics, was thus chosen to represent the boundary between compressible and uncompressible material. The method incorporates statistical geological information, such as distribution proportions, average lengths and juxtaposition tendencies of geological types, mainly derived from borehole data and expert knowledge, into the Markov chain model of transition probability. Some similarities of patterns were indicated between the spatial distribution of deformation field and clay layer. In the area with roughly similar water table decline, locations in the subsurface having a higher probability for the existence of compressible material occur more than that in the location with a lower probability. Such estimate of spatial probability distribution is useful to analyze the uncertainty of land subsidence.

  11. The exact probability distribution of the rank product statistics for replicated experiments.

    PubMed

    Eisinga, Rob; Breitling, Rainer; Heskes, Tom

    2013-03-18

    The rank product method is a widely accepted technique for detecting differentially regulated genes in replicated microarray experiments. To approximate the sampling distribution of the rank product statistic, the original publication proposed a permutation approach, whereas recently an alternative approximation based on the continuous gamma distribution was suggested. However, both approximations are imperfect for estimating small tail probabilities. In this paper we relate the rank product statistic to number theory and provide a derivation of its exact probability distribution and the true tail probabilities. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models.

    PubMed

    Garcia, Tanya P; Ma, Yanyuan

    2017-10-01

    We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- n consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.

  13. Modeling the probability distribution of peak discharge for infiltrating hillslopes

    NASA Astrophysics Data System (ADS)

    Baiamonte, Giorgio; Singh, Vijay P.

    2017-07-01

    Hillslope response plays a fundamental role in the prediction of peak discharge at the basin outlet. The peak discharge for the critical duration of rainfall and its probability distribution are needed for designing urban infrastructure facilities. This study derives the probability distribution, denoted as GABS model, by coupling three models: (1) the Green-Ampt model for computing infiltration, (2) the kinematic wave model for computing discharge hydrograph from the hillslope, and (3) the intensity-duration-frequency (IDF) model for computing design rainfall intensity. The Hortonian mechanism for runoff generation is employed for computing the surface runoff hydrograph. Since the antecedent soil moisture condition (ASMC) significantly affects the rate of infiltration, its effect on the probability distribution of peak discharge is investigated. Application to a watershed in Sicily, Italy, shows that with the increase of probability, the expected effect of ASMC to increase the maximum discharge diminishes. Only for low values of probability, the critical duration of rainfall is influenced by ASMC, whereas its effect on the peak discharge seems to be less for any probability. For a set of parameters, the derived probability distribution of peak discharge seems to be fitted by the gamma distribution well. Finally, an application to a small watershed, with the aim to test the possibility to arrange in advance the rational runoff coefficient tables to be used for the rational method, and a comparison between peak discharges obtained by the GABS model with those measured in an experimental flume for a loamy-sand soil were carried out.

  14. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Constructing inverse probability weights for continuous exposures: a comparison of methods.

    PubMed

    Naimi, Ashley I; Moodie, Erica E M; Auger, Nathalie; Kaufman, Jay S

    2014-03-01

    Inverse probability-weighted marginal structural models with binary exposures are common in epidemiology. Constructing inverse probability weights for a continuous exposure can be complicated by the presence of outliers, and the need to identify a parametric form for the exposure and account for nonconstant exposure variance. We explored the performance of various methods to construct inverse probability weights for continuous exposures using Monte Carlo simulation. We generated two continuous exposures and binary outcomes using data sampled from a large empirical cohort. The first exposure followed a normal distribution with homoscedastic variance. The second exposure followed a contaminated Poisson distribution, with heteroscedastic variance equal to the conditional mean. We assessed six methods to construct inverse probability weights using: a normal distribution, a normal distribution with heteroscedastic variance, a truncated normal distribution with heteroscedastic variance, a gamma distribution, a t distribution (1, 3, and 5 degrees of freedom), and a quantile binning approach (based on 10, 15, and 20 exposure categories). We estimated the marginal odds ratio for a single-unit increase in each simulated exposure in a regression model weighted by the inverse probability weights constructed using each approach, and then computed the bias and mean squared error for each method. For the homoscedastic exposure, the standard normal, gamma, and quantile binning approaches performed best. For the heteroscedastic exposure, the quantile binning, gamma, and heteroscedastic normal approaches performed best. Our results suggest that the quantile binning approach is a simple and versatile way to construct inverse probability weights for continuous exposures.

  17. A note on approximate teleportation of an unknown atomic state in the two-photon Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    dSouza, A. D.; Cardoso, W. B.; Avelar, A. T.; Baseia, B.

    2009-04-01

    We consider recent schemes [J.M. Liu, B. Weng, Physica A 367 (2006) 215] to teleport unknown atomic states and superposition of zero- and two-photon states using the two-photon Jaynes-Cummings model. Here we do the same using the “full two-photon Jaynes-Cumming”, valid for arbitrary average number of photons. The success probability and fidelity of this teleportation are also considered.

  18. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.

    PubMed

    Neuwald, Andrew F; Altschul, Stephen F

    2016-12-01

    Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).

  19. Subduction controls the distribution and fragmentation of Earth’s tectonic plates.

    PubMed

    Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J

    2016-07-07

    The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

  20. Use of the negative binomial-truncated Poisson distribution in thunderstorm prediction

    NASA Technical Reports Server (NTRS)

    Cohen, A. C.

    1971-01-01

    A probability model is presented for the distribution of thunderstorms over a small area given that thunderstorm events (1 or more thunderstorms) are occurring over a larger area. The model incorporates the negative binomial and truncated Poisson distributions. Probability tables for Cape Kennedy for spring, summer, and fall months and seasons are presented. The computer program used to compute these probabilities is appended.

  1. Analytic Approximations to the Free Boundary and Multi-dimensional Problems in Financial Derivatives Pricing

    NASA Astrophysics Data System (ADS)

    Lau, Chun Sing

    This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in closed form. Numerical examples demonstrate that the pricing and hedging errors are in general less than 1% relative to the benchmark prices obtained by numerical integration or Monte Carlo simulation. By exploiting an explicit relationship between the option price and the underlying probability distribution, we further derive an approximate distribution function for the general basket-spread variable. It can be used to approximate the transition probability distribution of any linear combination of correlated GBMs. Finally, an implicit perturbation is applied to reduce the pricing errors by factors of up to 100. When compared against the existing methods, the basket-spread option formula coupled with the implicit perturbation turns out to be one of the most robust and accurate approximation methods.

  2. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    NASA Astrophysics Data System (ADS)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-12-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  3. Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems.

    PubMed

    Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu

    2015-09-01

    In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.

  4. Probability Distribution of Turbulent Kinetic Energy Dissipation Rate in Ocean: Observations and Approximations

    NASA Astrophysics Data System (ADS)

    Lozovatsky, I.; Fernando, H. J. S.; Planella-Morato, J.; Liu, Zhiyu; Lee, J.-H.; Jinadasa, S. U. P.

    2017-10-01

    The probability distribution of turbulent kinetic energy dissipation rate in stratified ocean usually deviates from the classic lognormal distribution that has been formulated for and often observed in unstratified homogeneous layers of atmospheric and oceanic turbulence. Our measurements of vertical profiles of micro-scale shear, collected in the East China Sea, northern Bay of Bengal, to the south and east of Sri Lanka, and in the Gulf Stream region, show that the probability distributions of the dissipation rate ɛ˜r in the pycnoclines (r ˜ 1.4 m is the averaging scale) can be successfully modeled by the Burr (type XII) probability distribution. In weakly stratified boundary layers, lognormal distribution of ɛ˜r is preferable, although the Burr is an acceptable alternative. The skewness Skɛ and the kurtosis Kɛ of the dissipation rate appear to be well correlated in a wide range of Skɛ and Kɛ variability.

  5. Design of a DNA chip for detection of unknown genetically modified organisms (GMOs).

    PubMed

    Nesvold, Håvard; Kristoffersen, Anja Bråthen; Holst-Jensen, Arne; Berdal, Knut G

    2005-05-01

    Unknown genetically modified organisms (GMOs) have not undergone a risk evaluation, and hence might pose a danger to health and environment. There are, today, no methods for detecting unknown GMOs. In this paper we propose a novel method intended as a first step in an approach for detecting unknown genetically modified (GM) material in a single plant. A model is designed where biological and combinatorial reduction rules are applied to a set of DNA chip probes containing all possible sequences of uniform length n, creating probes capable of detecting unknown GMOs. The model is theoretically tested for Arabidopsis thaliana Columbia, and the probabilities for detecting inserts and receiving false positives are assessed for various parameters for this organism. From a theoretical standpoint, the model looks very promising but should be tested further in the laboratory. The model and algorithms will be available upon request to the corresponding author.

  6. Adaptive Sequential Monte Carlo for Multiple Changepoint Analysis

    DOE PAGES

    Heard, Nicholas A.; Turcotte, Melissa J. M.

    2016-05-21

    Process monitoring and control requires detection of structural changes in a data stream in real time. This paper introduces an efficient sequential Monte Carlo algorithm designed for learning unknown changepoints in continuous time. The method is intuitively simple: new changepoints for the latest window of data are proposed by conditioning only on data observed since the most recent estimated changepoint, as these observations carry most of the information about the current state of the process. The proposed method shows improved performance over the current state of the art. Another advantage of the proposed algorithm is that it can be mademore » adaptive, varying the number of particles according to the apparent local complexity of the target changepoint probability distribution. This saves valuable computing time when changes in the changepoint distribution are negligible, and enables re-balancing of the importance weights of existing particles when a significant change in the target distribution is encountered. The plain and adaptive versions of the method are illustrated using the canonical continuous time changepoint problem of inferring the intensity of an inhomogeneous Poisson process, although the method is generally applicable to any changepoint problem. Performance is demonstrated using both conjugate and non-conjugate Bayesian models for the intensity. Lastly, appendices to the article are available online, illustrating the method on other models and applications.« less

  7. A Class of Population Covariance Matrices in the Bootstrap Approach to Covariance Structure Analysis

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Hayashi, Kentaro; Yanagihara, Hirokazu

    2007-01-01

    Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given…

  8. Prescribed performance distributed consensus control for nonlinear multi-agent systems with unknown dead-zone input

    NASA Astrophysics Data System (ADS)

    Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang

    2018-05-01

    In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.

  9. A Cooperative Search and Coverage Algorithm with Controllable Revisit and Connectivity Maintenance for Multiple Unmanned Aerial Vehicles.

    PubMed

    Liu, Zhong; Gao, Xiaoguang; Fu, Xiaowei

    2018-05-08

    In this paper, we mainly study a cooperative search and coverage algorithm for a given bounded rectangle region, which contains several unknown stationary targets, by a team of unmanned aerial vehicles (UAVs) with non-ideal sensors and limited communication ranges. Our goal is to minimize the search time, while gathering more information about the environment and finding more targets. For this purpose, a novel cooperative search and coverage algorithm with controllable revisit mechanism is presented. Firstly, as the representation of the environment, the cognitive maps that included the target probability map (TPM), the uncertain map (UM), and the digital pheromone map (DPM) are constituted. We also design a distributed update and fusion scheme for the cognitive map. This update and fusion scheme can guarantee that each one of the cognitive maps converges to the same one, which reflects the targets’ true existence or absence in each cell of the search region. Secondly, we develop a controllable revisit mechanism based on the DPM. This mechanism can concentrate the UAVs to revisit sub-areas that have a large target probability or high uncertainty. Thirdly, in the frame of distributed receding horizon optimizing, a path planning algorithm for the multi-UAVs cooperative search and coverage is designed. In the path planning algorithm, the movement of the UAVs is restricted by the potential fields to meet the requirements of avoiding collision and maintaining connectivity constraints. Moreover, using the minimum spanning tree (MST) topology optimization strategy, we can obtain a tradeoff between the search coverage enhancement and the connectivity maintenance. The feasibility of the proposed algorithm is demonstrated by comparison simulations by way of analyzing the effects of the controllable revisit mechanism and the connectivity maintenance scheme. The Monte Carlo method is employed to validate the influence of the number of UAVs, the sensing radius, the detection and false alarm probabilities, and the communication range on the proposed algorithm.

  10. Why Waveform Correlation Sometimes Fails

    NASA Astrophysics Data System (ADS)

    Carmichael, J.

    2015-12-01

    Waveform correlation detectors used in explosion monitoring scan noisy geophysical data to test two competing hypotheses: either (1) an amplitude-scaled version of a template waveform is present, or, (2) no signal is present at all. In reality, geophysical wavefields that are monitored for explosion signatures include waveforms produced by non-target sources that are partially correlated with the waveform template. Such signals can falsely trigger correlation detectors, particularly at low thresholds required to monitor for smaller target explosions. This challenge is particularly formidable when monitoring known test sites for seismic disturbances, since uncatalogued natural seismicity is (generally) more prevalent at lower magnitudes, and could be mistaken for small explosions. To address these challenges, we identify real examples in which correlation detectors targeting explosions falsely trigger on both site-proximal earthquakes (Figure 1, below) and microseismic "noise". Motivated by these examples, we quantify performance loss when applying these detectors, and re-evaluate the correlation-detector's hypothesis test. We thereby derive new detectors from more general hypotheses that admit unknown background seismicity, and apply these to real data. From our treatment, we derive "rules of thumb'' for proper template and threshold selection in heavily cluttered signal environments. Last, we answer the question "what is the probability of falsely detecting an earthquake collocated at a test site?", using correlation detectors that include explosion-triggered templates. Figure Top: An eight-channel data stream (black) recorded from an earthquake near a mine. Red markers indicate a detection. Middle: The correlation statistic computed by scanning the template against the data stream at top. The red line indicates the threshold for event declaration, determined by a false-alarm on noise probability constraint, as computed from the signal-absent distribution using the Neyman Pearson criteria. Bottom: The histogram of the correlation statistic time series (gray) superimposed on the theoretical null distribution (black curve). The line shows the threshold, consistent with a right-tail probability, computed from the black curve.

  11. Evaluation of the Three Parameter Weibull Distribution Function for Predicting Fracture Probability in Composite Materials

    DTIC Science & Technology

    1978-03-01

    for the risk of rupture for a unidirectionally laminat - ed composite subjected to pure bending. (5D This equation can be simplified further by use of...C EVALUATION OF THE THREE PARAMETER WEIBULL DISTRIBUTION FUNCTION FOR PREDICTING FRACTURE PROBABILITY IN COMPOSITE MATERIALS. THESIS / AFIT/GAE...EVALUATION OF THE THREE PARAMETER WE1BULL DISTRIBUTION FUNCTION FOR PREDICTING FRACTURE PROBABILITY IN COMPOSITE MATERIALS THESIS Presented

  12. Sparse graph regularization for robust crop mapping using hyperspectral remotely sensed imagery with very few in situ data

    NASA Astrophysics Data System (ADS)

    Xue, Zhaohui; Du, Peijun; Li, Jun; Su, Hongjun

    2017-02-01

    The generally limited availability of training data relative to the usually high data dimension pose a great challenge to accurate classification of hyperspectral imagery, especially for identifying crops characterized with highly correlated spectra. However, traditional parametric classification models are problematic due to the need of non-singular class-specific covariance matrices. In this research, a novel sparse graph regularization (SGR) method is presented, aiming at robust crop mapping using hyperspectral imagery with very few in situ data. The core of SGR lies in propagating labels from known data to unknown, which is triggered by: (1) the fraction matrix generated for the large unknown data by using an effective sparse representation algorithm with respect to the few training data serving as the dictionary; (2) the prediction function estimated for the few training data by formulating a regularization model based on sparse graph. Then, the labels of large unknown data can be obtained by maximizing the posterior probability distribution based on the two ingredients. SGR is more discriminative, data-adaptive, robust to noise, and efficient, which is unique with regard to previously proposed approaches and has high potentials in discriminating crops, especially when facing insufficient training data and high-dimensional spectral space. The study area is located at Zhangye basin in the middle reaches of Heihe watershed, Gansu, China, where eight crop types were mapped with Compact Airborne Spectrographic Imager (CASI) and Shortwave Infrared Airborne Spectrogrpahic Imager (SASI) hyperspectral data. Experimental results demonstrate that the proposed method significantly outperforms other traditional and state-of-the-art methods.

  13. Prioritizing Project Risks Using AHP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibadeau, Barbara M

    2007-01-01

    This essay introduces the Analytic Hierarchy Process (AHP) as a method by which to rank project risks, in terms of importance as well as likelihood. AHP is way to handle quantifiable and/or intangible criteria in the decision making process. It is a multi-objective multi-criteria decision-making approach that is based on the idea of pair-wise comparisons of alternatives with respect to a given criterion (e.g., which alternative, A or B, is preferred and by how much more is it preferred) or with respect to an objective (e.g., which is more important, A or B, and by how much more is itmore » important). This approach was pioneered by Thomas Saaty in the late 1970's. It has been suggested that a successful project is one that successfully manages risk and that project management is the management of uncertainty. Risk management relies on the quantification of uncertainty which, in turn, is predicated upon the accuracy of probabilistic approaches (in terms of likelihood as well as magnitude). In many cases, the appropriate probability distribution (or probability value) is unknown. And, researchers have shown that probability values are not made very accurately, that the use of verbal expressions is not a suitable alternative, that there is great variability in the use and interpretation of these values and that there is a great reluctance to assign them in the first place. Data from an ongoing project is used to show that AHP can be used to obtain these values, thus overcoming some of the problems associated with the direct assignment of discrete probability values. A novel method by which to calculate the consistency of the data is introduced. The AHP approach is easily implemented and, typically, offers results that are consistent with the decision maker's intuition.« less

  14. Distribution and movements of female northern pintails radiotagged in San Joaquin Valley, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Jarvis, Robert L.; Gilmer, David S.

    2002-01-01

    To improve understanding of northern pintail (Anas acuta) distribution in central California (CCA), we radiotagged 191 Hatch-Year (HY) and 228 After-Hatch-Year (AHY) female northern pintails during late August-early October, 1991-1993, in the San Joaquin Valley (SJV) and studied their movements through March each year. Nearly all (94.3%) wintered in CCA, but 5.7% went to southern California, Mexico, or unknown areas; all that went south left before hunting season. Of the 395 radiotagged pintails that wintered in CCA, 83% flew from the SJV north to other CCA areas (i.e., Sacramento Valley [SACV], Sacramento-San Joaquin River Delta [Delta], Suisun Marsh, San Francisco Bay) during September-January; most went during December. Movements coincid- ed with start of hunting seasons and were related to pintail age, mass, capture location, study year, and weather. Among pintails with less than average mass, AHY individuals tended to leave the SJV earlier than HY individuals. Weekly distribution was similar among capture locations and years but a greater percentage of pintails radiotagged in Tulare Basin (south part of SJV) were known to have (10.3% vs. 0.9%) or probably (13.8% vs. 4.6%) wintered south of CCA than pintails radiotagged in northern SJV areas (i.e., Grassland Ecological Area [EA] and Mendota Wildlife Area [WA]). Also, a greater percentage of SJV pintails went to other CCA areas before hunting season in the drought year of 1991-1992 than later years (10% vs. 3-5%). The percent of radiotagged pintails from Grass- land EA known to have gone south of CCA also was greater during 1991-1992 than later years (2% vs. 0%), but both the known (19% vs. 4%) and probable (23% vs. 12%) percent from Tulare Basin that went south was greatest during 1993-1994, when availability of flooded fields there was lowest. The probability of pintails leaving the SJV was 57% (95% CI = 8-127%) greater on days with than without rain, and more movements per bird out of SJV occurred in years with more rain and fog but fewer days with southerly winds. Movements by pintails and changes in pintail distributions, direct recovery distributions, and harvest rates suggest the disproportionate decline of pin- tails in Tulare Basin was due to a lower percentage of pintails moving there in fall and a greater percentage or ear- lier movements north and south out of Tulare Basin. With fewer in Tulare Basin to replace Grasslands EA pintails going north in December, pintail abundance in the northern SJV declined during late winter. Changes in move- ment patterns correspond to habitat loss in Tulare Basin and increased habitats in SACV and western mainland Mexico. Habitat improvements, especially in Tulare Basin, that increase food, sanctuary, and winter survival would probably help restore pintails throughout the SJV.

  15. Probabilistic Teleportation of Two-Particle State of General Formation

    NASA Astrophysics Data System (ADS)

    Yan, Feng-Li; Tan, Hong-Ge; Yang, Lin-Guang

    2002-06-01

    A scheme for probabilistic teleporting an unknown two-particle state of general formation by partly pure entangled four-particle state is proposed. It is shown that after performing two Bell state measurements, proper unitary transformation and the measurement on an auxiliary qubit, the unknown two-particle state of general formation, which was destroyed at one place, can be reconstructed at another place with certain probability. The project supported by Natural Science Foundation of Hebei Province of China

  16. Bivariate extreme value distributions

    NASA Technical Reports Server (NTRS)

    Elshamy, M.

    1992-01-01

    In certain engineering applications, such as those occurring in the analyses of ascent structural loads for the Space Transportation System (STS), some of the load variables have a lower bound of zero. Thus, the need for practical models of bivariate extreme value probability distribution functions with lower limits was identified. We discuss the Gumbel models and present practical forms of bivariate extreme probability distributions of Weibull and Frechet types with two parameters. Bivariate extreme value probability distribution functions can be expressed in terms of the marginal extremel distributions and a 'dependence' function subject to certain analytical conditions. Properties of such bivariate extreme distributions, sums and differences of paired extremals, as well as the corresponding forms of conditional distributions, are discussed. Practical estimation techniques are also given.

  17. Eruption probabilities for the Lassen Volcanic Center and regional volcanism, northern California, and probabilities for large explosive eruptions in the Cascade Range

    USGS Publications Warehouse

    Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick

    2012-01-01

    Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving more confidence in the estimate, and we use those data to calculate the annual probability of a large eruption in the next year at 1.4x10-5.

  18. Improved mapping of radio sources from VLBI data by least-square fit

    NASA Technical Reports Server (NTRS)

    Rodemich, E. R.

    1985-01-01

    A method is described for producing improved mapping of radio sources from Very Long Base Interferometry (VLBI) data. The method described is more direct than existing Fourier methods, is often more accurate, and runs at least as fast. The visibility data is modeled here, as in existing methods, as a function of the unknown brightness distribution and the unknown antenna gains and phases. These unknowns are chosen so that the resulting function values are as near as possible to the observed values. If researchers use the radio mapping source deviation to measure the closeness of this fit to the observed values, they are led to the problem of minimizing a certain function of all the unknown parameters. This minimization problem cannot be solved directly, but it can be attacked by iterative methods which we show converge automatically to the minimum with no user intervention. The resulting brightness distribution will furnish the best fit to the data among all brightness distributions of given resolution.

  19. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbert, P.; Authier, N.; Richard, B.

    2012-07-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present themore » point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)« less

  20. Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension

    NASA Astrophysics Data System (ADS)

    Malakar, Kanaya; Jemseena, V.; Kundu, Anupam; Vijay Kumar, K.; Sabhapandit, Sanjib; Majumdar, Satya N.; Redner, S.; Dhar, Abhishek

    2018-04-01

    We investigate the motion of a run-and-tumble particle (RTP) in one dimension. We find the exact probability distribution of the particle with and without diffusion on the infinite line, as well as in a finite interval. In the infinite domain, this probability distribution approaches a Gaussian form in the long-time limit, as in the case of a regular Brownian particle. At intermediate times, this distribution exhibits unexpected multi-modal forms. In a finite domain, the probability distribution reaches a steady-state form with peaks at the boundaries, in contrast to a Brownian particle. We also study the relaxation to the steady-state analytically. Finally we compute the survival probability of the RTP in a semi-infinite domain with an absorbing boundary condition at the origin. In the finite interval, we compute the exit probability and the associated exit times. We provide numerical verification of our analytical results.

  1. Fitness Probability Distribution of Bit-Flip Mutation.

    PubMed

    Chicano, Francisco; Sutton, Andrew M; Whitley, L Darrell; Alba, Enrique

    2015-01-01

    Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to optimize functions over binary strings. In this paper, we develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. We also discuss a connection of the results with runtime analysis.

  2. Rendezvous with connectivity preservation for multi-robot systems with an unknown leader

    NASA Astrophysics Data System (ADS)

    Dong, Yi

    2018-02-01

    This paper studies the leader-following rendezvous problem with connectivity preservation for multi-agent systems composed of uncertain multi-robot systems subject to external disturbances and an unknown leader, both of which are generated by a so-called exosystem with parametric uncertainty. By combining internal model design, potential function technique and adaptive control, two distributed control strategies are proposed to maintain the connectivity of the communication network, to achieve the asymptotic tracking of all the followers to the output of the unknown leader system, as well as to reject unknown external disturbances. It is also worth to mention that the uncertain parameters in the multi-robot systems and exosystem are further allowed to belong to unknown and unbounded sets when applying the second fully distributed control law containing a dynamic gain inspired by high-gain adaptive control or self-tuning regulator.

  3. On selecting a prior for the precision parameter of Dirichlet process mixture models

    USGS Publications Warehouse

    Dorazio, R.M.

    2009-01-01

    In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter ?? and a base probability measure G0. In problems where ?? is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for ??. In this paper an approach is developed for computing a prior for the precision parameter ?? that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior.

  4. A survey for red varibles INT he LMC - II

    NASA Astrophysics Data System (ADS)

    Reid, Neill; Glass, I. S.; Catchpole, R. M.

    1988-05-01

    Infrared photometry of a sample of 126 variables drawn from a 16 sq deg area of the northern LMC is presented. Most of these stars were previously unknown and the majority prove the be long period red-giant variables. Most of the latter stars fall within two groups in the /K(0), log(P)/ diagram, the lower luminosity ones being Miras which obey a definite period-luminosity relation. Using the latter stars as distance estimators is discussed. The /M(bol), P/ diagram is compared with the theoretical tracks calculated by Wood, Bessell & Fox (1983), and it is found that the distribution of stars is probably consistent with a lull in star formation in the LMC from about 10 to the 9th - 2 x 10 to the 8th yr ago, although this conclusion depends strongly on the luminosity at which stars of different initial mass enter the thermally pulsing AGB.

  5. Universal entrainment mechanism controls contact times with motile cells

    NASA Astrophysics Data System (ADS)

    Mathijssen, Arnold J. T. M.; Jeanneret, Raphaël; Polin, Marco

    2018-03-01

    Contact between particles and motile cells underpins a wide variety of biological processes, from nutrient capture and ligand binding to grazing, viral infection, and cell-cell communication. The window of opportunity for these interactions depends on the basic mechanism determining contact time, which is currently unknown. By combining experiments on three different species—Chlamydomonas reinhardtii, Tetraselmis subcordiforms, and Oxyrrhis marina—with simulations and analytical modeling, we show that the fundamental physical process regulating proximity to a swimming microorganism is hydrodynamic particle entrainment. The resulting distribution of contact times is derived within the framework of Taylor dispersion as a competition between advection by the cell surface and microparticle diffusion, and predicts the existence of an optimal tracer size that is also observed experimentally. Spatial organization of flagella, swimming speed, and swimmer and tracer size influence entrainment features and provide tradeoffs that may be tuned to optimize the estimated probabilities for microbial interactions like predation and infection.

  6. Resource availability at Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, R. O.

    1992-01-01

    Early lunar technologies will probably use a common lunar material as ore. They will be robust to minor fluctuations in feedstock composition and will not require appreciable feedstock beneficiation such as rock grinding or mineral concentration. Technologies using unprocessed soil and indifferent to its composition will have the advantage. Nevertheless, the size and grade of the ore body must be confirmed for even the most indiscriminate process. Simple uses such as heaping unprocessed lunar soil for thermal insulation or radiation shielding onto a habitat require that we know the depth of the regolith, the size distributions of its soils, the locations of large boulders, and the ease of excavation. Costs of detailed site surveys trade against restrictions on site selection and conservative engineering design to accommodate unknown conditions of a poorly explored site. Given the above considerations, we consider briefly some abundant lunar materials, their proposed uses, and technologies for their preparation, with particular attention to the Taurus-Littrow site.

  7. The Impact of an Instructional Intervention Designed to Support Development of Stochastic Understanding of Probability Distribution

    ERIC Educational Resources Information Center

    Conant, Darcy Lynn

    2013-01-01

    Stochastic understanding of probability distribution undergirds development of conceptual connections between probability and statistics and supports development of a principled understanding of statistical inference. This study investigated the impact of an instructional course intervention designed to support development of stochastic…

  8. Redundant Sensors for Mobile Robot Navigation

    DTIC Science & Technology

    1985-09-01

    represent a probability that the area is empty, while positive numbers mcan it’s probably occupied. Zero reprtsents the unknown. The basic idea is that...room to give it absolute positioning information. This works by using two infrared emitters and detectors on the robot. Measurements of anglcs are made...meters (T in Kelvin) 273 sec Distances returned when assuming 80 degrees Farenheit , but where. actual temperature is 60 degrees, will be seven inches

  9. Probability distributions of the electroencephalogram envelope of preterm infants.

    PubMed

    Saji, Ryoya; Hirasawa, Kyoko; Ito, Masako; Kusuda, Satoshi; Konishi, Yukuo; Taga, Gentaro

    2015-06-01

    To determine the stationary characteristics of electroencephalogram (EEG) envelopes for prematurely born (preterm) infants and investigate the intrinsic characteristics of early brain development in preterm infants. Twenty neurologically normal sets of EEGs recorded in infants with a post-conceptional age (PCA) range of 26-44 weeks (mean 37.5 ± 5.0 weeks) were analyzed. Hilbert transform was applied to extract the envelope. We determined the suitable probability distribution of the envelope and performed a statistical analysis. It was found that (i) the probability distributions for preterm EEG envelopes were best fitted by lognormal distributions at 38 weeks PCA or less, and by gamma distributions at 44 weeks PCA; (ii) the scale parameter of the lognormal distribution had positive correlations with PCA as well as a strong negative correlation with the percentage of low-voltage activity; (iii) the shape parameter of the lognormal distribution had significant positive correlations with PCA; (iv) the statistics of mode showed significant linear relationships with PCA, and, therefore, it was considered a useful index in PCA prediction. These statistics, including the scale parameter of the lognormal distribution and the skewness and mode derived from a suitable probability distribution, may be good indexes for estimating stationary nature in developing brain activity in preterm infants. The stationary characteristics, such as discontinuity, asymmetry, and unimodality, of preterm EEGs are well indicated by the statistics estimated from the probability distribution of the preterm EEG envelopes. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Flood Frequency Curves - Use of information on the likelihood of extreme floods

    NASA Astrophysics Data System (ADS)

    Faber, B.

    2011-12-01

    Investment in the infrastructure that reduces flood risk for flood-prone communities must incorporate information on the magnitude and frequency of flooding in that area. Traditionally, that information has been a probability distribution of annual maximum streamflows developed from the historical gaged record at a stream site. Practice in the United States fits a Log-Pearson type3 distribution to the annual maximum flows of an unimpaired streamflow record, using the method of moments to estimate distribution parameters. The procedure makes the assumptions that annual peak streamflow events are (1) independent, (2) identically distributed, and (3) form a representative sample of the overall probability distribution. Each of these assumptions can be challenged. We rarely have enough data to form a representative sample, and therefore must compute and display the uncertainty in the estimated flood distribution. But, is there a wet/dry cycle that makes precipitation less than independent between successive years? Are the peak flows caused by different types of events from different statistical populations? How does the watershed or climate changing over time (non-stationarity) affect the probability distribution floods? Potential approaches to avoid these assumptions vary from estimating trend and shift and removing them from early data (and so forming a homogeneous data set), to methods that estimate statistical parameters that vary with time. A further issue in estimating a probability distribution of flood magnitude (the flood frequency curve) is whether a purely statistical approach can accurately capture the range and frequency of floods that are of interest. A meteorologically-based analysis produces "probable maximum precipitation" (PMP) and subsequently a "probable maximum flood" (PMF) that attempts to describe an upper bound on flood magnitude in a particular watershed. This analysis can help constrain the upper tail of the probability distribution, well beyond the range of gaged data or even historical or paleo-flood data, which can be very important in risk analyses performed for flood risk management and dam and levee safety studies.

  11. Technology-enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution

    PubMed Central

    Dinov, Ivo D.; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2014-01-01

    Summary Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students’ understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference. PMID:25419016

  12. Technology-enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution.

    PubMed

    Dinov, Ivo D; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2013-01-01

    Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students' understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference.

  13. Stylized facts in internal rates of return on stock index and its derivative transactions

    NASA Astrophysics Data System (ADS)

    Pichl, Lukáš; Kaizoji, Taisei; Yamano, Takuya

    2007-08-01

    Universal features in stock markets and their derivative markets are studied by means of probability distributions in internal rates of return on buy and sell transaction pairs. Unlike the stylized facts in normalized log returns, the probability distributions for such single asset encounters incorporate the time factor by means of the internal rate of return, defined as the continuous compound interest. Resulting stylized facts are shown in the probability distributions derived from the daily series of TOPIX, S & P 500 and FTSE 100 index close values. The application of the above analysis to minute-tick data of NIKKEI 225 and its futures market, respectively, reveals an interesting difference in the behavior of the two probability distributions, in case a threshold on the minimal duration of the long position is imposed. It is therefore suggested that the probability distributions of the internal rates of return could be used for causality mining between the underlying and derivative stock markets. The highly specific discrete spectrum, which results from noise trader strategies as opposed to the smooth distributions observed for fundamentalist strategies in single encounter transactions may be useful in deducing the type of investment strategy from trading revenues of small portfolio investors.

  14. Probabilistic Reasoning for Robustness in Automated Planning

    NASA Technical Reports Server (NTRS)

    Schaffer, Steven; Clement, Bradley; Chien, Steve

    2007-01-01

    A general-purpose computer program for planning the actions of a spacecraft or other complex system has been augmented by incorporating a subprogram that reasons about uncertainties in such continuous variables as times taken to perform tasks and amounts of resources to be consumed. This subprogram computes parametric probability distributions for time and resource variables on the basis of user-supplied models of actions and resources that they consume. The current system accepts bounded Gaussian distributions over action duration and resource use. The distributions are then combined during planning to determine the net probability distribution of each resource at any time point. In addition to a full combinatoric approach, several approximations for arriving at these combined distributions are available, including maximum-likelihood and pessimistic algorithms. Each such probability distribution can then be integrated to obtain a probability that execution of the plan under consideration would violate any constraints on the resource. The key idea is to use these probabilities of conflict to score potential plans and drive a search toward planning low-risk actions. An output plan provides a balance between the user s specified averseness to risk and other measures of optimality.

  15. Mathematical Model to estimate the wind power using four-parameter Burr distribution

    NASA Astrophysics Data System (ADS)

    Liu, Sanming; Wang, Zhijie; Pan, Zhaoxu

    2018-03-01

    When the real probability of wind speed in the same position needs to be described, the four-parameter Burr distribution is more suitable than other distributions. This paper introduces its important properties and characteristics. Also, the application of the four-parameter Burr distribution in wind speed prediction is discussed, and the expression of probability distribution of output power of wind turbine is deduced.

  16. Entropy Methods For Univariate Distributions in Decision Analysis

    NASA Astrophysics Data System (ADS)

    Abbas, Ali E.

    2003-03-01

    One of the most important steps in decision analysis practice is the elicitation of the decision-maker's belief about an uncertainty of interest in the form of a representative probability distribution. However, the probability elicitation process is a task that involves many cognitive and motivational biases. Alternatively, the decision-maker may provide other information about the distribution of interest, such as its moments, and the maximum entropy method can be used to obtain a full distribution subject to the given moment constraints. In practice however, decision makers cannot readily provide moments for the distribution, and are much more comfortable providing information about the fractiles of the distribution of interest or bounds on its cumulative probabilities. In this paper we present a graphical method to determine the maximum entropy distribution between upper and lower probability bounds and provide an interpretation for the shape of the maximum entropy distribution subject to fractile constraints, (FMED). We also discuss the problems with the FMED in that it is discontinuous and flat over each fractile interval. We present a heuristic approximation to a distribution if in addition to its fractiles, we also know it is continuous and work through full examples to illustrate the approach.

  17. Work probability distribution for a ferromagnet with long-ranged and short-ranged correlations

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, J. K.; Kirkpatrick, T. R.; Sengers, J. V.

    2018-04-01

    Work fluctuations and work probability distributions are fundamentally different in systems with short-ranged versus long-ranged correlations. Specifically, in systems with long-ranged correlations the work distribution is extraordinarily broad compared to systems with short-ranged correlations. This difference profoundly affects the possible applicability of fluctuation theorems like the Jarzynski fluctuation theorem. The Heisenberg ferromagnet, well below its Curie temperature, is a system with long-ranged correlations in very low magnetic fields due to the presence of Goldstone modes. As the magnetic field is increased the correlations gradually become short ranged. Hence, such a ferromagnet is an ideal system for elucidating the changes of the work probability distribution as one goes from a domain with long-ranged correlations to a domain with short-ranged correlations by tuning the magnetic field. A quantitative analysis of this crossover behavior of the work probability distribution and the associated fluctuations is presented.

  18. Probabilistic teleportation without loss of information

    NASA Astrophysics Data System (ADS)

    Roa, Luis; Groiseau, Caspar

    2015-01-01

    We found a scheme for teleporting probabilistically an unknown pure state with optimal probability and without losing the information of the state to be teleported. Accordingly, without having to have copies of the unknown state, the teleportation process can be repeated as many times as one has available quantum channels. Thus, although the quantum channels have a weak entanglement, teleportation is achievable with a high number of repetitions, whereas for channels with strong entanglement only a small number of repetitions are required to guarantee successful teleportation.

  19. Computer simulation of random variables and vectors with arbitrary probability distribution laws

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.

    1981-01-01

    Assume that there is given an arbitrary n-dimensional probability distribution F. A recursive construction is found for a sequence of functions x sub 1 = f sub 1 (U sub 1, ..., U sub n), ..., x sub n = f sub n (U sub 1, ..., U sub n) such that if U sub 1, ..., U sub n are independent random variables having uniform distribution over the open interval (0,1), then the joint distribution of the variables x sub 1, ..., x sub n coincides with the distribution F. Since uniform independent random variables can be well simulated by means of a computer, this result allows one to simulate arbitrary n-random variables if their joint probability distribution is known.

  20. Nuclear risk analysis of the Ulysses mission

    NASA Astrophysics Data System (ADS)

    Bartram, Bart W.; Vaughan, Frank R.; Englehart, Richard W., Dr.

    1991-01-01

    The use of a radioisotope thermoelectric generator fueled with plutonium-238 dioxide on the Space Shuttle-launched Ulysses mission implies some level of risk due to potential accidents. This paper describes the method used to quantify risks in the Ulysses mission Final Safety Analysis Report prepared for the U.S. Department of Energy. The starting point for the analysis described herein is following input of source term probability distributions from the General Electric Company. A Monte Carlo technique is used to develop probability distributions of radiological consequences for a range of accident scenarios thoughout the mission. Factors affecting radiological consequences are identified, the probability distribution of the effect of each factor determined, and the functional relationship among all the factors established. The probability distributions of all the factor effects are then combined using a Monte Carlo technique. The results of the analysis are presented in terms of complementary cumulative distribution functions (CCDF) by mission sub-phase, phase, and the overall mission. The CCDFs show the total probability that consequences (calculated health effects) would be equal to or greater than a given value.

  1. Force Density Function Relationships in 2-D Granular Media

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Metzger, Philip T.; Kilts, Kelly N.

    2004-01-01

    An integral transform relationship is developed to convert between two important probability density functions (distributions) used in the study of contact forces in granular physics. Developing this transform has now made it possible to compare and relate various theoretical approaches with one another and with the experimental data despite the fact that one may predict the Cartesian probability density and another the force magnitude probability density. Also, the transforms identify which functional forms are relevant to describe the probability density observed in nature, and so the modified Bessel function of the second kind has been identified as the relevant form for the Cartesian probability density corresponding to exponential forms in the force magnitude distribution. Furthermore, it is shown that this transform pair supplies a sufficient mathematical framework to describe the evolution of the force magnitude distribution under shearing. Apart from the choice of several coefficients, whose evolution of values must be explained in the physics, this framework successfully reproduces the features of the distribution that are taken to be an indicator of jamming and unjamming in a granular packing. Key words. Granular Physics, Probability Density Functions, Fourier Transforms

  2. An evaluation of procedures to estimate monthly precipitation probabilities

    NASA Astrophysics Data System (ADS)

    Legates, David R.

    1991-01-01

    Many frequency distributions have been used to evaluate monthly precipitation probabilities. Eight of these distributions (including Pearson type III, extreme value, and transform normal probability density functions) are comparatively examined to determine their ability to represent accurately variations in monthly precipitation totals for global hydroclimatological analyses. Results indicate that a modified version of the Box-Cox transform-normal distribution more adequately describes the 'true' precipitation distribution than does any of the other methods. This assessment was made using a cross-validation procedure for a global network of 253 stations for which at least 100 years of monthly precipitation totals were available.

  3. Adaptive Neural Output Feedback Control for Nonstrict-Feedback Stochastic Nonlinear Systems With Unknown Backlash-Like Hysteresis and Unknown Control Directions.

    PubMed

    Yu, Zhaoxu; Li, Shugang; Yu, Zhaosheng; Li, Fangfei

    2018-04-01

    This paper investigates the problem of output feedback adaptive stabilization for a class of nonstrict-feedback stochastic nonlinear systems with both unknown backlashlike hysteresis and unknown control directions. A new linear state transformation is applied to the original system, and then, control design for the new system becomes feasible. By combining the neural network's (NN's) parameterization, variable separation technique, and Nussbaum gain function method, an input-driven observer-based adaptive NN control scheme, which involves only one parameter to be updated, is developed for such systems. All closed-loop signals are bounded in probability and the error signals remain semiglobally bounded in the fourth moment (or mean square). Finally, the effectiveness and the applicability of the proposed control design are verified by two simulation examples.

  4. q-Gaussian distributions of leverage returns, first stopping times, and default risk valuations

    NASA Astrophysics Data System (ADS)

    Katz, Yuri A.; Tian, Li

    2013-10-01

    We study the probability distributions of daily leverage returns of 520 North American industrial companies that survive de-listing during the financial crisis, 2006-2012. We provide evidence that distributions of unbiased leverage returns of all individual firms belong to the class of q-Gaussian distributions with the Tsallis entropic parameter within the interval 1

  5. Temporally Adaptive Sampling: A Case Study in Rare Species Survey Design with Marbled Salamanders (Ambystoma opacum)

    PubMed Central

    Charney, Noah D.; Kubel, Jacob E.; Eiseman, Charles S.

    2015-01-01

    Improving detection rates for elusive species with clumped distributions is often accomplished through adaptive sampling designs. This approach can be extended to include species with temporally variable detection probabilities. By concentrating survey effort in years when the focal species are most abundant or visible, overall detection rates can be improved. This requires either long-term monitoring at a few locations where the species are known to occur or models capable of predicting population trends using climatic and demographic data. For marbled salamanders (Ambystoma opacum) in Massachusetts, we demonstrate that annual variation in detection probability of larvae is regionally correlated. In our data, the difference in survey success between years was far more important than the difference among the three survey methods we employed: diurnal surveys, nocturnal surveys, and dipnet surveys. Based on these data, we simulate future surveys to locate unknown populations under a temporally adaptive sampling framework. In the simulations, when pond dynamics are correlated over the focal region, the temporally adaptive design improved mean survey success by as much as 26% over a non-adaptive sampling design. Employing a temporally adaptive strategy costs very little, is simple, and has the potential to substantially improve the efficient use of scarce conservation funds. PMID:25799224

  6. Application of risk analysis in water resourses management

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil; Palogos, Ioannis

    2017-04-01

    A common cost-benefit analysis approach, which is novel in the risk analysis of hydrologic/hydraulic applications, and a Bayesian decision analysis are applied to aid the decision making on whether or not to construct a water reservoir for irrigation purposes. The alternative option examined is a scaled parabolic fine variation in terms of over-pumping violations in contrast to common practices that usually consider short-term fines. Such an application, and in such detail, represents new feedback. The results indicate that the probability uncertainty is the driving issue that determines the optimal decision with each methodology, and depending on the unknown probability handling, each methodology may lead to a different optimal decision. Thus, the proposed tool can help decision makers (stakeholders) to examine and compare different scenarios using two different approaches before making a decision considering the cost of a hydrologic/hydraulic project and the varied economic charges that water table limit violations can cause inside an audit interval. In contrast to practices that assess the effect of each proposed action separately considering only current knowledge of the examined issue, this tool aids decision making by considering prior information and the sampling distribution of future successful audits. This tool is developed in a web service for the easier stakeholders' access.

  7. Cryptosporidiosis susceptibility and risk: a case study.

    PubMed

    Makri, Anna; Modarres, Reza; Parkin, Rebecca

    2004-02-01

    Regional estimates of cryptosporidiosis risks from drinking water exposure were developed and validated, accounting for AIDS status and age. We constructed a model with probability distributions and point estimates representing Cryptosporidium in tap water, tap water consumed per day (exposure characterization); dose response, illness given infection, prolonged illness given illness; and three conditional probabilities describing the likelihood of case detection by active surveillance (health effects characterization). The model predictions were combined with population data to derive expected case numbers and incidence rates per 100,000 population, by age and AIDS status, borough specific and for New York City overall in 2000 (risk characterization). They were compared with same-year surveillance data to evaluate predictive ability, assumed to represent true incidence of waterborne cryptosporidiosis. The predicted mean risks, similar to previously published estimates for this region, overpredicted observed incidence-most extensively when accounting for AIDS status. The results suggest that overprediction may be due to conservative parameters applied to both non-AIDS and AIDS populations, and that biological differences for children need to be incorporated. Interpretations are limited by the unknown accuracy of available surveillance data, in addition to variability and uncertainty of model predictions. The model appears sensitive to geographical differences in AIDS prevalence. The use of surveillance data for validation and model parameters pertinent to susceptibility are discussed.

  8. Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form

    USGS Publications Warehouse

    Greenwood, J. Arthur; Landwehr, J. Maciunas; Matalas, N.C.; Wallis, J.R.

    1979-01-01

    Distributions whose inverse forms are explicitly defined, such as Tukey's lambda, may present problems in deriving their parameters by more conventional means. Probability weighted moments are introduced and shown to be potentially useful in expressing the parameters of these distributions.

  9. Univariate Probability Distributions

    ERIC Educational Resources Information Center

    Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E.

    2012-01-01

    We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…

  10. A probability space for quantum models

    NASA Astrophysics Data System (ADS)

    Lemmens, L. F.

    2017-06-01

    A probability space contains a set of outcomes, a collection of events formed by subsets of the set of outcomes and probabilities defined for all events. A reformulation in terms of propositions allows to use the maximum entropy method to assign the probabilities taking some constraints into account. The construction of a probability space for quantum models is determined by the choice of propositions, choosing the constraints and making the probability assignment by the maximum entropy method. This approach shows, how typical quantum distributions such as Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein are partly related with well-known classical distributions. The relation between the conditional probability density, given some averages as constraints and the appropriate ensemble is elucidated.

  11. Regional probability distribution of the annual reference evapotranspiration and its effective parameters in Iran

    NASA Astrophysics Data System (ADS)

    Khanmohammadi, Neda; Rezaie, Hossein; Montaseri, Majid; Behmanesh, Javad

    2017-10-01

    The reference evapotranspiration (ET0) plays an important role in water management plans in arid or semi-arid countries such as Iran. For this reason, the regional analysis of this parameter is important. But, ET0 process is affected by several meteorological parameters such as wind speed, solar radiation, temperature and relative humidity. Therefore, the effect of distribution type of effective meteorological variables on ET0 distribution was analyzed. For this purpose, the regional probability distribution of the annual ET0 and its effective parameters were selected. Used data in this research was recorded data at 30 synoptic stations of Iran during 1960-2014. Using the probability plot correlation coefficient (PPCC) test and the L-moment method, five common distributions were compared and the best distribution was selected. The results of PPCC test and L-moment diagram indicated that the Pearson type III distribution was the best probability distribution for fitting annual ET0 and its four effective parameters. The results of RMSE showed that the ability of the PPCC test and L-moment method for regional analysis of reference evapotranspiration and its effective parameters was similar. The results also showed that the distribution type of the parameters which affected ET0 values can affect the distribution of reference evapotranspiration.

  12. Probabilistic reasoning in data analysis.

    PubMed

    Sirovich, Lawrence

    2011-09-20

    This Teaching Resource provides lecture notes, slides, and a student assignment for a lecture on probabilistic reasoning in the analysis of biological data. General probabilistic frameworks are introduced, and a number of standard probability distributions are described using simple intuitive ideas. Particular attention is focused on random arrivals that are independent of prior history (Markovian events), with an emphasis on waiting times, Poisson processes, and Poisson probability distributions. The use of these various probability distributions is applied to biomedical problems, including several classic experimental studies.

  13. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati

    This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

  14. Work probability distribution and tossing a biased coin

    NASA Astrophysics Data System (ADS)

    Saha, Arnab; Bhattacharjee, Jayanta K.; Chakraborty, Sagar

    2011-01-01

    We show that the rare events present in dissipated work that enters Jarzynski equality, when mapped appropriately to the phenomenon of large deviations found in a biased coin toss, are enough to yield a quantitative work probability distribution for the Jarzynski equality. This allows us to propose a recipe for constructing work probability distribution independent of the details of any relevant system. The underlying framework, developed herein, is expected to be of use in modeling other physical phenomena where rare events play an important role.

  15. Fission meter and neutron detection using poisson distribution comparison

    DOEpatents

    Rowland, Mark S; Snyderman, Neal J

    2014-11-18

    A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.

  16. Hybrid computer technique yields random signal probability distributions

    NASA Technical Reports Server (NTRS)

    Cameron, W. D.

    1965-01-01

    Hybrid computer determines the probability distributions of instantaneous and peak amplitudes of random signals. This combined digital and analog computer system reduces the errors and delays of manual data analysis.

  17. Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity

    PubMed Central

    Nessler, Bernhard; Pfeiffer, Michael; Buesing, Lars; Maass, Wolfgang

    2013-01-01

    The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex. PMID:23633941

  18. Reducing Capacities and Distribution of Redox-Active Functional Groups in Low Molecular Weight Fractions of Humic Acids.

    PubMed

    Yang, Zhen; Kappler, Andreas; Jiang, Jie

    2016-11-15

    Humic substances (HS) are redox-active organic compounds with a broad spectrum of molecular sizes and reducing capacities, that is, number of electrons donated or accepted. However, it is unknown which role the distribution of redox-active functional groups in different molecule sizes plays for HS redox reactions in varying pore sizes microenvironments. We used dialysis experiments to separate bulk humic acids (HA) into low molecular weight fractions (LMWF) and retentate, for example, the remaining HA in the dialysis bag. LMWF accounted for only 2% of the total organic carbon content of the HA. However, their reducing capacities per gram of carbon were up to 33 times greater than either those of the bulk HA or the retentate. For a structural/mechanistic understanding of the high reducing capacity of the LMWF, we used fluorescence spectroscopy. We found that the LWMF showed significant fluorescence intensities for quinone-like functional groups, as indicated by the quinoid π-π* transition, that are probably responsible for the high reducing capacities. Therefore, the small-sized HS fraction can play a major role for redox transformation of metals or pollutants trapped in soil micropores (<2.5 nm diameter).

  19. Fast Reliability Assessing Method for Distribution Network with Distributed Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Chen, Fan; Huang, Shaoxiong; Ding, Jinjin; Ding, Jinjin; Gao, Bo; Xie, Yuguang; Wang, Xiaoming

    2018-01-01

    This paper proposes a fast reliability assessing method for distribution grid with distributed renewable energy generation. First, the Weibull distribution and the Beta distribution are used to describe the probability distribution characteristics of wind speed and solar irradiance respectively, and the models of wind farm, solar park and local load are built for reliability assessment. Then based on power system production cost simulation probability discretization and linearization power flow, a optimal power flow objected with minimum cost of conventional power generation is to be resolved. Thus a reliability assessment for distribution grid is implemented fast and accurately. The Loss Of Load Probability (LOLP) and Expected Energy Not Supplied (EENS) are selected as the reliability index, a simulation for IEEE RBTS BUS6 system in MATLAB indicates that the fast reliability assessing method calculates the reliability index much faster with the accuracy ensured when compared with Monte Carlo method.

  20. 40 CFR Appendix C to Part 191 - Guidance for Implementation of Subpart B

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that the remaining probability distribution of cumulative releases would not be significantly changed... with § 191.13 into a “complementary cumulative distribution function” that indicates the probability of... distribution function for each disposal system considered. The Agency assumes that a disposal system can be...

  1. 40 CFR Appendix C to Part 191 - Guidance for Implementation of Subpart B

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that the remaining probability distribution of cumulative releases would not be significantly changed... with § 191.13 into a “complementary cumulative distribution function” that indicates the probability of... distribution function for each disposal system considered. The Agency assumes that a disposal system can be...

  2. Optimal methods for fitting probability distributions to propagule retention time in studies of zoochorous dispersal.

    PubMed

    Viana, Duarte S; Santamaría, Luis; Figuerola, Jordi

    2016-02-01

    Propagule retention time is a key factor in determining propagule dispersal distance and the shape of "seed shadows". Propagules dispersed by animal vectors are either ingested and retained in the gut until defecation or attached externally to the body until detachment. Retention time is a continuous variable, but it is commonly measured at discrete time points, according to pre-established sampling time-intervals. Although parametric continuous distributions have been widely fitted to these interval-censored data, the performance of different fitting methods has not been evaluated. To investigate the performance of five different fitting methods, we fitted parametric probability distributions to typical discretized retention-time data with known distribution using as data-points either the lower, mid or upper bounds of sampling intervals, as well as the cumulative distribution of observed values (using either maximum likelihood or non-linear least squares for parameter estimation); then compared the estimated and original distributions to assess the accuracy of each method. We also assessed the robustness of these methods to variations in the sampling procedure (sample size and length of sampling time-intervals). Fittings to the cumulative distribution performed better for all types of parametric distributions (lognormal, gamma and Weibull distributions) and were more robust to variations in sample size and sampling time-intervals. These estimated distributions had negligible deviations of up to 0.045 in cumulative probability of retention times (according to the Kolmogorov-Smirnov statistic) in relation to original distributions from which propagule retention time was simulated, supporting the overall accuracy of this fitting method. In contrast, fitting the sampling-interval bounds resulted in greater deviations that ranged from 0.058 to 0.273 in cumulative probability of retention times, which may introduce considerable biases in parameter estimates. We recommend the use of cumulative probability to fit parametric probability distributions to propagule retention time, specifically using maximum likelihood for parameter estimation. Furthermore, the experimental design for an optimal characterization of unimodal propagule retention time should contemplate at least 500 recovered propagules and sampling time-intervals not larger than the time peak of propagule retrieval, except in the tail of the distribution where broader sampling time-intervals may also produce accurate fits.

  3. How Can Histograms Be Useful for Introducing Continuous Probability Distributions?

    ERIC Educational Resources Information Center

    Derouet, Charlotte; Parzysz, Bernard

    2016-01-01

    The teaching of probability has changed a great deal since the end of the last century. The development of technologies is indeed part of this evolution. In France, continuous probability distributions began to be studied in 2002 by scientific 12th graders, but this subject was marginal and appeared only as an application of integral calculus.…

  4. Pseudo Bayes Estimates for Test Score Distributions and Chained Equipercentile Equating. Research Report. ETS RR-09-47

    ERIC Educational Resources Information Center

    Moses, Tim; Oh, Hyeonjoo J.

    2009-01-01

    Pseudo Bayes probability estimates are weighted averages of raw and modeled probabilities; these estimates have been studied primarily in nonpsychometric contexts. The purpose of this study was to evaluate pseudo Bayes probability estimates as applied to the estimation of psychometric test score distributions and chained equipercentile equating…

  5. Determinants of Pseudogymnoascus destructans within bat hibernacula: Implications for surveillance and management of white-nose syndrome

    USGS Publications Warehouse

    Verant, Michelle L.; Bohuski, Elizabeth A.; Richgels, Katherine L. D.; Olival, Kevin J.; Epstein, Jonathan H.; Blehert, David

    2018-01-01

    Fungal diseases are an emerging global problem affecting human health, food security and biodiversity. Ability of many fungal pathogens to persist within environmental reservoirs can increase extinction risks for host species and presents challenges for disease control. Understanding factors that regulate pathogen spread and persistence in these reservoirs is critical for effective disease management.White-nose syndrome (WNS) is a disease of hibernating bats caused by Pseudogymnoascus destructans (Pd), a fungus that establishes persistent environmental reservoirs within bat hibernacula, which contribute to seasonal disease transmission dynamics in bats. However, host and environmental factors influencing distribution of Pdwithin these reservoirs are unknown.We used model selection on longitudinally collected field data to test multiple hypotheses describing presence–absence and abundance of Pd in environmental substrates and on bats within hibernacula at different stages of WNS.First detection of Pd in the environment lagged up to 1 year after first detection on bats within that hibernaculum. Once detected, the probability of detecting Pd within environmental samples from a hibernaculum increased over time and was higher in sediment compared to wall surfaces. Temperature had marginal effects on the distribution of Pd. For bats, prevalence and abundance of Pd were highest on Myotis lucifugus and on bats with visible signs of WNS.Synthesis and applications. Our results indicate that distribution of Pseudogymnoascus destructans (Pd) within a hibernaculum is driven primarily by bats with delayed establishment of environmental reservoirs. Thus, collection of samples from Myotis lucifugus, or from sediment if bats cannot be sampled, should be prioritized to improve detection probabilities for Pd surveillance. Long-term persistence of Pd in sediment suggests that disease management for white-nose syndrome should address risks of sustained transmission from environmental reservoirs.

  6. Repeatability of dose painting by numbers treatment planning in prostate cancer radiotherapy based on multiparametric magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    van Schie, Marcel A.; Steenbergen, Peter; Viet Dinh, Cuong; Ghobadi, Ghazaleh; van Houdt, Petra J.; Pos, Floris J.; Heijmink, Stijn W. T. J. P.; van der Poel, Henk G.; Renisch, Steffen; Vik, Torbjørn; van der Heide, Uulke A.

    2017-07-01

    Dose painting by numbers (DPBN) refers to a voxel-wise prescription of radiation dose modelled from functional image characteristics, in contrast to dose painting by contours which requires delineations to define the target for dose escalation. The direct relation between functional imaging characteristics and DPBN implies that random variations in images may propagate into the dose distribution. The stability of MR-only prostate cancer treatment planning based on DPBN with respect to these variations is as yet unknown. We conducted a test-retest study to investigate the stability of DPBN for prostate cancer in a semi-automated MR-only treatment planning workflow. Twelve patients received a multiparametric MRI on two separate days prior to prostatectomy. The tumor probability (TP) within the prostate was derived from image features with a logistic regression model. Dose mapping functions were applied to acquire a DPBN prescription map that served to generate an intensity modulated radiation therapy (IMRT) treatment plan. Dose calculations were done on a pseudo-CT derived from the MRI. The TP and DPBN map and the IMRT dose distribution were compared between both MRI sessions, using the intraclass correlation coefficient (ICC) to quantify repeatability of the planning pipeline. The quality of each treatment plan was measured with a quality factor (QF). Median ICC values for the TP and DPBN map and the IMRT dose distribution were 0.82, 0.82 and 0.88, respectively, for linear dose mapping and 0.82, 0.84 and 0.94 for square root dose mapping. A median QF of 3.4% was found among all treatment plans. We demonstrated the stability of DPBN radiotherapy treatment planning in prostate cancer, with excellent overall repeatability and acceptable treatment plan quality. Using validated tumor probability modelling and simple dose mapping techniques it was shown that despite day-to-day variations in imaging data still consistent treatment plans were obtained.

  7. Adolescents display distinctive tolerance to ambiguity and to uncertainty during risky decision making

    PubMed Central

    van den Bos, Wouter; Hertwig, Ralph

    2017-01-01

    Although actuarial data indicate that risk-taking behavior peaks in adolescence, laboratory evidence for this developmental spike remains scarce. One possible explanation for this incongruity is that in the real world adolescents often have only vague information about the potential consequences of their behavior and the likelihoods of those consequences, whereas in the lab these are often clearly stated. How do adolescents behave under such more realistic conditions of ambiguity and uncertainty? We asked 105 participants aged from 8 to 22 years to make three types of choices: (1) choices between options whose possible outcomes and probabilities were fully described (choices under risk); (2) choices between options whose possible outcomes were described but whose probability information was incomplete (choices under ambiguity), and (3) choices between unknown options whose possible outcomes and probabilities could be explored (choices under uncertainty). Relative to children and adults, two adolescent-specific markers emerged. First, adolescents were more accepting of ambiguity; second, they were also more accepting of uncertainty (as indicated by shorter pre-decisional search). Furthermore, this tolerance of the unknown was associated with motivational, but not cognitive, factors. These findings offer novel insights into the psychology of adolescent risk taking. PMID:28098227

  8. 40 CFR 610.52 - Maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a) Maintenance during the durability evaluation can best be considered in three separate categories: (1) Normal... durability evaluation in this program will probably have considerable mileage accumulation and unknown...

  9. Comparison of three-parameter probability distributions for representing annual extreme and partial duration precipitation series

    NASA Astrophysics Data System (ADS)

    Wilks, Daniel S.

    1993-10-01

    Performance of 8 three-parameter probability distributions for representing annual extreme and partial duration precipitation data at stations in the northeastern and southeastern United States is investigated. Particular attention is paid to fidelity on the right tail, through use of a bootstrap procedure simulating extrapolation on the right tail beyond the data. It is found that the beta-κ distribution best describes the extreme right tail of annual extreme series, and the beta-P distribution is best for the partial duration data. The conventionally employed two-parameter Gumbel distribution is found to substantially underestimate probabilities associated with the larger precipitation amounts for both annual extreme and partial duration data. Fitting the distributions using left-censored data did not result in improved fits to the right tail.

  10. Deterministic Assisted Clone of an Arbitrary Two- and Three-qubit States via Multi-qubit Brown State

    NASA Astrophysics Data System (ADS)

    Hou, Kui; Zhu, Cheng-Jie; Yang, Ya-Ping

    2017-08-01

    We present two schemes for deterministic assisted clone(DAC) of an unknown two- and three-qubit entangled states with assistance via muti-qubit Brown state. In the schemes, the sender wish to teleport an unknown original entangled state which from the state preparer, and then create a perfect copy of the unknown state at her place. The DAC schemes include two stages. The first stage requires teleportation with Bell-state measurements via a five-qubit Brown state(or seven-qubit Brown state) as the quantum channel. In the second stage, to help the sender realize the quantum cloning, the state preparer performs projective measurements on their own particles which from the sender, then the sender can acquire a perfect copy of the unknown state by means of some appropriate unitary operations. Furthermore, the total success probability for assisted cloning a perfect copy of the unknown state can reach 1 in our schemes.

  11. Deterministic Joint Assisted Cloning of Unknown Two-Qubit Entangled States

    NASA Astrophysics Data System (ADS)

    Zhan, You-Bang

    2012-06-01

    We present two schemes for perfect cloning unknown two-qubit and general two-qubit entangled states with assistance from two state preparers, respectively. In the schemes, the sender wish to teleport an unknown two-qubit (or general two-qubit) entangled state which from two state preparers to a remote receiver, and then create a perfect copy of the unknown state at her place. The schemes include two stages. The first stage of the schemes requires usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform two-qubit projective measurements on their own qubits which from the sender, then the sender can acquire a perfect copy of the unknown state. To complete the assisted cloning schemes, several novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two state preparers collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubit respectively, the sender can create a copy of the unknown state by means of some appropriate unitary operations. The advantage of the present schemes is that the total success probability for assisted cloning a perfect copy of the unknown state can reach 1.

  12. Quantum jointly assisted cloning of an unknown three-dimensional equatorial state

    NASA Astrophysics Data System (ADS)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-02-01

    We present two schemes for perfectly cloning an unknown single-qutrit equatorial state with assistance from two and N state preparers, respectively. In the first scheme, the sender wishes to teleport an unknown single-qutrit equatorial state from two state preparers to a remote receiver, and then to create a perfect copy of the unknown state at her location. The scheme consists of two stages. The first stage of the scheme requires the usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform single-qutrit projective measurements on their own qutrits from the sender, then the sender can acquire a perfect copy of the unknown state. It is shown that, only if the two state preparers collaborate with each other, the sender can create a copy of the unknown state by means of some appropriate unitary operations. In the second scheme, we generalized the jointly assisted cloning in the first scheme to the case of N state prepares. In the present schemes, the total probability of success for assisted cloning of a perfect copy of the unknown state can reach 1.

  13. An elusive paleodemography? A comparison of two methods for estimating the adult age distribution of deaths at late Classic Copan, Honduras.

    PubMed

    Storey, Rebecca

    2007-01-01

    Comparison of different adult age estimation methods on the same skeletal sample with unknown ages could forward paleodemographic inference, while researchers sort out various controversies. The original aging method for the auricular surface (Lovejoy et al., 1985a) assigned an age estimation based on several separate characteristics. Researchers have found this original method hard to apply. It is usually forgotten that before assigning an age, there was a seriation, an ordering of all available individuals from youngest to oldest. Thus, age estimation reflected the place of an individual within its sample. A recent article (Buckberry and Chamberlain, 2002) proposed a revised method that scores theses various characteristics into age stages, which can then be used with a Bayesian method to estimate an adult age distribution for the sample. Both methods were applied to the adult auricular surfaces of a Pre-Columbian Maya skeletal population from Copan, Honduras and resulted in age distributions with significant numbers of older adults. However, contrary to the usual paleodemographic distribution, one Bayesian estimation based on uniform prior probabilities yielded a population with 57% of the ages at death over 65, while another based on a high mortality life table still had 12% of the individuals aged over 75 years. The seriation method yielded an age distribution more similar to that known from preindustrial historical situations, without excessive longevity of adults. Paleodemography must still wrestle with its elusive goal of accurate adult age estimation from skeletons, a necessary base for demographic study of past populations. (c) 2006 Wiley-Liss, Inc

  14. The estimation of tree posterior probabilities using conditional clade probability distributions.

    PubMed

    Larget, Bret

    2013-07-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample.

  15. Two Person Zero-Sum Semi-Markov Games with Unknown Holding Times Distribution on One Side: A Discounted Payoff Criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjarez-Sosa, J. Adolfo, E-mail: aminjare@gauss.mat.uson.mx; Luque-Vasquez, Fernando

    This paper deals with two person zero-sum semi-Markov games with a possibly unbounded payoff function, under a discounted payoff criterion. Assuming that the distribution of the holding times H is unknown for one of the players, we combine suitable methods of statistical estimation of H with control procedures to construct an asymptotically discount optimal pair of strategies.

  16. Minimal entropy probability paths between genome families.

    PubMed

    Ahlbrandt, Calvin; Benson, Gary; Casey, William

    2004-05-01

    We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H( p) over all admissible paths p(t), 0 < or = t< or =1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and "rich" optimal probability paths may be numerically estimated by a hybrid method of iterating Newton's method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler-Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for "rich" optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non-rich vectors, does not involve variational theory and does not involve differential equations, but is a better approximation of the minimal entropy path distance than the distance //b-a//(2). We compute minimal entropy distance matrices for examples of DNA myostatin genes and amino-acid sequences across several species. Output tree dendograms for our minimal entropy metric are compared with dendograms based on BLAST and BLAST identity scores.

  17. Probability Analysis of the Wave-Slamming Pressure Values of the Horizontal Deck with Elastic Support

    NASA Astrophysics Data System (ADS)

    Zuo, Weiguang; Liu, Ming; Fan, Tianhui; Wang, Pengtao

    2018-06-01

    This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.

  18. On the inequivalence of the CH and CHSH inequalities due to finite statistics

    NASA Astrophysics Data System (ADS)

    Renou, M. O.; Rosset, D.; Martin, A.; Gisin, N.

    2017-06-01

    Different variants of a Bell inequality, such as CHSH and CH, are known to be equivalent when evaluated on nonsignaling outcome probability distributions. However, in experimental setups, the outcome probability distributions are estimated using a finite number of samples. Therefore the nonsignaling conditions are only approximately satisfied and the robustness of the violation depends on the chosen inequality variant. We explain that phenomenon using the decomposition of the space of outcome probability distributions under the action of the symmetry group of the scenario, and propose a method to optimize the statistical robustness of a Bell inequality. In the process, we describe the finite group composed of relabeling of parties, measurement settings and outcomes, and identify correspondences between the irreducible representations of this group and properties of outcome probability distributions such as normalization, signaling or having uniform marginals.

  19. Confidence as Bayesian Probability: From Neural Origins to Behavior.

    PubMed

    Meyniel, Florent; Sigman, Mariano; Mainen, Zachary F

    2015-10-07

    Research on confidence spreads across several sub-fields of psychology and neuroscience. Here, we explore how a definition of confidence as Bayesian probability can unify these viewpoints. This computational view entails that there are distinct forms in which confidence is represented and used in the brain, including distributional confidence, pertaining to neural representations of probability distributions, and summary confidence, pertaining to scalar summaries of those distributions. Summary confidence is, normatively, derived or "read out" from distributional confidence. Neural implementations of readout will trade off optimality versus flexibility of routing across brain systems, allowing confidence to serve diverse cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Exact probability distribution functions for Parrondo's games

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Saakian, David B.; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  1. Exact probability distribution functions for Parrondo's games.

    PubMed

    Zadourian, Rubina; Saakian, David B; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  2. What Can Quantum Optics Say about Computational Complexity Theory?

    NASA Astrophysics Data System (ADS)

    Rahimi-Keshari, Saleh; Lund, Austin P.; Ralph, Timothy C.

    2015-02-01

    Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPPNP complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.

  3. Retrieving Biome Types from Multi-angle Spectral Data

    NASA Astrophysics Data System (ADS)

    Schull, M. A.; Xu, L.; Latorre, P.; Samanta, A.; Myneni, R. B.; Knyazikhin, Y.

    2009-12-01

    Many studies have been conducted to demonstrate the ability of multi-angle spectral data to discriminate plant dominant species. Most have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing/unknown land cover. An ancillary objective of the MISR LAI/FPAR algorithm is classification of global vegetation into biome types. The algorithm is based on the 3D radiative transfer equation. Its performance suggests that is has valid LAI retrievals and correct biome identification in about 20% of the pixels. However with a probability of about 70%, uncertainties in LAI retrievals due to biome misclassification do not exceed uncertainties in the observations. In this poster we present an approach to improve reliability of the distribution of biomes and dominant species from multi angle spectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy bidirectional reflectance factor in terms of the leaf spectrum and two spectrally invariant and structurally varying variables - recollision and directional escape probabilities. Theoretical and empirical analyses of ground and airborne data acquired by AVIRIS, AirMISR over two sites in New England and CHRIS/PROBA over BARAX site in Spain suggest that the canopy spectral invariants convey information about canopy structure at both the macro and micro scales. These properties allow for the natural separation of biome classes based on the location of points on the total escape probability vs the proportional escape ratio log-log plane.

  4. From anomalies to forecasts: Toward a descriptive model of decisions under risk, under ambiguity, and from experience.

    PubMed

    Erev, Ido; Ert, Eyal; Plonsky, Ori; Cohen, Doron; Cohen, Oded

    2017-07-01

    Experimental studies of choice behavior document distinct, and sometimes contradictory, deviations from maximization. For example, people tend to overweight rare events in 1-shot decisions under risk, and to exhibit the opposite bias when they rely on past experience. The common explanations of these results assume that the contradicting anomalies reflect situation-specific processes that involve the weighting of subjective values and the use of simple heuristics. The current article analyzes 14 choice anomalies that have been described by different models, including the Allais, St. Petersburg, and Ellsberg paradoxes, and the reflection effect. Next, it uses a choice prediction competition methodology to clarify the interaction between the different anomalies. It focuses on decisions under risk (known payoff distributions) and under ambiguity (unknown probabilities), with and without feedback concerning the outcomes of past choices. The results demonstrate that it is not necessary to assume situation-specific processes. The distinct anomalies can be captured by assuming high sensitivity to the expected return and 4 additional tendencies: pessimism, bias toward equal weighting, sensitivity to payoff sign, and an effort to minimize the probability of immediate regret. Importantly, feedback increases sensitivity to probability of regret. Simple abstractions of these assumptions, variants of the model Best Estimate and Sampling Tools (BEAST), allow surprisingly accurate ex ante predictions of behavior. Unlike the popular models, BEAST does not assume subjective weighting functions or cognitive shortcuts. Rather, it assumes the use of sampling tools and reliance on small samples, in addition to the estimation of the expected values. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. A unifying view of synchronization for data assimilation in complex nonlinear networks

    NASA Astrophysics Data System (ADS)

    Abarbanel, Henry D. I.; Shirman, Sasha; Breen, Daniel; Kadakia, Nirag; Rey, Daniel; Armstrong, Eve; Margoliash, Daniel

    2017-12-01

    Networks of nonlinear systems contain unknown parameters and dynamical degrees of freedom that may not be observable with existing instruments. From observable state variables, we want to estimate the connectivity of a model of such a network and determine the full state of the model at the termination of a temporal observation window during which measurements transfer information to a model of the network. The model state at the termination of a measurement window acts as an initial condition for predicting the future behavior of the network. This allows the validation (or invalidation) of the model as a representation of the dynamical processes producing the observations. Once the model has been tested against new data, it may be utilized as a predictor of responses to innovative stimuli or forcing. We describe a general framework for the tasks involved in the "inverse" problem of determining properties of a model built to represent measured output from physical, biological, or other processes when the measurements are noisy, the model has errors, and the state of the model is unknown when measurements begin. This framework is called statistical data assimilation and is the best one can do in estimating model properties through the use of the conditional probability distributions of the model state variables, conditioned on observations. There is a very broad arena of applications of the methods described. These include numerical weather prediction, properties of nonlinear electrical circuitry, and determining the biophysical properties of functional networks of neurons. Illustrative examples will be given of (1) estimating the connectivity among neurons with known dynamics in a network of unknown connectivity, and (2) estimating the biophysical properties of individual neurons in vitro taken from a functional network underlying vocalization in songbirds.

  6. Vacuum quantum stress tensor fluctuations: A diagonalization approach

    NASA Astrophysics Data System (ADS)

    Schiappacasse, Enrico D.; Fewster, Christopher J.; Ford, L. H.

    2018-01-01

    Large vacuum fluctuations of a quantum stress tensor can be described by the asymptotic behavior of its probability distribution. Here we focus on stress tensor operators which have been averaged with a sampling function in time. The Minkowski vacuum state is not an eigenstate of the time-averaged operator, but can be expanded in terms of its eigenstates. We calculate the probability distribution and the cumulative probability distribution for obtaining a given value in a measurement of the time-averaged operator taken in the vacuum state. In these calculations, we study a specific operator that contributes to the stress-energy tensor of a massless scalar field in Minkowski spacetime, namely, the normal ordered square of the time derivative of the field. We analyze the rate of decrease of the tail of the probability distribution for different temporal sampling functions, such as compactly supported functions and the Lorentzian function. We find that the tails decrease relatively slowly, as exponentials of fractional powers, in agreement with previous work using the moments of the distribution. Our results lend additional support to the conclusion that large vacuum stress tensor fluctuations are more probable than large thermal fluctuations, and may have observable effects.

  7. Measurements of gas hydrate formation probability distributions on a quasi-free water droplet

    NASA Astrophysics Data System (ADS)

    Maeda, Nobuo

    2014-06-01

    A High Pressure Automated Lag Time Apparatus (HP-ALTA) can measure gas hydrate formation probability distributions from water in a glass sample cell. In an HP-ALTA gas hydrate formation originates near the edges of the sample cell and gas hydrate films subsequently grow across the water-guest gas interface. It would ideally be desirable to be able to measure gas hydrate formation probability distributions of a single water droplet or mist that is freely levitating in a guest gas, but this is technically challenging. The next best option is to let a water droplet sit on top of a denser, immiscible, inert, and wall-wetting hydrophobic liquid to avoid contact of a water droplet with the solid walls. Here we report the development of a second generation HP-ALTA which can measure gas hydrate formation probability distributions of a water droplet which sits on a perfluorocarbon oil in a container that is coated with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane. It was found that the gas hydrate formation probability distributions of such a quasi-free water droplet were significantly lower than those of water in a glass sample cell.

  8. Workshop on Problems in Chemical Toxicology

    DTIC Science & Technology

    1980-06-20

    that is mustard gas , however, there is no proof of that. In Laos and Cambodia there seems to be three agents that they are using, tear- gas or CS...which Is non-lethal for most normal and healthy individuals. Then they are using a nerve agent of unknown origin probably an. organphosphate, but that...use some persistent agent such as "thickened" Soman or you could use mustard gas just as well. Tou would probably figure that they would move about

  9. 2012 Workplace and Gender Relations Survey of Reserve Component Members: Statistical Methodology Report

    DTIC Science & Technology

    2012-09-01

    3,435 10,461 9.1 3.1 63 Unmarried with Children+ Unmarried without Children 439,495 0.01 10,350 43,870 10.1 2.2 64 Married with Children+ Married ...logistic regression model was used to predict the probability of eligibility for the survey (known eligibility vs . unknown eligibility). A second logistic...regression model was used to predict the probability of response among eligible sample members (complete response vs . non-response). CHAID (Chi

  10. Swift J1822.3-1606: A Probable New SGR in Ground Analysis of BAT Data

    NASA Astrophysics Data System (ADS)

    Cummings, J. R.; Burrows, D.; Campana, S.; Kennea, J. A.; Krimm, H. A.; Palmer, D. M.; Sakamoto, T.; Zan, S.

    2011-07-01

    At 2011-07-14 at 12:47:47.1 UTC, Swift-BAT triggered (#457261) on a previously unknown source, Swift J1822.3-1606. This was at the same time as Fermi-GBM trigger #332340476. Only a subthreshold source was detected onboard. There were two subsequent rate increases of similar size, probably from the same source at about T+26 sec and T+308 sec, the latter also causing a rate trigger with no significant source found onboard (#457263).

  11. Teleportation of Three-Qubit State via Six-qubit Cluster State

    NASA Astrophysics Data System (ADS)

    Yu, Li-zhi; Sun, Shao-xin

    2015-05-01

    A scheme of probabilistic teleportation was proposed. In this scheme, we took a six-qubit nonmaximally cluster state as the quantum channel to teleport an unknown three-qubit entangled state. Based on Bob's three times Bell state measurement (BSM) results, the receiver Bob can by introducing an auxiliary particle and the appropriate transformation to reconstruct the initial state with a certain probability. We found that, the successful transmission probability depend on the absolute value of coefficients of two of six particle cluster state minimum.

  12. Historical floods in flood frequency analysis: Is this game worth the candle?

    NASA Astrophysics Data System (ADS)

    Strupczewski, Witold G.; Kochanek, Krzysztof; Bogdanowicz, Ewa

    2017-11-01

    In flood frequency analysis (FFA) the profit from inclusion of historical information on the largest historical pre-instrumental floods depends primarily on reliability of the information, i.e. the accuracy of magnitude and return period of floods. This study is focused on possible theoretical maximum gain in accuracy of estimates of upper quantiles, that can be obtained by incorporating the largest historical floods of known return periods into the FFA. We assumed a simple case: N years of systematic records of annual maximum flows and either one largest (XM1) or two largest (XM1 and XM2) flood peak flows in a historical M-year long period. The problem is explored by Monte Carlo simulations with the maximum likelihood (ML) method. Both correct and false distributional assumptions are considered. In the first case the two-parameter extreme value models (Gumbel, log-Gumbel, Weibull) with various coefficients of variation serve as parent distributions. In the case of unknown parent distribution, the Weibull distribution was assumed as estimating model and the truncated Gumbel as parent distribution. The return periods of XM1 and XM2 are determined from the parent distribution. The results are then compared with the case, when return periods of XM1 and XM2 are defined by their plotting positions. The results are presented in terms of bias, root mean square error and the probability of overestimation of the quantile with 100-year return period. The results of the research indicate that the maximal profit of inclusion of pre-instrumental foods in the FFA may prove smaller than the cost of reconstruction of historical hydrological information.

  13. Aerial view of entire LTA base after completion of both ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial view of entire LTA base after completion of both LTA ship hangars. Date unknown but probably circa 1945. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  14. Fragment size distribution in viscous bag breakup of a drop

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun; Bulusu, Kartik V.; Plesniak, Michael W.; Sojka, Paul E.

    2015-11-01

    In this study we examine the drop size distribution resulting from the fragmentation of a single drop in the presence of a continuous air jet. Specifically, we study the effect of Weber number, We, and Ohnesorge number, Oh on the disintegration process. The regime of breakup considered is observed between 12 <= We <= 16 for Oh <= 0.1. Experiments are conducted using phase Doppler anemometry. Both the number and volume fragment size probability distributions are plotted. The volume probability distribution revealed a bi-modal behavior with two distinct peaks: one corresponding to the rim fragments and the other to the bag fragments. This behavior was suppressed in the number probability distribution. Additionally, we employ an in-house particle detection code to isolate the rim fragment size distribution from the total probability distributions. Our experiments showed that the bag fragments are smaller in diameter and larger in number, while the rim fragments are larger in diameter and smaller in number. Furthermore, with increasing We for a given Ohwe observe a large number of small-diameter drops and small number of large-diameter drops. On the other hand, with increasing Oh for a fixed We the opposite is seen.

  15. Nuclear risk analysis of the Ulysses mission

    NASA Astrophysics Data System (ADS)

    Bartram, Bart W.; Vaughan, Frank R.; Englehart, Richard W.

    An account is given of the method used to quantify the risks accruing to the use of a radioisotope thermoelectric generator fueled by Pu-238 dioxide aboard the Space Shuttle-launched Ulysses mission. After using a Monte Carlo technique to develop probability distributions for the radiological consequences of a range of accident scenarios throughout the mission, factors affecting those consequences are identified in conjunction with their probability distributions. The functional relationship among all the factors is then established, and probability distributions for all factor effects are combined by means of a Monte Carlo technique.

  16. Identification of transmissivity fields using a Bayesian strategy and perturbative approach

    NASA Astrophysics Data System (ADS)

    Zanini, Andrea; Tanda, Maria Giovanna; Woodbury, Allan D.

    2017-10-01

    The paper deals with the crucial problem of the groundwater parameter estimation that is the basis for efficient modeling and reclamation activities. A hierarchical Bayesian approach is developed: it uses the Akaike's Bayesian Information Criteria in order to estimate the hyperparameters (related to the covariance model chosen) and to quantify the unknown noise variance. The transmissivity identification proceeds in two steps: the first, called empirical Bayesian interpolation, uses Y* (Y = lnT) observations to interpolate Y values on a specified grid; the second, called empirical Bayesian update, improve the previous Y estimate through the addition of hydraulic head observations. The relationship between the head and the lnT has been linearized through a perturbative solution of the flow equation. In order to test the proposed approach, synthetic aquifers from literature have been considered. The aquifers in question contain a variety of boundary conditions (both Dirichelet and Neuman type) and scales of heterogeneities (σY2 = 1.0 and σY2 = 5.3). The estimated transmissivity fields were compared to the true one. The joint use of Y* and head measurements improves the estimation of Y considering both degrees of heterogeneity. Even if the variance of the strong transmissivity field can be considered high for the application of the perturbative approach, the results show the same order of approximation of the non-linear methods proposed in literature. The procedure allows to compute the posterior probability distribution of the target quantities and to quantify the uncertainty in the model prediction. Bayesian updating has advantages related both to the Monte-Carlo (MC) and non-MC approaches. In fact, as the MC methods, Bayesian updating allows computing the direct posterior probability distribution of the target quantities and as non-MC methods it has computational times in the order of seconds.

  17. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System

    PubMed Central

    Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens

    2017-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution. PMID:28287526

  18. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System.

    PubMed

    Dörfler, Thilo; Eilert, Tobias; Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens

    2017-02-09

    Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution.

  19. Score distributions of gapped multiple sequence alignments down to the low-probability tail

    NASA Astrophysics Data System (ADS)

    Fieth, Pascal; Hartmann, Alexander K.

    2016-08-01

    Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.

  20. Site occupancy models with heterogeneous detection probabilities

    USGS Publications Warehouse

    Royle, J. Andrew

    2006-01-01

    Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.

  1. Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature).

    PubMed

    Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.

  2. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  3. Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.

    2012-06-15

    In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less

  4. Modeling highway travel time distribution with conditional probability models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling

    ABSTRACT Under the sponsorship of the Federal Highway Administration's Office of Freight Management and Operations, the American Transportation Research Institute (ATRI) has developed performance measures through the Freight Performance Measures (FPM) initiative. Under this program, travel speed information is derived from data collected using wireless based global positioning systems. These telemetric data systems are subscribed and used by trucking industry as an operations management tool. More than one telemetric operator submits their data dumps to ATRI on a regular basis. Each data transmission contains truck location, its travel time, and a clock time/date stamp. Data from the FPM program providesmore » a unique opportunity for studying the upstream-downstream speed distributions at different locations, as well as different time of the day and day of the week. This research is focused on the stochastic nature of successive link travel speed data on the continental United States Interstates network. Specifically, a method to estimate route probability distributions of travel time is proposed. This method uses the concepts of convolution of probability distributions and bivariate, link-to-link, conditional probability to estimate the expected distributions for the route travel time. Major contribution of this study is the consideration of speed correlation between upstream and downstream contiguous Interstate segments through conditional probability. The established conditional probability distributions, between successive segments, can be used to provide travel time reliability measures. This study also suggests an adaptive method for calculating and updating route travel time distribution as new data or information is added. This methodology can be useful to estimate performance measures as required by the recent Moving Ahead for Progress in the 21st Century Act (MAP 21).« less

  5. Probability of success for phase III after exploratory biomarker analysis in phase II.

    PubMed

    Götte, Heiko; Kirchner, Marietta; Sailer, Martin Oliver

    2017-05-01

    The probability of success or average power describes the potential of a future trial by weighting the power with a probability distribution of the treatment effect. The treatment effect estimate from a previous trial can be used to define such a distribution. During the development of targeted therapies, it is common practice to look for predictive biomarkers. The consequence is that the trial population for phase III is often selected on the basis of the most extreme result from phase II biomarker subgroup analyses. In such a case, there is a tendency to overestimate the treatment effect. We investigate whether the overestimation of the treatment effect estimate from phase II is transformed into a positive bias for the probability of success for phase III. We simulate a phase II/III development program for targeted therapies. This simulation allows to investigate selection probabilities and allows to compare the estimated with the true probability of success. We consider the estimated probability of success with and without subgroup selection. Depending on the true treatment effects, there is a negative bias without selection because of the weighting by the phase II distribution. In comparison, selection increases the estimated probability of success. Thus, selection does not lead to a bias in probability of success if underestimation due to the phase II distribution and overestimation due to selection cancel each other out. We recommend to perform similar simulations in practice to get the necessary information about the risk and chances associated with such subgroup selection designs. Copyright © 2017 John Wiley & Sons, Ltd.

  6. 12. Photocopy of photograph in the collection of Photographic Branch, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph in the collection of Photographic Branch, Puget Sound Naval Shipyard, Bremerton, WA. Original is labelled: Yard Photo 110. Date unknown, probably 1940's. Photographer unknown. HABS negative is a 4x5' copy negative. Perspective view of NW corner of Building 78 with marching band in foreground. Compare to 1917 photo (WA-203-A-1); note removal of chimney and addition of two extra floors at NW corner of building. - Puget Sound Naval Shipyard, Administration Building, Farragut Avenue, Bremerton, Kitsap County, WA

  7. Irreversible temperature gating in trpv1 sheds light on channel activation

    PubMed Central

    Sánchez-Moreno, Ana; Guevara-Hernández, Eduardo; Contreras-Cervera, Ricardo; Rangel-Yescas, Gisela; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara

    2018-01-01

    Temperature-activated TRP channels or thermoTRPs are among the only proteins that can directly convert temperature changes into changes in channel open probability. In spite of a wealth of functional and structural information, the mechanism of temperature activation remains unknown. We have carefully characterized the repeated activation of TRPV1 by thermal stimuli and discovered a previously unknown inactivation process, which is irreversible. We propose that this form of gating in TRPV1 channels is a consequence of the heat absorption process that leads to channel opening. PMID:29869983

  8. General formulation of long-range degree correlations in complex networks

    NASA Astrophysics Data System (ADS)

    Fujiki, Yuka; Takaguchi, Taro; Yakubo, Kousuke

    2018-06-01

    We provide a general framework for analyzing degree correlations between nodes separated by more than one step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions are introduced to fully describe long-range degree correlations with respect to degrees k and k' of two nodes and shortest path length l between them. We present general relations among these probability distributions and clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by the finite-size effect, the functional forms of these probability distributions for random networks are analytically evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to real-world networks.

  9. Stochastic analysis of particle movement over a dune bed

    USGS Publications Warehouse

    Lee, Baum K.; Jobson, Harvey E.

    1977-01-01

    Stochastic models are available that can be used to predict the transport and dispersion of bed-material sediment particles in an alluvial channel. These models are based on the proposition that the movement of a single bed-material sediment particle consists of a series of steps of random length separated by rest periods of random duration and, therefore, application of the models requires a knowledge of the probability distributions of the step lengths, the rest periods, the elevation of particle deposition, and the elevation of particle erosion. The procedure was tested by determining distributions from bed profiles formed in a large laboratory flume with a coarse sand as the bed material. The elevation of particle deposition and the elevation of particle erosion can be considered to be identically distributed, and their distribution can be described by either a ' truncated Gaussian ' or a ' triangular ' density function. The conditional probability distribution of the rest period given the elevation of particle deposition closely followed the two-parameter gamma distribution. The conditional probability distribution of the step length given the elevation of particle erosion and the elevation of particle deposition also closely followed the two-parameter gamma density function. For a given flow, the scale and shape parameters describing the gamma probability distributions can be expressed as functions of bed-elevation. (Woodard-USGS)

  10. Using type IV Pearson distribution to calculate the probabilities of underrun and overrun of lists of multiple cases.

    PubMed

    Wang, Jihan; Yang, Kai

    2014-07-01

    An efficient operating room needs both little underutilised and overutilised time to achieve optimal cost efficiency. The probabilities of underrun and overrun of lists of cases can be estimated by a well defined duration distribution of the lists. To propose a method of predicting the probabilities of underrun and overrun of lists of cases using Type IV Pearson distribution to support case scheduling. Six years of data were collected. The first 5 years of data were used to fit distributions and estimate parameters. The data from the last year were used as testing data to validate the proposed methods. The percentiles of the duration distribution of lists of cases were calculated by Type IV Pearson distribution and t-distribution. Monte Carlo simulation was conducted to verify the accuracy of percentiles defined by the proposed methods. Operating rooms in John D. Dingell VA Medical Center, United States, from January 2005 to December 2011. Differences between the proportion of lists of cases that were completed within the percentiles of the proposed duration distribution of the lists and the corresponding percentiles. Compared with the t-distribution, the proposed new distribution is 8.31% (0.38) more accurate on average and 14.16% (0.19) more accurate in calculating the probabilities at the 10th and 90th percentiles of the distribution, which is a major concern of operating room schedulers. The absolute deviations between the percentiles defined by Type IV Pearson distribution and those from Monte Carlo simulation varied from 0.20  min (0.01) to 0.43  min (0.03). Operating room schedulers can rely on the most recent 10 cases with the same combination of surgeon and procedure(s) for distribution parameter estimation to plan lists of cases. Values are mean (SEM). The proposed Type IV Pearson distribution is more accurate than t-distribution to estimate the probabilities of underrun and overrun of lists of cases. However, as not all the individual case durations followed log-normal distributions, there was some deviation from the true duration distribution of the lists.

  11. A new statistical method for design and analyses of component tolerance

    NASA Astrophysics Data System (ADS)

    Movahedi, Mohammad Mehdi; Khounsiavash, Mohsen; Otadi, Mahmood; Mosleh, Maryam

    2017-03-01

    Tolerancing conducted by design engineers to meet customers' needs is a prerequisite for producing high-quality products. Engineers use handbooks to conduct tolerancing. While use of statistical methods for tolerancing is not something new, engineers often use known distributions, including the normal distribution. Yet, if the statistical distribution of the given variable is unknown, a new statistical method will be employed to design tolerance. In this paper, we use generalized lambda distribution for design and analyses component tolerance. We use percentile method (PM) to estimate the distribution parameters. The findings indicated that, when the distribution of the component data is unknown, the proposed method can be used to expedite the design of component tolerance. Moreover, in the case of assembled sets, more extensive tolerance for each component with the same target performance can be utilized.

  12. A tool for simulating collision probabilities of animals with marine renewable energy devices.

    PubMed

    Schmitt, Pál; Culloch, Ross; Lieber, Lilian; Molander, Sverker; Hammar, Linus; Kregting, Louise

    2017-01-01

    The mathematical problem of establishing a collision probability distribution is often not trivial. The shape and motion of the animal as well as of the the device must be evaluated in a four-dimensional space (3D motion over time). Earlier work on wind and tidal turbines was limited to a simplified two-dimensional representation, which cannot be applied to many new structures. We present a numerical algorithm to obtain such probability distributions using transient, three-dimensional numerical simulations. The method is demonstrated using a sub-surface tidal kite as an example. Necessary pre- and post-processing of the data created by the model is explained, numerical details and potential issues and limitations in the application of resulting probability distributions are highlighted.

  13. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  14. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs.

    PubMed

    Lockley, Martin G; McCrea, Richard T; Buckley, Lisa G; Lim, Jong Deock; Matthews, Neffra A; Breithaupt, Brent H; Houck, Karen J; Gierliński, Gerard D; Surmik, Dawid; Kim, Kyung Soo; Xing, Lida; Kong, Dal Yong; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-07

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of "display arenas" or leks, and consistent with "nest scrape display" behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  15. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-01

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  16. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs

    PubMed Central

    Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-01

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred. PMID:26741567

  17. Quantum key distribution without the wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    A well-known feature of quantum mechanics is the secure exchange of secret bit strings which can then be used as keys to encrypt messages transmitted over any classical communication channel. It is demonstrated that this quantum key distribution allows a much more general and abstract access than commonly thought. The results include some generalizations of the Hilbert space version of quantum key distribution, but are based upon a general nonclassical extension of conditional probability. A special state-independent conditional probability is identified as origin of the superior security of quantum key distribution; this is a purely algebraic property of the quantum logic and represents the transition probability between the outcomes of two consecutive quantum measurements.

  18. The complexity of divisibility.

    PubMed

    Bausch, Johannes; Cubitt, Toby

    2016-09-01

    We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.

  19. Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.; Elliott, Peggy E.

    2002-01-01

    The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologically complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence hydraulic conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

  20. An improved methodology of asymmetric flow field flow fractionation hyphenated with inductively coupled mass spectrometry for the determination of size distribution of gold nanoparticles in dietary supplements.

    PubMed

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-11-13

    Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm. Published by Elsevier B.V.

  1. Teleportation of a two-atom entangled state with a thermal cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Lihua; Jin Xingri; Zhang Shou

    2005-08-15

    We present a scheme to teleport an unknown atomic entangled state in driven cavity QED. In our scheme, the success probability can reach 1.0. In addition, the scheme is insensitive to the cavity decay and the thermal field.

  2. Quantum key distribution with an unknown and untrusted source

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong

    2008-05-01

    The security of a standard bidirectional “plug-and-play” quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we solve this question directly by presenting the quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard Bennett-Brassard 1984 protocol, weak+vacuum decoy state protocol, and one-decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source.

  3. Does Litter Size Variation Affect Models of Terrestrial Carnivore Extinction Risk and Management?

    PubMed Central

    Devenish-Nelson, Eleanor S.; Stephens, Philip A.; Harris, Stephen; Soulsbury, Carl; Richards, Shane A.

    2013-01-01

    Background Individual variation in both survival and reproduction has the potential to influence extinction risk. Especially for rare or threatened species, reliable population models should adequately incorporate demographic uncertainty. Here, we focus on an important form of demographic stochasticity: variation in litter sizes. We use terrestrial carnivores as an example taxon, as they are frequently threatened or of economic importance. Since data on intraspecific litter size variation are often sparse, it is unclear what probability distribution should be used to describe the pattern of litter size variation for multiparous carnivores. Methodology/Principal Findings We used litter size data on 32 terrestrial carnivore species to test the fit of 12 probability distributions. The influence of these distributions on quasi-extinction probabilities and the probability of successful disease control was then examined for three canid species – the island fox Urocyon littoralis, the red fox Vulpes vulpes, and the African wild dog Lycaon pictus. Best fitting probability distributions differed among the carnivores examined. However, the discretised normal distribution provided the best fit for the majority of species, because variation among litter-sizes was often small. Importantly, however, the outcomes of demographic models were generally robust to the distribution used. Conclusion/Significance These results provide reassurance for those using demographic modelling for the management of less studied carnivores in which litter size variation is estimated using data from species with similar reproductive attributes. PMID:23469140

  4. Does litter size variation affect models of terrestrial carnivore extinction risk and management?

    PubMed

    Devenish-Nelson, Eleanor S; Stephens, Philip A; Harris, Stephen; Soulsbury, Carl; Richards, Shane A

    2013-01-01

    Individual variation in both survival and reproduction has the potential to influence extinction risk. Especially for rare or threatened species, reliable population models should adequately incorporate demographic uncertainty. Here, we focus on an important form of demographic stochasticity: variation in litter sizes. We use terrestrial carnivores as an example taxon, as they are frequently threatened or of economic importance. Since data on intraspecific litter size variation are often sparse, it is unclear what probability distribution should be used to describe the pattern of litter size variation for multiparous carnivores. We used litter size data on 32 terrestrial carnivore species to test the fit of 12 probability distributions. The influence of these distributions on quasi-extinction probabilities and the probability of successful disease control was then examined for three canid species - the island fox Urocyon littoralis, the red fox Vulpes vulpes, and the African wild dog Lycaon pictus. Best fitting probability distributions differed among the carnivores examined. However, the discretised normal distribution provided the best fit for the majority of species, because variation among litter-sizes was often small. Importantly, however, the outcomes of demographic models were generally robust to the distribution used. These results provide reassurance for those using demographic modelling for the management of less studied carnivores in which litter size variation is estimated using data from species with similar reproductive attributes.

  5. Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model

    PubMed Central

    Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.

    2010-01-01

    Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867

  6. Probabilistic analysis of preload in the abutment screw of a dental implant complex.

    PubMed

    Guda, Teja; Ross, Thomas A; Lang, Lisa A; Millwater, Harry R

    2008-09-01

    Screw loosening is a problem for a percentage of implants. A probabilistic analysis to determine the cumulative probability distribution of the preload, the probability of obtaining an optimal preload, and the probabilistic sensitivities identifying important variables is lacking. The purpose of this study was to examine the inherent variability of material properties, surface interactions, and applied torque in an implant system to determine the probability of obtaining desired preload values and to identify the significant variables that affect the preload. Using software programs, an abutment screw was subjected to a tightening torque and the preload was determined from finite element (FE) analysis. The FE model was integrated with probabilistic analysis software. Two probabilistic analysis methods (advanced mean value and Monte Carlo sampling) were applied to determine the cumulative distribution function (CDF) of preload. The coefficient of friction, elastic moduli, Poisson's ratios, and applied torque were modeled as random variables and defined by probability distributions. Separate probability distributions were determined for the coefficient of friction in well-lubricated and dry environments. The probabilistic analyses were performed and the cumulative distribution of preload was determined for each environment. A distinct difference was seen between the preload probability distributions generated in a dry environment (normal distribution, mean (SD): 347 (61.9) N) compared to a well-lubricated environment (normal distribution, mean (SD): 616 (92.2) N). The probability of obtaining a preload value within the target range was approximately 54% for the well-lubricated environment and only 0.02% for the dry environment. The preload is predominately affected by the applied torque and coefficient of friction between the screw threads and implant bore at lower and middle values of the preload CDF, and by the applied torque and the elastic modulus of the abutment screw at high values of the preload CDF. Lubrication at the threaded surfaces between the abutment screw and implant bore affects the preload developed in the implant complex. For the well-lubricated surfaces, only approximately 50% of implants will have preload values within the generally accepted range. This probability can be improved by applying a higher torque than normally recommended or a more closely controlled torque than typically achieved. It is also suggested that materials with higher elastic moduli be used in the manufacture of the abutment screw to achieve a higher preload.

  7. Comparative analysis through probability distributions of a data set

    NASA Astrophysics Data System (ADS)

    Cristea, Gabriel; Constantinescu, Dan Mihai

    2018-02-01

    In practice, probability distributions are applied in such diverse fields as risk analysis, reliability engineering, chemical engineering, hydrology, image processing, physics, market research, business and economic research, customer support, medicine, sociology, demography etc. This article highlights important aspects of fitting probability distributions to data and applying the analysis results to make informed decisions. There are a number of statistical methods available which can help us to select the best fitting model. Some of the graphs display both input data and fitted distributions at the same time, as probability density and cumulative distribution. The goodness of fit tests can be used to determine whether a certain distribution is a good fit. The main used idea is to measure the "distance" between the data and the tested distribution, and compare that distance to some threshold values. Calculating the goodness of fit statistics also enables us to order the fitted distributions accordingly to how good they fit to data. This particular feature is very helpful for comparing the fitted models. The paper presents a comparison of most commonly used goodness of fit tests as: Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared. A large set of data is analyzed and conclusions are drawn by visualizing the data, comparing multiple fitted distributions and selecting the best model. These graphs should be viewed as an addition to the goodness of fit tests.

  8. Impact of temporal probability in 4D dose calculation for lung tumors.

    PubMed

    Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi

    2015-11-08

    The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.

  9. Does the rapid appearance of life on Earth suggest that life is common in the universe?

    PubMed

    Lineweaver, Charles H; Davis, Tamara M

    2002-01-01

    It is sometimes assumed that the rapidity of biogenesis on Earth suggests that life is common in the Universe. Here we critically examine the assumptions inherent in this if-life-evolved-rapidly-life-must-be-common argument. We use the observational constraints on the rapidity of biogenesis on Earth to infer the probability of biogenesis on terrestrial planets with the same unknown probability of biogenesis as the Earth. We find that on such planets, older than approximately 1 Gyr, the probability of biogenesis is > 13% at the 95% confidence level. This quantifies an important term in the Drake Equation but does not necessarily mean that life is common in the Universe.

  10. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    NASA Astrophysics Data System (ADS)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  11. q-Gaussian distributions and multiplicative stochastic processes for analysis of multiple financial time series

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro

    2010-12-01

    This study considers q-Gaussian distributions and stochastic differential equations with both multiplicative and additive noises. In the M-dimensional case a q-Gaussian distribution can be theoretically derived as a stationary probability distribution of the multiplicative stochastic differential equation with both mutually independent multiplicative and additive noises. By using the proposed stochastic differential equation a method to evaluate a default probability under a given risk buffer is proposed.

  12. Net present value probability distributions from decline curve reserves estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, D.E.; Huffman, C.H.; Thompson, R.S.

    1995-12-31

    This paper demonstrates how reserves probability distributions can be used to develop net present value (NPV) distributions. NPV probability distributions were developed from the rate and reserves distributions presented in SPE 28333. This real data study used practicing engineer`s evaluations of production histories. Two approaches were examined to quantify portfolio risk. The first approach, the NPV Relative Risk Plot, compares the mean NPV with the NPV relative risk ratio for the portfolio. The relative risk ratio is the NPV standard deviation (a) divided the mean ({mu}) NPV. The second approach, a Risk - Return Plot, is a plot of themore » {mu} discounted cash flow rate of return (DCFROR) versus the {sigma} for the DCFROR distribution. This plot provides a risk-return relationship for comparing various portfolios. These methods may help evaluate property acquisition and divestiture alternatives and assess the relative risk of a suite of wells or fields for bank loans.« less

  13. Optimal random search for a single hidden target.

    PubMed

    Snider, Joseph

    2011-01-01

    A single target is hidden at a location chosen from a predetermined probability distribution. Then, a searcher must find a second probability distribution from which random search points are sampled such that the target is found in the minimum number of trials. Here it will be shown that if the searcher must get very close to the target to find it, then the best search distribution is proportional to the square root of the target distribution regardless of dimension. For a Gaussian target distribution, the optimum search distribution is approximately a Gaussian with a standard deviation that varies inversely with how close the searcher must be to the target to find it. For a network where the searcher randomly samples nodes and looks for the fixed target along edges, the optimum is either to sample a node with probability proportional to the square root of the out-degree plus 1 or not to do so at all.

  14. Multi-scale Characterization and Modeling of Surface Slope Probability Distribution for ~20-km Diameter Lunar Craters

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Robinson, M. S.; Boyd, A. K.

    2013-12-01

    Craters ~20-km diameter and above significantly shaped the lunar landscape. The statistical nature of the slope distribution on their walls and floors dominate the overall slope distribution statistics for the lunar surface. Slope statistics are inherently useful for characterizing the current topography of the surface, determining accurate photometric and surface scattering properties, and in defining lunar surface trafficability [1-4]. Earlier experimental studies on the statistical nature of lunar surface slopes were restricted either by resolution limits (Apollo era photogrammetric studies) or by model error considerations (photoclinometric and radar scattering studies) where the true nature of slope probability distribution was not discernible at baselines smaller than a kilometer[2,3,5]. Accordingly, historical modeling of lunar surface slopes probability distributions for applications such as in scattering theory development or rover traversability assessment is more general in nature (use of simple statistical models such as the Gaussian distribution[1,2,5,6]). With the advent of high resolution, high precision topographic models of the Moon[7,8], slopes in lunar craters can now be obtained at baselines as low as 6-meters allowing unprecedented multi-scale (multiple baselines) modeling possibilities for slope probability distributions. Topographic analysis (Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) 2-m digital elevation models (DEM)) of ~20-km diameter Copernican lunar craters revealed generally steep slopes on interior walls (30° to 36°, locally exceeding 40°) over 15-meter baselines[9]. In this work, we extend the analysis from a probability distribution modeling point-of-view with NAC DEMs to characterize the slope statistics for the floors and walls for the same ~20-km Copernican lunar craters. The difference in slope standard deviations between the Gaussian approximation and the actual distribution (2-meter sampling) was computed over multiple scales. This slope analysis showed that local slope distributions are non-Gaussian for both crater walls and floors. Over larger baselines (~100 meters), crater wall slope probability distributions do approximate Gaussian distributions better, but have long distribution tails. Crater floor probability distributions however, were always asymmetric (for the baseline scales analyzed) and less affected by baseline scale variations. Accordingly, our results suggest that use of long tailed probability distributions (like Cauchy) and a baseline-dependant multi-scale model can be more effective in describing the slope statistics for lunar topography. Refrences: [1]Moore, H.(1971), JGR,75(11) [2]Marcus, A. H.(1969),JGR,74 (22).[3]R.J. Pike (1970),U.S. Geological Survey Working Paper [4]N. C. Costes, J. E. Farmer and E. B. George (1972),NASA Technical Report TR R-401 [5]M. N. Parker and G. L. Tyler(1973), Radio Science, 8(3),177-184 [6]Alekseev, V. A.et al (1968), Soviet Astronomy, Vol. 11, p.860 [7]Burns et al. (2012) Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXIX-B4, 483-488.[8]Smith et al. (2010) GRL 37, L18204, DOI: 10.1029/2010GL043751. [9]Wagner R., Robinson, M., Speyerer E., Mahanti, P., LPSC 2013, #2924.

  15. Development and application of an empirical probability distribution for the prediction error of re-entry body maximum dynamic pressure

    NASA Technical Reports Server (NTRS)

    Lanzi, R. James; Vincent, Brett T.

    1993-01-01

    The relationship between actual and predicted re-entry maximum dynamic pressure is characterized using a probability density function and a cumulative distribution function derived from sounding rocket flight data. This paper explores the properties of this distribution and demonstrates applications of this data with observed sounding rocket re-entry body damage characteristics to assess probabilities of sustaining various levels of heating damage. The results from this paper effectively bridge the gap existing in sounding rocket reentry analysis between the known damage level/flight environment relationships and the predicted flight environment.

  16. Probability and the changing shape of response distributions for orientation.

    PubMed

    Anderson, Britt

    2014-11-18

    Spatial attention and feature-based attention are regarded as two independent mechanisms for biasing the processing of sensory stimuli. Feature attention is held to be a spatially invariant mechanism that advantages a single feature per sensory dimension. In contrast to the prediction of location independence, I found that participants were able to report the orientation of a briefly presented visual grating better for targets defined by high probability conjunctions of features and locations even when orientations and locations were individually uniform. The advantage for high-probability conjunctions was accompanied by changes in the shape of the response distributions. High-probability conjunctions had error distributions that were not normally distributed but demonstrated increased kurtosis. The increase in kurtosis could be explained as a change in the variances of the component tuning functions that comprise a population mixture. By changing the mixture distribution of orientation-tuned neurons, it is possible to change the shape of the discrimination function. This prompts the suggestion that attention may not "increase" the quality of perceptual processing in an absolute sense but rather prioritizes some stimuli over others. This results in an increased number of highly accurate responses to probable targets and, simultaneously, an increase in the number of very inaccurate responses. © 2014 ARVO.

  17. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    NASA Technical Reports Server (NTRS)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  18. Joint probabilities and quantum cognition

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio

    2012-12-01

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  19. Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks.

    PubMed

    Zhuang, Jiancang; Ogata, Yosihiko

    2006-04-01

    The space-time epidemic-type aftershock sequence model is a stochastic branching process in which earthquake activity is classified into background and clustering components and each earthquake triggers other earthquakes independently according to certain rules. This paper gives the probability distributions associated with the largest event in a cluster and their properties for all three cases when the process is subcritical, critical, and supercritical. One of the direct uses of these probability distributions is to evaluate the probability of an earthquake to be a foreshock, and magnitude distributions of foreshocks and nonforeshock earthquakes. To verify these theoretical results, the Japan Meteorological Agency earthquake catalog is analyzed. The proportion of events that have 1 or more larger descendants in total events is found to be as high as about 15%. When the differences between background events and triggered event in the behavior of triggering children are considered, a background event has a probability about 8% to be a foreshock. This probability decreases when the magnitude of the background event increases. These results, obtained from a complicated clustering model, where the characteristics of background events and triggered events are different, are consistent with the results obtained in [Ogata, Geophys. J. Int. 127, 17 (1996)] by using the conventional single-linked cluster declustering method.

  20. Genetics Home Reference: CLN7 disease

    MedlinePlus

    ... unknown. The MFSD8 protein is embedded in the membrane of cell compartments called lysosomes , which digest and recycle different types of molecules. Based on the structure of the protein, MFSD8 probably transports molecules across the lysosomal membrane, but the specific molecules it moves have not ...

  1. Infectious Causes of Encephalitis and Meningoencephalitis in Thailand, 2003–2005

    PubMed Central

    Campbell, Angela P.; Supawat, Krongkaew; Liamsuwan, Sahas; Chotpitayasunondh, Tawee; Laptikulthum, Somsak; Viriyavejakul, Akravudh; Tantirittisak, Tasanee; Tunlayadechanont, Supoch; Visudtibhan, Anannit; Vasiknanonte, Punnee; Janjindamai, Supachai; Boonluksiri, Pairoj; Rajborirug, Kiatsak; Watanaveeradej, Veerachai; Khetsuriani, Nino; Dowell, Scott F.

    2015-01-01

    Acute encephalitis is a severe neurologic syndrome. Determining etiology from among ≈100 possible agents is difficult. To identify infectious etiologies of encephalitis in Thailand, we conducted surveillance in 7 hospitals during July 2003–August 2005 and selected patients with acute onset of brain dysfunction with fever or hypothermia and with abnormalities seen on neuroimages or electroencephalograms or with cerebrospinal fluid pleocytosis. Blood and cerebrospinal fluid were tested for >30 pathogens. Among 149 case-patients, median age was 12 (range 0–83) years, 84 (56%) were male, and 15 (10%) died. Etiology was confirmed or probable for 54 (36%) and possible or unknown for 95 (64%). Among confirmed or probable etiologies, the leading pathogens were Japanese encephalitis virus, enteroviruses, and Orientia tsutsugamushi. No samples were positive for chikungunya, Nipah, or West Nile viruses; Bartonella henselae; or malaria parasites. Although a broad range of infectious agents was identified, the etiology of most cases remains unknown. PMID:25627940

  2. Does Breast Cancer Drive the Building of Survival Probability Models among States? An Assessment of Goodness of Fit for Patient Data from SEER Registries

    PubMed

    Khan, Hafiz; Saxena, Anshul; Perisetti, Abhilash; Rafiq, Aamrin; Gabbidon, Kemesha; Mende, Sarah; Lyuksyutova, Maria; Quesada, Kandi; Blakely, Summre; Torres, Tiffany; Afesse, Mahlet

    2016-12-01

    Background: Breast cancer is a worldwide public health concern and is the most prevalent type of cancer in women in the United States. This study concerned the best fit of statistical probability models on the basis of survival times for nine state cancer registries: California, Connecticut, Georgia, Hawaii, Iowa, Michigan, New Mexico, Utah, and Washington. Materials and Methods: A probability random sampling method was applied to select and extract records of 2,000 breast cancer patients from the Surveillance Epidemiology and End Results (SEER) database for each of the nine state cancer registries used in this study. EasyFit software was utilized to identify the best probability models by using goodness of fit tests, and to estimate parameters for various statistical probability distributions that fit survival data. Results: Statistical analysis for the summary of statistics is reported for each of the states for the years 1973 to 2012. Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared goodness of fit test values were used for survival data, the highest values of goodness of fit statistics being considered indicative of the best fit survival model for each state. Conclusions: It was found that California, Connecticut, Georgia, Iowa, New Mexico, and Washington followed the Burr probability distribution, while the Dagum probability distribution gave the best fit for Michigan and Utah, and Hawaii followed the Gamma probability distribution. These findings highlight differences between states through selected sociodemographic variables and also demonstrate probability modeling differences in breast cancer survival times. The results of this study can be used to guide healthcare providers and researchers for further investigations into social and environmental factors in order to reduce the occurrence of and mortality due to breast cancer. Creative Commons Attribution License

  3. Role of the site of synaptic competition and the balance of learning forces for Hebbian encoding of probabilistic Markov sequences

    PubMed Central

    Bouchard, Kristofer E.; Ganguli, Surya; Brainard, Michael S.

    2015-01-01

    The majority of distinct sensory and motor events occur as temporally ordered sequences with rich probabilistic structure. Sequences can be characterized by the probability of transitioning from the current state to upcoming states (forward probability), as well as the probability of having transitioned to the current state from previous states (backward probability). Despite the prevalence of probabilistic sequencing of both sensory and motor events, the Hebbian mechanisms that mold synapses to reflect the statistics of experienced probabilistic sequences are not well understood. Here, we show through analytic calculations and numerical simulations that Hebbian plasticity (correlation, covariance, and STDP) with pre-synaptic competition can develop synaptic weights equal to the conditional forward transition probabilities present in the input sequence. In contrast, post-synaptic competition can develop synaptic weights proportional to the conditional backward probabilities of the same input sequence. We demonstrate that to stably reflect the conditional probability of a neuron's inputs and outputs, local Hebbian plasticity requires balance between competitive learning forces that promote synaptic differentiation and homogenizing learning forces that promote synaptic stabilization. The balance between these forces dictates a prior over the distribution of learned synaptic weights, strongly influencing both the rate at which structure emerges and the entropy of the final distribution of synaptic weights. Together, these results demonstrate a simple correspondence between the biophysical organization of neurons, the site of synaptic competition, and the temporal flow of information encoded in synaptic weights by Hebbian plasticity while highlighting the utility of balancing learning forces to accurately encode probability distributions, and prior expectations over such probability distributions. PMID:26257637

  4. A method to deconvolve stellar rotational velocities II. The probability distribution function via Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Christen, Alejandra; Escarate, Pedro; Curé, Michel; Rial, Diego F.; Cassetti, Julia

    2016-10-01

    Aims: Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin I, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods: After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results: This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions: Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin I data directly without the need for any convergence criteria.

  5. Asymptotically optimum multialternative sequential procedures for discernment of processes minimizing average length of observations

    NASA Astrophysics Data System (ADS)

    Fishman, M. M.

    1985-01-01

    The problem of multialternative sequential discernment of processes is formulated in terms of conditionally optimum procedures minimizing the average length of observations, without any probabilistic assumptions about any one occurring process, rather than in terms of Bayes procedures minimizing the average risk. The problem is to find the procedure that will transform inequalities into equalities. The problem is formulated for various models of signal observation and data processing: (1) discernment of signals from background interference by a multichannel system; (2) discernment of pulse sequences with unknown time delay; (3) discernment of harmonic signals with unknown frequency. An asymptotically optimum sequential procedure is constructed which compares the statistics of the likelihood ratio with the mean-weighted likelihood ratio and estimates the upper bound for conditional average lengths of observations. This procedure is shown to remain valid as the upper bound for the probability of erroneous partial solutions decreases approaching zero and the number of hypotheses increases approaching infinity. It also remains valid under certain special constraints on the probability such as a threshold. A comparison with a fixed-length procedure reveals that this sequential procedure decreases the length of observations to one quarter, on the average, when the probability of erroneous partial solutions is low.

  6. Quantitative assessment of building fire risk to life safety.

    PubMed

    Guanquan, Chu; Jinhua, Sun

    2008-06-01

    This article presents a quantitative risk assessment framework for evaluating fire risk to life safety. Fire risk is divided into two parts: probability and corresponding consequence of every fire scenario. The time-dependent event tree technique is used to analyze probable fire scenarios based on the effect of fire protection systems on fire spread and smoke movement. To obtain the variation of occurrence probability with time, Markov chain is combined with a time-dependent event tree for stochastic analysis on the occurrence probability of fire scenarios. To obtain consequences of every fire scenario, some uncertainties are considered in the risk analysis process. When calculating the onset time to untenable conditions, a range of fires are designed based on different fire growth rates, after which uncertainty of onset time to untenable conditions can be characterized by probability distribution. When calculating occupant evacuation time, occupant premovement time is considered as a probability distribution. Consequences of a fire scenario can be evaluated according to probability distribution of evacuation time and onset time of untenable conditions. Then, fire risk to life safety can be evaluated based on occurrence probability and consequences of every fire scenario. To express the risk assessment method in detail, a commercial building is presented as a case study. A discussion compares the assessment result of the case study with fire statistics.

  7. Tail mean and related robust solution concepts

    NASA Astrophysics Data System (ADS)

    Ogryczak, Włodzimierz

    2014-01-01

    Robust optimisation might be viewed as a multicriteria optimisation problem where objectives correspond to the scenarios although their probabilities are unknown or imprecise. The simplest robust solution concept represents a conservative approach focused on the worst-case scenario results optimisation. A softer concept allows one to optimise the tail mean thus combining performances under multiple worst scenarios. We show that while considering robust models allowing the probabilities to vary only within given intervals, the tail mean represents the robust solution for only upper bounded probabilities. For any arbitrary intervals of probabilities the corresponding robust solution may be expressed by the optimisation of appropriately combined mean and tail mean criteria thus remaining easily implementable with auxiliary linear inequalities. Moreover, we use the tail mean concept to develope linear programming implementable robust solution concepts related to risk averse optimisation criteria.

  8. Competing risk models in reliability systems, an exponential distribution model with Bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, I.

    2018-03-01

    The exponential distribution is the most widely used reliability analysis. This distribution is very suitable for representing the lengths of life of many cases and is available in a simple statistical form. The characteristic of this distribution is a constant hazard rate. The exponential distribution is the lower rank of the Weibull distributions. In this paper our effort is to introduce the basic notions that constitute an exponential competing risks model in reliability analysis using Bayesian analysis approach and presenting their analytic methods. The cases are limited to the models with independent causes of failure. A non-informative prior distribution is used in our analysis. This model describes the likelihood function and follows with the description of the posterior function and the estimations of the point, interval, hazard function, and reliability. The net probability of failure if only one specific risk is present, crude probability of failure due to a specific risk in the presence of other causes, and partial crude probabilities are also included.

  9. Observed, unknown distributions of clinical chemical quantities should be considered to be log-normal: a proposal.

    PubMed

    Haeckel, Rainer; Wosniok, Werner

    2010-10-01

    The distribution of many quantities in laboratory medicine are considered to be Gaussian if they are symmetric, although, theoretically, a Gaussian distribution is not plausible for quantities that can attain only non-negative values. If a distribution is skewed, further specification of the type is required, which may be difficult to provide. Skewed (non-Gaussian) distributions found in clinical chemistry usually show only moderately large positive skewness (e.g., log-normal- and χ(2) distribution). The degree of skewness depends on the magnitude of the empirical biological variation (CV(e)), as demonstrated using the log-normal distribution. A Gaussian distribution with a small CV(e) (e.g., for plasma sodium) is very similar to a log-normal distribution with the same CV(e). In contrast, a relatively large CV(e) (e.g., plasma aspartate aminotransferase) leads to distinct differences between a Gaussian and a log-normal distribution. If the type of an empirical distribution is unknown, it is proposed that a log-normal distribution be assumed in such cases. This avoids distributional assumptions that are not plausible and does not contradict the observation that distributions with small biological variation look very similar to a Gaussian distribution.

  10. On probability-possibility transformations

    NASA Technical Reports Server (NTRS)

    Klir, George J.; Parviz, Behzad

    1992-01-01

    Several probability-possibility transformations are compared in terms of the closeness of preserving second-order properties. The comparison is based on experimental results obtained by computer simulation. Two second-order properties are involved in this study: noninteraction of two distributions and projections of a joint distribution.

  11. Theoretical size distribution of fossil taxa: analysis of a null model.

    PubMed

    Reed, William J; Hughes, Barry D

    2007-03-22

    This article deals with the theoretical size distribution (of number of sub-taxa) of a fossil taxon arising from a simple null model of macroevolution. New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions) or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. The size distributions of the pioneering genus (following a cataclysm) and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family.

  12. Newton/Poisson-Distribution Program

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Scheuer, Ernest M.

    1990-01-01

    NEWTPOIS, one of two computer programs making calculations involving cumulative Poisson distributions. NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714) used independently of one another. NEWTPOIS determines Poisson parameter for given cumulative probability, from which one obtains percentiles for gamma distributions with integer shape parameters and percentiles for X(sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Program written in C.

  13. Towards high-speed autonomous navigation of unknown environments

    NASA Astrophysics Data System (ADS)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  14. Adaptive Fuzzy Output Constrained Control Design for Multi-Input Multioutput Stochastic Nonstrict-Feedback Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-12-01

    In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  15. Probability theory for 3-layer remote sensing radiative transfer model: univariate case.

    PubMed

    Ben-David, Avishai; Davidson, Charles E

    2012-04-23

    A probability model for a 3-layer radiative transfer model (foreground layer, cloud layer, background layer, and an external source at the end of line of sight) has been developed. The 3-layer model is fundamentally important as the primary physical model in passive infrared remote sensing. The probability model is described by the Johnson family of distributions that are used as a fit for theoretically computed moments of the radiative transfer model. From the Johnson family we use the SU distribution that can address a wide range of skewness and kurtosis values (in addition to addressing the first two moments, mean and variance). In the limit, SU can also describe lognormal and normal distributions. With the probability model one can evaluate the potential for detecting a target (vapor cloud layer), the probability of observing thermal contrast, and evaluate performance (receiver operating characteristics curves) in clutter-noise limited scenarios. This is (to our knowledge) the first probability model for the 3-layer remote sensing geometry that treats all parameters as random variables and includes higher-order statistics. © 2012 Optical Society of America

  16. Sampling probability distributions of lesions in mammograms

    NASA Astrophysics Data System (ADS)

    Looney, P.; Warren, L. M.; Dance, D. R.; Young, K. C.

    2015-03-01

    One approach to image perception studies in mammography using virtual clinical trials involves the insertion of simulated lesions into normal mammograms. To facilitate this, a method has been developed that allows for sampling of lesion positions across the cranio-caudal and medio-lateral radiographic projections in accordance with measured distributions of real lesion locations. 6825 mammograms from our mammography image database were segmented to find the breast outline. The outlines were averaged and smoothed to produce an average outline for each laterality and radiographic projection. Lesions in 3304 mammograms with malignant findings were mapped on to a standardised breast image corresponding to the average breast outline using piecewise affine transforms. A four dimensional probability distribution function was found from the lesion locations in the cranio-caudal and medio-lateral radiographic projections for calcification and noncalcification lesions. Lesion locations sampled from this probability distribution function were mapped on to individual mammograms using a piecewise affine transform which transforms the average outline to the outline of the breast in the mammogram. The four dimensional probability distribution function was validated by comparing it to the two dimensional distributions found by considering each radiographic projection and laterality independently. The correlation of the location of the lesions sampled from the four dimensional probability distribution function across radiographic projections was shown to match the correlation of the locations of the original mapped lesion locations. The current system has been implemented as a web-service on a server using the Python Django framework. The server performs the sampling, performs the mapping and returns the results in a javascript object notation format.

  17. Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production

    PubMed Central

    Ortiz-Bermúdez, Patricia; Hirth, Kolby C.; Srebotnik, Ewald; Hammel, Kenneth E.

    2007-01-01

    Soils and decayed plant litter contain significant quantities of chlorinated aromatic polymers that have a natural but largely unknown origin. We used cupric oxide ligninolysis coupled with gas chromatography/mass spectrometry to show that Curvularia inaequalis, a widely distributed litter ascomycete, chlorinated the aromatic rings of lignin in wood that it was degrading. In aspen wood decayed for 24 weeks, two chlorolignin fragments, 5-chlorovanillin and 2-chlorosyringaldehyde, were each found at ≈10 μg/g of wood (dry weight). These levels resemble those of similar structures generally found in unpolluted environmental samples. Fractionation of the extractable proteins followed by tandem mass spectrometric analysis showed that the colonized wood contained a previously described C. inaequalis chloroperoxidase that very likely catalyzed lignin chlorination. Chlorolignin produced by this route and humus derived from it are probably significant components of the global chlorine cycle because chloroperoxidase-producing fungi are ubiquitous in decaying lignocellulose and lignin is the earth's most abundant aromatic substance. PMID:17360449

  18. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands

    NASA Astrophysics Data System (ADS)

    Dempsey, David; Suckale, Jenny

    2017-08-01

    Earthquakes induced by natural gas extraction from the Groningen reservoir, the Netherlands, put local communities at risk. Responsible operation of a reservoir whose gas reserves are of strategic importance to the country requires understanding of the link between extraction and earthquakes. We synthesize observations and a model for Groningen seismicity to produce forecasts for felt seismicity (M > 2.5) in the period February 2017 to 2024. Our model accounts for poroelastic earthquake triggering and rupture on the 325 largest reservoir faults, using an ensemble approach to model unknown heterogeneity and replicate earthquake statistics. We calculate probability distributions for key model parameters using a Bayesian method that incorporates the earthquake observations with a nonhomogeneous Poisson process. Our analysis indicates that the Groningen reservoir was not critically stressed prior to the start of production. Epistemic uncertainty and aleatoric uncertainty are incorporated into forecasts for three different future extraction scenarios. The largest expected earthquake was similar for all scenarios, with a 5% likelihood of exceeding M 4.0.

  19. Tetrahymena Poc1 ensures proper intertriplet microtubule linkages to maintain basal body integrity

    PubMed Central

    Meehl, Janet B.; Bayless, Brian A.; Giddings, Thomas H.; Pearson, Chad G.; Winey, Mark

    2016-01-01

    Basal bodies comprise nine symmetric triplet microtubules that anchor forces produced by the asymmetric beat pattern of motile cilia. The ciliopathy protein Poc1 stabilizes basal bodies through an unknown mechanism. In poc1∆ cells, electron tomography reveals subtle defects in the organization of intertriplet linkers (A-C linkers) that connect adjacent triplet microtubules. Complete triplet microtubules are lost preferentially near the posterior face of the basal body. Basal bodies that are missing triplets likely remain competent to assemble new basal bodies with nine triplet microtubules, suggesting that the mother basal body microtubule structure does not template the daughter. Our data indicate that Poc1 stabilizes basal body triplet microtubules through linkers between neighboring triplets. Without this stabilization, specific triplet microtubules within the basal body are more susceptible to loss, probably due to force distribution within the basal body during ciliary beating. This work provides insights into how the ciliopathy protein Poc1 maintains basal body integrity. PMID:27251062

  20. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroyuki; Vecchi, Gabriel A.; Underwood, Seth

    2017-12-01

    In 2014 and 2015, post-monsoon extremely severe cyclonic storms (ESCS)—defined by the WMO as tropical storms with lifetime maximum winds greater than 46 m s-1—were first observed over the Arabian Sea (ARB), causing widespread damage. However, it is unknown to what extent this abrupt increase in post-monsoon ESCSs can be linked to anthropogenic warming, natural variability, or stochastic behaviour. Here, using a suite of high-resolution global coupled model experiments that accurately simulate the climatological distribution of ESCSs, we show that anthropogenic forcing has likely increased the probability of late-season ECSCs occurring in the ARB since the preindustrial era. However, the specific timing of observed late-season ESCSs in 2014 and 2015 was likely due to stochastic processes. It is further shown that natural variability played a minimal role in the observed increase of ESCSs. Thus, continued anthropogenic forcing will further amplify the risk of cyclones in the ARB, with corresponding socio-economic implications.

  1. Aspects of silicon bulk lifetimes

    NASA Technical Reports Server (NTRS)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  2. COSMOABC: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Ishida, E. E. O.; Vitenti, S. D. P.; Penna-Lima, M.; Cisewski, J.; de Souza, R. S.; Trindade, A. M. M.; Cameron, E.; Busti, V. C.; COIN Collaboration

    2015-11-01

    Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogues. Here we present COSMOABC, a Python ABC sampler featuring a Population Monte Carlo variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code is very flexible and can be easily coupled to an external simulator, while allowing to incorporate arbitrary distance and prior functions. As an example of practical application, we coupled COSMOABC with the NUMCOSMO library and demonstrate how it can be used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function. COSMOABC is published under the GPLv3 license on PyPI and GitHub and documentation is available at http://goo.gl/SmB8EX.

  3. Calculating Launch Vehicle Flight Performance Reserve

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Pinson, Robin M.; Beard, Bernard B.

    2011-01-01

    This paper addresses different methods for determining the amount of extra propellant (flight performance reserve or FPR) that is necessary to reach orbit with a high probability of success. One approach involves assuming that the various influential parameters are independent and that the result behaves as a Gaussian. Alternatively, probabilistic models may be used to determine the vehicle and environmental models that will be available (estimated) for a launch day go/no go decision. High-fidelity closed-loop Monte Carlo simulation determines the amount of propellant used with each random combination of parameters that are still unknown at the time of launch. Using the results of the Monte Carlo simulation, several methods were used to calculate the FPR. The final chosen solution involves determining distributions for the pertinent outputs and running a separate Monte Carlo simulation to obtain a best estimate of the required FPR. This result differs from the result obtained using the other methods sufficiently that the higher fidelity is warranted.

  4. Bertrand Model Under Incomplete Information

    NASA Astrophysics Data System (ADS)

    Ferreira, Fernanda A.; Pinto, Alberto A.

    2008-09-01

    We consider a Bertrand duopoly model with unknown costs. The firms' aim is to choose the price of its product according to the well-known concept of Bayesian Nash equilibrium. The chooses are made simultaneously by both firms. In this paper, we suppose that each firm has two different technologies, and uses one of them according to a certain probability distribution. The use of either one or the other technology affects the unitary production cost. We show that this game has exactly one Bayesian Nash equilibrium. We analyse the advantages, for firms and for consumers, of using the technology with highest production cost versus the one with cheapest production cost. We prove that the expected profit of each firm increases with the variance of its production costs. We also show that the expected price of each good increases with both expected production costs, being the effect of the expected production costs of the rival dominated by the effect of the own expected production costs.

  5. A high-frequency survey of the southern Galactic plane for pulsars

    NASA Technical Reports Server (NTRS)

    Johnston, Simon; Lyne, A. G.; Manchester, R. N.; Kniffen, D. A.; D'Amico, N.; Lim, J.; Ashworth, M.

    1992-01-01

    Results of an HF survey designed to detect young, distant, and short-period pulsars are presented. The survey detected a total of 100 pulsars, 46 of which were previously unknown. The periods of the newly discovered pulsars range between 47 ms and 2.5 ms. One of the new discoveries, PSR 1259-63, is a member of a long-period binary system. At least three of the pulsars have ages less than 30,000 yr, bringing the total number of such pulsars to 12. The majority of the new discoveries are distant objects with high dispersion measures, which are difficult to detect at low frequencies. This demonstrates that the survey has reduced the severe selection effects of pulse scattering, high Galactic background temperature, and dispersion broadening, which hamper the detection of such pulsars at low radio frequencies. The pulsar distribution in the southern Galaxy is found to extend much further from the Galactic center than that in the north, probably due to two prominent spiral arms in the southern Galaxy.

  6. Genomic Analysis of Salmonella enterica Serovar Typhimurium DT160 Associated with a 14-Year Outbreak, New Zealand, 1998–2012

    PubMed Central

    Benschop, Jackie; Biggs, Patrick J.; Marshall, Jonathan C.; Hayman, David T.S.; Carter, Philip E.; Midwinter, Anne C.; Mather, Alison E.; French, Nigel P.

    2017-01-01

    During 1998–2012, an extended outbreak of Salmonella enterica serovar Typhimurium definitive type 160 (DT160) affected >3,000 humans and killed wild birds in New Zealand. However, the relationship between DT160 within these 2 host groups and the origin of the outbreak are unknown. Whole-genome sequencing was used to compare 109 Salmonella Typhimurium DT160 isolates from sources throughout New Zealand. We provide evidence that DT160 was introduced into New Zealand around 1997 and rapidly propagated throughout the country, becoming more genetically diverse over time. The genetic heterogeneity was evenly distributed across multiple predicted functional protein groups, and we found no evidence of host group differentiation between isolates collected from human, poultry, bovid, and wild bird sources, indicating ongoing transmission between these host groups. Our findings demonstrate how a comparative genomic approach can be used to gain insight into outbreaks, disease transmission, and the evolution of a multihost pathogen after a probable point-source introduction. PMID:28516864

  7. The spectral positioning algorithm of new spectrum vehicle based on convex programming in wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun; Lu, Zhixin

    2017-10-01

    Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.

  8. Transport implementation of the Bernstein-Vazirani algorithm with ion qubits

    NASA Astrophysics Data System (ADS)

    Fallek, S. D.; Herold, C. D.; McMahon, B. J.; Maller, K. M.; Brown, K. R.; Amini, J. M.

    2016-08-01

    Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein-Vazirani algorithm. Our architecture takes advantage of the ion transport capabilities of such a trap. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.

  9. Causes and consequences of marine mammal population declines in southwest Alaska: a food-web perspective.

    PubMed

    Estes, J A; Doak, D F; Springer, A M; Williams, T M

    2009-06-27

    Populations of sea otters, seals and sea lions have collapsed across much of southwest Alaska over the past several decades. The sea otter decline set off a trophic cascade in which the coastal marine ecosystem underwent a phase shift from kelp forests to deforested sea urchin barrens. This interaction in turn affected the distribution, abundance and productivity of numerous other species. Ecological consequences of the pinniped declines are largely unknown. Increased predation by transient (marine mammal-eating) killer whales probably caused the sea otter declines and may have caused the pinniped declines as well. Springer et al. proposed that killer whales, which purportedly fed extensively on great whales, expanded their diets to include a higher percentage of sea otters and pinnipeds following a sharp reduction in great whale numbers from post World War II industrial whaling. Critics of this hypothesis claim that great whales are not now and probably never were an important nutritional resource for killer whales. We used demographic/energetic analyses to evaluate whether or not a predator-prey system involving killer whales and the smaller marine mammals would be sustainable without some nutritional contribution from the great whales. Our results indicate that while such a system is possible, it could only exist under a narrow range of extreme conditions and is therefore highly unlikely.

  10. Growth and containment of a hierarchical criminal network

    NASA Astrophysics Data System (ADS)

    Marshak, Charles Z.; Rombach, M. Puck; Bertozzi, Andrea L.; D'Orsogna, Maria R.

    2016-02-01

    We model the hierarchical evolution of an organized criminal network via antagonistic recruitment and pursuit processes. Within the recruitment phase, a criminal kingpin enlists new members into the network, who in turn seek out other affiliates. New recruits are linked to established criminals according to a probability distribution that depends on the current network structure. At the same time, law enforcement agents attempt to dismantle the growing organization using pursuit strategies that initiate on the lower level nodes and that unfold as self-avoiding random walks. The global details of the organization are unknown to law enforcement, who must explore the hierarchy node by node. We halt the pursuit when certain local criteria of the network are uncovered, encoding if and when an arrest is made; the criminal network is assumed to be eradicated if the kingpin is arrested. We first analyze recruitment and study the large scale properties of the growing network; later we add pursuit and use numerical simulations to study the eradication probability in the case of three pursuit strategies, the time to first eradication, and related costs. Within the context of this model, we find that eradication becomes increasingly costly as the network increases in size and that the optimal way of arresting the kingpin is to intervene at the early stages of network formation. We discuss our results in the context of dark network disruption and their implications on possible law enforcement strategies.

  11. Bayesian deterministic decision making: a normative account of the operant matching law and heavy-tailed reward history dependency of choices.

    PubMed

    Saito, Hiroshi; Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato

    2014-01-01

    The decision making behaviors of humans and animals adapt and then satisfy an "operant matching law" in certain type of tasks. This was first pointed out by Herrnstein in his foraging experiments on pigeons. The matching law has been one landmark for elucidating the underlying processes of decision making and its learning in the brain. An interesting question is whether decisions are made deterministically or probabilistically. Conventional learning models of the matching law are based on the latter idea; they assume that subjects learn choice probabilities of respective alternatives and decide stochastically with the probabilities. However, it is unknown whether the matching law can be accounted for by a deterministic strategy or not. To answer this question, we propose several deterministic Bayesian decision making models that have certain incorrect beliefs about an environment. We claim that a simple model produces behavior satisfying the matching law in static settings of a foraging task but not in dynamic settings. We found that the model that has a belief that the environment is volatile works well in the dynamic foraging task and exhibits undermatching, which is a slight deviation from the matching law observed in many experiments. This model also demonstrates the double-exponential reward history dependency of a choice and a heavier-tailed run-length distribution, as has recently been reported in experiments on monkeys.

  12. Growth and containment of a hierarchical criminal network.

    PubMed

    Marshak, Charles Z; Rombach, M Puck; Bertozzi, Andrea L; D'Orsogna, Maria R

    2016-02-01

    We model the hierarchical evolution of an organized criminal network via antagonistic recruitment and pursuit processes. Within the recruitment phase, a criminal kingpin enlists new members into the network, who in turn seek out other affiliates. New recruits are linked to established criminals according to a probability distribution that depends on the current network structure. At the same time, law enforcement agents attempt to dismantle the growing organization using pursuit strategies that initiate on the lower level nodes and that unfold as self-avoiding random walks. The global details of the organization are unknown to law enforcement, who must explore the hierarchy node by node. We halt the pursuit when certain local criteria of the network are uncovered, encoding if and when an arrest is made; the criminal network is assumed to be eradicated if the kingpin is arrested. We first analyze recruitment and study the large scale properties of the growing network; later we add pursuit and use numerical simulations to study the eradication probability in the case of three pursuit strategies, the time to first eradication, and related costs. Within the context of this model, we find that eradication becomes increasingly costly as the network increases in size and that the optimal way of arresting the kingpin is to intervene at the early stages of network formation. We discuss our results in the context of dark network disruption and their implications on possible law enforcement strategies.

  13. Incorporating expert judgments in utility evaluation of bacteroidales qPCR assays for microbial source tracking in a drinking water source.

    PubMed

    Åström, Johan; Pettersson, Thomas J R; Reischer, Georg H; Norberg, Tommy; Hermansson, Malte

    2015-02-03

    Several assays for the detection of host-specific genetic markers of the order Bacteroidales have been developed and used for microbial source tracking (MST) in environmental waters. It is recognized that the source-sensitivity and source-specificity are unknown and variable when introducing these assays in new geographic regions, which reduces their reliability and use. A Bayesian approach was developed to incorporate expert judgments with regional assay sensitivity and specificity assessments in a utility evaluation of a human and a ruminant-specific qPCR assay for MST in a drinking water source. Water samples from Lake Rådasjön were analyzed for E. coli, intestinal enterococci and somatic coliphages through cultivation and for human (BacH) and ruminant-specific (BacR) markers through qPCR assays. Expert judgments were collected regarding the probability of human and ruminant fecal contamination based on fecal indicator organism data and subjective information. Using Bayes formula, the conditional probability of a true human or ruminant fecal contamination given the presence of BacH or BacR was determined stochastically from expert judgments and regional qPCR assay performance, using Beta distributions to represent uncertainties. A web-based computational tool was developed for the procedure, which provides a measure of confidence to findings of host-specific markers and demonstrates the information value from these assays.

  14. Incorporating Expert Judgments in Utility Evaluation of Bacteroidales qPCR Assays for Microbial Source Tracking in a Drinking Water Source

    PubMed Central

    Åström, Johan; Pettersson, Thomas J. R.; Reischer, Georg H.; Norberg, Tommy; Hermansson, Malte

    2017-01-01

    Several assays for the detection of host-specific genetic markers of the order Bacteroidales have been developed and used for microbial source tracking (MST) in environmental waters. It is recognized that the source-sensitivity and source-specificity are unknown and variable when introducing these assays in new geographic regions, which reduces their reliability and use. A Bayesian approach was developed to incorporate expert judgments with regional assay sensitivity and specificity assessments in a utility evaluation of a human and a ruminant-specific qPCR assay for MST in a drinking water source. Water samples from Lake Rådasjön were analyzed for E. coli, intestinal enterococci and somatic coliphages through cultivation and for human (BacH) and ruminant-specific (BacR) markers through qPCR assays. Expert judgments were collected regarding the probability of human and ruminant fecal contamination based on fecal indicator organism data and subjective information. Using Bayes formula, the conditional probability of a true human or ruminant fecal contamination given the presence of BacH or BacR was determined stochastically from expert judgments and regional qPCR assay performance, using Beta distributions to represent uncertainties. A web-based computational tool was developed for the procedure, which provides a measure of confidence to findings of host-specific markers and demonstrates the information value from these assays. PMID:25545113

  15. In vitro culture increases mechanical stability of human tissue engineered cartilage constructs by prevention of microscale scaffold buckling.

    PubMed

    Middendorf, Jill M; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Bartell, Lena R; Cohen, Itai; Bonassar, Lawrence J

    2017-11-07

    Many studies have measured the global compressive properties of tissue engineered (TE) cartilage grown on porous scaffolds. Such scaffolds are known to exhibit strain softening due to local buckling under loading. As matrix is deposited onto these scaffolds, the global compressive properties increase. However the relationship between the amount and distribution of matrix in the scaffold and local buckling is unknown. To address this knowledge gap, we studied how local strain and construct buckling in human TE constructs changes over culture times and GAG content. Confocal elastography techniques and digital image correlation (DIC) were used to measure and record buckling modes and local strains. Receiver operating characteristic (ROC) curves were used to quantify construct buckling. The results from the ROC analysis were placed into Kaplan-Meier survival function curves to establish the probability that any point in a construct buckled. These analysis techniques revealed the presence of buckling at early time points, but bending at later time points. An inverse correlation was observed between the probability of buckling and the total GAG content of each construct. This data suggests that increased GAG content prevents the onset of construct buckling and improves the microscale compressive tissue properties. This increase in GAG deposition leads to enhanced global compressive properties by prevention of microscale buckling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Data-driven mapping of the potential mountain permafrost distribution.

    PubMed

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2017-07-15

    Existing mountain permafrost distribution models generally offer a good overview of the potential extent of this phenomenon at a regional scale. They are however not always able to reproduce the high spatial discontinuity of permafrost at the micro-scale (scale of a specific landform; ten to several hundreds of meters). To overcome this lack, we tested an alternative modelling approach using three classification algorithms belonging to statistics and machine learning: Logistic regression, Support Vector Machines and Random forests. These supervised learning techniques infer a classification function from labelled training data (pixels of permafrost absence and presence) with the aim of predicting the permafrost occurrence where it is unknown. The research was carried out in a 588km 2 area of the Western Swiss Alps. Permafrost evidences were mapped from ortho-image interpretation (rock glacier inventorying) and field data (mainly geoelectrical and thermal data). The relationship between selected permafrost evidences and permafrost controlling factors was computed with the mentioned techniques. Classification performances, assessed with AUROC, range between 0.81 for Logistic regression, 0.85 with Support Vector Machines and 0.88 with Random forests. The adopted machine learning algorithms have demonstrated to be efficient for permafrost distribution modelling thanks to consistent results compared to the field reality. The high resolution of the input dataset (10m) allows elaborating maps at the micro-scale with a modelled permafrost spatial distribution less optimistic than classic spatial models. Moreover, the probability output of adopted algorithms offers a more precise overview of the potential distribution of mountain permafrost than proposing simple indexes of the permafrost favorability. These encouraging results also open the way to new possibilities of permafrost data analysis and mapping. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Asymmetric Auxin Distribution is Not Required to Establish Root Phototropism in Arabidopsis.

    PubMed

    Kimura, Taro; Haga, Ken; Shimizu-Mitao, Yasushi; Takebayashi, Yumiko; Kasahara, Hiroyuki; Hayashi, Ken-Ichiro; Kakimoto, Tatsuo; Sakai, Tatsuya

    2018-04-01

    An asymmetric auxin distribution pattern is assumed to underlie the tropic responses of seed plants. It is unclear, however, whether this pattern is required for root negative phototropism. We here demonstrate that asymmetric auxin distribution is not required to establish root phototropism in Arabidopsis. Our detailed analyses of auxin reporter genes indicate that auxin accumulates on the irradiated side of roots in response to an incidental gravitropic stimulus caused by phototropic bending. Further, an agravitropic mutant showed a suppression of this accumulation with an enhancement of the phototropic response. In this context, our pharmacological and genetic analyses revealed that both polar auxin transport and auxin biosynthesis are critical for the establishment of root gravitropism, but not for root phototropism, and that defects in these processes actually enhance phototropic responses in roots. The auxin response factor double mutant arf7 arf19 and the auxin receptor mutant tir1 showed a slight reduction in phototropic curvatures in roots, suggesting that the transcriptional regulation by some specific ARF proteins and their regulators is at least partly involved in root phototropism. However, the auxin antagonist PEO-IAA [α-(phenylethyl-2-one)-indole-3-acetic acid] suppressed root gravitropism and enhanced root phototropism, suggesting that the TIR1/AFB auxin receptors and ARF transcriptional factors play minor roles in root phototropism. Taken together, we conclude from our current data that the phototropic response in Arabidopsis roots is induced by an unknown mechanism that does not require asymmetric auxin distribution and that the Cholodny-Went hypothesis probably does not apply to root phototropism.

  18. How to model a negligible probability under the WTO sanitary and phytosanitary agreement?

    PubMed

    Powell, Mark R

    2013-06-01

    Since the 1997 EC--Hormones decision, World Trade Organization (WTO) Dispute Settlement Panels have wrestled with the question of what constitutes a negligible risk under the Sanitary and Phytosanitary Agreement. More recently, the 2010 WTO Australia--Apples Panel focused considerable attention on the appropriate quantitative model for a negligible probability in a risk assessment. The 2006 Australian Import Risk Analysis for Apples from New Zealand translated narrative probability statements into quantitative ranges. The uncertainty about a "negligible" probability was characterized as a uniform distribution with a minimum value of zero and a maximum value of 10(-6) . The Australia - Apples Panel found that the use of this distribution would tend to overestimate the likelihood of "negligible" events and indicated that a triangular distribution with a most probable value of zero and a maximum value of 10⁻⁶ would correct the bias. The Panel observed that the midpoint of the uniform distribution is 5 × 10⁻⁷ but did not consider that the triangular distribution has an expected value of 3.3 × 10⁻⁷. Therefore, if this triangular distribution is the appropriate correction, the magnitude of the bias found by the Panel appears modest. The Panel's detailed critique of the Australian risk assessment, and the conclusions of the WTO Appellate Body about the materiality of flaws found by the Panel, may have important implications for the standard of review for risk assessments under the WTO SPS Agreement. © 2012 Society for Risk Analysis.

  19. Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.

    Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.

  20. Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions

    DOE PAGES

    Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.

    2017-03-27

    Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.

  1. Teaching Uncertainties

    ERIC Educational Resources Information Center

    Duerdoth, Ian

    2009-01-01

    The subject of uncertainties (sometimes called errors) is traditionally taught (to first-year science undergraduates) towards the end of a course on statistics that defines probability as the limit of many trials, and discusses probability distribution functions and the Gaussian distribution. We show how to introduce students to the concepts of…

  2. Robust approaches to quantification of margin and uncertainty for sparse data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hund, Lauren; Schroeder, Benjamin B.; Rumsey, Kelin

    Characterizing the tails of probability distributions plays a key role in quantification of margins and uncertainties (QMU), where the goal is characterization of low probability, high consequence events based on continuous measures of performance. When data are collected using physical experimentation, probability distributions are typically fit using statistical methods based on the collected data, and these parametric distributional assumptions are often used to extrapolate about the extreme tail behavior of the underlying probability distribution. In this project, we character- ize the risk associated with such tail extrapolation. Specifically, we conducted a scaling study to demonstrate the large magnitude of themore » risk; then, we developed new methods for communicat- ing risk associated with tail extrapolation from unvalidated statistical models; lastly, we proposed a Bayesian data-integration framework to mitigate tail extrapolation risk through integrating ad- ditional information. We conclude that decision-making using QMU is a complex process that cannot be achieved using statistical analyses alone.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes withmore » the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.« less

  4. Detecting background changes in environments with dynamic foreground by separating probability distribution function mixtures using Pearson's method of moments

    NASA Astrophysics Data System (ADS)

    Jenkins, Colleen; Jordan, Jay; Carlson, Jeff

    2007-02-01

    This paper presents parameter estimation techniques useful for detecting background changes in a video sequence with extreme foreground activity. A specific application of interest is automated detection of the covert placement of threats (e.g., a briefcase bomb) inside crowded public facilities. We propose that a histogram of pixel intensity acquired from a fixed mounted camera over time for a series of images will be a mixture of two Gaussian functions: the foreground probability distribution function and background probability distribution function. We will use Pearson's Method of Moments to separate the two probability distribution functions. The background function can then be "remembered" and changes in the background can be detected. Subsequent comparisons of background estimates are used to detect changes. Changes are flagged to alert security forces to the presence and location of potential threats. Results are presented that indicate the significant potential for robust parameter estimation techniques as applied to video surveillance.

  5. Quantum Logic Networks for Probabilistic and Controlled Teleportation of Unknown Quantum States

    NASA Astrophysics Data System (ADS)

    Gao, Ting

    2004-08-01

    We present simplification schemes for probabilistic and controlled teleportation of the unknown quantum states of both one particle and two particles and construct efficient quantum logic networks for implementing the new schemes by means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neumann measurement, and classically controlled operations. In these schemes the teleportation are not always successful but with certain probability. The project supported by National Natural Science Foundation of China under Grant No. 10271081 and the Natural Science Foundation of Hebei Province of China under Grant No. A2004000141

  6. Irreversible temperature gating in trpv1 sheds light on channel activation.

    PubMed

    Sánchez-Moreno, Ana; Guevara-Hernández, Eduardo; Contreras-Cervera, Ricardo; Rangel-Yescas, Gisela; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D

    2018-06-05

    Temperature-activated TRP channels or thermoTRPs are among the only proteins that can directly convert temperature changes into changes in channel open probability. In spite of a wealth of functional and structural information, the mechanism of temperature activation remains unknown. We have carefully characterized the repeated activation of TRPV1 by thermal stimuli and discovered a previously unknown inactivation process, which is irreversible. We propose that this form of gating in TRPV1 channels is a consequence of the heat absorption process that leads to channel opening. © 2018, Sánchez-Moreno et al.

  7. p-adic stochastic hidden variable model

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrew

    1998-03-01

    We propose stochastic hidden variables model in which hidden variables have a p-adic probability distribution ρ(λ) and at the same time conditional probabilistic distributions P(U,λ), U=A,A',B,B', are ordinary probabilities defined on the basis of the Kolmogorov measure-theoretical axiomatics. A frequency definition of p-adic probability is quite similar to the ordinary frequency definition of probability. p-adic frequency probability is defined as the limit of relative frequencies νn but in the p-adic metric. We study a model with p-adic stochastics on the level of the hidden variables description. But, of course, responses of macroapparatuses have to be described by ordinary stochastics. Thus our model describes a mixture of p-adic stochastics of the microworld and ordinary stochastics of macroapparatuses. In this model probabilities for physical observables are the ordinary probabilities. At the same time Bell's inequality is violated.

  8. Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Choudhury, B. U.

    2015-07-01

    Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.

  9. Quasi-probabilities in conditioned quantum measurement and a geometric/statistical interpretation of Aharonov's weak value

    NASA Astrophysics Data System (ADS)

    Lee, Jaeha; Tsutsui, Izumi

    2017-05-01

    We show that the joint behavior of an arbitrary pair of (generally noncommuting) quantum observables can be described by quasi-probabilities, which are an extended version of the standard probabilities used for describing the outcome of measurement for a single observable. The physical situations that require these quasi-probabilities arise when one considers quantum measurement of an observable conditioned by some other variable, with the notable example being the weak measurement employed to obtain Aharonov's weak value. Specifically, we present a general prescription for the construction of quasi-joint probability (QJP) distributions associated with a given combination of observables. These QJP distributions are introduced in two complementary approaches: one from a bottom-up, strictly operational construction realized by examining the mathematical framework of the conditioned measurement scheme, and the other from a top-down viewpoint realized by applying the results of the spectral theorem for normal operators and their Fourier transforms. It is then revealed that, for a pair of simultaneously measurable observables, the QJP distribution reduces to the unique standard joint probability distribution of the pair, whereas for a noncommuting pair there exists an inherent indefiniteness in the choice of such QJP distributions, admitting a multitude of candidates that may equally be used for describing the joint behavior of the pair. In the course of our argument, we find that the QJP distributions furnish the space of operators in the underlying Hilbert space with their characteristic geometric structures such that the orthogonal projections and inner products of observables can be given statistical interpretations as, respectively, “conditionings” and “correlations”. The weak value Aw for an observable A is then given a geometric/statistical interpretation as either the orthogonal projection of A onto the subspace generated by another observable B, or equivalently, as the conditioning of A given B with respect to the QJP distribution under consideration.

  10. Minimal-Approximation-Based Distributed Consensus Tracking of a Class of Uncertain Nonlinear Multiagent Systems With Unknown Control Directions.

    PubMed

    Choi, Yun Ho; Yoo, Sung Jin

    2017-03-28

    A minimal-approximation-based distributed adaptive consensus tracking approach is presented for strict-feedback multiagent systems with unknown heterogeneous nonlinearities and control directions under a directed network. Existing approximation-based consensus results for uncertain nonlinear multiagent systems in lower-triangular form have used multiple function approximators in each local controller to approximate unmatched nonlinearities of each follower. Thus, as the follower's order increases, the number of the approximators used in its local controller increases. However, the proposed approach employs only one function approximator to construct the local controller of each follower regardless of the order of the follower. The recursive design methodology using a new error transformation is derived for the proposed minimal-approximation-based design. Furthermore, a bounding lemma on parameters of Nussbaum functions is presented to handle the unknown control direction problem in the minimal-approximation-based distributed consensus tracking framework and the stability of the overall closed-loop system is rigorously analyzed in the Lyapunov sense.

  11. Bayesian methods for characterizing unknown parameters of material models

    DOE PAGES

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    2016-02-04

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  12. Bayesian methods for characterizing unknown parameters of material models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  13. Convergence and Efficiency of Adaptive Importance Sampling Techniques with Partial Biasing

    NASA Astrophysics Data System (ADS)

    Fort, G.; Jourdain, B.; Lelièvre, T.; Stoltz, G.

    2018-04-01

    We propose a new Monte Carlo method to efficiently sample a multimodal distribution (known up to a normalization constant). We consider a generalization of the discrete-time Self Healing Umbrella Sampling method, which can also be seen as a generalization of well-tempered metadynamics. The dynamics is based on an adaptive importance technique. The importance function relies on the weights (namely the relative probabilities) of disjoint sets which form a partition of the space. These weights are unknown but are learnt on the fly yielding an adaptive algorithm. In the context of computational statistical physics, the logarithm of these weights is, up to an additive constant, the free-energy, and the discrete valued function defining the partition is called the collective variable. The algorithm falls into the general class of Wang-Landau type methods, and is a generalization of the original Self Healing Umbrella Sampling method in two ways: (i) the updating strategy leads to a larger penalization strength of already visited sets in order to escape more quickly from metastable states, and (ii) the target distribution is biased using only a fraction of the free-energy, in order to increase the effective sample size and reduce the variance of importance sampling estimators. We prove the convergence of the algorithm and analyze numerically its efficiency on a toy example.

  14. An Applied Physicist Does Econometrics

    NASA Astrophysics Data System (ADS)

    Taff, L. G.

    2010-02-01

    The biggest problem those attempting to understand econometric data, via modeling, have is that economics has no F = ma. Without a theoretical underpinning, econometricians have no way to build a good model to fit observations to. Physicists do, and when F = ma failed, we knew it. Still desiring to comprehend econometric data, applied economists turn to mis-applying probability theory---especially with regard to the assumptions concerning random errors---and choosing extremely simplistic analytical formulations of inter-relationships. This introduces model bias to an unknown degree. An applied physicist, used to having to match observations to a numerical or analytical model with a firm theoretical basis, modify the model, re-perform the analysis, and then know why, and when, to delete ``outliers'', is at a considerable advantage when quantitatively analyzing econometric data. I treat two cases. One is to determine the household density distribution of total assets, annual income, age, level of education, race, and marital status. Each of these ``independent'' variables is highly correlated with every other but only current annual income and level of education follow a linear relationship. The other is to discover the functional dependence of total assets on the distribution of assets: total assets has an amazingly tight power law dependence on a quadratic function of portfolio composition. Who knew? )

  15. Verification of road databases using multiple road models

    NASA Astrophysics Data System (ADS)

    Ziems, Marcel; Rottensteiner, Franz; Heipke, Christian

    2017-08-01

    In this paper a new approach for automatic road database verification based on remote sensing images is presented. In contrast to existing methods, the applicability of the new approach is not restricted to specific road types, context areas or geographic regions. This is achieved by combining several state-of-the-art road detection and road verification approaches that work well under different circumstances. Each one serves as an independent module representing a unique road model and a specific processing strategy. All modules provide independent solutions for the verification problem of each road object stored in the database in form of two probability distributions, the first one for the state of a database object (correct or incorrect), and a second one for the state of the underlying road model (applicable or not applicable). In accordance with the Dempster-Shafer Theory, both distributions are mapped to a new state space comprising the classes correct, incorrect and unknown. Statistical reasoning is applied to obtain the optimal state of a road object. A comparison with state-of-the-art road detection approaches using benchmark datasets shows that in general the proposed approach provides results with larger completeness. Additional experiments reveal that based on the proposed method a highly reliable semi-automatic approach for road data base verification can be designed.

  16. A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Becker, D.; Cain, S.

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.

  17. Transformation to equivalent dimensions—a new methodology to study earthquake clustering

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw

    2014-05-01

    A seismic event is represented by a point in a parameter space, quantified by the vector of parameter values. Studies of earthquake clustering involve considering distances between such points in multidimensional spaces. However, the metrics of earthquake parameters are different, hence the metric in a multidimensional parameter space cannot be readily defined. The present paper proposes a solution of this metric problem based on a concept of probabilistic equivalence of earthquake parameters. Under this concept the lengths of parameter intervals are equivalent if the probability for earthquakes to take values from either interval is the same. Earthquake clustering is studied in an equivalent rather than the original dimensions space, where the equivalent dimension (ED) of a parameter is its cumulative distribution function. All transformed parameters are of linear scale in [0, 1] interval and the distance between earthquakes represented by vectors in any ED space is Euclidean. The unknown, in general, cumulative distributions of earthquake parameters are estimated from earthquake catalogues by means of the model-free non-parametric kernel estimation method. Potential of the transformation to EDs is illustrated by two examples of use: to find hierarchically closest neighbours in time-space and to assess temporal variations of earthquake clustering in a specific 4-D phase space.

  18. Two Universality Properties Associated with the Monkey Model of Zipf's Law

    NASA Astrophysics Data System (ADS)

    Perline, Richard; Perline, Ron

    2016-03-01

    The distribution of word probabilities in the monkey model of Zipf's law is associated with two universality properties: (1) the power law exponent converges strongly to $-1$ as the alphabet size increases and the letter probabilities are specified as the spacings from a random division of the unit interval for any distribution with a bounded density function on $[0,1]$; and (2), on a logarithmic scale the version of the model with a finite word length cutoff and unequal letter probabilities is approximately normally distributed in the part of the distribution away from the tails. The first property is proved using a remarkably general limit theorem for the logarithm of sample spacings from Shao and Hahn, and the second property follows from Anscombe's central limit theorem for a random number of i.i.d. random variables. The finite word length model leads to a hybrid Zipf-lognormal mixture distribution closely related to work in other areas.

  19. Computer routines for probability distributions, random numbers, and related functions

    USGS Publications Warehouse

    Kirby, W.

    1983-01-01

    Use of previously coded and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main progress. The probability distributions provided include the beta, chi-square, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F. Other mathematical functions include the Bessel function, I sub o, gamma and log-gamma functions, error functions, and exponential integral. Auxiliary services include sorting and printer-plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)

  20. Computer routines for probability distributions, random numbers, and related functions

    USGS Publications Warehouse

    Kirby, W.H.

    1980-01-01

    Use of previously codes and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main programs. The probability distributions provided include the beta, chisquare, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F tests. Other mathematical functions include the Bessel function I (subzero), gamma and log-gamma functions, error functions and exponential integral. Auxiliary services include sorting and printer plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)

  1. Universal laws of human society's income distribution

    NASA Astrophysics Data System (ADS)

    Tao, Yong

    2015-10-01

    General equilibrium equations in economics play the same role with many-body Newtonian equations in physics. Accordingly, each solution of the general equilibrium equations can be regarded as a possible microstate of the economic system. Since Arrow's Impossibility Theorem and Rawls' principle of social fairness will provide a powerful support for the hypothesis of equal probability, then the principle of maximum entropy is available in a just and equilibrium economy so that an income distribution will occur spontaneously (with the largest probability). Remarkably, some scholars have observed such an income distribution in some democratic countries, e.g. USA. This result implies that the hypothesis of equal probability may be only suitable for some "fair" systems (economic or physical systems). From this meaning, the non-equilibrium systems may be "unfair" so that the hypothesis of equal probability is unavailable.

  2. Polynomial chaos representation of databases on manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu

    2017-04-15

    Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. Themore » method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.« less

  3. Gravitational lensing, time delay, and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1992-01-01

    The probability distributions of time delay in gravitational lensing by point masses and isolated galaxies (modeled as singular isothermal spheres) are studied. For point lenses (all with the same mass) the probability distribution is broad, and with a peak at delta(t) of about 50 S; for singular isothermal spheres, the probability distribution is a rapidly decreasing function with increasing time delay, with a median delta(t) equals about 1/h month, and its behavior depends sensitively on the luminosity function of galaxies. The present simplified calculation is particularly relevant to the gamma-ray bursts if they are of cosmological origin. The frequency of 'recurrent' bursts due to gravitational lensing by galaxies is probably between 0.05 and 0.4 percent. Gravitational lensing can be used as a test of the cosmological origin of gamma-ray bursts.

  4. Analysis of multinomial models with unknown index using data augmentation

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.; Link, W.A.

    2007-01-01

    Multinomial models with unknown index ('sample size') arise in many practical settings. In practice, Bayesian analysis of such models has proved difficult because the dimension of the parameter space is not fixed, being in some cases a function of the unknown index. We describe a data augmentation approach to the analysis of this class of models that provides for a generic and efficient Bayesian implementation. Under this approach, the data are augmented with all-zero detection histories. The resulting augmented dataset is modeled as a zero-inflated version of the complete-data model where an estimable zero-inflation parameter takes the place of the unknown multinomial index. Interestingly, data augmentation can be justified as being equivalent to imposing a discrete uniform prior on the multinomial index. We provide three examples involving estimating the size of an animal population, estimating the number of diabetes cases in a population using the Rasch model, and the motivating example of estimating the number of species in an animal community with latent probabilities of species occurrence and detection.

  5. A general formula for computing maximum proportion correct scores in various psychophysical paradigms with arbitrary probability distributions of stimulus observations.

    PubMed

    Dai, Huanping; Micheyl, Christophe

    2015-05-01

    Proportion correct (Pc) is a fundamental measure of task performance in psychophysics. The maximum Pc score that can be achieved by an optimal (maximum-likelihood) observer in a given task is of both theoretical and practical importance, because it sets an upper limit on human performance. Within the framework of signal detection theory, analytical solutions for computing the maximum Pc score have been established for several common experimental paradigms under the assumption of Gaussian additive internal noise. However, as the scope of applications of psychophysical signal detection theory expands, the need is growing for psychophysicists to compute maximum Pc scores for situations involving non-Gaussian (internal or stimulus-induced) noise. In this article, we provide a general formula for computing the maximum Pc in various psychophysical experimental paradigms for arbitrary probability distributions of sensory activity. Moreover, easy-to-use MATLAB code implementing the formula is provided. Practical applications of the formula are illustrated, and its accuracy is evaluated, for two paradigms and two types of probability distributions (uniform and Gaussian). The results demonstrate that Pc scores computed using the formula remain accurate even for continuous probability distributions, as long as the conversion from continuous probability density functions to discrete probability mass functions is supported by a sufficiently high sampling resolution. We hope that the exposition in this article, and the freely available MATLAB code, facilitates calculations of maximum performance for a wider range of experimental situations, as well as explorations of the impact of different assumptions concerning internal-noise distributions on maximum performance in psychophysical experiments.

  6. A Risk-Based Multi-Objective Optimization Concept for Early-Warning Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Bode, F.; Loschko, M.; Nowak, W.

    2014-12-01

    Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources which cannot be eliminated, especially in urban regions. As matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs.In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations and the early warning time and to minimize the installation and operating costs of the monitoring network. A qualitative risk ranking is used to prioritize the known risk sources for monitoring. The unknown risk sources can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well.We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks which are valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrade) to also cover moderate, tolerable and unknown risk sources. Monitoring networks which are valid for the remaining risk also cover all other risk sources but the early-warning time suffers.The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. To avoid numerical dispersion during the transport simulations we use the particle-tracking random walk method.

  7. Atom counting in HAADF STEM using a statistical model-based approach: methodology, possibilities, and inherent limitations.

    PubMed

    De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S

    2013-11-01

    In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration. © 2013 Elsevier B.V. All rights reserved.

  8. Bayesian learning

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    In 1983 and 1984, the Infrared Astronomical Satellite (IRAS) detected 5,425 stellar objects and measured their infrared spectra. In 1987 a program called AUTOCLASS used Bayesian inference methods to discover the classes present in these data and determine the most probable class of each object, revealing unknown phenomena in astronomy. AUTOCLASS has rekindled the old debate on the suitability of Bayesian methods, which are computationally intensive, interpret probabilities as plausibility measures rather than frequencies, and appear to depend on a subjective assessment of the probability of a hypothesis before the data were collected. Modern statistical methods have, however, recently been shown to also depend on subjective elements. These debates bring into question the whole tradition of scientific objectivity and offer scientists a new way to take responsibility for their findings and conclusions.

  9. Theoretical size distribution of fossil taxa: analysis of a null model

    PubMed Central

    Reed, William J; Hughes, Barry D

    2007-01-01

    Background This article deals with the theoretical size distribution (of number of sub-taxa) of a fossil taxon arising from a simple null model of macroevolution. Model New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions) or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. Conclusion The size distributions of the pioneering genus (following a cataclysm) and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family. PMID:17376249

  10. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    PubMed

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America

  11. Probability distributions of continuous measurement results for conditioned quantum evolution

    NASA Astrophysics Data System (ADS)

    Franquet, A.; Nazarov, Yuli V.

    2017-02-01

    We address the statistics of continuous weak linear measurement on a few-state quantum system that is subject to a conditioned quantum evolution. For a conditioned evolution, both the initial and final states of the system are fixed: the latter is achieved by the postselection in the end of the evolution. The statistics may drastically differ from the nonconditioned case, and the interference between initial and final states can be observed in the probability distributions of measurement outcomes as well as in the average values exceeding the conventional range of nonconditioned averages. We develop a proper formalism to compute the distributions of measurement outcomes, and evaluate and discuss the distributions in experimentally relevant setups. We demonstrate the manifestations of the interference between initial and final states in various regimes. We consider analytically simple examples of nontrivial probability distributions. We reveal peaks (or dips) at half-quantized values of the measurement outputs. We discuss in detail the case of zero overlap between initial and final states demonstrating anomalously big average outputs and sudden jump in time-integrated output. We present and discuss the numerical evaluation of the probability distribution aiming at extending the analytical results and describing a realistic experimental situation of a qubit in the regime of resonant fluorescence.

  12. Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes

    PubMed Central

    Murphy, S.; Scala, A.; Herrero, A.; Lorito, S.; Festa, G.; Trasatti, E.; Tonini, R.; Romano, F.; Molinari, I.; Nielsen, S.

    2016-01-01

    The 2011 Tohoku earthquake produced an unexpected large amount of shallow slip greatly contributing to the ensuing tsunami. How frequent are such events? How can they be efficiently modelled for tsunami hazard? Stochastic slip models, which can be computed rapidly, are used to explore the natural slip variability; however, they generally do not deal specifically with shallow slip features. We study the systematic depth-dependence of slip along a thrust fault with a number of 2D dynamic simulations using stochastic shear stress distributions and a geometry based on the cross section of the Tohoku fault. We obtain a probability density for the slip distribution, which varies both with depth, earthquake size and whether the rupture breaks the surface. We propose a method to modify stochastic slip distributions according to this dynamically-derived probability distribution. This method may be efficiently applied to produce large numbers of heterogeneous slip distributions for probabilistic tsunami hazard analysis. Using numerous M9 earthquake scenarios, we demonstrate that incorporating the dynamically-derived probability distribution does enhance the conditional probability of exceedance of maximum estimated tsunami wave heights along the Japanese coast. This technique for integrating dynamic features in stochastic models can be extended to any subduction zone and faulting style. PMID:27725733

  13. Robust Estimation of Latent Ability in Item Response Models

    ERIC Educational Resources Information Center

    Schuster, Christof; Yuan, Ke-Hai

    2011-01-01

    Because of response disturbances such as guessing, cheating, or carelessness, item response models often can only approximate the "true" individual response probabilities. As a consequence, maximum-likelihood estimates of ability will be biased. Typically, the nature and extent to which response disturbances are present is unknown, and, therefore,…

  14. Phylogenetic analysis of of Sarcocystis nesbitti (Coccidia: Sarcocystidae) suggests a snake as its probable definitive host

    USDA-ARS?s Scientific Manuscript database

    Sarcocystis nesbitti was first described by Mandour in 1969 from rhesus monkey muscle. Its definitive host remains unknown. 18SrRNA gene of Sarcocystis nesbitti was amplified, sequenced, and subjected to phylogenetic analysis. Among those congeners available for comparison, it shares closest affinit...

  15. Mortality of trees in loblolly pine plantations

    Treesearch

    Boris Zeide; Yujia Zhang

    2006-01-01

    The annual probability of mortality for planted loblolly pine (Pinus taeda L.) trees was estimated using a set of permanent plots covering the entire native range of the species. The recorded causes of death were infestation by the southern pine beetle (Dendroctonus frontalis Zimmermann) and other insects, lightning, and unknown...

  16. Quantum key distribution with an unknown and untrusted source

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong

    2009-03-01

    The security of a standard bi-directional ``plug & play'' quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we present the first quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard BB84 protocol, weak+vacuum decoy state protocol, and one-decoy decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source. Our work is published in [1]. [4pt] [1] Y. Zhao, B. Qi, and H.-K. Lo, Phys. Rev. A, 77:052327 (2008).

  17. Monte Carlo sensitivity analysis of unknown parameters in hazardous materials transportation risk assessment.

    PubMed

    Pet-Armacost, J J; Sepulveda, J; Sakude, M

    1999-12-01

    The US Department of Transportation was interested in the risks associated with transporting Hydrazine in tanks with and without relief devices. Hydrazine is both highly toxic and flammable, as well as corrosive. Consequently, there was a conflict as to whether a relief device should be used or not. Data were not available on the impact of relief devices on release probabilities or the impact of Hydrazine on the likelihood of fires and explosions. In this paper, a Monte Carlo sensitivity analysis of the unknown parameters was used to assess the risks associated with highway transport of Hydrazine. To help determine whether or not relief devices should be used, fault trees and event trees were used to model the sequences of events that could lead to adverse consequences during transport of Hydrazine. The event probabilities in the event trees were derived as functions of the parameters whose effects were not known. The impacts of these parameters on the risk of toxic exposures, fires, and explosions were analyzed through a Monte Carlo sensitivity analysis and analyzed statistically through an analysis of variance. The analysis allowed the determination of which of the unknown parameters had a significant impact on the risks. It also provided the necessary support to a critical transportation decision even though the values of several key parameters were not known.

  18. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    PubMed Central

    Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude

    2013-01-01

    Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894

  19. A discussion on the origin of quantum probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holik, Federico, E-mail: olentiev2@gmail.com; Departamento de Matemática - Ciclo Básico Común, Universidad de Buenos Aires - Pabellón III, Ciudad Universitaria, Buenos Aires; Sáenz, Manuel

    We study the origin of quantum probabilities as arising from non-Boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorovian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case). -- Highlights: •Several recent works use a derivation similar to that of R.T. Cox to obtain quantum probabilities. •We apply Cox’s method to the lattice of subspaces of the Hilbert space. •We obtain a derivationmore » of quantum probabilities which includes mixed states. •The method presented in this work is susceptible to generalization. •It includes quantum mechanics and classical mechanics as particular cases.« less

  20. Probability Weighting Functions Derived from Hyperbolic Time Discounting: Psychophysical Models and Their Individual Level Testing.

    PubMed

    Takemura, Kazuhisa; Murakami, Hajime

    2016-01-01

    A probability weighting function (w(p)) is considered to be a nonlinear function of probability (p) in behavioral decision theory. This study proposes a psychophysical model of probability weighting functions derived from a hyperbolic time discounting model and a geometric distribution. The aim of the study is to show probability weighting functions from the point of view of waiting time for a decision maker. Since the expected value of a geometrically distributed random variable X is 1/p, we formulized the probability weighting function of the expected value model for hyperbolic time discounting as w(p) = (1 - k log p)(-1). Moreover, the probability weighting function is derived from Loewenstein and Prelec's (1992) generalized hyperbolic time discounting model. The latter model is proved to be equivalent to the hyperbolic-logarithmic weighting function considered by Prelec (1998) and Luce (2001). In this study, we derive a model from the generalized hyperbolic time discounting model assuming Fechner's (1860) psychophysical law of time and a geometric distribution of trials. In addition, we develop median models of hyperbolic time discounting and generalized hyperbolic time discounting. To illustrate the fitness of each model, a psychological experiment was conducted to assess the probability weighting and value functions at the level of the individual participant. The participants were 50 university students. The results of individual analysis indicated that the expected value model of generalized hyperbolic discounting fitted better than previous probability weighting decision-making models. The theoretical implications of this finding are discussed.

  1. Hybrid Approaches and Industrial Applications of Pattern Recognition,

    DTIC Science & Technology

    1980-10-01

    emphasized that the probability distribution in (9) is correct only under the assumption that P( wIx ) is known exactly. In practice this assumption will...sufficient precision. The alternative would be to take the probability distribution of estimates of P( wix ) into account in the analysis. However, from the

  2. Generalized Success-Breeds-Success Principle Leading to Time-Dependent Informetric Distributions.

    ERIC Educational Resources Information Center

    Egghe, Leo; Rousseau, Ronald

    1995-01-01

    Reformulates the success-breeds-success (SBS) principle in informetrics in order to generate a general theory of source-item relationships. Topics include a time-dependent probability, a new model for the expected probability that is compared with the SBS principle with exact combinatorial calculations, classical frequency distributions, and…

  3. The beta distribution: A statistical model for world cloud cover

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1973-01-01

    Much work has been performed in developing empirical global cloud cover models. This investigation was made to determine an underlying theoretical statistical distribution to represent worldwide cloud cover. The beta distribution with probability density function is given to represent the variability of this random variable. It is shown that the beta distribution possesses the versatile statistical characteristics necessary to assume the wide variety of shapes exhibited by cloud cover. A total of 160 representative empirical cloud cover distributions were investigated and the conclusion was reached that this study provides sufficient statical evidence to accept the beta probability distribution as the underlying model for world cloud cover.

  4. Evaluation of microtiter-plate enzyme-linked immunosorbent assay for the analysis of triazine and chloroacetanilide herbicides in rainfall

    USGS Publications Warehouse

    Pomes, M.L.; Thurman, E.M.; Aga, D.S.; Goolsby, D.A.

    1998-01-01

    Triazine and chloroacetanilide concentrations in rainfall samples collected from a 23-state region of the United States were analyzed with microtiter-plate enzyme-linked immunosorbent assay (ELISA). Thirty-six percent of rainfall samples (2072 out of 5691) were confirmed using gas chromatography/mass spectrometry (GC/MS) to evaluate the operating performance of ELISA as a screening test. Comparison of ELISA to GC/MS results showed that the two ELISA methods accurately reported GC/MS results (m = 1), but with more variability evident with the triazine than with the chloroacetanilide ELISA. Bayes's rule, a standardized method to report the results of screening tests, indicated that the two ELISA methods yielded comparable predictive values (80%), but the triazine ELISA yielded a false- positive rate of 11.8% and the chloroacetanilide ELISA yielded a false- negative rate of 23.1%. The false-positive rate for the triazine ELISA may arise from cross reactivity with an unknown triazine or metabolite. The false-negative rate of the chloroacetanilide ELISA probably resulted from a combination of low sensitivity at the reporting limit of 0.15 ??g/L and a distribution characterized by 75% of the samples at or below the reporting limit of 0.15 ??g/L.Triazine and chloroacetanilide concentrations in rainfall samples collected from a 23-state region of the United States were analyzed with microtiter-plate enzyme-linked immunosorbent assay (ELISA). Thirty-six percent of rainfall samples (2072 out of 5691) were confirmed using gas chromatography/mass spectrometry (GC/MS) to evaluate the operating performance of ELISA as a screening test. Comparison of ELISA to GC/MS results showed that the two ELISA methods accurately reported GC/MS results (m = 1), but with more variability evident with the triazine than with the chloroacetanilide ELISA. Bayes's rule, a standardized method to report the results of screening tests, indicated that the two ELISA methods yielded comparable predictive values (80%), but the triazine ELISA yielded a false-positive rate of 11.8% and the chloroacetanilide ELISA yielded a false-negative rate of 23.1%. The false-positive rate for the triazine ELISA may arise from cross reactivity with an unknown triazine or metabolite. The false-negative rate of the chloroacetanilide ELISA probably resulted from a combination of low sensitivity at the reporting limit of 0.15 ??g/L and a distribution characterized by 75% of the samples at or below the reporting limit of 0.15 ??g/L.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leistedt, Boris; Hogg, David W., E-mail: boris.leistedt@nyu.edu, E-mail: david.hogg@nyu.edu

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux–redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training datamore » or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the i -magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST ) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.« less

  6. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    NASA Astrophysics Data System (ADS)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  7. Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory.

    PubMed

    May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M

    2018-03-13

    Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

  8. Distributed Multisensor Data Fusion under Unknown Correlation and Data Inconsistency

    PubMed Central

    Abu Bakr, Muhammad; Lee, Sukhan

    2017-01-01

    The paradigm of multisensor data fusion has been evolved from a centralized architecture to a decentralized or distributed architecture along with the advancement in sensor and communication technologies. These days, distributed state estimation and data fusion has been widely explored in diverse fields of engineering and control due to its superior performance over the centralized one in terms of flexibility, robustness to failure and cost effectiveness in infrastructure and communication. However, distributed multisensor data fusion is not without technical challenges to overcome: namely, dealing with cross-correlation and inconsistency among state estimates and sensor data. In this paper, we review the key theories and methodologies of distributed multisensor data fusion available to date with a specific focus on handling unknown correlation and data inconsistency. We aim at providing readers with a unifying view out of individual theories and methodologies by presenting a formal analysis of their implications. Finally, several directions of future research are highlighted. PMID:29077035

  9. Effects of habitat fragmentation on passerine birds breeding in Intermountain shrubsteppe

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.

    2002-01-01

    Habitat fragmentation and loss strongly influence the distribution and abundance of passerine birds breeding in Intermountain shrubsteppe. Wildfires, human activities, and change in vegetation communities often are synergistic in these systems and can result in radical conversion from shrubland to grasslands dominated by exotic annuals at large temporal and spatial scales from which recovery to native conditions is unlikely. As a result, populations of 5 of the 12 species in our review of Intermountain shrubsteppe birds are undergoing significant declines; 5 species are listed as at-risk or as candidates for protection in at least one state. The process by which fragmentation affects bird distributions in these habitats remains unknown because most research has emphasized the detection of population trends and patterns of habitat associations at relatively large spatial scales. Our research indicates that the distribution of shrubland-obligate species, such as Brewer's Sparrows (Spizella breweri), Sage Sparrows (Amphispiza belli), and Sage Thrashers (Oreoscoptes montanus), was highly sensitive to fragmentation of shrublands at spatial scales larger than individual home ranges. In contrast, the underlying mechanisms for both habitat change and bird population dynamics may operate independently of habitat boundaries. We propose alternative, but not necessarily exclusive, mechanisms to explain the relationship between habitat fragmentation and bird distribution and abundance. Fragmentation might influence productivity through differences in breeding density, nesting success, or predation. However, local and landscape variables were not significant determinants either of success, number fledged, or probability of predation or parasitism (although our tests had relatively low statistical power). Alternatively, relative absence of natal philopatry and redistribution by individuals among habitats following fledging or post-migration could account for the pattern of distribution and abundance. Thus, boundary dynamics may be important in determining the distribution of shrubland-obligate species but insignificant relative to the mechanisms causing the pattern of habitat and bird distribution. Because of the dichotomy in responses, Intermountain shrubsteppe systems present a unique challenge in understanding how landscape composition, configuration, and change influence bird population dynamics.

  10. Quantum work in the Bohmian framework

    NASA Astrophysics Data System (ADS)

    Sampaio, R.; Suomela, S.; Ala-Nissila, T.; Anders, J.; Philbin, T. G.

    2018-01-01

    At nonzero temperature classical systems exhibit statistical fluctuations of thermodynamic quantities arising from the variation of the system's initial conditions and its interaction with the environment. The fluctuating work, for example, is characterized by the ensemble of system trajectories in phase space and, by including the probabilities for various trajectories to occur, a work distribution can be constructed. However, without phase-space trajectories, the task of constructing a work probability distribution in the quantum regime has proven elusive. Here we use quantum trajectories in phase space and define fluctuating work as power integrated along the trajectories, in complete analogy to classical statistical physics. The resulting work probability distribution is valid for any quantum evolution, including cases with coherences in the energy basis. We demonstrate the quantum work probability distribution and its properties with an exactly solvable example of a driven quantum harmonic oscillator. An important feature of the work distribution is its dependence on the initial statistical mixture of pure states, which is reflected in higher moments of the work. The proposed approach introduces a fundamentally different perspective on quantum thermodynamics, allowing full thermodynamic characterization of the dynamics of quantum systems, including the measurement process.

  11. Distributed robust adaptive control of high order nonlinear multi agent systems.

    PubMed

    Hashemi, Mahnaz; Shahgholian, Ghazanfar

    2018-03-01

    In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Applying the log-normal distribution to target detection

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    1992-09-01

    Holst and Pickard experimentally determined that MRT responses tend to follow a log-normal distribution. The log normal distribution appeared reasonable because nearly all visual psychological data is plotted on a logarithmic scale. It has the additional advantage that it is bounded to positive values; an important consideration since probability of detection is often plotted in linear coordinates. Review of published data suggests that the log-normal distribution may have universal applicability. Specifically, the log-normal distribution obtained from MRT tests appears to fit the target transfer function and the probability of detection of rectangular targets.

  13. Tsunami Size Distributions at Far-Field Locations from Aggregated Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2015-12-01

    The distribution of tsunami amplitudes at far-field tide gauge stations is explained by aggregating the probability of tsunamis derived from individual subduction zones and scaled by their seismic moment. The observed tsunami amplitude distributions of both continental (e.g., San Francisco) and island (e.g., Hilo) stations distant from subduction zones are examined. Although the observed probability distributions nominally follow a Pareto (power-law) distribution, there are significant deviations. Some stations exhibit varying degrees of tapering of the distribution at high amplitudes and, in the case of the Hilo station, there is a prominent break in slope on log-log probability plots. There are also differences in the slopes of the observed distributions among stations that can be significant. To explain these differences we first estimate seismic moment distributions of observed earthquakes for major subduction zones. Second, regression models are developed that relate the tsunami amplitude at a station to seismic moment at a subduction zone, correcting for epicentral distance. The seismic moment distribution is then transformed to a site-specific tsunami amplitude distribution using the regression model. Finally, a mixture distribution is developed, aggregating the transformed tsunami distributions from all relevant subduction zones. This mixture distribution is compared to the observed distribution to assess the performance of the method described above. This method allows us to estimate the largest tsunami that can be expected in a given time period at a station.

  14. Application of at-site peak-streamflow frequency analyses for very low annual exceedance probabilities

    USGS Publications Warehouse

    Asquith, William H.; Kiang, Julie E.; Cohn, Timothy A.

    2017-07-17

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Nuclear Regulatory Commission, has investigated statistical methods for probabilistic flood hazard assessment to provide guidance on very low annual exceedance probability (AEP) estimation of peak-streamflow frequency and the quantification of corresponding uncertainties using streamgage-specific data. The term “very low AEP” implies exceptionally rare events defined as those having AEPs less than about 0.001 (or 1 × 10–3 in scientific notation or for brevity 10–3). Such low AEPs are of great interest to those involved with peak-streamflow frequency analyses for critical infrastructure, such as nuclear power plants. Flood frequency analyses at streamgages are most commonly based on annual instantaneous peak streamflow data and a probability distribution fit to these data. The fitted distribution provides a means to extrapolate to very low AEPs. Within the United States, the Pearson type III probability distribution, when fit to the base-10 logarithms of streamflow, is widely used, but other distribution choices exist. The USGS-PeakFQ software, implementing the Pearson type III within the Federal agency guidelines of Bulletin 17B (method of moments) and updates to the expected moments algorithm (EMA), was specially adapted for an “Extended Output” user option to provide estimates at selected AEPs from 10–3 to 10–6. Parameter estimation methods, in addition to product moments and EMA, include L-moments, maximum likelihood, and maximum product of spacings (maximum spacing estimation). This study comprehensively investigates multiple distributions and parameter estimation methods for two USGS streamgages (01400500 Raritan River at Manville, New Jersey, and 01638500 Potomac River at Point of Rocks, Maryland). The results of this study specifically involve the four methods for parameter estimation and up to nine probability distributions, including the generalized extreme value, generalized log-normal, generalized Pareto, and Weibull. Uncertainties in streamflow estimates for corresponding AEP are depicted and quantified as two primary forms: quantile (aleatoric [random sampling] uncertainty) and distribution-choice (epistemic [model] uncertainty). Sampling uncertainties of a given distribution are relatively straightforward to compute from analytical or Monte Carlo-based approaches. Distribution-choice uncertainty stems from choices of potentially applicable probability distributions for which divergence among the choices increases as AEP decreases. Conventional goodness-of-fit statistics, such as Cramér-von Mises, and L-moment ratio diagrams are demonstrated in order to hone distribution choice. The results generally show that distribution choice uncertainty is larger than sampling uncertainty for very low AEP values.

  15. The Spiral of Life

    NASA Astrophysics Data System (ADS)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-04-01

    High-energy photoionization driven by short and circularly-polarized laser pulses is studied in the framework of the relativistic strong-field approximation. The saddle-point analysis of the integrals defining the probability amplitude is used to determine the general properties of the probability distributions. Additionally, an approximate solution to the saddle-point equation is derived. This leads to the concept of the three-dimensional spiral of life in momentum space, around which the ionization probability distribution is maximum. We demonstrate that such spiral is also obtained from a classical treatment.

  16. A comparison between Gauss-Newton and Markov chain Monte Carlo basedmethods for inverting spectral induced polarization data for Cole-Coleparameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong; Kemna, Andreas; Hubbard, Susan S.

    2008-05-15

    We develop a Bayesian model to invert spectral induced polarization (SIP) data for Cole-Cole parameters using Markov chain Monte Carlo (MCMC) sampling methods. We compare the performance of the MCMC based stochastic method with an iterative Gauss-Newton based deterministic method for Cole-Cole parameter estimation through inversion of synthetic and laboratory SIP data. The Gauss-Newton based method can provide an optimal solution for given objective functions under constraints, but the obtained optimal solution generally depends on the choice of initial values and the estimated uncertainty information is often inaccurate or insufficient. In contrast, the MCMC based inversion method provides extensive globalmore » information on unknown parameters, such as the marginal probability distribution functions, from which we can obtain better estimates and tighter uncertainty bounds of the parameters than with the deterministic method. Additionally, the results obtained with the MCMC method are independent of the choice of initial values. Because the MCMC based method does not explicitly offer single optimal solution for given objective functions, the deterministic and stochastic methods can complement each other. For example, the stochastic method can first be used to obtain the means of the unknown parameters by starting from an arbitrary set of initial values and the deterministic method can then be initiated using the means as starting values to obtain the optimal estimates of the Cole-Cole parameters.« less

  17. Targeting the probability versus cost of feared outcomes in public speaking anxiety.

    PubMed

    Nelson, Elizabeth A; Deacon, Brett J; Lickel, James J; Sy, Jennifer T

    2010-04-01

    Cognitive-behavioral theory suggests that social phobia is maintained, in part, by overestimates of the probability and cost of negative social events. Indeed, empirically supported cognitive-behavioral treatments directly target these cognitive biases through the use of in vivo exposure or behavioral experiments. While cognitive-behavioral theories and treatment protocols emphasize the importance of targeting probability and cost biases in the reduction of social anxiety, few studies have examined specific techniques for reducing probability and cost bias, and thus the relative efficacy of exposure to the probability versus cost of negative social events is unknown. In the present study, 37 undergraduates with high public speaking anxiety were randomly assigned to a single-session intervention designed to reduce either the perceived probability or the perceived cost of negative outcomes associated with public speaking. Compared to participants in the probability treatment condition, those in the cost treatment condition demonstrated significantly greater improvement on measures of public speaking anxiety and cost estimates for negative social events. The superior efficacy of the cost treatment condition was mediated by greater treatment-related changes in social cost estimates. The clinical implications of these findings are discussed. Published by Elsevier Ltd.

  18. Count data, detection probabilities, and the demography, dynamics, distribution, and decline of amphibians.

    PubMed

    Schmidt, Benedikt R

    2003-08-01

    The evidence for amphibian population declines is based on count data that were not adjusted for detection probabilities. Such data are not reliable even when collected using standard methods. The formula C = Np (where C is a count, N the true parameter value, and p is a detection probability) relates count data to demography, population size, or distributions. With unadjusted count data, one assumes a linear relationship between C and N and that p is constant. These assumptions are unlikely to be met in studies of amphibian populations. Amphibian population data should be based on methods that account for detection probabilities.

  19. Bayesian data analysis tools for atomic physics

    NASA Astrophysics Data System (ADS)

    Trassinelli, Martino

    2017-10-01

    We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes' theorem and its applications. In particular we discuss about how to calculate simple and joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases. In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling. For these two studies, we implement the program Nested_fit to calculate the different probability distributions and other related quantities. Nested_fit is a Fortran90/Python code developed during the last years for analysis of atomic spectra. As indicated by the name, it is based on the nested algorithm, which is presented in details together with the program itself.

  20. Sandpile-based model for capturing magnitude distributions and spatiotemporal clustering and separation in regional earthquakes

    NASA Astrophysics Data System (ADS)

    Batac, Rene C.; Paguirigan, Antonino A., Jr.; Tarun, Anjali B.; Longjas, Anthony G.

    2017-04-01

    We propose a cellular automata model for earthquake occurrences patterned after the sandpile model of self-organized criticality (SOC). By incorporating a single parameter describing the probability to target the most susceptible site, the model successfully reproduces the statistical signatures of seismicity. The energy distributions closely follow power-law probability density functions (PDFs) with a scaling exponent of around -1. 6, consistent with the expectations of the Gutenberg-Richter (GR) law, for a wide range of the targeted triggering probability values. Additionally, for targeted triggering probabilities within the range 0.004-0.007, we observe spatiotemporal distributions that show bimodal behavior, which is not observed previously for the original sandpile. For this critical range of values for the probability, model statistics show remarkable comparison with long-period empirical data from earthquakes from different seismogenic regions. The proposed model has key advantages, the foremost of which is the fact that it simultaneously captures the energy, space, and time statistics of earthquakes by just introducing a single parameter, while introducing minimal parameters in the simple rules of the sandpile. We believe that the critical targeting probability parameterizes the memory that is inherently present in earthquake-generating regions.

  1. Estimating abundance of mountain lions from unstructured spatial sampling

    USGS Publications Warehouse

    Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.

    2012-01-01

    Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance x sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% Cl 182–451) to 529 (95% Cl 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities.

  2. Characterising RNA secondary structure space using information entropy

    PubMed Central

    2013-01-01

    Comparative methods for RNA secondary structure prediction use evolutionary information from RNA alignments to increase prediction accuracy. The model is often described in terms of stochastic context-free grammars (SCFGs), which generate a probability distribution over secondary structures. It is, however, unclear how this probability distribution changes as a function of the input alignment. As prediction programs typically only return a single secondary structure, better characterisation of the underlying probability space of RNA secondary structures is of great interest. In this work, we show how to efficiently compute the information entropy of the probability distribution over RNA secondary structures produced for RNA alignments by a phylo-SCFG, and implement it for the PPfold model. We also discuss interpretations and applications of this quantity, including how it can clarify reasons for low prediction reliability scores. PPfold and its source code are available from http://birc.au.dk/software/ppfold/. PMID:23368905

  3. The probability distribution of side-chain conformations in [Leu] and [Met]enkephalin determines the potency and selectivity to mu and delta opiate receptors.

    PubMed

    Nielsen, Bjørn G; Jensen, Morten Ø; Bohr, Henrik G

    2003-01-01

    The structure of enkephalin, a small neuropeptide with five amino acids, has been simulated on computers using molecular dynamics. Such simulations exhibit a few stable conformations, which also have been identified experimentally. The simulations provide the possibility to perform cluster analysis in the space defined by potentially pharmacophoric measures such as dihedral angles, side-chain orientation, etc. By analyzing the statistics of the resulting clusters, the probability distribution of the side-chain conformations may be determined. These probabilities allow us to predict the selectivity of [Leu]enkephalin and [Met]enkephalin to the known mu- and delta-type opiate receptors to which they bind as agonists. Other plausible consequences of these probability distributions are discussed in relation to the way in which they may influence the dynamics of the synapse. Copyright 2003 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 71: 577-592, 2003

  4. Exact probability distribution function for the volatility of cumulative production

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Klümper, Andreas

    2018-04-01

    In this paper we study the volatility and its probability distribution function for the cumulative production based on the experience curve hypothesis. This work presents a generalization of the study of volatility in Lafond et al. (2017), which addressed the effects of normally distributed noise in the production process. Due to its wide applicability in industrial and technological activities we present here the mathematical foundation for an arbitrary distribution function of the process, which we expect will pave the future research on forecasting of the production process.

  5. Statistics of intensity in adaptive-optics images and their usefulness for detection and photometry of exoplanets.

    PubMed

    Gladysz, Szymon; Yaitskova, Natalia; Christou, Julian C

    2010-11-01

    This paper is an introduction to the problem of modeling the probability density function of adaptive-optics speckle. We show that with the modified Rician distribution one cannot describe the statistics of light on axis. A dual solution is proposed: the modified Rician distribution for off-axis speckle and gamma-based distribution for the core of the point spread function. From these two distributions we derive optimal statistical discriminators between real sources and quasi-static speckles. In the second part of the paper the morphological difference between the two probability density functions is used to constrain a one-dimensional, "blind," iterative deconvolution at the position of an exoplanet. Separation of the probability density functions of signal and speckle yields accurate differential photometry in our simulations of the SPHERE planet finder instrument.

  6. Small-Scale Spatio-Temporal Distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) Using Probability Kriging.

    PubMed

    Wang, S Q; Zhang, H Y; Li, Z L

    2016-10-01

    Understanding spatio-temporal distribution of pest in orchards can provide important information that could be used to design monitoring schemes and establish better means for pest control. In this study, the spatial and temporal distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) was assessed, and activity trends were evaluated by using probability kriging. Adults of B. minax were captured in two successive occurrences in a small-scale citrus orchard by using food bait traps, which were placed both inside and outside the orchard. The weekly spatial distribution of B. minax within the orchard and adjacent woods was examined using semivariogram parameters. The edge concentration was discovered during the most weeks in adult occurrence, and the population of the adults aggregated with high probability within a less-than-100-m-wide band on both of the sides of the orchard and the woods. The sequential probability kriged maps showed that the adults were estimated in the marginal zone with higher probability, especially in the early and peak stages. The feeding, ovipositing, and mating behaviors of B. minax are possible explanations for these spatio-temporal patterns. Therefore, spatial arrangement and distance to the forest edge of traps or spraying spot should be considered to enhance pest control on B. minax in small-scale orchards.

  7. The Detection of Signals in Impulsive Noise.

    DTIC Science & Technology

    1983-06-01

    ASSI FICATION/ DOWN GRADING SCHEOUL1E * I1S. DISTRIBUTION STATEMENT (of th0i0 Rhport) Approved for Public Release; Distribucion Unlimited * 17...has a symmetric distribution, sgn(x i) will be -1 with probability 1/2 and +1 with probability 1/2. Considering the sum of observations as 0 binomial

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diwaker, E-mail: diwakerphysics@gmail.com; Chakraborty, Aniruddha

    The Smoluchowski equation with a time-dependent sink term is solved exactly. In this method, knowing the probability distribution P(0, s) at the origin, allows deriving the probability distribution P(x, s) at all positions. Exact solutions of the Smoluchowski equation are also provided in different cases where the sink term has linear, constant, inverse, and exponential variation in time.

  9. Probability distribution for the Gaussian curvature of the zero level surface of a random function

    NASA Astrophysics Data System (ADS)

    Hannay, J. H.

    2018-04-01

    A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z)  =  0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f  =  0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.

  10. A mechanism producing power law etc. distributions

    NASA Astrophysics Data System (ADS)

    Li, Heling; Shen, Hongjun; Yang, Bin

    2017-07-01

    Power law distribution is playing an increasingly important role in the complex system study. Based on the insolvability of complex systems, the idea of incomplete statistics is utilized and expanded, three different exponential factors are introduced in equations about the normalization condition, statistical average and Shannon entropy, with probability distribution function deduced about exponential function, power function and the product form between power function and exponential function derived from Shannon entropy and maximal entropy principle. So it is shown that maximum entropy principle can totally replace equal probability hypothesis. Owing to the fact that power and probability distribution in the product form between power function and exponential function, which cannot be derived via equal probability hypothesis, can be derived by the aid of maximal entropy principle, it also can be concluded that maximal entropy principle is a basic principle which embodies concepts more extensively and reveals basic principles on motion laws of objects more fundamentally. At the same time, this principle also reveals the intrinsic link between Nature and different objects in human society and principles complied by all.

  11. On Orbital Elements of Extrasolar Planetary Candidates and Spectroscopic Binaries

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Black, D. C.

    2001-01-01

    We estimate probability densities of orbital elements, periods, and eccentricities, for the population of extrasolar planetary candidates (EPC) and, separately, for the population of spectroscopic binaries (SB) with solar-type primaries. We construct empirical cumulative distribution functions (CDFs) in order to infer probability distribution functions (PDFs) for orbital periods and eccentricities. We also derive a joint probability density for period-eccentricity pairs in each population. Comparison of respective distributions reveals that in all cases EPC and SB populations are, in the context of orbital elements, indistinguishable from each other to a high degree of statistical significance. Probability densities of orbital periods in both populations have P(exp -1) functional form, whereas the PDFs of eccentricities can he best characterized as a Gaussian with a mean of about 0.35 and standard deviation of about 0.2 turning into a flat distribution at small values of eccentricity. These remarkable similarities between EPC and SB must be taken into account by theories aimed at explaining the origin of extrasolar planetary candidates, and constitute an important clue us to their ultimate nature.

  12. Steady-state distributions of probability fluxes on complex networks

    NASA Astrophysics Data System (ADS)

    Chełminiak, Przemysław; Kurzyński, Michał

    2017-02-01

    We consider a simple model of the Markovian stochastic dynamics on complex networks to examine the statistical properties of the probability fluxes. The additional transition, called hereafter a gate, powered by the external constant force breaks a detailed balance in the network. We argue, using a theoretical approach and numerical simulations, that the stationary distributions of the probability fluxes emergent under such conditions converge to the Gaussian distribution. By virtue of the stationary fluctuation theorem, its standard deviation depends directly on the square root of the mean flux. In turn, the nonlinear relation between the mean flux and the external force, which provides the key result of the present study, allows us to calculate the two parameters that entirely characterize the Gaussian distribution of the probability fluxes both close to as well as far from the equilibrium state. Also, the other effects that modify these parameters, such as the addition of shortcuts to the tree-like network, the extension and configuration of the gate and a change in the network size studied by means of computer simulations are widely discussed in terms of the rigorous theoretical predictions.

  13. Probability Models Based on Soil Properties for Predicting Presence-Absence of Pythium in Soybean Roots.

    PubMed

    Zitnick-Anderson, Kimberly K; Norland, Jack E; Del Río Mendoza, Luis E; Fortuna, Ann-Marie; Nelson, Berlin D

    2017-10-01

    Associations between soil properties and Pythium groups on soybean roots were investigated in 83 commercial soybean fields in North Dakota. A data set containing 2877 isolates of Pythium which included 26 known spp. and 1 unknown spp. and 13 soil properties from each field were analyzed. A Pearson correlation analysis was performed with all soil properties to observe any significant correlation between properties. Hierarchical clustering, indicator spp., and multi-response permutation procedures were used to identify groups of Pythium. Logistic regression analysis using stepwise selection was employed to calculate probability models for presence of groups based on soil properties. Three major Pythium groups were identified and three soil properties were associated with these groups. Group 1, characterized by P. ultimum, was associated with zinc levels; as zinc increased, the probability of group 1 being present increased (α = 0.05). Pythium group 2, characterized by Pythium kashmirense and an unknown Pythium sp., was associated with cation exchange capacity (CEC) (α < 0.05); as CEC increased, these spp. increased. Group 3, characterized by Pythium heterothallicum and Pythium irregulare, were associated with CEC and calcium carbonate exchange (CCE); as CCE increased and CEC decreased, these spp. increased (α = 0.05). The regression models may have value in predicting pathogenic Pythium spp. in soybean fields in North Dakota and adjacent states.

  14. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  15. Generalized Wishart Mixtures for Unsupervised Classification of PolSAR Data

    NASA Astrophysics Data System (ADS)

    Li, Lan; Chen, Erxue; Li, Zengyuan

    2013-01-01

    This paper presents an unsupervised clustering algorithm based upon the expectation maximization (EM) algorithm for finite mixture modelling, using the complex wishart probability density function (PDF) for the probabilities. The mixture model enables to consider heterogeneous thematic classes which could not be better fitted by the unimodal wishart distribution. In order to make it fast and robust to calculate, we use the recently proposed generalized gamma distribution (GΓD) for the single polarization intensity data to make the initial partition. Then we use the wishart probability density function for the corresponding sample covariance matrix to calculate the posterior class probabilities for each pixel. The posterior class probabilities are used for the prior probability estimates of each class and weights for all class parameter updates. The proposed method is evaluated and compared with the wishart H-Alpha-A classification. Preliminary results show that the proposed method has better performance.

  16. Oil spill contamination probability in the southeastern Levantine basin.

    PubMed

    Goldman, Ron; Biton, Eli; Brokovich, Eran; Kark, Salit; Levin, Noam

    2015-02-15

    Recent gas discoveries in the eastern Mediterranean Sea led to multiple operations with substantial economic interest, and with them there is a risk of oil spills and their potential environmental impacts. To examine the potential spatial distribution of this threat, we created seasonal maps of the probability of oil spill pollution reaching an area in the Israeli coastal and exclusive economic zones, given knowledge of its initial sources. We performed simulations of virtual oil spills using realistic atmospheric and oceanic conditions. The resulting maps show dominance of the alongshore northerly current, which causes the high probability areas to be stretched parallel to the coast, increasing contamination probability downstream of source points. The seasonal westerly wind forcing determines how wide the high probability areas are, and may also restrict these to a small coastal region near source points. Seasonal variability in probability distribution, oil state, and pollution time is also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Constraining the interior density profile of a Jovian planet from precision gravity field data

    NASA Astrophysics Data System (ADS)

    Movshovitz, Naor; Fortney, Jonathan J.; Helled, Ravit; Hubbard, William B.; Thorngren, Daniel; Mankovich, Chris; Wahl, Sean; Militzer, Burkhard; Durante, Daniele

    2017-10-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properly interpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about the formation mechanism of the planet. Planetary gravity fields are usually described by the coefficients in an expansion of the gravitational potential. Recently, high precision measurements of these coefficients for Jupiter and Saturn have been made by the radio science instruments on the Juno and Cassini spacecraft, respectively.The resulting coefficients come with an associated uncertainty. And while the task of matching a given density profile with a given set of gravity coefficients is relatively straightforward, the question of how best to account for the uncertainty is not. In essentially all prior work on matching models to gravity field data, inferences about planetary structure have rested on imperfect knowledge of the H/He equation of state and on the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet, constrained only by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly constrained by them.We demonstrate this approach with a sample of Jupiter interior models based on recent Juno data and discuss prospects for Saturn.

  18. Constraining Saturn's interior density profile from precision gravity field measurement obtained during Grand Finale

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Fortney, J. J.; Helled, R.; Hubbard, W. B.; Mankovich, C.; Thorngren, D.; Wahl, S. M.; Militzer, B.; Durante, D.

    2017-12-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properlyinterpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about theformation mechanism of the planet. Recently, very high precision measurements of the gravity coefficients for Saturn have been made by the radio science instrument on the Cassini spacecraft during its Grand Finale orbits. The resulting coefficients come with an associated uncertainty. The task of matching a given density profile to a given set of gravity coefficients is relatively straightforward, but the question of how to best account for the uncertainty is not. In essentially all prior work on matching models to gravity field data inferences about planetary structure have rested on assumptions regarding the imperfectly known H/He equation of state and the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet constrained by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also Bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly constrained by them. We apply this approach to produce a sample of Saturn interior models based on gravity data from Grand Finale orbits and discuss their implications.

  19. A study of parameter identification

    NASA Technical Reports Server (NTRS)

    Herget, C. J.; Patterson, R. E., III

    1978-01-01

    A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.

  20. Probability density function of non-reactive solute concentration in heterogeneous porous formations.

    PubMed

    Bellin, Alberto; Tonina, Daniele

    2007-10-30

    Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for the local concentration of conservative tracers migrating in heterogeneous aquifers. Our model accounts for dilution, mechanical mixing within the sampling volume and spreading due to formation heterogeneity. It is developed by modeling local concentration dynamics with an Ito Stochastic Differential Equation (SDE) that under the hypothesis of statistical stationarity leads to the Beta probability distribution function (pdf) for the solute concentration. This model shows large flexibility in capturing the smoothing effect of the sampling volume and the associated reduction of the probability of exceeding large concentrations. Furthermore, it is fully characterized by the first two moments of the solute concentration, and these are the same pieces of information required for standard geostatistical techniques employing Normal or Log-Normal distributions. Additionally, we show that in the absence of pore-scale dispersion and for point concentrations the pdf model converges to the binary distribution of [Dagan, G., 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2, The solute transport. Water Resour. Res. 18 (4), 835-848.], while it approaches the Normal distribution for sampling volumes much larger than the characteristic scale of the aquifer heterogeneity. Furthermore, we demonstrate that the same model with the spatial moments replacing the statistical moments can be applied to estimate the proportion of the plume volume where solute concentrations are above or below critical thresholds. Application of this model to point and vertically averaged bromide concentrations from the first Cape Cod tracer test and to a set of numerical simulations confirms the above findings and for the first time it shows the superiority of the Beta model to both Normal and Log-Normal models in interpreting field data. Furthermore, we show that assuming a-priori that local concentrations are normally or log-normally distributed may result in a severe underestimate of the probability of exceeding large concentrations.

  1. A Performance Comparison on the Probability Plot Correlation Coefficient Test using Several Plotting Positions for GEV Distribution.

    NASA Astrophysics Data System (ADS)

    Ahn, Hyunjun; Jung, Younghun; Om, Ju-Seong; Heo, Jun-Haeng

    2014-05-01

    It is very important to select the probability distribution in Statistical hydrology. Goodness of fit test is a statistical method that selects an appropriate probability model for a given data. The probability plot correlation coefficient (PPCC) test as one of the goodness of fit tests was originally developed for normal distribution. Since then, this test has been widely applied to other probability models. The PPCC test is known as one of the best goodness of fit test because it shows higher rejection powers among them. In this study, we focus on the PPCC tests for the GEV distribution which is widely used in the world. For the GEV model, several plotting position formulas are suggested. However, the PPCC statistics are derived only for the plotting position formulas (Goel and De, In-na and Nguyen, and Kim et al.) in which the skewness coefficient (or shape parameter) are included. And then the regression equations are derived as a function of the shape parameter and sample size for a given significance level. In addition, the rejection powers of these formulas are compared using Monte-Carlo simulation. Keywords: Goodness-of-fit test, Probability plot correlation coefficient test, Plotting position, Monte-Carlo Simulation ACKNOWLEDGEMENTS This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-12-NH-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  2. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    PubMed

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  3. Improved first-order uncertainty method for water-quality modeling

    USGS Publications Warehouse

    Melching, C.S.; Anmangandla, S.

    1992-01-01

    Uncertainties are unavoidable in water-quality modeling and subsequent management decisions. Monte Carlo simulation and first-order uncertainty analysis (involving linearization at central values of the uncertain variables) have been frequently used to estimate probability distributions for water-quality model output due to their simplicity. Each method has its drawbacks: Monte Carlo simulation's is mainly computational time; and first-order analysis are mainly questions of accuracy and representativeness, especially for nonlinear systems and extreme conditions. An improved (advanced) first-order method is presented, where the linearization point varies to match the output level whose exceedance probability is sought. The advanced first-order method is tested on the Streeter-Phelps equation to estimate the probability distribution of critical dissolved-oxygen deficit and critical dissolved oxygen using two hypothetical examples from the literature. The advanced first-order method provides a close approximation of the exceedance probability for the Streeter-Phelps model output estimated by Monte Carlo simulation using less computer time - by two orders of magnitude - regardless of the probability distributions assumed for the uncertain model parameters.

  4. Measures for a multidimensional multiverse

    NASA Astrophysics Data System (ADS)

    Chung, Hyeyoun

    2015-04-01

    We explore the phenomenological implications of generalizing the causal patch and fat geodesic measures to a multidimensional multiverse, where the vacua can have differing numbers of large dimensions. We consider a simple model in which the vacua are nucleated from a D -dimensional parent spacetime through dynamical compactification of the extra dimensions, and compute the geometric contribution to the probability distribution of observations within the multiverse for each measure. We then study how the shape of this probability distribution depends on the time scales for the existence of observers, for vacuum domination, and for curvature domination (tobs,tΛ , and tc, respectively.) In this work we restrict ourselves to bubbles with positive cosmological constant, Λ . We find that in the case of the causal patch cutoff, when the bubble universes have p +1 large spatial dimensions with p ≥2 , the shape of the probability distribution is such that we obtain the coincidence of time scales tobs˜tΛ˜tc . Moreover, the size of the cosmological constant is related to the size of the landscape. However, the exact shape of the probability distribution is different in the case p =2 , compared to p ≥3 . In the case of the fat geodesic measure, the result is even more robust: the shape of the probability distribution is the same for all p ≥2 , and we once again obtain the coincidence tobs˜tΛ˜tc . These results require only very mild conditions on the prior probability of the distribution of vacua in the landscape. Our work shows that the observed double coincidence of time scales is a robust prediction even when the multiverse is generalized to be multidimensional; that this coincidence is not a consequence of our particular Universe being (3 +1 )-dimensional; and that this observable cannot be used to preferentially select one measure over another in a multidimensional multiverse.

  5. Shape of growth-rate distribution determines the type of Non-Gibrat’s Property

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atushi; Fujimoto, Shouji; Mizuno, Takayuki

    2011-11-01

    In this study, the authors examine exhaustive business data on Japanese firms, which cover nearly all companies in the mid- and large-scale ranges in terms of firm size, to reach several key findings on profits/sales distribution and business growth trends. Here, profits denote net profits. First, detailed balance is observed not only in profits data but also in sales data. Furthermore, the growth-rate distribution of sales has wider tails than the linear growth-rate distribution of profits in log-log scale. On the one hand, in the mid-scale range of profits, the probability of positive growth decreases and the probability of negative growth increases symmetrically as the initial value increases. This is called Non-Gibrat’s First Property. On the other hand, in the mid-scale range of sales, the probability of positive growth decreases as the initial value increases, while the probability of negative growth hardly changes. This is called Non-Gibrat’s Second Property. Under detailed balance, Non-Gibrat’s First and Second Properties are analytically derived from the linear and quadratic growth-rate distributions in log-log scale, respectively. In both cases, the log-normal distribution is inferred from Non-Gibrat’s Properties and detailed balance. These analytic results are verified by empirical data. Consequently, this clarifies the notion that the difference in shapes between growth-rate distributions of sales and profits is closely related to the difference between the two Non-Gibrat’s Properties in the mid-scale range.

  6. CUTS FOR MTR EXCAVATION ILLUSTRATE SEDIMENTARY MANTLE OF SOIL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CUTS FOR MTR EXCAVATION ILLUSTRATE SEDIMENTARY MANTLE OF SOIL AND GRAVEL OVERLAYING LAVA ROCK FIFTY FEET BELOW. SAGEBRUSH HAS BEEN SCOURED FROM REST OF SITE. CAMERA PROBABLY FACES SOUTHWEST. INL NEGATIVE NO. 67. Unknown Photographer, 6/4/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. The Role of Short-Term Memory Capacity and Task Experience for Overconfidence in Judgment under Uncertainty

    ERIC Educational Resources Information Center

    Hansson, Patrik; Juslin, Peter; Winman, Anders

    2008-01-01

    Research with general knowledge items demonstrates extreme overconfidence when people estimate confidence intervals for unknown quantities, but close to zero overconfidence when the same intervals are assessed by probability judgment. In 3 experiments, the authors investigated if the overconfidence specific to confidence intervals derives from…

  8. Hidden Populations, Online Purposive Sampling, and External Validity: Taking off the Blindfold

    ERIC Educational Resources Information Center

    Barratt, Monica J.; Ferris, Jason A.; Lenton, Simon

    2015-01-01

    Online purposive samples have unknown biases and may not strictly be used to make inferences about wider populations, yet such inferences continue to occur. We compared the demographic and drug use characteristics of Australian ecstasy users from a probability (National Drug Strategy Household Survey, n = 726) and purposive sample (online survey…

  9. 15. NORTHEAST CORNER, SOLDIER FIELD, LOOKING SOUTHEAST TOWARD THE GYMNASIUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NORTHEAST CORNER, SOLDIER FIELD, LOOKING SOUTHEAST TOWARD THE GYMNASIUM, SHOWING EAST DITCH AND A SECTION OF LOW WALL. No date, probably ca. 1935. Photographer unknown. Original silver gelatin print measures 13.1 cm by 7.3 cm, flush mounted on mat board. - Presidio of Monterey, Soldier Field, Monterey, Monterey County, CA

  10. Pondberry (Lindera   melissifolia, Lauraceae) seed and seedling dispersers and predators

    Treesearch

    Andreza M. Martins; Fernanda M. Abilio; Plinio Gonçalves de Oliveira; Raquel Partelli Feltrin; Fernanda Scheffer Alves de Lima; Priscilla de O. Antonelli; Daniela Teixeira Vilela; Carl G. Smith III; Collin Tidwell; Paul Hamel; Margaret Devall; Kristina Connor; Theodor Leininger; Nathan Schiff; A. Dan Wilson

    2015-01-01

    Pondberry (Lindera melissifolia(Walter) Blume) is an endangered dioecious, clonal shrub that grows in periodically flooded forests of the southeastern United States. The probability of survival of dispersed pondberry seeds and new germinants is unknown, but few seedlings are noted in the forest. This study was undertaken to: (1) identify herbivores...

  11. Quantum Tasks with Non-maximally Quantum Channels via Positive Operator-Valued Measurement

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Luo, Ming-Xing; Mo, Zhi-Wen

    2013-01-01

    By using a proper positive operator-valued measure (POVM), we present two new schemes for probabilistic transmission with non-maximally four-particle cluster states. In the first scheme, we demonstrate that two non-maximally four-particle cluster states can be used to realize probabilistically sharing an unknown three-particle GHZ-type state within either distant agent's place. In the second protocol, we demonstrate that a non-maximally four-particle cluster state can be used to teleport an arbitrary unknown multi-particle state in a probabilistic manner with appropriate unitary operations and POVM. Moreover the total success probability of these two schemes are also worked out.

  12. Graph Theory-Based Pinning Synchronization of Stochastic Complex Dynamical Networks.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2017-02-01

    This paper is concerned with the adaptive pinning synchronization problem of stochastic complex dynamical networks (CDNs). Based on algebraic graph theory and Lyapunov theory, pinning controller design conditions are derived, and the rigorous convergence analysis of synchronization errors in the probability sense is also conducted. Compared with the existing results, the topology structures of stochastic CDN are allowed to be unknown due to the use of graph theory. In particular, it is shown that the selection of nodes for pinning depends on the unknown lower bounds of coupling strengths. Finally, an example on a Chua's circuit network is given to validate the effectiveness of the theoretical results.

  13. Estimation of distribution overlap of urn models.

    PubMed

    Hampton, Jerrad; Lladser, Manuel E

    2012-01-01

    A classical problem in statistics is estimating the expected coverage of a sample, which has had applications in gene expression, microbial ecology, optimization, and even numismatics. Here we consider a related extension of this problem to random samples of two discrete distributions. Specifically, we estimate what we call the dissimilarity probability of a sample, i.e., the probability of a draw from one distribution not being observed in [Formula: see text] draws from another distribution. We show our estimator of dissimilarity to be a [Formula: see text]-statistic and a uniformly minimum variance unbiased estimator of dissimilarity over the largest appropriate range of [Formula: see text]. Furthermore, despite the non-Markovian nature of our estimator when applied sequentially over [Formula: see text], we show it converges uniformly in probability to the dissimilarity parameter, and we present criteria when it is approximately normally distributed and admits a consistent jackknife estimator of its variance. As proof of concept, we analyze V35 16S rRNA data to discern between various microbial environments. Other potential applications concern any situation where dissimilarity of two discrete distributions may be of interest. For instance, in SELEX experiments, each urn could represent a random RNA pool and each draw a possible solution to a particular binding site problem over that pool. The dissimilarity of these pools is then related to the probability of finding binding site solutions in one pool that are absent in the other.

  14. Diffusion of active chiral particles

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.

    2016-12-01

    The diffusion of chiral active Brownian particles in three-dimensional space is studied analytically, by consideration of the corresponding Fokker-Planck equation for the probability density of finding a particle at position x and moving along the direction v ̂ at time t , and numerically, by the use of Langevin dynamics simulations. The analysis is focused on the marginal probability density of finding a particle at a given location and at a given time (independently of its direction of motion), which is found from an infinite hierarchy of differential-recurrence relations for the coefficients that appear in the multipole expansion of the probability distribution, which contains the whole kinematic information. This approach allows the explicit calculation of the time dependence of the mean-squared displacement and the time dependence of the kurtosis of the marginal probability distribution, quantities from which the effective diffusion coefficient and the "shape" of the positions distribution are examined. Oscillations between two characteristic values were found in the time evolution of the kurtosis, namely, between the value that corresponds to a Gaussian and the one that corresponds to a distribution of spherical shell shape. In the case of an ensemble of particles, each one rotating around a uniformly distributed random axis, evidence is found of the so-called effect "anomalous, yet Brownian, diffusion," for which particles follow a non-Gaussian distribution for the positions yet the mean-squared displacement is a linear function of time.

  15. A Search Model for Imperfectly Detected Targets

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert

    2012-01-01

    Under the assumptions that 1) the search region can be divided up into N non-overlapping sub-regions that are searched sequentially, 2) the probability of detection is unity if a sub-region is selected, and 3) no information is available to guide the search, there are two extreme case models. The search can be done perfectly, leading to a uniform distribution over the number of searches required, or the search can be done with no memory, leading to a geometric distribution for the number of searches required with a success probability of 1/N. If the probability of detection P is less than unity, but the search is done otherwise perfectly, the searcher will have to search the N regions repeatedly until detection occurs. The number of searches is thus the sum two random variables. One is N times the number of full searches (a geometric distribution with success probability P) and the other is the uniform distribution over the integers 1 to N. The first three moments of this distribution were computed, giving the mean, standard deviation, and the kurtosis of the distribution as a function of the two parameters. The model was fit to the data presented last year (Ahumada, Billington, & Kaiwi, 2 required to find a single pixel target on a simulated horizon. The model gave a good fit to the three moments for all three observers.

  16. Optimizing probability of detection point estimate demonstration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.

  17. Theoretical cratering rates on Ida, Mathilde, Eros and Gaspra

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Asher, D. J.; Bailey, M. E.

    2002-11-01

    We investigate the main influences on crater size distributions, by deriving results for the four example target objects, (951) Gaspra, (243) Ida, (253) Mathilde and (433) Eros. The dynamical history of each of these asteroids is modelled using the MERCURY (Chambers 1999) numerical integrator. The use of an efficient, Öpik-type, collision code enables the calculation of a velocity histogram and the probability of impact. This when combined with a crater scaling law and an impactor size distribution, through a Monte Carlo method, results in a crater size distribution. The resulting crater probability distributions are in good agreement with observed crater distributions on these asteroids.

  18. Velocity distributions among colliding asteroids

    NASA Technical Reports Server (NTRS)

    Bottke, William F., Jr.; Nolan, Michael C.; Greenberg, Richard; Kolvoord, Robert A.

    1994-01-01

    The probability distribution for impact velocities between two given asteroids is wide, non-Gaussian, and often contains spikes according to our new method of analysis in which each possible orbital geometry for collision is weighted according to its probability. An average value would give a good representation only if the distribution were smooth and narrow. Therefore, the complete velocity distribution we obtain for various asteroid populations differs significantly from published histograms of average velocities. For all pairs among the 682 asteroids in the main-belt with D greater than 50 km, we find that our computed velocity distribution is much wider than previously computed histograms of average velocities. In this case, the most probable impact velocity is approximately 4.4 km/sec, compared with the mean impact velocity of 5.3 km/sec. For cases of a single asteroid (e.g., Gaspra or Ida) relative to an impacting population, the distribution we find yields lower velocities than previously reported by others. The width of these velocity distributions implies that mean impact velocities must be used with caution when calculating asteroid collisional lifetimes or crater-size distributions. Since the most probable impact velocities are lower than the mean, disruption events may occur less frequently than previously estimated. However, this disruption rate may be balanced somewhat by an apparent increase in the frequency of high-velocity impacts between asteroids. These results have implications for issues such as asteroidal disruption rates, the amount/type of impact ejecta available for meteoritical delivery to the Earth, and the geology and evolution of specific asteroids like Gaspra.

  19. The Probability Distribution for a Biased Spinner

    ERIC Educational Resources Information Center

    Foster, Colin

    2012-01-01

    This article advocates biased spinners as an engaging context for statistics students. Calculating the probability of a biased spinner landing on a particular side makes valuable connections between probability and other areas of mathematics. (Contains 2 figures and 1 table.)

  20. A probable probability distribution of a series nonequilibrium states in a simple system out of equilibrium

    NASA Astrophysics Data System (ADS)

    Gao, Haixia; Li, Ting; Xiao, Changming

    2016-05-01

    When a simple system is in its nonequilibrium state, it will shift to its equilibrium state. Obviously, in this process, there are a series of nonequilibrium states. With the assistance of Bayesian statistics and hyperensemble, a probable probability distribution of these nonequilibrium states can be determined by maximizing the hyperensemble entropy. It is known that the largest probability is the equilibrium state, and the far a nonequilibrium state is away from the equilibrium one, the smaller the probability will be, and the same conclusion can also be obtained in the multi-state space. Furthermore, if the probability stands for the relative time the corresponding nonequilibrium state can stay, then the velocity of a nonequilibrium state returning back to its equilibrium can also be determined through the reciprocal of the derivative of this probability. It tells us that the far away the state from the equilibrium is, the faster the returning velocity will be; if the system is near to its equilibrium state, the velocity will tend to be smaller and smaller, and finally tends to 0 when it gets the equilibrium state.

Top