Sample records for unloaded quality factor

  1. Unloading joints to treat osteoarthritis, including joint distraction.

    PubMed

    Lafeber, Floris P J G; Intema, Femke; Van Roermund, Peter M; Marijnissen, Anne C A

    2006-09-01

    Patients are increasingly becoming interested in nonpharmacologic approaches to manage their osteoarthritis. This review examines the recent literature on the potential beneficial effects of unloading joints in the treatment of osteoarthritis, with a focus on joint distraction. Mechanical factors are involved in the development and progression of osteoarthritis. If "loading" is a major cause in development and progression of osteoarthritis, then "unloading" may be able to prevent progression. There is evidence that unloading may be effective in reducing pain and slowing down structural damage. This review describes unloading by footwear and bracing (nonsurgical), unloading by osteotomy (surgical), and has a focus on unloading by joint distraction. Excellent reviews in all these three fields have been published over the past few years. Recent studies argue for the usefulness of a biomechanical approach to improve function and possibly reduce disease progression in osteoarthritis. To improve patient function and possibly reduce disease progression, a biomechanical approach should be considered in treating patients with osteoarthritis. Further research (appropriate high-quality clinical trials) and analysis (clinical as well as preclinical and fundamental) are still necessary, however, to understand, validate, and refine the different approaches of unloading to treat osteoarthritis.

  2. Ten Ghz YBa2Cu3O(7-Delta) Superconducting Ring Resonators on NdGaO3 Substrates

    NASA Technical Reports Server (NTRS)

    To, H. Y.; Valco, G. J.; Bhasin, K. B.

    1993-01-01

    YBa2Cu3O(7-delta) thin films were formed on NdGaO3 substrates by laser ablation. Critical temperatures greater than 89 K and critical current densities exceeding 2 x 10(exp 8) Acm(sub -2) at 77 K were obtained. The microwave performance of films patterned into microstrip ring resonators with gold ground planes was measured. An unloaded quality factor six times larger than that of a gold resonator of identical geometry was achieved. The unloaded quality factor decreased below 70 K for both the superconducting and gold resonators due to increasing dielectric losses in the substrate. The temperature dependence of the loss tangent of NdGaO3 was extracted from the measurements.

  3. Interleukin-2 therapy reverses some immunosuppressive effects of skeletal unloading

    NASA Technical Reports Server (NTRS)

    Armstrong, Jason W.; Balch, Signe; Chapes, Stephen K.

    1994-01-01

    Using antiorthostatic suspension, we characterized hematopoietic changes that may be responsible for the detrimental effect of skeletal unloading on macrophage development. Skeletally unloaded mice had suppressed macrophage development in unloaded and loaded bones, which indicated a systemic effect. Bone marrow cells from unloaded mice secreted less macrophage colony-stimulating factor and interleukin-6 than control mice. Additionally, T-lymphocyte proliferation was reduced after skeletal unloading. We show that polyethylene glycol-interleukin-2 therapy reversed the effects of skeletal unloading on macrophage development and cell proliferation.

  4. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation.

    PubMed

    Yin, Chong; Zhang, Yan; Hu, Lifang; Tian, Ye; Chen, Zhihao; Li, Dijie; Zhao, Fan; Su, Peihong; Ma, Xiaoli; Zhang, Ge; Miao, Zhiping; Wang, Liping; Qian, Airong; Xian, Cory J

    2018-07-01

    Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation. © 2017 Wiley Periodicals, Inc.

  5. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.

    PubMed

    Morey-Holton, E R; Globus, R K

    1998-05-01

    A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in the response to gravitational loading. The hindlimb unloading model provides a unique opportunity to evaluate in detail the physiological and cellular mechanisms of the skeletal response to weightbearing loads, and has proven to be an effective model for space flight.

  6. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Globus, R. K.

    1998-01-01

    A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in the response to gravitational loading. The hindlimb unloading model provides a unique opportunity to evaluate in detail the physiological and cellular mechanisms of the skeletal response to weightbearing loads, and has proven to be an effective model for space flight.

  7. Skeletal unloading induces resistance to insulin-like growth factor I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.

    1994-01-01

    In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.

  8. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.

    1999-01-01

    Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.

  9. The tremble dance of honey bees can be caused by hive-external foraging experience.

    PubMed

    Thom, Corinna

    2003-07-01

    The tremble dance of honey bee nectar foragers is part of the communication system that regulates a colony's foraging efficiency. A forager that returns to the hive with nectar, but then experiences a long unloading delay because she has difficulty finding a nectar receiver bee, will perform a tremble dance to recruit additional nectar receiver bees. A forager that experiences a short unloading delay will perform a waggle dance to recruit more nectar foragers. A long unloading delay was until now the only known cause of tremble dancing. However, several studies suggested that factors at the food source may also cause tremble dancing. Here I test whether one of these factors, crowding of nectar foragers at the food source, stimulates tremble dancing because it causes long unloading delays. To do so, I increased the density of nectar foragers at a food source by suddenly reducing the size of an artificial feeder, and recorded the unloading delay experienced by each forager, as well as the dance she performed, if any. A forager's unloading delay was measured as the time interval between entering the hive and either (1) the first unloading contact with a nectar receiver bee, or (2) the start of the first dance, if dancing began before the first unloading contact. I also recorded the unloading delays and dances of nectar foragers that returned from natural food sources. The results show that crowding of nectar foragers at the food source increases the probability of tremble dancing, but does not cause long unloading delays, and that tremble dancers that foraged at natural food sources also often have short unloading delays. When the cause of the tremble dance is not a low supply of nectar receiver bees, the tremble dance may have a function in addition to the recruitment of nectar receiver bees.

  10. Conductor disc used to suppress spurious mode and enhance electric coupling in a dielectric loaded combline resonator

    NASA Astrophysics Data System (ADS)

    Pholele, T. M.; Chuma, J. M.

    2016-03-01

    The effects of conductor disc in a dielectric loaded combline resonator on its spurious performance, unloaded quality factor (Qu), and coupling coefficients are analysed using a commercial electromagnetic software package CST Microwave Studio (CST MWS). The disc improves the spurious free band but simultaneously deteriorates the Qu. The presence of the disc substantially improves the electric coupling by a factor of 1.891 for an aperture opening of 12 mm, while it has insignificant effect on the magnetic coupling.

  11. A MEMS disk resonator-based band pass filter electrical equivalent circuit simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, G. M.; Angira, Mahesh; Gupta, Navneet

    In this paper, coupled beam bandpass Disk filter is designed for 1 MHz bandwidth. Filter electrical equivalent circuit simulation is performed using circuit simulators. Important filter parameters such as insertion loss, shape factor and Q factor aresetimated using coventorware simulation. Disk resonator based radial contour mode filter provides 1.5 MHz bandwidth and unloaded quality factor of resonator and filter as 233480, 21797 respectively. From the simulation result it’s found that insertion loss minimum is 151.49 dB, insertion loss maximum is 213.94 dB, and 40 dB shape factor is 4.17.

  12. Electromagnetic analysis of the slotted-tube resonator with a circular cross section for MRI applications.

    PubMed

    Benabdallah, Nadia; Benahmed, Nasreddine; Benyoucef, Boumediene; Bouhmidi, Rachid; Khelif, M'Hamed

    2007-08-21

    In this paper we present electromagnetic (EM) analysis of the unloaded slotted-tube resonator (STR) with a circular cross section, using the finite element method (FEM) and method of moments (MoM) in two dimensions. This analysis allows the determination of the primary parameters: [L] and [C] matrices, optimization of the field homogeneity, and simulates the frequency response of S(11) at the RF port of the designed STR. The optimum configuration is presented, taking into account the effect of the thickness of the STR and the effect of the RF shield. As an application, we present the design results of a MRI probe using the STR and operating at 500 MHz (proton imaging at 11.74 T). The resonator has -69.37 dB minimum reflection and an unloaded quality factor (Q(o)) > 500 at 500 MHz.

  13. Wrist postures and forces in tree planters during three tree unloading conditions.

    PubMed

    Denbeigh, Kathleen; Slot, Tegan R; Dumas, Geneviève A

    2013-01-01

    The aims of this study were to investigate wrist postures and forces while operating the shovel during tree planting and to determine if different tree unloading techniques result in variations in wrist postures and forces. Experienced tree planters performed the planting task in a laboratory environment for three conditions: (1) symmetric tree unloading, and asymmetric unloading resulting in (2) right-loaded planting bags and (3) left-loaded planting bags. An optoelectric system and a shovel instrumented with strain gauges captured wrist posture and forces at the wrist, respectively. Wrist extension of up to 45° was observed, and this posture, in combination with varying degrees of wrist deviation, may be a primary risk factor for musculoskeletal pain. Average resultant forces at the wrist were moderately high (>30 N) for each unloading condition, indicating increased risk for the development of repetitive strain injuries such as carpal tunnel syndrome. No significant differences in wrist posture or forces existed between unloading conditions. Wrist pain is a major musculoskeletal complaint among tree planters. This study measured wrist postures and forces at the wrist while operating the shovel during tree planting. The wrist extension observed, in combination with deviation, may be a key risk factor for musculoskeletal pain. Forces at the wrist indicate increased risk for repetitive strain injuries.

  14. Electric transportation in environmentally planned city of tomorrow. Paper No. 7788

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, B.

    1977-01-01

    A discussion is given of the operation of the electric monorail trains at Disneyland and Walt Disney World. The all-electric trains are powered by eight 600 V dc motors and use an air suspension system providing excellent riding qualities. A key factor in the overall efficiency is the loading and unloading technique in which the passengers step onto a moving circular platform which is synchronized to the speed of the vehicles being loaded. (PMA)

  15. The effect of long-term hindlimb unloading on the expression of risk neurogenes encoding elements of serotonin-, dopaminergic systems and apoptosis; comparison with the effect of actual spaceflight on mouse brain.

    PubMed

    Kulikova, E A; Kulikov, V A; Sinyakova, N A; Kulikov, A V; Popova, N K

    2017-02-15

    The study of spaceflight effects on the brain is technically complex concern; complicated by the problem of applying an adequate ground model. The most-widely used experimental model to study the effect of microgravity is the tail-suspension hindlimb unloading model; however, its compliance with the effect of actual spaceflight on the brain is still unclear. We evaluated the effect of one month hindlimb unloading on the expression of genes related to the brain neuroplasticity-brain neutotrophic factors (Gdnf, Cdnf), apoptotic factors (Bcl-xl, Bax), serotonin- and dopaminergic systems (5-HT 2A , Maoa, Maob, Th, D1r, Comt), and compared the results with the data obtained on mice that spent one month in spaceflight on Russian biosatellite Bion-M1. No effect of hindlimb unloading was observed on the expression of most genes, which were considered as risk neurogenes for long-term actual spaceflight. The opposite effect of hindlimb unloading and spaceflight was found on the level of mRNA of D1 dopamine receptor and catechol-O-methyltransferase in the striatum. At the same time, the expression of Maob in the midbrain decreased, and the expression of Bcl-xl genes increased in the hippocampus, which corresponds to the effect of spaceflight. However, the hindlimb unloading model failed to reproduce the majority of effects of long-term spaceflight on serotonin-, dopaminergic systems and some apoptotic factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading

    NASA Astrophysics Data System (ADS)

    Kubota, Takuo; Elalieh, Hashem Z.; Saless, Neema; Fong, Chak; Wang, Yongmei; Babey, Muriel; Cheng, Zhiqiang; Bikle, Daniel D.

    2013-11-01

    Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor-1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/-) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading.

  17. Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Yoshinaga, T.; Nomura, T.; Kawano, F.; Ishihara, A.; Nonaka, I.; Roy, R. R.; Edgerton, V. R.

    2002-01-01

    The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  18. Regulation of eIF2α phosphorylation in hindlimb-unloaded and STS-135 space-flown mice

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Tanjung, Nancy; Swarnkar, Gaurav; Ledet, Eric; Yokota, Hiroki

    2012-09-01

    Various environmental stresses elevate the phosphorylation level of eukaryotic translation initiation factor 2 alpha (eIF2α) and induce transcriptional activation of a set of stress responsive genes such as activating transcription factors 3 and 6 (ATF3 and ATF6), CCAAT/enhancer-binding protein homologous protein (CHOP), and Xbp1 (X-box binding protein 1). These stress sources include radiation, oxidation, and stress to the endoplasmic reticulum, and it is recently reported that unloading by hindlimb unloading is such a stress source. No studies, however, have examined the phosphorylation level of eIF2α (eIF2α-p) using skeletal samples that have experienced microgravity in space. In this study we addressed a question: Does a mouse tibia flown in space show altered levels of eIF2α-p? To address this question, we obtained STS-135 flown samples that were harvested 4-7 h after landing. The tibia and femur isolated from hindlimb unloaded mice were employed as non-flight controls. The effects of loading were also investigated in non- flight controls. Results indicate that the level of eIF2α-p of the non-flight controls was elevated during hindlimb unloading and reduced after being released from unloading. Second, the eIF2α-p level of space-flown samples was decreased, and mechanical loading to the tibia caused the reduction of the eIF2α-p level. Third, the mRNA levels of ATF3, ATF6, and CHOP were lowered in space-flown samples as well as in the non-flight samples 4-7 h after being released from unloading. Collectively, the results herein indicated that a release from hindlimb unloading and a return to normal weight environment from space provided a suppressive effect to eIF2α-linked stress responses and that a period of 2-4 h is sufficient to induce this suppressive outcome.

  19. Regulation of contractile protein gene expression in unloaded mouse skeletal muscle

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1996-01-01

    Hindlimb unloading was performed on mice in an effort to study the regulation of contractile protein genes. In particular, the regulation of myosin heavy chain IIb was examined. During unloading, muscle fibers undergo a type conversion. Preliminary data from this study does not support the hypothesis that the fiber type conversion is due to an increase in promoter activity of fast isoform genes, such as myosin heavy chain IIb. The consequences of this finding are examined, with particular focus on other factors controlling gene regulation.

  20. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    NASA Astrophysics Data System (ADS)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  1. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  2. Biomechanical analysis of loading/unloading a ladder on a truck.

    PubMed

    Moriguchi, Cristiane Shinohara; Carnaz, Leticia; de Miranda, Luiz Carlos; Marklin, Richard William; Coury, Helenice Jane Cote Gil

    2012-01-01

    Loading/unloading a ladder on vehicles are frequent tasks and involve overhead handling that may expose workers to risk factors of shoulder musculoskeletal disorders. The objective of the present study was to evaluate posture, forces required and perceived exertion when loading and unloading the ladder on a utility truck. Thirteen male overhead line workers from an electric utility in Brazil participated in this study. Shoulder elevation angle was measured using inclinometers. The required force to load/unload the ladder was measured by dynamometer. Subjective assessment of the perceived exertion was recorded to compare the exertion reported during the test conditions to the field conditions. The task of loading/unloading the ladder presented risks of shoulder musculoskeletal disorders (MSDs) to workers because it requires high levels of force (approximately 60% of the maximal force) combined with overhead posture of the shoulders (more than 100° from the neutral posture). Age and height presented to interfere in biomechanical risks presented in load/unload task. There was no significant difference between the subjective exertion during the test conditions and handling the ladder in the field. Ergonomic intervention is recommended to reduce these risks for shoulder MSDs.

  3. High field Q slope and the effect of low-temperature baking at 3 GHz

    NASA Astrophysics Data System (ADS)

    Ciovati, G.; Eremeev, G.; Hannon, F.

    2018-01-01

    A strong degradation of the unloaded quality factor with field, called high field Q slope, is commonly observed above Bp ≅100 mT in elliptical superconducting niobium cavities at 1.3 and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above Bp ≅100 mT . The measurements show that a high field Q slope phenomenon limits the field reach at this frequency, that the high field Q slope onset field depends weakly on the frequency, and that the high field Q slope can be removed by the typical empirical solution of electropolishing followed by heating to 120°C for 48 hrs. In addition, one of the cavities reached a quench field of 174 mT and its field dependence of the quality factor was compared against global heating predicted by a thermal feedback model.

  4. Effects of Hypogravity on Osteoblast Differentiation

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Doty, Steven

    1997-01-01

    Weightbearing is essential for normal skeletal function. Without weightbearing, the rate of bone formation by osteoblasts decreases in the growing rat. Defective formation may account for the decrease in the maturation, strength and mass of bone that is caused by spaceflight. These skeletal defects may be mediated by a combination of physiologic changes triggered by spaceflight, including skeletal unloading, fluid shifts, and stress-induced endocrine factors. The fundamental question of whether the defects in osteoblast function due to weightlessness are mediated by localized skeletal unloading or by systemic physiologic adaptations such as fluid shifts has not been answered. Furthermore, bone-forming activity of osteoblasts during unloading may be affected by paracrine signals from vascular, monocytic, and neural cells that also reside in skeletal tissue. Therefore we proposed to examine whether exposure of cultured rat osteoblasts to spaceflight inhibits cellular differentiation and impairs mineralization when isolated from the influence of both systemic factors and other skeletal cells.

  5. Altered sensory-motor control of the head as an etiological factor in space-motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1989-01-01

    Mechanical unloading during head movements in weightlessness may be an etiological factor in space-motion sickness. We simulated altered head loading on Earth without affecting vestibular stimulation by having subjects wear a weighted helmet. Eight subjects were exposed to constant velocity rotation about a vertical axis with direction reversals every 60 sec. for eight reversals with the head loaded and eight with the head unloaded. The severity of motion sickness elicited was significantly higher when the head was loaded. This suggests that altered sensory-motor control of the head is also an etiological factor in space-motion sickness.

  6. Observations of market pigs following transport to a packing plant.

    PubMed

    Kephart, K B; Harper, M T; Raines, C R

    2010-06-01

    A field study was conducted to record observations of 41,744 market-weight pigs upon arrival at a commercial abattoir to evaluate the relationships between various independent factors and open-mouth breathing, skin discoloration, lameness, unloading time, and mortality during transport. Observations were recorded from 242 trailer loads on 46 separate days over a period of 14 mo. Travel time (<2.5 h or >or=2.5 h), wait time before unloading (<20 min or >or=20 min), loading pressure (<260 kg of BW/m(2) trailer floor space or >or=260 kg of BW/m(2) trailer floor space), ambient temperature while unloading (<17 degrees C or >or=17 degrees C), and trailer type [potbelly (PB); straight-deck with conventional unloading doors (SDC); or straight-deck with wide unloading doors (SDW)] were recorded for each load. Open-mouth breathing was more prevalent in pigs when transported on PB trailers compared with that of SDC or SDW trailers (P < 0.01), and at warmer temperatures (>or=17 degrees C, P < 0.001). Skin discoloration was more prevalent (P < 0.001) among pigs unloaded at temperatures >or=17 degrees C. Lameness was more prevalent (P < 0.05) after shorter travel times at greater loading pressure compared with shorter travel times at decreased loading pressure. Unloading time for PB trailers was longer (P < 0.001) than for SDC and SDW. Mortality rates during transport were minimal (0.06%) in the deliveries that we observed, and there were no significant (P > 0.10) relationships between mortality and any independent variable tested. Wait time before unloading was not associated (P > 0.10) with any of the dependent variables included in the statistical model. In conclusion, warmer ambient temperatures (>or=17 degrees C) and the use of PB trailers are associated with an increased incidence of open-mouth breathing and skin discoloration, and longer unloading times after the transport of market pigs.

  7. Impact of skeletal unloading on bone formation: Role of systemic and local factors

    NASA Astrophysics Data System (ADS)

    Bikle, Daniel D.; Halloran, Bernard P.; Morey-Holton, Emily

    We have developed a model of skeletal unloading using growing rats whose hindlimbs are unweighted by tail suspension. The bones in the hindlimbs undergo a transient cessation of bone growth; when reloaded bone formation is accelerated until bone mass is restored. These changes do not occur in the normally loaded bones of the forelimbs. Associated with the fall in bone formation is a fall in 1,25(OH) 2D 3 production and osteocalcin levels. In contrast, no changes in parathyroid hormone, calcium, or corticosterone levels are seen. To examine the role of locally produced growth factors, we have measured the mRNA and protein levels of insulin like growth factor-1 (IGF-1) in bone during tail suspension. Surprisingly, both the mRNA and protein levels of IGF-1 increase during tail suspension as bone formation is reduced. Furthermore, the bones in the hindlimbs of the suspended animals develop a resistance to the growth promoting effects of both growth hormone and IGF-1 when given parenterally. Thus, the cessation of bone growth with skeletal unloading is apparently associated with a resistance to rather than failure to produce local growth factors. The cause of this resistance remains under active investigation.

  8. Correction Factor for Determining the London Penetration Depth from Strip Resonators

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1995-01-01

    A significant disagreement is often seen between the theoretical temperature dependent magnetic penetration depth profile and experimentally derived calculations based on stripline type resonators. This short paper shows that the disagreement can be attributed to the susceptance coupled into the resonator from the gap discontinuity as well as the feed line. When the effect is taken into account, the natural resonant frequency of the resonator is increased, and the frequency shift due to kinetic inductance can be calculated much more accurately. While it is necessary to include this effect to determine the penetration depth, it is shown that the impact on unloaded quality factor is generally negligible. The situation when the strip characteristic impedance is not matched to the generator is included.

  9. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    NASA Technical Reports Server (NTRS)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  10. Effects of trailer design on animal welfare parameters and carcass and meat quality of three Pietrain crosses being transported over a long distance.

    PubMed

    Weschenfelder, A V; Torrey, S; Devillers, N; Crowe, T; Bassols, A; Saco, Y; Piñeiro, M; Saucier, L; Faucitano, L

    2012-09-01

    This study aimed at evaluating the effects of trailer design on stress responses and meat quality traits of 3 different pig crosses: 50% Pietrain breeding with halothane (HAL)(Nn) (50Nn); 50% Pietrain breeding with HAL(NN) (50NN); and 25% Pietrain breeding with HAL(NN) genotype (25NN). Over a 6-wk period, pigs (120 pigs/crossbreed) were transported for 7 h in either a pot-belly (PB) or flat-deck (FD) trailer (10 pigs/crossbreed(-1)·trailer(-1)·wk(-1)). Temperature (T) and relative humidity (RH) were monitored in each trailer. Behaviors during loading and unloading, time to load and unload, and latency to rest in lairage were recorded, whereas a sub-population of pigs (4 pigs/crossbreed(-1)·trailer(-1)·wk(-1)) was equipped with gastro-intestinal tract (GIT) temperature monitors. Blood samples were collected at exsanguination for measurement of cortisol, creatine kinase (CK), lactate, haptoglobin, and Pig-MAP concentrations. Meat quality data were collected at 24 h postmortem from the LM and semimembranosus (SM) and adductor (AD) muscles of all 360 pigs. Greater T were recorded in the PB trailer during transportation (P = 0.006) and unloading (P < 0.001). Delta GIT temperature was greater (P = 0.01) in pigs unloaded from the PB. At loading, pigs tended to move backwards more (P = 0.06) when loaded on the FD than the PB trailer. At unloading, an interaction was found between trailer type and crossbreed type, with a greater (P < 0.01) frequency of overlaps in 50NN and 25NN pigs and slips/falls in 50Nn and 50NN pigs from the FD than the PB trailer. Cortisol concentrations at slaughter were greater (P = 0.02) in pigs transported in the PB than FD trailer. Greater lactate concentrations were found in 50Nn and 50NN pigs (P = 0.003) and greater CK concentrations (P < 0.001) in 50Nn pigs. As expected, 50Nn pigs produced leaner (P < 0.001) carcasses, with greater (P = 0.01) dressing percentages, as well as lower (P < 0.001) ultimate pH values and greater (P < 0.001) drip loss percentages in the LM and greater (P = 0.002) drip losses and a paler color (greater L* values, P = 0.02) in the SM than 50NN pigs. When used for long distance transportation under controlled conditions, the PB trailer produced no detrimental effects on animal welfare or pork quality. Pigs with 50% Pietrain crossbreeding appear to be more responsive to transport stress, having the potential to produce acceptable carcass and pork quality, provided pigs are free of the HAL gene.

  11. Role of Exercise Therapy in Prevention of Decline in Aging Muscle Function: Glucocorticoid Myopathy and Unloading

    PubMed Central

    Seene, Teet; Kaasik, Priit

    2012-01-01

    Changes in skeletal muscle quantity and quality lead to disability in the aging population. Physiological changes in aging skeletal muscle are associated with a decline in mass, strength, and inability to maintain balance. Glucocorticoids, which are in wide exploitation in various clinical scenarios, lead to the loss of the myofibrillar apparatus, changes in the extracellular matrix, and a decrease in muscle strength and motor activity, particularly in the elderly. Exercise therapy has shown to be a useful tool for the prevention of different diseases, including glucocorticoid myopathy and muscle unloading in the elderly. The purpose of the paper is to discuss the possibilities of using exercise therapy in the prevention of glucocorticoid caused myopathy and unloading in the elderly and to describe relationships between the muscle contractile apparatus and the extracellular matrix in different types of aging muscles. PMID:22778959

  12. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse

    PubMed Central

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat. PMID:29875702

  13. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse.

    PubMed

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups ( n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  14. Microstrip resonators for electron paramagnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  15. Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators

    NASA Astrophysics Data System (ADS)

    Ketzaki, Dimitra A.; Tsilipakos, Odysseas; Yioultsis, Traianos V.; Kriezis, Emmanouil E.

    2013-09-01

    Spectral filtering and electromagnetically induced transparency (EIT) with hybrid silicon-plasmonic traveling-wave resonators are theoretically investigated. The rigorous three-dimensional vector finite element method simulations are complemented with temporal coupled mode theory. We show that ring and disk resonators with sub-micron radii can efficiently filter the lightwave with minimal insertion loss and high quality factors (Q). It is shown that disk resonators feature reduced radiation losses and are thus advantageous. They exhibit unloaded quality factors as high as 1000 in the telecom spectral range, resulting in all-pass filtering components with sharp resonances. By cascading two slightly detuned resonators and providing an additional route for resonator interaction (i.e., a second bus waveguide), a response reminiscent of EIT is observed. The EIT transmission peak can be shaped by means of resonator detuning and interelement separation. Importantly, the respective Q can become higher than that of the single-resonator structure. Thus, the possibility of exploiting this peak in switching applications relying on the thermo-optic effect is, finally, assessed.

  16. A loop resonator for slice-selective in vivo EPR imaging in rats

    PubMed Central

    Hirata, Hiroshi; He, Guanglong; Deng, Yuanmu; Salikhov, Ildar; Petryakov, Sergey; Zweier, Jay L.

    2008-01-01

    A loop resonator was developed for 300-MHz continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy and imaging in live rats. A single-turn loop (55 mm in diameter) was used to provide sufficient space for the rat body. Efficiency for generating a radiofrequency magnetic field of 38 µT/W1/2 was achieved at the center of the loop. For the resonator itself, an unloaded quality factor of 430 was obtained. When a 350 g rat was placed in the resonator at the level of the lower abdomen, the quality factor decreased to 18. The sensitive volume in the loop was visualized with a bottle filled with an aqueous solution of the nitroxide spin probe 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy (3-CP). The resonator was shown to enable EPR imaging in live rats. Imaging was performed for 3-CP that had been infused intravenously into the rat and its distribution was visualized within the lower abdomen. PMID:18006343

  17. High field Q slope and the effect of low-temperature baking at 3 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciovati, G.; Eremeev, G.; Hannon, F.

    Here, a strong degradation of the unloaded quality factor with field, called high field Q-slope, is commonly observed above Bmore » $$_{p}$$ $$\\cong$$ 100 mT in elliptical superconducting niobium cavities at 1.3 GHz and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above B$$_{p}$$ $$\\cong$$100 mT. The measurements show that a high field Q-slope phenomenon limits the field reach at this frequency, that the high field Q-slope onset field depends weakly on the frequency, and that the high field Q-slope can be removed by the typical empirical solution of electropolishing followed by heating to 120 $$^{\\circ}$$C for 48 hrs. In addition, one of the cavities reached a quench field of 174~mT and its field dependence of the quality factor was compared against global heating predicted by a thermal feedback model.« less

  18. High field Q slope and the effect of low-temperature baking at 3 GHz

    DOE PAGES

    Ciovati, G.; Eremeev, G.; Hannon, F.

    2018-01-29

    Here, a strong degradation of the unloaded quality factor with field, called high field Q-slope, is commonly observed above Bmore » $$_{p}$$ $$\\cong$$ 100 mT in elliptical superconducting niobium cavities at 1.3 GHz and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above B$$_{p}$$ $$\\cong$$100 mT. The measurements show that a high field Q-slope phenomenon limits the field reach at this frequency, that the high field Q-slope onset field depends weakly on the frequency, and that the high field Q-slope can be removed by the typical empirical solution of electropolishing followed by heating to 120 $$^{\\circ}$$C for 48 hrs. In addition, one of the cavities reached a quench field of 174~mT and its field dependence of the quality factor was compared against global heating predicted by a thermal feedback model.« less

  19. The effects of pre-slaughter pig management from the farm to the processing plant on pork quality.

    PubMed

    Edwards, L N; Grandin, T; Engle, T E; Ritter, M J; Sosnicki, A A; Carlson, B A; Anderson, D B

    2010-12-01

    Two experiments (Exp.1, n=80; Exp.2, n=144) were conducted to determine the effects of pre-slaughter pig management on pork quality by monitoring blood lactate concentration ([LAC]) during marketing. [LAC] was measured at: (1) baseline at farm, (2) post-loading on truck, (3) pre-unloading after transport, (4) post-unloading at plant, (5) post-lairage, (6) post-movement to stun, and (7) exsanguination. Pearson correlations were used to determine relationships between [LAC] and meat quality. Higher [LAC] post-loading or a greater change in [LAC] during loading resulted in increased 24h pH (P=0.002, P=0.0006, Exp.1; P=0.0001, P=0.01, Exp.2, respectively), decreased L* (P=0.03, P=0.04; P=0.001, P=0.01) and decreased drip loss (P=0.02, P=0.12; P=0.002, P=0.01). Even though improved handling during loading is important to animal well-being, it will not necessarily translate into improved pork quality. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Jing; Quan, Sheng-Wen; Zhang, Bao-Cheng

    The RF performance of a 1.3 GHz 9-cell superconducting niobium cavity was evaluated at cryogenic temperatures following surface processing by using the standard ILC-style recipe. The cavity is a TESLA-style 9-cell superconducting niobium cavity, with complete end group components including a higher order mode coupler, built in China for practical applications. An accelerating gradient of 28.6 MV/m was achieved at an unloaded quality factor of 4 x 10{sup 9}. The morphological property of mechanical features on the RF surface of this cavity was characterized through optical inspection. Correlation between the observed mechanical features and the RF performance of the cavitymore » is attempted.« less

  1. The Effect of Skeletal Unloading on Bone Formation: Role of IGF-I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Kostenuik, P.; Holton, E. M.; Halloran, B. P.

    1999-01-01

    The best documented change in bone during space flight is the near cessation of bone formation. Space flight leads to a decrease in osteoblast number and activity, likely the result of altered differentiation of osteoblast precursors. The net result of these space flight induced changes is weaker bone. To understand the mechanism for these changes poses a challenge. Space flight studies must overcome enormous technical problems, and are necessarily limited in size and frequency. Therefore, ground based models have been developed to evaluate the effects of skeletal unloading. The hindlimb elevation (tail suspension) model simulates space flight better than other models because it reproduces the fluid shifts seen in space travel, is reversible, and is well tolerated by the animals with minimal evidence of stress as indicated by continued weight gain and normal levels and circadian rhythms of corticosterone. This is the model we have used for our experiments. Skeletal unloading by the hindlimb elevation method simulates a number of features of space flight in that bone formation, mineralization, and maturation are inhibited, osteoblast number is decreased, serum and skeletal osteocalcin levels fall, the ash content of bone decreases, and bone strength diminishes. We and others have shown that when osteoblasts or osteoprogenitor cells from the bones of the unloaded limbs are cultured in vitro they proliferate and differentiate more slowly, suggesting that skeletal unloading causes a persistent change in cell function which can be assessed in vitro. In contrast to the unweighted bones of the hindlimbs, no significant change in bone mass or bone formation is observed in the humeri, mandible, and cervical vertebrae during hindlimb elevation. The lack of effect of hindlimb elevation on bones like the humeri, mandible, and cervical vertebrae which are not unloaded by this procedure suggests that local factors rather than systemic effects dominate the response of bone to skeletal unloading. We have focussed on the role of IGF- 1 as the local factor mediating the effects of skeletal unloading on bone formation. IGF-I is produced by bone cells and chondrocytes; these cells have receptors for IGF-I, and respond to IGF-I with an increase in proliferation and function (e.g. collagen, and glycosaminoglycan production, respectively). IGF-I production by bone is under hormonal control, principally by GH and PTH, and IGF-I is thought to mediate some if not all of the effects of GH and PTH on bone growth. Thus, systemic changes in hormones such as GH and PTH may still have effects which vary from bone to bone depending on the loading history.

  2. The temporal response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    Rats were suspended by their tails with the forelimbs bearing the weight load to simulate the weightlessness of space flight. Growth in bone mass ceased by 1 week in the hindlimbs and lumbar vertebrae in growing rats, while growth in the forelimbs and cervical vertebrae remained unaffected. The effects of selective skeletal unloading on bone formation during 2 weeks of suspension was investigated using radio iostope incorporation (with Ca-45 and H-3 proline) and histomorphometry (with tetracycline labeling). The results of these studies were confirmed by histomorphometric measurements of bone formation using triple tetracycline labeling. This model of simulated weightlessness results in an initial inhibition of bone formation in the unloaded bones. This temporary cessation of bone formation is followed in the accretion of bone mass, which then resumes at a normal rate by 14 days, despite continued skeletal unloading. This cycle of inhibition and resumption of bone formation has profound implication for understanding bone dynamics durng space flight, immobilization, or bed rest and offers an opportunity to study the hormonal and mechanical factors that regulate bone formation.

  3. Unloading shoes for osteoarthritis of the knee: protocol for the SHARK randomised controlled trial

    PubMed Central

    2014-01-01

    Background Knee osteoarthritis (OA) is a common and disabling condition. Abnormalities in knee loading play an important role in disease pathogenesis, yet there are few non-surgical treatments for knee OA capable of reducing knee load. This two-arm randomised controlled trial is investigating the efficacy of specially-designed unloading shoes for the treatment of symptoms in people with knee OA. Methods/Design 164 people with symptomatic medial tibiofemoral joint OA will be recruited from the community and randomly allocated to receive either unloading shoes or control shoes. Unloading shoes have a specially-designed triple-density midsole where the medial side is softer than normal and the lateral side harder as well as a lateral wedge between the sole and sock-liner. Control shoes are standard athletic shoes and do not contain these features. Participants will be blinded to shoe allocation and will be instructed to wear the shoes as much as possible every day for 6 months, for a minimum of 4 hours per day. The primary outcomes are knee pain (numerical rating scale) and self-reported physical function (Western Ontario and McMaster Universities Osteoarthritis Index) measured at baseline and 6 months. Secondary outcomes include additional measures of knee pain, knee stiffness, participant global ratings of change in symptoms, quality-of-life and physical activity. Conclusions The findings from this study will help determine whether specially-designed unloading shoes are efficacious in the management of knee OA. Trial registration Australian New Zealand Clinical Trials Registry reference: ACTRN12613000851763. PMID:24555418

  4. Evaluation of the Effect of Platelet-Released Growth Factor and Immediate Orthodontic Loading on the Removal Torque of Miniscrews.

    PubMed

    Bayani, Shahin; Masoomi, Fatemeh; Aghaabbasi, Sharereh; Farsinejad, Alireza

    2016-01-01

    The purpose of this study was to evaluate the effect of platelet-released growth factor (PRGF) and immediate orthodontic forces on the removal torque of miniscrews. This study was conducted on three male dogs aged 6 to 8 months with a body weight of 17.6 to 18.4 kg. Sixty miniscrews were inserted in the posterior aspect of the femur. There were four groups, including loaded miniscrews with application of PRGF, unloaded miniscrews without application of PRGF, unloaded miniscrews with PRGF, and loaded miniscrews without PRGF. Twenty miniscrews were inserted in the femoral bone of one foot of each dog, including all the aforementioned subgroups. After 12 weeks, the miniscrews were removed by a removal torque tester device and measured in newton centimeters. The mean removal torque values in four groups of immediately loaded screws with PRGF, unloaded screws with PRGF, immediately loaded screws without PRGF, and unloaded screws without PRGF were 19.68, 21.74, 13.65, and 15.46 Ncm, respectively. It was shown that the mean removal torque value for the group with PRGF was significantly higher than that in the other groups (P = .0001). Although there was a tendency toward a decrease in removal torque value with immediate loading, it was not statistically significant (P = .21). According to the results of this study, applying PRGF with miniscrews increased their stability, but the delivery of immediate force on miniscrews had no effect on the miniscrews' stability.

  5. 40 CFR 49.146 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT General Federal Implementation Plan Provisions Federal Implementation Plan for Oil and Natural Gas Production Facilities, Fort Berthold Indian... the oil and natural gas production facility each time the oil is unloaded from the produced oil...

  6. 49 CFR 179.100-13 - Venting, loading and unloading valves, measuring and sampling devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... permit testing thermometer well for leaks without complete removal of the closure may be used. (d) An... cast, forged or fabricated metal. Each sump or siphon bowl must be of good welding quality in...

  7. Microstrip resonators for electron paramagnetic resonance experiments.

    PubMed

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  8. Gravity and Skeletal Growth

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Turner, Russell T.

    1999-01-01

    Two simultaneous experiments were performed using 5-week-old male Sprague Dawley rats; in one study, the rats were flown in low earth orbit; in the other study, the hindlimbs of the growing rats were elevated to prevent weight bearing. Following 9 d of unloading, weight bearing was restored for 4, 28, and 76 hrs. Afterwards, additional hindlimb unloading experiments were performed to evaluate the skeletal response to 0, 2, 4, 6, 8, 10, 12, 16, and 24 hrs of restored weight bearing following 7 d of unloading. Cancellous and cortical bone histomorphometry were evaluated in the left tibia at the proximal metaphysis and in the left femur at mid-diaphysis, respectively. Steady-state mRNA levels for bone matrix proteins and skeletal signaling peptides were determined in total cellular RNA extracted from trabeculae from the right proximal tibiametaphysis and periosteum from the right femur. Spaceflight and hindlimb unloading each resulted in cancellous osteopenia, as well as a tendency towards decreased periosteal bone formation. Both models for skeletal unloading resulted in site specific reductions in mRNA levels for transforming growth factor-beta (sub 1) (TGF-beta) osteocalcin (OC), and prepro-alpha (I) subunit of type 1 collagen (collagen) and little or no changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAP) and insulin-like growth factor I (IGF-I). Restoration of normal weight bearing resulted in transient increases in mRNA levels for the bone matrix proteins and TGF-beta in the proximal metaphysis and periosteum and no changes in either GAP or IGF-I mRNA levels. The timecourse for the response differed between the two skeletal compartments; the tibial metaphysis responded much more quickly to reloading. These results suggest that the skeletal adaptation to acute physiological changes in mechanical usage are mediated, in part, by changes in mRNA levels for bone matrix proteins and TGF-beta.

  9. Evaluation of factors that affect hip moment impulse during gait: A systematic review.

    PubMed

    Inai, Takuma; Takabayashi, Tomoya; Edama, Mutsuaki; Kubo, Masayoshi

    2018-03-01

    Decreasing the daily cumulative hip moments in the frontal and sagittal planes may lower the risk of hip osteoarthritis. Therefore, it may be important to evaluate factors that affect hip moment impulse during gait. It is unclear what factors affect hip moment impulse during gait. This systematic review aimed to evaluate different factors that affect hip moment impulse during gait in healthy adults and patients with hip osteoarthritis. Four databases (Scopus, ScienceDirect, PubMed, and PEDro) were searched up to August 2017 to identify studies that examined hip moment impulse during gait. Data extracted for analysis included the sample size, age, height, body mass, type of intervention, and main findings. After screening, 10 of the 975 studies identified were included in our analysis. Several factors, including a rocker bottom shoe, FitFlop™ sandals, ankle push-off, posture, stride length, body-weight unloading, a rollator, walking poles, and a knee brace, were reviewed. The main findings were as follows: increasing ankle push-off decreased both the hip flexion and extension moment impulses; body-weight unloading decreased both the hip extension and adduction moment impulses; the FitFlop™ sandal increased the sum of the hip flexion and extension moment impulses; long strides increased the hip extension moment impulse; and the use of a knee brace increased hip flexion moment impulse. Of note, none of the eligible studies included patients with hip osteoarthritis. The hip moment impulses can be modified by person-specific factors (ankle push-off and long strides) and external factors (body-weight unloading and use of the FitFlop™ sandals and a knee brace). Effects on the progression of hip osteoarthritis remain to be evaluated. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Rationale and design of the Transcatheter Aortic Valve Replacement to UNload the Left ventricle in patients with ADvanced heart failure (TAVR UNLOAD) trial.

    PubMed

    Spitzer, Ernest; Van Mieghem, Nicolas M; Pibarot, Philippe; Hahn, Rebecca T; Kodali, Susheel; Maurer, Mathew S; Nazif, Tamim M; Rodés-Cabau, Josep; Paradis, Jean-Michel; Kappetein, Arie-Pieter; Ben-Yehuda, Ori; van Es, Gerrit-Anne; Kallel, Faouzi; Anderson, William N; Tijssen, Jan; Leon, Martin B

    2016-12-01

    Coexistence of moderate aortic stenosis (AS) in patients with heart failure (HF) with reduced ejection fraction is not uncommon. Moderate AS increases afterload, whereas pharmacologic reduction of afterload is a pillar of contemporary HF management. Unloading the left ventricle by reducing the transaortic gradient with transfemoral transcatheter aortic valve replacement (TAVR) may improve clinical outcomes in patients with moderate AS and HF with reduced ejection fraction. The TAVR UNLOAD (NCT02661451) is an international, multicenter, randomized, open-label, clinical trial comparing the efficacy and safety of TAVR with the Edwards SAPIEN 3 Transcatheter Heart Valve in addition to optimal heart failure therapy (OHFT) vs OHFT alone in patients with moderate AS (defined by a mean transaortic gradient ≥20 mm Hg and <40 mm Hg, and an aortic valve area >1.0 cm 2 and ≤1.5 cm 2 at rest or after dobutamine stress echocardiography) and reduced ejection fraction. A total of 600 patients will be randomized in a 1:1 fashion. Clinical follow-up is scheduled at 1, 6, and 12 months, and 2 years after randomization. The primary end point is the hierarchical occurrence of all-cause death, disabling stroke, hospitalizations related to HF, symptomatic aortic valve disease or nondisabling stroke, and the change in the Kansas City Cardiomyopathy Questionnaire at 1 year. Secondary end points capture effects on clinical outcome, biomarkers, echocardiographic parameters, and quality of life. The TAVR UNLOAD trial aims to test the hypothesis that TAVR on top of OHFT improves clinical outcomes in patients with moderate AS and HF with reduced ejection fraction. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Transversal stiffness of fibers and desmin content in leg muscles of rats under gravitational unloading of various durations.

    PubMed

    Ogneva, I V

    2010-12-01

    The aim of this research was the analysis of structural changes in various parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy under gravitational unloading. Soleus, medial gastrocnemius, and tibialis anterior muscles of Wistar rats were the objects of the study. Gravitational unloading was carried out by antiorthostatic suspension of hindlimbs for 1, 3, 7, and 12 days. It was shown that the transversal stiffness of different parts of the contractile apparatus of soleus muscle fibers decreases during gravitational unloading in the relaxed, calcium-activated, and rigor states, the fibers of the medial gastrocnemius show no changes, whereas the transversal stiffness of tibialis anterior muscle increases. Thus the transversal stiffness of the sarcolemma in the relaxed state is reduced in all muscles, which may be due to the direct action of gravity as an external mechanical factor that can influence the tension on a membrane. The change of sarcolemma stiffness in activated fibers, which is due probably to the transfer of tension from the contractile apparatus, correlates with the dynamics of changes in the content of desmin.

  12. Unloading-induced bone loss was suppressed in gold-thioglucose treated mice.

    PubMed

    Hino, K; Nifuji, A; Morinobu, M; Tsuji, K; Ezura, Y; Nakashima, K; Yamamoto, H; Noda, M

    2006-10-15

    Loss of mechanical stress causes bone loss. However, the mechanisms underlying the unloading-induced bone loss are largely unknown. Here, we examined the effects of gold-thioglucose (GTG) treatment, which destroys ventromedial hypothalamus (VMH), on unloading-induced bone loss. Unloading reduced bone volume in control (saline-treated) mice. Treatment with GTG-reduced bone mass and in these GTG-treated mice, unloading-induced reduction in bone mass levels was not observed. Unloading reduced the levels of bone formation rate (BFR) and mineral apposition rate (MAR). GTG treatment also reduced these parameters and under this condition, unloading did not further reduce the levels of BFR and MAR. Unloading increased the levels of osteoclast number (Oc.N/BS) and osteoclast surface (Oc.S/BS). GTG treatment did not alter the basal levels of these bone resorption parameters. In contrast to control, GTG treatment suppressed unloading-induced increase in the levels of Oc.N/BS and Oc.S/BS. Unloading reduced the levels of mRNA expression of the genes encoding osteocalcin, type I collagen and Cbfa1 in bone. In contrast, GTG treatment suppressed such unloading-induced reduction of mRNA expression. Unloading also enhanced the levels of fat mass in bone marrow and mRNA expression of the genes encoding PPARgamma2, C/EBPalpha, and C/EBPbeta in bone. In GTG-treated mice, unloading did not increase fat mass and the levels of fat-related mRNA expression. These results indicated that GTG treatment suppressed unloading-induced alteration in bone loss. 2006 Wiley-Liss, Inc.

  13. Altered cellular kinetics in growth plate according to alterations in weight bearing.

    PubMed

    Park, Hoon; Kong, Sun Young; Kim, Hyun Woo; Yang, Ick Hwan

    2012-05-01

    To examine the effects of change in weight bearing on the growth plate metabolism, a simulated animal model of weightlessness was introduced and the chondrocytes' cellular kinetics was evaluated. Unloading condition on the hind-limb of Sprague-Dawley rats was created by fixing a tail and lifting the hind-limb. Six rats aged 6 weeks old were assigned to each group of unloading, reloading, and control groups of unloading or reloading. Unloading was maintained for three weeks, and then reloading was applied for another one week thereafter. Histomorphometry for the assessment of vertical length of the growth plate, 5-bromo-2'-deoxyuridin immunohistochemistry for cellular kinetics, and biotin nick end labeling transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) assay for chondrocytes apoptosis in the growth plate were performed. The vertical length of the growth plate and the proliferative potential of chondrocytes were decreased in the unloading group compared to those of control groups. Inter-group differences were more significant in the proliferative and hypertrophic zones. Reloading increased the length of growth plate and proliferative potential of chondrocytes. However, apoptotic changes in the growth plate were not affected by the alterations of weight bearing. Alterations in the weight bearing induced changes in the chondrocytic proliferative potential of the growth plate, however, had no effects on the apoptosis. This may explain why non-weight bearing in various clinical situations hampers normal longitudinal bone growth. Further studies on the factors for reversibility of chondrocytic proliferation upon variable mechanical stresses are needed.

  14. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Criswell, D. S.

    1997-01-01

    Skeletal muscle adapts to loading; atrophying when exposed to unloading on Earth or in spaceflight. Significant atrophy (decreases in muscle fiber cross-section of 11-24%) in humans has been noted after only 5 days in space. Since muscle strength is determined both by muscle cross-section and synchronization of motor unit recruitment, a loss in muscle size weakens astronauts, which would increase risks to their safety if an emergency required maximal muscle force. Numerous countermeasures have been tested to prevent atrophy. Resistant exercise together with growth hormone and IGF-I are effective countermeasures to unloading as most atrophy is prevented in animal models. The loss of muscle protein is due to an early decrease in protein synthesis rate and a later increase in protein degradation. The initial decrease in protein synthesis is a result of decreased protein translation, caused by a prolongation in the elongation rate. A decrease in HSP70 by a sight increase in ATP may be the factors prolonging elongation rate. Increases in the activities of proteolytic enzymes and in ubiquitin contribute to the increased protein degradation rate in unloaded muscle. Numerous mRNA concentrations have been shown to be altered in unloaded muscles. Decreases in mRNAs for contractile proteins usually occur after the initial fall in protein synthesis rates. Much additional research is needed to determine the mechanism by which muscle senses the absence of gravity with an adaptive atrophy. The development of effective countermeasures to unloading atrophy will require more research.

  15. 49 CFR 173.30 - Loading and unloading of transport vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Loading and unloading of transport vehicles. 173... § 173.30 Loading and unloading of transport vehicles. A person who is subject to the loading and unloading regulations in this subchapter must load or unload hazardous materials into or from a transport...

  16. 49 CFR 173.30 - Loading and unloading of transport vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Loading and unloading of transport vehicles. 173... § 173.30 Loading and unloading of transport vehicles. A person who is subject to the loading and unloading regulations in this subchapter must load or unload hazardous materials into or from a transport...

  17. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that programed administration of PTH is effective in increasing osteoblast number and bone formation and has beneficial effects on bone volume in the absence of weight-bearing and gonadal hormones. We conclude that the actions of PTH on cancellous bone are independent of the level of mechanical usage.

  18. Alterations of collagen matrix in weight-bearing bones during skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, M.; Arnaud, S. B.; Tanzawa, H.; Uzawa, K.; Yamauchi, M.

    2001-01-01

    Skeletal unloading induces loss of bone mineral density in weight-bearing bones. The objectives of this study were to characterize the post-translational modifications of collagen of weight-bearing bones subjected to hindlimb unloading for 8 weeks. In unloaded bones, tibiae and femurs, while the overall amino acid composition was essentially identical in the unloaded and control tibiae and femurs, the collagen cross-link profile showed significant differences. Two major reducible cross-links (analyzed as dihydroxylysinonorleucine and hydroxylysinonorleucine) were increased in the unloaded bones. In addition, the ratios of the former to the latter as well as pyridinoline to deoxypyridinoline were significantly decreased in the unloaded bones indicating a difference in the extent of lysine hydroxylation at the cross-linking sites between these two groups. These results indicate that upon skeletal unloading the relative pool of newly synthesized collagen is increased and it is post-translationally altered. The alteration could be associated with impaired osteoblastic differentiation induced by skeletal unloading that results in a mineralization defect.

  19. Nutrient loads of small-scale swine manure composting to groundwater and its prevention by covering: a case study.

    PubMed

    Cheng, Jianbo; Qiao, Junjing; Chen, Yucheng; Yang, Zhimin

    2015-10-01

    Small-scale composting is applied to recycle manure and biomass around the globe. Piles frequently site outside near field where bio-waste comes or compost goes within developing rural regions. However, little equipment or policy besides cover of common materials addressed concerns about its exposure to rainfall and subsequent leachate towards groundwater. In addition, little is known about its nutrient load to groundwater and covers' effect on nutrient unloading. Differently covered swine manure piles were composted outdoors with exposure to rain, then columns consisted of resultant compost of varying maturing age and soil were leached by simulated rainfall. Leachate TN, NH4 (+)-N, NO3 (-)-N, TP, and DP were modeled by regression analysis, and further, integral of quadratic curve or nutrient load index (NLI) was designated as proxy for nutrient load. Log response ratio was employed to qualify covers' effect on nutrient unloading. This case raised higher concern about leachate NH4 (+)-N than NO3 (-)-N for former's lower category in groundwater quality standard. The integrated NLIs or general nutrient load for six intervals, averagely divided from composting day of 60-120, decreased by 31, 37, 45, 56, and 73 % consecutively. Covers could unload nutrient to underground and function better to prevent P than N from leaching. Capabilities of piles covered by rice straw (CR) and soil (CS) to unload respectively are 77 and 72 % of by film (CF).

  20. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, Kevin M.

    1994-01-01

    An apparatus for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device.

  1. Passive stretch reduces calpain activity through nitric oxide pathway in unloaded soleus muscles.

    PubMed

    Xu, Peng-Tao; Li, Quan; Sheng, Juan-Juan; Chang, Hui; Song, Zhen; Yu, Zhi-Bin

    2012-08-01

    Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.

  2. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  3. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice.

    PubMed

    Jensen, Birgitte; Storz, Jay F; Fago, Angela

    2016-05-01

    An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, K.M.

    1994-01-04

    An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

  5. Progress of ILC High Gradient SRF Cavity R&D at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.L. Geng, J. Dai, G.V. Eremeev, A.D. Palczewski

    2011-09-01

    Latest progress of ILC high gradient SRF cavity R&D at Jefferson Lab will be presented. 9 out of 10 real 9-cell cavities reached an accelerating gradient of more than 38 MV/m at a unloaded quality factor of more than 8 {center_dot} 109. New understandings of quench limitation in 9-cell cavities are obtained through instrumented studies of cavities at cryogenic temperatures. Our data have shown that present limit reached in 9-cell cavities is predominantly due to localized defects, suggesting that the fundamental material limit of niobium is not yet reached in 9-cell cavities and further gradient improvement is still possible. Somemore » examples of quench-causing defects will be given. Possible solutions to pushing toward the fundamental limit will be described.« less

  6. High permittivity and low loss ceramics in the BaO-SrO-Nb{sub 2}O{sub 5} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreemoolanadhan, H.; Sebastian, M.T.; Mohanan, P.

    1995-06-01

    A new group of compounds with composition (Ba{sub 5{minus}X}Sr{sub x})Nb{sub 4}O{sub 15}, having high permittivity and low loss have been prepared and characterized in the microwave frequency region. X-ray diffraction studies showed that monophase compound existed for all values of x from 0 to 5. Microwave dielectric properties such as {var_epsilon}{sub r} and {tau}{sub f} showed smooth variation with x, while the unloaded quality factor (Q{sub u}) showed remarkable improvement with x. A range of ceramic dielectric resonators (DR) with 40 < {var_epsilon}{sub r} < 50, {minus}10 < {tau}{sub f} < +10 and Q {times} f > 10,000 can bemore » obtained in this system.« less

  7. Effects of space flight conditions on the function of the immune system and catecholamine production simulated in a rodent model of hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Aviles, Hernan; Belay, Tesfaye; Vance, Monique; Sonnenfeld, Gerald

    2005-01-01

    The rodent model of hindlimb unloading has been successfully used to simulate some of the effects of space flight conditions. Previous studies have indicated that mice exposed to hindlimb-unloading conditions have decreased resistance to infections compared to restrained and normally housed control mice. OBJECTIVE: The purpose of this study was to clarify the mechanisms involved in resistance to infection in this model by examining the effects of hindlimb unloading on the function of the immune system and its impact on the production of catecholamines. METHODS: Female Swiss Webster mice were hindlimb-unloaded during 48 h and the function of the immune system was assessed in spleen and peritoneal cells immediately after this period. In addition, the kinetics of catecholamine production was measured throughout the hindlimb-unloading period. RESULTS: The function of the immune system was significantly suppressed in the hindlimb-unloaded group compared to restrained and normally housed control mice. Levels of catecholamines were increased in the hindlimb-unloaded group and peaked at 12 h following the commencement of unloading. CONCLUSION: These results suggest that physiological responses of mice are altered early after hindlimb unloading and that catecholamines may play a critical role in the modulation of the immune system. These changes may affect the ability of mice to resist infections. Copyright (c) 2005 S. Karger AG, Basel.

  8. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Lawler, John M.; Song, Wook; Demaree, Scott R.; Bloomfield, S. A. (Principal Investigator)

    2003-01-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  9. Automatic sample Dewar for MX beam-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charignon, T.; Tanchon, J.; Trollier, T.

    2014-01-29

    It is very common for crystals of large biological macromolecules to show considerable variation in quality of their diffraction. In order to increase the number of samples that are tested for diffraction quality before any full data collections at the ESRF*, an automatic sample Dewar has been implemented. Conception and performances of the Dewar are reported in this paper. The automatic sample Dewar has 240 samples capability with automatic loading/unloading ports. The storing Dewar is capable to work with robots and it can be integrated in a full automatic MX** beam-line. The samples are positioned in the front of themore » loading/unloading ports with and automatic rotating plate. A view port has been implemented for data matrix camera reading on each sample loaded in the Dewar. At last, the Dewar is insulated with polyurethane foam that keeps the liquid nitrogen consumption below 1.6 L/h. At last, the static insulation also makes vacuum equipment and maintenance unnecessary. This Dewar will be useful for increasing the number of samples tested in synchrotrons.« less

  10. 40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...

  11. 40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...

  12. 40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...

  13. 40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...

  14. 40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...

  15. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity

    NASA Technical Reports Server (NTRS)

    Bey, Lionel; Akunuri, Nagabhavani; Zhao, Po; Hoffman, Eric P.; Hamilton, Deborah G.; Hamilton, Marc T.

    2003-01-01

    Physical inactivity and unloading lead to diverse skeletal muscle alterations. Our goal was to identify the genes in skeletal muscle whose expression is most sensitive to periods of unloading/reduced physical activity and that may be involved in triggering initial responses before phenotypic changes are evident. The ability of short periods of physical activity/loading as an effective countermeasure against changes in gene expression mediated by inactivity was also tested. Affymetrix microarrays were used to compare mRNA levels in the soleus muscle under three experimental treatments (n = 20-29 rats each): 12-h hindlimb unloading (HU), 12-h HU followed by 4 h of intermittent low-intensity ambulatory and postural activity (4-h reloading), and control (with ambulatory and postural activity). Using a combination of criteria, we identified a small set of genes (approximately 1% of 8,738 genes on the array or 4% of significant expressed genes) with the most reproducible and largest responses to altered activity. Analysis revealed a coordinated regulation of transcription for a large number of key signaling proteins and transcription factors involved in protein synthesis/degradation and energy metabolism. Most (21 of 25) of the gene expression changes that were downregulated during HU returned at least to control levels during the reloading. In surprising contrast, 27 of 38 of the genes upregulated during HU remained significantly above control, but most showed trends toward reversal. This introduces a new concept that, in general, genes that are upregulated during unloading/inactivity will be more resistant to periodic reloading than those genes that are downregulated. This study reveals genes that are the most sensitive to loading/activity in rat skeletal muscle and indicates new targets that may initiate muscle alterations during inactivity.

  16. Predicting Trainability of M1 Crewmen

    DTIC Science & Technology

    1982-10-01

    Load Main Gun Clear Main Gun LOAD/UNLOAD M250 GRENADE LAUNCHER ON M1 TANK* Load Grenade Launcher Unload Grenade Launcher PREPARE GUNNER’S STATION...Clear Main Gun LOAD/UNLOAD M250 GRENADE LAUNCHER ON Ml TANK* Load Grenade Launcher Unload Grenade Lauacher PREPARE GUNNER’S STATION FOR OPERATION ON Ml

  17. 38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE GEORGE M. CARL.' VIEW LOOKING EAST. (Also see OH-18-14, OH-18-39, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  18. 14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE 'GEORGE M. CAR.' VIEW LOOKING EAST. (Also see OH-18-38, OH-18-39, and OH-18-40.) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  19. Innovated Conceptual Design of Loading Unloading Tool for Livestock at the Port

    NASA Astrophysics Data System (ADS)

    Mustakim, Achmad; Hadi, Firmanto

    2018-03-01

    The condition of loading and unloading process of livestock in a number of Indonesian ports doesn’t meet the principle of animal welfare, which makes cattle lose weight and injury when unloaded. Livestock loading and unloading is done by throwing cattle into the sea one by one, tying cattle hung with a sling strap and push the cattle to the berth directly. This process is against PP. 82 year 2000 on Article 47 and 55 about animal welfare. Innovation of loading and unloading tools design offered are loading and unloading design with garbarata. In the design of loading and unloading tools with garbarata, apply the concept of semi-horizontal hydraulic ladder that connects the ship and truck directly. This livestock unloading equipment design innovation is a combination of fire extinguisher truck design and bridge equipped with weightlifting equipment. In 10 years of planning garbarata, requires a total cost of IDR 321,142,921; gets benefits IDR 923,352,333; and BCR (Benefit-Cost Ratio) Value worth 2.88. BCR value >1 means the tool is feasible applied. The designs of this loading and unloading tools are estimated up to 1 hour faster than existing way. It can also minimize risks such as injury and also weight reduction livestock agencies significantly.

  20. Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.

    2001-01-01

    The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.

  1. Manual unloading of the lumbar spine: can it identify immediate responders to mechanical traction in a low back pain population? A study of reliability and criterion referenced predictive validity

    PubMed Central

    Swanson, Brian T.; Riley, Sean P.; Cote, Mark P.; Leger, Robin R.; Moss, Isaac L.; Carlos,, John

    2016-01-01

    Background To date, no research has examined the reliability or predictive validity of manual unloading tests of the lumbar spine to identify potential responders to lumbar mechanical traction. Purpose To determine: (1) the intra and inter-rater reliability of a manual unloading test of the lumbar spine and (2) the criterion referenced predictive validity for the manual unloading test. Methods Ten volunteers with low back pain (LBP) underwent a manual unloading test to establish reliability. In a separate procedure, 30 consecutive patients with LBP (age 50·86±11·51) were assessed for pain in their most provocative standing position (visual analog scale (VAS) 49·53±25·52 mm). Patients were assessed with a manual unloading test in their most provocative position followed by a single application of intermittent mechanical traction. Post traction, pain in the provocative position was reassessed and utilized as the outcome criterion. Results The test of unloading demonstrated substantial intra and inter-rater reliability K = 1·00, P = 0·002, K = 0·737, P = 0·001, respectively. There were statistically significant within group differences for pain response following traction for patients with a positive manual unloading test (P<0·001), while patients with a negative manual unloading test did not demonstrate a statistically significant change (P>0·05). There were significant between group differences for proportion of responders to traction based on manual unloading response (P = 0·031), and manual unloading response demonstrated a moderate to strong relationship with traction response Phi = 0·443, P = 0·015. Discussion and conclusion The manual unloading test appears to be a reliable test and has a moderate to strong correlation with pain relief that exceeds minimal clinically important difference (MCID) following traction supporting the validity of this test. PMID:27559274

  2. 75 FR 20591 - AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC; Notice of Final General Conformity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... quality impacts associated with the construction and operation of a liquefied natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC, in... of the following LNG terminal and natural gas pipeline facilities: A ship unloading facility, with...

  3. 10 CFR 504.6 - Prohibitions by order (case-by-case).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... handling equipment, such as conveyor belts, pulverizers, or unloading facilities, bears on the issue of a... whether the unit was expressly designed to burn that fuel or whether it ever actually did burn it), but is... required to meet air quality requirements. 4 4 A unit designed to burn natural gas shall be presumed to...

  4. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    NASA Astrophysics Data System (ADS)

    Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun

    2016-11-01

    Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.

  5. Sugar Efflux from Maize (Zea mays L.) Pedicel Tissue 1

    PubMed Central

    Porter, Gregory A.; Knievel, Daniel P.; Shannon, Jack C.

    1985-01-01

    Sugar release from the pedicel tissue of maize (Zea mays L.) kernels was studied by removing the distal portion of the kernel and the lower endosperm, followed by replacement of the endosperm with an agar solute trap. Sugars were unloaded into the apoplast of the pedicel and accumulated in the agar trap while the ear remained attached to the maize plant. The kinetics of 14C-assimilate movement into treated versus intact kernels were comparable. The rate of unloading declined with time, but sugar efflux from the pedicel continued for at least 6 hours and in most experiments the unloading rates approximated those necessary to support normal kernel growth rates. The unloading process was challenged with a variety of buffers, inhibitors, and solutes in order to characterize sugar unloading from this tissue. Unloading was not affected by apoplastic pH or a variety of metabolic inhibitors. Although p-chloromercuribenzene sulfonic acid (PCMBS), a nonpenetrating sulfhydryl group reagent, did not affect sugar unloading, it effectively inhibited extracellular acid invertase. When the pedicel cups were pretreated with PCMBS, at least 60% of sugars unloaded from the pedicel could be identified as sucrose. Unloading was inhibited up to 70% by 10 millimolar CaCl2. Unloading was stimulated by 15 millimolar ethyleneglycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid which partially reversed the inhibitory effects of Ca2+. Based on these results, we suggest that passive efflux of sucrose occurs from the maize pedicel symplast followed by extracellular hydrolysis to hexoses. Images Fig. 1 Fig. 2 PMID:16664091

  6. A Mechanism for the Loading-Unloading Substorm Cycle Missing in MHD Global Magnetospheric Simulation Models

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.

    2005-01-01

    Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.

  7. Region-Specific Responses of Adductor Longus Muscle to Gravitational Load-Dependent Activity in Wistar Hannover Rats

    PubMed Central

    Ohira, Takashi; Terada, Masahiro; Kawano, Fuminori; Nakai, Naoya; Ogura, Akihiko; Ohira, Yoshinobu

    2011-01-01

    Response of adductor longus (AL) muscle to gravitational unloading and reloading was studied. Male Wistar Hannover rats (5-wk old) were hindlimb-unloaded for 16 days with or without 16-day ambulation recovery. The electromyogram (EMG) activity in AL decreased after acute unloading, but that in the rostral region was even elevated during continuous unloading. The EMG levels in the caudal region gradually increased up to 6th day, but decreased again. Approximately 97% of fibers in the caudal region were pure type I at the beginning of experiment. Mean percentage of type I fibers in the rostral region was 61% and that of type I+II and II fiber was 14 and 25%, respectively. The percent type I fibers decreased and de novo appearance of type I+II was noted after unloading. But the fiber phenotype in caudal, not rostral and middle, region was normalized after 16-day ambulation. Pronounced atrophy after unloading and re-growth following ambulation was noted in type I fibers of the caudal region. Sarcomere length in the caudal region was passively shortened during unloading, but that in the rostral region was unchanged or even stretched slightly. Growth-associated increase of myonuclear number seen in the caudal region of control rats was inhibited by unloading. Number of mitotic active satellite cells decreased after unloading only in the caudal region. It was indicated that the responses of fiber properties in AL to unloading and reloading were closely related to the region-specific neural and mechanical activities, being the caudal region more responsive. PMID:21731645

  8. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina

    2005-01-01

    The hindlimb unloading rodent model is used extensively to study the response of many physiological systems to certain aspects of space flight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of hindlimb unloading, and is divided into three sections. The first section examines the characteristics of 1064 articles using or reviewing the hindlimb unloading model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and hindlimb unloading animals from the 14-day Cosmos 2044 mission. The final section describes modifications to hindlimb unloading required by different experimental paradigms and a method to protect the tail harness for long duration studies. Hindlimb unloading in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human space flight and disuse on Earth.

  9. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    DOE PAGES

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less

  10. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle

    PubMed Central

    Ross-Elliott, Timothy J; Jensen, Kaare H; Haaning, Katrine S; Wager, Brittney M; Knoblauch, Jan; Howell, Alexander H; Mullendore, Daniel L; Monteith, Alexander G; Paultre, Danae; Yan, Dawei; Otero, Sofia; Bourdon, Matthieu; Sager, Ross; Lee, Jung-Youn; Helariutta, Ykä; Knoblauch, Michael; Oparka, Karl J

    2017-01-01

    In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of ‘funnel plasmodesmata’. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as ‘batch unloading’. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots. DOI: http://dx.doi.org/10.7554/eLife.24125.001 PMID:28230527

  11. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats

    NASA Technical Reports Server (NTRS)

    Smith, Brenda J.; King, Jarrod B.; Lucas, Edralin A.; Akhter, Mohammed P.; Arjmandi, Bahram H.; Stoecker, Barbara J.

    2002-01-01

    This study was designed to examine the skeletal response to copper depletion and mechanical unloading in mature animals. In a 2 x 2 experimental design, 5.5-mo-old male Sprague-Dawley rats (n = 36) consumed either the control (AIN-93M) or Cu-depletion ((-)Cu) diet beginning 21 d before suspension and throughout the remainder of the study. Half of the rats in each dietary treatment group were either tail-suspended (TS) or kept ambulatory (AMB) for 28 d. Lower bone mineral densities (BMD) of 5th lumbar vertebra (L5) (P < 0.05) and femur were observed with (-)Cu and TS, but no differences were noted in the BMD of the humerus. Mechanical strength in the femur and vertebra decreased in response to TS, but were unaffected by copper depletion. Urinary deoxypyridinoline, an index of bone resorption, was significantly greater in TS rats, but unaltered by (-)Cu. No changes in serum or bone alkaline phosphatase activity, an indicator of bone formation, were observed. Our findings suggest that TS and (-)Cu decreased BMD in unloaded femur and vertebra but had no effect on normally loaded humerus. Bone loss with TS appeared to be related to accelerated bone resorption. Alterations in bone metabolism and bone mechanical properties in the mature skeleton resulting from (-)Cu warrant further investigation.

  12. Bone structure and quality preserved by active versus passive muscle exercise in 21 days tail-suspended rats

    NASA Astrophysics Data System (ADS)

    Luan, Huiqin; Sun, Lian-wen; Fan, Yu-bo

    2012-07-01

    Humans in Space suffer from microgravity-induced attenuated bone strength that needs to be addressed by on-orbit exercise countermeasures. However, exercise prescriptions so far did not adequately counteract the bone loss of astronauts in spaceflight because even active muscle contractions were converted to passive mode during voluntary bouts. We tested our hypothesis in unloaded rat hind limb following twenty-one days of tail-suspension (TS) combined with exercise using a hind limb stepper device designed by our group. Female Sprague Dawley rats (250g b.wt.) were divided into four groups (n=5, each): TS-only (hind limb unloading), TS plus passive mode exercise (TSP) induced by mechanically-forced passive hind limb lifting, TS plus active mode exercise (TSA) entrained by plantar electrostimulation, and control (CON) group. Standard measures of bone (e.g., mineral density, trabecular microstructure, biomechanics and ash weight) were monitored. Results provided that the attenuated properties of unloaded hind limb bone in TS-rats were more effectively supported by active mode than by passive mode motions. We here propose a modified exercise regimen combined with spontaneous muscle contractions thereby considering the biodynamic demands of both muscle and bone during resistive-load exercise in microgravity. Keywords: rat, BMD, DXA, passive exercise, active exercise, bone loss, tail suspension, spaceflight analogue, exercise countermeasure.

  13. Is transport distance correlated with animal welfare and carcass quality of reindeer (Rangifer tarandus tarandus)?

    PubMed

    Laaksonen, Sauli; Jokelainen, Pikka; Pusenius, Jyrki; Oksanen, Antti

    2017-03-15

    Slaughter reindeer are exposed to stress caused by gathering, handling, loading and unloading, and by conditions in vehicles during transport. These stress factors can lead to compromised welfare and trauma such as bruises or fractures, aspiration of rumen content, and abnormal odour in carcasses, and causing condemnations in meat inspection and lower meat quality. We investigated the statistical association of slaughter transport distance with these indices using meat inspection data from years 2004-2016, including inspection of 669,738 reindeer originating from Finnish reindeer herding areas. Increased stress and decreased welfare of reindeer, as indicated by higher incidence of carcass condemnation due to bruises or fractures, aspiration of rumen content, or abnormal odour, were positively associated with systems involving shorter transport distances to abattoirs. Significant differences in incidence of condemnations were also detected between abattoirs and reindeer herding cooperatives. This study indicates that in particular the short-distance transports of reindeer merit more attention. While the results suggest that factors associated with long distance transport, such as driver education, truck design, veterinary supervision, and specialist equipment, may be favourable to reducing pre-slaughter stress in reindeer when compared with short distance transport systems, which occur in a variety of vehicle types and may be done by untrained handlers. Further work is required to elucidate the causal factors to the current results.

  14. Adaptation of a MR imaging protocol into a real-time clinical biometric ultrasound protocol for persons with spinal cord injury at risk for deep tissue injury: A reliability study.

    PubMed

    Swaine, Jillian M; Moe, Andrew; Breidahl, William; Bader, Daniel L; Oomens, Cees W J; Lester, Leanne; O'Loughlin, Edmond; Santamaria, Nick; Stacey, Michael C

    2018-02-01

    High strain in soft tissues that overly bony prominences are considered a risk factor for pressure ulcers (PUs) following spinal cord impairment (SCI) and have been computed using Finite Element methods (FEM). The aim of this study was to translate a MRI protocol into ultrasound (US) and determine between-operator reliability of expert sonographers measuring diameter of the inferior curvature of the ischial tuberosity (IT) and the thickness of the overlying soft tissue layers on able-bodied (AB) and SCI using real-time ultrasound. Part 1: Fourteen AB participants with a mean age of 36.7 ± 12.09 years with 7 males and 7 females had their 3 soft tissue layers in loaded and unloaded sitting measured independently by 2 sonographers: tendon/muscle, skin/fat and total soft tissue and the diameter of the IT in its short and long axis. Part 2: Nineteen participants with SCI were screened, three were excluded due to abnormal skin signs, and eight participants (42%) were excluded for abnormal US signs with normal skin. Eight SCI participants with a mean age of 31.6 ± 13.6 years and all male with 4 paraplegics and 4 tetraplegics were measured by the same sonographers for skin, fat, tendon, muscle and total. Skin/fat and tendon/muscle were computed. AB between-operator reliability was good (ICC = 0.81-0.90) for 3 soft tissues layers in unloaded and loaded sitting and poor for both IT short and long axis (ICC = -0.028 and -0.01). SCI between-operator reliability was good in unloaded and loaded for total, muscle, fat, skin/fat, tendon/muscle (ICC = 0.75-0.97) and poor for tendon (ICC = 0.26 unloaded and ICC = -0.71 loaded) and skin (ICC = 0.37 unloaded and ICC = 0.10). A MRI protocol was successfully adapted for a reliable 3 soft tissue layer model and could be used in a 2-D FEM model designed to estimate soft tissue strain as a novel risk factor for the development of a PU. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  16. Electrical-transport properties and microwave device performance of sputtered TlCaBaCuO superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1992-01-01

    The paper describes the processing and electrical transport measurements for achieving reproducible high-Tc and high-Jc sputtered TlCaBaCuO thin films on LaAlO3 substrates, for microelectronic applications. The microwave properties of TlCaBaCuO thin films were investigated by designing, fabricating, and characterizing microstrip ring resonators with a fundamental resonance frequency of 12 GHz on 10-mil-thick LaAlO3 substrates. Typical unloaded quality factors for a ring resonator with a superconducting ground plane of 0.3 micron-thickness and a gold ground plane of 1-micron-thickness were above 1500 at 65 K. Typical values of penetration depth at 0 K in the TlCaBaCuO thin films were between 7000 and 8000 A.

  17. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  18. Preparation of Salicylic Acid Loaded Nanostructured Lipid Carriers Using Box-Behnken Design: Optimization, Characterization and Physicochemical Stability.

    PubMed

    Pantub, Ketrawee; Wongtrakul, Paveena; Janwitayanuchit, Wicharn

    2017-01-01

    Nanostructured lipid carriers loaded salicylic acid (NLCs-SA) were developed and optimized by using the design of experiment (DOE). Box-Behnken experimental design of 3-factor, 3-level was applied for optimization of nanostructured lipid carriers prepared by emulsification method. The independent variables were total lipid concentration (X 1 ), stearic acid to Lexol ® GT-865 ratio (X 2 ) and Tween ® 80 concentration (X 3 ) while the particle size was a dependent variable (Y). Box-Behnken design could create 15 runs by setting response optimizer as minimum particle size. The optimized formulation consists of 10% of total lipid, a mixture of stearic acid and capric/caprylic triglyceride at a 4:1 ratio, and 25% of Tween ® 80 which the formulation was applied in order to prepare in both loaded and unloaded salicylic acid. After preparation for 24 hours, the particle size of loaded and unloaded salicylic acid was 189.62±1.82 nm and 369.00±3.37 nm, respectively. Response surface analysis revealed that the amount of total lipid is a main factor which could affect the particle size of lipid carriers. In addition, the stability studies showed a significant change in particle size by time. Compared to unloaded nanoparticles, the addition of salicylic acid into the particles resulted in physically stable dispersion. After 30 days, sedimentation of unloaded lipid carriers was clearly observed. Absolute values of zeta potential of both systems were in the range of 3 to 18 mV since non-ionic surfactant, Tween ® 80, providing steric barrier was used. Differential thermograms indicated a shift of endothermic peak from 55°C for α-crystal form in freshly prepared samples to 60°C for β´-crystal form in storage samples. It was found that the presence of capric/caprylic triglyceride oil could enhance encapsulation efficiency up to 80% and facilitate stability of the particles.

  19. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.

    1994-01-01

    Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.

  20. A Methodology for the Derivation of Unloaded Abdominal Aortic Aneurysm Geometry With Experimental Validation

    PubMed Central

    Chandra, Santanu; Gnanaruban, Vimalatharmaiyah; Riveros, Fabian; Rodriguez, Jose F.; Finol, Ender A.

    2016-01-01

    In this work, we present a novel method for the derivation of the unloaded geometry of an abdominal aortic aneurysm (AAA) from a pressurized geometry in turn obtained by 3D reconstruction of computed tomography (CT) images. The approach was experimentally validated with an aneurysm phantom loaded with gauge pressures of 80, 120, and 140 mm Hg. The unloaded phantom geometries estimated from these pressurized states were compared to the actual unloaded phantom geometry, resulting in mean nodal surface distances of up to 3.9% of the maximum aneurysm diameter. An in-silico verification was also performed using a patient-specific AAA mesh, resulting in maximum nodal surface distances of 8 μm after running the algorithm for eight iterations. The methodology was then applied to 12 patient-specific AAA for which their corresponding unloaded geometries were generated in 5–8 iterations. The wall mechanics resulting from finite element analysis of the pressurized (CT image-based) and unloaded geometries were compared to quantify the relative importance of using an unloaded geometry for AAA biomechanics. The pressurized AAA models underestimate peak wall stress (quantified by the first principal stress component) on average by 15% compared to the unloaded AAA models. The validation and application of the method, readily compatible with any finite element solver, underscores the importance of generating the unloaded AAA volume mesh prior to using wall stress as a biomechanical marker for rupture risk assessment. PMID:27538124

  1. Work-related musculoskeletal disorders (WMDs) risk assessment at core assembly production of electronic components manufacturing company

    NASA Astrophysics Data System (ADS)

    Yahya, N. M.; Zahid, M. N. O.

    2018-03-01

    This study conducted to assess the work-related musculoskeletal disorders (WMDs) among the workers at core assembly production in an electronic components manufacturing company located in Pekan, Pahang, Malaysia. The study is to identify the WMDs risk factor and risk level. A set of questionnaires survey based on modified Nordic Musculoskeletal Disorder Questionnaires have been distributed to respective workers to acquire the WMDs risk factor identification. Then, postural analysis was conducted in order to measure the respective WMDs risk level. The analysis were based on two ergonomics assessment tools; Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). The study found that 30 respondents out of 36 respondents suffered from WMDs especially at shoulder, wrists and lower back. The WMDs risk have been identified from unloading process, pressing process and winding process. In term of the WMDs risk level, REBA and RULA assessment tools have indicated high risk level to unloading and pressing process. Thus, this study had established the WMDs risk factor and risk level of core assembly production in an electronic components manufacturing company at Malaysia environment.

  2. Project UM-HAUL (UnManned Heavy pAyload Unloader and Lander): The design of a reusable lunar lander with an independent cargo unloader

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project UM-Haul is the preliminary design of a reusable lunar transportation vehicle that travels between a lunar parking orbit and the lunar surface. This vehicle is an indispensible link in the overall task of establishing a lunar base as defined by the NASA Space Exploration Initiative. The response to this need consists of two independent vehicles: a lander and an unloader. The system can navigate and unload itself with a minimum amount of human intervention. The design addresses structural analysis, propulsion, power, controls, communications, payload handling and orbital operations. The Lander has the capacity to decend from low lunar orbit (LLO) to the lunar surface carrying a 7000 kg payload, plus the unloader, plus propellant for ascent to LLO. The Lander employs the Unloader by way of a motorized ramp. The Unloader is a terrain vehicle capable of carrying cargoes of 8,500 kg mass and employs a lift system to lower payloads to the ground. The system can perform ten missions before requiring major servicing.

  3. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  4. 49 CFR 179.100-13 - Venting, loading and unloading valves, measuring and sampling devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... metal. Each sump or siphon bowl must be of good welding quality in conjunction with the metal of the... walls of such thickness and be so reinforced that the stresses in the walls caused by a given internal pressure are no greater than the circumferential stress that would exist under the same internal pressure...

  5. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  6. 49 CFR 179.100-13 - Venting, loading and unloading valves, measuring and sampling devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... metal. Each sump or siphon bowl must be of good welding quality in conjunction with the metal of the... walls of such thickness and be so reinforced that the stresses in the walls caused by a given internal pressure are no greater than the circumferential stress that would exist under the same internal pressure...

  7. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  8. 49 CFR 179.100-13 - Venting, loading and unloading valves, measuring and sampling devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... metal. Each sump or siphon bowl must be of good welding quality in conjunction with the metal of the... walls of such thickness and be so reinforced that the stresses in the walls caused by a given internal pressure are no greater than the circumferential stress that would exist under the same internal pressure...

  9. 49 CFR 179.100-13 - Venting, loading and unloading valves, measuring and sampling devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... metal. Each sump or siphon bowl must be of good welding quality in conjunction with the metal of the... walls of such thickness and be so reinforced that the stresses in the walls caused by a given internal pressure are no greater than the circumferential stress that would exist under the same internal pressure...

  10. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  11. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... good welding quality in conjunction with the metal of the tank shell. When the sump or siphon bowl is... cylinder of revolution must have walls of such thickness and must be so reinforced that the stresses in the walls caused by a given internal pressure are not greater than the circumferential stress which would...

  12. Carotid baroreceptor influence on forearm vascular resistance during low level lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Thompson, Cynthia A.; Ludwig, David A.; Convertino, Victor A.

    1991-01-01

    The degree of forearm vasoconstriction induced by low levels of lower body negative pressure (LBNP) provides a measure of the responsiveness of the cardiopulmonary baroreflex. The validity of this measurement is based on the assumption that this vasoconstriction response is not influenced by unloading of carotid baroreceptors. To test the hypothesis that arterial baroreceptor unloading does not alter the degree of forearm vascular resistance during low levels of LBNP, 12 subjects were exposed to -15 and -20 mm Hg LBNP with and without additional artificial (+ 10 mm Hg neck pressure) unloading of the carotid baroreceptors. There was no measurable influence of carotid unloading on forearm vascular resistance at either level of LBNP. It is concluded that forearm vascular resistance measured during cardiopulmonary baroreceptor unloading is unaffected by carotid baroreceptor unloading within the magnitude encountered during low levels of LBNP.

  13. Effects of topical fluoride prophylactic agents on the mechanical properties of orthodontic nickel-titanium closed coil springs and stainless steel closed coil springs

    NASA Astrophysics Data System (ADS)

    Carpenter, Brittany Gelene

    The purpose of this study was to investigate the effects of topical fluoride prophylactic agents on the mechanical unloading properties of nickel-titanium (NiTi) and stainless steel (SS) closed coil springs. Spring were stored at 37°C under static load in phosphate buffered saline (PBS) and treated with either neutral sodium fluoride (NaF) or acidulated phosphate fluoride (APF) five days per week for two minutes. Mechanical testing was done in a dH2O bath at 37°C at 0-, 1-, 4-, 8-, and 12 weeks. Unloading forces for NiTi and SS springs were measured at 9-, 6-, and 3 mm and 2-, 1.5-, and 1 mm, respectively. Scanning electron microscopy was used to evaluate surface topography of selected springs after 12 weeks. Based on a 1-Factor ANOVA and Dunnett's post hoc, 3M NiTi springs showed a significant decrease (p <0.01) in the unloading force at each extension following exposure to both fluoride treatments, but only after 12 weeks. The AO NiTi springs showed a significant decrease in unloading force at each extension after 12 weeks following exposure to NaF. However, with SS springs, there was no significant effect of either fluoride treatment on the SS springs at any extension or time point. SS also springs showed no significant surface topography changes, irrespective of storage conditions, which correlates with the lack of fluoride effects on SS mechanical property effects. In contrast, while there were NiTi surface topography changes (pitting and mottling) following PBS+APF exposure, those changes could not be directly linked to the observed changes in mechanical properties. Results suggest topical fluoride used with NiTi springs could potentially lead to prolonged treatment time due to decreased unloading properties. However, topical fluoride used with SS springs should not affect treatment duration.

  14. The response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.

    1999-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During spaceflight bone is lost principally from the bones most loaded in the 1-g environment, and some redistribution of bone from the lower extremities to the head appears to take place. Although changes in calcitropic hormones have been demonstrated during skeletal unloading (PTH and 1,25(OH)2D decrease), it remains unclear whether such changes account for or are in response to the changes in bone formation and resorption. Bed rest studies with human volunteers and hindlimb elevation studies with rats have provided useful data to help explain the changes in bone formation during spaceflight. These models of skeletal unloading reproduce a number of the conditions associated with microgravity, and the findings from such studies confirm many of the observations made during spaceflight. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. Such investigations couple biophysics to biochemistry to cell and molecular biology. Although studies with cell cultures have revealed biochemical responses to mechanical loads comparable to that seen in intact bone, it seems likely that matrix-cell interactions underlie much of the mechanocoupling. The role for systemic hormones such as PTH, GH, and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs, and TGF-beta in modulating the cellular response to load remains unclear. As the mechanism(s) by which bone responds to mechanical load with increased bone formation are further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, with the expectation that such understanding will lead to effective treatment for disuse osteoporosis.

  15. Effects of the hindlimb-unloading model of spaceflight conditions on resistance of mice to infection with Klebsiella pneumoniae

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2002-01-01

    BACKGROUND: It has been well documented in several studies that many immunologic parameters are altered in experimental animals and human subjects who have flown in space. However, it is not fully known whether these immunologic changes could result in increased susceptibility to infection. Hindlimb (antiorthostatic) unloading of rodents has been used successfully to simulate some of the effects of spaceflight on physiologic systems. OBJECTIVE: The objective of this study was to determine the effect of hindlimb unloading on the outcome of Klebsiella pneumoniae infection in mice. METHODS: Hindlimb-unloaded, hindlimb-restrained, and control mice were intraperitoneally infected with one 50% lethal dose of K pneumoniae 2 days after suspension. Mortality and bacterial load in several organs were compared among the groups. RESULTS: Unloaded mice showed significantly increased mortality and reduced mean time to death compared with that seen in the control groups. Kinetics of bacterial growth with smaller infective doses revealed that control mice were able to clear bacteria from the organs after 30 hours. In contrast, unloaded mice had continued bacterial growth at the same time point. CONCLUSION: The results of this study suggest that hindlimb unloading might enhance the dissemination of K pneumoniae, leading to increased mortality. The complex physiologic changes observed during hindlimb unloading, including stress, have a key role in the pathophysiology of this infection.

  16. Epeirogeny and plate tectonics

    NASA Technical Reports Server (NTRS)

    Menard, H. W.

    1975-01-01

    Vertical motions of the earth crust and their causes are considered in relation to epeirogenic phenomena. Factors discussed include: external loading and unloading; bending at subduction zones; internal density changes; and dynamic effects of mantle motion. The relationship between epeirogeny and drift is briefly reviewed along with oceanic epeirogeny.

  17. CONTEXT VIEW ACROSS ORE YARD AT MODERN SELFUNLOADING SHIP UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ACROSS ORE YARD AT MODERN SELF-UNLOADING SHIP UNLOADING IN FRONT OF HULETTS. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  18. Effect of ramp configuration on easiness of handling, heart rate, and behavior of near-market weight pigs at unloading.

    PubMed

    Goumon, S; Faucitano, L; Bergeron, R; Crowe, T; Connor, M L; Gonyou, H W

    2013-08-01

    Three experiments, each using 280 pigs, were conducted in a simulated compartment to test the effect of angle of entrance (AOE) to the ramp (90°, 60°, 30°, or 0°), ramp slope (0°, 16°, 21°, or 26°), and an initial 20-cm step associated with 16° or 21° ramp slopes on the ease of handling, heart rate (HR), and behavior of near market-weight pigs during unloading. Heart rate (pigs and handler), unloading time, interventions of the handler, and reactions of the pigs were monitored. The results of the first experiment show that using a 90° AOE had detrimental effects on ease of handling (P < 0.05), HR of the pig (P < 0.05), and behavior (P < 0.05). The 0° and 30° AOE appeared to improve the ease of unloading, whereas the 60° AOE had an intermediate effect. The 30° AOE appeared to be preferable, because pigs moved at this angle balked less frequently (P < 0.01) and required less manipulation (P < 0.05) than pigs moved with a 0° AOE. The results of the second experiment show that the use of a flat ramp led to the easiest unloading, as demonstrated by the lower number of balks (P < 0.001) when pigs were moved to the ramp and less frequent use of paddle (P = 0.001) or voice (P < 0.001) on the ramp, compared with the other treatments. However, the flat ramp did not differ from the 21° ramp in many of the variables reflecting ease of handling, which may be explained by the difference in configuration between the ramps. The results also show that the use of the steepest ramp slope had the most detrimental effect on balking and backing up behavior of pigs (P < 0.001), and handling (touches, slaps, and pushes; P < 0.05 for all) when moved to the ramp and on unloading time (P < 0.01). No differences in pig HR (P < 0.05) and ease of handling on the ramp (P < 0.05) were found between a 26° and 16° ramp slope, suggesting that the length of the ramp may be one of the factors that make unloading more difficult. The results of the last experiment show that an initial step made unloading physically more demanding for the handler (P < 0.001) and pigs on the ramp (P < 0.05) as demonstrated by their greater HR. The greater difficulty of handling (P < 0.01) and reluctance to move (P < 0.05) of pigs moved toward the 16° ramp with a step suggest that pigs perceived this ramp as more psychologically challenging. Making a few changes in terms of the design of the ramp could improve the efficiency of handling and reduce stress in pigs.

  19. Evidence for Apoplasmic Phloem Unloading in Developing Apple Fruit1

    PubMed Central

    Zhang, Ling-Yun; Peng, Yi-Ben; Pelleschi-Travier, Sandrine; Fan, Ying; Lu, Yan-Fen; Lu, Ying-Min; Gao, Xiu-Ping; Shen, Yuan-Yue; Delrot, Serge; Zhang, Da-Peng

    2004-01-01

    The phloem unloading pathway remains unclear in fleshy fruits accumulating a high level of soluble sugars. A structural investigation in apple fruit (Malus domestica Borkh. cv Golden Delicious) showed that the sieve element-companion cell complex of the sepal bundles feeding the fruit flesh is symplasmically isolated over fruit development. 14C-autoradiography indicated that the phloem of the sepal bundles was functional for unloading. Confocal laser scanning microscopy imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the sepal bundles from the basal to the apical region of the fruit. A 52-kD putative monosaccharide transporter was immunolocalized predominantly in the plasma membrane of both the sieve elements and parenchyma cells and its amount increased during fruit development. A 90-kD plasma membrane H+-ATPase was also localized in the plasma membrane of the sieve element-companion cell complex. Studies of [14C]sorbitol unloading suggested that an energy-driven monosaccharide transporter may be functional in phloem unloading. These data provide clear evidence for an apoplasmic phloem unloading pathway in apple fruit and give information on the structural and molecular features involved in this process. PMID:15122035

  20. COHORT Cadre Training Evaluation

    DTIC Science & Technology

    1987-05-11

    on an M240 Machinegun 1 2 3 4 5 6 7 13. Load/Unload the 105mm Main Gun on an M1 Tank 1 2 3 4 5 6 7 14. Load/Unload the M250 Grenade Launcher on an MI...Machinegun 1 2 3 4 5 6 7 13. Load/Unload the 105mm Main Gun on an M1 Tank 1 2 3 4 5 6 7 14. Load/Unload the M250 Grenade Launcher on an M1 Tank 1 2 3 4 5 6

  1. Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation.

    PubMed

    Ibrahim, Michael; Kukadia, Punam; Siedlecka, Urszula; Cartledge, James E; Navaratnarajah, Manoraj; Tokar, Sergiy; Van Doorn, Carin; Tsang, Victor T; Gorelik, Julia; Yacoub, Magdi H; Terracciano, Cesare M

    2012-12-01

    Cardiac transverse (t)-tubules are altered during disease and may be regulated by stretch-sensitive molecules. The relationship between variations in the degree and duration of load and t-tubule structure remains unknown, as well as its implications for local Ca(2+)-induced Ca(2+) release (CICR). Rat hearts were studied after 4 or 8 weeks of moderate mechanical unloading [using heterotopic abdominal heart-lung transplantation (HAHLT)] and 6 or 10 weeks of pressure overloading using thoracic aortic constriction. CICR, cell and t-tubule structure were assessed using confocal-microscopy, patch-clamping and scanning ion conductance microscopy. Moderate unloading was compared with severe unloading [using heart-only transplantation (HAHT)]. Mechanical unloading reduced cardiomyocyte volume in a time-dependent manner. Ca(2+) release synchronicity was reduced at 8 weeks moderate unloading only. Ca(2+) sparks increased in frequency and duration at 8 weeks of moderate unloading, which also induced t-tubule disorganization. Overloading increased cardiomyocyte volume and disrupted t-tubule morphology at 10 weeks but not 6 weeks. Moderate mechanical unloading for 4 weeks had milder effects compared with severe mechanical unloading (37% reduction in cell volume at 4 weeks compared to 56% reduction after severe mechanical unloading) and did not cause depression and delay of the Ca(2+) transient, increased Ca(2+) spark frequency or impaired t-tubule and cell surface structure. These data suggest that variations in chronic mechanical load influence local CICR and t-tubule structure in a time- and degree-dependent manner, and that physiological states of increased and reduced cell size, without pathological changes are possible. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  2. Left ventricular unloading with intra-aortic counter pulsation prior to reperfusion reduces myocardial release of endothelin-1 and decreases infarction size in a porcine ischemia-reperfusion model.

    PubMed

    LeDoux, John F; Tamareille, Sophie; Felli, Patty R; Amirian, James; Smalling, Richard W

    2008-10-01

    We tested the hypothesis that unloading the left ventricle with intra-aortic balloon counter-pulsation just prior to reperfusion provides infarct salvage compared with left ventricular (LV) unloading postreperfusion or reperfusion alone. Previous reports demonstrated infarct salvage with complete LV unloading with an LVAD prior to reperfusion; however, partial LV unloading using intra-aortic balloon pumps (IABPs) has not been evaluated. Twenty-eight Yorkshire pigs were subjected to 1 hr of left anterior descending artery occlusion and 4 hr of reperfusion. An IABP was inserted and activated just prior to reperfusion (IABP-Pre), or 15 min after reperfusion (IABP-Post), or not at all (control). At baseline, the hemodynamic data were similar in the three groups. Myocardial infarct size expressed a percentage of zone at risk in control animals was 44.9% +/- 4.8%, IAPB-Pre group 20.9% +/- 5.1% (P < 0.05 compared to control), and IABP-Post group 33.2 +/- 6.1% (P = 0.16 vs. control group). There was a correlation between transcardiac endothelin-1 release at 15 min postreperfusion and infarct size (r = 0.59). LV unloading with an IABP prior to reperfusion reduces the extent of myocardial necrosis in hearts subjected to 1 hr of left anterior descending artery occlusion and 4 hr of reperfusion compared with either reperfusion alone or LV unloading after reperfusion. Inhibition of myocardial ET-1 release by LV unloading may be a significant mechanism of myocardial protection. These data suggest that in high-risk STEMI patients, IABP unloading prior to reperfusion might be more beneficial than IABP placement postreperfusion. 2008 Wiley-Liss, Inc.

  3. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    PubMed

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  4. Glucose uptake in rat soleus - Effect of acute unloading and subsequent reloading

    NASA Technical Reports Server (NTRS)

    Henriksen, Eric J.; Tischler, Marc E.

    1988-01-01

    The effect of acutely reduced weight bearing (unloading) on the in vitro uptake of 2-1,2-H-3-deoxy-D-glucose was studied in the soleus muscle by tail casting and suspending rats. After just 4 h, the uptake of 2-deoxy-D-glucose fell (-19 percent) and declined further after an additional 20 h of unloading. This diminution at 24 h was associated with slower oxidation of C-14-glucose and incorporation of C-14-glucose into glycogen. At 3 days of unloading, basal uptake of 2-deoxy-D-glucose did not differ from control. Reloading of the soleus after 1 or 3 days of unloading increased uptake of 2-deoxy-D-glucose above control and returned it to normal within 6 h and 4 days, respectively. These effects of unloading and recovery were caused by local changes in the soleus, because the extensor digitorum longus from the same hindlimbs did not display any alterations in uptake of 2-deoxy-D-glucose or metabolism of glucose.

  5. Spinal Health during Unloading and Reloading Associated with Spaceflight

    PubMed Central

    Green, David A.; Scott, Jonathan P. R.

    2018-01-01

    Spinal elongation and back pain are recognized effects of exposure to microgravity, however, spinal health has received relatively little attention. This changed with the report of an increased risk of post-flight intervertebral disc (IVD) herniation and subsequent identification of spinal pathophysiology in some astronauts post-flight. Ground-based analogs, particularly bed rest, suggest that a loss of spinal curvature and IVD swelling may be factors contributing to unloading-induced spinal elongation. In flight, trunk muscle atrophy, in particular multifidus, may precipitate lumbar curvature loss and reduced spinal stability, but in-flight (ultrasound) and pre- and post-flight (MRI) imaging have yet to detect significant IVD changes. Current International Space Station missions involve short periods of moderate-to-high spinal (axial) loading during running and resistance exercise, superimposed upon a background of prolonged unloading (microgravity). Axial loading acting on a dysfunctional spine, weakened by anatomical changes and local muscle atrophy, might increase the risk of damage/injury. Alternatively, regular loading may be beneficial. Spinal pathology has been identified in-flight, but there are few contemporary reports of in-flight back injury and no recent studies of post-flight back injury incidence. Accurate routine in-flight stature measurements, in- and post-flight imaging, and tracking of pain and injury (herniation) for at least 2 years post-flight is thus warranted. These should be complemented by ground-based studies, in particular hyper buoyancy floatation (HBF) a novel analog of spinal unloading, in order to elucidate the mechanisms and risk of spinal injury, and to evaluate countermeasures for exploration where injury could be mission critical. PMID:29403389

  6. The impact of skeletal unloading on bone formation

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Halloran, Bernard P.

    2003-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During space flight bone is lost principally from the bones most loaded in the 1 g environment. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. It seems likely that matrix/cell interactions will underlie much of the mechanocoupling. Integrins are a prime mediator of such interactions. The role for systemic hormones such as PTH, GH and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs and TGF beta in modulating the cellular response to load remains unclear. Our studies demonstrate that skeletal unloading leads to resistance to the anabolic actions of IGF-I on bone as a result of failure of IGF-I to activate its own signaling pathways. This is associated with a reduction in integrin expression, suggesting crosstalk between these two pathways. As the mechanism(s) by which bone responds to changes in mechanical load with changes in bone formation is further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, and that such understanding will lead to effective treatment for disuse osteoporosis in addition to preventive measures for the bone loss that accompanies space travel.

  7. Spinal Health during Unloading and Reloading Associated with Spaceflight.

    PubMed

    Green, David A; Scott, Jonathan P R

    2017-01-01

    Spinal elongation and back pain are recognized effects of exposure to microgravity, however, spinal health has received relatively little attention. This changed with the report of an increased risk of post-flight intervertebral disc (IVD) herniation and subsequent identification of spinal pathophysiology in some astronauts post-flight. Ground-based analogs, particularly bed rest, suggest that a loss of spinal curvature and IVD swelling may be factors contributing to unloading-induced spinal elongation. In flight, trunk muscle atrophy, in particular multifidus , may precipitate lumbar curvature loss and reduced spinal stability, but in-flight (ultrasound) and pre- and post-flight (MRI) imaging have yet to detect significant IVD changes. Current International Space Station missions involve short periods of moderate-to-high spinal (axial) loading during running and resistance exercise, superimposed upon a background of prolonged unloading (microgravity). Axial loading acting on a dysfunctional spine, weakened by anatomical changes and local muscle atrophy, might increase the risk of damage/injury. Alternatively, regular loading may be beneficial. Spinal pathology has been identified in-flight, but there are few contemporary reports of in-flight back injury and no recent studies of post-flight back injury incidence. Accurate routine in-flight stature measurements, in- and post-flight imaging, and tracking of pain and injury (herniation) for at least 2 years post-flight is thus warranted. These should be complemented by ground-based studies, in particular hyper buoyancy floatation (HBF) a novel analog of spinal unloading, in order to elucidate the mechanisms and risk of spinal injury, and to evaluate countermeasures for exploration where injury could be mission critical.

  8. Multi-stage phononic crystal structure for anchor-loss reduction of thin-film piezoelectric-on-silicon microelectromechanical-system resonator

    NASA Astrophysics Data System (ADS)

    Bao, Fei-Hong; Bao, Lei-Lei; Li, Xin-Yi; Ammar Khan, Muhammad; Wu, Hua-Ye; Qin, Feng; Zhang, Ting; Zhang, Yi; Bao, Jing-Fu; Zhang, Xiao-Sheng

    2018-06-01

    Thin-film piezoelectric-on-silicon acoustic wave resonators are promising for the development of system-on-chip integrated circuits with micro/nano-engineered timing reference. However, in order to realize their large potentials, a further enhancement of the quality factor (Q) is required. In this study, a novel approach, based on a multi-stage phononic crystal (PnC) structure, was proposed to achieve an ultra-high Q. A systematical study revealed that the multi-stage PnC structure formed a frequency-selective band-gap to effectively prohibit the dissipation of acoustic waves through tethers, which significantly reduced the anchor loss, leading to an insertion-loss reduction and enhancement of Q. The maximum unloaded Q u of the fabricated resonators reached the value of ∼10,000 at 109.85 MHz, indicating an enhancement by 19.4 times.

  9. The role of 1,25-dihydroxyvitamin D in the inhibition of bone formation induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Wronski, T. J.; GLOBUS. R.; Levens, M. J.; Morey-Holton, E.

    1983-01-01

    Skeletal unloading results in osteopenia. To examine the involvement of vitamin D in this process, the rear limbs of growing rats were unloaded and alterations in bone calcium and bone histology were related to changes in serum calcium (Ca), inorganic phosphorus (P sub i), 25-hydroxyvitamin D (25-OH-D), 24,25-dihydroxyvitamin D (24,25(OH)2D and 1,25-dihydroxyvitamin D (1,25(OH)2D. Acute skeletal unloading induced a transitory inhibition of Ca accumulation in unloaded bones. This was accompanied by a transitory rise in serum Ca, a 21% decrease in longitudinal bone growth (P 0.01), a 32% decrease in bone surface lined with osteoblasts (P .05), no change in bone surface lined with osteoclasts and a decrease in circulating (1,25(OH)2D. No significant changes in the serum concentrations of P sub i, 25-OH-D or 24,25(OH)2D were observed. After 2 weeks of unloading, bone Ca stabilized at approximately 70% of control and serum Ca and 1,25(OH)2D returned to control values. Maintenance of a constant serum 1,25(OH)2D concentration by chronic infusion of 1,25(OH)2D (Alza osmotic minipump) throughout the study period did not prevent the bone changes induced by acute unloading. These results suggest that acute skeletal unloading in the growing rat produces a transitory inhibition of bone formation which in turn produces a transitory hypercalcemia.

  10. The effects of body weight unloading on kinetics and muscle activity of overweight males during Overground walking.

    PubMed

    Fischer, Arielle G; Wolf, Alon

    2018-02-01

    Excess body weight has become a major worldwide health and social epidemic. Training with body weight unloading, is a common method for gait corrections for various neuromuscular impairments. In the present study we assessed the effects of body weight unloading on knee and ankle kinetics and muscle activation of overweight subjects walking overground under various levels of body weight unloading. Ten overweight subjects (25 ≤ BMI < 29.9 kg/m 2 ) walked overground under a control and three (0%, 15%, 30%) body weight unloading experimental conditions. Gait parameters assessed under these conditions included knee and ankle flexion moments and the Electromygraphic activity of the Tibialis Anterior, Lateral Gastrocnemius and Vastus Lateralis. Increasing body weight unloading levels from 0% to 30% was found to significantly reduce the peak knee flexion and ankle plantarflexion moments. Also observed was a significant reduction in muscle activity of the Tibialis Anterior, Lateral Gastrocnemius and Vastus Lateralis under the three body-weight unloading conditions. Our results demonstrate that a reduction of up to 30% overweight subjects' body weight during gait is conducive to a reduction in the knee and ankle flexion moments and in the balancing net quadriceps moment and ankle flexors moment. The newly devised body weight unloading device is therefore an effective method for reducing joint loads allowing overweight people who require controlled weight bearing scenarios to retrain their gait while engaging in sustained walking exercise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  12. 46 CFR 525.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ship's tackle. (11) Heavy lift means the service of providing heavy lift cranes and equipment for lifting cargo. (12) Loading and unloading means the service of loading or unloading cargo between any... storage spaces, cold storage plants, cranes, grain elevators and/or bulk cargo loading and/or unloading...

  13. 49 CFR 177.834 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Unloading § 177.834 General requirements. (a) Packages secured in a motor vehicle. Any package containing any hazardous material, not permanently attached to a motor vehicle, must be secured against... smoking while loading or unloading. Smoking on or about any motor vehicle while loading or unloading any...

  14. 49 CFR 177.834 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Unloading § 177.834 General requirements. (a) Packages secured in a motor vehicle. Any package containing any hazardous material, not permanently attached to a motor vehicle, must be secured against... smoking while loading or unloading. Smoking on or about any motor vehicle while loading or unloading any...

  15. 49 CFR 177.834 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Unloading § 177.834 General requirements. (a) Packages secured in a motor vehicle. Any package containing any hazardous material, not permanently attached to a motor vehicle, must be secured against... smoking while loading or unloading. Smoking on or about any motor vehicle while loading or unloading any...

  16. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8.5 Gy proton irradiated hindlimb-unloaded mice indicated that the recovery of the WBC counts appeared delayed compared to 8.5 Gy irradiated controls. However, stocktickerRBC recovery appeared similar in both sets of irradiated mice. Our data indicate that hindlimb-unloaded mice are more radiation sensitive compared to irradiated controls. We thank Brian Allen and Rick Jessup for valuable assistance with dosimetry and physical arrangements at the IU Cyclotron Facility and Midwest Proton Radiotherapy Institute and Alan Constance for design of hindlimb-unloading cages. Research supported in part by NASA Grant NNJ06HE95A.

  17. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

  18. Osmotic mechanism of the loop extrusion process

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  19. Broadband nanoindentation of glassy polymers: Part I Viscoelasticity

    Treesearch

    Joesph E. Jakes; Rod S. Lakes; Don S. Stone

    2012-01-01

    Protocols are developed to assess viscoelastic moduli from unloading slopes in Berkovich nanoindentation across four orders of magnitude in time scale (0.01-100 s unloading time). Measured viscoelastic moduli of glassy polymers poly(methyl methacrylate), polystyrene, and polycarbonate follow the same trends with frequency (1/unloading time) as viscoelastic moduli...

  20. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  1. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  2. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  3. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Tank car unloading. 174.67 Section 174.67... and Loading Requirements § 174.67 Tank car unloading. For transloading operations, the following rules... least one wheel to prevent movement in any direction. If multiple tank cars are coupled together...

  4. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Shipper's Export Declaration (SED) or AES electronic equivalent. (2) Optional ports of unloading... ultimate destination or are included on the BIS license and SED or AES electronic equivalent. (ii... ports of unloading on the SED or AES electronic equivalent and other export control documents, so long...

  5. Indentation law for composite laminates

    NASA Technical Reports Server (NTRS)

    Yang, S. H.

    1981-01-01

    Static indentation tests are described for glass/epoxy and graphite/epoxy composite laminates with steel balls as the indentor. Beam specimens clamped at various spans were used for the tests. Loading, unloading, and reloading data were obtained and fitted into power laws. Results show that: (1) contact behavior is not appreciably affected by the span; (2) loading and reloading curves seem to follow the 1.5 power law; and (3) unloading curves are described quite well by a 2.5 power law. In addition, values were determined for the critical indentation, alpha sub cr which can be used to predict permanent indentations in unloading. Since alpha sub cr only depends on composite material properties, only the loading and an unloading curve are needed to establish the complete loading-unloading-reloading behavior.

  6. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  7. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.

    1997-01-01

    To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.

  8. Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions

    NASA Technical Reports Server (NTRS)

    Aviles, Hernan; Belay, Tesfaye; Fountain, Kimberly; Vance, Monique; Sonnenfeld, Gerald

    2003-01-01

    It has been reported that spaceflight conditions alter the immune system and resistance to infection [Belay T, Aviles H, Vance M, Fountain K, and Sonnenfeld G. J Allergy Clin Immunol 170: 262-268, 2002; Hankins WR and Ziegelschmid JF. In: Biomedical Results of Apollo. Washington, DC: NASA, 1975, p. 43-81. (NASA Spec. Rep. SP-368)]. Ground-based models, including the hindlimb-unloading model, have become important tools for increasing understanding of how spaceflight conditions can influence physiology. The objective of the present study was to determine the effect of hindlimb unloading on the susceptibility of mice to Pseudomonas aeruginosa infection. Hindlimb-unloaded and control mice were subcutaneously infected with 1 LD50 of P. aeruginosa. Survival, bacterial organ load, and antibody and corticosterone levels were compared among the groups. Hindlimb unloading had detrimental effects for infected mice. Animals in the hindlimb-unloaded group, compared with controls, 1). showed significantly increased mortality and reduced time to death, 2). had increased levels of corticosterone, and 3). were much less able to clear bacteria from the organs. These results suggest that hindlimb unloading may induce the production of corticosterone, which may play a critical role in the modulation of the immune system leading to increased susceptibility to P. aeruginosa infection.

  9. Non-weight bearing-induced muscle weakness: the role of myosin quantity and quality in MHC type II fibers.

    PubMed

    Kim, Jong-Hee; Thompson, LaDora V

    2014-07-15

    We tested the hypothesis that non-weight bearing-induced muscle weakness (i.e., specific force) results from decreases in myosin protein quantity (i.e., myosin content per half-sarcomere and the ratio of myosin to actin) and quality (i.e., force per half-sarcomere and population of myosin heads in the strong-binding state during muscle contraction) in single myosin heavy chain (MHC) type II fibers. Fisher-344 rats were assigned to weight-bearing control (Con) or non-weight bearing (NWB). The NWB rats were hindlimb unloaded for 2 wk. Diameter, force, and MHC content were determined in permeabilized single fibers from the semimembranosus muscle. MHC isoform and the ratio of MHC to actin in each fiber were determined by gel electrophoresis and silver staining techniques. The structural distribution of myosin from spin-labeled fiber bundles during maximal isometric contraction was evaluated using electron paramagnetic resonance spectroscopy. Specific force (peak force per cross-sectional area) in MHC type IIB and IIXB fibers from NWB was significantly reduced by 38% and 18%, respectively. MHC content per half-sarcomere was significantly reduced by 21%. Two weeks of hindlimb unloading resulted in a reduced force per half-sarcomere of 52% and fraction of myosin strong-binding during contraction of 34%. The results suggest that reduced myosin and actin content (quantity) and myosin quality concomitantly contribute to non-weight bearing-related muscle weakness. Copyright © 2014 the American Physiological Society.

  10. Effect of Eukarion-134 on Akt-mTOR signalling in the rat soleus during 7 days of mechanical unloading.

    PubMed

    Kuczmarski, J Matthew; Hord, Jeff M; Lee, Yang; Guzzoni, Vinicius; Rodriguez, Dinah; Lawler, Matthew S; Garcia-Villatoro, Erika L; Holly, Dylan; Ryan, Patrick; Falcon, Kristian; Garcia, Marcela; Janini Gomes, Mariana; Fluckey, James D; Lawler, John M

    2018-04-01

    What is the central question of this study? Translocation of nNOSμ initiates catabolic signalling via FoxO3a and skeletal muscle atrophy during mechanical unloading. Recent evidence suggests that unloading-induced muscle atrophy and FoxO3a activation are redox sensitive. Will a mimetic of superoxide dismutase and catalase (i.e. Eukarion-134) also mitigate suppression of the Akt-mTOR pathway? What is the main finding and its importance? Eukarion-134 rescued Akt-mTOR signalling and sarcolemmal nNOSμ, which were linked to protection against the unloading phenotype, muscle fibre atrophy and partial fibre-type shift from slow to fast twitch. The loss of nNOSμ from the sarcolemma appears crucial to Akt phosphorylation and is redox sensitive, although the mechanisms remain unresolved. Mechanical unloading stimulates rapid changes in skeletal muscle morphology, characterized by atrophy of muscle fibre cross-sectional area and a partial fibre-type shift from slow to fast twitch. Recent studies revealed that oxidative stress contributes to activation of forkhead box O3a (FoxO3a), proteolytic signalling and unloading-induced muscle atrophy via translocation of the μ-splice variant of neuronal nitric oxide synthase (nNOSμ) and activation of FoxO3a. There is limited understanding of the role of reactive oxygen species in the Akt-mammalian target of rapamycin (mTOR) pathway signalling during unloading. We hypothesized that Eukarion-134 (EUK-134), a mimetic of the antioxidant enzymes superoxide dismutase and catalase, would protect Akt-mTOR signalling in the unloaded rat soleus. Male Fischer 344 rats were separated into the following three study groups: ambulatory control (n = 11); 7 days of hindlimb unloading + saline injections (HU, n = 11); or 7 days of HU + EUK-134; (HU + EUK-134, n = 9). EUK-134 mitigated unloading-induced dephosphorylation of Akt, as well as FoxO3a, in the soleus. Phosphorylation of mTOR in the EUK-treated HU rats was not different from that in control animals. However, EUK-134 did not significantly rescue p70S6K phosphorylation. EUK-134 attenuated translocation of nNOSμ from the membrane to the cytosol, reduced nitration of tyrosine residues and suppressed upregulation of caveolin-3 and dysferlin. EUK-134 ameliorated HU-induced remodelling, atrophy of muscle fibres and the 12% increase in type II myosin heavy chain-positive fibres. Attenuation of the unloaded muscle phenotype was associated with decreased reactive oxygen species, as assessed by ethidium-positive nuclei. We conclude that oxidative stress affects Akt-mTOR signalling in unloaded skeletal muscle. Direct linkage of abrogation of nNOSμ translocation with Akt-mTOR signalling during unloading is the subject of future investigation. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  11. 40 CFR 63.11132 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... unloading gasoline, or which has loaded or unloaded gasoline on the immediately previous load. Gasoline... whose discharge is no more than the applicable distance specified in § 63.11117(b) from the bottom of... are transferred to the gasoline cargo tank being unloaded. Vapor-tight means equipment that allows no...

  12. Unlike myofibers, neuromuscular junctions remain stable during prolonged muscle unloading.

    PubMed

    Deschenes, Michael R; Will, Kristin M; Booth, Frank W; Gordon, Scott E

    2003-06-15

    This study assessed the effect of muscle unloading on the neuromuscular system. Sixteen male Fischer 344 rats were randomly assigned to either a hindlimb suspension (unloaded) or control group (N=8/group) for 16 days. Following this intervention period, pre- and postsynaptic features of the neuromuscular junctions (NMJs) of soleus muscles were stained with cytofluorescent techniques, and myofibers were histochemically stained for ATPase activity. The data indicate that 16 days of muscle unloading resulted in significant (P<0.05) atrophy among myofibers (>50%) that was evident among all three major fiber types (I, IIA and IIX), but failed to significantly alter any aspect of NMJ morphology quantified. These results demonstrate an impressive degree of NMJ resilience despite dramatic remodeling of associated myofibers. This may be of benefit during post-unloading rehabilitative measures where effective neuromuscular communication is essential.

  13. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle.

    PubMed

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  14. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle

    PubMed Central

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats. PMID:25713812

  15. Project UM-HAUL: A self-unloading reusable lunar lander

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The establishment of a lunar base is technologically and financially challenging. Given the necessary resources and political support, it can be done. In addition to the geopolitical obstacles, however, there are logistical problems involved in establishing such bases that can only be overcome with the acquisition of a significant transportation and communications network in the Earth-Moon spatial region. Considering the significant number of payloads that will be required in this process, the mass-specific cost of launching these payloads, and the added risk and cost of human presence in space, it is clearly desirable to automate major parts of such an operation. One very costly and time-consuming factor in this picture is the delivery of payloads to the Moon. Foreseeable payloads would include atmospheric modules, inflatable habitat kits, energy and oxygen plant elements, ground vehicles, laboratory modules, crew supplies, etc. The duration of high-risk human presence on the Moon could be greatly reduced if all such payloads were delivered to the prospective base site in advance of crew arrival. In this view, the idea of a 'Self-Unloading Reusable Lunar Lander' (SURLL) arises naturally. The general scenario depicts the lander being brought to low lunar orbit (LLO) from Earth atop a generic Orbital Transfer Vehicle (OTV). From LLO, the lander shuttles payloads down to the lunar surface, where, by means of some resident, detachable unloading device, it deploys the payloads and returns to orbit. The general goal is for the system to perform with maximum payload capability, automation, and reliability, while also minimizing environmental hazards, servicing needs, and mission costs. Our response to this demand is UM-HAUL, or the UnManned Heavy pAyload Unloader and Lander. The complete study includes a system description, along with a preliminary cost analysis and a design status assessment.

  16. Project UM-HAUL: A self-unloading reusable lunar lander

    NASA Astrophysics Data System (ADS)

    The establishment of a lunar base is technologically and financially challenging. Given the necessary resources and political support, it can be done. In addition to the geopolitical obstacles, however, there are logistical problems involved in establishing such bases that can only be overcome with the acquisition of a significant transportation and communications network in the Earth-Moon spatial region. Considering the significant number of payloads that will be required in this process, the mass-specific cost of launching these payloads, and the added risk and cost of human presence in space, it is clearly desirable to automate major parts of such an operation. One very costly and time-consuming factor in this picture is the delivery of payloads to the Moon. Foreseeable payloads would include atmospheric modules, inflatable habitat kits, energy and oxygen plant elements, ground vehicles, laboratory modules, crew supplies, etc. The duration of high-risk human presence on the Moon could be greatly reduced if all such payloads were delivered to the prospective base site in advance of crew arrival. In this view, the idea of a 'Self-Unloading Reusable Lunar Lander' (SURLL) arises naturally. The general scenario depicts the lander being brought to low lunar orbit (LLO) from Earth atop a generic Orbital Transfer Vehicle (OTV). From LLO, the lander shuttles payloads down to the lunar surface, where, by means of some resident, detachable unloading device, it deploys the payloads and returns to orbit. The general goal is for the system to perform with maximum payload capability, automation, and reliability, while also minimizing environmental hazards, servicing needs, and mission costs. Our response to this demand is UM-HAUL, or the UnManned Heavy pAyload Unloader and Lander. The complete study includes a system description, along with a preliminary cost analysis and a design status assessment.

  17. Limitation of Unloading in the Developing Grains Is a Possible Cause Responsible for Low Stem Non-structural Carbohydrate Translocation and Poor Grain Yield Formation in Rice through Verification of Recombinant Inbred Lines

    PubMed Central

    Li, Guohui; Pan, Junfeng; Cui, Kehui; Yuan, Musong; Hu, Qiuqian; Wang, Wencheng; Mohapatra, Pravat K.; Nie, Lixiao; Huang, Jianliang; Peng, Shaobing

    2017-01-01

    Remobilisation of non-structural carbohydrates (NSC) from leaves and stems and unloading into developing grains are essential for yield formation of rice. In present study, three recombinant inbred lines of rice, R91, R156 and R201 have been tested for source-flow-sink related attributes determining the nature of NSC accumulation and translocation at two nitrogen levels in the field. Compared to R91 and R156, R201 had lower grain filling percentage, harvest index, and grain yield. Meanwhile, R201 had significantly lower stem NSC translocation during grain filling stage. Grain filling percentage, harvest index, and grain yield showed the consistent trend with stem NSC translocation among the three lines. In comparison with R91 and R156, R201 had similarity in leaf area index, specific leaf weight, stem NSC concentration at heading, biomass, panicles m-2, spikelets per panicle, remobilization capability of assimilation in stems, sink capacity, sink activity, number and cross sectional area of small vascular bundles, greater number and cross sectional area of large vascular bundles, and higher SPAD, suggesting that source, flow, and sink were not the limiting factors for low stem NSC translocation and grain filling percentage of R201. However, R201 had significant higher stem and rachis NSC concentrations at maturity, which implied that unloading in the developing grains might result in low NSC translocation in R201. The results indicate that stem NSC translocation could be beneficial for enhancement of grain yield potential, and poor unloading into caryopsis may be the possible cause of low stem NSC translocation, poor grain filling and yield formation in R201. PMID:28848573

  18. Influence of Unloading Rate on the Strainburst Characteristics of Beishan Granite Under True-Triaxial Unloading Conditions

    NASA Astrophysics Data System (ADS)

    Zhao, X. G.; Wang, J.; Cai, M.; Cheng, C.; Ma, L. K.; Su, R.; Zhao, F.; Li, D. J.

    2014-03-01

    Rockburst is a sudden and violent failure of rocks and it often occurs in hard rocks in highly stressed ground. Strainburst is classified as one type of rockburst and it often occurs in rocks near or at the excavation boundary. Deep insight into the strainburst phenomenon is essential for safe underground construction at depth. In this paper, an experimental laboratory study on the strainburst behavior of Beishan granite is presented. Based on in-situ stress measurement data from the Beishan area in China, a series of tests under different unloading rates were performed to investigate the strainburst process using a true-triaxial strainburst test system which was equipped with an acoustic emission (AE) monitoring system. In addition, a high-speed video camera was used to record and visualize the initiation and ejection of rock fragments as well as the sudden dynamic failure (strainburst) of the test samples. AE characteristics associated with the cumulative energy and frequency-amplitude distributions were analyzed. Characteristics of the microscopic structure of a fragment generated from one test were observed using a scanning electron microscope. The experimental results indicate that the degree of violence during failure and the associated AE energy release in the strainburst process are dependent on the unloading rate. When the unloading rate is high, the rock is prone to strainburst. On the other hand, as the unloading rate decreases, the failure mode changes from strainburst to spalling. In addition, the cumulative AE energy is not sensitive to unloading rates greater than 0.05 MPa/s. When the unloading rate is less than 0.05 MPa/s, the cumulative AE energy shows a marked decreasing trend during rock failure.

  19. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.

  20. Factors That Facilitate Or Hinder Fuel-Saving Initiatives and Technology

    DTIC Science & Technology

    2015-12-01

    loading times, unloading times, prevailing winds , flying times, and such other factors as air traffic control delay times, taxi delay times, and...just the simple vehicle telematics used, which is the sensors and so on, the driver behavior telematics. There’s things like the communication module...electric, compressed natural gas, and even turbine -powered vehicles (Interview FE02, July 2, 2015). As early as 2003, the company was looking to replace

  1. [The relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus].

    PubMed

    Li, Li; Liu, Hong-Ju; Yang, Ming-Hao; Li, Jing-Long; Wang, Lu; Chen, Xiao-Ping; Fan, Ming

    2012-03-01

    To explore the relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus. After 28-day hind-limb unloading and muscle atrophy, we used the method of isolated muscle perfusion with different stimulated protocols to determine the changes in contractile characteristics including the isometric twitch force and tetanus force and fatigue index of slow twitch muscle in mice. The muscle myofibrillar composition and fiber type conversion were detected by immunofluorescence staining and real-time PCR. The isometric twitch force and the tetanus force and fatigue index were decreased progressively in 28-day unloaded mice soleus, with the increase in fast twitch fiber subtype and the decrease in slow twitch fiber subtype. The alteration of contractile characteristics is relevant to the slow-to-fast fiber conversion in mice soleus after 28-day hind-limb unloading.

  2. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, D.A.; Ellis, S.; Giometti, C.S.

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to accountmore » for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.« less

  3. Contribution of dietary and loading changes to the effects of suspension on mouse femora

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Broz, J. J.; Fleet, M. L.; Schmeister, T. A.; Gayles, E. C.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The present study assessed the contributions of feeding changes and unloading to the overall measured effects of 2-wk hindlimb (Tail) suspension on the mouse femora. Feeding changes were addressed by considering the effects of matched feeding among suspended and control mice. The effects of hind limb unloading were considered by comparing suspended mice to mice equipped identically (though not suspended) and matched-fed. The feeding and unloading aspects of suspension appear to cause distinctly differing effects on the stereotypic modeling of the femora. Matched-feeding was accompanied by increased resorption surface in comparison to suspended mice, while unloading led to reduced bone formation at the mid-diaphysis of the femora. Reduced mineral content was observed in the bones of suspended mice when compared to the other mice groups, but without increased resorption surface. Thus, the unloading aspects of the antiorthostatic suspension protocol apparently causes reduced formation and mineralization in the femur.

  4. Influence of LVAD function on mechanical unloading and electromechanical delay: a simulation study.

    PubMed

    Heikhmakhtiar, Aulia Khamas; Ryu, Ah Jin; Shim, Eun Bo; Song, Kwang-Soup; Trayanova, Natalia A; Lim, Ki Moo

    2018-05-01

    This study hypothesized that a left ventricular assist device (LVAD) shortens the electromechanical delay (EMD) by mechanical unloading. The goal of this study is to examine, by computational modeling, the influence of LVAD on EMD for four heart failure (HF) cases ranging from mild HF to severe HF. We constructed an integrated model of an LVAD-implanted cardiovascular system, then we altered the Ca 2+ transient magnitude, with scaling factors 1, 0.9, 0.8, and 0.7 representing HF1, HF2, HF3, and HF4, respectively, in order of increasing HF severity. The four HF conditions are classified into two groups. Group one is the four HF conditions without LVAD, and group two is the conditions treated with continuous LVAD pump. The single-cell mechanical responses showed that EMD was prolonged with the higher load. The findings indicated that in group one, the HF-induced Ca2 + transient remodeling prolonged the mechanical activation time (MAT) and decreased the contractile tension, which reduced the left ventricle (LV) pressure, and increased the end-diastolic strain. In group two, LVAD shortened MAT of the ventricles. Furthermore, LVAD reduced the contractile tension, and end-diastolic strain, but increased the aortic pressure. The computational study demonstrated that LVAD shortens EMD by mechanical unloading of the ventricle.

  5. The co-chaperones Fkbp4/5 control Argonaute2 expression and facilitate RISC assembly.

    PubMed

    Martinez, Natalia J; Chang, Hao-Ming; Borrajo, Jacob de Riba; Gregory, Richard I

    2013-11-01

    Argonaute2 (Ago2) protein and associated microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC) for target messenger RNA cleavage and post-transcriptional gene silencing. Although Ago2 is essential for RISC activity, the mechanism of RISC assembly is not well understood, and factors controlling Ago2 protein expression are largely unknown. A role for the Hsc70/Hsp90 chaperone complex in loading small RNA duplexes into the RISC has been demonstrated in cell extracts, and unloaded Ago2 is unstable and degraded by the lysosome in mammalian cells. Here we identify the co-chaperones Fkbp4 and Fkbp5 as Ago2-associated proteins in mouse embryonic stem cells. Pharmacological inhibition of this interaction using FK506 or siRNA-mediated Fkbp4/5 depletion leads to decreased Ago2 protein levels. We find FK506 treatment inhibits, whereas Fkbp4/5 overexpression promotes, miRNA-mediated stabilization of Ago2 expression. Simultaneous treatment with a lysosome inhibitor revealed the accumulation of unloaded Ago2 complexes in FK506-treated cells. We find that, consistent with unloaded miRNAs being unstable, FK506 treatment also affects miRNA abundance, particularly nascent miRNAs. Our results support a role for Fkbp4/5 in RISC assembly.

  6. Study on stability of rake teeth inserting soil of chain rake type mulching film recovery machine based on Adams

    NASA Astrophysics Data System (ADS)

    Guo, Wensong; Jian, Jianming; San, Yunlong; Lui, Rui; Li, Gang; Hou, Shulin

    2017-08-01

    Traditional rake type mulching film recycling machine has the problem of difficulty in unloading and packing film, poor continuity of the work. In order to solve such problems, this paper designs a kind of chain rake type mulching film recycling machine which can realize continuous raking film, collecting film, transporting film, shaking off soil, unloading film. Rake teeth is the basic part of chain rake mulching recycling machine. The stability of rake teeth's inserting soil is an important factor to ensure recovery efficiency of the plastic film recovery. By virtual prototype simulation, this paper study the influence of different factors on the stability of rake teeth inserting soil. The results are as follows: The speed of chain rake has no significant effect on the stability of rake teeth inserting soil; Reducing resistance of rake teeth in the process of working, is conducive to improve the stability of rake teeth inserting soil; Appropriate increasing elastic modulus of chain rake, is helpful to enhance the stability of rake teeth inserting soil.

  7. Optimisation of a honeybee-colony's energetics via social learning based on queuing delays

    NASA Astrophysics Data System (ADS)

    Thenius, Ronald; Schmickl, Thomas; Crailsheim, Karl

    2008-06-01

    Natural selection shaped the foraging-related processes of honeybees in such a way that a colony can react to changing environmental conditions optimally. To investigate this complex dynamic social system, we developed a multi-agent model of the nectar flow inside and outside of a honeybee colony. In a honeybee colony, a temporal caste collects nectar in the environment. These foragers bring their harvest into the colony, where they unload their nectar loads to one or more storer bees. Our model predicts that a cohort of foragers, collecting nectar from a single nectar source, is able to detect changes in quality in other food sources they have never visited, via the nectar processing system of the colony. We identified two novel pathways of forager-to-forager communication. Foragers can gain information about changes in the nectar flow in the environment via changes in their mean waiting time for unloadings and the number of experienced multiple unloadings. This way two distinct groups of foragers that forage on different nectar sources and that never communicate directly can share information via a third cohort of worker bees. We show that this noisy and loosely knotted social network allows a colony to perform collective information processing, so that a single forager has all necessary information available to be able to 'tune' its social behaviour, like dancing or dance-following. This way the net nectar gain of the colony is increased.

  8. 9 CFR 72.17 - Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Unloading noninfected cattle for rest... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.17 Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for such purpose...

  9. 24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT END AND REAR LEGS OF THE HULETT UNLOADERS ARE LAID ON THE DOCK AND REAR WALLS, RESPECTIVELY; BOTH WALLS ARE MADE OF REINFORCED CONCRETE SUPPORTED ON CONCRETE PILES. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  10. 27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW SKIP TIES UP AT DOCK. THE UNLOADERS OPERATE ALMOST CONTINUOUSLY DURING THE SHIPPING SEASON, WHICH USUALLY RUNS FROM APRIL UNTIL LATE DECEMBER OR EARLY JANUARY. VIEW HERE IS LOOKING NORTHEAST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  11. Cleveland Harbor, Ohio Draft Reformulation Phase I General Design Memorandum and Draft Supplement to the Final Environmental Impact Statement. Revision.

    DTIC Science & Technology

    1984-02-01

    OH :0 0 :0 : 0 : 0 :0 : 0 : 0 :0 :0.3: - Marquette, MI :0.1: 0 :0 :0 :0 :0 :0 :0 :0 0 Presque Isle , MI : 1.4 : 1.3 : 1.4 : 1.5 : 1.0 : 0.9 : 0.4...680.0 Self Unloader 1973 MESABI MINER 1,004.0 Self Unloader 1973 PRESQUE ISLE 1,000.0 Self Unloader 1973 ROESCH, WILLIAM R. 630.0 Self Unloader 1973...Island Light Station " West Sister Island Light Marquette Harbor Lighthouse Pointe Betsie Light Station Pennsylvania Port Sanilac Light Station Presque

  12. Time course of the response of carbohydrate metabolism to unloading of the soleus

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.

    1988-01-01

    The time course of the response of carbohydrate metabolism to unloading was studied in the soleus muscle of rats subjected to tail-cast suspension. In the fresh soleus, 12 hours of unloading led to higher concentrations of glycogen and lower activity ratios of both glycogen synthase and glycogen phosphorylase. These changes were still evident on day three. Thereafter, the increased glycogen concentration apparently diminished the activity ratio of glycogen synthase, leading to a subsequent fall in the total glycogen content after day one. After 24 hours of unloading, when no significant atrophy was detectable, there was no differential response to insulin for in vitro glucose metabolism. On day three, the soleus atrophied significantly and displayed a greater sensitivity to insulin for most of these parameters compared to the weight-bearing control muscle. However, insulin sensitivity for glycogen synthesis was unchanged. These results showed that the increased sensitivity to insulin of the unloaded soleus is associated with the degree of muscle atrophy, likely due to an increased insulin binding capacity relative to muscle mass. This study also showed that insulin regulation of glucose uptake and of glycogen synthesis is affected differentially in the unloaded soleus muscle.

  13. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part II, the functional or unloaded leg-length asymmetry

    PubMed Central

    Knutson, Gary A

    2005-01-01

    Background Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided. Methods Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing) posture, but not in an unloaded (prone/supine) posture. Conclusion The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI. PMID:16080787

  14. Device Rotates Bearing Balls For Inspection

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1988-01-01

    Entire surface of ball inspected automatically and quickly. Device holds and rotates bearing ball for inspection by optical or mechanical surface-quality probe, eddy-current probe for detection of surface or subsurface defects, or circumference-measuring tool. Ensures entire surface of ball moves past inspection head quickly. New device saves time and increases reliability of inspections of spherical surfaces. Simple to operate and provides quick and easy access for loading and unloading of balls during inspection.

  15. Characterization of disuse skeletal muscle atrophy and the efficacy of a novel muscle atrophy countermeasure during spaceflight and simulated microgravity

    NASA Astrophysics Data System (ADS)

    Hanson, Andrea Marie

    Humans are an integral part of the engineered systems that will enable return to the Moon and eventually travel to Mars. Major advancements in countermeasure development addressing deleterious effects of microgravity and reduced gravity on the musculoskeletal system need to be made to ensure mission safety and success. The primary objectives of this dissertation are to advance the knowledge and understanding of skeletal muscle atrophy, and support development of novel countermeasures for disuse atrophy to enable healthy long-duration human spaceflight. Models simulating microgravity and actual spaceflight were used to examine the musculoskeletal adaptations during periods of unloading. Myostatin inhibition, a novel anti-atrophy drug therapy, and exercise were examined as a means of preventing and recovering from disuse atrophy. A combination of assays was used to quantify adaptation responses to unloading and examine efficacy of the countermeasures. Body and muscle masses were collected to analyze systemic changes due to treatments. Hindlimb strength and individual muscle forces were measured to demonstrate functional adaptations to treatments. Muscle fiber morphology and myosin heavy chain (MHC) expression was examined to identify adaptations at the cellular level. Protein synthesis signals insulin-like growth factor-1 (IGF-1), Akt, and p70s6 kinase; and the degradation signals Atrogin-1 and MuRF-1 were examined to identify adaptations at the molecular level that ultimately lead to muscle hypertrophy and atrophy. A time course study provided a thorough characterization of the adaptation of skeletal muscle during unloading in C57BL/6 mice, and baseline data for comparison to and evaluation of subsequent studies. Time points defining the on-set and endpoints of disuse muscle atrophy were identified to enable characterization of rapid vs. long-term responses of skeletal muscle to hindlimb suspension. Unloading-induced atrophy primarily resulted from increased protein degradation at early time points that predominantly affected slow-twitch muscle fibers. A second study examined the use of exercise as a means of recovery from disuse atrophy. Contrary to previous reports, a short duration of exercise following disuse provided a functional benefit to contractile mechanisms and increased resistance to fatigue---possibly due to increased expression of fast-twitch fibers. Two additional studies examined the efficacy of a myostatin inhibitor in combination with hindlimb unloading and in spaceflight. Myostatin inhibition increased expression of markers within the muscle synthesis pathway in both models. The myostatin inhibitors were potent enough for the skeletal muscles to overcome the atrophying effects of musculoskeletal unloading as demonstrated by increased mass and strength. Myostatin inhibition is demonstrated to be a very promising and effective treatment for disuse muscle atrophy that may benefit astronauts and patients with muscle wasting diseases. This dissertation provides the first analyses of an unloading model in combination with a myostatin inhibitor as a countermeasure for skeletal muscle disuse atrophy while exploring the specific roles of muscle function, morphology, and translational signaling pathways.

  16. Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.

    2008-05-01

    High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.

  17. Effect of simulated weightlessness and chronic 1,25-dihydroxyvitamin D administration on bone metabolism

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Globus, R. K.; Levens, M. J.; Wronski, T. J.; Morey-Holton, E.

    1985-01-01

    Weightlessness, as experienced during space flight, and simulated weightlessness induce osteopenia. Using the suspended rat model to simulate weightlessness, a reduction in total tibia Ca and bone formation rate at the tibiofibular junction as well as an inhibition of Ca-45 and H-3-proline uptake by bone within 5-7 days of skeletal unloading was observed. Between days 7 and 15 of unloading, uptake of Ca-45 and H-3-proline, and bone formation rate return to normal, although total bone Ca remains abnormally low. To examine the relationship between these characteristic changes in bone metabolism induced by skeletal unloading and vitamin D metabolism, the serum concentrations of 25-hydroxyvitamin D (25-OH-D), 24, 25-dihydroxyvitamin D (24,25(OH)2D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) at various times after skeletal unloading were measured. The effect of chronic infusion of 1,25(OH)2D3 on the bone changes associated with unloading was also determined.

  18. TDRSS momentum unload planning

    NASA Technical Reports Server (NTRS)

    Cross, George R.; Potter, Mitchell A.; Whitehead, J. Douglass; Smith, James T.

    1991-01-01

    A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems.

  19. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.

    PubMed

    Hu, Liping; Sun, Huihui; Li, Ruifu; Zhang, Lingyun; Wang, Shaohui; Sui, Xiaolei; Zhang, Zhenxian

    2011-11-01

    The phloem unloading pathway remains unclear in fruits of Cucurbitaceae, a classical stachyose-transporting species with bicollateral phloem. Using a combination of electron microscopy, transport of phloem-mobile symplasmic tracer carboxyfluorescein, assays of acid invertase and sucrose transporter, and [(14)C]sugar uptake, the phloem unloading pathway was studied in cucumber (Cucumis sativus) fruit from anthesis to the marketable maturing stage. Structural investigations showed that the sieve element-companion cell (SE-CC) complex of the vascular bundles feeding fruit flesh is apparently symplasmically restricted. Imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the vascular bundles in the whole fruit throughout the stages examined. A 37 kDa acid invertase was located predominantly in the cell walls of SE-CC complexes and parenchyma cells. Studies of [(14)C]sugar uptake suggested that energy-driven transporters may be functional in sugar trans-membrane transport within symplasmically restricted SE-CC complex, which was further confirmed by the existence of a functional plasma membrane sucrose transporter (CsSUT4) in cucumber fruit. These data provide a clear evidence for an apoplasmic phloem unloading pathway in cucumber fruit. A presumption that putative raffinose or stachyose transporters may be involved in soluble sugars unloading was discussed. © 2011 Blackwell Publishing Ltd.

  20. Effects of chronic hindlimb suspension on landing performance in response to head-down drop in rats.

    PubMed

    Kawano, Fuminori; Nomura, Takeshi; Ishihara, Akihiko; Nonaka, Ikuya; Ohira, Yoshinobu

    2002-06-01

    Effects of hindlimb unloading and reloading on the patterns of landing and posture adjustment in response to head-down drop from a height of approximately 30 cm were investigated in rats. Seven weeks old male Wistar rats were hindlimb-unloaded by tail suspension for 9 consecutive weeks. Motor tests were performed immediately after the termination of suspension and recovery patterns were checked during 8 weeks of ambulation recovery. Although all of the control rats were able to land smoothly by using the four limbs as the shock absorber, the unloaded rats landed by hitting their abdomen. The hindlimb-unloaded, but not control, rats dorsi-flexed their trunk during fall. The mean angle of abdominal side was approximately 145 degrees in control and approximately 215 degrees in unloaded rats. Even though such phenomena were maintained for approximately 12 hours, the response of the trunk angle recovered significantly 2 days later. However, it was not normalized completely even after 8 weeks. Hyper-extension of ankle joints and eversion of hindlimbs at landing were also noted in the unloaded rats. These phenomena were not recovered at all. It was generally suggested that severe detrimental effects on the landing performance of rats are induced following 9-weeks of suspension. And some of the responses are irreversible.

  1. The response of Dahl salt-sensitive and salt-resistant female rats to a space flight model

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Cleek, Tammy; Sayavongsa, Phouyong; Arnaud, Sara B.

    2003-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have tested the hypothesis that differences in vitamin D metabolism would render the Dahl S rat more susceptible than the Dahl R rat to the effects of a space flight model. Dahl female rats were tail suspended (hind limb unloaded) for 28 days, while fed a low salt (3 g/kg sodium chloride) diet. Plasma 25-OHD concentrations of S rats were significantly lower than that of R rats. Plasma 1,25-(OH)2D concentration was 50% lower in unloaded than in loaded S rats, but was unaffected in unloaded R rats. The left soleus muscle weight and breaking strength of the left femur (torsion test) were 50% and 25% lower in unloaded than in loaded S and R rats. The mineral content of the left femur, however, was significantly lower (by 11%) only in unloaded S rats. We conclude that female S rats are more vulnerable than female R rats to decreases in plasma 1,25-(OH)2D concentration and femur mineral content during hind limb unloading, but equally vulnerable to muscle atrophy and reduced breaking strength of the femur.

  2. Feedforward motor control in developmental dyslexia and developmental coordination disorder: Does comorbidity matter?

    PubMed

    Cignetti, Fabien; Vaugoyeau, Marianne; Fontan, Aurelie; Jover, Marianne; Livet, Marie-Odile; Hugonenq, Catherine; Audic, Frédérique; Chabrol, Brigitte; Assaiante, Christine

    2018-05-01

    Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading

    NASA Technical Reports Server (NTRS)

    Ingalls, C. P.; Warren, G. L.; Armstrong, R. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    The objective of this study was to determine whether altered intracellular Ca(2+) handling contributes to the specific force loss in the soleus muscle after unloading and/or subsequent reloading of mouse hindlimbs. Three groups of female ICR mice were studied: 1) unloaded mice (n = 11) that were hindlimb suspended for 14 days, 2) reloaded mice (n = 10) that were returned to their cages for 1 day after 14 days of hindlimb suspension, and 3) control mice (n = 10) that had normal cage activity. Maximum isometric tetanic force (P(o)) was determined in the soleus muscle from the left hindlimb, and resting free cytosolic Ca(2+) concentration ([Ca(2+)](i)), tetanic [Ca(2+)](i), and 4-chloro-m-cresol-induced [Ca(2+)](i) were measured in the contralateral soleus muscle by confocal laser scanning microscopy. Unloading and reloading increased resting [Ca(2+)](i) above control by 36% and 24%, respectively. Although unloading reduced P(o) and specific force by 58% and 24%, respectively, compared with control mice, there was no difference in tetanic [Ca(2+)](i). P(o), specific force, and tetanic [Ca(2+)](i) were reduced by 58%, 23%, and 23%, respectively, in the reloaded animals compared with control mice; however, tetanic [Ca(2+)](i) was not different between unloaded and reloaded mice. These data indicate that although hindlimb suspension results in disturbed intracellular Ca(2+) homeostasis, changes in tetanic [Ca(2+)](i) do not contribute to force deficits. Compared with unloading, 24 h of physiological reloading in the mouse do not result in further changes in maximal strength or tetanic [Ca(2+)](i).

  4. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    2013-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  5. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    1980-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  6. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    NASA Astrophysics Data System (ADS)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was the case for femur, but tibia bone strength was negatively affected by the synbiotic diet. Thus, unexpectedly, the synbiotic diet was associated with null or detrimental effects on bone strength.

  7. Prediction of Lunar Reconnaissance Orbiter Reaction Wheel Assembly Angular Momentum Using Regression Analysis

    NASA Technical Reports Server (NTRS)

    DeHart, Russell

    2017-01-01

    This study determines the feasibility of creating a tool that can accurately predict Lunar Reconnaissance Orbiter (LRO) reaction wheel assembly (RWA) angular momentum, weeks or even months into the future. LRO is a three-axis stabilized spacecraft that was launched on June 18, 2009. While typically nadir-pointing, LRO conducts many types of slews to enable novel science collection. Momentum unloads have historically been performed approximately once every two weeks with the goal of maintaining system total angular momentum below 70 Nms; however flight experience shows the models developed before launch are overly conservative, with many momentum unloads being performed before system angular momentum surpasses 50 Nms. A more accurate model of RWA angular momentum growth would improve momentum unload scheduling and decrease the frequency of these unloads. Since some LRO instruments must be deactivated during momentum unloads and in the case of one instrument, decontaminated for 24 hours there after a decrease in the frequency of unloads increases science collection. This study develops a new model to predict LRO RWA angular momentum. Regression analysis of data from October 2014 to October 2015 was used to develop relationships between solar beta angle, slew specifications, and RWA angular momentum growth. The resulting model predicts RWA angular momentum using input solar beta angle and mission schedule data. This model was used to predict RWA angular momentum from October 2013 to October 2014. Predictions agree well with telemetry; of the 23 momentum unloads performed from October 2013 to October 2014, the mean and median magnitude of the RWA total angular momentum prediction error at the time of the momentum unloads were 3.7 and 2.7 Nms, respectively. The magnitude of the largest RWA total angular momentum prediction error was 10.6 Nms. Development of a tool that uses the models presented herein is currently underway.

  8. Vulnerability to dysfunction and muscle injury after unloading

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Tesch, P. A.; Hather, B. M.; Dudley, G. A.

    1996-01-01

    OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury, even at relatively light loads.

  9. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27% decrease in mass and a 60% increase in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  10. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27 percent decrease in mass and a 60 percent increse in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  11. Design of Microstrip Bandpass Filters Using SIRs with Even-Mode Harmonics Suppression for Cellular Systems

    NASA Astrophysics Data System (ADS)

    Theerawisitpong, Somboon; Suzuki, Toshitatsu; Morita, Noboru; Utsumi, Yozo

    The design of microstrip bandpass filters using stepped-impedance resonators (SIRs) is examined. The passband center frequency for the WCDMA-FDD (uplink band) Japanese cellular system is 1950MHz with a 60-MHz bandwidth. The SIR physical characteristic can be designed using a SIR characteristic chart based on second harmonic suppression. In our filter design, passband design charts were obtained through the design procedure. Tchebycheff and maximally flat bandpass filters of any bandwidth and any number of steps can be designed using these passband design charts. In addition, sharp skirt characteristics in the passband can be realized by having two transmission zeros at both adjacent frequency bands by using open-ended quarter-wavelength stubs at input and output ports. A new even-mode harmonics suppression technique is proposed to enable a wide rejection band having a high suppression level. The unloaded quality factor of the resonator used in the proposed filters is greater than 240.

  12. Radiation and mechanical unloading effects on mouse vertebral bone: Ground-based models of the spaceflight environment

    NASA Astrophysics Data System (ADS)

    Alwood, Joshua Stewart

    Astronauts on long-duration space missions experience increased ionizing radiation background levels and occasional acute doses of ionizing radiation from solar particle events, in addition to biological challenges introduced by weightlessness. Previous research indicates that cancer radiotherapy damages bone marrow cell populations and reduces mechanical strength of bone. However, the cumulative doses in radiotherapy are an order of magnitude or greater than dose predictions for long-duration space missions. Further detriments to the skeletal system are the disuse and mechanical unloading experienced during weightlessness, which causes osteopenia in weight-bearing cancellous bone (a sponge-like bony network of rods, plates and voids) and cortical bone (dense, compact bone). Studies of radiation exposure utilizing spaceflight-relevant types and doses, and in combination with mechanical unloading, have received little attention. Motivated by the future human exploration of the solar system, the effects of acute and increased background radiation on astronaut skeletal health are important areas of study in order to prevent osteopenic deterioration and, ultimately, skeletal fracture. This dissertation addresses how spaceflight-relevant radiation affects bone microarchitecture and mechanical properties in the cancellous-rich vertebrae and compares results to that of mechanical unloading. In addition, a period of re-ambulation is used to test whether animals recover skeletal tissue after irradiation. Whether radiation exposure displays synergism with mechanical unloading is further investigated. Finite element structural and statistical analyses are used to investigate how changes in architecture affect mechanical stress within the vertebra and to interpret the mechanical testing results. In this dissertation, ground-based models provide evidence that ionizing radiation, both highly energetic gamma-rays and charged iron ions, resulted in a persistent loss of cancellous bone in male mice. Mechanical unloading, by contrast, is shown to cause bone loss in the vertebrae via cancellous and cortical thinning that resulted in decreased whole-bone mechanical properties. The effects of mechanical unloading were altogether reversible in the vertebra after re-ambulation, though some residual alteration of trabecular morphology persisted. The combination of unloading and radiation exposure appeared to worsen the reductions of strength. Under either environmental condition, cancellous bone loss occurred near the vertebral endplates and at the centrum midplane. Finite element analysis suggested that tissue-level stresses increase in the centrum after either unloading or irradiation in agreement with the cellular-solid model of dense, plate-like trabeculae. Force-sharing between cancellous and cortical bone decreased after radiation, with stress concentrating on the cortex. In conclusion, acute exposure to spaceflight-relevant ionizing radiation altered trabecular microarchitecture and stress distribution, without a loss of whole-bone strength at the endpoints investigated, while unloading presented the greater immediate detriment to whole-bone mechanical properties. From a skeletal-health perspective, strategies to mitigate and counteract astronaut exposure to acute doses of radiation and mechanical unloading should be developed in preparation for long-term human spaceflight.

  13. Clinical practice guidelines for rest orthosis, knee sleeves, and unloading knee braces in knee osteoarthritis.

    PubMed

    Beaudreuil, Johann; Bendaya, Samy; Faucher, Marc; Coudeyre, Emmanuel; Ribinik, Patricia; Revel, Michel; Rannou, François

    2009-12-01

    To develop clinical practice guidelines concerning the use of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis. The French Physical Medicine and Rehabilitation Society (SOFMER) methodology, associating a systematic literature review, collection of everyday clinical practice, and external review by multidisciplinary expert panel, was used. Few high-level studies of bracing for knee osteoarthritis were found. No evidence exists for the effectiveness of rest orthosis. Evidence for knee sleeves suggests that they decrease pain in knee osteoarthritis, and their use is associated with subjective improvement. These actions do not appear to depend on a local thermal effect. The effectiveness of knee sleeves for disability is not demonstrated for knee osteoarthritis. Short- and mid-term follow-up indicates that valgus knee bracing decreases pain and disability in medial knee osteoarthritis, appears to be more effective than knee sleeves, and improves quality of life, knee proprioception, quadriceps strength, and gait symmetry, and decreases compressive loads in the medial femoro-tibial compartment. However, results of response to valgus knee bracing remain inconsistent; discomfort and side effects can result. Thrombophlebitis of the lower limbs has been reported with the braces. Braces, whatever kind, are infrequently prescribed in clinical practice for osteoarthritis of the lower limbs. Modest evidence exists for the effectiveness of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis, with only low level recommendations for its use. Braces are prescribed infrequently in French clinical practice for osteoarthritis of the knee. Randomized clinical trials concerning bracing in knee osteoarthritis are still necessary.

  14. Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice.

    PubMed

    Egawa, Tatsuro; Goto, Ayumi; Ohno, Yoshitaka; Yokoyama, Shingo; Ikuta, Akihiro; Suzuki, Miho; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Hayashi, Tatsuya; Goto, Katsumasa

    2015-10-01

    AMPK is considered to have a role in regulating skeletal muscle mass. However, there are no studies investigating the function of AMPK in modulating skeletal muscle mass during atrophic conditions. In the present study, we investigated the difference in unloading-associated muscle atrophy and molecular functions in response to 2-wk hindlimb suspension between transgenic mice overexpressing the dominant-negative mutant of AMPK (AMPK-DN) and their wild-type (WT) littermates. Male WT (n = 24) and AMPK-DN (n = 24) mice were randomly divided into two groups: an untreated preexperimental control group (n = 12 in each group) and an unloading (n = 12 in each group) group. The relative soleus muscle weight and fiber cross-sectional area to body weight were decreased by ∼30% in WT mice by hindlimb unloading and by ∼20% in AMPK-DN mice. There were no changes in puromycin-labeled protein or Akt/70-kDa ribosomal S6 kinase signaling, the indicators of protein synthesis. The expressions of ubiquitinated proteins and muscle RING finger 1 mRNA and protein, markers of the ubiquitin-proteasome system, were increased by hindlimb unloading in WT mice but not in AMPK-DN mice. The expressions of molecules related to the protein degradation system, phosphorylated forkhead box class O3a, inhibitor of κBα, microRNA (miR)-1, and miR-23a, were decreased only in WT mice in response to hindlimb unloading, and 72-kDa heat shock protein expression was higher in AMPK-DN mice than in WT mice. These results imply that AMPK partially regulates unloading-induced atrophy of slow-twitch muscle possibly through modulation of the protein degradation system, especially the ubiquitin-proteasome system. Copyright © 2015 the American Physiological Society.

  15. Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading

    PubMed Central

    Yu, Zhi-Bin; Gao, Fang; Feng, Han-Zhong; Jin, J-P

    2006-01-01

    Weight-bearing skeletal muscles change phenotype rapidly in response to unloading. Using the hind limb-suspension rat model, we investigated the regulation of myofilament protein isoforms in correlation to contractility. Four weeks of continuous hind limb unloading produced progressive atrophy and contractility changes in soleus but not extensor digitorum longus (EDL) muscle. The unloaded soleus muscle also had decreased fatigue resistance. Together with the decrease of myosin heavy chain (MHC) isoform I and IIa and increase of MHC IIb and IIx, coordinated regulation of thin filament regulatory protein isoforms were observed: γ- and β-tropomyosin decreased and α-tropomyosin increased, resulting in an α/β ratio similar to that in normal fast twitch skeletal muscle; troponin I and troponin T (TnT) both showed decrease in the slow isoform and increases in the fast isoform. The TnT isoform switching began after 7 days of unloading and TnI isoform showed detectable changes at 14 days while other protein isoform changes were not significant until 28 days of treatment. Correlating to the early changes in contractility, especially the resistance to fatigue, the early response of TnT isoform regulation may play a unique role in the adaptation of skeletal muscle to unloading. When the fast TnT gene expression was up-regulated in the unloaded soleus muscle, alternative RNA splicing switched to produce more high molecular weight acidic isoforms, reflecting a potential compensation for the decrease of slow TnT that is critical to skeletal muscle function. The results demonstrate that differential regulation of TnT isoforms is a sensitive mechanism in muscle adaptation to functional demands. PMID:17108008

  16. Failure Characteristics of Granite Influenced by Sample Height-to-Width Ratios and Intermediate Principal Stress Under True-Triaxial Unloading Conditions

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Feng, Fan; Li, Diyuan; Du, Kun; Ranjith, P. G.; Rostami, Jamal

    2018-05-01

    The failure modes and peak unloading strength of a typical hard rock, Miluo granite, with particular attention to the sample height-to-width ratio (between 2 and 0.5), and the intermediate principal stress was investigated using a true-triaxial test system. The experimental results indicate that both sample height-to-width ratios and intermediate principal stress have an impact on the failure modes, peak strength and severity of rockburst in hard rock under true-triaxial unloading conditions. For longer rectangular specimens, the transition of failure mode from shear to slabbing requires higher intermediate principal stress. With the decrease in sample height-to-width ratios, slabbing failure is more likely to occur under the condition of lower intermediate principal stress. For same intermediate principal stress, the peak unloading strength monotonically increases with the decrease in sample height-to-width. However, the peak unloading strength as functions of intermediate principal stress for different types of rock samples (with sample height-to-width ratio of 2, 1 and 0.5) all present the pattern of initial increase, followed by a subsequent decrease. The curves fitted to octahedral shear stress as a function of mean effective stress also validate the applicability of the Mogi-Coulomb failure criterion for all considered rock sizes under true-triaxial unloading conditions, and the corresponding cohesion C and internal friction angle φ are calculated. The severity of strainburst of granite depends on the sample height-to-width ratios and intermediate principal stress. Therefore, different supporting strategies are recommended in deep tunneling projects and mining activities. Moreover, the comparison of test results of different σ 2/ σ 3 also reveals the little influence of minimum principal stress on failure characteristics of granite during the true-triaxial unloading process.

  17. Acoustic Emission Characteristics of Red Sandstone Specimens Under Uniaxial Cyclic Loading and Unloading Compression

    NASA Astrophysics Data System (ADS)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Chen, Yanlong

    2018-04-01

    To explore the acoustic emission (AE) characteristics of rock materials during the deformation and failure process under periodic loads, a uniaxial cyclic loading and unloading compression experiment was conducted based on an MTS 815 rock mechanics test system and an AE21C acoustic emissions test system. The relationships among stress, strain, AE activity, accumulated AE activity and duration for 180 rock specimens under 36 loading and unloading rates were established. The cyclic AE evolutionary laws with rock stress-strain variation at loading and unloading stages were analyzed. The Kaiser and Felicity effects of rock AE activity were disclosed, and the impact of the significant increase in the scale of AE events on the Felicity effect was discussed. It was observed that the AE characteristics are closely related to the stress-strain properties of rock materials and that they are affected by the developmental state and degree of internal microcracks. AE events occur in either the loading or unloading stages if the strain is greater than zero. Evolutionary laws of AE activity agree with changes in rock strain. Strain deformation is accompanied by AE activity, and the density and intensity of AE events directly reflect the damage degree of the rock mass. The Kaiser effect exists in the linear elastic stage of rock material, and the Felicity effect is effective in the plastic yield and post-peak failure stages, which are divided by the elastic yield strength. This study suggests that the stress level needed to determine a significant increase in AE activity was 70% of the i + 1 peak stress. The Felicity ratio of rock specimens decreases with the growth of loading-unloading cycles. The cycle magnitude and variation of the Felicity effect, in which loading and unloading rates play a weak role, are almost consistent.

  18. Vitamin E provides protection for bone in mature hindlimb unloaded male rats

    NASA Technical Reports Server (NTRS)

    Smith, B. J.; Lucas, E. A.; Turner, R. T.; Evans, G. L.; Lerner, M. R.; Brackett, D. J.; Stoecker, B. J.; Arjmandi, B. H.

    2005-01-01

    The deleterious effects of skeletal unloading on bone mass and strength may, in part, result from increased production of oxygen-derived free radicals and proinflammatory cytokines. This study was designed to evaluate the ability of vitamin E (alpha-tocopherol), a free-radical scavenger with antiinflammatory properties, to protect against bone loss caused by skeletal unloading in mature male Sprague-Dawley rats. A 2 x 3 factorial design was used with either hindlimb unloading (HU) or normal loading (ambulatory; AMB), and low-dose (LD; 15 IU/kg diet), adequate-dose (AD; 75 IU/kg diet), or high-dose (HD; 500 IU/kg diet) vitamin E (DL-alpha-tocopherol acetate). To optimize the effects of vitamin E on bone, dietary treatments were initiated 9 weeks prior to unloading and continued during the 4-week unloading period, at which time animals were euthanized and blood and tissue samples were collected. Serum vitamin E was dose-dependently increased, confirming the vitamin E status of animals. The HD treatment improved oxidation parameters, as indicated by elevated serum ferric-reducing ability and a trend toward reducing tissue lipid peroxidation. Histomorphometric analysis of the distal femur revealed significant reductions in trabecular thickness (TbTh), double-labeled surface (dLS/BS), and rate of bone formation to bone volume (BFR/BV) due by HU. AMB animals on the HD diet and HU animals on the LD diet had reduced bone surface normalized to tissue volume (BS/TV) and trabecular number (TbN); however, the HD vitamin E protected against these changes in the HU animals. Our findings suggest that vitamin E supplementation provides modest bone protective effects during skeletal unloading.

  19. Using Cartilage MRI T2-Mapping to Analyze Early Cartilage Degeneration in the Knee Joint of Young Professional Soccer Players.

    PubMed

    Waldenmeier, Leonie; Evers, Christoph; Uder, Michael; Janka, Rolf; Hennig, Frank Friedrich; Pachowsky, Milena Liese; Welsch, Götz Hannes

    2018-02-01

    Objective To evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI). Design In this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An "early unloading" (minute 0) and "late unloading" (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the "early unloading" and "late unloading." Results When comparing "early unloading" with "late unloading," our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial ( P < 0.001) and lateral ( P < 0.001) compartment of the knee and in the tibial cartilage of the medial compartment ( P < 0.001). Conclusion In this study, alterations of the cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.

  20. Effects of spaceflight and simulated weightlessness on longitudinal bone growth

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Zhang, M.; Evans, G. L.; Westerlind, K. C.; Cavolina, J. M.; Morey-Holton, E.; Turner, R. T.

    2000-01-01

    Indirect measurements have suggested that spaceflight impairs bone elongation in rats. To test this possibility, our laboratory measured, by the fluorochrome labeling technique, bone elongation that occurred during a spaceflight experiment. The longitudinal growth rate (LGR) in the tibia of rats in spaceflight experiments (Physiological Space Experiments 1, 3, and 4 and Physiological-Anatomical Rodent Experiment 3) and in two models of skeletal unloading (hind-limb elevation and unilateral sciatic neurotomy) were calculated. The effects of an 11 day spaceflight on gene expression of cartilage matrix proteins in rat growth plates were also determined by northern analysis and are reported for the first time in this study. Measurements of longitudinal growth indicate that skeletal unloading generally did not affect LGR, regardless of age, strain, gender, duration of unloading, or method of unloading. There was, however, one exception with 34% suppression in LGR detected in slow-growing, ovariectomized rats skeletally unloaded for 8 days by hind-limb elevation. This detection of reduced LGR by hind-limb elevation is consistent with changes in steady-state mRNA levels for type II collagen (-33%) and for aggrecan (-53%) that were detected in rats unloaded by an 11 day spaceflight. The changes detected in gene expression raise concern that spaceflight may result in changes in the composition of extracellular matrix, which could have a negative impact on conversion of growth-plate cartilage into normal cancellous bone by endochondral ossification.

  1. Deformation and reperfusion damages and their accumulation in subcutaneous tissues during loading and unloading: a theoretical modeling of deep tissue injuries.

    PubMed

    Mak, Arthur F T; Yu, Yanyan; Kwan, Linda P C; Sun, Lei; Tam, Eric W C

    2011-11-21

    Deep tissue injuries (DTI) involve damages in the subcutaneous tissues under intact skin incurred by prolonged excessive epidermal loadings. This paper presents a new theoretical model for the development of DTI, broadly based on the experimental evidence in the literatures. The model covers the loading damages implicitly inclusive of both the direct mechanical and ischemic injuries, and the additional reperfusion damages and the competing healing processes during the unloading phase. Given the damage accumulated at the end of the loading period, the relative strength of the reperfusion and the healing capacity of the involved tissues system, the model provides a description of the subsequent damage evolution during unloading. The model is used to study parametrically the scenario when reperfusion damage dominates over healing upon unloading and the opposite scenario when the loading and subsequent reperfusion damages remain small relative to the healing capacity of the tissues system. The theoretical model provides an integrated understanding of how tissue damage may further build-up paradoxically even with unloading, how long it would take for the loading and reperfusion damages in the tissues to become fully recovered, and how such loading and reperfusion damages, if not given sufficient time for recovery, may accumulate over multiple loading and unloading cycles, leading to clinical deep tissues ulceration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  3. Different responses in soleus muscle fibers of Wistar and Wistar Hannover rats to hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Kawano, Fuminori; Terada, Masahiro; Matsuoka, Yoshikazu; Shinoda, Yo; Ishihara, Akihiko; Ohira, Yoshinobu

    2005-08-01

    Effects of 16 days of hindlimb suspension on the characteristics of single soleus muscle fibers were compared between male Wistar and Wistar Hannover rats (5 weeks old). The greater effects of unloading were noted in Wistar Hannover rats. The unloading-related reductions of muscle weight and fiber cross-sectional area vs. the pre-suspension levels were greater than Wistar rats. The percent of fibers expressing pure type I myosin heavy chain (MHC) was decreased and that of type I+II MHC fibers was increased, the magnitudes of these changes were greater than Wistar rats. Total number of myonuclei in control situation was greater in Wistar Hannover rats, but the more numbers of myonuclei were decreased following unloading. Responses of myonuclear domain levels were similar. The numbers of both quiescent and mitotic active satellite cells in control situation were greater in Wistar rats. But the magnitude of the unloading- related decrease was identical for Wistar Hannover and Wistar rats. Although the level of heat shock protein 27 (HSP27) expression in Wistar rats was decreased by unloading, de novo appearance of HSP27 was noted in Wistar Hannover rats. It is suggested that greater responses of soleus muscle fibers of Wistar Hannover than Wistar rats may be related to the different expression of protein, although the precise mechanism is still unclear.

  4. Effect of gamma-ray irradiation on the unloaded animal model

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Il; Yoon, Min-Chul; Sung, Nak-Yoon; Kim, Jae-Hun; Jong Lee, Yun; Lee, Ki-Soo; Choi, In-Ho; Nam, Gung Uk; Lee, Ju-Woon

    During the space flight, human beings encountered the extreme conditions such as the cosmic ray irradiation and microgravity. There have been developed the animal models to simulate the microgravity condition in laboratory, but no study was carried out to investigate the combined effect of microgravity and exposure to irradiation. In this study, it was examined the effect of gamma irradiation on the suspension model. Rats were divided into four groups, Group I was loaded and not exposed to gamma irradiation, Group 2 was unloaded and not exposed, Group 3 was loaded and exposed to gamma irradiation at the dose of 50 mSV, and Group 4 was unloaded and exposed to gamma irradiation at the same dose. It was measured body, muscles and tissues weights and the biological analysis and the hematological response in blood samples were conducted. Anti-gravity tissue weight was only changed between loading and un-loading condition. However, there was no difference between irradiation exposed and not exposed unloaded groups. To know the difference of protein expression in anti-gravity tissues, 2 dimensional electrophoresis was performed. It has been found that the expression levels of several proteins were different by unloading condition and by irradiation exposed condition, respectively. These results provided the information on the combined effect of irradiation and microgravity to simulate space flight, and could be useful to search the candidate material for the countermeasure against space environment.

  5. Finite element based contact analysis of radio frequency MEMs switch membrane surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen

    2017-10-01

    Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.

  6. Control of fast elbow movement: a study of electromyographic patterns during movements against unexpectedly decreased inertial load.

    PubMed

    Latash, M L

    1994-01-01

    Predictions of three models of single-joint motor control were compared with experimental observations of the changes in electromyographic (EMG) patterns during fast voluntary movements against an unexpectedly reduced inertial load. The subjects performed elbow flexions over 40 degrees "as fast as possible" in two series. During the first series, an approximately 40% decrease in inertia, simulated by a torque-motor, might occur unpredictably on half of the trials (unloaded trials). During the second series, all the trials were unloaded. The major findings are: (1) no differences in the antagonist burst latency in unexpectedly unloaded and unperturbed trials; (2) a decrease in the antagonist latency during expected unloadings; (3) a small, statistically non significant decrease in the first agonist burst EMG integral; and (4) a larger, statistically significant increase in the antagonist burst EMG integral in unexpectedly unloaded trials as compared to unperturbed trials. The data are in good correspondence with a version of the equilibrium-point hypothesis that assumes central programming of the beginning of the antagonist burst and incorporates the possibility of reflex-induced changes in EMG amplitudes.

  7. Effect of low-speed impact damage and damage location on behavior of composite panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1992-01-01

    The effect of low speed impact damage on the compression and tension strength of thin and moderately thick composite specimens was investigated. Impact speed ranged from 50 to 550 ft./sec., with corresponding impact energies from 0.25 to 30.7 ft. x lb. Impact locations were near the center of the specimen or near a lateral unloaded edge. In this study, thin specimens with only 90 degree and + or - 45 degree plies that were impacted away from the unloaded edge suffered less reduction in load carrying capability because of impact damage than of the same specimens impacted near the unloaded edge. Failure loads of thicker compression loaded specimens with a similar stacking sequence were independent of impact location. Failure loads of thin tension loaded specimens with 0 degree plies was independent of impact location, whereas failure loads of thicker compression loaded specimens with 0 degree plies were dependent upon impact location. A finite element analysis indicated that high axial strains occurred near the unloaded edges of the postbuckled panels. Thus, impacts near the unloaded edge would significantly affect the behavior of the postbuckled panel.

  8. Applicability of NSPS for Coal Preparation to Coal Unloading Operations

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  9. Emissions from Ships Unloading at a Dock

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  10. The molecular response of bone to growth hormone during skeletal unloading: regional differences

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Currier, P. A.; Tanner, S.; Morey-Holton, E.

    1995-01-01

    Hind limb elevation of the growing rat provides a good model for the skeletal changes that occur during space flight. In this model the bones of the forelimbs (normally loaded) are used as an internal control for the changes that occur in the unloaded bones of the hind limbs. Previous studies have shown that skeletal unloading of the hind limbs results in a transient reduction of bone formation in the tibia and femur, with no change in the humerus. This fall in bone formation is accompanied by a fall in serum osteocalcin (bone Gla protein, BGP) and bone BGP messenger RNA (mRNA) levels, but a rise in bone insulin-like growth factor-I (IGF-I) protein and mRNA levels and resistance to the skeletal growth-promoting actions of IGF-I. To determine whether skeletal unloading also induced resistance to GH, we evaluated the response of the femur and humerus of sham and hypophysectomized rats, control and hind limb elevated, to GH (two doses), measuring mRNA levels of IGF-I, BGP, rat bone alkaline phosphatase (RAP), and alpha 1(1)-procollagen (coll). Hypophysectomy (HPX) decreased the mRNA levels of IGF-I, BGP, and coll in the femur, but was either less effective or had the opposite effect in the humerus. GH at the higher dose (500 micrograms/day) restored these mRNA levels to or above the sham control values in the femur, but generally had little or no effect on the humerus. RAP mRNA levels were increased by HPX, especially in the femur. The lower dose of GH (50 micrograms/day) inhibited this rise in RAP, whereas the higher dose raised the mRNA levels and resulted in the appearance of additional transcripts not seen in controls. As for the other mRNAs, RAP mRNA in the humerus was less affected by HPX or GH than that in the femur. Hind limb elevation led to an increase in IGF-I, coll, and RAP mRNAs and a reduction in BGP mRNA in the femur and either had no effect or potentiated the response of these mRNAs to GH. We conclude that GH stimulates a number of markers of bone formation by raising their mRNA levels, and that skeletal unloading does not block this response, but the response varies substantially from bone to bone.

  11. 49 CFR 178.345-11 - Tank outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... unloading of lading, as distinguished from outlets such as manhole covers, vents, vapor recovery devices... away from the loading/unloading outlet. The actuating mechanism must be corrosion-resistant and...

  12. Buffalo Harbor Study. Preliminary Feasibility Report. Volume II. Appendices.

    DTIC Science & Technology

    1983-04-01

    699,342:2,382,250:2,581,741: 88 332 :Silver Bay, HN 593,609: 151,635: - : - : :Escanaba, MI :550,189: - : - : - : : Presque Isle , MI : 25,245... PRESQUE ISLE 1,000.0 Self Unloader 1973 ROESCH, WILLIAM R. 630.0 Self Unloader 1973 THAYER, PAUL . 630.0 Self Unloader 1973 WILSON, CHARLES E. 680.0 Self...of Deep Water Wave Angle Classes A3 Frequency Curve for Annual Mean Levels of Lake Erie A4 Frequency of Occurrence of Short Period Fluctuations on

  13. The effects of loaded and unloaded high-velocity resistance training on functional fitness among community-dwelling older adults.

    PubMed

    Glenn, Jordan M; Gray, Michelle; Binns, Ashley

    2015-11-01

    Physical function declines up to 4% per year after the age of 65. High-velocity training is important for maintaining muscular power and ultimately, physical function; however, whether performing high-velocity training without external resistance increases functional fitness among older adults remains unclear. The purpose of this investigation was to evaluate loaded and unloaded high-velocity training on lower body muscular power and functional fitness in older adults. Fifty-seven community-dwelling older adults (n = 16 males, n = 41 females) participated in this study. Inclusion criteria comprised ≥65 years of age, ≥24 on the Mini-mental state examination and no falls within past year. Two groups completed a 20-week high-velocity training intervention. The non-weighted group (UNLOAD, n = 27) performed the protocol without external load while the intervention group (LOAD, n = 30) used external loads via exercise machines. Functional fitness was assessed using the Short Physical Performance Battery (SPPB), Senior Fitness Test (SFT), hand-grip and lower body power measures. Multivariate ANOVA revealed that both groups had significant improvements for average (17.21%) and peak (9.26%) lower body power, along with the SFT arm curl (16.94%), chair stand (20.10%) and 8 ft. up-and-go (15.67%). Improvements were also noticed for SPPB 8 ft. walk (25.21%). However, improvements for all functional fitness measures were independent of training group. Unloaded high-velocity training increased functional fitness and power the same as loaded training. The ability of high-velocity movements to elicit gains in functional fitness without external loads may help health professionals develop fitness programs when time/space is limiting factor. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Is Animal Age a Factor In the Response of Bone to Spaceflight?

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Garetto, L. P.; Doty, S. B.; Halloran, B. P.; Turner, R. T.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The rodent bone response to spaceflight may be influenced by a multitude of actors including flight duration, strain, and housing. Review of bone formation rates during spaceflight suggests that age may also play a role in the response. Weanling rats show fewer bone changes than older rats. To determine if the long bones of weanling rats were insensitive to weight-bearing, a hindlimb unloading experiment was conducted simultaneously with a 9d shuttle flight in 34d old group-housed male rats. All animals were injected with bone markers 7d and 1d before flight and euthanized at landing, 24hr, and 72hr following recovery. If no differences in body weight, bone length, or bone formation at the tibiofibular junction were noted at the different time points, data were combined for each group. No significant differences in body weight were found at any time period among the groups. The humerus, tibia, and femur elongated significantly during the flight period with no difference in lengths between groups at the end of the flight period. The group-housed flight rats showed no change in cortical bone formation rate compared to preflight values, flight controls, or vivarium controls. However, the hindlimb unloading group showed a significant 30% decrease in bone formation rate compared to all other groups. Individually-housed 38d old animals flown for 14d showed approx. 10% suppression of cortical growth. We speculate that the mechanical threshold required for cross-sectional bone growth is reached in group-house weanling rats during spaceflight, perhaps, through physical interactions, and that the weanling animals are sensitive to loading. However, the threshold is not fully reached in either singly-housed flight or hindlimb unloaded weanling rats. Older singly-housed flight animals appear to show equal or greater bone changes compared to hindlimb unloaded rats. We conclude that age, flight duration, strain, and housing have important roles in rodent skeletal responses to spaceflight.

  15. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes.

    PubMed

    Golditz, T; Steib, S; Pfeifer, K; Uder, M; Gelse, K; Janka, R; Hennig, F F; Welsch, G H

    2014-10-01

    The aim of this study was to investigate, using T2-mapping, the impact of functional instability in the ankle joint on the development of early cartilage damage. Ethical approval for this study was provided. Thirty-six volunteers from the university sports program were divided into three groups according to their ankle status: functional ankle instability (FAI, initial ankle sprain with residual instability); ankle sprain Copers (initial sprain, without residual instability); and controls (without a history of ankle injuries). Quantitative T2-mapping magnetic resonance imaging (MRI) was performed at the beginning ('early-unloading') and at the end ('late-unloading') of the MR-examination, with a mean time span of 27 min. Zonal region-of-interest T2-mapping was performed on the talar and tibial cartilage in the deep and superficial layers. The inter-group comparisons of T2-values were analyzed using paired and unpaired t-tests. Statistical analysis of variance was performed. T2-values showed significant to highly significant differences in 11 of 12 regions throughout the groups. In early-unloading, the FAI-group showed a significant increase in quantitative T2-values in the medial, talar regions (P = 0.008, P = 0.027), whereas the Coper-group showed this enhancement in the central-lateral regions (P = 0.05). Especially the comparison of early-loading to late-unloading values revealed significantly decreasing T2-values over time laterally and significantly increasing T2-values medially in the FAI-group, which were not present in the Coper- or control-group. Functional instability causes unbalanced loading in the ankle joint, resulting in cartilage alterations as assessed by quantitative T2-mapping. This approach can visualize and localize early cartilage abnormalities, possibly enabling specific treatment options to prevent osteoarthritis in young athletes. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Microwave properties and characterization of co-evaporated BSCCO thin films

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Chorey, C. M.; Stan, M. A.; Nordgren, C. E.; Kwor, R. Y.; Kalkur, T. S.

    1993-01-01

    An extensive characterization of Bi-Sr-Ca-Cu-O (BSCCO) thin films deposited by co-evaporation on LaAlO3 and SrTiO3 substrates was performed. The films had a T(sub c) (R = O) of approximately 78 K, and were predominantly c-axis oriented, with critical current densities (J(sub c)) at 4.5 K of 1.6 x 10(exp 6) and 1.1 x 10(exp 6) A cm(sup -2), for the samples on SrTiO3 and LaAlO3, respectively. The microwave properties of the films were examined by three techniques. The complex conductivity sigma(sub *) = sigma(sub 1) - j(sigma(sub 2)) and the magnetic penetration depth (A) were measured by power transmission at 30.6 GHz; the surface resistance (R(sub s)) was measured using a cavity resonator at 58.9 GHz, and the transmission line losses were determined by measuring the quality factor (Q) of a linear microstrip resonator at 10.4 and 20.2 GHz. The complex conductivity for the film on LaAlO3 was determined to be (2.0-j10) x 10(exp 5) S/m at 77 K. It was observed that in the superconducting state sigma(sub 1) deviates from both the Bardeen-Cooper-Schrieffer (BCS) theory and the two-fluid model. Values of lambda were found to be approximately 2.0 and 1.1 microns at 77 K and 20 K respectively, and were obtained for the film on LaAlO3. The value of lambda at 20 K was approximately three times larger than that of BSCCO single crystals. R(sub s) values of 865 and 1391 mOmega were obtained for the films on SrTiO3 and LaAlO3, respectively, at 77 K and 58.9 GHz. Unloaded Q factors at 20 K of approximately 1100 and 800 at 10.4 and 20.2 GHz respectively, were measured for the BSCCO resonator. Unloaded Q values of 290 and 405 at 20 K were obtained at 10.4 GHz and 20.2 GHz respectively, for an all gold (Au) resonator.

  17. Summary of Auger-Related Entanglement Incidents Occurring Inside Agricultural Confined Spaces.

    PubMed

    Cheng, Y H; Field, W E

    2016-04-01

    Entanglements in energized equipment, including augers found in agricultural workplaces, have historically been a significant cause of traumatic injury. Incidents involving augers located inside agricultural confined spaces (primarily grain storage structures and forage silos), although relatively rare events, are a widely recognized problem due to the relative severity of the resulting injuries and the complexities of victim extrication. However, this problem is neither well documented nor elucidated in the research literature, other than anecdotal observations relating to medical treatment of auger-related injuries and citations for non-compliance with federal and state workplace safety regulations. A review of nearly 1,650 cases documented in the Purdue Agricultural Confined Spaces Incident Database from 1964 to 2013 identified 167 incidents involving entanglement in an energized auger that occurred while the victim was working inside an agricultural confined space. These incidents primarily included in-floor unloading augers, sweep augers, stirring augers, and auger components found on silo unloaders. Cases involving portable tube augers used to handle grain outside grain storage structures were not included. Based on analysis of the data, approximately 98% of known victims were male, with the 21-45 age group reporting the largest number of incidents. Nearly one-third (32.3%) of incidents were fatal, and lower limb amputation was the most frequently reported injury type. (It is believed that non-fatal incidents are grossly under-reported in the data set due to a lack of comprehensive reporting requirements, especially for most farms, feedlots, and seed processing operations, which are generally exempt from compliance with OSHA machine guarding, confined-space, and grain-handling standards.) The type of auger identified most frequently as the agent of injury was the exposed in-floor auger (48), which frequently resulted in amputation of one or more lower limbs when the victim stepped into an unguarded opening or well in the floor of the confined space. The primary reason identified as to why workers were exposed to energized augers in the cases documented was to assist in the removal of residual or out-of-condition grain. The large number of cases involving augers on top-unloading silo unloaders (36) was not anticipated. Silo unloaders also accounted for the largest number of documented fatalities (15). This analysis is the first known attempt to provide a better understanding of the frequency, severity, and causative factors of these incidents. Those key causative factors were found to be: (1) lack of or inadequate guarding, (2) unintentional energizing of components due to a lack of lockout/tagout training and provisions, and (3) exposure of untrained or inexperienced workers to energized and unguarded components during procedures to remove residual grain or other agricultural crops from storage structures. It is hoped that the results and recommendations presented will raise awareness of the hazards related to using energized equipment in confined spaces as well as contribute to development of new evidenced-based educational resources, engineering safety standards, and workplace safety regulations.

  18. Effect of hindlimb suspension and clenbuterol treatment on polyamine levels in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; von Deutsch, Daniel A.; Wineski, Lawrence E.; Silvestrov, Natalia A.; Abera, Saare A.; Sahlu, Sinafikish W.; Potter, David E.; Thierry-Palmer, M. (Principal Investigator)

    2002-01-01

    Polyamines are unbiquitous, naturally occurring small aliphatic, polycationic, endogenous compounds. They are involved in many cellular processes and may serve as secondary or tertiary messengers to hormonal regulation. The relationship of polyamines and skeletal muscle mass of adductor longus, extensor digitorum longus, and gastrocnemius under unloading (hindlimb suspension) conditions was investigated. Unloading significantly affected skeletal muscle polyamine levels in a fiber-type-specific fashion. Under loading conditions, clenbuterol treatment increased all polyamine levels, whereas under unloading conditions, only the spermidine levels were consistently increased. Unloading attenuated the anabolic effects of clenbuterol in predominately slow-twitch muscles (adductor longus), but had little impact on clenbuterol's action as a countermeasure in fast- twitch muscles such as the extensor digitorum longus. Spermidine appeared to be the primary polyamine involved in skeletal muscle atrophy/hypertrophy. Copyright 2002 S. Karger AG, Basel.

  19. Transcription regulation of gene expression in rat brown adipose tissue in response to unloading or 2G loading during growing period

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Hitomi, Y.; Kawano, F.; Ohira, Y.; Kizaki, T.; Nakano, N.; Sakurai, T.; Izawa, T.; Suzuki, K.; Sudoh, M.; Roy, R. R.; Ohno, H.

    2007-05-01

    The effects were investigated of long-term unloading and macrogravity on the expression of 15 genes at the mRNA levels in brown adipose tissue (BAT) from rat pups, particularly focusing on uncoupling protein (UCP) family, nitric oxide synthase (NOS) isoenzymes, and antioxidant enzymes. The animals in the unloaded group (a simulation model of spaceflight) were hindlimb-unloaded by tail suspension between postnatal day 4 and month 3, followed by 2-mo ambulation recovery. Moreover, centrifugation at 2G (an imitation of the hypergravity effects) was performed during the same period as the unloading, also followed by 2-mo ambulation recovery (adaptation to 1G from 2G). Compared with the age-matched control group, significantly lower expression levels of mRNA for UCP2, iNOS, and Cu,Zn-superoxide dismutase (Cu, Zn-SOD) in BAT were observed immediately after unloading, but not immediately after exposure to 2G. During 2-mo ambulation recovery from both extreme conditions, the expression of mRNA for Mn-SOD was enhanced, suggesting an increase in oxidative stress. These findings suggest that both micro- and macrogravity may have some influence upon the function of BAT, and that changes in the BAT function may be involved in the mechanisms subserving adaptation to such extreme conditions by what humans have to be faced with during the spaceflight and return to 1G.

  20. Effect of the Addition of 3% Co in NiTi Alloy on Loading/Unloading Force

    NASA Astrophysics Data System (ADS)

    Phukaoluan, A.; Dechkunakorn, S.; Anuwongnukroh, N.; Khantachawana, A.; Kaewtathip, P.; Kajornchaiyakul, J.; Wichai, W.

    2017-11-01

    The study evaluated the loading-unloading force in the load-deflection curve of the fabricated NiTiCo and NiTi wires. Wire alloys with Nickel, Titanium, and Cobalt (purity-99.95%) with atomic weight ratio 47Ni:50Ti:3Co and 50.6Ni:49.4Ti were prepared, sliced, and cold-rolled at 30% reduction, followed by heat treatment in a furnace at 400oC for 1 hour. The specimens of wire size of 0.016 x 0.022 inch2 were cut and subjected to three-point bending test to investigate the load-deflection curve at deflection point 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 mm. Descriptive statistic was used to evaluate each variables and independent t-test was used to compare between the groups. The results presented a load-deflection curve that resembled a typical superelastic wire. However, significant differences were seen in the loading-unloading forces between the two with an average loading force of 412.53g and 304.98g and unloading force of 292.40g and 208.08g for NiTiCo and NiTi wire, respectively. The force at each deflection point of NiTiCo in loading-unloading force was higher than NiTi wire. This study concluded that the addition of 3%Co in NiTi alloy can increase the loading-unloading force of NiTi wire but were within the range for orthodontic tooth movement.

  1. Evaluation of muscle activity for loaded and unloaded dynamic squats during vertical whole-body vibration.

    PubMed

    Hazell, Tom J; Kenno, Kenji A; Jakobi, Jennifer M

    2010-07-01

    The purpose of this investigation was to examine if the addition of a light external load would enhance whole-body vibration (WBV)-induced increases in muscle activity during dynamic squatting in 4 leg muscles. Thirteen recreationally active male university students performed a series of dynamic squats (unloaded with no WBV, unloaded with WBV, loaded with no WBV, and loaded with WBV). The load was set to 30% of body mass and WBV included 25-, 35-, and 45-Hz frequencies with 4-mm amplitude. Muscle activity was recorded with surface electromyography (EMG) on the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GC) and is reported as EMGrms (root mean square) normalized to %maximal voluntary exertion. During unloaded dynamic squats, exposure to WBV (45 Hz) significantly (p < 0.05) increased baseline muscle activity in all muscles, except the TA compared with no WBV. Adding a light external load without WBV increased baseline muscle activity of the squat exercise in all muscles but decreased the TA. This loaded level of muscle activity was further increased with WBV (45 Hz) in all muscles. The WBV-induced increases in muscle activity in the loaded condition (approximately 3.5%) were of a similar magnitude to the WBV-induced increases during the unloaded condition (approximately 2.5%) demonstrating the addition of WBV to unloaded or loaded dynamic squatting results in an increase in muscle activity. These results demonstrate the potential effectiveness of using external loads with exposure to WBV.

  2. Loading-unloading response of circular GLARE fiber-metal laminates under lateral indentation

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, George J.; Bikakis, George S.

    2015-01-01

    GLARE is a Fiber-Metal laminated material used in aerospace structures which are frequently subjected to various impact damages. Hence, the response of GLARE plates subjected to lateral indentation is very important. In this paper, analytical expressions are derived and a non-linear finite element modeling procedure is proposed in order to predict the static load-indentation curves of circular GLARE plates during loading and unloading by a hemispherical indentor. We have recently published analytical formulas and a finite element procedure for the static indentation of circular GLARE plates which are now used during the loading stage. Here, considering that aluminum layers are in a state of membrane yield and employing energy balance during unloading, the unloading path is determined. Using this unloading path, an algebraic equation is derived for calculating the permanent dent depth of the GLARE plate after the indentor's withdrawal. Furthermore, our finite element procedure is modified in order to simulate the unloading stage as well. The derived formulas and the proposed finite element modeling procedure are applied successfully to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates. The analytical results are compared with corresponding FEM results and a good agreement is found. The analytically calculated permanent dent depth is within 6 % for the GLARE 2 plate, and within 7 % for the GLARE 3 plate, of the corresponding numerically calculated result. No other solution of this problem is known to the authors.

  3. The effect of acute mechanical left ventricular unloading on ovine tricuspid annular size and geometry.

    PubMed

    Malinowski, Marcin; Wilton, Penny; Khaghani, Asghar; Brown, Michael; Langholz, David; Hooker, Victoria; Eberhart, Lenora; Hooker, Robert L; Timek, Tomasz A

    2016-09-01

    Left ventricular assist device (LVAD) implantation may alter right ventricular shape and function and lead to tricuspid regurgitation. This in turn has been reported to be a determinant of right ventricular (RV) failure after LVAD implantation, but the effect of mechanical left ventricular (LV) unloading on the tricuspid annulus is unknown. The aim of the study was to provide insight into the effect of LVAD support on tricuspid annular geometry and dynamics that may help to optimize LV unloading with the least deleterious effect on the right-sided geometry. In seven open-chest anaesthetized sheep, nine sonomicrometry crystals were implanted on the right ventricle. Additional nine crystals were implanted around the tricuspid annulus, with one crystal at each commissure defining three separate annular regions: anterior, posterior and septal. Left ventricular unloading was achieved by connecting a cannula in the left atrium and the aorta to a continuous-flow pump. The pump was used for 15 min at a full flow of 3.8 ± 0.3 l/min. Epicardial echocardiography was used to assess the degree of tricuspid insufficiency. Haemodynamic, echocardiographic and sonomicrometry data were collected before and during full unloading. Tricuspid annular area, and the regional and total perimeter were calculated from crystal coordinates, while 3D annular geometry was expressed as the orthogonal distance of each annular crystal to the least squares plane of all annular crystals. There was no significant tricuspid regurgitation observed either before or during LV unloading. Right ventricular free wall to septum diameter increased significantly at end-diastole during unloading from 23.6 ± 5.8 to 26.3 ± 6.5 mm (P = 0.009), but the right ventricular volume, tricuspid annular area and total perimeter did not change from baseline. However, the septal part of the annulus significantly decreased its maximal length (38.6 ± 8.1 to 37.9 ± 8.2 mm, P = 0.03). Annular contraction was not altered. The tricuspid annulus had a complex 3D saddle-shaped geometry that was unaffected during experimental conditions. In healthy sheep hearts, left ventricular unloading increased septal-free wall RV diameter and reduced the length of the septal annulus, without altering the motion or geometry of the tricuspid annulus. Acute left ventricular unloading alone in healthy sheep was not sufficient to significantly perturb tricuspid annular dynamics and result in tricuspid insufficiency. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Miniaturized dielectric waveguide filters

    NASA Astrophysics Data System (ADS)

    Sandhu, Muhammad Y.; Hunter, Ian C.

    2016-10-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  5. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  6. Moderate tibia axial loading promotes discordant response of bone composition parameters and mechanical properties in a hindlimb unloading rat model.

    PubMed

    Yang, Peng-Fei; Huang, Ling-Wei; Nie, Xiao-Tong; Yang, Yue; Wang, Zhe; Ren, Li; Xu, Hui-Yun; Shang, Peng

    2018-06-01

    The purpose of the present study was to characterize the dynamic alterations of bone composition parameters and mechanical properties to disuse and mechanical intervention. A tail suspension hindlimb unloading model and an in vivo axial tibia loading model in rats were used. A moderate mechanical loading that was capable of engendering 800 µε tibia strain was applied to the right tibia of rats in both control and hindlimb unloading group across 28 days of the experimental period. The contralateral tibia served as control. Hindlimb unloading led to bone loss in tibia from day 14. Bone mineral density, mineral content and mechanical properties responded differently with microstructure to disuse in timing course. Mechanical loading of 800 µε tibia strain failed to alter the bone of the control group, but minimized the detrimental effects of unloading by completely prohibiting the decrease of bone mineral content and main mechanical properties after 28 days. Less obvious influence of mechanical loading on bone microstructure was found. The moderate mechanical loading is not able to stimulate the mechanical response of healthy tibia, but indeed lead to discordant recovery of bone composition parameters and mechanical properties.

  7. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Halloran, B. P.; Morey-Holton, E. R.; Bikle, D. D.

    1997-01-01

    Loss of weight bearing in the growing rat decreases bone formation, osteoblast numbers, and bone maturation in unloaded bones. These responses suggest an impairment of osteoblast proliferation and differentiation. To test this assumption, we assessed the effects of skeletal unloading using an in vitro model of osteoprogenitor cell differentiation. Rats were hindlimb elevated for 0 (control), 2, or 5 days, after which their tibial bone marrow stromal cells (BMSCs) were harvested and cultured. Five days of hindlimb elevation led to significant decreases in proliferation, alkaline phosphatase (AP) enzyme activity, and mineralization of BMSC cultures. Differentiation of BMSCs was analyzed by quantitative competitive polymerase chain reaction of cDNA after 10, 15, 20, and 28 days of culture. cDNA pools were analyzed for the expression of c-fos (an index of proliferation), AP (an index of early osteoblast differentiation), and osteocalcin (a marker of late differentiation). BMSCs from 5-day unloaded rats expressed 50% less c-fos, 61% more AP, and 35% less osteocalcin mRNA compared with controls. These data demonstrate that cultured osteoprogenitor cells retain a memory of their in vivo loading history and indicate that skeletal unloading inhibits proliferation and differentiation of osteoprogenitor cells in vitro.

  8. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Suitable provison must be made to allow for thermal expansion and contraction. (1) Loading and unloading... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32...

  9. 76 FR 27300 - Hazardous Materials: Cargo Tank Motor Vehicle Loading and Unloading Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Motor Vehicle Loading and Unloading Operations AGENCY: Pipeline and Hazardous Materials Safety... cargo tank motor vehicle proposals in this notice, we are providing affected entities as well as the...

  10. VIEW OF UNLOADING STATION THAT WAS ADDED IN 1997. SUGAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF UNLOADING STATION THAT WAS ADDED IN 1997. SUGAR BIN AND MILL IN RIGHT BACKGROUND. VIEW FROM THE NORTHEAST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  11. Insulin effect on amino acid uptake by unloaded rat hindlimb muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Tischler, M. E.

    1988-01-01

    The effect of insulin on the uptake of alpha-amino-isobutyric acid (AIB) by unloaded rat hindlimb muscles was investigated using soleus and extensor digitorum longus (EDL) muscles from intact and adrenalectomized (ADX) rats that were tail-casted for six days. It was found that, at insulin levels above 0.00001 units/ml, the in vitro rate of AIB uptake by muscles from intact animals was stimulated more in the weight bearing muscles than in unloaded ones. In ADX animals, this differential response to insulin was abolished.

  12. Looking southeast at coal conveyor leading from the coal unloading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at coal conveyor leading from the coal unloading station to the coal elevator. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  13. The use of satellites in non-goestationary orbits for unloading geostationary communication satellite traffic peaks. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Price, K.; Turner, A.; Nguyen, T.; Doong, W.; Weyandt, C.

    1987-01-01

    The part of the geostationary (GEO) orbital arc used for United States domestic fixed, communications service is rapidly becoming filled with satellites. One of the factors currently limiting its utilization is that communications satellites must be designed to have sufficient capacity to handle peak traffic leads, and thus are under utilized most of the time. A solution is to use satellites in suitable non-geostationary orbits to unload the traffic peaks. Three different designs for a non-geostationary orbit communications satellite system are presented for the 1995 time frame. The economic performance is analyzed and compared with geostationary satellites for two classes of service, trunking and customer premise service. The result is that the larger payload of the non-geostationary satellite offsets the burdens of increased complexity and worse radiation environment to give improved economic performance. Depending on ground terminal configuration, the improved economic performance of the space segment may be offset by increased ground terminal expenses.

  14. Changes in bone structure and metabolism during simulated weightlessness: Endocrine and dietary factors

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Wronski, T. J.

    1985-01-01

    The role of vitamin D, PTH and corticosterone in the skeletal alterations induced by simulated weightlessness was examined. The first objective was to determine if changes in the serum concentrations of Ca, P sub i, osteocalcin, 25-OH-D, 24,25(OH)2D or 1,25(OH)2D also occur following acute skeletal unloading. Animals were either suspended or pair fed for 2, 5, 7, 10, 12 and 15 days and the serum concentrations of Ca, P sub i, osteocalcin and the vitamin D metabolites measured. Bone histology was examined at day 5 after suspension. Acute skeletal unloading produced a transient hypercalcemia, a significant fall in serum osteocalcin and serum 1,25(OH)2D, a slight rise in serum 24,25(OH)2D, but did not affect the serum concentrations of P sub i or 25-OH-D. At the nadir in serum 1,25(OH)2D serum osteocalcin was reduced by 22%, osteoblast surface by 32% and longitudinal bone growth by 21%.

  15. Group Housing During Hindlimb Unloading to Simulate Weightlessness

    NASA Technical Reports Server (NTRS)

    Tahimic, Candice; Lowe, Moniece; Steczina, Sonette; Torres, Samantha; Terada, Masahiro; Schreurs, Ann-Sofie; Ronca, April; Alwood, Joshua; Globus, Ruth K.

    2017-01-01

    The rodent hindlimb unloading (HU) model was developed in the 1980s to faciliate the study of mechanisms, responses, and treatments for the adverse effects of spaceflight. A number of variations on unloading systems and cage designs have been developed, although most entail individually housing the HU animals. In this study, we performed hindlimb unloading under group housing conditions. Our preliminary results indicate that HU animals that were group housed for 30 days, displayed musculoskeletal decrements associated with disuse, and further, body weights did not differ compared to age-matched controls. In conclusion, group housing of HU mice provides a novel means to simulate weightlessness under conditions that more closely resemble living conditions of Rodent Research Project ISS flight hardware habitats, and minimizes the social stress of isolation, which is consistent with current animal welfare standards (Guide for the Care and Use of Laboratory Animals: Eighth Edition, National Research Council).

  16. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways

    PubMed Central

    Brooks, Naomi E.; Myburgh, Kathryn H.

    2014-01-01

    Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy. PMID:24672488

  17. Dust exposure in workers from grain storage facilities in Costa Rica.

    PubMed

    Rodríguez-Zamora, María G; Medina-Escobar, Lourdes; Mora, Glend; Zock, Jan-Paul; van Wendel de Joode, Berna; Mora, Ana M

    2017-08-01

    About 12 million workers are involved in the production of basic grains in Central America. However, few studies in the region have examined the occupational factors associated with inhalable dust exposure. (i) To assess the exposure to inhalable dust in workers from rice, maize, and wheat storage facilities in Costa Rica; (ii) to examine the occupational factors associated with this exposure; and (iii) to measure concentrations of respirable and thoracic particles in different areas of the storage facilities. We measured inhalable (<100μm) dust concentrations in 176 personal samples collected from 136 workers of eight grain storage facilities in Costa Rica. We also measured respirable (<4μm) and thoracic (<10μm) dust particles in several areas of the storage facilities. Geometric mean (GM) and geometric standard deviation (GSD) inhalable dust concentrations were 2.0mg/m 3 and 7.8 (range=<0.2-275.4mg/m 3 ). Personal inhalable dust concentrations were associated with job category [GM for category/GM for administrative staff and other workers (95% CI)=4.4 (2.6, 7.2) for packing; 20.4 (12.3, 34.7) for dehulling; 109.6 (50.1, 234.4) for unloading in flat bed sheds; 24.0 (14.5, 39.8) for unloading in pits; and 31.6 (18.6, 52.5) for drying], and cleaning task [15.8 (95% CI: 10.0, 26.3) in workers who cleaned in addition to their regular tasks]. Higher area concentrations of thoracic dust particles were found in wheat (GM and GSD=4.3mg/m 3 and 4.5) and maize (3.0mg/m 3 and 3.9) storage facilities, and in grain drying (2.3mg/m 3 and 3.1) and unloading (1.5mg/m 3 and 4.8) areas. Operators of grain storage facilities showed elevated inhalable dust concentrations, mostly above international exposure limits. Better engineering and administrative controls are needed. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Exploring the effect of East Antarctic ice mass loss on GIA-induced horizontal bedrock motions

    NASA Astrophysics Data System (ADS)

    Konfal, S. A.; Whitehouse, P. L.; Hermans, T.; van der Wal, W.; Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Dalziel, I.; Smalley, R., Jr.

    2017-12-01

    Ice history inputs used in Antarctic models of GIA include major centers of ice mass loss in West Antarctica. In the Transantarctic Mountains (TAM) region spanning the boundary between East and West Antarctica, horizontal crustal motions derived from GPS observations from the Antarctic Network (ANET) component of the Polar Earth Observing Network (POLENET) are towards these West Antarctic ice mass centers, opposite to the pattern of radial crustal motion expected in an unloading scenario. We investigate alternative ice history and earth structure inputs to GIA models in an attempt to reproduce observed crustal motions in the region. The W12 ice history model is altered to create scenarios including ice unloading in the Wilkes Subglacial Basin based on available glaciological records. These altered ice history models, along with the unmodified W12 ice history model, are coupled with 60 radially varying (1D) earth model combinations, including approximations of optimal earth profiles identified in published GIA models. The resulting model-predicted motions utilizing both the modified and unmodified ice history models fit ANET GPS-derived crustal motions in the northern TAM region for a suite of earth model combinations. Further south, where the influence of simulated Wilkes unloading is weakest and West Antarctic unloading is strongest, observed and predicted motions do not agree. The influence of simulated Wilkes ice unloading coupled with laterally heterogeneous earth models is also investigated. The resulting model-predicted motions do not differ significantly between the original W12 and W12 with simulated Wilkes unloading ice histories.

  19. What Does a Multilayer Canopy Model Tell Us About Our Current Understanding of Snow-Canopy Unloading?

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.

    2017-12-01

    In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.

  20. 77. Neg. No. F65A, Apr 13, 1930, INTERIORASSEMBLY BUILDING, UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. Neg. No. F-65A, Apr 13, 1930, INTERIOR-ASSEMBLY BUILDING, UNLOADING THE ENAMEL OVEN - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  1. Metabolic adaptation of skeletal muscles to gravitational unloading

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding creatine analogue β-guanidinopropionic acid 17-19. Tension production may be inhibited in unloaded antigravity muscles 20, although the muscular activity detected by electromyography is not necessarily decreased 21. Thus, the contents of high-energy phosphates or turnover rate of adenosine triphosphate (ATP), which then affect the mitochondrial energy metabolism, may be altered. Therefore, the responses of high-energy phosphates and metabolic properties of rat hindlimb muscles to gravitational unloading were investigated.

  2. Bone Density and High Salt Diets in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Arnaud, S. B.; Navidi, M.; Liang, M. T. C.; Wolinsky, I.

    1999-01-01

    High salt diets accelerate bone loss with aging in patients with postmenopausal osteoporosis except when calcium supplementation is provided. We have observed that the decrease in mineral content of growing femurs in juvenile rats, exposed to a space flight model which unloads the hind limbs , is substantially less in animals fed excess salt. To determine whether excess dietary salt has the same effect on the skeleton of the mature animal whose response to unloading is increased resorption and bone loss rather than impaired growth, we carried out a metabolic study in mature rats with hindlimbs unloaded by tailsuspension.

  3. Role(s) of Gravitational Loading on the Growth-Related Transformation of Fiber Phenotype in Rat Soleus

    NASA Astrophysics Data System (ADS)

    Ohira, Yoshinobu; Kawano, Fuminori; Goto, Katsumasa; Terada, Masahiro; Ohira, Takashi; Nakai, Naoya; Higo, Yoko; Yoshioka, Toshitada

    2008-06-01

    Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from the postnatal day 4 to month 3 and the reloading was allowed for 3 months in some rats. Single expression of type I myosin heavy chain (MHC) was observed in ~82% fibers in 3month old controls, but fibers expressing multiple MHC iso-forms were noted in the unloaded rats. Responses of fast or slow MHC protein expression to growth and/or unloading were not directly related to mRNA expression. Although 97% fibers in 3month old controls had a single neuromuscular junction at the central region of fiber, fibers with multiple nerve endplates were seen in the unloaded group. Faster contraction speed and lower maximal tension development, even after normalization with fiber size, were observed in the unloaded pure type I MHC fibers. These parameters generally returned to the age-matched control levels after reloading. It was suggested that antigravity-related tonic activity plays an important role in the gain of single neural innervation and of slow contractile properties and phenotype in soleus muscle fibers, which are not directly related to gene expression.

  4. The substorm loading-unloading cycle as reproduced by community-available global MHD magnetospheric models

    NASA Astrophysics Data System (ADS)

    Gordeev, Evgeny; Sergeev, Victor; Tsyganenko, Nikolay; Kuznetsova, Maria; Rastaetter, Lutz; Raeder, Joachim; Toth, Gabor; Lyon, John; Merkin, Vyacheslav; Wiltberger, Michael

    2017-04-01

    In this study we investigate how well the three community-available global MHD models, supported by the Community Coordinated Modeling Center (CCMC NASA), reproduce the global magnetospheric dynamics, including the loading-unloading substorm cycle. We found that in terms of global magnetic flux transport CCMC models display systematically different response to idealized 2-hour north then 2-hour south IMF Bz variation. The LFM model shows a depressed return convection in the tail plasma sheet and high rate of magnetic flux loading into the lobes during the growth phase, as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded/unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. BATSRUS and Open GGCM models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. Our study shows that different CCMC models under the same solar wind conditions (north to south IMF variation) produce essentially different solutions in terms of global magnetospheric convection.

  5. Impact of GDP Information Technology in Developing of Regional Central Business (Case 50 Airports IT City Development in Indonesia)

    NASA Astrophysics Data System (ADS)

    Suyono, Joko; Sukoco, Agus; Ikhsan Setiawan, M.; Suhermin; Rahim, Robbi

    2017-12-01

    Indonesia a great number of populations and demand of air transportation services keep increasing by the year in line with the increasing of population and welfare its people. Need for telematics solutions to support goods transport and distribution in cities is mainly due to the complexity of the processes taking place in urban transport systems and the importance of the optimisation of transport operations via ensuring adequate availability of linear and point infrastructure, while reducing the adverse impacts of the transport system on the environment. Efficient infrastructure supports economic growth, improves quality of life, and it is important for national security. Impact of GDP Information Technology in developing of Regional Central Business especially SME Business, are very large correlations and very significant supported by Passenger Arrival and Departure, Baggage Loaded and Unloaded, Cargo Loaded and Unloaded, Separated regional asset, Grant, Capital Expenditure, Investment of Regional Gov., GDP Agriculture-Forestry-Fishing, GDP Manufacturing, GDP Electricity-Gas, GDP Water supply- Sewerage-Waste Management-Remediation Activities, GDP Financial-Insurance Activities, GDP Business Activities, GDP Public Administration and Defense-Compulsory Social Security, GDP Education and GDP Other Services Activities

  6. Navigation Concepts for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Long, Anne; Leung, Dominic; Kelbel, David; Beckman, Mark; Grambling, Cheryl

    2003-01-01

    This paper evaluates the performance that can be achieved using candidate ground and onboard navigation approaches for operation of the James Webb Space Telescope, which will be in an orbit about the Sun-Earth L2 libration point. The ground navigation approach processes standard range and Doppler measurements from the Deep Space Network The onboard navigation approach processes celestial object measurements and/or ground-to- spacecraft Doppler measurements to autonomously estimate the spacecraft s position and velocity and Doppler reference frequency. Particular attention is given to assessing the absolute position and velocity accuracy that can be achieved in the presence of the frequent spacecraft reorientations and momentum unloads planned for this mission. The ground navigation approach provides stable navigation solutions using a tracking schedule of one 30-minute contact per day. The onboard navigation approach that uses only optical quality celestial object measurements provides stable autonomous navigation solutions. This study indicates that unmodeled changes in the solar radiation pressure cross-sectional area and modeled momentum unload velocity changes are the major error sources. These errors can be mitigated by modeling these changes, by estimating corrections to compensate for the changes, or by including acceleration measurements.

  7. 29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE M. HUMPHREY'S' CARGO OF 25,000. TONS OF ORE. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  8. Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Fluck, M.; Booth, F. W.

    2001-01-01

    This investigation examined the effect of mechanical loading state on focal adhesion kinase (FAK), paxillin, and serum response factor (SRF) in rat skeletal muscle. We found that FAK concentration and tyrosine phosphorylation, paxillin concentration, and SRF concentration are all lower in the lesser load-bearing fast-twitch plantaris and gastrocnemius muscles compared with the greater load-bearing slow-twitch soleus muscle. Of these three muscles, 7 days of mechanical unloading via tail suspension elicited a decrease in FAK tyrosine phosphorylation only in the soleus muscle and decreases in FAK and paxillin concentrations only in the plantaris and gastrocnemius muscles. Unloading decreased SRF concentration in all three muscles. Mechanical overloading (via bilateral gastrocnemius ablation) for 1 or 8 days increased FAK and paxillin concentrations in the soleus and plantaris muscles. Additionally, whereas FAK tyrosine phosphorylation and SRF concentration were increased by < or =1 day of overloading in the soleus muscle, these increases did not occur until somewhere between 1 and 8 days of overloading in the plantaris muscle. These data indicate that, in the skeletal muscles of rats, the focal adhesion complex proteins FAK and paxillin and the transcription factor SRF are generally modulated in association with the mechanical loading state of the muscle. However, the somewhat different patterns of adaptation of these proteins to altered loading in slow- vs. fast-twitch skeletal muscles indicate that the mechanisms and time course of adaptation may partly depend on the prior loading state of the muscle.

  9. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    PubMed

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading.

    PubMed

    Imole, Olukayode I; Wojtkowski, Mateusz; Magnanimo, Vanessa; Luding, Stefan

    2014-04-01

    The influence of contact friction on the behavior of dense, polydisperse granular assemblies under uniaxial (oedometric) loading and unloading deformation is studied using discrete element simulations. Even though the uniaxial deformation protocol is one of the "simplest" element tests possible, the evolution of the structural anisotropy necessitates its careful analysis and understanding, since it is the source of interesting and unexpected observations. On the macroscopic, homogenized, continuum scale, the deviatoric stress ratio and the deviatoric fabric, i.e., the microstructure behave in a different fashion during uniaxial loading and unloading. The maximal stress ratio and strain increase with increasing contact friction. In contrast, the deviatoric fabric reaches its maximum at a unique strain level independent of friction, with the maximal value decreasing with friction. For unloading, both stress and fabric respond to unloading strain with a friction-dependent delay but at different strains. On the micro-level, a friction-dependent non-symmetry of the proportion of weak (strong) and sliding (sticking) contacts with respect to the total contacts during loading and unloading is observed. Coupled to this, from the directional probability distribution, the "memory" and history-dependent behavior of granular systems is confirmed. Surprisingly, while a rank-2 tensor is sufficient to describe the evolution of the normal force directions, a sixth order harmonic approximation is necessary to describe the probability distribution of contacts, tangential force, and mobilized friction. We conclude that the simple uniaxial deformation activates microscopic phenomena not only in the active Cartesian directions, but also at intermediate orientations, with the tilt angle being dependent on friction, so that this microstructural features cause the interesting, nontrivial macroscopic behavior.

  11. Electrical stimulation at the dorsal root ganglion preserves trabecular bone mass and microarchitecture of the tibia in hindlimb-unloaded rats.

    PubMed

    Lau, Y-C; Qian, X; Po, K-T; Li, L-M; Guo, X

    2015-02-01

    This study seeks to investigate the effect of electrical stimulation (ES) at dorsal root ganglion (DRG) on disuse bone loss in a rat model. Hindlimb unloading for 14 days resulted in significant bone loss in rat tibia while rats with ES at DRG showed a significant reduced bone loss Mechanical unloading induces osteoporosis in both human and animals. Previous studies demonstrated that electrical stimulation (ES) to dorsal root ganglion (DRG) could trigger secretion of calcitonin gene-related peptide (CGRP) which plays an important role in bone modeling and remodeling. This study seeks to investigate the effect of ES to DRG on disuse bone loss in a rat model. Twenty-four rats were randomly assigned in three experimental groups: cage control (CC), hindlimb unloading (HU), and hindlimb unloading with ES (HUES). ES was applied via implantable micro-electrical stimulators (IMES) to right DRGs at vertebral levels L4-L6 in HUES group. Hindlimb unloading for 14 days resulted in 25.9% decrease in total bone mineral content (BMC), 29.2% decrease in trabecular BMD and trabecular microarchitecture and connectivity were significantly deteriorated in the proximal tibia metaphysis in HU group, while rats with ES at DRG showed significant reduced bone loss that there was 3.8% increase in total BMC, 2.3% decrease in trabecular BMD, and significant improvement in trabecular microarchitecture. There was a concurrent enhancement of expression of CGRP in stimulated DRGs. The results confirm the effect of ES at DRG on enhancing CGRP expression and suggest potential applications of IMES for the prevention and treatment of disuse bone loss.

  12. Curcumin counteracts loss of force and atrophy of hindlimb unloaded rat soleus by hampering neuronal nitric oxide synthase untethering from sarcolemma

    PubMed Central

    Vitadello, Maurizio; Germinario, Elena; Ravara, Barbara; Libera, Luciano Dalla; Danieli-Betto, Daniela; Gorza, Luisa

    2014-01-01

    Antioxidant administration aimed to antagonize the development and progression of disuse muscle atrophy provided controversial results. Here we investigated the effects of curcumin, a vegetal polyphenol with pleiotropic biological activity, because of its ability to upregulate glucose-regulated protein 94 kDa (Grp94) expression in myogenic cells. Grp94 is a sarco-endoplasmic reticulum chaperone, the levels of which decrease significantly in unloaded muscle. Rats were injected intraperitoneally with curcumin and soleus muscle was analysed after 7 days of hindlimb unloading or standard caging. Curcumin administration increased Grp94 protein levels about twofold in muscles of ambulatory rats (P < 0.05) and antagonized its decrease in unloaded ones. Treatment countered loss of soleus mass and myofibre cross-sectional area by approximately 30% (P ≤ 0.02) and maintained a force–frequency relationship closer to ambulatory levels. Indexes of muscle protein and lipid oxidation, such as protein carbonylation, revealed by Oxyblot, and malondialdehyde, measured with HPLC, were significantly blunted in unloaded treated rats compared to untreated ones (P = 0.01). Mechanistic involvement of Grp94 was suggested by the disruption of curcumin-induced attenuation of myofibre atrophy after transfection with antisense grp94 cDNA and by the drug-positive effect on the maintenance of the subsarcolemmal localization of active neuronal nitric oxide synthase molecules, which were displaced to the sarcoplasm by unloading. The absence of additive effects after combined administration of a neuronal nitric oxide synthase inhibitor further supported curcumin interference with this pro-atrophic pathway. In conclusion, curcumin represents an effective and safe tool to upregulate Grp94 muscle levels and to maintain muscle function during unweighting. PMID:24710058

  13. Extending Rest between Unloading Cycles Does Not Enhance Bone's Long-Term Recovery.

    PubMed

    Manske, Sarah L; Vijayaraghavan, Surabhi; Tuthill, Alyssa; Brutus, Olivier; Yang, Jie; Gupta, Shikha; Judex, Stefan

    2015-10-01

    Multiple exposures to unloading are overall more deleterious to the skeleton than is single exposure, although the rate of bone loss may diminish during multiple exposures. Here, we determined whether extending the reambulation (RA) period from 3 wk to 9 wk will mitigate bone loss during three distinct 3-wk hindlimb unloading (HLU) periods and enhance long-term recovery in skeletally mature, genetically heterogeneous mice. Female adult mice (4 months old) were subjected to three cycles of 3-wk unloading with 3-wk or 9-wk RA periods in between. Mice were terminated 46 wk after initiation of the study. Outcome measures for the distal femur were determined from multiple in vivo micro-computed tomography scans and finite-element modeling. Tripling RA duration enhanced trabecular bone recovery in between HLU periods but also increased the rate of loss of bone volume fraction (bone volume/tissue volume) and metaphyseal stiffness during subsequent HLU periods. With shorter RA periods, the magnitude of bone loss decreased by the second HLU period, whereas this decrease was delayed with longer RA periods. RA duration did not affect long-term recovery 46 wk after the start of the experimental protocol, as both HLU groups had similar levels of bone volume/tissue volume, cortical area, and stiffness. Individual cage activity levels were unrelated to the magnitude of bone loss during HLU or bone recovery during RA. These data suggest that extending recovery duration between periods of unloading may provide temporary benefits but is an ineffective long-term strategy for combating the devastation of trabecular morphology and mechanics, as temporarily enhanced recovery is largely cancelled out by greater susceptibility to unloading. They also emphasize that cortical bone is more amenable to long-term recovery than is trabecular bone.

  14. The influence of antiorthostatic unloading and long gamma-irradiation on rat bone marrow (MSCs)

    NASA Astrophysics Data System (ADS)

    Roe, Maria; Bobyleva, Polina; Shtemberg, Andrey; Buravkova, Ludmila

    With the prospect of long interplanetary spaceflight becoming a real possibility there are some important questions that need to be answered regarding the combined effects of microgravity and long gamma-irradiation.The aim of this study was to evaluate the effects of synchronous antiorthostatic unloading and fractional gamma-irradiation on the functional characteristics of rat bone marrow multipotent stromal cells (MSCs).This experiment was carried out following all rules laid out by the Commission on Bioethics at the SSC RF - IBMP RAS. In this experiment the Wistar rats were kept in an unloaded position for a duration of 30 days. They were also subjected to 6 doses of gamma-radiation on the “GOBO-60” with a source of (137) Cs. The dose rate set to 1 meter 50 sGr / H (Total dose of 3 Gr).The study revealed a significant reduction in the number of colonies (CFU-F) in all cultures from the experimental groups when compared to the control groups. The most significant reduction was observed in the group, which had been subject to combined unloading, and radiation. This result was confirmed by examination of cell cultures during 10 days of growth.We found that the CD45 expression was increased in the groups exposed to radiation. At the same time a reduction in the expression of CD90 was observed during combination of radiation and unloading we found.The experimental groups also differed from the control group showing smaller lipid inclusions and decreased expression of alkaline phosphates in the MSCs. This experiment concluded that the bone marrow MSCs after a combination of unloading and multiple radiation sessions, showed a decrease in proliferation and differentiation potential which could reduce the adaption and reparative capacity of the organism.

  15. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.

    PubMed

    Anderson, Matthew J; Diko, Sindi; Baehr, Leslie M; Baar, Keith; Bodine, Sue C; Christiansen, Blaine A

    2016-10-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30-44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within 1 week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss; however, it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss; however, HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1680-1687, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice

    PubMed Central

    Anderson, Matthew J.; Diko, Sindi; Baehr, Leslie M.; Baar, Keith; Bodine, Sue C.; Christiansen, Blaine A.

    2016-01-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30–44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within one week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss, however it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss, however HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. PMID:26826014

  17. Influence of the Biasing Scheme on the Performance of Au/SrTiO3/LaAlO3 Thin Film Conductor/Ferroelectric Tunable Ring Resonators

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Bohman, D. Y.; Miranda, F. A.

    1998-01-01

    The performance of gold/SrTio3 /LaAlO3 conductor/ferroelectric/dielectric side-coupled, tunable ring resonators at K-band frequencies is presented. The tunability of these rings arises from the sensitivity of the relative dielectric constant (Er) of SrTiO 3 to changes in temperature and dc electric fields (E). We observed that the change in F-, which takes place by biasing the ring up to 450 V alters the effective dielectric constant (e-eff) of the circuit resulting in a 3k resonant frequency shift of nearly 12 % at 77 K. By applying a separate dc bias between the microstrip line and the ring, one can optimize their coupling to obtain bandstop resonators with unloaded quality factors (Q(sub o)) as high as 12,000. The 31 resonance was tuned from 15.75 to 17.41 GHz while keeping Q. above 768 over this range. The relevance of these results for practical microwave components will be discussed.

  18. The Future of Adult Cardiac Assist Devices: Novel Systems and Mechanical Circulatory Support Strategies

    PubMed Central

    Bartoli, Carlo R.; Dowling, Robert D.

    2011-01-01

    Synopsis The recent, widespread success of mechanical circulatory support has ushered in a new era of cardiovascular medicine in which numerous implantable devices exist to treat advanced heart failure. As cardiac assist devices gain prevalence in the clinical management of cardiovascular disease, it is increasingly important to raise awareness of novel device systems, the unique mechanisms by which they function, and implications for patient management. In this article, we present state-of-the-art devices that are currently under development or in clinical trials. Devices are categorized as Standard Full-Support (HeartMate III, CorAide, Evaheart LVAS), Less-Invasive Full-Support (MVAD), Partial-Support (CircuLite Synergy Pocket Micro-Pump, Reitan Catheter Pump, Procyrion CAD, C-Pulse, Symphony Counterpulsation Device) Right Ventricular Assist Device (RVAD; DexAide, Impella RD Recover, Impella RP), and Total Artificial Heart (TAH; CardioWest, AbioCor II, Continuous-Flow TAH, Continuous-Flow BiVAD). Implantation strategy, mechanism of action, durability, efficacy, hemocompatibility, and human factors such as quality of life during device support are considered. The feasibility of novel strategies for unloading the failing heart is examined. PMID:22062206

  19. PERFORMANCE VERIFICATION OF SHIP BALLAST WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Ships use ballast water to provide stability during voyages and during loading and unloading operations. Water is taken on at one port when cargo is unloaded and usually discharged at another port when the ship receives cargo. Because sediments and/or organisms ranging in size ...

  20. Wheel Unloading of Rail Vehicles Due to Track Twist

    DOT National Transportation Integrated Search

    1986-02-01

    An analysis is presented describing the effect that track twist has on the loads carried by the wheels of a rail car. Wheel unloading is determined as a function of the difference in crosslevel between the truck centers of the car. The different vehi...

  1. 39. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also see OH-18-14, OH-18-38, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  2. 40. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also see OH-18-14, OH-18-38, and OH-18-39) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  3. Mechanical Signal Transduction in Countermeasures to Muscle Atrophy

    NASA Technical Reports Server (NTRS)

    Tidball, James G.; Chu, Amy (Technical Monitor)

    2002-01-01

    We have shown that modifications in muscle use result in changes in the expression and activity of calpains and nitric oxide synthase (NOS). Although muscle unloading for 10 days produced no change in the concentrations of calpain 1 or 2 and no change in calpain activation, muscle reloading produced a 90% increase in calpain 2 concentration. We developed an in vitro model to test our hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. Talin was selected because it is a well-characterized calpain substrate and it is codistributed with calpain in muscle cells. We found that intermittant loading during hindlimb suspension that is sufficient to prevent muscle mass loss that occurs during muscle unloading is also sufficient to prevent the decrease in NOS expression that normally occurs during hindlimb unloading. These findings indicate that therapeutics directed toward regulating the calpain/calpastatin system may be beneficial in preventing muscle mass loss in muscle injury, unloading and disease.

  4. Tensile and compressive behavior of Borsic/aluminum

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.

    1977-01-01

    The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.

  5. Cardiopulmonary baroreceptors affect reflexive startle eye blink.

    PubMed

    Richter, S; Schulz, A; Port, J; Blumenthal, T D; Schächinger, H

    2009-12-07

    Baroafferent signals originating from the 'high pressure' arterial vascular system are known to impact reflexive startle eye blink responding. However, it is not known whether baroafferent feedback of the 'low pressure' cardiopulmonary system loading status exerts a similar effect. Lower Body Negative Pressure (LBNP) at gradients of 0, -10, -20, and -30mm Hg was applied to unload cardiopulmonary baroreceptors. Acoustic startle noise bursts were delivered 230 and 530ms after spontaneous R-waves, when arterial baroreceptors are either loaded or unloaded. Eye blink responses were measured by EMG, and psychomotor reaction time by button pushes to startle stimuli. The new finding of this study was that unloading of cardiopulmonary baroreceptors increases startle eye blink responsiveness. Furthermore, we replicated the effect of relative loading/unloading of arterial baroreceptors on startle eye blink responsiveness. Effects of either arterial or cardiopulmonary baroreceptor manipulations were not present for psychomotor reaction times. These results demonstrate that the loading status of cardiopulmonary baroreceptors has an impact on brainstem-based CNS processes.

  6. Muscle progenitor cells proliferation doesn't sufficiently contribute to maintaining stretched soleus muscle mass during gravitational unloading

    NASA Astrophysics Data System (ADS)

    Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.

    Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.

  7. Effects of immobilization on rat hind limb muscles under non-weight-bearing conditions

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Fagan, Julie M.; Satarug, Soisungwan; Cook, Paul H.; Tischler, Marc E.

    1988-01-01

    The effect of stretched and unstretched immobilization of a hind limb on the concentration and the metabolism of proteins in the hind-limb muscles of rats was investigated. The animals were divided into three groups: (1) weight-bearing controls, (2) tail-cast-suspended, and (3) suspended, with one hind limb immobilized with the ankle in dorsiflexion (30-40 deg angle) and the other freely moving. It was found that unloading the hind limbs for 6 days by tail cast suspension caused soleus to atrophy and reduced growth of the gastrocnemius and plantaris muscles; unloading resulted in a higher degradation rate and lower synthesis rate in both in vitro and in vivo. Chronic stretch of the unloaded soleus not only prevented its atrophy but led to significant hypertrophy, relative to weight-bearing controls, with increases in both the sarcoplasmic and myofibrillar protein fractions. Immobilizing one ankle in dorsiflexion prevented the inhibition of growth in the plantaris and gastrocnemius muscles due to unloading.

  8. Biochemical response to chronic shortening in unloaded soleus muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Fagan, J. M.; Tischler, M. E.

    1985-01-01

    One leg of tail-casted suspended rats was immobilized in a plantar-flexed position to test whether chronic shortening of posterior leg muscles affected the metabolic response to unloading. The immobilized plantaris and gastrocnemius muscles of these animals showed approximately 20 percent loss of muscle mass in contrast to simply a slower growth rate with unloading. Loss of mass of the soleus muscle during suspension was not accentuated by chronic shortening. Although protein degradation in the isolated soleus muscle of the plantar-flexed limb was slightly faster than in the contralateral free limb, this difference was offset by faster synthesis of the myofibrillar protein fraction of the chronically shortened muscle. Total adenine nucleotides were 17 percent lower (P less than 0.005) in the chronically shortened soleus muscle following incubation. Glutamate, glutamine, and alanine metabolism showed little response to chronic shortening. These results suggest that, in the soleus muscle, chronic shortening did not alter significantly the metabolic responses to unloading and reduced activity.

  9. High Salt Intake Promotes Urinary Loss of Vitamin D Metabolites by Dahl Salt-Sensitive Rats in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, M.; Cephas, S.; Sayavongsa, P.; Clark, T.; Arnaud, S. B.

    2004-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have demonstrated that female S rats are more vulnerable than female R rats to decreases in plasma 25-hydroxyvitamin D (25-OHD) and 1,25-dihydroxyvitamin D (1,25-(OH)2D) concentrations during hind limb unloading (a space flight model). We report here on the response of the vitamin D endocrine system of S and R rats to hind limb unloading during high salt intake. Dahl female rats (9.7-week-old) were tail-suspended (hind limb unloaded) for 28 days, while fed a diet containing twice the salt in standard rat chow (2 % sodium chloride). Control rats were fed the same diet, but were not hind limb unloaded. Vitamin D metabolites were analyzed by HPLC and radioimmunoassay kits from Diasorin.

  10. An electromyographic and kinematic comparison between an extendable conveyor system and an articulating belt conveyor used for truck loading and unloading tasks.

    PubMed

    Lavender, Steven A; Nagavarapu, Shasank; Allread, W Gary

    2017-01-01

    Many retail distribution centers (DCs) manually load and unload boxes into or out of trailers and shipping containers. This study investigated whether an articulating belt conveyor with a height adjustable platform, positioned at the end of an extendable conveyor, significantly reduces shoulder and back muscle loading and the spine kinematics associated with these tasks. Electromyographic and kinematic data were collected from eight volunteer employees as trailers at a shoe DC were unloaded and from nine volunteer employees as trailers at an apparel DC were loaded. Participants in this repeated measures study handled boxes with a conventional powered extendable conveyor system and with the articulating belt conveyor positioned at the end of the extendable conveyor. Bilaterally the normalized activation levels of the erector spinae and anterior deltoid muscles were reduced when loading and unloading boxes with the articulating belt conveyor. Spine movement speeds were also reduced with the articulating conveyor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tracking and Data Relay Satellite (TDRS-3) Range Biases and Momentum Unload Modeling for Terra (EOS-AMI)

    NASA Technical Reports Server (NTRS)

    Ward, Douglas T.

    2001-01-01

    The Flight Dynamics Facility (FDF) reports its performance in meeting Tracking and Data Relay Satellite (TDRS) predicted ephemeris accuracy requirements with TDRS-3. The Terra (Earth Observing System AM-1) satellite has 3-sigma TDRS requirements of 75 m for total position accuracy predicted over one day onboard. The study sample includes selected cases over 21 months after Guam Remote Ground Terminal (GRGT) support started in June 1998. For daily solutions with a 1.5-day prediction span, predicted results of the study were below the Terra requirement by at least 12 m. Refined range bias estimation and modeled momentum unloads are needed to meet Terra's requirements for TDRS-3. Maintained at 275 W longitude over the zone of exclusion, TDRS-3 is analyzed separately from other TDRSs because of its unique tracking data. Only the Bilateration Ranging Transponder (BRT) at Alice Springs (ALS), Australia, and the Telemetry, Tracking and Command (TT&C) system at Guam are used for routine operational tracking data for TDRS-3. Simultaneous batch orbit solutions with three TDRSs and either the Compton Gamma Ray Observatory (GRO) or Terra were done with the Goddard Trajectory Determination System (GTDS) to periodically refine the TT&C and BRT System (BRTS) range biases. As new biases were determined, significant changes were made in estimating the absolute position. FDF achieved similar results using a sequential filter with all operational TDRSs and four user satellites. Definitive accuracy (3-sigma) is expected to be below 50 m. The White Sands Complex (WSC) performs momentum unloads to maintain three-axis stabilized attitude of TDRSs. The relationship between velocity changes (delta-V) and reaction wheel speed changes was empirically determined for roll/yaw unloads. A theoretical relationship was verified and used for pitch unloads. Modeling both pitch and roll/yaw momentum unloads is necessary to meet the 75-m requirement. Moving the orbit solution epoch an hour before a momentum unload can improve delta-V optimization and prediction accuracy over 1.5 days.

  12. Macrophage deficiency in osteopetrotic (op/op) mice inhibits activation of satellite cells and prevents hypertrophy in single soleus fibers.

    PubMed

    Ohira, T; Wang, X D; Ito, T; Kawano, F; Goto, K; Izawa, T; Ohno, H; Kizaki, T; Ohira, Y

    2015-05-15

    Effects of macrophage on the responses of soleus fiber size to hind limb unloading and reloading were studied in osteopetrotic homozygous (op/op) mice with inactivated mutation of macrophage colony-stimulating factor (M-CSF) gene and in wild-type (+/+) and heterozygous (+/op) mice. The basal levels of mitotically active and quiescent satellite cell (-46 and -39% vs. +/+, and -40 and -30% vs. +/op) and myonuclear number (-29% vs. +/+ and -28% vs. +/op) in fibers of op/op mice were significantly less than controls. Fiber length and sarcomere number in op/op were also less than +/+ (-22%) and +/op (-21%) mice. Similar trend was noted in fiber cross-sectional area (CSA, -15% vs. +/+, P = 0.06, and -14% vs. +/op, P = 0.07). The sizes of myonuclear domain, cytoplasmic volume per myonucleus, were identical in all types of mice. The CSA, length, and the whole number of sarcomeres, myonuclei, and mitotically active and quiescent satellite cells, as well as myonuclear domain, in single muscle fibers were decreased after 10 days of unloading in all types of mice, although all of these parameters in +/+ and +/op mice were increased toward the control values after 10 days of reloading. However, none of these levels in op/op mice were recovered. Data suggest that M-CSF and/or macrophages are important to activate satellite cells, which cause increase of myonuclear number during fiber hypertrophy. However, it is unclear why their responses to general growth and reloading after unloading are different. Copyright © 2015 the American Physiological Society.

  13. Expression of heat shock protein 72 in atrophied rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Oishi, Y.; Ishihara, A.; Talmadge, R. J.; Ohira, Y.; Taniguchi, K.; Matsumoto, H.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Changes in the expression of heat shock protein 72 (HSP72) in response to atrophic-inducing perturbations of muscle involving chronic mechanical unloading and denervation were determined. Adult male Wistar rats were assigned randomly to a sedentary cage control (CON), hind limb unloading (HU, via tail suspension), HU plus tenotomy (HU + TEN), HU plus denervation (HU + DEN), or HU + TEN + DEN group. Tenotomy and DEN involved cutting the Achilles tendon and removing a segment of the sciatic nerve, respectively. After 5 days, HSP72 levels in the soleus of the HU + DEN and HU + TEN + DEN groups were 42 (P < 0.05) and 53% (P < 0.01) less than CON, respectively. Soleus weight decreased in both groups. Heat shock protein 72 levels in the plantaris of the HU + TEN, HU + DEN, and HU + TEN + DEN groups were 31, 25, and 30% lower than CON, respectively (P < 0.05). Plantaris weight decreased in the HU + DEN and HU + TEN + DEN, but not in the HU + TEN group. Hind limb unloading alone had little effect on the HSP72 level in either muscle. Reduced levels of HSP72 were associated with a decreased soleus (r=0.62, P < 0.01) and plantaris (r=0.78, P < 0.001) weight. These results indicate that the levels of HSP72 in both a slow and a fast rat plantarflexor are responsive to a chronic decrease in the levels of loading and/or activation and suggest that the neuromuscular activity level and the presence of innervation of a muscle are important factors that induce HSP72 expression.

  14. Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Gischig, Valentin S.; Ivy-Ochs, Susan; Loew, Simon

    2017-04-01

    Cycles of glaciation impose mechanical stresses on underlying bedrock as glaciers advance, erode, and retreat. Fracture initiation and propagation constitute rock mass damage and act as preparatory factors for slope failures; however, the mechanics of paraglacial rock slope damage remain poorly characterized. Using conceptual numerical models closely based on the Aletsch Glacier region of Switzerland, we explore how in situ stress changes associated with fluctuating ice thickness can drive progressive rock mass failure preparing future slope instabilities. Our simulations reveal that glacial cycles as purely mechanical loading and unloading phenomena produce relatively limited new damage. However, ice fluctuations can increase the criticality of fractures in adjacent slopes, which may in turn increase the efficacy of fatigue processes. Bedrock erosion during glaciation promotes significant new damage during first deglaciation. An already weakened rock slope is more susceptible to damage from glacier loading and unloading and may fail completely. We find that damage kinematics are controlled by discontinuity geometry and the relative position of the glacier; ice advance and retreat both generate damage. We correlate model results with mapped landslides around the Great Aletsch Glacier. Our result that most damage occurs during first deglaciation agrees with the relative age of the majority of identified landslides. The kinematics and dimensions of a slope failure produced in our models are also in good agreement with characteristics of instabilities observed in the field. Our results extend simplified assumptions of glacial debuttressing, demonstrating in detail how cycles of ice loading, erosion, and unloading drive paraglacial rock slope damage.

  15. Zeolite Degradation: An Investigation of CO2 Capacity Loss of 13x Sorbent

    NASA Technical Reports Server (NTRS)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Hogan, John; Knox, James C.

    2017-01-01

    System testing of the Carbon Dioxide Removal and Compression System (CRCS) has revealed that sufficient CO2 removal capability was not achieved with the designed system. Subsystem component analysis of the zeolite bed revealed that the sorbent material suffered significant degradation and CO2 loading capacity loss. In an effort to find the root cause of this degradation, various factors were investigated to try to reproduce the observed performance loss. These factors included contamination by vacuum pump oil, o-ring vacuum grease, loading/unloading procedures, and operations. This paper details the experiments that were performed and their results.

  16. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  17. Role of Growth Hormone, Exercise and Serum Phosphorus in Unloaded Bone of Young Rats

    NASA Technical Reports Server (NTRS)

    Arnnaud, Sara B.; Harper, J. S.; Gosselink, K. L.; Navidi, M.; Fung, P.; Grindeland, R. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone, known to be stimulated by exercise, is suppressed in rats after space flight and in a ground-based model in which the hind-limbs are unloaded (S). To determine the role of GH in the osteopenia of unloaded bones of S rats, young males were treated with GH combined with insulin-like growth factor-1 (IGF-1), a peptide that mediates the local actions of the hormone. 200 g rats, hypophysectomized (hypox) 17 d earlier, were treated with 1 mg/kg/d GH/IGF-1 (H) or saline (C) in 3 divided daily doses x10 d. Hind-limb bones were unloaded (S), ambulated (A) or exercised (X) by climbing a ladder while carrying a weight. Growth was monitored daily. Tibial growth plate (Tepi) was measured with a micrometer, and femoral (F) area, length, and mineral content (BMC) by DEXA. Parameters of calcium metabolism were measured by autoanalyzer and calciotropic hormones by radioimmunoassay. F bone density, g/square cm, (BMD) or BW were not affected by S in Hypox. However, FBMD was lower in S+H than A+H (p is less than 0.002) and H stimulated whole body growth in S (5.2 g/d) and SX (5.6 g/d) to a lesser extent than in A (6.6 g/d) (p is less than 0.05). Adjusted for BW, Tepi showed the greatest increase in S+H+X (64%), the next highest increase in S+H (50%) and no change in S+X. F area, length and BMC/100 g BW were lower in all H groups than respective C's. By multiple regression analysis, serum phosphorus (Pi) which correlated with Tepi (r = 0.88, p is less than 0.001) and was inversely related to FBMC (r = -0.68, p is less than 0.001) proved to be the most significant determinant of BMC. This illustrates the dependence of osteopenia in S on GH, the maximizing effect of X for epiphyseal growth and the major role of Pi metabolism on BMC in weight bearing bone during growth.

  18. 10. LOOKING DOWN ON TUG AND CAR FLOAT BEING UNLOADED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. LOOKING DOWN ON TUG AND CAR FLOAT BEING UNLOADED AT BRIDGE NO. 11 SHOWING TRACK, LOCKING MECHANISMS, AND MOORING WINCH IN FOREGROUND. LOOKING EAST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  19. 2. PHOSPHATE UNLOADING BUILDING. VIEW IS TO THE NORTH. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PHOSPHATE UNLOADING BUILDING. VIEW IS TO THE NORTH. THIS STRUCTURE WAS RELOCATED TO THE SOUTH OF ITS ORIGINAL SITE IN 1993 FOR USE AS A DECONTAMINATION FACILITY WITHIN THE BUNKER HILL SUPERFUND SITE. - North Idaho Phosphate Company, Silver King Community, Kellogg, Shoshone County, ID

  20. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. 4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF YAKI TRAIL. APPROXIMATELY TWO-AND-ONE-HALF TONS OF STEEL ON ANIMALS SHOWN. NOTE COIL OF 1-1/2' WIND CABLE IN FOREGROUND. - Kaibab Trail Suspension Bridge, Spanning Colorado River, Grand Canyon, Coconino County, AZ

  3. 9 CFR 93.302 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  4. 9 CFR 93.402 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... and other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  5. 9 CFR 93.302 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  6. 9 CFR 93.202 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... and other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  7. 9 CFR 93.202 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... and other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  8. 9 CFR 93.502 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  9. 9 CFR 93.402 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... and other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  10. 9 CFR 93.402 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... and other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  11. 9 CFR 93.502 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  12. 9 CFR 93.502 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  13. 9 CFR 93.202 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... and other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  14. 9 CFR 93.402 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... and other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  15. 9 CFR 93.302 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  16. 9 CFR 93.202 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... and other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  17. 9 CFR 93.502 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  18. 9 CFR 93.302 - Inspection of certain aircraft and other means of conveyance and shipping containers thereon...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... other means of conveyance and shipping containers thereon; unloading, cleaning, and disinfection... inspector. (c) Cleaning and disinfection: Whenever, upon inspection under this section, an inspector...

  19. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...

  20. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...

  1. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...

  2. 49 CFR 173.30 - Loading and unloading of transport vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Loading and unloading of transport vehicles. 173.30 Section 173.30 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND...

  3. 49 CFR 173.30 - Loading and unloading of transport vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Loading and unloading of transport vehicles. 173.30 Section 173.30 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND...

  4. 29 CFR 784.125 - Loading and unloading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPLICABLE TO FISHING AND OPERATIONS ON AQUATIC PRODUCTS Exemptions Provisions Relating to Fishing and Aquatic Products General Character and Scope of the Section 13(a)(5) Exemption § 784.125 Loading and unloading. The term “loading and unloading” applies to activities connected with the removal of aquatic...

  5. 29 CFR 784.125 - Loading and unloading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPLICABLE TO FISHING AND OPERATIONS ON AQUATIC PRODUCTS Exemptions Provisions Relating to Fishing and Aquatic Products General Character and Scope of the Section 13(a)(5) Exemption § 784.125 Loading and unloading. The term “loading and unloading” applies to activities connected with the removal of aquatic...

  6. Treatment of Radix Dipsaci extract prevents long bone loss induced by modeled microgravity in hindlimb unloading rats.

    PubMed

    Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing

    2015-01-01

    Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.

  7. Low dose PTH improves metaphyseal bone healing more when muscles are paralyzed.

    PubMed

    Sandberg, Olof; Macias, Brandon R; Aspenberg, Per

    2014-06-01

    Stimulation of bone formation by PTH is related to mechanosensitivity. The response to PTH treatment in intact bone could therefore be blunted by unloading. We studied the effects of mechanical loading on the response to PTH treatment in bone healing. Most fractures occur in the metaphyses, therefor we used a model for metaphyseal bone injury. One hind leg of 20 male SD rats was unloaded via intramuscular botulinum toxin injections. Two weeks later, the proximal unloaded tibia had lost 78% of its trabecular contents. At this time-point, the rats received bilateral proximal tibiae screw implants. Ten of the 20 rats were given daily injections of 5 μg/kg PTH (1-34). After two weeks of healing, screw fixation was measured by pull-out, and microCT of the distal femur cancellous compartment was performed. Pull-out force provided an estimate for cancellous bone formation after trauma. PTH more than doubled the pull-out force in the unloaded limbs (from 14 to 30 N), but increased it by less than half in the loaded ones (from 30 to 44 N). In relative terms, PTH had a stronger effect on pull-out force in unloaded bone than in loaded bone (p=0.03). The results suggest that PTH treatment for stimulation of bone healing does not require simultaneous mechanical stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Ontogenetic, gravity-dependent development of rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    We tested the hypothesis that rat soleus muscle fiber growth and changes in myosin phenotype during the postnatal, preweaning period would be largely independent of weight bearing. The hindlimbs of one group of pups were unloaded intermittently from postnatal day 4 to day 21: the pups were isolated from the dam for 5 h during unloading and returned for nursing for 1 h. Control pups were either maintained with the dam as normal or put on an alternating feeding schedule as described above. The enlargement of mass (approximately 3 times), increase in myonuclear number (approximately 1.6 times) and myonuclear domain (approximately 2.6 times), and transformation toward a slow fiber phenotype (from 56 to 70% fibers expressing type I myosin heavy chain) observed in controls were inhibited by hindlimb unloading. These properties were normalized to control levels or higher within 1 mo of reambulation beginning immediately after the unloading period. Therefore, chronic unloading essentially stopped the ontogenetic developmental processes of 1) net increase in DNA available for transcription, 2) increase in amount of cytoplasm sustained by that DNA pool, and 3) normal transition of myosin isoforms that occur in some fibers from birth to weaning. It is concluded that normal ontogenetic development of a postural muscle is highly dependent on the gravitational environment even during the early postnatal period, when full weight-bearing activity is not routine.

  9. 40 CFR 205.54-1 - Low speed sound emission test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beyond the permissible end zone, unload the vehicle and/or increase the approach rpm in 100 rpm... rpm beyond the permissible end zone, unload the vehicle and/or increase the approach rpm in 100 rpm... example, temperature, humidity, and barometric pressure). (ii) Proper signal levels, terminat-ing...

  10. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...., the SED or AES record, bill of lading or air waybill) must be consistent with the license. (c... and Shipper's Export Declaration (SED) or AES electronic equivalent. (2) Optional ports of unloading... ultimate destination or are included on the BIS license and SED or AES electronic equivalent. (ii...

  11. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...., the SED or AES record, bill of lading or air waybill) must be consistent with the license. (c... and Shipper's Export Declaration (SED) or AES electronic equivalent. (2) Optional ports of unloading... ultimate destination or are included on the BIS license and SED or AES electronic equivalent. (ii...

  12. Information Ubiquity in Austere Locations

    DTIC Science & Technology

    2011-01-01

    are incompatible (e.g., GSM vs. CDMA ), or are insecure for one’s purposes. There might be satellite communi- cations, but its access might be...Ave. Latency (Unloaded) Ave. Latency (Overloaded) Std Dev. (Unloaded) Std Dev. (Overloaded) M ill is ec on ds AOI UAV UAV 1 UAV 2 UAV 3 Joseph

  13. 1. Full SW side of dock as viewed from shore ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Full SW side of dock as viewed from shore at the Oil/Creosote Unloading Dock. This view formed a panorama with photo WA-131-H-5, which shows the Oil/Creosote Unloading Dock. - Pacific Creosoting Plant, West Dock, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  14. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... stored in temporary containers other than those required in § 1926.152, such as pillow tanks. (f) Framing. During framing operations, employees shall not work under a pole or a structure suspended by a crane, A...

  15. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... stored in temporary containers other than those required in § 1926.152, such as pillow tanks. (f) Framing. During framing operations, employees shall not work under a pole or a structure suspended by a crane, A...

  16. 36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ORE BOAT. BY LATE WINTER, THE ORE STORAGE YARD SEEN AT LEFT WILL BE DEPLETED. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  17. MESSENGER Observations of Extreme Magnetic Tail Loading and Unloading during its Third Flyby of Mercury: Substorms?

    NASA Astrophysics Data System (ADS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Schriver, David; Solomon, Sean C.; Zurbuchen, Thomas H.

    2010-05-01

    During MESSENGER's third flyby of Mercury on September 29, 2009, a variable interplanetary magnetic field produced a series of several minute enhancements of the tail magnetic field by factors of ~ 2 to 3.5. The magnetic field flaring during these intervals indicates that they result from loading of the tail with magnetic flux transferred from the dayside magnetosphere. The unloading intervals were associated with plasmoids and traveling compression regions which are well known signatures of tail reconnection. The peak tail magnetic flux during the smallest loading events equaled 30% of the magnetic flux emanating from Mercury, and may have reached 100% for the largest event. In this case the dayside magnetic shielding is reduced and solar wind flux impacting the surface may be greatly enhanced. Despite the intensity of these events and their similarity to terrestrial substorm magnetic flux dynamics, no energetic charged particles with energies greater than 36 keV were observed. This absence of energetic particles constitutes a deepening puzzle for the view that the Mercury magnetosphere system is undergoing dynamical processes analogous to those at Earth during substorm events.

  18. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting

    NASA Technical Reports Server (NTRS)

    Allen, D. L.; Linderman, J. K.; Roy, R. R.; Bigbee, A. J.; Grindeland, R. E.; Mukku, V.; Edgerton, V. R.

    1997-01-01

    The role of apoptosis in the elimination of myonuclei during hindlimb unloading-induced atrophy and the inhibition of apoptosis in the prevention of muscle atrophy were examined. The number of nuclei demonstrating double-stranded DNA fragmentation seen by terminal deoxynucleotidyl transferase (TDT) histochemical staining, an indicator of apoptosis, was significantly increased after 14 days of suspension. Double staining with TDT and antilaminin immunohistochemistry revealed that some TDT-positive nuclei were within the fiber lamina and were most likely myonuclei. The number of fibers containing morphologically abnormal nuclei was also significantly greater in suspended compared with control rats. Combined treatment with growth hormone and insulin-like growth factor I (GH/ IGF-I) and resistance exercise attenuated the increase in TDT-positive nuclei (approximately 26%, P > 0.05) and significantly decreased the number of fibers with morphologically abnormal nuclei. The data suggest that 1) "programmed nuclear death" contributes to the elimination of myonuclei and/or satellite cells from atrophying fibers, and 2) GH/IGF-I administration plus muscle loading ameliorates the apoptosis associated with hindlimb unloading.

  19. Los Angeles - Long Beach Harbors, CA

    NASA Image and Video Library

    2015-03-16

    In southern California, the combined ports of Los Angeles and Long Beach account for 33% of the nation containerized imports. This image from NASA Terra spacecraft shows the large backlog of waiting cargo ships being slowly unloaded. The left image was acquired July 4, 2014 during normal operations: 14 ships are being unloaded, while 7 wait their turns near the facilities. The right image was acquired on March 8, 2015: 19 ships are moored at unloading docks, while 47 ships wait their turns. The images cover an area of 16.7 x 18.6 km, and are located at 33.7 degrees north, 118.2 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19249

  20. The Effects of Environment on the Interlaminar Shear Performance of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature

    DTIC Science & Technology

    2007-06-01

    of the N720/A specimen tested in creep at –4.0 MPa at 1200 °C in steam for 100 h. This specimen was unloaded, but remained at 1200°C for the...the N720/A specimen tested in creep at –4.0 MPa at 1200 °C in steam for 100 h. This specimen was unloaded, but remained at 1200°C for the duration...tested in creep at –4.0 MPa at 1200 °C in steam for 100 h. This specimen was unloaded, but remained at 1200°C for the duration of the test

  1. Fugitive Emissions From Coal Unloading At Coal Preparation Plant

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  2. Applicability of NSPS for Coal Preparation to Coal Unloading Operations

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  3. Endommagement d'un composite polypropylène renforcé par des fibres de verre courtes : approche expérimentale

    NASA Astrophysics Data System (ADS)

    Laksimi, Abdelouahed; Bounouas, Lahsen; Benmedakhene, Salim; Azari, Zitoun; Imad, Abdellatif

    To obtain good mechanical performance of the composite material, it is important to optimise the fibres ratio as well as the fibre/matrix interface quality which have influence on the damage. The main objective of this study is to determine the structural parameters influence on damage evolution concerning two types of polypropylene glass fibres composites. With a classical approach of damage mechanical theory which consists of load-unload tensile tests, acoustic emission permits to detect and follow damage mechanisms during loading. Fractographic analysis highlights the different assumptions and conclusions for this study.

  4. Patterns of Alloy Deformation by Pulsed Pressure

    NASA Astrophysics Data System (ADS)

    Chebotnyagin, L. M.; Potapov, V. V.; Lopatin, V. V.

    2015-06-01

    Patterns of alloy deformation for optimization of a welding regime are studied by the method of modeling and deformation profiles providing high deformation quality are determined. A model of stepwise kinetics of the alloy deformation by pulsed pressure from the expanding plasma channel inside of a deformable cylinder is suggested. The model is based on the analogy between the acoustic and electromagnetic wave processes in long lines. The shock wave pattern of alloy deformation in the presence of multiple reflections of pulsed pressure waves in the gap plasma channel - cylinder wall and the influence of unloading waves from free surfaces are confirmed.

  5. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds

    PubMed Central

    Subramony, Siddarth D.; Su, Amanda; Yeager, Keith; Lu, Helen H.

    2014-01-01

    Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation. PMID:24267271

  6. 49 CFR 178.345-11 - Tank outlets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...

  7. 49 CFR 178.345-11 - Tank outlets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...

  8. 49 CFR 178.345-11 - Tank outlets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...

  9. 49 CFR 178.345-11 - Tank outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank outlets. 178.345-11 Section 178.345-11... Containers for Motor Vehicle Transportation § 178.345-11 Tank outlets. (a) General. As used in this section, “loading/unloading outlet” means any opening in the cargo tank wall used for loading or unloading of lading...

  10. 32 CFR 552.129 - Requirements for carrying and use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... en route is prohibited (i.e., post exchange, club, offices, etc.). Individual must have in his/her... will be unloaded when carried (i.e., projectiles physically separated from the firearms, not just... from the passenger area (i.e., locked tool box secured to bed of a truck). Firearms will be unloaded...

  11. U.S. Provides Support During Pakistan Flooding

    Science.gov Websites

    Department of Defense Submit Search PHOTO ESSAYS U.S. Provides Support During Pakistan Flooding Aug. 2010 MORE PHOTO ESSAYS U.S. Marines and Pakistanis Unload Supplies Pakistanis Unload Relief Supplies U.S ) Contracts Casualty Releases News Articles Special Reports Photos/Videos Lead Photo Archive Photo Essays News

  12. 78 FR 73794 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to U.S. Air Force Launches...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... operations from VAFB launch complexes and Delta Mariner operations, cargo unloading activities, and harbor maintenance dredging in support of the Delta IV/Evolved Expendable Launch Vehicle (EELV) launch activity on... Delta Mariner operations, cargo unloading activities, and harbor maintenance dredging. The Delta Mariner...

  13. 49 CFR 176.108 - Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage. 176.108 Section 176.108 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  14. 40 CFR 63.2338 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transfer racks at which organic liquids are loaded into or unloaded out of transport vehicles and/or...) Storage tanks storing organic liquids; (ii) Transfer racks loading or unloading organic liquids; (iii... and a transfer rack subject to this subpart; and (v) Pipelines that transfer organic liquids directly...

  15. 78 FR 20164 - Self-Regulatory Organizations; NYSE Arca, Inc.; Response to Comments Submitted After the Issuance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... data, views, and arguments concerning the Approval Order, including whether Amendment No. 1 to the... commenter discussed the existing unloading queues for metals, including copper, at LME warehouses.\\18\\ The commenter asserted that queues to unload copper from LME warehouses appear to be lengthening because owners...

  16. Non-random nectar unloading interactions between foragers and their receivers in the honeybee hive

    NASA Astrophysics Data System (ADS)

    Goyret, Joaquín; Farina, Walter M.

    2005-09-01

    Nectar acquisition in the honeybee Apis mellifera is a partitioned task in which foragers gather nectar and bring it to the hive, where nest mates unload via trophallaxis (i.e. mouth-to-mouth transfer) the collected food for further storage. Because forager mates exploit different feeding places simultaneously, this study addresses the question of whether nectar unloading interactions between foragers and hive-bees are established randomly, as it is commonly assumed. Two groups of foragers were trained to exploit a different scented food source for 5 days. We recorded their trophallaxes with hive-mates, marking the latter ones according to the forager group they were unloading. We found non-random probabilities for the occurrence of trophallaxes between experimental foragers and hive-bees, instead, we found that trophallactic interactions were more likely to involve groups of individuals which had formerly interacted orally. We propose that olfactory cues present in the transferred nectar promoted the observed bias, and we discuss this bias in the context of the organization of nectar acquisition: a partitioned task carried out in a decentralized insect society.

  17. Deglaciation and glacial erosion: a joint control on magma productivity by continental unloading

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Caricchi, Luca; Castelltort, Sebastien

    2016-04-01

    Glacial-interglacial cycles affect the processes through which water and rocks are redistributed across the Earth's surface, thereby linking solid-Earth and climate dynamics. Regional and global scale studies suggest that continental lithospheric unloading due to ice melting during the transition to interglacials leads to increased continental magmatic, volcanic and degassing activity. Such a climatic forcing on the melting of the Earth's interior, however, has always been evaluated without considering the additional continental unloading associated with erosion. Current datasets relating to the evolution of erosion rates are typically limited by temporal resolutions that are too low or span too short time intervals to allow for direct comparisons between the contributions from ice melting and erosion to continental unloading at the timescale of the late Pleistocene glacial cycles. Yet, they provide a fundamental observational basis on which to calibrate numerical predictions. Here, we present and discuss numerical results involving synthetic but realistic topographies, ice caps and glacial erosion rates suggesting that erosion may be as important as deglaciation in affecting continental unloading, sub-continental decompression melting and magma productivity. Thus, the timing and magnitude of deglaciation and erosion must be characterized if the forcing of climate change on the continental magmatic/volcanic activity is to be extracted from the remnants of eroded volcanic centers. Our study represents an additional step towards a more general understanding of the links between a changing climate, glacial processes and the melting of the solid Earth.

  18. Dynamic Foot Stimulation Attenuates Soleus Muscle Atrophy Induced by Hindlimb Unloading in Rats

    NASA Technical Reports Server (NTRS)

    Kyparos, Antonios; Feeback, Daniel L.; Layne, Charles S.; Martinez, Daniel A.; Clarke, Mark S. F.

    2004-01-01

    Unloading-induced myofiber atrophy is a phenomenon that occurs in the aging population, bed-ridden patients and astronauts. The objective of this study was to determine whether or not dynamic foot stimulation (DFS) applied to the plantar surface of the rat foot can serve as a countermeasure to the soleus muscle atrophy normally observed in hindlimb unloaded (HU) rats. Thirty mature adult (6-month-old) male Wistar rats were randomly assigned into ambulatory control (AMB), hindlimb unloaded alone (HU), or hindlimb unloaded with the application of DFS (HU+DFS) groups. A dynamic pattern of pressure was applied to the right foot of each HU animal using a specially fabricated boot containing an inflatable air bladder connected to a solenoid air pump controlled by a laptop computer. The anti-atrophic effects of DFS were quantified morphometrically in frozen cross-sections of soleus muscle stained using the metachromatic-ATPase fiber typing technique. Application of DFS during HU significantly counteracted the atrophic response observed in the soleus by preventing approximately 85% of the reduction in Type I myofiber cross-sectional area (CSA) observed during HU. However, DFS did not protect type II fibers of the soleus from HU-induced atrophy or any fiber type in the soleus muscle of the contralateral control leg of the DFS-treated HU animals. These results illustrate that the application of DFS to the rat foot is an effective countermeasure to soleus muscle atrophy induced by HU.

  19. Simulated Microgravity Induces SOST/Sclerostin Upregulation in Osteocytes

    NASA Technical Reports Server (NTRS)

    Spatz, Jordan; Sibonga, Jean; Wu, Honglu; Barry, Kevin; Bouxsein, Mary; Pajevic, Paola Divieti

    2010-01-01

    Osteocytes are theorized to be the mechanosensors and transducers of mechanical forces in bone, yet the biological mechanism of this action remains elusive. Recent evidence suggests that SOST/Sclerostin is an important regulator of mechano-transduction. To investigate the molecular mechanisms of SOST/Sclerostin regulation under in-vitro and ex-vivo unloading we used the NASA Rotating Wall Vessel(RWV) Bioreactor. For in-vitro experiments, MLOY-4 osteocytic cells were seeded at a concentration of 250,000 cells onto 3D collagen scaffold (BD). Scaffolds (4 per condition) were either rotated in a vertical 50ml NASA/bioreactor vessel at 18 rpm (unloaded), cultured in a horizontal 50 ml NASA bioreactor vessel at 18 rpm (control for the sheared environment of vertical rotating vessel), or cultured in a static T-75 cm dish (static condition ) for 7days. For ex-vivo experiments, calvaria bones were harvested from 12-week old C57/Bl6 mice and sequentially digested with type I/II collagenase to remove periosteal osteoblasts. Calvaria halves (10 per condition) were then exposed to the same set of culture conditions described above. Simulated unloading, as achieved in the NASA RWV, resulted in enlarged, round osteocytes, as assessed by H&E staining, that was reminiscent of prior reports of unloading causing loss of osteocyte morphology and dendritic network connectivity. Semiquantitative realtime qPCR and immunohistochemistry from both in-vitro and ex-vivo RWV experiments demonstrated a four-fold up-regulation of SOST/Sclerostin. Furthermore, mRNA of the transcriptional SOST enhancer Mef2C was upregulated 1.4 fold in ex-vivo calvaria subjected to unloading conditions of the NASA RWV, suggesting that Mef2C might be an important regulator of mechano-sensation. These findings are consistent with results from seven day hindlimb unloading experiments, C57/B6 females, conducted in our laboratory and validate the use of the NASA RWV as a tool to study osteocyte mechanotransduction

  20. Absence of equifinality of hand position in a double-step unloading task.

    PubMed

    Norouzi-Gheidari, Nahid; Archambault, Philippe

    2010-08-01

    Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.

  1. True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Du, Kun; Li, Diyuan

    2015-11-01

    True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n < 1.0) are almost located in the same range as expected by Al-Ajmi and Zimmerman (Int J Rock Mech Min Sci 563 42(3):431-439, 2005). It indicates that the end effect caused by the height-to-width ratio of the cubic specimens will not significantly affect the testing results under true triaxial tests. Both the strength and failure modes of cubic rock specimens under true triaxial unloading condition are affected by the intermediate principal stress. When σ 2 increases to a critical value for the strong and hard rocks (R4, R5 and R6), the rock failure mode may change from shear to slabbing. However, for medium strong and weak rocks (R3 and R2), even with a relatively high intermediate principal stress, they tend to fail in shear after a large amount of plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.

  2. Effects of flexor-pronator muscle loading on valgus stability of the elbow with an intact, stretched, and resected medial ulnar collateral ligament.

    PubMed

    Udall, John H; Fitzpatrick, Michael J; McGarry, Michelle H; Leba, Thu-Ba; Lee, Thay Q

    2009-01-01

    The medial ulnar collateral ligament (MUCL) is an important passive stabilizer to the valgus stresses that athletes experience during overhead throwing motion. However, the role of the flexor-pronator muscles as active stabilizers to valgus stress is not well defined in the literature. The objectives of this study were to quantify the relative contribution of the individual flexor-pronator muscles to valgus stability of the elbow and how this relationship was affected by ligament status. A custom elbow testing system and Microscribe 3DLX were used for biomechanical testing. Flexor-pronator muscles were loaded to simulate contraction, and the valgus angle of the elbow was measured in eight cadaveric specimens at 30 degrees , 60 degrees , and 90 degrees of elbow flexion with 3 different valgus torques applied to the forearm. Loads based on muscle cross-sectional area were applied to the flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), and pronator teres (PT). The effect of each muscle was evaluated by unloading the individual muscle while the other 2 remained loaded, resulting in 5 loading conditions: no muscles loaded, all muscles loaded, unloaded FCU, unloaded FDS, and unloaded PT. Valgus angle was measured for 3 MUCL ligament conditions: intact, stretched, and cut. The effect of muscle loading on valgus angle was similar for each ligament condition. Loading the flexor-pronator muscles significantly decreased valgus angle of the elbow in all testing conditions (P < .01). Unloading the FDS significantly increased valgus angle compared to all muscles loaded in all testing conditions (P < .016). Unloading the FCU and PT significantly increased valgus angle in less than half of the testing conditions. The FDS, PT, and FCU are all active stabilizers of the elbow to valgus stress. The FDS is the biggest contributor amongst the flexor-pronator muscles.

  3. The Effects of Cyclic Hydrostatic Pressure on Chondrogenesis and Viability of Human Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells in Three-Dimensional Agarose Constructs

    PubMed Central

    Puetzer, Jennifer; Williams, John; Gillies, Allison; Bernacki, Susan

    2013-01-01

    This study investigates the effects of cyclic hydrostatic pressure (CHP) on chondrogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3-D) agarose constructs maintained in a complete growth medium without soluble chondrogenic inducing factors. hASCs were seeded in 2% agarose hydrogels and exposed to 7.5 MPa CHP for 4 h per day at a frequency of 1 Hz for up to 21 days. On days 0, 7, 14, and 21, the expression levels of collagen II, Sox9, aggrecan, and cartilage oligomeric matrix protein (COMP) were examined by real-time reverse transcriptase–polymerase chain reaction analysis. Gene expression analysis found collagen II mRNA expression in only the CHP-loaded construct at day 14 and at no other time during the study. CHP-loaded hASCs exhibited upregulated mRNA expression of Sox9, aggrecan, and COMP at day 7 relative to unloaded controls, suggesting that CHP initiated chondrogenic differentiation of hASCs in a manner similar to human bone marrow-derived mesenchymal stem cells (hMSC). By day 14, however, loaded hASC constructs exhibited significantly lower mRNA expression of the chondrogenic markers than unloaded controls. Additionally, by day 21, the samples exhibited little measurable mRNA expression at all, suggesting a decreased viability. Histological analysis validated the lack of mRNA expression at day 21 for both the loaded and unloaded control samples with a visible decrease in the cell number and change in morphology. A comparative study with hASCs and hMSCs further examined long-term cell viability in 3-D agarose constructs of both cell types. Decreased cell metabolic activity was observed throughout the 21-day experimental period in both the CHP-loaded and control constructs of both hMSCs and hASCs, suggesting a decrease in cell metabolic activity, alluding to a decrease in cell viability. This suggests that a 2% agarose hydrogel may not optimally support hASC or hMSC viability in a complete growth medium in the absence of soluble chondrogenic inducing factors over long culture durations. This is the first study to examine the ability of mechanical stimuli alone, in the absence of chondrogenic factors transforming growth factor beta (TGF-β)3, TGF-β1 and/or bone morphogenetic protein 6 (BMP6) to induce hASC chondrogenic differentiation. The findings of this study suggest that CHP initiates hASC chondrogenic differentiation, even in the absence of soluble chondrogenic inductive factors, confirming the importance of considering both mechanical stimuli and appropriate 3-D culture for cartilage tissue engineering using hASCs. PMID:22871265

  4. The Effects of Ligustrazine on the Ca2+ Concentration of Soleus and Gastrocnemius Muscle Fibers in Hindlimb Unloaded Rat

    NASA Astrophysics Data System (ADS)

    Gao, Yunfang; Goswami, Nandu; Du, Bei; Hu, Huanxin; Wu, Xue

    Background Spaceflight or inactivity (bed rest, limb immobilization, hindlimb unloading) causes skeletal muscle atrophy. Recent studies show that an increase in protein degradation is an important mechanism for disuse atrophy. Furthermore, the calcium overload of disuse-atrophied muscle fiber has been shown to initiate the skeletal muscle proteolysis in disuse atrophy. Ligustrazine (tetramethylpyrazine, TMP), one of the important active ingredient extracted from Chuanxiong, has been shown by our group to increase muscle fiber cross-sectional area in atrophied soleus induced by 14 days hindlimb unloading. However, the underlying mechanisms of ligustrazine effects on disuse-atrophied muscle fibers remain unknown. Objective: We investigated the effects of ligustrazine on the cytoplasmic calcium overloading in soleus and gastrocnemius in 14 days hindlimb unloaded (HU) rats. Methods: Adult female Sprague-Dawley rats were matched for body mass and randomly assigned to three groups (n=8, each group): 1) synchronous control (CON); HU + intragastric water instillation (HU+W); HU + intragastric 60.0 mg kg-1 ligustrazine instillation (HU+Tmp). Laser scanning confocal microscope assessed the concentrations of cytoplasmic calcium ions. Spaceflight disuse atrophy was simulated by hindlimb unloading, provided by tail suspension. Results: 1) Compared with CON, the concentration of soleus intracellular calcium ion in HU+W and HU+Tmp increased 330% and 86% respectively P<0.01). Compared with HU+W, the concentration of soleus intracellular calcium ion in HU+Tmp decreased by 130% P<0.01). 2) Compared with CON, the concentration of gastrocnemius intracellular calcium ion in HU+W and HU+Tmp increased 189.8% and 32.1% respectively P<0.01). Compared with HU+W, the concentration of gastrocnemius intracellular calcium ion in HU+Tmp decreased by 119.3% (P<0.01). Conclusion: After 14 days of hindlimb unloading, cytoplasmic calcium of soleus (slow-twitch muscle) and gastrocnemius (fast-twitch muscle) showed significant overload. This was especially true for the soleus. Ligustrazine appears to inhibit the cytoplasmic calcium overload thus leadig to lesser muscle atrophy in hindlimb unloaded animals. Therefore, ligustrazine may play important role in preventing muscle loss during spaceflight. Key words: Ligustrazine; Tetramethylpyrazine; disuse atrophy; calcium overload; soleus; gastrocnemius; spaceflight This work was supported by funds from the National Natural Science Foundation of China (Grant No. 31270455), International Scientific and Technological Cooperation Projects in Shaanxi Province of China (Grant No. 2013KW26-01).

  5. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures—A Case Study

    PubMed Central

    Villalba, Sergi

    2018-01-01

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive. PMID:29587449

  6. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures-A Case Study.

    PubMed

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2018-03-26

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive.

  7. Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broome, Scott Thomas; Flint, Gregory Mark; Dewers, Thomas

    2015-11-01

    This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failuremore » and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.« less

  8. The effect of purified compared with nonpurified diet on bone changes induced by hindlimb suspension of female rats

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Arnaud, Sara B.; Grindeland, Richard; Wade, Charles

    2005-01-01

    The purpose of this study was to compare the bone changes induced by unloading in rats fed different diets, because space flight studies use a semipurified diet, whereas space flight simulation studies typically use nonpurified diets. Female Sprague-Dawley rats were fed a purified American Institute of Nutrition (AIN) 93G diet or a standard nonpurified diet and kept ambulatory or subjected to unloading by hindlimb suspension (HLS) for 38 days. Bone mineral content (BMC), mechanical strength, and factors related to the diet that affect bone (i.e., urinary calcium excretion, estradiol, and corticosterone) were measured. Average food intakes (grams per day) differed for diets, but caloric intake (kilocalories per day) and the final body masses of treatment groups were similar. The HLS-induced decrease in femoral BMC was not statistically different for rats fed a nonpurified diet (-8.6%) compared with a purified AIN-93G diet (-11.4%). The HLS-induced decrease in femoral mechanical strength was not statistically different for rats fed a nonpurified diet (-24%) compared with a purified AIN-93G diet (-31%). However, bone lengths were decreased (P < 0.05) in rats fed a nonpurified diet compared with a purified diet. Plasma estradiol levels were lower (P < 0.05) in the HLS/AIN-93G group but similar in the HLS and ambulatory rats fed a nonpurified diet. Plasma estradiol was related to femoral BMC (r = 0.85, P < 0.01). Urinary calcium excretion was higher (P < 0.05) in rats fed a nonpurified diet than those fed a purified AIN-93G diet, which is consistent with the higher level of calcium in the nonpurified diet. Urinary corticosterone levels were higher (P < 0.05) in rats fed a nonpurified diet than rats fed the AIN-93G diet. Although the osteopenia induced by unloading was similar in both diet groups, there were differences in longitudinal bone growth, calcium excretion, plasma estradiol levels, and urinary corticosterone levels. Results indicate that the type of standard diet used is an important factor to consider when measuring bone end points.

  9. The role of myostatin and activin receptor IIB in the regulation of unloading-induced myofiber type-specific skeletal muscle atrophy.

    PubMed

    Babcock, Lyle W; Knoblauch, Mark; Clarke, Mark S F

    2015-09-15

    Chronic unloading induces decrements in muscle size and strength. This adaptation is governed by a number of molecular factors including myostatin, a potent negative regulator of muscle mass. Myostatin must first be secreted into the circulation and then bind to the membrane-bound activin receptor IIB (actRIIB) to exert its atrophic action. Therefore, we hypothesized that myofiber type-specific atrophy observed after hindlimb suspension (HLS) would be related to myofiber type-specific expression of myostatin and/or actRIIB. Wistar rats underwent HLS for 10 days, after which the tibialis anterior was harvested for frozen cross sectioning. Simultaneous multichannel immunofluorescent staining combined with differential interference contrast imaging was employed to analyze myofiber type-specific expression of myostatin and actRIIB and myofiber type cross-sectional area (CSA) across fiber types, myonuclei, and satellite cells. Hindlimb suspension (HLS) induced significant myofiber type-specific atrophy in myosin heavy chain (MHC) IIx (P < 0.05) and MHC IIb myofibers (P < 0.05). Myostatin staining associated with myonuclei was less in HLS rats compared with controls, while satellite cell staining for myostatin remained unchanged. In contrast, the total number myonuclei and satellite cells per myofiber was reduced in HLS compared with ambulatory control rats (P < 0.01). Sarcoplasmic actRIIB staining differed between myofiber types (I < IIa < IIx < IIb) independent of loading conditions. Myofiber types exhibiting the greatest cytoplasmic staining of actRIIB corresponded to those exhibiting the greatest degree of atrophy following HLS. Our data suggest that differential expression of actRIIB may be responsible for myostatin-induced myofiber type-selective atrophy observed during chronic unloading. Copyright © 2015 the American Physiological Society.

  10. Evaluation Criteria and Results of Full Scale Testing of Bridge Abutment Made from Reinforced Soil

    NASA Astrophysics Data System (ADS)

    Hildebrand, Maciej; Rybak, Jarosław

    2017-10-01

    Structures made of reinforced soil can be evaluated for their safety based on a load testing. Measurement results are essentially evaluated by displacements of surcharge (mainly in vertical direction) and facing elements (mainly in horizontal direction). Displacements are within several tenths to several millimetres and they can be taken by common geodetic equipment. Due to slow soil consolidation (progress of displacements) under constant load, observations should be made over several days or even weeks or months. A standard procedure of heating of geotextiles, used in laboratory conditions to simulate long term behaviour cannot be used in a natural scale. When the load is removed, the soil unloading occurs. Both the progress of displacements and soil unloading after unloading of the structure are the key presumptions for evaluating its safety (stability). Assessment of measuring results must be preceded by assuming even the simplest model of the structure, so as it could be possible to estimate the expected displacements under controlled load. In view of clearly random nature of soil parameters of retaining structure composed of reinforced soil and due to specific erection technology of reinforced soil structure, the assessment of its condition is largely based on expert’s judgment. It is an essential and difficult task to interpret very small displacements which are often enough disturbed by numerous factors like temperature, insolation, precipitation, vehicles, etc. In the presented paper, the authors tried to establish and juxtapose some criteria for a load test of a bridge abutment and evaluate their suitability for decision making. Final remarks are based on authors experience from a real full scale load test.

  11. Myocardial reloading after extracorporeal membrane oxygenation alters substrate metabolism while promoting protein synthesis.

    PubMed

    Kajimoto, Masaki; O'Kelly Priddy, Colleen M; Ledee, Dolena R; Xu, Chun; Isern, Nancy; Olson, Aaron K; Des Rosiers, Christine; Portman, Michael A

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8-hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2-(13)C]-pyruvate as an oxidative substrate and [(13)C6]-L-leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near-baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl-CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (≈80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may serve as a basis for interventions and thereby improve success rate from weaning from ECMO.

  12. Tribological investigation of a functional medical textile with lubricating drug-delivery finishing.

    PubMed

    Gerhardt, L-C; Lottenbach, R; Rossi, R M; Derler, S

    2013-08-01

    Textile-based drug delivery systems have a high potential for innovative medical and gerontechnological applications. In this study, the tribological behaviour and lubrication properties of a novel textile with drug delivery function/finishing was investigated by means of friction experiments that simulated cyclic dynamic contacts with skin under dry and wet conditions. The textile drug delivery system is based on a loadable biopolymer dressing on a polyester (PES) woven fabric. The fabrics were finished with low (LC) and highly cross-linked (HC) polysaccharide dressings and investigated in the unloaded condition as well as loaded with phytotherapeutic substances. The mechanical resistance and possible abrasion of the functional coatings on the textile substrate were assessed by friction measurements and scanning electron microscopical analyses. Under dry contact conditions, all investigated fabrics (PES substrate alone and textiles with loaded and unloaded dressings) showed generally low friction coefficients (0.20-0.26). Under wet conditions, the measured friction coefficients were typically higher (0.34-0.51) by a factor of 1.5-2. In the wet condition, both loaded drug delivery textiles exhibited 7-29% lower friction (0.34-0.41) than the PES fabric with unloaded dressings (0.42-0.51), indicating pronounced lubrication effects. The lubrication effects as well as the abrasion resistance of the studied textiles with drug delivery function depended on the degree of dilution of the phytotherapeutic substances. Lubricating formulations of textile-based drug delivery systems which reduce friction against the skin might be promising candidates for advanced medical textile finishes in connection with skin care and wound (decubitus ulcer) prevention. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Evaluation of rotor axial vibrations in a turbo pump unit equipped with an automatic unloading machine

    NASA Astrophysics Data System (ADS)

    Martsynkovskyy, V. A.; Deineka, A.; Kovalenko, V.

    2017-08-01

    The article presents forced axial vibrations of the rotor with an automatic unloading machine in an oxidizer pump. A feature of the design is the use in the autoloading system of slotted throttles with mutually inverse throttling. Their conductivity is determined by a numerical experiment in the ANSYS CFX software package.

  14. 9 CFR 325.17 - Loading or unloading products in sealed railroad cars, trucks, etc., en route prohibited; exception.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Loading or unloading products in sealed railroad cars, trucks, etc., en route prohibited; exception. 325.17 Section 325.17 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND...

  15. 9 CFR 325.17 - Loading or unloading products in sealed railroad cars, trucks, etc., en route prohibited; exception.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Loading or unloading products in sealed railroad cars, trucks, etc., en route prohibited; exception. 325.17 Section 325.17 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND...

  16. LOADING AND UNLOADING DEVICE

    DOEpatents

    Treshow, M.

    1960-08-16

    A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

  17. Elucidating the Role of Joint Disuse in the Development of Osteoarthritis following Return to High-Impact Loading

    DTIC Science & Technology

    2017-04-01

    20 week old age point revealed a lack of response to joint unloading of the articular cartilage tidemark (interface of uncalcified and calcified...hallmark of disuse within this study. With this lack of response evident in our joint disuse model for 2 weeks of joint unloading for slightly older

  18. 9 CFR 72.17 - Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for such purpose. 72.17 Section 72.17 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE...

  19. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo; and (viii) The loading or unloading of outsize cargo. (5) A person described in paragraph...

  20. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo; and (viii) The loading or unloading of outsize cargo. (5) A person described in paragraph...

  1. Rat limb unloading - Soleus histochemistry, ultrastructure, and electromyography

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Slocum, G. R.; Bain, J. L. W.; Sedlak, F. R.; Sowa, T. E.

    1990-01-01

    The effects of hindlimb unloading on rat-soleus histochemisty, ultrastructure, and electromyogram (EMG) activity were investigated. It was found that, after 14 days of tail suspension, the area of type I and type IIa muscle fibers decreased by 63 and 47 percent, respectively, mainly due to the degradation of subsarcolemmal mitochondria and myofibrils. After 10 days, 3 percent of type IIa fibers exhibited segmental necrosis. After four days, video monitoring revealed abnormal plantar flexion of the hindfeet, which shortened the soleus working range. The EMG activity shifted from tonic to phasic, and aggregate activity decreased drastically after only seven days. The results indictate that the pathological changes in the soleus resulted from unloaded contractions, reduced use, compromised blood flow, and shortened working length.

  2. Age effects on rat hindlimb muscle atrophy during suspension unloading

    NASA Technical Reports Server (NTRS)

    Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.

    1990-01-01

    The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.

  3. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  4. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.

    PubMed

    Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia

    2018-01-01

    For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kW e , converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH 4 , CO 2 , H 2 S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kW e (70.4% of nominal power), and the last period the power resulted in 788kW e (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Gene Expression and Structural Skeletal Responses to Long-Duration Simulated Microgravity in Rats

    NASA Technical Reports Server (NTRS)

    Shirazi-Fard, Yasaman; Rael, Victoria E.; Torres, Samantha; Steczina, Sonette; Bryant, Sheenah; Tahimic, Candice; Globus, Ruth K.

    2017-01-01

    In this study, we aim to examine skeletal responses to simulated long-duration spaceflight (90 days) and weight-bearing recovery on bone loss using the ground-based hindlimb unloading (HU) model in adolescent (3-month old) male rats. We hypothesized that simulated microgravity leads to the temporal regulation of oxidative defense genes and pro-bone resorption factors, where there is a progression and eventual plateau; furthermore, early transient changes in these pathways precede skeletal adaptations.

  6. Protection of the temporomandibular joint during syndromic neonatal mandibular distraction using condylar unloading.

    PubMed

    Fan, Kenneth; Andrews, Brian T; Liao, Eileen; Allam, Karam; Raposo Amaral, Cesar Augusto; Bradley, James P

    2012-05-01

    Neonatal distraction in severe micrognathia patients may alleviate the need for tracheostomy. The authors' objectives in evaluating syndromic neonatal distraction cases were to: (1) document preoperative temporomandibular joint pathology, (2) compare the incidence of postoperative temporomandibular joint ankylosis, and (3) determine whether "unloading" the condyle tended to prevent temporomandibular joint pathology. Syndromic versus nonsyndromic micrognathic (and normal) patient temporomandibular joint abnormalities were compared preoperatively based on computed tomography scans and incisor opening (n = 110). Patient temporomandibular joint outcomes after neonatal mandibular distraction were compared with regard to ankylosis (n = 59). Condylar-loaded versus condylar-unloaded (with class II intermaxillary elastics) temporomandibular joint outcomes were compared based on imaging and the need for joint reconstruction (n = 25). Preoperative abnormalities of neonatal temporomandibular joint pathology on computed tomography scans were not significant: syndromic, 15 percent; nonsyndromic, 5.9 percent; and normal joints, 4.2 percent. Syndromic patients had a significantly greater interincisor distance decrease postoperatively (48 percent; p < 0.05) and at 1-year follow-up (28 percent; p < 0.05) compared with nonsyndromic patients. Also, computed tomography scans revealed that 28 percent of syndromic patients developed temporomandibular joint abnormalities, whereas nonsyndromic patients were unchanged. Condylar-loaded patients had worse clinical outcomes compared with condylar-unloaded patients (80 percent versus 7 percent) and required temporomandibular joint reconstruction for bony ankylosis (40 percent versus 0 percent) after distraction. Neonatal syndromic, micrognathia patients have increased temporomandibular joint pathology preoperatively and bony ankylosis after distraction but are protected with partial unloading of the condyle during distraction. Risk, II; Therapeutic, III.

  7. Work capacity and metabolic and morphologic characteristics of the human quadriceps muscle in response to unloading

    NASA Technical Reports Server (NTRS)

    Berg, H. E.; Dudley, G. A.; Hather, B.; Tesch, P. A.

    1993-01-01

    The response of skeletal muscle to unweighting was studied in six healthy males who were subjected to four weeks of lowerlimb suspension. They performed three bouts of 30 consecutive maximal concentric knee extensions, before unloading and the day after (POST 1), 4 days after (POST 2) and 7 weeks after (REC) resumed weight-bearing. Peak torque of each contraction was recorded and work was calculated as the mean of the average peak torque for the three bouts and fatigability was measured as the decline in average peak torque over bouts. Needle biopsies were obtained from m. vastus lateralis of each limb before and at POST 1. Muscle fibre type composition and area, capillarity and the enzyme activities of citrate synthase (CS) and phosphofructokinase (PFK) were subsequently analysed. Mean average peak torque for the three bouts at POST1, POST2 and REC was reduced (P < 0.05) by 17, 13 and 7%, respectively. Fatigability was greater (P < 0.05) at POST2 than before unloading. Type I, IIA and IIB percentage, Type I and II area and capillaries per fibre of Type I and II did not change (P > 0.05) in response to unloading. The activity of CS, but not PFK, decreased (P < 0.05) after unloading. The weight-bearing limb showed no changes in the variables measured. The results of this study suggest that this human lowerlimb suspension model produces substantial impairments of work and oxidative capacity of skeletal muscle. The performance decrements are most likely induced by lack of weight-bearing.

  8. Increasing the number of unloading/reambulation cycles does not adversely impact body composition and lumbar bone mineral density but reduces tissue sensitivity

    NASA Astrophysics Data System (ADS)

    Gupta, Shikha; Manske, Sarah L.; Judex, Stefan

    2013-11-01

    A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.

  9. Effects of hindlimb unloading on neuromuscular development of neonatal rats

    NASA Technical Reports Server (NTRS)

    Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.

    2000-01-01

    We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.

  10. Effects of transport duration on maintenance behavior, heart rate and gastrointestinal tract temperature of market-weight pigs in 2 seasons.

    PubMed

    Goumon, S; Brown, J A; Faucitano, L; Bergeron, R; Widowski, T M; Crowe, T; Connor, M L; Gonyou, H W

    2013-10-01

    Welfare and meat quality of market-weight pigs may be negatively affected by transport duration and environmental temperatures, which vary considerably between seasons. This study evaluated the effects of 3 transport durations (6, 12, and 18 h) on the physiology and behavior of pigs in summer and winter in western Canada. Market-weight pigs were transported using a pot-belly trailer at an average loading density of 0.375 m(2)/100 kg. Four replicates of each transport duration were conducted during each season. Heart rate and gastrointestinal tract temperature (GTT) were monitored from loading to unloading in 16 pigs from 4 selected trailer compartments (n = 96 groups, total of 384 animals, BW = 120.8 ± 0.4 kg), namely top front (C1), top back (C4), middle front (C5), and bottom rear (C10). Behavior was recorded for pigs (948 and 924 animals, in summer and winter, respectively) in C1, C4, and C5 during transportation (standing, sitting, lying), and during 90 min in lairage (sitting, lying, drinking, latency to rest) for pigs in all 4 compartments. Transport was split into 7 periods: loading, pre-travel (PT), initial travel (IT), pre-arrival 1 (PA1) and 2 (PA2), unloading, and lairage. During IT and PA2, pigs spent less time lying in winter than summer (P < 0.05 and P < 0.05, respectively). During PA1, PA2, and unloading, a greater (P < 0.001) heart rate was found in pigs transported in winter compared with summer. During PA2, pigs subjected to the 18-h transport treatment in winter had a greater (P < 0.05) GTT than the other groups. In lairage, pigs transported for 18 h in winter drank more (P < 0.001) and took longer to rest (P < 0.01) than pigs from other groups. During PA1, pigs transported for 18 h had the greatest GTT (P < 0.001). At unloading, pigs transported for 6 h had the lowest GTT (P < 0.001). In lairage, pigs transported for 18 h spent less time lying than those transported for 6 or 12 h (P < 0.001). These results suggest that in winter, pigs increased their metabolism and were reluctant to rest on cold floors. Pigs transported for 18 h in winter showed greater evidence of thirst. It may be concluded that under western Canadian climatic conditions, long transports (18 h) in cold weather appear to be more detrimental to pig welfare.

  11. Evaluation of milk quality in delivering sterilized milk with soft tank transportation system.

    PubMed

    Tsukamoto, C; Rula, Sa; Asano, H; Ando, K

    2009-09-01

    A new transportation system is proposed recently to improve the defects of liquid transportation by tank trucks. This method is called "soft tank transportation system"; a driver installs a sac-like container (soft tank), which is made from a tarpaulin with high-pressure resistant-waterproof zippers, in a general cargo vehicle. To evaluate the quality of sterilized milk by using the soft tank transportation system, ground and marine transportation for a long distance which took about 36 h from the shipper's loading to the receiver's unloading in a high-temperature summer season (average outside temperature was 33.4 degrees C) were carried out. Although the difference of milk temperature before and after the delivery varied from -0.7 to +1.4 degrees C, there was no difference in milk quality (fat, nonfat solids, total dissolved solids, and pH) and no coliform bacteria were detected. It can be evaluated that sterilized milk was carried in keeping good conditions by soft tank transportation system.

  12. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2 to...

  13. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2 to...

  14. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2 to...

  15. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2 to...

  16. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2 to...

  17. 1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING CEDAR LOGS FROM TRUCKS AT LOG DUMP, ADJACENT TO MILL; TRUCKS FORMERLY USED TRIP STAKES, THOUGH FOR SAFER HANDLING OF LOGS WELDED STAKES ARE NOW REQUIRED; AS A RESULT LOADING IS NOW DONE WITH A CRANE - Lester Shingle Mill, 1602 North Eighteenth Street, Sweet Home, Linn County, OR

  18. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... documents (e.g., the AES record, bill of lading or air waybill) must be consistent with the license. (c... end user named on the BIS license and in the AES record. (2) Optional ports of unloading. (i) Licensed... destination or are included on the BIS license and in the AES record. (ii) Unlicensed items. For shipments of...

  19. Segment of Challenger's right wing unloaded at KSC Logistics Facility

    NASA Image and Video Library

    1986-04-18

    51L-10187 (18 April 1986) --- A 9'7" x 16' segment of Challenger's right wing is unloaded at the Logistics Facility after being off-loaded from the rescue and salvage ship USS Opportune. It was located and recovered by Navy divers from the Opportune about 12 nautical miles northeast of Cape Canaveral in 70 feet of water. Photo credit: NASA

  20. 20 CFR 655.500 - Purpose, procedure and applicability of subparts F and G of this part.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... automated self-unloading conveyor belt or vacuum-actuated system on a vessel and the Administrator has not... of the use of an automated self-unloading conveyor belt or vacuum-actuated system on a vessel. The...) The use of alien crewmembers is not during a strike or lockout nor designed to influence the election...

  1. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  2. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures

    PubMed Central

    Gao, Yunfang; Arfat, Yasir; Wang, Huiping; Goswami, Nandu

    2018-01-01

    Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives. PMID:29615929

  3. Seed coat import and unloading in pisum. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grusak, M.A.; Minchin, P.E.H.

    1987-08-01

    Experiments were undertaken with empty, attached ovules of Pisum sativum to observe the effects of osmotic solution changes on seed coat import and unloading into the apoplast. Through the use of /sup 11/CO/sub 2/ pulse labelling along with collimated monitoring of plant sections, the authors were able to continuously and simultaneously measure total pod import, import into a single ovule, and washout from the ovule into a flow-through bathing solution. The authors results indicated that changes in bathing solution sucrose concentration had no immediate effect on tracer washout in Pisum, but did affect ovule import. Lowering the sucrose concentration decreasedmore » import and raising the concentration increased import. Furthermore, these import changes were only gradually reflected in the seed coat washout profile, suggesting a buffering capability of the non-phloem seed coat tissues. Additional results have also led them to propose that the terminal site of seed coat unloading in Pisum is the plasmalemma of an non-phloem seed coat cell type, that unloading from this site occurs via a passive membrane transport process, and that solutes move symplastically to this compartment from the phloem.« less

  4. Low External Workloads Are Related to Higher Injury Risk in Professional Male Basketball Games

    PubMed Central

    Caparrós, Toni; Casals, Martí; Solana, Álvaro; Peña, Javier

    2018-01-01

    The primary purpose of this study was to identify potential risk factors for sports injuries in professional basketball. An observational retrospective cohort study involving a male professional basketball team, using game tracking data was conducted during three consecutive seasons. Thirty-three professional basketball players took part in this study. A total of 29 time-loss injuries were recorded during regular season games, accounting for 244 total missed games with a mean of 16.26 ± 15.21 per player and season. The tracking data included the following variables: minutes played, physiological load, physiological intensity, mechanical load, mechanical intensity, distance covered, walking maximal speed, maximal speed, sprinting maximal speed, maximal speed, average offensive speed, average defensive speed, level one acceleration, level two acceleration, level three acceleration, level four acceleration, level one deceleration, level two deceleration, level three deceleration, level four deceleration, player efficiency rating and usage percentage. The influence of demographic characteristics, tracking data and performance factors on the risk of injury was investigated using multivariate analysis with their incidence rate ratios (IRRs). Athletes with less or equal than 3 decelerations per game (IRR, 4.36; 95% CI, 1.78-10.6) and those running less or equal than 1.3 miles per game (lower workload) (IRR, 6.42 ; 95% CI, 2.52-16.3) had a higher risk of injury during games (p < 0.01 in both cases). Therefore, unloaded players have a higher risk of injury. Adequate management of training loads might be a relevant factor to reduce the likelihood of injury according to individual profiles. Key points The number of decelerations and the total distance can be considered risk factors for injuries in professional basketball players. Unloaded players have greater risk of injury compared to players with higher accumulated external workload. Workload management should be considered a major factor in injury prevention programs. PMID:29769830

  5. Role of nutritional zinc in the prevention of osteoporosis.

    PubMed

    Yamaguchi, Masayoshi

    2010-05-01

    Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and therapy of osteoporosis.

  6. Vestibular and Somatosensory Covergence in Postural Equilibrium Control: Insights from Spaceflight and Bed Rest Studies

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. We are currently conducting studies on both International Space Station (ISS) astronauts experiencing up to 6 months of microgravity and subjects experiencing 70 days of 6??head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading somatosensory component on functional performance. Both ISS crewmembers and bed-rest subjects were tested using a protocol that evaluated functional performance along with tests of postural and locomotor control before and after space flight and bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Astronauts were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after re-ambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability showed less reduction in performance. Results indicate that body unloading resulting from prolonged bed-rest impacts functional performance particularly for tests with a greater requirement for postural equilibrium control. These changes in functional performance were paralleled by similar decrement in tests designed to specifically assess postural equilibrium and dynamic gait control. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions.

  7. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. Bed-rest results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data point to the importance of providing axial body loading as a central component of an inflight training system that will integrate cardiovascular, resistance and sensorimotor adaptability training modalities into a single interdisciplinary countermeasure system.

  8. Constitutive acoustic-emission elastic-stress behavior of magnesium alloy

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Emerson, G. P.

    1977-01-01

    Repeated laoding and unloading of a magnesium alloy below the macroscopic yield stress result in continuous acoustic emissions which are generally repeatable for a given specimen and which are reproducible between different specimens having the same load history. An acoustic emission Bauschinger strain model is proposed to describe the unloading emission behavior. For the limited range of stress examined, loading and unloading stress delays of the order of 50 MN/sq m are observed, and they appear to be dependent upon the direction of loading, the stress rate, and the stress history. The stress delay is hypothesized to be the manifestation of an effective friction stress. The existence of acoustic emission elastic stress constitutive relations is concluded, which provides support for a previously proposed concept for the monitoring of elastic stresses by acoustic emission.

  9. Molecular biology of myocardial recovery.

    PubMed

    Zhang, Jianyi; Narula, Jagat

    2004-02-01

    The use of LVADs that leads to a dramatic mechanical and hemodynamic unloading of the failing left ventricle offers a unique opportunity to investigate the mechanisms of remodeling and reverse remodeling. Although it is being increasingly realized that the LVAD unloading results in regression of hypertrophy and improvement of myocyte function and LV geometry, the cellular and molecular mechanisms responsible for these beneficial effects remain undefined. The favorable alterations in geometry that occur in parallel fashion at the organ, cellular, and molecular levels are most likely caused by the reduced LV wall stress/stretch as a consequence of the mechanical support provided by LVAD. If it is confirmed that LVAD unloading can contribute significantly to reverse remodeling, the role of LVADs may graduate from bridge-to-transplantation or destination therapy to bridge-to-recovery.

  10. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    PubMed

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  11. Transportation of market-weight pigs: I. effect of season, truck type, and location within truck on behavior with a two-hour transport.

    PubMed

    Torrey, S; Bergeron, R; Widowski, T; Lewis, N; Crowe, T; Correa, J A; Brown, J; Gonyou, H W; Faucitano, L

    2013-06-01

    There is evidence that season and truck/trailer design play important roles in pig welfare during transportation although little is known about their interaction and effect on pig behavior. This experiment was designed to examine the influence of season and truck/trailer design on the behavior during loading, transit, unloading, and lairage of market-weight pigs transported to slaughter. A total of 3,756 pigs were transported on either a 3-deck pot-belly trailer (PB; n = 181 pigs/wk in 8 experimental compartments) or a double-decker hydraulic truck (DD; n = 85 pigs/wk in 4 compartments) for 2 h to a commercial abattoir in summer and winter (6 wk in each season). Density on both vehicles was 0.40 m(2)/pig. Accounting for the number of pigs, loading took longer (P = 0.033) onto the DD than the PB, but season did not (P = 0.571) influence loading time. Pigs loaded onto the PB moved backward more (P = 0.003) frequently than those loaded onto the DD. The frequency of tapping by handler was the lone handling intervention affected by truck type, with more (P = 0.014) tapping needed to move pigs on and off DD than PB. During loading, pigs made more (P < 0.001) slips and falls, overlaps, 180° turns, underlaps, and vocalizations in winter compared with summer. On truck, more (P < 0.001) pigs were standing on the DD at the farm and in transit than on the PB whereas more (P = 0.012) pigs were lying in transit in summer than in winter. Pigs took longer to unload (P < 0.001) from the PB than the DD, but no difference between vehicles (P = 0.473) in latency to rest in lairage was found. Pigs slipped and fell more (P < 0.001) during unloading, took longer (P < 0.001) to unload, and had a shorter (P = 0.006) latency to rest in lairage in winter than summer. Vehicle design, in particular the presence of ramps, influenced pig behavior before, during, and after transportation, regardless of the season. Season affected loading and unloading behavior, especially in terms of slips and falls on the ramp, and differences in truck/trailer designs were also partly to blame for unloading times and lairage behavior. Ramps and changes in direction during unloading appear to slow down the handling process.

  12. [The hardware techniques for the restoration of the gait stereotype in the patients following total hip replacement: the personalized approach].

    PubMed

    Koneva, E S; Lyadov, K V; Shapovalenko, T V; Zhukova, E V; Polushkin, V G

    2018-04-09

    total hip replacement has long ago become the «golden standard» for the treatment of dysplastic coxarthrosis in thousands of the patients receiving it every year. In the meantime, the analysis of the specialized literature gives evidence of the lack of a systematic and personified approach to the rehabilitation treatment. The objective of the present study was to improve medical rehabilitation of the patients following the total hip replacement and to develop the personalized programs for walking modality reconstruction taking into consideration the age and the body weight of the patients. A total of 240 patients were available for the observation including 184 women and 56 men. They were divided into three study groups and one control group, with the differentiation into the following three subgroups: one comprised of the patients of moderate acerage age and body weight, the other containing the obese patients (BMI>35), and the third one involving the elderly patients (age >70 years); each subgroup consisted of 20 patients. All the patients received the early basic rehabilitation treatment, those in the study groups had to perform in addition the robotic training based on the use of hardware techniques supplemented by passive mechanotherapy and electromyostimulation designed to restore the walking stereotype with three types of devices: body weight unloading, video-reconstruction associated with biological feedback and robototherapy. The comparative analysis of the effectiveness of various methods of gait reconstruction has demonstrated the high effectiveness of the application of the hardware technique in the patients of moderate acerage age and body weight. At the same time, the elderly patients had a significantly higher rate of successful walking reconstruction efficiency under the influence of the video-associated training with biological feedback (3 times that achieved with training using the device for unloading the body weight and 4 times compared with the result of a course of robotic walk. The evaluation of the application of the techniques for the gait stereotype reconstruction in the obese patients gave evidence of the advantage of the Lokomat robotic trainings that produced 6 times better results than unloading of the body weight and 5 times better ones than the video-associated training with biological feedback. The results of the present study are on the whole comparable with the data reported by other authors although its design was different from that of the majority of the published studies in that our patients were allocated to different subgroups for the further personalization of the methods applied to restore the gait stereotype. The factors limiting the use of the results of this study include the medium-high level of the patients' welfare most of whom are residents of the city of Moscow and Moscow region characterized by a relatively high quality and accessibility of health care. It means that the results of such studies as the one described in the present article are directly related to the quality and accessibility of health care and can be extrapolated only to the socially safe and well-to-do patients. All the hardware techniques are equally effective in the patients of moderate average age and body weight. The elderly patients showed the best results using the video-reconstruction associated with biological feedback, while the Locomat technique was especially useful for the obese patients.

  13. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling.

    PubMed

    Krieger, J R; Ogle, M E; McFaline-Figueroa, J; Segar, C E; Temenoff, J S; Botchwey, E A

    2016-01-01

    Tissue repair processes are characterized by the biphasic recruitment of distinct subpopulations of blood monocytes, including classical ("inflammatory") monocytes (IMs, Ly6C(hi)Gr1(+)CX3CR1(lo)) and non-classical anti-inflammatory monocytes (AMs, Ly6C(lo)Gr1(-)CX3CR1(hi)). Drug-eluting biomaterial implants can be used to tune the endogenous repair process by the preferential recruitment of pro-regenerative cells. To enhance recruitment of AMs during inflammatory injury, a novel N-desulfated heparin-containing poly(ethylene glycol) diacrylate (PEG-DA) hydrogel was engineered to deliver exogenous stromal derived factor-1α (SDF-1α), utilizing the natural capacity of heparin to sequester and release growth factors. SDF-1α released from the hydrogels maintained its bioactivity and stimulated chemotaxis of bone marrow cells in vitro. Intravital microscopy and flow cytometry demonstrated that SDF-1α hydrogels implanted in a murine dorsal skinfold window chamber promoted spatially-localized recruitment of AMs relative to unloaded internal control hydrogels. SDF-1α delivery stimulated arteriolar remodeling that was correlated with AM enrichment in the injury niche. SDF-1α, but not unloaded control hydrogels, supported sustained arteriogenesis and microvascular network growth through 7 days. The recruitment of AMs correlated with parameters of vascular remodeling suggesting that tuning the innate immune response by biomaterial SDF-1α release is a promising strategy for promoting vascular remodeling in a spatially controlled manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A study of creep crack growth in 2219-T851

    NASA Astrophysics Data System (ADS)

    Bensussan, Philippe L.; Jablonski, David A.; Pelloux, Regis M.

    1984-01-01

    Creep crack growth rates were measured in high strength 2219-T851 aluminum alloy with a computerized fully automated test procedure. Crack growth tests were performed on CT specimens with side grooves. The experimental set-up is described. During a test, the specimen is cyclically loaded on a servohydraulic testing machine under computer control, maintained at maximum load for a given hold time at each cycle, unloaded, and then reloaded. Crack lengths are obtained from compliance measurements recorded during each unloading. It is shown that the measured crack growth rates per cycle do represent creep crack growth rates per unit time for hold times longer than 10 seconds. The validity of LEFM concepts for side-grooved specimens is reviewed, and compliance and stress intensity factor calibrations for such specimens are reported. For the range of testing conditions of this study, 2219-T851 is shown to be creep brittle in terms of concepts of fracture mechanics of creeping solids. It is found that, under these testing conditions, a correlation exists between the creep crack growth rates under plane strain conditions and the stress intensity factor ( da/dt = A K 3.8 at 175 °C) for simple K histories in a regime of steady or quasi-steady state crack growth. The micromechanisms of fracture are determined to be of complex nature. The fracture mode is observed to be mixed inter- and transgranular, the relative amount of intergranular fracture decreasing as K and da/dt increase.

  15. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    NASA Technical Reports Server (NTRS)

    English, K. L.; Mulavara, A.; Bloomberg, J.; Ploutz-Snyder, LL

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.

  16. 18. THREEQUARTER VIEW OF HULETT UNLOADERS, LOOKING NORTHEAST. IF INCOMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. THREE-QUARTER VIEW OF HULETT UNLOADERS, LOOKING NORTHEAST. IF INCOMING ORE IS NOT TO BE SHIPPED IMMEDIATELY, THE 'LARRYMAN' MOVES HIS CARLOAD OF ORE ALONG THE CANTILEVER AT THE REAR OF THE HULETT AND DEPOSITS IT INTO THE STORAGE YARD. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  17. The effect of dilatancy on the unloading behavior of Mt. Helen tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attia, A.V.; Rubin, M.B.

    1993-11-01

    In order to understand the role of rock dilatancy in modeling the response of partially saturated rock formations to underground nuclear explosions, we have developed a thermodynamically consistent model for a porous material, partially saturated with fluid. This model gives good predictions of the unloading behavior of dry, partially saturated, and fully saturated Mt. Helen tuff, as measured by Heard.

  18. Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA

    PubMed Central

    Baixauli-Pérez, Mª Piedad

    2017-01-01

    The size and complexity of industrial chemical plants, together with the nature of the products handled, means that an analysis and control of the risks involved is required. This paper presents a methodology for risk analysis in chemical and allied industries that is based on a combination of HAZard and OPerability analysis (HAZOP) and a quantitative analysis of the most relevant risks through the development of fault trees, fault tree analysis (FTA). Results from FTA allow prioritizing the preventive and corrective measures to minimize the probability of failure. An analysis of a case study is performed; it consists in the terminal for unloading chemical and petroleum products, and the fuel storage facilities of two companies, in the port of Valencia (Spain). HAZOP analysis shows that loading and unloading areas are the most sensitive areas of the plant and where the most significant danger is a fuel spill. FTA analysis indicates that the most likely event is a fuel spill in tank truck loading area. A sensitivity analysis from the FTA results show the importance of the human factor in all sequences of the possible accidents, so it should be mandatory to improve the training of the staff of the plants. PMID:28665325

  19. Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA.

    PubMed

    Fuentes-Bargues, José Luis; González-Cruz, Mª Carmen; González-Gaya, Cristina; Baixauli-Pérez, Mª Piedad

    2017-06-30

    The size and complexity of industrial chemical plants, together with the nature of the products handled, means that an analysis and control of the risks involved is required. This paper presents a methodology for risk analysis in chemical and allied industries that is based on a combination of HAZard and OPerability analysis (HAZOP) and a quantitative analysis of the most relevant risks through the development of fault trees, fault tree analysis (FTA). Results from FTA allow prioritizing the preventive and corrective measures to minimize the probability of failure. An analysis of a case study is performed; it consists in the terminal for unloading chemical and petroleum products, and the fuel storage facilities of two companies, in the port of Valencia (Spain). HAZOP analysis shows that loading and unloading areas are the most sensitive areas of the plant and where the most significant danger is a fuel spill. FTA analysis indicates that the most likely event is a fuel spill in tank truck loading area. A sensitivity analysis from the FTA results show the importance of the human factor in all sequences of the possible accidents, so it should be mandatory to improve the training of the staff of the plants.

  20. Mapping cavitation activity around dental ultrasonic tips.

    PubMed

    Walmsley, A Damien; Lea, Simon C; Felver, Bernhard; King, David C; Price, Gareth J

    2013-05-01

    Cavitation arising within the water around the oscillating ultrasonic scaler tip is an area that may lead to advances in enhancing biofilm removal. The aim of this study is to map the occurrence of cavitation around scaler tips under loaded conditions. Two designs of piezoelectric ultrasonic scaling probes were evaluated with a scanning laser vibrometer and luminol dosimetric system under loaded (100 g/200 g) and unloaded conditions. Loads were applied to the probe tips via teeth mounted in a load-measuring apparatus. There was a positive correlation between probe displacement amplitude and cavitation production for ultrasonic probes. The position of cavitation at the tip of each probe was greater under loaded conditions than unloaded and for the longer P probe towards the tip. Whilst increasing vibration displacement amplitude of ultrasonic scalers increases the occurrence of cavitation, factors such as the length of the probe influence the amount of cavitation activity generated. The application of load affects the production of cavitation at the most clinically relevant area-the tip. Loading and the design of ultrasonic scalers lead to maximising the occurrence of the cavitation at the tip and enhance the cleaning efficiency of the scaler.

  1. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.; Allen, M. R.; Hogan, H. A.; Delp, M. D.

    2002-01-01

    The purpose of this study was to examine site- and compartment-specific changes in bone induced by hindlimb unloading (HU) in the mature adult male rat (6 months old). Tibiae, femora, and humeri were removed after 14, 21, and 28 days of HU for determination of bone mineral density (BMD) and geometry by peripheral quantitative computed tomography (pQCT), mechanical properties, and bone formation rate (BFR), and compared with baseline (0 day) and aging (28 day) controls. HU resulted in 20%-21% declines in cancellous BMD at the proximal tibia and femoral neck after 28 day HU vs. 0 day controls (CON). Cortical shell BMD at these sites was greater (by 4%-6%) in both 28 day HU and 28 day CON vs. 0 day CON animals, and nearly identical to that gain seen in the weight-bearing humerus. Mechanical properties at the proximal tibia exhibited a nonsignificant decline after HU vs. those of 0 day CON rats. At the femoral neck, a 10% decrement was noted in ultimate load in 28 day HU rats vs. 28 day CON animals. Middiaphyseal tibial bone increased slightly in density and area during HU; no differences in structural and material properties between 28 day HU and 28 day CON rats were noted. BFR at the tibial midshaft was significantly lower (by 90%) after 21 day HU vs. 0 day CON; this decline was maintained throughout 28 day HU. These results suggest there are compartment-specific differences in the mature adult skeletal response to hindlimb unloading, and that the major impact over 28 days of unloading is on cancellous bone sites. Given the sharp decline in BFR for midshaft cortical bone, it appears likely that deficits in BMD, area, or mechanical properties would develop with longer duration unloading.

  2. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions.

    PubMed

    Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo

    2017-02-10

    In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p < 0.05), which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  3. RIGHT VENTRICULAR UNLOADING AND RESPIRATORY SUPPORT WITH A WEARABLE ARTIFICIAL PUMP-LUNG (APL) IN AN OVINE MODEL

    PubMed Central

    Liu, Yang; Sanchez, Pablo G; Wei, Xufeng; Li, Tieluo; Watkins, Amelia C; Li, Shu-ying; Griffith, Bartley P; Wu, Zhongjun J

    2014-01-01

    Background Device availability of mechanical circulatory or respiratory support to the right heart has been limited. The purpose of this study was to investigate the effect of right heart unloading and respiratory support with a wearable integrated artificial pump-lung (APL). Methods The APL device was placed surgically between the right atrium and pulmonary artery in seven sheep. Anticoagulation was performed with heparin infusion. Its ability to unload the right ventricle (RV) was investigated by echocardiograms and right heart catheterization at different bypass flow rates. Hemodynamics and Echo data were evaluated. The device flow and gas transfer rates were also measured at different device speeds. Results Hemodynamics remained stable during APL support. There was no significant change in systemic blood pressure and cardiac index. Central venous pressure, RV pressure, RV end-diastolic dimension and RV ejection fraction were significant decreased when APL device flow rate approached 2 L/min. The linear regression showed significant correlative trends between the hemodynamic and cardiac indices and the device speed. The oxygen transfer rate increased with the device speed. The oxygen saturation from APL outlet was fully saturated (>95%) during the support. The impact of the APL support on blood elements (plasma free hemoglobin and platelet activation) was minimal. Conclusion The APL device support significantly unloaded the right ventricle with increasing device speed. The APL device provided stable hemodynamic and respiratory support in terms of blood flow and oxygen transfer. The right heart unloading performance of this wearable device need to be evaluated in the animal model with right heart failure for a long term support. PMID:24746636

  4. The effect of temperature, gradient, and load carriage on oxygen consumption, posture, and gait characteristics.

    PubMed

    Hinde, Katrina; Lloyd, Ray; Low, Chris; Cooke, Carlton

    2017-03-01

    The purpose of this experiment was to evaluate the effect of load carriage in a range of temperatures to establish the interaction between cold exposure, the magnitude of change from unloaded to loaded walking and gradient. Eleven participants (19-27 years) provided written informed consent before performing six randomly ordered walking trials in six temperatures (20, 10, 5, 0, -5, and -10 °C). Trials involved two unloaded walking bouts before and after loaded walking (18.2 kg) at 4 km · h -1 , on 0 and 10% gradients in 4 min bouts. The change in absolute oxygen consumption (V̇O 2 ) from the first unloaded bout to loaded walking was similar across all six temperatures. When repeating the second unloaded bout, V̇O 2 at both -5 and -10 °C was greater compared to the first. At -10 °C, V̇O 2 was increased from 1.60 ± 0.30 to 1.89 ± 0.51 L · min -1 . Regardless of temperature, gradient had a greater effect on V̇O 2 and heart rate (HR) than backpack load. HR was unaffected by temperature. Stride length (SL) decreased with decreasing temperature, but trunk forward lean was greater during cold exposure. Decreased ambient temperature did not influence the magnitude of change in V̇O 2 from unloaded to loaded walking. However, in cold temperatures, V̇O 2 was significantly higher than in warm conditions. The increased V̇O 2 in colder temperatures at the same exercise intensity is predicted to ultimately lead to earlier onset of fatigue and cessation of exercise. These results highlight the need to consider both appropriate clothing and fitness during cold exposure.

  5. Superconducting cavity material for the European XFEL

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Brinkmann, A.; Iversen, J.; Matheisen, A.; Navitski, A.; Tamashevich, Y.; Michelato, P.; Monaco, L.

    2015-08-01

    Analysis of the strategy for superconducting cavity material procurement and quality management is done on the basis of the experience with the cavity production for the European x-ray free electron laser (EXFEL) facility. An adjustment of the material specification to EXFEL requirements, procurement of material, quality control (QC), documentation, and shipment to cavity producers have been worked out and carried out by DESY. A multistep process of qualification of the material suppliers included detailed material testing, single- and nine-cell cavity fabrication, and cryogenic radiofrequency tests. Production of about 25 000 semi-finished parts of high purity niobium and niobium-titanium alloy in a period of three years has been divided finally between companies Heraeus, Tokyo Denkai, Ningxia OTIC, and PLANSEE. Consideration of large-grain (LG) material as a possible option for the EXFEL has resulted in the production of one cryogenic module consisting of seven (out of eight) LG cavities. LG materials fulfilled the EXFEL requirements and showed even 25% to 30% higher unloaded quality factor. A possible shortage of the required quantity of LG material on the market led, however, to the choice of conventional fine-grain (FG) material. Eddy-current scanning (ECS) has been applied as an additional QC tool for the niobium sheets and contributed significantly to the material qualification and sorting. Two percent of the sheets have been rejected, which potentially could affect up to one-third of the cavities. The main imperfections and defects in the rejected sheets have been analyzed. Samples containing foreign material inclusions have been extracted from the sheets and electrochemically polished. Some inclusions remained even after 150 μm surface layer removal. Indications of foreign material inclusions have been found in the industrially fabricated and treated cavities and a deeper analysis of the defects has been performed.

  6. PGC-1α is important for maintaining the balance of muscle mass and myofiber types in unloaded muscle atrophy

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoping; He, Jian; Wang, Fei; Zhang, Peng; Liu, Hongju; Li, Wenjiong

    2016-07-01

    PGC-1α, a transcriptional co-activator, has been shown mainly to determine the development of oxidative myofibers in skeletal muscle. However, whether PGC-1α functions to regulate the unloaded muscle atrophy and composition of myofiber types keeps unclear. MCK-PGC-1α overexpression transgenic mice (TG) and its wild type littermates (WT) were subjected to hindlimb unloading (HU) and induced unloaded muscle atrophy. After 14 days of HU, the mass of gastrocnemius, soleus, and plantaris muscles in WT mice decreased 17.9%, 28.2%, and 14.8%, respectively (P<0.01), compared with ground weight-bearing control muscles. PGC-1α transgenic mice showed a 14.0% (P<0.05), 20.4% (P<0.01), 11.8% decrease in gastrocnemius, soleus, and plantaris muscles mass after HU. To further confirm the effect of PGC-1α over-expression on the muscle mass loss under HU, change rate of muscle-body weight ratio was calculated, and the results indicated that the reduction of change rate of muscle-body weight ratio in PGC-1α transgenic gastrocnemius and soleus was significantly less than in WT mice (P<0.01). Moreover, in TG mice compared to WT mice there were significantly less reduction rate of slow-twitch myofiber MHC-I and MHC-IIa (MHC-I, -3.0±0.2% vs -14.9±4.2%, p<0.01, MHC-IIa, -3.5±2.7% vs -6.2±3.7%, p<0.01 ), while there was significantly less induction rate of fast-twitch myofiber MHC-IIb (MHC-IIb, +0.6±0.6% vs +3.7±2.9%, p<0.01 ). The real-time PCR and Western blot analysis confirmed that PGC-1α overexpression mice markedly rescued the muscle atrophy and myofiber switching from oxidative to glycolytic associated with a decrease in pSmad3 level after 14 days of HU. Importantly, overexpression of PGC-1α in C2C12 myoblasts protected PGC-1α-transfected myotubes from atrophy in vitro and the effect could be partially blocked by inducing pSmad3 with constitutively activated Smad3(C.A. smad3) transfection. Therefore, this study demonstrated a novel role and mechanism for PGC-1α in maintaining the balance of muscle mass and myofiber type MHCs in unloaded muscle atrophy via suppressing Smad3 activation. This report may prompt a hopeful therapeutic strategy for maintaining muscle mass and fiber type composition in disused muscle atrophies such as space weightlessness- or immobilization-induced muscle atrophy. Acknowledgments This work was supported by the Natural Sciences Foundation of China (31171144, 81272177 and 31171148), the State Key Laboratory Grant of Space Medicine Fundamentals and Application (SMFA13A01), and the National Key Laboratory Grant of Human Factors Engineering (SYFD140051801).

  7. NUCLEAR REACTOR UNLOADING APPARATUS

    DOEpatents

    Leverett, M.C.; Howe, J.P.

    1959-01-20

    An unloading device is described for a heterogeneous reactor of the type wherein the fuel elements are in the form of cylindrical slugs and are disposed in horizontal coolant tubes which traverse the reactor core, coolant fluid being circulated through the tubes. The coolant tubes have at least two inwardly protruding ribs from their lower surfaces to support the slugs in spaced relationship to the inside walls of the tubes. The unloading device consists of a ribbon-like extractor member insertable into the coolant tubes in the space between the ribs and adapted to slide under the fuel slugs thereby raising them off of the ribs and forming a slideway for removing them from the reactor. The fuel slugs are ejected by being forced out of the tubes by incoming new fuel slugs or by a push rod insentable through the inlet end of the fuel tubes.

  8. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  9. 30. BUILDING NO. 527, DEHYDRATING PRESSES, LOOKING SOUTH. ALUMINUM NARROWGUAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. BUILDING NO. 527, DEHYDRATING PRESSES, LOOKING SOUTH. ALUMINUM NARROW-GUAGE GONDOLA CAR IN LEFT BACKGROUND BROUGHT MOISTENED GUN COTTON FROM REST HOUSE (BUILDING NO. 320-B) IN CANS. (ONE OF THESE CANS IS ON UNLOADING PLATFORM RUNNING BESIDE PRESSES). CONTENTS OF CANS WERE UNLOADED INTO PRESSES BY HAND. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  10. Mission-Based Analyses of Armor Training Requirements. Volume 7. Training Objectives for the XM1 Loader

    DTIC Science & Technology

    1982-04-01

    the gas particulate filter system MODULE L: OPERATE THE M250 BRENADE LAUNCHER 1L. Load the grenade launcher 2L. Unload the grenade launcher MODULE M...k Initia~ng Stimulus: Thei (11rdLr from the T.C. to load the M250 .p grenade launcher. J ACTION Loader will: 1L. Load the grenade launcher. 2L. Unload

  11. APPARATUS FOR LOADING AND UNLOADING A MACHINE

    DOEpatents

    Payne, J.H. Jr.

    1962-07-17

    An arrangement for loading and unloading a nuclear reactor is described. Depleted fuel elements are removed from the reactor through one of a small number of holes in a shielding plug that is rotatably mounted in an eccentric annular plug rotatably mounted in the top of the reactor. The fuel elements removed are stored in a plurality of openings in a rotatable magazine or storage means rotatably mounted over the plugs. (AEC)

  12. 33 CFR 158.120 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... has the same meaning as in § 157.03(e) of this chapter. Commandant means Commandant, U.S. Coast Guard... least 25 mPa.s at 20 °C and of at least 25 mPa.s at the time they are unloaded, high viscosity Category... having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High...

  13. 33 CFR 158.120 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... has the same meaning as in § 157.03(e) of this chapter. Commandant means Commandant, U.S. Coast Guard... least 25 mPa.s at 20 °C and of at least 25 mPa.s at the time they are unloaded, high viscosity Category... having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High...

  14. 33 CFR 158.120 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... has the same meaning as in § 157.03(e) of this chapter. Commandant means Commandant, U.S. Coast Guard... least 25 mPa.s at 20 °C and of at least 25 mPa.s at the time they are unloaded, high viscosity Category... having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High...

  15. Self-unloading, reusable, lunar lander project

    NASA Technical Reports Server (NTRS)

    Arseculeratne, Ruwan; Cavazos, Melissa; Euker, John; Ghavidel, Fred; Hinkel, Todd J.; Hitzfelder, John; Leitner, Jesse; Nevik, James; Paynter, Scott; Zolondek, Allen

    1990-01-01

    In the early 21st century, NASA will return to the Moon and establish a permanent base. To achieve this goal safely and economically, B&T Engineering has designed an unmanned, reusable, self-unloading lunar lander. The lander is designed to deliver 15,000 kg payloads from an orbit transfer vehicle (OTV) in a low lunar polar orbit and an altitude of 200 km to any location on the lunar surface.

  16. Influence of Altered Mass Loading on Testosterone Levels and Testicular Mass

    NASA Technical Reports Server (NTRS)

    Wang, Tommy J.; Ortiz, R. M.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Effects of altered load on testosterone levels and testicular mass in mammals are not well defined. Two separate studies (loading;centrifuged; +2G(sub z) and unloading;hindlimb suspension;HLS) were conducted to provide a better understanding of the effects of mass loading on testosterone levels and testicular mass. Daily urine samples were collected, and testicular mass measured at the end of the study. +2G(sub z): Sprague-Dawley rats (230-250 g) were centrifuged for 12 days at +2G(sub z): 8 centrifuged (EC) and 8 off centrifuge controls (OCC). EC had lower body mass, however relative testicular mass was greater. EC exhibited an increase in excreted testosterone levels between days 2 (T2) and 6 (T6), and returned to baseline at T9. HLS: To assess the effects of unloading Sprague-Dawley rats (125-150 g) were studied for 12 days: 10 suspended (Exp) and 10 ambulatory (Ctl). Exp had lower body mass during the study, with reduced absolute and relative testicular mass. Exp demonstrated lower excreted testosterone levels from T5-T12. Conclusions: Loading appears to stimulate anabolism, as opposed to unloading, as indicated by greater relative testicular mass and excreted testosterone levels. Reported changes in muscle mass during loading and unloading coincide with similar changes in excreted testosterone levels.

  17. Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Colleran, P. N.; Wilkerson, M. K.; McCurdy, M. R.; Muller-Delp, J.

    2000-01-01

    Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).

  18. The KineSpring® Knee Implant System: an implantable joint-unloading prosthesis for treatment of medial knee osteoarthritis

    PubMed Central

    Clifford, Anton G; Gabriel, Stefan M; O’Connell, Mary; Lowe, David; Miller, Larry E; Block, Jon E

    2013-01-01

    Symptomatic medial compartment knee osteoarthritis (OA) is the leading cause of musculoskeletal pain and disability in adults. Therapies intended to unload the medial knee compartment have yielded unsatisfactory results due to low patient compliance with conservative treatments and high complication rates with surgical options. There is no widely available joint-unloading treatment for medial knee OA that offers clinically important symptom alleviation, low complication risk, and high patient acceptance. The KineSpring® Knee Implant System (Moximed, Inc, Hayward, CA, USA) is a first-of-its-kind, implantable, extra-articular, extra-capsular prosthesis intended to alleviate knee OA-related symptoms by reducing medial knee compartment loading while overcoming the limitations of traditional joint-unloading therapies. Preclinical and clinical studies have demonstrated excellent prosthesis durability, substantial reductions in medial compartment and total joint loads, and clinically important improvements in OA-related pain and function. The purpose of this report is to describe the KineSpring System, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The KineSpring System has potential to bridge the gap between ineffective conservative treatments and irreversible surgical interventions for medial compartment knee OA. PMID:23717052

  19. Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance

    NASA Astrophysics Data System (ADS)

    Du, Kun; Tao, Ming; Li, Xi-bing; Zhou, Jian

    2016-09-01

    Slabbing/spalling and rockburst are unconventional types of failure of hard rocks under conditions of unloading and various dynamic loads in environments with high and complex initial stresses. In this study, the failure behaviors of different rock types (granite, red sandstone, and cement mortar) were investigated using a novel testing system coupled to true-triaxial static loads and local dynamic disturbances. An acoustic emission system and a high-speed camera were used to record the real-time fracturing processes. The true-triaxial unloading test results indicate that slabbing occurred in the granite and sandstone, whereas the cement mortar underwent shear failure. Under local dynamically disturbed loading, none of the specimens displayed obvious fracturing at low-amplitude local dynamic loading; however, the degree of rock failure increased as the local dynamic loading amplitude increased. The cement mortar displayed no failure during testing, showing a considerable load-carrying capacity after testing. The sandstone underwent a relatively stable fracturing process, whereas violent rockbursts occurred in the granite specimen. The fracturing process does not appear to depend on the direction of local dynamic loading, and the acoustic emission count rate during rock fragmentation shows that similar crack evolution occurred under the two test scenarios (true-triaxial unloading and local dynamically disturbed loading).

  20. First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi

    2017-11-01

    The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.

  1. Relationships Between Trunk Movement Patterns During Lifting Tasks Compared With Unloaded Extension From a Flexed Posture.

    PubMed

    Ogata, Yuta; Anan, Masaya; Takahashi, Makoto; Takeda, Takuya; Tanimoto, Kenji; Sawada, Tomonori; Shinkoda, Koichi

    The purpose of this study was to investigate between movement patterns of trunk extension from full unloaded flexion and lifting techniques, which could provide valuable information to physical therapists, doctors of chiropractic, and other manual therapists. A within-participant study design was used. Whole-body kinematic and kinetic data during lifting and full trunk flexion were collected from 16 healthy male participants using a 3-dimensional motion analysis system (Vicon Motion Systems). To evaluate the relationships of joint movement between lifting and full trunk flexion, Pearson correlation coefficients were calculated. There was no significant correlation between the amount of change in the lumbar extension angle during the first half of the lifting trials and lumbar movement during unloaded trunk flexion and extension. However, the amount of change in the lumbar extension angle during lifting was significantly negatively correlated with hip movement during unloaded trunk flexion and extension (P < .05). The findings that the maximum hip flexion angle during full trunk flexion had a greater influence on kinematics of lumbar-hip complex during lifting provides new insight into human movement during lifting. All study participants were healthy men; thus, findings are limited to this group. Copyright © 2018. Published by Elsevier Inc.

  2. Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts

    PubMed Central

    Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel

    2013-01-01

    Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110

  3. Survey of transportation procedures, management practices, and health assessment related to quality, quantity, and value for market beef and dairy cows and bulls.

    PubMed

    Nicholson, J D W; Nicholson, K L; Frenzel, L L; Maddock, R J; Delmore, R J; Lawrence, T E; Henning, W R; Pringle, T D; Johnson, D D; Paschal, J C; Gill, R J; Cleere, J J; Carpenter, B B; Machen, R V; Banta, J P; Hale, D S; Griffin, D B; Savell, J W

    2013-10-01

    This survey consisted of data collected from 23 beef harvest plants to document transportation procedures, management practices, and health assessments of market beef and dairy cows and bulls (about n ≅ 7,000 animals). Gooseneck/bumper-pulled trailers were used more often to transport dairy cattle than beef cattle to market whereas tractor-trailers were used more often to transport beef cattle than dairy cattle. All loads (n = 103) met the American Meat Institute Foundation guidelines for spacing. Loads where more than 3% of the cattle slipped during unloading were observed in 27.3% of beef loads and 29.0% of the dairy loads. Beef loads had numerically greater usage of electrical prods (32.4%) versus dairy loads (15.4%) during unloading and were more likely to have a variety of driving aids used more aggressively on them. Fewer cattle had horns, brands, and mud/manure contamination on hides than in the previous survey in 1999. The predominant hide color for beef cows was black (44.2%) whereas the predominant color for dairy cows was the Holstein pattern (92.9%). Fewer cattle displayed evidence of bovine ocular neoplasia (2.9%) than in previous surveys in 1994 (8.5%) and 1999 (4.3%). Knots on live cattle were found less in the round (0.5%) and more in the shoulder region (4.6%) than in 1999 (1.4% and 0.4%, respectively). Dairy cows were more frequently lame in 2007 (48.7%) than 1999 (39.2%) whereas beef cows had numerically less lameness (16.3% vs. 26.6%, respectively). Most beef cows (62.3%) and dairy cows (68.9%) received midpoint body condition scores (3, 4, and 5 for beef; 2 and 3 for dairy). Beef cows had higher numerical percentages of no defects present (72.0%) versus dairy cows (63.0%) when evaluated for a variety of reproductive, health, or management conditions. Continued improvements in several key factors related to transportation, management, and health were observed in this survey, which could result in increased value in market beef and dairy cows and bulls.

  4. Short-term effect of superficial heat treatment on paraspinal muscle activity, stature recovery, and psychological factors in patients with chronic low back pain.

    PubMed

    Lewis, Sandra E; Holmes, Paul S; Woby, Steve R; Hindle, Jackie; Fowler, Neil E

    2012-02-01

    To test the hypothesis that patients with chronic low back pain (CLBP) would have reduced paraspinal muscle activity when wearing a heat wrap and that this would be associated with increased stature recovery and short-term improvements in psychological factors. A within-subject repeated-measures design. Muscle activity and stature recovery were assessed before and after a 40-minute unloading period, both without a heat wrap and after 2 hours of wear. Questionnaires were completed after both sessions. Hospital physiotherapy department. Patients with CLBP (n=24; age, 48.0±9.0 y; height, 166.6±7.3 cm; body mass, 80.2±12.9 kg) and asymptomatic participants (n=11; age, 47.9±15.4 y; height, 168.7±11.6 cm; body mass, 69.3±13.1 kg) took part in the investigation. Patients on the waiting list for 2 physiotherapist-led rehabilitation programs, and those who had attended the programs during the previous 2 years, were invited to participate. Superficial heat wrap. Paraspinal muscle activity, stature recovery over a 40-minute unloading period, pain, disability, and psychological factors. For the CLBP patients only, the heat wrap was associated with a reduction in nonnormalized muscle activity and a positive short-term effect on self-report of disability, pain-related anxiety, catastrophizing, and self-efficacy. Changes in muscle activity were correlated with changes in stature recovery, and both were also correlated to changes in psychological factors. Use of the heat wrap was associated with a decrease in muscle activity and a short-term improvement in certain aspects of well-being for the CLBP patients. The results confirm the link between the biomechanical and psychological outcome measures. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Improving corn silage quality in the top layer of farm bunker silos through the use of a next-generation barrier film with high impermeability to oxygen.

    PubMed

    Borreani, G; Tabacco, E

    2014-01-01

    This study examined the effect on the fermentation, chemical, and microbiological quality of corn silage covered with a new-generation high oxygen barrier film (HOB) made with a special grade of ethylene-vinyl alcohol (EVOH) compared with a standard polyethylene film (PE). Two bunkers (farms 1 and 2) were divided into 2 parts lengthwise so that half of the silo would be covered with PE film and the other with HOB film. Plastic net bags with fresh chopped corn were buried in the upper layer (close to and far from the wall) and in the central part of the bunkers. During spring-summer consumption, the bags were unloaded, weighed, and subsampled to analyze the dry matter (DM) content, neutral detergent fiber and starch contents, pH, lactic and monocarboxylic acids, yeast and mold counts, aerobic and anaerobic spore-former counts, and aerobic stability. We also determined the economic benefit of applying the novel covering. The top layer of silage conserved under the HOB film had a higher lactic acid content and lower pH; lower counts of yeasts, molds, and aerobic and anaerobic spore-formers; higher aerobic stability; and lower DM losses than the silage conserved under the PE film. The use of the HOB film prevented almost all of the silage in the upper layer from spoiling; only 2 out of 32 samples had a mold count >6log10 cfu/g. This led to a net economic gain when the HOB film was used on both farms due to the increased DM recovery and reduced labor time required to clean the upper layer, even though the HOB film cost about 2.3 times more than the PE film. Furthermore, use of the HOB film, which ensures a longer shelf life of silage during consumption, reduced the detrimental effect of yeasts, molds, and aerobic and anaerobic spore-formers on the nutritional and microbiological quality of the unloaded silage. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Padalka holds packages of food unloaded from the Progress 15P vehicle during Expedition 9

    NASA Image and Video Library

    2004-08-15

    ISS009-E-18558 (15 August 2004) --- Cosmonaut Gennady I. Padalka, Expedition 9 commander representing Russia's Federal Space Agency, holds packages of food, as two apples float freely near him, in the Unity node of the International Space Station (ISS). The food was recently unloaded from the Progress 15 supply vehicle docked to the Station. The functional cargo block (FGB) or Zarya hatchway is visible in the background.

  7. Critical Compressive Stress for Flat Rectangular Plates Supported Along All Edges and Elastically Restrained Against Rotation along the Unloaded Edges

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Stowell, Elbridge Z

    1942-01-01

    A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in flat rectangular plates supported along all edges and, in addition, elastically restrained against rotation along the unloaded edges. The mathematical derivations of the formulas required in the construction of the chart are given.

  8. An apparatus for altering the mechanical load of the respiratory system.

    PubMed

    Younes, M; Bilan, D; Jung, D; Kroker, H

    1987-06-01

    We describe an apparatus for altering the mechanical load against which the respiratory muscles operate in humans. A closed system incorporates a rolling seal spirometer. The spirometer piston shaft is coupled to a fast-responding linear actuator that develops force in proportion to desired command signals. The command signal may be flow (resistive loading or unloading), volume (elastic loading or unloading), constant voltage (continuous positive or negative pressure), or any external function. Combinations of loads can be applied. Logic circuits permit application of the load at specific times during the respiratory cycle, and the magnitude of the loads is continuously adjustable. Maximum pressure output is +/- 20 cmH2O. The apparatus permits loading or unloading over a range of ventilation extending from resting levels to those observed during high levels of exercise (over 100 l/min). In response to a square-wave input, pressure rises exponentially with a time constant of 20 ms.

  9. Automated cassette-to-cassette substrate handling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and amore » processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.« less

  10. [Design and Optimization of Microfluidic Chips Used for Mixing Cryoprotectants].

    PubMed

    Zhou, Xinli; Yi, Xingyue; Zhou, Nanfeng; Yang, Yun

    2016-06-01

    Microfluidic chips can be used to realize continuous cryoprotectants(CPA)loading/unloading for oocytes,reducing osmotic damage and chemical toxicity of CPA.In this study,five different Y-shape microfluidic chips were fabricated to realize the continuous CPA loading/unloading.The effects of flow rate,entrance angle,aspect ratio and turning radius of microchannels on the mixing efficiency of microfluidic chips were analyzed quantitatively.The experimental results showed that with the decrease of flow rates,the increase of aspect ratios and the decrease of turning raradius of microchannel,the mixing length decreased and the mixing velocity was promoted,while the entrance angle had little effect on the mixing efficiency.However,the operating conditions and structural parameters of the chips in practical application should be determined based on an overall consideration of CPA loading/unloading time and machining accuracy.These results would provide a reference to the application of microfluidic chip in CPA mixing.

  11. Load-carriage distance run and push-ups tests: no body mass bias and occupationally relevant.

    PubMed

    Vanderburgh, Paul M; Mickley, Nicholas S; Anloague, Philip A

    2011-09-01

    Recent research has demonstrated body mass (M) bias in military physical fitness tests favoring lighter, not just leaner, service members. Mathematical modeling predicts that a distance run carrying a backpack of 30 lbs would eliminate M-bias. The purpose of this study was to empirically test this prediction for the U.S. Army push-ups and 2-mile run tests. Two tests were performed for both events for each of 56 university Reserve Officer Training Corps male cadets: with (loaded) and without backpack (unloaded). Results indicated significant M-bias in the unloaded and no M-bias in the loaded condition for both events. Allometrically scaled scores for both events were worse in the loaded vs. unloaded conditions, supporting a hypothesis not previously tested. The loaded push-ups and 2-mile run appear to remove M-bias and are probably more occupationally relevant as military personnel are often expected to carry external loads.

  12. The Effects of Load Carriage and Physical Fatigue on Cognitive Performance

    PubMed Central

    Eddy, Marianna D.; Hasselquist, Leif; Giles, Grace; Hayes, Jacqueline F.; Howe, Jessica; Rourke, Jennifer; Coyne, Megan; O’Donovan, Meghan; Batty, Jessica; Brunyé, Tad T.; Mahoney, Caroline R.

    2015-01-01

    In the current study, ten participants walked for two hours while carrying no load or a 40 kg load. During the second hour, treadmill grade was manipulated between a constant downhill or changing between flat, uphill, and downhill grades. Throughout the prolonged walk, participants performed two cognitive tasks, an auditory go no/go task and a visual target detection task. The main findings were that the number of false alarms increased over time in the loaded condition relative to the unloaded condition on the go no/go auditory task. There were also shifts in response criterion towards responding yes and decreased sensitivity in responding in the loaded condition compared to the unloaded condition. In the visual target detection there were no reliable effects of load carriage in the overall analysis however, there were slower reaction times in the loaded compared to unloaded condition during the second hour. PMID:26154515

  13. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  14. Skeletal Phenotype of Transgenic Mice Expressing the Beta1 Integrin Cytoplasmic Tail In Osteoblasts

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; vanderMeulen, M. C. H.; Damsky, D.; Kim, J.-B.; Amblard, D.; Amblard, D.; Nishimura, Y.; Almeida, E.; Iwaniec, U. T.; Wronski, T. J.; hide

    2002-01-01

    To define the physiologic role of beta1 integrin in bone formation and mechanical loading, transgenic mice were generated by expressing the cytoplasmic tall and transmembrane domain of Beta1 integrin under the control of the osteocalcin promoter. In cultured cells, this truncated fragment of Beta1 can act as a dominant negative. Previously, the matrix of calvariae was shown to be abnormal in transgenic (TG) compared to wildtype (WT) mice. In this study, we analyzed appendicular bone in TG and WT, male and female mice at 14, 35, 63, 90 and 365 days old (n=8-12/gp). To assess beta1 integrin function in mechanical loading, a pilot study using hindlimb unloading by tail suspension was performed. 35d old TG and WT females were hindlimb unloaded for 4 wks (n=3-5). Body mass, bone mineral content, histomorphometric (distal femur) and biomechanical parameters were analyzed. Statistical significance (P less than.05) was defined by ANOVA using the Tukey-Kramer post-hoc test. We confirmed transgene expression by immunoprecipitating then immunoblotting bone lysates using an antibody against the beta1 tail. Body masses of TG mice at 63, 90 and 365d old were greater (16-25%) than WT. Some TG female mice at 365d appeared obese; mean abdominal fat mass was 415% greater in TG than WT mice. Tibiae were longer (5-7%) in TG than WT mice at 63 and 90d. Tibial mineral mass of 35d males was 7% lower in TG than WT mice, but at 63d was 21% higher. The % osteoblast surface in 35d TG mice was 20% higher than WT, and at 63d was 17% lower, while % osteoclast surface did not differ. In 365d mice, cancellous bone volume (125%) and endocortical mineral apposition rate (40%) were greater in TG than WT males but not females. In WT mice, hindlimb unloading caused a reduction in mineral mass of tibiae (-20%) and lumbar vertebrae (-22%) relative to normally loaded controls. Surprisingly, hindlimb unloading also caused a relative reduction (-13%) in humerus mass. The effects of hindlimb unloading on tibia and humerus mass were less obvious in TG than in WT mice. Since hindlimb unloading caused skeletal changes in both loaded and unloaded bones, systemic changes may contribute to bone responses observed using this animal model. In conclusion, transgene expression resulted in marked metabolic changes during growth and in the aged female. Our results demonstrate that expression of the Beta1 integrin cytoplasmic tail in vivo causes gender- and age-specific changes in select morphometric parameters, bone length, and bone mass.

  15. Quasi Eighth-Mode Substrate Integrated Waveguide (SIW) Fractal Resonator Filter Utilizing Gap Coupling Compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Rao, Jia-Yu; Tai, Wen-Si; Wang, Ting; Liu, Fa-Lin

    2016-09-01

    In this paper, a kind of quasi eighth substrate integrated waveguide resonator (QESIWR) with defected fractal structure (DFS) is proposed firstly. Compared with the eighth substrate integrated waveguide resonator (ESIWR), this kind of resonator has lower resonant frequency (f0), acceptable unloaded quality (Qu) value and almost unchanged electric field distribution. In order to validate the properties of QESIWR, a cascaded quadruplet QESIWRs filter is designed and optimized. By using cross coupling and gap coupling compensation, this filter has two transmission zeros (TZs) at each side of the passband. Meanwhile, in comparison with the conventional ones, its size is cut down over 90 %. The measured results agree well with the simulated ones.

  16. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill

    PubMed Central

    Friedrich, O.; Reid, M. B.; Van den Berghe, G.; Vanhorebeek, I.; Hermans, G.; Rich, M. M.; Larsson, L.

    2015-01-01

    Critical illness polyneuropathies (CIP) and myopathies (CIM) are common complications of critical illness. Several weakness syndromes are summarized under the term intensive care unit-acquired weakness (ICUAW). We propose a classification of different ICUAW forms (CIM, CIP, sepsis-induced, steroid-denervation myopathy) and pathophysiological mechanisms from clinical and animal model data. Triggers include sepsis, mechanical ventilation, muscle unloading, steroid treatment, or denervation. Some ICUAW forms require stringent diagnostic features; CIM is marked by membrane hypoexcitability, severe atrophy, preferential myosin loss, ultrastructural alterations, and inadequate autophagy activation while myopathies in pure sepsis do not reproduce marked myosin loss. Reduced membrane excitability results from depolarization and ion channel dysfunction. Mitochondrial dysfunction contributes to energy-dependent processes. Ubiquitin proteasome and calpain activation trigger muscle proteolysis and atrophy while protein synthesis is impaired. Myosin loss is more pronounced than actin loss in CIM. Protein quality control is altered by inadequate autophagy. Ca2+ dysregulation is present through altered Ca2+ homeostasis. We highlight clinical hallmarks, trigger factors, and potential mechanisms from human studies and animal models that allow separation of risk factors that may trigger distinct mechanisms contributing to weakness. During critical illness, altered inflammatory (cytokines) and metabolic pathways deteriorate muscle function. ICUAW prevention/treatment is limited, e.g., tight glycemic control, delaying nutrition, and early mobilization. Future challenges include identification of primary/secondary events during the time course of critical illness, the interplay between membrane excitability, bioenergetic failure and differential proteolysis, and finding new therapeutic targets by help of tailored animal models. PMID:26133937

  17. Prevention of muscle fibers atrophy during gravitational unloading: The effect of L-arginine administration

    NASA Astrophysics Data System (ADS)

    Kartashkina, N.; Lomonosova, Y.; Shevchenko, T. F.; Bugrova, A. E.; Turtikova, O. V.; Kalamkarov, G. R.; Nemirovskaya, T. L.

    2011-05-01

    Gravitational unloading results in pronounced atrophy of m.soleus. Probably, the output of NO is controlled by the muscle activity. We hypothesized that NO may be involved in the protein metabolism and increase of its concentration in muscle can prevent atrophic changes induced by gravitational unloading. In order to test the hypothesis we applied NO donor L-arginine during gravitational unloading. 2.5-month-old male Wistar rats weighing 220-230g were divided into sedentary control group (CTR, n=7), 14-day hindlimb suspension (HS, n=7), 14 days of hindlimb suspension+ L-arginine (HSL, n=7) (with a daily supplementation of 500 mg/kg wt L-arginine) and 14 days of hindlimb suspension+ L-NAME (HSN, n=7) (90 mg/kg wt during 14 days). Cross sectional area (CSA) of slow twitch (ST) and fast twitch (FT) soleus muscle fibers decreased by 45% and 28% in the HS group ( p<0.05) and 40% and 25% in the HSN group, as compared to the CTR group ( p<0.05), respectively. CSA of ST and FT muscle fibers were 25% and 16% larger in the HSL group in comparison with the HS group ( p<0.05), respectively. The atrophy of FT muscle fibers in the HSL group was completely prevented since FT fiber CSA had no significant differences from the CTR group. In HS group, the percentage of fibers revealing either gaps/disruption of the dystrophin layer of the myofiber surface membrane increased by 27% and 17%, respectively, as compared to the controls (CTR group, p<0.05). The destructions in dystrophin layer integrity and reductions of desmin content were significantly prevented in HSL group. NO concentration decreased by 60% in the HS group (as well as HSN group) and at the same time no changes were detectable in the HSL group. This fact indicates the compensation of NO content in the unloaded muscle under L-arginine administration. The levels of atrogin-1 mRNA were considerably altered in suspended animals (HS group: plus 27%, HSL group: minus 13%) as compared to the control level. Conclusion: L-arginine administration allows maintaining NO concentration in m.soleus at the level of cage control group, prevents from dystrophin layer destruction, decreases the atrogin mRNA concentration in the muscle and atrophy level under gravitational unloading.

  18. Sclerostin antibody inhibits skeletal deterioration in mice exposed to partial weight-bearing

    NASA Astrophysics Data System (ADS)

    Spatz, J. M.; Ellman, R.; Cloutier, A. M.; Louis, L.; van Vliet, M.; Dwyer, D.; Stolina, M.; Ke, H. Z.; Bouxsein, M. L.

    2017-02-01

    Whereas much is known regarding the musculoskeletal responses to full unloading, little is known about the physiological effects and response to pharmacological agents in partial unloading (e.g. Moon and Mars) environments. To address this, we used a previously developed ground-based model of partial weight-bearing (PWB) that allows chronic exposure to reduced weight-bearing in mice to determine the effects of murine sclerostin antibody (SclAbII) on bone microstructure and strength across different levels of mechanical unloading. We hypothesize that treatment with SclAbII would improve bone mass, microarchitecture and strength in all loading conditions, but that there would be a greater skeletal response in the normally loaded mice than in partially unloaded mice suggesting the importance of combined countermeasures for exploration-class long duration spaceflight missions. Eleven-week-old female mice were assigned to one of four loading groups: normal weight-bearing controls (CON) or weight-bearing at 20% (PWB20), 40% (PWB40) or 70% (PWB70) of normal. Mice in each group received either SclAbII (25 mg/kg) or vehicle (VEH) via twice weekly subcutaneous injection for 3 weeks. In partially-unloaded VEH-treated groups, leg BMD decreased -5 to -10% in a load-dependent manner. SclAbII treatment completely inhibited bone deterioration due to PWB, with bone properties in SclAbII-treated groups being equal to or greater than those of CON, VEH-treated mice. SclAbII treatment increased leg BMD from +14 to +18% in the PWB groups and 30 ± 3% in CON (p < 0.0001 for all). Trabecular bone volume, assessed by μCT at the distal femur, was lower in all partially unloaded VEH-treated groups vs. CON-VEH (p < 0.05), and was 2-3 fold higher in SclAbII-treated groups (p < 0.001). Midshaft femoral strength was also significantly higher in SclAbII vs. VEH-groups in all-loading conditions. These results suggest that greater weight bearing leads to greater benefits of SclAbII on bone mass, particularly in the trabecular compartment. Altogether, these results demonstrate the efficacy of sclerostin antibody therapy in preventing astronaut bone loss during terrestrial solar system exploration.

  19. Sclerostin antibody inhibits skeletal deterioration in mice exposed to partial weight-bearing.

    PubMed

    Spatz, J M; Ellman, R; Cloutier, A M; Louis, L; van Vliet, M; Dwyer, D; Stolina, M; Ke, H Z; Bouxsein, M L

    2017-02-01

    Whereas much is known regarding the musculoskeletal responses to full unloading, little is known about the physiological effects and response to pharmacological agents in partial unloading (e.g. Moon and Mars) environments. To address this, we used a previously developed ground-based model of partial weight-bearing (PWB) that allows chronic exposure to reduced weight-bearing in mice to determine the effects of murine sclerostin antibody (SclAbII) on bone microstructure and strength across different levels of mechanical unloading. We hypothesize that treatment with SclAbII would improve bone mass, microarchitecture and strength in all loading conditions, but that there would be a greater skeletal response in the normally loaded mice than in partially unloaded mice suggesting the importance of combined countermeasures for exploration-class long duration spaceflight missions. Eleven-week-old female mice were assigned to one of four loading groups: normal weight-bearing controls (CON) or weight-bearing at 20% (PWB20), 40% (PWB40) or 70% (PWB70) of normal. Mice in each group received either SclAbII (25mg/kg) or vehicle (VEH) via twice weekly subcutaneous injection for 3 weeks. In partially-unloaded VEH-treated groups, leg BMD decreased -5 to -10% in a load-dependent manner. SclAbII treatment completely inhibited bone deterioration due to PWB, with bone properties in SclAbII-treated groups being equal to or greater than those of CON, VEH-treated mice. SclAbII treatment increased leg BMD from +14 to +18% in the PWB groups and 30 ± 3% in CON (p< 0.0001 for all). Trabecular bone volume, assessed by μCT at the distal femur, was lower in all partially unloaded VEH-treated groups vs. CON-VEH (p< 0.05), and was 2-3 fold higher in SclAbII-treated groups (p< 0.001). Midshaft femoral strength was also significantly higher in SclAbII vs. VEH-groups in all-loading conditions. These results suggest that greater weight bearing leads to greater benefits of SclAbII on bone mass, particularly in the trabecular compartment. Altogether, these results demonstrate the efficacy of sclerostin antibody therapy in preventing astronaut bone loss during terrestrial solar system exploration. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  20. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks aremore » prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.« less

  1. Hindlimb unloading-induced muscle atrophy and phenotype transition is attenuated in Smad3+/- mice

    NASA Astrophysics Data System (ADS)

    Chen, X. P.; Zhang, P.; Liu, S. H.; Wang, F.; Ge, X.; Wu, Y.; Fan, M.

    Currently it has been well defined that the microgravity-induced muscle disuse characterized by atrophy and slow-to-fast phenotype transition of the postural muscles such as soleus muscle but the basic mechanism underlying the atrophy and phenotype transition of soleus muscle is still unclear To investigate the developmental mechanisms of muscle atrophy and its phenotype transition under microgravity the soleus muscle of Smad3 and Smad3 - mice after 14 days hindlimb unloading was examined Using histology and immunohistochemistry assay we found that the soleus muscle volume and fiber number appeared a remarkable increases in Smad3 - mice compared to those in Smad3 control In addition Western blot analysis showed that the expression level of myosin heavy chain MHC -slow myofiber specific protein in soleus muscle was visibly higher in Smad3 - mice than in Smad3 mice In contrast the expression level of MHC-fast myofiber specific protein in soleus muscle was visibly lower in Smad3 - mice than in Smad3 mice Furthermore RT-PCR revealed that the expression of Smad3 and myogenic regulatory factor MRF mRNA was inversely regulated Finally we determined that either Smad3 mRNA or Smad3 protein were selectively distributed in quiescent satellite cells in vivo and in reserve cells in vitro Therefore our findings suggested that Smad3 might be a key transcriptional factor for soleus muscle atrophy and slow-to-fast phenotype transition of the slow muscle under microgravity In the future an agent that regulates Smad3 expression may be used to prevent

  2. Measurements of methane emissions at natural gas production sites in the United States.

    PubMed

    Allen, David T; Torres, Vincent M; Thomas, James; Sullivan, David W; Harrison, Matthew; Hendler, Al; Herndon, Scott C; Kolb, Charles E; Fraser, Matthew P; Hill, A Daniel; Lamb, Brian K; Miskimins, Jennifer; Sawyer, Robert F; Seinfeld, John H

    2013-10-29

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67-3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ± 200 Gg). The estimate for comparable source categories in the EPA national inventory is ~1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).

  3. Measurements of methane emissions at natural gas production sites in the United States

    PubMed Central

    Allen, David T.; Torres, Vincent M.; Thomas, James; Sullivan, David W.; Harrison, Matthew; Hendler, Al; Herndon, Scott C.; Kolb, Charles E.; Fraser, Matthew P.; Hill, A. Daniel; Lamb, Brian K.; Miskimins, Jennifer; Sawyer, Robert F.; Seinfeld, John H.

    2013-01-01

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ±200 Gg). The estimate for comparable source categories in the EPA national inventory is ∼1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production). PMID:24043804

  4. Crack Closure and Fatigue Crack Growth in 2219-T851 Aluminum Alloy

    DTIC Science & Technology

    1976-08-01

    assumes the length of the crack perimeter to remain es - ’I sentially constant. At the maximum load, the crack is ap- proximately parabolic (or ellipical...for center cracked j specimens) in shape. With unloading, the parabola (or el- lipse) is collapsed. The resulting change in shape produces an apparent...reloading process, the electrical potential remained es - j sentially constant initially and was less than that at the corresponding load during unloading

  5. A Cultural Resource Reconnaissance of Two Proposed Bank Unloading Areas, East Grand Forks, Polk County, Minnesota,

    DTIC Science & Technology

    1984-12-01

    architectural or archeotogical evidence was identified. The southern unloading area includes the former sites of a brewery and a sawmill, both of... brewery and a sawmill, both of which were associated with 0 significant historic events and themes in the late nineteenth and early twentieth century...Forks Brewery (1888) . . . . . . . 16 Figure 4. The Grand Forks Lumber Company mill is located at A. -. Building at B is probably the East Grand Forks

  6. Self-unloading, unmanned, reusable lunar lander project

    NASA Technical Reports Server (NTRS)

    Cowan, Kevin; Lewis, Ron; Mislinski, Philip; Rivers, Donna; Smith, Solar; Vasicek, Clifford; Verona, Matt

    1991-01-01

    A payload delivery system will be required to support the buildup and operation of a manned lunar base. In response, a self-unloading, unmanned, reusable lunar lander was conceptually designed. The lander will deliver a 7000 kg payload, with the same dimensions as a space station logistics module, from low lunar orbit to any location on the surface of the moon. The technical aspects of the design is introduced as well as the management structure and project cost.

  7. Distributed Sensor Networks

    DTIC Science & Technology

    1980-09-30

    the main Laboratory is provided by 9600-baud short-haul modems with unloaded lines. A new version of the real-time kernel (DAK) has been developed. It...and control computer have been in- vestigated, modems have been procured, and an initial 4-wire line with 9.6 kbits modem has been installed between the...telephone system or leased (unloaded) 4-wire private-line metallic circuits. To this end, two pairs of short-haul modems and a pair of long-haul modems have

  8. Simulation of the Load-Unload Paths Experienced by Rock in the Vicinity of Buried Explosions.

    DTIC Science & Technology

    1977-12-01

    Y99QAXSB04903 H2590D. 19. KEY WORDS (Continue on revere. aide if necessary end Identify by block number) Kayenta Sandstone Strain and Stress Paths Buried...These calculations are used to define loading and unloading paths in static laboratory tests on Kayenta sandstone. The data presented hsreithus...spherical explosions in an infinite medium. The material tested in the experimental program is Kayenta sandstone. 5 STRESS PATH DETERMINATION FROM FINITE

  9. Tibial Acceleration and Spatiotemporal Mechanics in Distance Runners During Reduced-Body-Weight Conditions.

    PubMed

    Moran, Matthew F; Rickert, Brendan J; Greer, Beau K

    2017-05-01

    Treadmills that unload runners via a differential air-pressure (DAP) bladder (eg, AlterG Anti-Gravity Treadmill) are commonly used to reduce effective body weight (BW) in a clinical setting. However, the relationship between the level of unloading and tibial stress is currently unknown. To determine the relationship between tibial impact acceleration and level of BW unloading during running. Cross-sectional. University motion-analysis laboratory. 15 distance runners (9 male, 6 female; 20.4 ± 2.4 y, 60.1 ± 12.6 kg). Peak tibial acceleration and peak-to-peak tibial acceleration were measured via a uniaxial accelerometer attached to the tibia during a 37-min continuous treadmill run that simulated reduced-BW conditions via a DAP bladder. The trial began with a 10-min run at 100% BW followed by nine 3-min stages where BW was systematically reduced from 95% to 60% in 5% increments. There was no significant relationship between level of BW and either peak tibial acceleration or peak-to-peak tibial acceleration (P > .05). Both heart rate and step rate were significantly reduced with each 5% reduction in BW level (P < .01). Although ground-reaction forces are reduced when running in reduced-BW conditions on a DAP treadmill, tibial shock magnitudes are unchanged as an alteration in spatiotemporal running mechanics (eg, reduced step rate) and may nullify the unloading effect.

  10. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into themore » coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.« less

  11. A Mathematical Model of Oxygen Transport in Skeletal Muscle During Hindlimb Unloading

    NASA Technical Reports Server (NTRS)

    Causey, Laura; Lewandowski, Beth E.; Weinbaum, Sheldon

    2014-01-01

    During hindlimb unloading (HU) dramatic fluid shifts occur within minutes of the suspension, leading to a less precise matching of blood flow to O2 demands of skeletal muscle. Vascular resistance directs blood away from certain muscles, such as the soleus (SOL). The muscle volume gradually reduces in these muscles so that eventually the relative blood flow returns to normal. It is generally believed that muscle volume change is not due to O2 depletion, but a consequence of disuse. However, the volume of the unloaded rat muscle declines over the course of weeks, whereas the redistribution of blood flow occurs immediately. Using a Krogh Cylinder Model, the distribution of O2 was predicted in two skeletal muscles: SOL and gastrocnemius (GAS). Effects of the muscle blood flow, volume, capillary density, and O2 uptake, are included to calculate the pO2 at rest and after 10 min and 15 days of unloading. The model predicts that 32 percent of the SOL muscle tissue has a pO2 1.25 mm Hg within 10 min, whereas the GAS maintains normal O2 levels, and that equilibrium is reached only as the SOL muscle cells degenerate. The results provide evidence that there is an inadequate O2 supply to the mitochondria in the SOL muscle after 10 min HU.

  12. Nerve-responsive troponin I slow promoter does not respond to unloading

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Hodgson, V. R.; Hardeman, E. C.; Booth, F. W.

    1998-01-01

    We examined the regulation of the troponin I slow (TnIs) promoter during skeletal muscle unloading-induced protein isoform transition, by using a transgenic mouse line harboring the -4,200 to +12 base pairs region of the human TnIs promoter. Eighteen female transgenic mice ( approximately 30 g body mass) were randomly divided into two groups: weight-bearing (WB) controls (n = 9) and hindlimb unloaded (HU; n = 9). The HU mice were tail suspended for 7 days. Body mass was unchanged in the WB group but was reduced (-6%; P < 0.05) after the HU treatment. Absolute soleus muscle mass (-25%) and soleus mass relative to body mass (-16%) were both lower (P < 0.05) in the HU group compared with the WB mice. Northern blot analyses indicate that 7 days of HU result in a 64% decrease (P < 0.05) in the abundance of endogenous TnIs mRNA (microg/mg muscle) in the mouse soleus. Furthermore, there is a trend for the abundance of the fast troponin I mRNA to be increased (+34%). Analysis of transgenic chloramphenicol acetyltransferase activity in the soleus muscle revealed no difference (P > 0.05) between WB and HU groups. We conclude that additional elements are necessary for the TnIs gene to respond to an unloading-induced, slow-to-fast isoform transition stimulus.

  13. High-Pressure Quasi-Isentropic Loading and Unloading of Interferometer Windows on the Veloce Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul

    2007-06-01

    The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.

  14. Muscle atrophy associated with microgravity in rat: Basic data for countermeasures

    NASA Astrophysics Data System (ADS)

    Falempin, M.; Mounier, Y.

    Morphological, contractile properties and myosin heavy chain (MHC) composition of rat soleus muscles were studied after 2 weeks of unloading (HS) and after 2 weeks of HS associated with selective deafferentation (HS + DEAF) at the level L4 and L5. The same significant reductions in muscle mass and tetanic tension were found after HS and HS + DEAF. However, the transformation of the slow-twitch soleus muscle towards a faster type characterized by a decrease in twitch time parameters and an increase in fast-twitch type MHC isoforms in HS did not appear in HS + DEAF conditions. Our results also showed that a pattern similar to firing rate of motoneurones innervating slow-twitch muscles inhibited the slow to fast fiber changes observed during HS. Nevertheless, neither the loss of mass or force output in the HS muscles were prevented by electrostimulation. Immobilization in a stretched position during HS maintained the muscle wet weight, mechanical and electrophoretical characteristics close to control values. We concluded that the decrease in mechanical strains imposed on the muscle during unloading was the main factor for the development of atrophy, while the kinetic changes might be predominantly modulated by the nervous command. These basic data suggested that some experimental conditions such as electrostimulation or stretching, could participate in countermeasure programmes.

  15. Unloading-induced slow-to-fast myosin shift in soleus muscle: nuclear MuRFs and calsarcin expression

    NASA Astrophysics Data System (ADS)

    Shenkman, Boris; Lomonosova, Yulia

    Exposure to actual and simulated microgravity is known to induce decrease in slow MyHC mRNA expression and increase in fast MyHC mRNAs expression. We supposed that altered expression of the calsarcin (CS) I and II (specific for type I and type II fibers respectively) may provide the control over myosin phenotype during unloading. We found that after 3 days of hindlimb unloading (HU) the content of CSII mRNA increased two-fold in rat soleus as compared to the cage controls. This level was maintained till the 7th day of the exposure and increased by more than 5-fold (as compared to controls) after two weeks of HU. In contrast to CSII, CSI mRNA expression didn’t change after 3 days of HU, but decreased more than 2-fold by the 7th and 14th day of HU. The increase of CSII RNA (in type II fibers) may be explained as the mechanism of stabilization of fast phenotype in all, but more important, in newly transformed type II fibers. At the same time, the decrease of CSI mRNA (in type I fibers) may be understood as counteracting the slow-to-fast transformation. Morriscot et al, (2010) demonstrated that calsarcin II expression decreased only in the double knockouts MuRF1-/MuRF2-. So, we hypothesized that CSII expression in unloaded soleus muscle might be associated with the cytoplasm-nucleus translocation of MuRF1 and MuRF2. We observed significant accumulation of MuRF1 and MuRF2 in the nuclear fraction after 3 days of HU. Thus the accumulation of MuRFs in myonuclei may promote the expression of CSII, necessary for stabilization of fast phenotype in the course of slow-to-fast shift in unloaded soleus muscle. We express our gratitude to Prof. S. Labeit (Mannheim) for kind presenting us the best antibodies against MuRF1 and MuRF2.

  16. Transportation of market-weight pigs: II. effect of season and location within truck on behavior with an eight-hour transport.

    PubMed

    Torrey, S; Bergeron, R; Faucitano, L; Widowski, T; Lewis, N; Crowe, T; Correa, J A; Brown, J; Hayne, S; Gonyou, H W

    2013-06-01

    Transportation of pigs to slaughter has the potential to negatively impact animal welfare, particularly in hot temperatures and over long transport durations. The objective of this experiment was to determine if season and location within vehicle influenced the behavior of market-weight pigs during loading, transit, unloading, and lairage after a long-distance trip to slaughter. On a pot-belly truck, 1,170 pigs were transported (n = 195 pigs/wk in 7 experimental compartments) for 8 h to a commercial abattoir in summer (6 wk) and winter (5 wk). Pig behavior was observed at loading, in transit, at unloading, and in lairage. Handler intervention at loading was observed, and the time to load and unload was recorded. Although season did not (P = 0.91) affect loading time, more prods (P = 0.014) were necessary to load pigs in summer than winter. Loading in winter also tended to be longer (P = 0.071) into compartments involving internal ramps. In transit, more pigs (P = 0.025) were standing in winter compared with summer. Unloading took longer (P < 0.006) in winter than in summer and from compartments where pigs had to negotiate ramps and 180° turns. Furthermore, pigs in summer experienced more slipping (P = 0.032), falling (P = 0.004), overlapping (P < 0.001), and walking backward (P < 0.001) than pigs in winter. Pigs unloading from compartments with internal ramps slipped more (P < 0.0001) than other pigs. Season influenced latency to rest in lairage, with those transported in summer resting sooner (P < 0.0001) than those in winter. In conclusion, season and location within trucks differentially affect pig behavior before, during, and after long-distance transportation. Differences in lighting and temperature between seasons and the inclusion of internal ramps within vehicles may play important roles in the welfare of pigs transported to slaughter.

  17. Sucrose Transporter Localization and Function in Phloem Unloading in Developing Stems.

    PubMed

    Milne, Ricky J; Perroux, Jai M; Rae, Anne L; Reinders, Anke; Ward, John M; Offler, Christina E; Patrick, John W; Grof, Christopher P L

    2017-02-01

    How sucrose transporters (SUTs) regulate phloem unloading in monocot stems is poorly understood and particularly so for species storing high Suc concentrations. To this end, Sorghum bicolor SUTs SbSUT1 and SbSUT5 were characterized by determining their transport properties heterologously expressed in yeast or Xenopus laevis oocytes, and their in planta cellular and subcellular localization. The plasma membrane-localized SbSUT1 and SbSUT5 exhibited a strong selectivity for Suc and high Suc affinities in X. laevis oocytes at pH 5-SbSUT1, 6.3 ± 0.7 mm, and SbSUT5, 2.4 ± 0.5 mm Suc. The Suc affinity of SbSUT1 was dependent on membrane potential and pH. In contrast, SbSUT5 Suc affinity was independent of membrane potential and pH but supported high transport rates at neutral pH. Suc transport by the tonoplast localized SbSUT4 could not be detected using yeast or X. laevis oocytes. Across internode development, SUTs, other than SbSUT4, were immunolocalized to sieve elements, while for elongating and recently elongated internodes, SUTs also were detected in storage parenchyma cells. We conclude that apoplasmic Suc unloading from de-energized protophloem sieve elements in meristematic zones may be mediated by reversal of SbSUT1 and/or by uniporting SWEETs. Storage parenchyma localized SbSUT1 and SbSUT5 may accumulate Suc from the stem apoplasms of elongating and recently elongated internodes, whereas SbSUT4 may function to release Suc from vacuoles. Transiting from an apoplasmic to symplasmic unloading pathway as the stem matures, SbSUT1 and SbSUT5 increasingly function in Suc retrieval into metaphloem sieve elements to maintain a high turgor to drive symplasmic unloading by bulk flow. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Relationship Between Change of Direction, Speed and Power in Male and Female National Olympic Team Handball Athletes.

    PubMed

    Pereira, Lucas A; Nimphius, Sophia; Kobal, Ronaldo; Kitamura, Katia; Turisco, Luiz A L; Orsi, Rita C; Cal Abad, César Cs; Loturco, Irineu

    2018-02-22

    The aims of this study were to (1) assess the relationship between selected speed-power related abilities (determined by 20-m sprint, unloaded countermovement and squat jumps [CMJ and SJ] and loaded jump squat [JS]) and performance in two distinct change of direction (COD) protocols (Zigzag and T-Test), and (2) determine the magnitude of difference between female and male Brazilian National Olympic Team handball athletes. Fifteen male and twenty-three female elite handball athletes volunteered to perform the following assessments: SJ and CMJ; Zigzag and T-Test; 20-m sprint with 5-, 10-, and 20-m splits, and mean propulsive power (MPP) in JS. Pearson product moment correlation (P< 0.05) was performed to determine the relationship between the COD tests (Zigzag and T-test) and speed-power measures (sprint, SJ, CMJ and JS). The differences between male and female performances were determined using the magnitude-based inference. Moderate to very large significant correlations were observed between both COD tests and the speed-power abilities. Further, male athletes demonstrated likely to almost certainly higher performances than female athletes in all assessed variables. The results of the current study suggest that different speed-power qualities are strongly correlated to the performance obtained in various COD assessments (r values varying from 0.38 to 0.84 and from 0.34 to 0.84 for correlations between speed and power tests with Zigzag and T-Test, respectively). However, the level of these associations can vary greatly, according to the mechanical demands of each respective COD task. Whilst COD tests may be difficult to implement during competitive seasons, due to the strong correlations presented herein, the regular use of vertical jump tests with these athletes seems to be an effective and applied alternative. Furthermore, it might be inferred that the proper development of loaded and unloaded jump abilities has potential for improving the physical qualities related to COD performance in handball athletes.

  19. Directed Energy Beam Jitter Mitigation Using the Line-of-Sight Reference Frame

    DTIC Science & Technology

    2011-05-10

    tg,’Connected’); C4 = ’Yes’ TF1 =strcmp(C1, C2);TF2=strcmp(C3, C4); if ~ TF1 ; unload(tg); load(tg,’FFD_9’); tg=xpctarget.xpc; end if...C1 = (get(tg,’Application’));C2=’FFD_9’C3 = get(tg,’Connected’); C4 = ’Yes’ TF1 =strcmp(C1, C2);TF2=strcmp(C3, C4); if ~ TF1 ; unload(tg

  20. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  1. Montubi completes mile-long liquid ethylene pipeline project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-01

    Montubi has completed the mile-long liquid ethylene pipeline project for Solvay S.p.A. at Vada, Italy, a line that extends 3.4 mi from an offshore unloading dock to an onshore gasification facility for Solvay's chemical plant at Rosignano. The 18 mo project included a mile-long 1750 ton jetty; one eight-leg main unloading platform; eight mooring dolphins plus four breasting dolphins; one small platform for firefighting pump units; and a concrete service road along the jetty.

  2. Automation of Data Analysis Programs Used in the Cryogenic Characterization of Superconducting Microwave Resonators

    NASA Technical Reports Server (NTRS)

    Creason, A. S.; Miranda, F. A.

    1996-01-01

    Knowledge of the microwave properties at cryogenic temperatures of components fabricated using High-Temperature-Superconductors (HTS) is useful in the design of HTS-based microwave circuits. Therefore, fast and reliable characterization techniques have been developed to study the aforementioned properties. In this paper, we discuss computer analysis techniques employed in the cryogenic characterization of HTS-based resonators. The revised data analysis process requires minimal user input. and organizes the data in a form that is easily accessible by the user for further examination. These programs retrieve data generated during the cryogenic characterization at microwave frequencies of HTS based resonators and use it to calculate parameters such as the loaded and unloaded quality factors (Q and Q(sub o), respectively), the resonant frequency (f(sub o)), and the coupling coefficient (k), which are important quantities in the evaluation of HTS resonators. While the data are also stored for further use, the programs allow the user to obtain a graphical representation of any of the measured parameters as a function of temperature soon after the completion of the cryogenic measurement cycle. Although these programs were developed to study planar HTS-based resonators operating in the reflection mode, they could also be used in the cryogenic characterization of two ports (i.e., reflection/transmission) resonators.

  3. Simultaneous Detection of Two Chemicals Using a TE20-Mode Substrate-Integrated Waveguide Resonator

    PubMed Central

    Salim, Ahmed

    2018-01-01

    Microwave resonators working as sensors can detect only a single analyte at a time. To address this issue, a TE20-mode substrate-integrated waveguide (SIW) resonator is exploited, owing to its two distinct regions of high-intensity electric fields, which can be manipulated by loading two chemicals. Two microfluidic channels with unequal fluid-carrying capacities, engraved in a polydimethylsiloxane (PDMS) sheet, can perturb the symmetric electric fields even if loaded with the two extreme cases of dielectric [ethanol (E), deionized water (DI)] and [deionized water, ethanol]. The four layers of the sandwiched structure considered in this study consisted of a top conductive pattern and a bottom ground, both realized on a Rogers RT/Duroid 5880. PDMS-based channels attached with an adhesive serve as the middle layers. The TE20-mode SIW with empty channels resonates at 8.26 GHz and exhibits a −25 dB return loss with an unloaded quality factor of Q ≈ 28. We simultaneously load E and DI and demonstrate the detection of the four possible combinations: [E, DI], [DI, E], [E, E], and [DI, DI]. The performance of our proposed method showed increases in sensitivity (MHz/εr) of 7.5%, 216%, and 1170% compared with three previously existing multichannel microwave chemical sensors. PMID:29518981

  4. Adsorption on Nanopores of Different Cross Sections Made by Electron Beam Nanolithography.

    PubMed

    Bruschi, Lorenzo; Mistura, Giampaolo; Prasetyo, Luisa; Do, Duong D; Dipalo, Michele; De Angelis, Francesco

    2018-01-09

    Adsorption on nanoporous matrices is characterized by a pronounced hysteresis loop in the adsorption isotherm, when the substrate is loaded and unloaded with adsorbate, the origin of which is a matter of immense debate in the literature. In this work, we report a study of argon adsorption at 85 K on nonconnecting nanopores with one end closed to the surrounding where the effects of different pore cross sections fabricated by electron beam lithography (EBL) are investigated. A polymethylmethacrylate (PMMA) resist is deposited on the electrodes of a sensitive quartz crystal microbalance without degradation of the resonance quality factor or the long-term and short-term stabilities of the device even at cryogenic temperatures. Four different pores' cross sections: circular, square, rectangular, and triangular, are produced from EBL, and the isotherms for these pore shapes exhibit pronounced hysteresis loops whose adsorption and desorption branches are nearly vertical and have almost the same slopes. No difference is observed in the hysteresis loops of the isotherms for the pores with triangular and square cross sections, whereas the hysteresis loop for the pore with circular cross sections is much narrower, suggesting that they are more regular than the other pores. All of these observations suggest that the hysteresis behavior resulted mainly from microscopic geometric irregularities present in these porous matrices.

  5. Effects of intra-aortic balloon pump counterpulsation on left ventricular mechanoenergetics in a porcine model of acute ischemic heart failure.

    PubMed

    Malliaras, Konstantinos; Charitos, Efstratios; Diakos, Nikolaos; Pozios, Iraklis; Papalois, Apostolos; Terrovitis, John; Nanas, John

    2014-12-01

    We investigated the effects of intra-aortic balloon pump (IABP) counterpulsation on left ventricular (LV) contractility, relaxation, and energy consumption and probed the underlying physiologic mechanisms in 12 farm pigs, using an ischemia-reperfusion model of acute heart failure. During both ischemia and reperfusion, IABP support unloaded the LV, decreased LV energy consumption (pressure-volume area, stroke work), and concurrently improved LV mechanical performance (ejection fraction, stroke volume, cardiac output). During reperfusion exclusively, IABP also improved LV relaxation (tau) and contractility (Emax, PRSW). The beneficial effects of IABP support on LV relaxation and contractility correlated with IABP-induced augmentation of coronary blood flow. In conclusion, we find that during both ischemia and reperfusion, IABP support optimizes LV energetic performance (decreases energy consumption and concurrently improves mechanical performance) by LV unloading. During reperfusion exclusively, IABP support also improves LV contractility and active relaxation, possibly due to a synergistic effect of unloading and augmentation of coronary blood flow.

  6. Acoustical properties of individual liposome-loaded microbubbles.

    PubMed

    Luan, Ying; Faez, Telli; Gelderblom, Erik; Skachkov, Ilya; Geers, Bart; Lentacker, Ine; van der Steen, Ton; Versluis, Michel; de Jong, Nico

    2012-12-01

    A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loading (unloaded microbubbles) with a diameter ranging from 3-10 μm at frequencies ranging from 0.6-3.8 MHz and acoustic pressures ranging from 5-100 kPa. The experimental data showed nearly the same shell elasticity for the loaded and unloaded bubbles, but the shell viscosity was higher for loaded bubbles compared with unloaded bubbles. For loaded bubbles, a higher pressure threshold for the bubble vibrations was noticed. In addition, an "expansion-only" behavior was observed for up to 69% of the investigated loaded bubbles, which mostly occurred at low acoustic pressures (≤30 kPa). Finally, fluorescence imaging showed heterogeneity of liposome distributions of the loaded bubbles. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Ground reaction forces and plantar pressure distribution during occasional loaded gait.

    PubMed

    Castro, Marcelo; Abreu, Sofia; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo

    2013-05-01

    This study compared the ground reaction forces (GRF) and plantar pressures between unloaded and occasional loaded gait. The GRF and plantar pressures of 60 participants were recorded during unloaded gait and occasional loaded gait (wearing a backpack that raised their body mass index to 30); this load criterion was adopted because is considered potentially harmful in permanent loaded gait (obese people). The results indicate an overall increase (absolute values) of GRF and plantar pressures during occasional loaded gait (p < 0.05); also, higher normalized (by total weight) values in the medial midfoot and toes, and lower values in the lateral rearfoot region were observed. During loaded gait the magnitude of the vertical GRF (impact and thrust maximum) decreased and the shear forces increased more than did the proportion of the load (normalized values). These data suggest a different pattern of GRF and plantar pressure distribution during occasional loaded compared to unloaded gait. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Beam-energy-spread minimization using cell-timing optimization

    NASA Astrophysics Data System (ADS)

    Rose, C. R.; Ekdahl, C.; Schulze, M.

    2012-04-01

    Beam energy spread, and related beam motion, increase the difficulty in tuning for multipulse radiographic experiments at the dual-axis radiographic hydrodynamic test facility’s axis-II linear induction accelerator (LIA). In this article, we describe an optimization method to reduce the energy spread by adjusting the timing of the cell voltages (both unloaded and loaded), either advancing or retarding, such that the injector voltage and summed cell voltages in the LIA result in a flatter energy profile. We developed a nonlinear optimization routine which accepts as inputs the 74 cell-voltage, injector voltage, and beam current waveforms. It optimizes cell timing per user-selected groups of cells and outputs timing adjustments, one for each of the selected groups. To verify the theory, we acquired and present data for both unloaded and loaded cell-timing optimizations. For the unloaded cells, the preoptimization baseline energy spread was reduced by 34% and 31% for two shots as compared to baseline. For the loaded-cell case, the measured energy spread was reduced by 49% compared to baseline.

  9. Effect of load carriage on performance of an explosive, anaerobic military task.

    PubMed

    Treloar, Alison K Laing; Billing, Daniel C

    2011-09-01

    This study examined the effects of load carriage on performance of an explosive, anaerobic military task. A task-specific assessment requiring five 30-m timed sprints was developed to address this question. Seventeen soldiers (female = 5, male = 12) volunteered to undergo the test under two experimental conditions: unloaded (combat uniform and boots) and loaded (unloaded plus 21.6 kg fighting load, comprising webbing, weapon, helmet, and combat body armor). When loaded, there was a significant increase in the mean 30-m sprint time compared to unloaded (8.2 +/- 1.4 seconds vs. 6.2 +/- 0.8 seconds; p < 0.01). Of the total increase in mean sprint time, 51.7% occurred within the first 5 m. Female sprint times were affected to a larger extent than male (36% vs. 29%, respectively) as a result of the increased load. Fighting load significantly affected soldier mobility when conducting explosive, anaerobic military tasks, particularly among females, and specific physical conditioning should be considered to minimize this effect.

  10. A load-based mechanism for inter-leg coordination in insects

    PubMed Central

    2017-01-01

    Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighbouring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals. PMID:29187626

  11. Elastic hysteresis phenomena in ULE and Zerodur optical glasses at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, S.C.; Coon, D.N.; Epstein, J.S.

    1988-01-01

    Elastic hysteresis phenomena were observed in ULE and Zerodur glasses at elevated temperatures up to glass transition. These effects were found under load deformation testing using four-point bending. Permanent creep resulted in Zerodur at 900/degree/C and in ULE at 1000/degree/C. The deformation was monitored at mid-span of the samples with a capacitance-type transducer having 0.01 micrometer resolution. These hysteresis effects may be classified as elastic bimodulus between loading and unloading; that is, two different elastic moduli were observed between loading and unloading. Upon complete unloading, a minimal deformation state promptly returned, indicating little or no viscoelastic creep. The hysteresis effectmore » may be attributed to a change in glass structure as a function of stress state. A description of the test apparatus and procedure, test results for both glasses at several elevated temperatures, and an elementary discussion of continuum theory of constitutive behavior are included. 6 refs., 9 figs.« less

  12. Ground reaction forces during level ground walking with body weight unloading

    PubMed Central

    Barela, Ana M. F.; de Freitas, Paulo B.; Celestino, Melissa L.; Camargo, Marcela R.; Barela, José A.

    2014-01-01

    Background: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old) walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate. PMID:25590450

  13. Age-related differences in synaptic plasticity following muscle unloading.

    PubMed

    Deschenes, Michael R; Wilson, Meredith H

    2003-12-01

    The objective of the present investigation was to determine the effects of muscle unloading-a form of subtotal disuse- on the morphology of the neuromuscular junction (NMJ) in younger and aged animals. Sixteen aged (22 months) and 16 young adult (8 months) male Fischer 344 rats were assigned to control and hindlimb suspension (HS) conditions (n=8/group). At the conclusion of the 4 week experimental period, soleus muscles were collected, and immunofluorescent procedures were used to visualize acetylcholine (ACh) vesicles and receptors, nerve terminal branching, as well as NCAM and NT-4 expression. Quantitative analyses revealed that aged controls displayed significant (p<0.05) reductions in area and perimeter length of ACh vesicle and receptor regions, without affecting nerve terminal branch number or length. In contrast to younger NMJs, which were resilient to the effects of unloading, NMJs of aged HS rats demonstrated significant expansion of ACh vesicle and receptor dimensions compared to aged controls. Qualitative analyses of NCAM staining indicated that aging alone somewhat increased this molecule's expression (aged controls>young controls). Among the four groups, however, the greatest amount of NCAM content was detected among aged HS muscles, matching the degree of synaptic plasticity exhibited in those muscles. Unlike NCAM, the expression of NT-4 did not appear to differ among the treatment groups. These data suggest that although young adult muscle maintains normal NMJ structure during prolonged exposure to unloading, aged NMJs experience significant adaptation to that stimulus. Copyright 2003 Wiley Periodicals, Inc. J Neurobiol 57: 246-256, 2003

  14. Measurement and Analysis of Ultra-Thin Austenitic Stainless Steel Sheet under Biaxial Tensile Loading and In-Plane Reverse Loading

    NASA Astrophysics Data System (ADS)

    Murakoso, Satoko; Kuwabara, Toshihiko

    Biaxial tensile tests of austenitic stainless steel sheet (SUS304) 0.2mm thick have been carried out using cruciform specimens. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. The successive contours of plastic work in biaxial stress space changed their shapes progressively, exemplifying differential work hardening. The geometry of the entire family of the work contours and the directions of plastic strain rates have been precisely measured and compared with those calculated using conventional yield functions. Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E., International Journal of Plasticity, Vol. 19, (2003), pp. 1297-1319.] with an exponent of 6 was capable of reproducing the general trends of the work contours and the directions of plastic strain rates with good accuracy. Furthermore, in order to quantitatively evaluate the Bauschinger effect of the test material, in-plane tension/compression tests are conducted. It was found that the non-dimensional (σ /σu) - Δɛ /(σu/ E) curves measured during unloading almost fall on a single curve and are not affected by the amount of pre-strain, where σ is the current stress during unloading, σu is the stress immediately before unloading, Δɛ (< 0) is the total strain increment during unloading.

  15. Mechanical stimulation promote the osteogenic differentiation of bone marrow stromal cells through epigenetic regulation of Sonic Hedgehog.

    PubMed

    Wang, Chuandong; Shan, Shengzhou; Wang, Chenglong; Wang, Jing; Li, Jiao; Hu, Guoli; Dai, Kerong; Li, Qingfeng; Zhang, Xiaoling

    2017-03-15

    Mechanical unloading leads to bone loss and disuse osteoporosis partly due to impaired osteoblastogenesis of bone marrow stromal cells (BMSCs). However, the underlying molecular mechanisms of this phenomenon are not fully understood. In this study, we demonstrated that cyclic mechanical stretch (CMS) promotes osteoblastogenesis of BMSCs both in vivo and in vitro. Besides, we found that Hedgehog (Hh) signaling pathway was activated in this process. Inhibition of which by either knockdown of Sonic hedgehog (Shh) or treating BMSCs with Hh inhibitors attenuated the osteogenic effect of CMS on BMSCs, suggesting that Hh signaling pathway acts as an endogenous mediator of mechanical stimuli on BMSCs. Furthermore, we demonstrated that Shh expression level was regulated by DNA methylation mechanism. Chromatin Immunoprecipitation (ChIP) assay showed that DNA methyltransferase 3b (Dnmt3b) binds to Shh gene promoter, leading to DNA hypermethylation in mechanical unloading BMSCs. However, mechanical stimulation down-regulates the protein level of Dnmt3b, results in DNA demethylation and Shh expression. More importantly, we found that inhibition of Dnmt3b partly rescued bone loss in HU mice by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation regulates osteoblastic genes expression via direct regulation of Dnmt3b, and the therapeutic inhibition of Dnmt3b may be an efficient strategy for enhancing bone formation under mechanical unloading. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Influence of fixed muscle length and contractile properties on atrophy and subsequent recovery in the rat soleus and plantaris muscles.

    PubMed

    Fujita, Naoto; Arakawa, Takamitsu; Matsubara, Takako; Ando, Hiroshi; Miki, Akinori

    2009-01-01

    This study examined muscular atrophy and the recovery process induced by hindlimb unloading and joint immobilization in the rat soleus and plantaris muscles. Rats were divided into control, hindlimb unloading (HU), hindlimb unloading with ankle joint immobilization at the maximum dorsiflexion (HUD), and maximum plantarflexion (HUP) groups. The hindlimb was reloaded after fourteen days of unloading, and muscle atrophy and walking ability were assessed at 0, 3, and 7 days of reloading. A cross sectional area of muscle fibers in the soleus muscle on day 0 of reloading revealed sizes in order from the control, HUD, HUP down to the HU group, indicating that the HU group was the most atrophied among the four groups. These values in the plantaris muscle ranged in order from the control, HU, HUD, to HUP groups, the HUP group being the most atrophied among the four groups. These muscles recovered from atrophy in the same descending order, and the values in the HUD and HUP groups slowly recovered during the reloading periods. The HUD and HUP groups showed a central core lesion and reloading-induced lesions in some type I muscle fibers after the immobilization and reloading, one possible reason for the delayed recovery in these groups. The muscle atrophy in the HU, HUD, and HUP groups remained at day 7 although the walking ability appeared to be normal. Accordingly, further rehabilitation therapy might be necessary even if the functional ability appears to be normal.

  17. KSC-2012-6520

    NASA Image and Video Library

    2012-12-21

    VANDENBERG AFB, Calif. -- Technicians unload and rotate NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA

  18. KSC-2012-6513

    NASA Image and Video Library

    2012-12-21

    VANDENBERG AFB, Calif. -- Technicians unload NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA

  19. KSC-2012-6514

    NASA Image and Video Library

    2012-12-21

    VANDENBERG AFB, Calif.-- Technicians unload NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA

  20. KSC-2012-6512

    NASA Image and Video Library

    2012-12-21

    VANDENBERG AFB, Calif. -- Technicians unload NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA

  1. Apparatus and method for magnetically unloading a rotor bearing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, Seth Robert

    An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.

  2. Effect of the Intermittent Hypoxia on the Bone Tissue State After Microgravitation Modeling

    NASA Astrophysics Data System (ADS)

    Berezovskiy, V. A.; Litovka, I. G.; Chaka, H. G.; Magomedov, S.; Mehed, N. V.

    The authors studied the influence of low PO2 under normal atmospheric pressure on the Ca and P metabolism, bone remodeling markers, and biomechanical properties of the femura bone in rats with their hind limbs unloaded. A hypoxic gas mixture (HGM) was given in intermittent regime A and B for 8 hours/day during 28 days. It was shown that regime A slows down the development of osteopenia and may be used in complex with other rehabilitation procedures for preventing the unloading osteopenia.

  3. Department of the Army Justification of Estimates for Fiscal Year 1984, Procurement Appropriations-Construction Program Submitted to Congress January 1983.

    DTIC Science & Technology

    1983-01-01

    unloaded through the bottom discharge gates of the railtoad cars, into a portable conveyor , to a front end loader and then to the pile. A bulldozer than...locomotive to move the cars. At the Powerhouse, the coal is unloaded througb the railroad car discharge gates and into a bucket conveyor that carries the...structures by design are semi-permanent, i.e., they can be dismantled andelastalled elsewhere. Protection must be provided for these structures. P# : a

  4. Operations Analysis for Lunar Surface Construction: Results of Two Office of Exploration Case Studies

    DTIC Science & Technology

    1991-08-01

    photovoltaic array (PVA) and regenerative fuel cell (RFC) is a critical construction activity during the first manned visit to the lunar surface ( February...An alternative design would be to have a standoff structure, possibly integrated with the photovoltaic material, in rigid panels. The difference in...8 Unload Fuel Cell Power (1CI) Cart 5 1 1 Ig item 0.2 Test FCP Can 1 1 4 systems 4 10 Unload Thermal Control (TC) Cans 5 1 1 Ig item U -.- 1 II lrest

  5. 13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN BUILT IN 1911-1912, THIS WAS THE LARGEST ORE-UNLOADING DOCK ON THE GREAT LAKES. THE DOCK FEATURED FOUR HULETT UNLOADERS, EACH WITH A BUCKET CAPACITY OF 17 TONS; A 15-TON CAPACITY ORE STOCKING AND REHANDLING BRIDGE; AND A ONE-MILLION-TON CAPACITY ORE STORAGE YARD. THE WILLIAM-SEAVER-MORGAN COMPANY OF CLEVELAND BUILT THE DOCK EQUIPMENT. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  6. Investigation of factors influencing microscopic interactions between the diamond indenter and material surfaces in nano-indentation

    NASA Astrophysics Data System (ADS)

    Wei, Qilong; Li, Xiaoyuan; Yang, Qiang; Gao, Wei

    2015-11-01

    Nano-indentation method was brought forward to replace atomic force microscopy (AFM) in simulating microscopic interactions between abrasive particles and material surfaces during polishing process. And main influencing factors including measuring parameters and material's properties were investigated thoroughly. It was found that contact force between the diamond indenter and a fused silica was about 200 μN, while it was about 470 μN between the indenter and an austenitic steel, and in both cases it did not vary with the maximal indentation force (Fmax) and the corresponding loading rate. While adhesion force between the indenter and surfaces of the two materials did not change with Fmax when the latter was less than its critical value, while it decreased monotonously with increased Fmax when the latter was higher than its critical value, with slope -1.8615 for the fused silica and -1.5403 for the austenitic steel, and the critical Fmax was about 20 mN for the fused silica and about 50 mN for the austenitic steel. According to analysis on elastic and plastic deformation during loading process and elastic recovery during unloading process, it was deduced that there would produce marked elastic recovery force when the unloading rate determined by Fmax was higher, which counteracted the measured adhesion force to some extent and made it less than its corresponding intrinsic value. And material's elasticity had an additional impact. Then it is better to adopt maximal indentation forces less than critical values of materials, to obtain accurate adhesion forces between the indenter and material surfaces, and to simulate accurately microscopic interactions during polishing process.

  7. A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5.

    PubMed

    Lev, Ifat; Shemesh, Keren; Volpe, Marina; Sau, Soumitra; Levinton, Nelly; Molco, Maya; Singh, Shivani; Liefshitz, Batia; Ben Aroya, Shay; Kupiec, Martin

    2017-07-01

    The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans -acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA. Copyright © 2017 by the Genetics Society of America.

  8. Modeling and FE Simulation of Quenchable High Strength Steels Sheet Metal Hot Forming Process

    NASA Astrophysics Data System (ADS)

    Liu, Hongsheng; Bao, Jun; Xing, Zhongwen; Zhang, Dejin; Song, Baoyu; Lei, Chengxi

    2011-08-01

    High strength steel (HSS) sheet metal hot forming process is investigated by means of numerical simulations. With regard to a reliable numerical process design, the knowledge of the thermal and thermo-mechanical properties is essential. In this article, tensile tests are performed to examine the flow stress of the material HSS 22MnB5 at different strains, strain rates, and temperatures. Constitutive model based on phenomenological approach is developed to describe the thermo-mechanical properties of the material 22MnB5 by fitting the experimental data. A 2D coupled thermo-mechanical finite element (FE) model is developed to simulate the HSS sheet metal hot forming process for U-channel part. The ABAQUS/explicit model is used conduct the hot forming stage simulations, and ABAQUS/implicit model is used for accurately predicting the springback which happens at the end of hot forming stage. Material modeling and FE numerical simulations are carried out to investigate the effect of the processing parameters on the hot forming process. The processing parameters have significant influence on the microstructure of U-channel part. The springback after hot forming stage is the main factor impairing the shape precision of hot-formed part. The mechanism of springback is advanced and verified through numerical simulations and tensile loading-unloading tests. Creep strain is found in the tensile loading-unloading test under isothermal condition and has a distinct effect on springback. According to the numerical and experimental results, it can be concluded that springback is mainly caused by different cooling rats and the nonhomogengeous shrink of material during hot forming process, the creep strain is the main factor influencing the amount of the springback.

  9. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression.

    PubMed

    Bihmidine, Saadia; Baker, R Frank; Hoffner, Cassandra; Braun, David M

    2015-07-30

    Sorghum (Sorghum bicolor L. Moench) cultivars store non-structural carbohydrates predominantly as either starch in seeds (grain sorghums) or sugars in stems (sweet sorghums). Previous research determined that sucrose accumulation in sweet sorghum stems was not correlated with the activities of enzymes functioning in sucrose metabolism, and that an apoplasmic transport step may be involved in stem sucrose accumulation. However, the sucrose unloading pathway from stem phloem to storage parenchyma cells remains unelucidated. Sucrose transporters (SUTs) transport sucrose across membranes, and have been proposed to function in sucrose partitioning differences between sweet and grain sorghums. The purpose of this study was to characterize the key differences in carbohydrate accumulation between a sweet and a grain sorghum, to define the path sucrose may follow for accumulation in sorghum stems, and to determine the roles played by sorghum SUTs in stem sucrose accumulation. Dye tracer studies to determine the sucrose transport route revealed that, for both the sweet sorghum cultivar Wray and grain sorghum cultivar Macia, the phloem in the stem veins was symplasmically isolated from surrounding cells, suggesting sucrose was apoplasmically unloaded. Once in the phloem apoplasm, a soluble tracer diffused from the vein to stem parenchyma cell walls, indicating the lignified mestome sheath encompassing the vein did not prevent apoplasmic flux outside of the vein. To characterize carbohydrate partitioning differences between Wray and Macia, we compared the growth, stem juice volume, solute contents, SbSUTs gene expression, and additional traits. Contrary to previous findings, we detected no significant differences in SbSUTs gene expression within stem tissues. Phloem sieve tubes within sweet and grain sorghum stems are symplasmically isolated from surrounding cells; hence, unloading from the phloem likely occurs apoplasmically, thereby defining the location of the previously postulated step for sucrose transport. Additionally, no changes in SbSUTs gene expression were detected in sweet vs. grain sorghum stems, suggesting alterations in SbSUT transcript levels do not account for the carbohydrate partitioning differences between cultivars. A model illustrating sucrose phloem unloading and movement to stem storage parenchyma, and highlighting roles for sucrose transport proteins in sorghum stems is discussed.

  10. Towards a rational use of loading and unloading areas in urban environments

    NASA Astrophysics Data System (ADS)

    Barba, Daniel; Garcia-Villanueva, Sergio; Del-Campo-Pardo, Hector; March, Juan A.; Llanos, Diego R.

    2017-10-01

    Despite the efforts of the authorities, that promote the use of alternative transportation systems, the traffic still increases in European cities, leading not only to traffic jams but also to pollution episodes. Delivery vehicles are part of both problems, because of their intensive use, the advent of e-commerce, the limited number and sizes of loading and unloading areas in many ancient European cities, and the difficulties associated to keep track of the correct use of these spaces. In this work we propose an holistic solution to the management of delivery vehicles in urban environments. Our solution, called RYDER, is based on the use of BLE (Bluetooth Low Energy) devices that should be provided by the local authority to delivery vehicles, as part of their authorization to use the loading and unloading areas. With the help of low-cost, low-power antennas with Bluetooth and 4G capabilities installed next to each loading/unloading area, the authorities are able to know in real time (a) the use of these areas by delivery vehicles, (b) the paths of the vehicles while they travel across the city, (c) the time spent in each area by each one of them, and (d) with the help of a mobile/tablet App, the local Police can check in seconds the permissions of each vehicle using these public spaces. Moreover, the use of a GIS-based platform allows the Traffic Department to track online each particular vehicle, based on the loading/unloading spaces being used, and to infer the most representative paths they follow, an information that may guide the decision about where these spaces are really necessary and whether each particular vehicle follows their associated usage rules. The deployment of RYDER low-cost antennas can also serve for other purposes, such as to track the routes followed by public loan bicycles, or by other fleets of public vehicles. With the help of low-cost sensors, antennas can also return an estimation of pollution values, such as levels of ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrous oxide, among others. This information may in turn drive the installation of certified pollution detectors.

  11. Formulation Optimization of Gluten-Free Functional Spaghetti Based on Maize Flour and Oat Bran Enriched in b-Glucans.

    PubMed

    Padalino, Lucia; Mastromatteo, Marcella; Sepielli, Grazia; Nobile, Matteo Alessandro Del

    2011-12-08

    The aim of this work concerns the manufacturing process of gluten-free functional spaghetti based on maize flour and oat bran, enriched with b-glucans (22%). More specifically, the goal of the study was to obtain oat bran-loaded maize spaghetti with sensory properties close to unloaded pasta. To this aim, the study has been organized in two subsequent trials. In the first one, the oat bran amount added to spaghetti was continuously increased until the overall sensory quality of pasta reached the set sensory threshold (oat bran concentration = 20%). The second experimental step was aimed to improve the overall sensory quality of oat bran loaded maize spaghetti. In particular, an attempt was made to increase the sensory quality of spaghetti added with 20% oat bran by means of structuring agents. To this aim, the effects of different kinds of some hydrocolloids and egg white powder on the rheological properties of dough, as well as on quality attributes of pasta were examined. The rheological analysis showed that the addition of hydrocolloids and white egg to the dough enriched with 20% oat bran did not cause any substantial difference in the viscoelastic properties, compared to samples without any structuring agents. The best overall quality for both fresh and dry spaghetti was obtained by the addition of carboxymethylcellulose and chitosan at a concentration of 2%.

  12. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading

    NASA Astrophysics Data System (ADS)

    Nield, Grace A.; Barletta, Valentina R.; Bordoni, Andrea; King, Matt A.; Whitehouse, Pippa L.; Clarke, Peter J.; Domack, Eugene; Scambos, Ted A.; Berthier, Etienne

    2014-07-01

    Since 1995 several ice shelves in the Northern Antarctic Peninsula have collapsed and triggered ice-mass unloading, invoking a solid Earth response that has been recorded at continuous GPS (cGPS) stations. A previous attempt to model the observation of rapid uplift following the 2002 breakup of Larsen B Ice Shelf was limited by incomplete knowledge of the pattern of ice unloading and possibly the assumption of an elastic-only mechanism. We make use of a new high resolution dataset of ice elevation change that captures ice-mass loss north of 66°S to first show that non-linear uplift of the Palmer cGPS station since 2002 cannot be explained by elastic deformation alone. We apply a viscoelastic model with linear Maxwell rheology to predict uplift since 1995 and test the fit to the Palmer cGPS time series, finding a well constrained upper mantle viscosity but less sensitivity to lithospheric thickness. We further constrain the best fitting Earth model by including six cGPS stations deployed after 2009 (the LARISSA network), with vertical velocities in the range 1.7 to 14.9 mm/yr. This results in a best fitting Earth model with lithospheric thickness of 100-140 km and upper mantle viscosity of 6×1017-2×1018 Pa s - much lower than previously suggested for this region. Combining the LARISSA time series with the Palmer cGPS time series offers a rare opportunity to study the time-evolution of the low-viscosity solid Earth response to a well-captured ice unloading event.

  13. The substorm cycle as reproduced by global MHD models

    NASA Astrophysics Data System (ADS)

    Gordeev, E.; Sergeev, V.; Tsyganenko, N.; Kuznetsova, M.; Rastäetter, L.; Raeder, J.; Tóth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.

    2017-01-01

    Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized 2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded/unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to postprocessing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.

  14. Time Course of Atrophic Remodeling: Effects of Exercise on Cardiac Morpology and Function

    NASA Technical Reports Server (NTRS)

    Scott, J. M.; Martin, D.; Caine, T.; Matz, T.; Ploutz-Snyder, L. L.

    2014-01-01

    Early and consistent evaluation of cardiac morphology and function throughout an atrophic stimulus is critically important for the design and optimization of interventions. Exercise training is one intervention that has been shown to confer favorable improvements in LV mass and function during unloading. However, the format and intensity of exercise required to induce optimal cardiac improvements has not been investigated. PURPOSE: This randomized, controlled trial was designed to 1) comprehensively characterize the time course of unloading-induced morpho-functional remodeling, and 2) examine the effects of high intensity exercise training on cardiac structural and functional parameters during unloading. METHODS: Twenty six subjects completed 70 days of head down tilt bed rest (HDBR): 17 were randomized to exercise training (ExBR) and 9 remained sedentary. Exercise consisted of integrated high intensity, continuous, and resistance exercise. We assessed cardiac morphology (left ventricular mass; LVM) and function (speckle-tracking assessment of longitudinal, radial, and circumferential strain and twist) before (BR-2), during (BR7,21,31,70), and following (BR+0, +3) HDBR. Cardiorespiratory fitness (VO2max) was evaluated before (BR- 3), during (BR4,25,46,68) and following (BR+0) HDBR. RESULTS: Sedentary HDBR resulted in a progressive decline in LVM, longitudinal, radial, and circumferential strain, and an increase in twist. ExBR mitigated decreases in LVM and function. Change in twist was significantly related to change in VO2max (R=0.68, p<0.01). CONCLUSIONS: Alterations in cardiac morphology and function begin early during unloading. High-intensity exercise attenuates atrophic morphological and functional remodeling.

  15. Effects of Imbalanced Muscle Loading on Hip Joint Development and Maturation

    PubMed Central

    Ford, Caleb A.; Nowlan, Niamh C.; Thomopoulos, Stavros; Killian, Megan L.

    2017-01-01

    The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. PMID:27391299

  16. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplasticmore » yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.« less

  17. The Substorm Cycle as Reproduced by Global MHD Models

    NASA Technical Reports Server (NTRS)

    Gordeev, E.; Sergee, V.; Tsyganenko, N.; Kuznetsova, M.; Rastaetter, Lutz; Raeder, J.; Toth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.

    2017-01-01

    Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to post processing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.

  18. Skeletal muscle responses to unloading in humans

    NASA Technical Reports Server (NTRS)

    Dudley, G.; Tesch, P.; Hather, B.; Adams, G.; Buchanan, P.

    1992-01-01

    This study examined the effects of unloading on skeletal muscle structure. Method: Eight subjects walked on crutches for six weeks with a 110 cm elevated sole on the right shoe. This removed weight bearing by the left lower limb. Magnetic resonance imaging of both lower limbs and biopsies of the left m. vastus laterallis (VL) were used to study muscle structure. Results: Unloading decreased (P less than 0.05) muscle cross-sectional areas (CSA) of the knee extensors 16 percent. The knee flexors showed about 1/2 of this response (-7 percent, P less than 0.05). The three vasti muscles each showed decreases (P less than 0.05) of about 15 percent. M. rectus femoris did not change. Mean fiber CSA in VL decreased (P less than 0.05) 14 percent with type 2 and type 1 fibers showing reductions of 15 and 11 percent respectively. The ankle extensors showed a 20 percent decrease (P less than 0.05) in CSA. The reduction for the 'fast' m. gastrocnemius was 27 percent compared to the 18 percent decrease for the 'slow' soleus. Summary: The results suggest that decreases in muscle CSA are determined by the relative change in impact loading history because atrophy was (1) greater in extensor than flexor muscles, (2) at least as great in fast as compared to slow muscles or fibers, and (3) not dependent on single or multi-joint function. They also suggest that the atrophic responses to unloading reported for lower mammals are quantitatively but not qualitatively similar to those of humans.

  19. Effect of resin coating on adhesion and microleakage of computer-aided design/computer-aided manufacturing fabricated all-ceramic crowns after occlusal loading: a laboratory study.

    PubMed

    Kitayama, Shuzo; Pilecki, Peter; Nasser, Nasser A; Bravis, Theodora; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2009-08-01

    This study investigated the effect of resin coating and occlusal loading on adhesion and microleakage of all-ceramic crowns. Molars were prepared for an all-ceramic crown and were divided into two groups: non-coated (control) and resin-coated with Clearfil Tri-S Bond. Crowns were fabricated using CEREC 3 and cemented using Clearfil Esthetic Cement. After 24 h of storage in water, the restored teeth in each group were divided into two subgroups: unloaded, or loaded while stored in water. Mechanical loading was achieved with an axial force of 80 N at 2.5 cycles s(-1) for 250,000 cycles. After immersion in Rhodamine B, the specimens were sectioned and processed for microleakage evaluation by confocal microscopy, which was followed by further sectioning for microtensile bond testing. Loading had no significant effect on microleakage in either the resin-coated or non-resin-coated groups. Resin coating did not reduce the microleakage at the dentine interface but increased the microleakage at the enamel interface. All the beams fractured during slicing when non-coated and loaded. The bond strengths of non-coated and unloaded, resin-coated and unloaded, and resin-coated and loaded groups were 15.82 +/- 4.22, 15.17 +/- 5.24, and 12.97 +/- 5.82 MPa, respectively. Resin coating with Clearfil Tri-S Bond improved the bonding of resin cement to dentine for loaded specimens. However, it was not effective in reducing the microleakage, regardless of whether it was loaded or unloaded.

  20. Walking economy is predictably determined by speed, grade, and gravitational load.

    PubMed

    Ludlow, Lindsay W; Weyand, Peter G

    2017-11-01

    The metabolic energy that human walking requires can vary by more than 10-fold, depending on the speed, surface gradient, and load carried. Although the mechanical factors determining economy are generally considered to be numerous and complex, we tested a minimum mechanics hypothesis that only three variables are needed for broad, accurate prediction: speed, surface grade, and total gravitational load. We first measured steady-state rates of oxygen uptake in 20 healthy adult subjects during unloaded treadmill trials from 0.4 to 1.6 m/s on six gradients: -6, -3, 0, 3, 6, and 9°. Next, we tested a second set of 20 subjects under three torso-loading conditions (no-load, +18, and +31% body weight) at speeds from 0.6 to 1.4 m/s on the same six gradients. Metabolic rates spanned a 14-fold range from supine rest to the greatest single-trial walking mean (3.1 ± 0.1 to 43.3 ± 0.5 ml O 2 ·kg -body -1 ·min -1 , respectively). As theorized, the walking portion (V̇o 2-walk  =  V̇o 2-gross - V̇o 2-supine-rest ) of the body's gross metabolic rate increased in direct proportion to load and largely in accordance with support force requirements across both speed and grade. Consequently, a single minimum-mechanics equation was derived from the data of 10 unloaded-condition subjects to predict the pooled mass-specific economy (V̇o 2-gross , ml O 2 ·kg -body + load -1 ·min -1 ) of all the remaining loaded and unloaded trials combined ( n = 1,412 trials from 90 speed/grade/load conditions). The accuracy of prediction achieved ( r 2  = 0.99, SEE = 1.06 ml O 2 ·kg -1 ·min -1 ) leads us to conclude that human walking economy is predictably determined by the minimum mechanical requirements present across a broad range of conditions. NEW & NOTEWORTHY Introduced is a "minimum mechanics" model that predicts human walking economy across a broad range of conditions from only three variables: speed, surface grade, and body-plus-load mass. The derivation/validation data set includes steady-state loaded and unloaded walking trials ( n = 3,414) that span a fourfold range of walking speeds on each of six different surface gradients (-6 to +9°). The accuracy of our minimum mechanics model ( r 2  = 0.99; SEE = 1.06 ml O 2 ·kg -1 ·min -1 ) appreciably exceeds that of currently used standards. Copyright © 2017 the American Physiological Society.

Top