Sample records for unsaturated dicarboxylic acids

  1. Molecular and isotopic analyses of Tagish Lake alkyl dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Huang, Yongsong

    2002-05-01

    The Tagish Lake meteorite soluble organic suite has a general composition that differs from those of both CI- and CM chondrites. These differences suggest that distinct processes may have been involved in the formation of different groups of organics in meteorites. Tagish Lake alkyl dicarboxylic acids have a varied, abundant distribution and are, with carboxylated pyridines, the only compounds to have an occurrence comparable to that of the Murchison meteorite. This study has undertaken their molecular and isotopic characterization, with the aim to understand their origin and to gain insights into the evolutionary history of the meteorite parent body. Tagish Lake alkyl dicarboxylic acids are present as a homologous series of saturated and unsaturated species with three through ten-carbon atom chain length. Linear saturated acids are predominant and show decreasing amounts with increasing chain length. A total of forty-four of these compounds were detected with the most abundant, succinic acid, present at ~40 nmoles/g. met. Overall the molecular distribution of Tagish Lake dicarboxylic acids shows a remarkable compound to compound correspondence with those observed in the Murchison and Murray meteorites. In both Tagish Lake and Murchison, the imides of the more abundant dicarboxylic acids were also observed. The hydrogen and carbon isotopic compositions of individual Tagish Lake dicarboxylic acids were determined and compared to those of the corresponding acids in the Murchison meteorite. All delta D and delta 13C values for Tagish Lake acids are positive and show a substantial isotopic enrichment. Delta D values vary from, approximately, + 1120 deg for succinic acid to + 1530 deg for methyl glutaric acid. Delta 13C values ranged from + 12.6 deg for methyl glutaric acid to + 22.9 deg for glutaric acid, with adipic acid having a significantly lower value (+ 5.5 deg). Murchison dicarboxylic acid showed similar isotopic values: their delta 13C values were generally

  2. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic acid...

  3. Dicarboxylic acids from electric discharge

    NASA Technical Reports Server (NTRS)

    Zeitman, B.; Chang, S.; Lawless, J. G.

    1974-01-01

    An investigation was conducted concerning the possible synthesis of a suite of dicarboxylic acids similar to that found in the Murchison meteorite. The investigation included the conduction of a chemical evolution experiment which simulated electric discharge through the primitive atmosphere of the earth. The suite of dicarboxylic acids obtained in the electric discharge experiment is similar to that of the Murchison meteorite, except for the fact that 2-chlorosuccinic acid is present in the spark discharge.

  4. Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius.

    PubMed

    Yang, Lei; Christakou, Eleni; Vang, Jesper; Lübeck, Mette; Lübeck, Peter Stephensen

    2017-03-14

    C 4 -dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C 4 -dicarboxylic acids have been with limited success. In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C 4 -dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C 4 -dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C 4 -dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. This study demonstrates that the key to change the citric acid production into production of C 4 -dicarboxylic acids in A. carbonarius is the C 4 -dicarboxylate transporter. Furthermore it shows that the C 4 -dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C 4 -dicarboxylic acid production.

  5. Seasonal and longitudinal distributions of atmospheric water-soluble dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Imanishi, Katsuya; Boreddy, S. K. R.; Nojiri, Yukihiro

    2015-05-01

    In order to assess the seasonal variability of atmospheric abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific and Sea of Japan, aerosol samples were collected along the longitudinal transacts during six cruises between Canada and Japan. The back trajectory analyses indicate that aerosol samples collected in winter and spring are influenced by the East Asian outflow, whereas summer and fall samples are associated with the pristine maritime air masses. Molecular distributions of water-soluble organics in winter and spring samples show the predominance of oxalic acid (C2) followed by succinic (C4) and malonic acids (C3). In contrast, summer and fall marine aerosols are characterized by the predominance of C3 over C4. Concentrations of dicarboxylic acids were higher over the Sea of Japan than the North Pacific. With a lack of continental outflow, higher concentrations during early summer are ascribed to atmospheric oxidation of organic precursors associated with high biological activity in the North Pacific. This interpretation is further supported by the high abundances of azelaic acid, which is a photochemical oxidation product of biogenic unsaturated fatty acids, over the Bering Sea in early summer when surface waters are characterized by high biological productivity. We found higher ratios of oxalic acid to pyruvic and glyoxylic acids (C2/Pyr and C2/ωC2) and glyoxal and methylglyoxal (C2/Gly and C2/MeGly) in summer and fall than in winter and spring, suggesting a production of C2 from the aqueous-phase oxidation of oceanic isoprene. In this study, dicarboxylic acids account for 0.7-38% of water-soluble organic carbon.

  6. Renewable unsaturated polyesters from muconic acid

    DOE PAGES

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; ...

    2016-09-27

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a

  7. Renewable unsaturated polyesters from muconic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a

  8. Optimization of esterification of dicarboxylic acids and 2-ethyl-1-hexanol

    NASA Astrophysics Data System (ADS)

    Jafri, Nur Hafifah Nahdirah; Othman, Nor Hamidah Abu; Salimon, Jumat

    2018-04-01

    Dicarboxylate ester has the potential alternative as plasticizer which environmentally friendly in polymeric formulation especially for poly (vinyl chloride) (PVC). Dicarboxylate ester compounds were synthesized via esterification between dicarboxylic acid and 2-ethyl-1-hexanol by using sulfuric acid as catalyst. The effects of reaction parameters were studied by optimizing temperature, mole ratio of reactants, amount of catalyst and reaction to obtain highest ester conversion. The optimum results showed dicarboxylic acid successfully converted to the dicarboxylate ester at parameters; 4 hours; 120 °C; catalyst amount: 2% w/w of diacid; and mole ratio: 1:2.5. Functional group analysis was conducted by using ATR-FTIR spectroscopy.

  9. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less

  10. Selective Conversion of Biorefinery Lignin into Dicarboxylic Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ruoshui; Guo, Mond; Zhang, Xiao

    The emerging biomass-to-biofuel conversion industry has created an urgent need for identifying new applications for biorefinery lignin. This paper demonstrates a new route to producing dicarboxylic acids from biorefinery lignin through chalcopyrite-catalyzed oxidation in a highly selective process. Up to 95 % selectivity towards stable dicarboxylic acids was obtained for several types of biorefinery lignin and model compounds under mild, environmentally friendly reaction conditions. The findings from this study paved a new avenue to biorefinery lignin conversions and applications.

  11. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Kasukabe, Hideki; Barrie, Leonard A.

    Normal saturated (C 2C 11) and unsaturated (C 4C 5, C 8) dicarboxylic acids were measured in arctic aerosol samples collected weekly at Alert, Canada in 1987-1988. In all seasons, oxalic (C 2) acid was usually the dominant diacid species (1.8-70 ng m -3, av. 14 ± 12 ng m -3) followed by malonic (C 3; 0.05-19 ng m -3, av. 2.5 ± 3.3 ng m -3) and succinic (C 4; 0.51-18 ng m -3, av. 3.8 ± 3.5 ng m -3) acids. The total concentrations of dicarboxylic acids showed a seasonal variation (4.3-97 ng m -3, av. 25 ± 20 ng m -3),with two maxima in September to October and in March to April. The autumn peak is characterized by high concentrations of oxalic acid and azelaic (C 9) acids, which were probably caused by enhanced contributions from anthropogenic and biogenic sources, respectively, followed by photochemical reactions. This is consistent with higher concentrations of n-alkanes from terrestrial plant waxes and of soil-derived aluminum in the autumn aerosol samples. On the other hand, during "Arctic Sunrise" in March to April, oxalic, malonic and succinic acids as well as some other (C 5C 6) diacids were 5 to 20 times more abundant than in the preceding dark winter months, suggesting that diacids are produced in situ by secondary photochemical oxidation of organic pollutants carried to the Arctic. ω-Oxocarboxylic acids (C 2C 5, C 9), pyruvic acid and α-dicarbonyls (methylglyoxal and glyoxal) were also detected in the arctic aerosols. Their concentration also showed spring maxima; however, they were observed a few weeks earlier than the spring peak of diacids. The ω-oxoacids are likely intermediates to the production of α,ω-dicarboxylic acids at the polar sunrise.

  12. Producing dicarboxylic acids using polyketide synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  13. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    PubMed

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  14. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haushalter, Robert W.; Phelan, Ryan M.; Hoh, Kristina M.

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotinmore » and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.« less

  15. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  16. UNSATURATED AMINO ACIDS V.

    PubMed Central

    Shapira, Jacob; Dittmer, Karl

    1961-01-01

    Shapira, Jacob (Department of Chemistry, Florida State University, Tallahassee) and Karl Dittmer. Unsaturated amino acids. V. Microbiological properties of some halogenated olefinic amino acids. J. Bacteriol. 82:640–647. 1961.—It has been shown previously that several amino acid analogues containing unsaturated linkages were inhibitors of the growth of Escherichia coli and Saccharomyces cerevisiae. This paper reports the results obtained when a series of unsaturated halogen-containing amino acids was examined. The cis isomer of ω-chloroallylglycine showed the greatest toxicity yet found in this series of unsaturated amino acids toward E. coli, whereas the trans-isomer was usually far less toxic. The major effect of cis-ω-chloroallylglycine in E. coli appeared to be to extend the lag phase before the normal rate of growth began. A wide variety of amino acids was capable of partially or completely preventing the toxicity of low levels of these compounds. At higher levels, relatively few amino acids (primarily valine, leucine, and glutamic acid) were effective. In E. coli, cis-ω-chloroallylglycine showed an unusual [Formula: see text] relationship with both glutamic acid and valine over a wide range in concentration. PMID:13911278

  17. Surface tensions of solutions containing dicarboxylic acid mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Hildemann, Lynn M.

    2014-06-01

    Organic solutes tend to lower the surface tension of cloud condensation nuclei, allowing them to more readily activate. The surface tension of various dicarboxylic acid aerosol mixtures was measured at 20 °C using the Wilhelmy plate method. At lower concentrations, the surface tension of a solution with equi-molar mixtures of dicarboxylic acids closely followed that of a solution with the most surface-active organic component alone. Measurements of surface tension for these mixtures were lower than predictions using Henning's model and the modified Szyszkowski equation, by ˜1-2%. The calculated maximum surface excess (Γmax) and inverse Langmuir adsorption coefficient (β) from the modified Szyszkowski equation were both larger than measured values for 6 of the 7 mixtures tested. Accounting for the reduction in surface tension in the Köhler equation reduced the critical saturation ratio for these multi-component mixtures - changes were negligible for dry diameters of 0.1 and 0.5 μm, but a reduction from 1.0068 to 1.0063 was seen for the 4-dicarboxylic acid mixture with a dry diameter of 0.05 μm.

  18. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Sakaguchi, Futoshi

    1999-02-01

    Remote marine aerosols collected over the western North to equatorial Pacific (34°N-14°S, 140°E-150°W) were studied for low molecular weight dicarboxylic acids using a capillary gas chromatography (GC) and GC/mass spectrometer, and for total carbon and nitrogen contents. Homologous series of dicarboxylic acids (C2-C10) including keto- and hydroxy-dicarboxylic acids were detected in the samples with a concentration range of 10-250 ng m-3 (average 63 ng m-3 and median 44 ng m-3). Their molecular distributions showed a predominance of oxalic acid (C2), followed by malonic acid (C3). The smallest diacid (C2, 6.5-161 ng m-3 with average 40 ng m-3 and median 17 ng m-3) composed 45-75% (average 65%) of the total diacids. The diacids showed higher concentrations in the western Pacific rim near Japanese islands and showed lower concentrations in the central and tropical Pacific. However, relative abundances of the diacid-carbon in the total aerosol carbon (1.1-15.8%) were found to be higher in the equatorial central Pacific. These diacids are probably in situ produced in the Pacific atmosphere by photochemical oxidation of gaseous and particulate precursors. Results of principal component analysis of individual diacid, coupled with an information on photochemical reactions, further support that C2 and C3 diacids are likely produced by the oxidation of C4 and longer-chain diacids, whereas longer-chain (C5-C10) diacids are produced through the oxidation of semivolatile fatty acids which are also oxidation products of unsaturated fatty acids. Concentrations of total C (0.069-5.27 μg m-3 with average 0.39 μg m-3 and median 0.15 μg m-3) and total N (0.026-1.44 μg m-3 with average 0.12 μg m-3 and median 0.077 μg m-3) were generally higher over the western Pacific.

  19. Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome

    1986-08-01

    It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.

  20. Seasonal Variations of Low Molecular Weight Dicarboxylic Acids in Atmospheric Aerosols at Okinawa Islands, Japan

    NASA Astrophysics Data System (ADS)

    Nakaema, F.; Handa, D.; Tanahara, A.; Arakaki, T.

    2009-04-01

    Low molecular weight dicarboxylic acids are major fraction of water soluble organic compounds in the atmospheric aerosols. Recently, economy of East Asia grows up remarkably, and atmospheric aerosols discharged from this area have been transported to Japan. In this study, we collected aerosol at Cape Hedo (CH) and University of the Ryukyus(UR), and studied the distribution and origin of low molecule dicarboxylic acid. Aerosols were collected on a quartz filter with a high volume air sampler. Low molecular weight dicarboxylic acids extracted by pure water were derivatized to dibutyl esters by reactions with BF3/butanol and were measured by GC-FID. In many samples, oxalic acid showed the highest concentration. Concentration of oxalic acid, malonic acid, succinic acid and malic acid were strongly correlated between the two sampling sites. Oxalic acid occupied on the average 83% and 76% of all the dicarboxylic acid measured for CH samples and UR samples. It is suggested that the aerosols in Okinawa were affected by secondary photochemical reactions, not by the primary emissions from local sources. The seasonal variation of the dicarboxylic acids concentrations in CH and UR showed higher in spring and fall, and a lower in summer. From the back trajectory analysis, dicarboxylic acids concentrations showed higher when an air mass came from East Asia area, and showed lower when it came from Pacific Ocean.

  1. Water soluble dicarboxylic acids and related compounds in Antarctic aerosols

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; SeméRé, Richard; Imai, Yoshie; Fujii, Yoshiyuki; Hayashi, Masahiko

    1996-08-01

    Antarctic aerosols collected at Syowa Station were studied for water soluble organic compounds by employing a water extraction and dibutyl ester derivatization and using a capillary gas chromatography (GC) and GC/mass spectrometry (GC/MS). Total carbon and nitrogen were also determined. A homologous series of α,ω-dicarboxylic acids (C2-C11), ω-oxocarboxylic acids (C2-C9), and α-dicarbonyls (C2-C3) were detected, as well as pyruvic acid and aromatic (phthalic) diacid. Succinic (C4) or oxalic (C2) acid was found to be the dominant diacid species, followed by azelaic (C9), adipic (C6), or malonic (C3) acid. Concentration range of the total diacids was 5.9-88 ng m-3, with an average of 29 ng m-3. Highest concentrations were observed in the summer sample with a predominance of succinic acid (61.5 ng m-3), which comprised approximately 70% of the total diacids and accounted for 3.5% of total aerosol carbon (1020 ng m-3). The succinic acid (C4) is likely produced by photooxidation of 4-oxocarboxylic acids, which are present in the atmosphere as intermediates of the photooxidation of unsaturated fatty acids. These results indicate that the Antarctic organic aerosols originate from marine-derived lipids and are transformed largely by photochemical oxidations. ω-Oxocarboxylic acids (C2-C9, 0.36-3.0 ng m-3) also showed the highest concentration in the summer sample, again suggesting a secondary production in the atmosphere of the Antarctic and in the Southern Ocean.

  2. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Niu, Sulian; Liu, Caie; Wang, Liansheng

    In this study aerosol samples of PM10 and PM2.5 collected from 18 February 2001 to 1 May 2001 in Nanjing, China were analyzed for their water-soluble organic compounds. A series of homologous dicarboxylic acids (C 2-10) and two kinds of aldehydes (methylglyoxal and 2-oxo-malonaldehyde) were detected by GC and GC/MS. Among the identified compounds, the concentration of oxalic acid was the highest at all the five sites, which ranged from 178 to 1423 ng/m 3. The second highest concentration of dicarboxylic acids were malonic and succinic acids, which ranged from 26.9 to 243 ng/m 3. Higher level of azelaic acid was also observed, of which the maximum was 301 ng/m 3. As the highest fraction of dicarboxylic acids, oxalic acid comprised from 28% to 86% of total dicarboxylic acids in PM10 and from 41% to 65% of total dicarboxylic acids in PM2.5. The dicarboxylic acids (C 2, C 3, C 4) together accounted for 38-95% of total dicarboxylic acids in PM10 and 59-87% of dicarboxylic acids in PM2.5. In this study, the total dicarboxylic acids accounted for 2.8-7.9% of total organic carbon (TOC) of water-soluble matters for PM10 and 3.4-11.8% of TOC for PM2.5. All dicarboxylic acids detected in this study together accounted for about 1% of particle mass. The concentration of azelaic acid was higher at one site than others, which may be resulted from higher level of volatile fat used for cooking. The amounts of dicarboxyic acids (C 2,3,4,9) and 2-oxo-malonaldehyde of PM2.5 were higher in winter and lower in spring. Compared with other major metropolitans in the world, the level of oxalic acid concentration of Nanjing is much higher, which may be contributed to higher level of particle loadings, especially for fine particles.

  3. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    PubMed Central

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3. PMID:24729915

  4. Diffusivity of dicarboxylic acids molecules to secondary organic material governed by particle phase state

    NASA Astrophysics Data System (ADS)

    Han, Y.; Gong, Z.; Liu, P.; de Sá, S. S.; McKinney, K. A.; Martin, S. T.

    2017-12-01

    Atmospheric secondary organic material (SOM) from oxidation of volatile organic compounds can exist in amorphous solid, semisolid, and liquid states depending on a range of factors such as relative humidity (RH), temperature, and reaction history. The phase state of SOM affects the dynamic exchange and reactivity between particles and gas-phase molecules. Dicarboxylic acids are ubiquitous in ambient atmosphere and the uptake of which may lead to substantial changes in hygroscopicity, absorption property, and light scattering of aerosol particles. This study investigates the diffusivity of dicarboxylic acids to the matrix of SOM particles. SOM was generated from dark ozonolysis of a-pinene in Harvard Environmental Chamber. The produced SOM particles were passed through an ozone scrubber to remove gas-phase chemistry before being led into a flask reactor, where gas-phase dicarboxylic acid was injected continuously and RH was varied from 5% to 85%. The probe dicarboxylic acids molecules including malonic acid and a-ketoglutaric acid have been investigated for the uptake to SOM particles. Organic composition in the outflow of the flask was measured with a high-resolution time-of-flight aerosol mass spectrometer. The mass fractions of tracer ions in total organic mass for both malonic acid and a-ketoglutaric acid increased substantially with the increase of RH values. The tracer ions of malonic acid were also more abundant in a-pinene SOM particles with increased gas-phase concentrations. These results suggest that the diffusion of the studied dicarboxylic acids molecules to a-pinene SOM particles was enhanced at increased RH values, which is possibly due to the phase transition of a-pinene SOM particles from non-liquid to liquid states. Therefore, particle phase state may be an important factor governing the diffusivity of dicarboxylic acids molecules to a-pinene SOM. Further dicarboxylic acids with various functional groups will be investigated to understand the

  5. DICARBOXYLIC ACID CONCENTRATION TRENDS AND SAMPLING ARTIFACTS

    EPA Science Inventory

    Dicarboxylic acids associated with airborne particulate matter were measured during a summer period in Philadelphia that included multiple air pollution episodes. Samples were collected for two ten hour periods each day using a high volume sampler with two quartz fiber filters in...

  6. Acid Chlorides as Formal Carbon Dianion Linchpin Reagents in the Aluminum Chloride-Mediated Dieckmann Cyclization of Dicarboxylic Acids.

    PubMed

    Armaly, Ahlam M; Bar, Sukanta; Schindler, Corinna S

    2017-08-04

    The development of acid chlorides as formal dianion linchpin reagents that enable access to cyclic 2-alkyl- and 2-acyl-1,3-alkanediones from dicarboxylic acids is described herein. Mechanistic experiments relying on 13 C-labeling studies confirm the role of acid chlorides as carbon dianion linchpin reagents and have led to a revised reaction mechanism for the aluminum(III)-mediated Dieckmann cyclization of dicarboxylic acids with acid chlorides.

  7. Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution

    NASA Astrophysics Data System (ADS)

    Hyder, Murtaza; Genberg, Johan; Sandahl, Margareta; Swietlicki, Erik; Jönsson, Jan Åke

    2012-09-01

    Seven aliphatic dicarboxylic acids (C3-C9) along with phthalic acid, pinic acid and pinonic acid were determined in 35 aerosol (PM10) samples collected over the year at Vavihill sampling station in south of Sweden. Mixture of dichloromethane and methanol (ratio 1:3) was preferred over water for extraction of samples and extraction was assisted by ultrasonic agitation. Analytes were derivatized using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% trimethylsilyl chloride and analyzed using gas chromatography/mass spectrometry. Among studied analytes, azelaic acid was found maximum with an average concentration of 6.0 ± 3.6 ng m-3 and minimum concentration was found for pimelic acid (1.06 ± 0.63 ng m-3). A correlation coefficients analysis was used for defining the possible sources of analytes. Higher dicarboxylic acids (C7-C9) showed a strong correlation with each other (correlation coefficients (r) range, 0.96-0.97). Pinic and pinonic acids showed an increase in concentration during summer. Lower carbon number dicarboxylic acids (C3-C6) and phthalic acid were found strongly correlated, but showed a poor correlation with higher carbon number dicarboxylic acids (C7-C9), suggesting a different source for them. Biomass burning, vehicle exhaust, photo-oxidation of volatile organic compounds (natural and anthropogenic emissions) were possible sources for dicarboxylic acids.

  8. Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation.

    PubMed Central

    Birkenhead, K; Manian, S S; O'Gara, F

    1988-01-01

    A recombinant plasmid encoding Rhizobium meliloti sequences involved in dicarboxylic acid transport (plasmid pRK290:4:46) (E. Bolton, B. Higgisson, A. Harrington, and F. O'Gara, Arch. Microbiol. 144:142-146, 1986) was used to study the relationship between dicarboxylic acid transport and nitrogen fixation in Bradyrhizobium japonicum. The expression of the dct sequences on plasmid pRK290:4:46 in B. japonicum CJ1 resulted in increased growth rates in media containing dicarboxylic acids as the sole source of carbon. In addition, strain CJ1(pRK290:4:46) exhibited enhanced succinate uptake activity when grown on dicarboxylic acids under aerobic conditions. Under free-living nitrogen-fixing conditions, strain CJ1(pRK290:4:46) exhibited higher nitrogenase (acetylene reduction) activity compared with that of the wild-type strain. This increase in nitrogenase activity also correlated with an enhanced dicarboxylic acid uptake rate under these microaerobic conditions. The regulation of dicarboxylic acid transport by factors such as metabolic inhibitors and the presence of additional carbon sources was similar in both the wild-type and the engineered strains. The implications of increasing nitrogenase activity through alterations in the dicarboxylic acid transport system are discussed. PMID:3422072

  9. Long Chain Saturated and Unsaturated Carboxylic Acids: Filling a Large Gap of Knowledge in Their Enthalpies of Formation.

    PubMed

    Rogers, Donald W; Zavitsas, Andreas A

    2017-01-06

    Despite their abundance in nature and their importance in biology, medicine, nutrition, and in industry, gas phase enthalpies of formation of many long chain saturated and unsaturated fatty acids and of dicarboxylic acids are either unavailable or have been estimated with large uncertainties. Available experimental values for stearic acid show a spread of 68 kJ mol -1 . This work fills the knowledge gap by obtaining reliable values by quantum theoretical calculations using G4 model chemistry. Compounds with up to 20 carbon atoms are treated. The theoretical results are in excellent agreement with well established experimental values when such values exist, and they provide a large number of previously unavailable values.

  10. Characterization of dicarboxylic naphthenic acid fraction compounds utilizing amide derivatization: Proof of concept.

    PubMed

    Kovalchik, Kevin A; MacLennan, Matthew S; Peru, Kerry M; Ajaero, Chukwuemeka; McMartin, Dena W; Headley, John V; Chen, David D Y

    2017-12-30

    The characterization of naphthenic acid fraction compounds (NAFCs) in oil sands process affected water (OSPW) is of interest for both toxicology studies and regulatory reasons. Previous studies utilizing authentic standards have identified dicarboxylic naphthenic acids using two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC × GC/TOFMS). The selective derivatization of hydroxyl groups has also recently aided in the characterization of oxy-NAFCs, and indirectly the characterization of dicarboxylic NAFCs. However, there has been no previous report of derivatization being used to directly aid in the standard-free characterization of NAFCs with multiple carboxylic acid functional groups. Herein we present proof-of-concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization. Carboxylic acid groups in OSPW extract and in a dicarboxylic acidstandard were derivatized to amides using a previously described method. The derivatized extract and derivatized standard were analyzed by direct-injection positive-mode electrospray ionization ((+)ESI) high-resolution mass spectrometry (HRMS), and the underivatized extract was analyzed by (-)ESI MS. Tandem mass spectrometry (MS/MS) was carried out on selected ions of the derivatized standard and derivatized OSPW. Data analysis was carried out using the Python programming language. The distribution of monocarboxylic NAFCs observed in the amide-derivatized OSPW sample by (+)ESI-MS was generally similar to that seen in underivatized OSPW by (-)ESI-MS. The dicarboxylic acid standard shows evidence of being doubly derivatized, although the second derivatization appears to be inefficient. Furthermore, a spectrum of potential diacid NAFCs is presented, identified by both charge state and derivatization mass. Interference due to the presence of multiple derivatization products is noted, but can be eliminated using on-line separation or an isotopically labelled derivatization

  11. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-08-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (>6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8-11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of

  12. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  13. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic dicarboxylic acid salt. 721.2270 Section 721.2270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2270 Aliphatic...

  14. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids

    NASA Technical Reports Server (NTRS)

    Kawamura, Kimitaka; Kaplan, I. R.

    1987-01-01

    Significant amounts (up to 2 percent of organic geopolymers) of low-molecular-weight (LMW) dicarboxylic acids (C2-C10) have been detected during thermal alteration (270 C, 2 h) of kerogens and humic acids isolated from young or ancient lithified sediments. Their distribution is characterized by the predominance of oxalic acid followed by succinic, fumaric, and methylsuccinic acids. These acids are probably released by the breakdown of macromolecular structures, which have incorporated biogenic organic compounds, including diacids, during early digenesis in sediments. Because of their reactivity, LMW diacids may play geochemically important roles under natural conditions.

  15. Hydrogen bonded binary molecular adducts derived from exobidentate N-donor ligand with dicarboxylic acids: Acid⋯imidazole hydrogen-bonding interactions in neutral and ionic heterosynthons

    NASA Astrophysics Data System (ADS)

    Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi

    2011-01-01

    Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.

  16. Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Huang, Y.

    2003-03-01

    Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen-deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound- specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2-methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in D values of the dicarboxylic acids were measured following the reflux experiments. A pseudo-first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction. The degree of H/D exchange varies as a result of differences in molecular structure, the alkalinity of the extraction solution and presence/absence of meteorite powder. However, our model indicates that succinic, glutaric, and 2-methyl glutaric acids with a D of 1800 would experience isotope changes of 38, 10, and 6, respectively during the extraction process. Therefore, the overall change in D values of the dicarboxylic acids during the aqueous extraction process is negligible. We also demonstrate that H/D exchange occurs on the chiral -carbon in 2-methyl glutaric acid. The results suggest that the racemic mixture of 2-methyl glutaric acid in the Tagish Lake meteorite could result from post-synthesis aqueous alteration. The approach employed in this study can also be used to quantify H/D exchange for other important meteoritic compounds such as amino acids.

  17. Long-term trend of dicarboxylic acids, ketoacids and dicarbonyls in the marine aerosols over the western North Pacific in 2001-2006

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Mochida, M.

    2006-12-01

    To understand a long-range atmospheric transport of water-soluble organics in the western North Pacific, remote marine aerosols were collected on weekly basis at a subtropical island (Chichijima, 142E; 27N) from 2001 to 2006 using a high volume air sampler and pre-combusted quartz filter. The island is located in the boundary of westerly and trade wind regimes. The aerosols were analyzed for dicarboxylic acids, ketoacids and dicarbonyls employing butyl ester derivatization followed by GC determination. Homologous saturated diacids (C2-C11) were detected with a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids as well as unsaturated diacids, including maleic (M), fumaric (F), phthalic acids. Ketoacids and dicarbonyls were also detected. Concentrations of total diacids fluctuated significantly in a range of 10-600 ngm-3 with winter/spring maximum and summer minimum. The winter/spring maximum can be explained by a combinattion of enhanced emissions of polluted aerosols and their precursors in Asia and the intensified westerlies over the North Pacific in the season. Seasonal trends of the molecular compositions were also found. For example, concentration ratios of C3 to C4 acid showed a maximum in summer, indicating more oxidation of longer-chain diacids to shorter ones. M/F ratios increased from summer to winter as a result of photochemically-induced isomerization of cis and trans configuration of unsaturated diacids. On the other hand, azelaic acid (C9) relative to other diacids showed a sharp increase in summer. Because C9 is a specific photo-oxidation product of unsaturated fatty acid such as oleic acid, this demonstrates an enhanced sea-to- air emission of unsaturated fatty acids in summer followed by photochemical oxidation. Long-term trends of diacids and related compounds in the aerosols will be discussed for 2001 to 2006. The results will also be compared with those obtained at the same site for 1990 to 1993 to detect long

  18. Photooxidation of dicarboxylic acids—Part I: Effects of inorganic ions on degradation of azelaic acid

    NASA Astrophysics Data System (ADS)

    Yang, Liming; Ray, Madhumita B.; Yu, Liya E.

    In this paper, the first of a two-part series, effects of chloride, sulfate, and nitrate ions and pH on photooxidation of azelaic acid were investigated in an aqueous system. Nitrate ions play the major role in accelerating photooxidation of azelaic acid by increasing rad OH concentration, while chloride ions consume rad OH concentration and retard photooxidation rates. In inorganic mixtures, a nitrate-to-chloride molar ratio of >1.5 accelerated photooxidation of azelaic acid indicating the dominant role of nitrate. Substantial inhibition effects of chloride on photooxidation of azelaic acid were demonstrated at a nitrate-to-chloride molar ratio <0.3. Nitrate and chloride are interrelated in affecting photooxidation of azelaic acid as photolysis of nitrate would significantly consume H +, retarding reaction of HOCl - with H +, and consequently decreasing rad OH-chloride reaction. pH affects photooxidation of C 2-C 9 dicarboxylic acids (DCAs) in two ways: C 2-C 4 dicarboxylates exhibit substantially higher degradation rates than their parent DCAs, while C 5-C 9 dicarboxylates demonstrate degradation rates similar to their parent DCAs.

  19. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    PubMed

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  1. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE PAGES

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...

    2018-01-01

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  2. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  3. Production of platform chemical itaconic acid from pentose sugars

    USDA-ARS?s Scientific Manuscript database

    In recent years, itaconic acid (IA), an unsaturated five carbon dicarboxylic acid, has gained importance as a fully sustainable building block chemical (platform chemical) for a wide range of applications in the manufacturing of various synthetic resins, coatings, and polymers. It is currently produ...

  4. Production of itaconic acid from pentose sugars by Aspergillus terreus

    USDA-ARS?s Scientific Manuscript database

    Itaconic acid (IA), an unsaturated 5-carbon dicarboxylic acid, is a building block platform chemical that is currently produced industrially with glucose by fermentation with Aspergillus terreus (A. terreus). However, lignocellulosic biomass has the potential to serve as a low cost source of sugars ...

  5. Thioesterases for ethylmalonyl-CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1.

    PubMed

    Sonntag, Frank; Buchhaupt, Markus; Schrader, Jens

    2014-05-01

    The ethylmalonyl-coenzyme A pathway (EMCP) is a recently discovered pathway present in diverse α-proteobacteria such as the well studied methylotroph Methylobacterium extorquens AM1. Its glyoxylate regeneration function is obligatory during growth on C1 carbon sources like methanol. The EMCP contains special CoA esters, of which dicarboxylic acid derivatives are of high interest as building blocks for chemical industry. The possible production of dicarboxylic acids out of the alternative, non-food competing C-source methanol could lead to sustainable and economic processes. In this work we present a testing of functional thioesterases being active towards the EMCP CoA esters including in vitro enzymatic assays and in vivo acid production. Five thioesterases including TesB from Escherichia coli and M. extorquens, YciA from E. coli, Bch from Bacillus subtilis and Acot4 from Mus musculus showed activity towards EMCP CoA esters in vitro at which YciA was most active. Expressing yciA in M. extorquens AM1 led to release of 70 mg/l mesaconic and 60 mg/l methylsuccinic acid into culture supernatant during exponential growth phase. Our data demonstrates the biotechnological applicability of the thioesterase YciA and the possibility of EMCP dicarboxylic acid production from methanol using M. extorquens AM1.

  6. Volatile aromatic hydrocarbons and dicarboxylic acid concentrations in air at an urban site in the Southwestern US

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc K.; Steinberg, Spencer M.; Johnson, Brian J.

    Concentrations of benzene, toluene, ethylbenzene, o-xylene, and m- and p-xylene were measured at an urban sampling site in Las Vegas, NV by sorbent sampling followed by thermal desorption and determination by GC-PID. Simultaneously, measurements of oxalic, malonic, succinic, and adipic acids were made at the same site by collection on quartz filters, extraction, esterification, and determination by GC-FID. For the period from April 7, 1997 to June 11, 1997, 201 sets of hydrocarbon measurements and 99 sets of acid measurements were made. Additional measurements of dicarboxylic acids were made on samples that represented potential direct sources, e.g. green plants and road dust. Correlations between the hydrocarbon and CO concentrations (measured by the Clark County Health District at a nearby site) were highly significant and a strong negative correlation of hydrocarbon concentration with ozone concentration (also from the county site) was observed under quiescent atmospheric conditions. In general, dicarboxylic acid concentrations were well correlated with one another (with the exception of adipic acid) but not well correlated with hydrocarbon, CO, and ozone concentrations. Multiple sources and complex formation processes are indicated for the dicarboxylic acids.

  7. Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the western North Pacific: Sources and formation pathways

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo

    2015-05-01

    The present study aims to assess the molecular distributions of water-soluble dicarboxylic acids (diacids: C2-C12), oxocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal) in aerosols collected over the western North Pacific (WNP) during a summer cruise (August to September 2008). The measured water-soluble organics show pronounced latitudinal distributions with higher concentrations in the region of 30°N-45°N (average 63 ng m-3) than 10°N-30°N (18 ng m-3). Mass fraction of oxalic acid (C2) in total aliphatic diacids (ΣC2-C12) showed higher values (72 ± 10%) in lower latitude (10°N-30°N) than that (56 ± 16%) in higher latitude (30°N-45°N), suggesting a photochemical production of C2 due to an increased insolation over the tropical WNP. A similar trend was found in other diagnostic ratios such as oxalic to succinic (C2/C4) and oxalic to glyoxylic acid (C2/ωC2), which further corroborate an enhanced photochemical aging over the WNP. In addition, relative abundances of oxalic acid in total diacids showed a marked increase as a function of ambient temperature, supporting their photochemical production. Constantly low concentration ratios of adipic and phthalic acids relative to azelaic acid suggest a small contribution of anthropogenic sources and an importance of oceanic sources during the study period. Significant production of C2 through oxidation of biogenic volatile organic compounds emitted from the sea surface is also noteworthy, as inferred from the strong linear correlations among water-soluble organic carbon, methanesulphonic acid, and oxalic acid. Sea-to-air emission of unsaturated fatty acids also contributes to formation of diacids over the WNP.

  8. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical

    USDA-ARS?s Scientific Manuscript database

    Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (> 80 g L**-1) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (> 200 g L**-...

  9. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    PubMed

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.

  10. Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus

    USDA-ARS?s Scientific Manuscript database

    Itaconic acid (IA), an unsaturated 5-carbon dicarboxylic acid, is a building block platform chemical that is currently produced industrially from glucose by fermentation with Aspergillus terreus. Softwood has the potential to serve as low cost source of sugars for its production. Effective utilizati...

  11. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006)

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Ho, Steven Sai Hang; Kawamura, Kimitaka; Tachibana, Eri; Cheng, Y.; Zhu, Tong

    2010-10-01

    Ground-based studies of PM2.5 were conducted for determination of 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid, during the Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006; 21 August to 4 September 2006) at urban (Peking University, PKU) and suburban (Yufa) sites of Beijing. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species, followed by phthalic acid (Ph) and succinic acid (C4) at both sites. The sum of three dicarboxylic acids accounted for 71% and 74% of total quantified water-soluble organics (327-1552 and 329-1124 ng m-3) in PKU and Yufa, respectively. Positive correlation was found between total quantified water-soluble species and water-soluble organic compounds (WSOC). On a carbon basis, total quantified dicarboxylic acids and ketocarboxylic acids and dicarbonyls account for up to 14.2% and 30.4% of the WSOC in PKU and Yufa, respectively, suggesting that they are the major WSOC fractions in Beijing. The distributions of fatty acids are characterized by a strong even carbon number predominance with maximum at hexadecanoic acid (C16:0). The ratio of octadecanoic acid (C18:0) to hexadecanoic acid (C16:0) (0.39-0.85, with an average of 0.36) suggests that in addition to vehicular emissions, an input from cooking emissions is important, as is biogenic emission. Benzoic acid that has been proposed as a primary pollutant from vehicular exhaust and a secondary product from photochemical reactions was found to be abundant: 72.2 ± 58.1 ng m-3 in PKU and 78.0 ± 47.3 ng m-3 in Yufa. According to the 72 hour back trajectory analysis, when the air mass passed over the southern or southeastern part of Beijing (24-25 August and 1-2 September), the highest concentrations of organic compounds were observed. On the contrary, when the clean air masses came straight from the north during 3-4 September, the

  12. A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Bikkina, Srinivas

    2016-03-01

    This review aims to update our understanding on molecular distributions of water-soluble dicarboxylic acids and related compounds in atmospheric aerosols with a focus on their geographical variability, size distribution, sources and formation pathways. In general, molecular distributions of diacids in aerosols from the continental sites and over the open ocean waters are often characterized by the predominance of oxalic acid (C2) followed by malonic acid (C3) and/or succinic acid (C4), while those sampled over the polar regions often follow the order of C4 ≥ C2 and C3. The most abundant and ubiquitous diacid is oxalic acid, which is principally formed via atmospheric oxidation of its higher homologues of long chain diacids and other pollution-derived organic precursors (e.g., olefins and aromatic hydrocarbons). However, its occurrence in marine aerosols is mainly due to the transport from continental outflows (e.g., East Asian outflow during winter/spring to the North Pacific) and/or governed by photochemical/aqueous phase oxidation of biogenic unsaturated fatty acids (e.g., oleic acid) and isoprene emitted from the productive open ocean waters. The long-range atmospheric transport of pollutants from mid latitudes to the Arctic in dark winter facilitates to accumulate the reactants prior to their intense photochemical oxidation during springtime polar sunrise. Furthermore, the relative abundances of C2 in total diacid mass showed similar temporal trends with downward solar irradiation and ambient temperatures, suggesting the significance of atmospheric photochemical oxidation processing. Compound-specific isotopic analyses of oxalic acid showed the highest δ13C among diacids whereas azelaic acid showed the lowest value, corroborating the significance of atmospheric aging of oxalic acid. On the other hand, other diacids gave intermediate values between these two diacids, suggesting that aging of oxalic acid is associated with 13C enrichment.

  13. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    PubMed Central

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  14. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountain aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-02-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N; 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acid, were also detected together with aromatic diacids (phthalic, iso-phthalic and tere-phthalic acids). ω-Oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (> 6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June showing a maximum on 7 June and then significantly decreased during 8-11 June when the wind direction shifted from northeasterly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning products of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi

  15. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Cronin, J. R.; Pizzarello, S.; Epstein, S.; Krishnamurthy, R. V.

    1993-10-01

    The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds, as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen.

  16. Molecular compositions and decadal trends of dicarboxylic acids, ketoacids, α-dicarbonyls in the marine aerosols from Chichi-Jima Island in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.

    2010-12-01

    A rapid industrial development in China and East Asian countries for last two decades may have seriously changed the air quality of the North Pacific. To better understand a long-term atmospheric changes of organic aerosols in the western North Pacific, we collected marine aerosol samples on weekly basis at a remote island, Chichijima (27°04'E; 142°13'N) in 2001-2010. The island is located in the boundary of westerly and easterly wind regimes. The aerosol samples were analyzed for dicarboxylic acids, ketoacids and α-dicarbonyls employing butyl ester derivatization followed by GC determination, together with total carbon (TC) and water-soluble organic carbon (WSOC). Homologous series of saturated diacids (C2-C11) were detected with a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Unsaturated diacids, including maleic (M), fumaric (F), phthalic, and iso-/tere-phthalic acids, were also detected together with ketoacids and α-dicarbonyls. Concentrations of total diacids fluctuated significantly in a range of 10-600 ngm-3 with winter/spring maximum and summer minimum. The maximum was explained by a combination of enhanced emissions of polluted aerosols and their precursors in Asia and enhanced atmospheric transport to the North Pacific due to the intensified westerly winds in winter/spring. Concentration ratios of C3 to C4 diacid (range 0.2-28, av. 2.8) showed a maximum during summer, indicating more oxidation of longer-chain diacids to shorter ones. Azelaic acid (C9) that is a specific photo-oxidation product of unsaturated fatty acid such as oleic acid showed a sharp increase relative to other diacids in summer, suggesting enhanced sea-to-air emission of unsaturated fatty acids followed by photochemical oxidation during summer. On the other hand, M/F ratios (range 0-8.7, av. 1.1) significantly decreased from winter to summer due to photochemical cis-to-trans isomerization. We also discuss decadal trends in the concentrations of

  17. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry.

    PubMed

    Hsu, Ching-Lin; Ding, Wang-Hsien

    2009-12-15

    A rapid and environmental-friendly injection-port derivatization with gas chromatography-mass spectrometry (GC-MS) method was developed to determine selected low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) 20 mM in methanol gave excellent yield for di-butyl ester dicarboxylate derivatives at injection-port temperature at 300 degrees C. Solid-phase extraction (SPE) method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 78 to 95% with relative standard deviation (RSD) less than 12%. Limits of quantitation (LOQs) ranged from 25 to 250 pg/m(3). The concentrations of di-carboxylated C2-C5 and total C6-C10 in particles of atmospheric aerosols ranged from 91.9 to 240, 11.3 to 56.7, 9.2 to 49.2, 8.7 to 35.3 and n.d. to 37.8 ng/m(3), respectively. Oxalic acid (C2) was the dominant LMW-dicarboxylic acids detected in aerosol samples. The quantitative results were comparable to the results obtained by the off-line derivatization.

  18. Monocarboxylic and dicarboxylic acids over oceans from the East China Sea to the Arctic Ocean: Roles of ocean emissions, continental input and secondary formation.

    PubMed

    Hu, Qihou; Xie, Zhouqing; Wang, Xinming; Kang, Hui; Zhang, Yuqing; Ding, Xiang; Zhang, Pengfei

    2018-05-30

    Organic acids are major components in marine organic aerosols. Many studies on the occurrence, sources and sinks of organic acids over oceans in the low and middle latitudes have been conducted. However, the understanding of relative contributions of specific sources to organic acids over oceans, especially in the high latitudes, is still inadequate. This study measured organic acids, including C 14:0 - C 32:0 saturated monocarboxylic acids (MCAs), C 16:1 , C 18:1 and C 18:2 unsaturated MCAs, and di-C 4 - di-C 10 dicarboxylic acids (DCAs), in the marine boundary layer from the East China Sea to the Arctic Ocean during the 3rd Chinese Arctic Research Expedition (CHINARE 08). The average concentrations were 18 ± 16 ng/m 3 and 11 ± 5.4 ng/m 3 for ΣMCA and ΣDCA, respectively. The levels of saturated MCAs were much higher than those of unsaturated DCAs, with peaks at C 16:0 , C 18:0 and C 14:0 . DCAs peaked at di-C 4 , followed by di-C 9 and di-C 8 . Concentrations of MCAs and DCAs generally decreased with increasing latitudes. Sources of MCAs and DCAs were further investigated using principal component analysis with a multiple linear regression (PCA-MLR) model. Overall, carboxylic acids originated from ocean emissions, continental input (including biomass burning, anthropogenic emissions and terrestrial plant emissions), and secondary formation. All the five sources contributed to MCAs with ocean emissions as the predominant source (48%), followed by biomass burning (20%). In contrast, only 3 sources (i.e., secondary formation (50%), anthropogenic emissions (41%) and biomass burning (9%)) contributed to DCAs. Furthermore, the sources varied with regions. Over the Arctic Ocean, only secondary formation and anthropogenic emissions contributed to MCAs and DCAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Polyestercarbonates which exhibit improved processibility

    DOEpatents

    Krabbenhoft, Herman Otto

    1999-01-01

    The invention relates to a polyestercarbonate polymer which comprises repeating units of a mono-unsaturated aliphatic dicarboxylic acid having about 12 to about 20 carbon atoms. Preferred dicarboxylic acids for incorporation into the polymer are cis-octadec-9-enedioic acid or trans-octadec-9-enedioic acid. The use of these mono-unsaturated acids results in polymers with lower glass transition temperatures, and enhances processibility.

  20. Carbonaceous aerosol characterization in the Amazon basin, Brazil: novel dicarboxylic acids and related compounds

    NASA Astrophysics Data System (ADS)

    Kubátová, Alena; Vermeylen, Reinhilde; Claeys, Magda; Cafmeyer, Jan; Maenhaut, Willy; Roberts, Greg; Artaxo, Paulo

    High-resolution capillary gas chromatography (GC) and GC/mass spectrometry (MS) were employed for the quantitative determination of dichloromethane-extractable organic compounds in total and size-fractionated aerosol samples which were collected in the Amazon basin, Brazil, during the wet season, as part of the LBA-CLAIRE-98 experiment. Special emphasis was placed on the characterization and identification of several novel unknown dicarboxylic acids and related oxidative degradation products. This class of acidic products was enriched in the fine size fraction, suggesting that they were secondary organic aerosol products formed by gas-to-particle conversion. Some of the unknowns contributed more to the class of dicarboxylic acids than the major known compound, nonadioic acid (azelaic acid). The same unknowns were also observed in urban aerosol samples collected on hot summer days in Gent, Belgium. For the characterization and structure elucidation of the unknowns, various types of derivatizations and fractionation by solid-phase extraction were employed in combination with GC/MS. Four unknowns were identified. The most abundant were two derivatives of glutaric acid, 3-isopropyl pentanedioic acid and 3-acetyl pentanedioic acid. The other two identified unknowns were another oxo homologue, 3-acetyl hexanedioic acid, and, interestingly, 3-carboxy heptanedioic acid. To our knowledge, the occurrence of these four compounds in atmospheric aerosols has not yet been reported. The biogenic precursors of the novel identified compounds could not be pinpointed, but most likely include monoterpenes and fatty acids.

  1. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  2. Sutter's Mill dicarboxylic acids as possible tracers of parent-body alteration processes

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Garvie, Laurence A. J.

    2014-11-01

    Dicarboxylic acids were searched for in three Sutter's Mill (SM) fragments (SM2 collected prerain, SM12, and SM41) and found to occur almost exclusively as linear species of 3- to 14-carbon long. Between these, concentrations were low, with measured quantities typically less than 10 nmole g-1 of meteorite and a maximum of 6.8 nmole g-1 of meteorite for suberic acid in SM12. The SM acids' molecular distribution is consistent with a nonbiological origin and differs from those of CMs, such as Murchison or Murray, and of some stones of the C2-ungrouped Tagish Lake meteorite, where they are abundant and varied. Powder X-ray diffraction of SM12 and SM41 show them to be dominated by clays/amorphous material, with lesser amounts of Fe-sulfides, magnetite, and calcite. Thermal gravimetric (TG) analysis shows mass losses up to 1000 °C of 11.4% (SM12) and 9.4% (SM41). These losses are low compared with other clay-rich carbonaceous chondrites, such as Murchison (14.5%) and Orgueil (21.1%). The TG data are indicative of partially dehydrated clays, in accordance with published work on SM2, for which mineralogical studies suggest asteroidal heating to around 500 °C. In view of these compositional traits and mineralogical features, it is suggested that the dicarboxylic acids observed in the SM fragments we analyzed likely represent a combination of molecular species original to the meteorite as well as secondary products formed during parent-body alteration processes, such as asteroidal heating.

  3. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    PubMed

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Seasonal variations, molecular distributions, and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in PM2.5 from Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Kawamura, K.; Fu, P.

    2016-12-01

    Low molecular weight (LMW) dicarboxylic acids and related polar compounds comprise a significant fraction of atmospheric aerosols. Seasonal variations, molecular distributions, and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls, as well as organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and inorganic ionic species, were determined to better understand the sources and photochemical aging processes of carbonaceous aerosols in urban Beijing from Sept. 2013 to Jul. 2014 (n=65). Concentrations of total diacids ranged from 110-2580 ng m-3, while ketoacids (9.5-353 ng m-3) and dicarbonyls (1.5-85.9 ng m-3) were less abundant. Higher ambient concentrations of phthalic (Ph) (37.9±27.3 ng m-3), terephthalic (tPh) (48.7±51.1 ng m-3), and glyoxylic (ωC2) (44.3±69 ng m-3) acids were found in winter than other seasons. The temporal variations of malonic acid to succinic acid (C3/C4) ratios were relatively low throughout the whole year, most of which were less than or equal to unity, even in summer, implying more contributions of dicarboxylic acids from primary emissions, rather than aging processes during long-range atmospheric transport. The δ13C mean values of malonic acid (-18.7% to -17.3%) and succinic acid (-28.6% to -17.1%) were larger than those of oxalic acid (-22.9% to -20.1%) in both seasons, except for δ13C of succinic acid in summer. Lower δ13C values of these compounds in Beijing than those in marine areas may be mainly associated with primary emissions, such as biomass burning, vehicular exhaust, incomplete fossil fuel combustion and plastic wastes.

  5. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    PubMed

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fine and coarse modes of dicarboxylic acids in the Arctic aerosols collected during the Polar Sunrise Experiment 1997

    NASA Astrophysics Data System (ADS)

    Narukawa, M.; Kawamura, K.; Anlauf, K. G.; Barrie, L. A.

    2003-09-01

    Fine (<1 μm) and coarse (>1 μm) aerosol particles were collected at Alert, Canada (82°27'N, 62°30'W), during the Arctic spring as part of the Polar Sunrise Experiment 1997 and were analyzed for low molecular weight dicarboxylic acids (C2-C11) using gas chromatography with flame ionization detector (GC-FID) and GC/mass spectrometry (GC/MS). More than 80% of total diacids were detected in the fine fraction, suggesting the production by gas-to-particle conversion in the Arctic. In both fractions, oxalic acid was the dominant diacid species followed by succinic and malonic acids. Shorter chain diacids (C2-C5) showed the concentration maximum on 5-7 April; however, longer chain diacids (dicarboxylic acids in both coarse and fine aerosols during ozone depletion events indicate that heterogeneous reactions are occurring on coarse particle and possibly on fine particles as well. Dicarboxylic acids may be produced by the oxidation of precursor compounds such as glyoxal and glyoxylic and other ω-oxocarboxylic acids that contain aldehyde (hydrated form) group, being involved with ozone and halogen chemistry in the Arctic marine boundary layer.

  7. Short communication: Estimates of heritabilities and genetic correlations among milk fatty acid unsaturation indices in Canadian Holsteins.

    PubMed

    Bilal, G; Cue, R I; Mustafa, A F; Hayes, J F

    2012-12-01

    The objectives of the present study were to estimate genetic parameters of milk fatty acid unsaturation indices in Canadian Holsteins. Data were available on milk fatty acid composition of 2,573 Canadian Holstein cows from 46 commercial herds enrolled in the Québec Dairy Production Centre of Expertise, Valacta (Sainte-Anne-de-Bellevue, Quebec, Canada). Individual fatty acid percentages (g/100 g of total fatty acids) were determined for each milk sample by gas chromatography. The unsaturation indices were calculated as the ratio of an unsaturated fatty acid to the sum of that unsaturated fatty acid and its corresponding substrate fatty acid, multiplied by 100. A mixed linear model was fitted under REML for the statistical analysis of milk fatty acid unsaturation indices. The statistical model included the fixed effects of parity, age at calving, and stage of lactation, each nested within parity, and the random effects of herd-year-season of calving, animal, and residual. Estimates of heritabilities for the C14, C16, C18, conjugated linoleic acid, and total unsaturation indices were 0.48, 0.25, 0.29, 0.14, and 0.19, respectively. Phenotypic and genetic correlation estimates among unsaturation indices were all positive and ranged from 0.20 to 0.65 and 0.23 to 0.81, respectively. The estimates of heritabilities and genetic correlations for milk fatty acid unsaturation indices suggest that genetic variation exists among cows in milk fatty acid unsaturation, and the proportions of desirable unsaturated fatty acids from a human health point of view may be increased in bovine milk through genetic selection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid

    Treesearch

    Huiyang Bian; Liheng Chen; Hongqi Dai; J.Y. Zhu

    2017-01-01

    Here we demonstrate di-carboxylic acid hydrolysis for the integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using two unbleached hardwood chemical pulps of lignin contents of 3.9 and 17.2%. Acid hydrolysis experiments used maleic acid solution of 60 wt% concentration at 120°C for 120 min under ambient pressure. Yields of...

  9. Metastable equilibria among dicarboxylic acids and the oxidation state during aqueous alteration on the CM2 chondrite parent body

    NASA Astrophysics Data System (ADS)

    McAlister, Jason A.; Kettler, Richard M.

    2008-01-01

    Linear saturated dicarboxylic acids are present in carbonaceous chondrite samples at concentrations that suggest aqueous alteration under conditions of metastable equilibrium. In this study, previously published values of dicarboxylic acid concentrations measured in Murchison, Yamato-791198, and Tagish Lake carbonaceous chondrites are converted to aqueous activities during aqueous alteration assuming water:rock ratios that range from 1:10 to 10:1. Logarithmic plots of the aqueous activities of any two dicarboxylic acids are proximal to lines whose slope is fixed by the stoichiometry of reactions describing the oxidation-reduction equilibrium between the two species. The precise position of any line is controlled by the equilibrium constant of the reaction relating the species and the hydrogen fugacity for the reaction of interest. Reactions among succinic (C4), glutaric (C5), and adipic (C6) acids obtained from CM2 chondrites show evidence of metastable equilibrium and yield logf values that agree to within 0.3 log units at 298.15 K and 0.6 log units at 473.15 K. At a water:rock ratio of 1:1, metastable equilibrium among succinic, glutaric, and adipic acids results in calculated logf values during aqueous alteration that range from -6.2 at 298.15 K to -3.3 at 373.15 K. These values are consistent with those obtained in previous work on carbonaceous chondrites and with metastable equilibrium at temperatures ranging from 300 to 355 K in contact with cronstedtite + magnetite.

  10. Preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, Makarand Ratnakar; Spivey, James Jerry; Zoeller, Joseph Robert

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  11. Preparation of {alpha},{beta}-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1998-09-15

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  12. Coverage-Dependent Anchoring of 4,4'-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films.

    PubMed

    Mohr, Susanne; Schmitt, Tobias; Döpper, Tibor; Xiang, Feifei; Schwarz, Matthias; Görling, Andreas; Schneider, M Alexander; Libuda, Jörg

    2017-05-02

    We investigated the adsorption behavior of 4,4'-biphenhyl dicarboxylic acid (BDA) on well-ordered CoO(111) films grown on Ir(100) as a function of coverage and temperature using time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) in combination with density functional theory (DFT) and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. To compare the binding behavior of BDA as a function of the oxide film thickness, three different CoO(111) film thicknesses were explored: films of about 20 bilayers (BLs) (approximately 5 nm), 2 BLs, and 1 BL. The two carboxylic acid groups of BDA offer two potential anchoring points to the oxide surface. At 150 K, intact BDA adsorbs on 20 BL thick oxide films in planar geometry with the phenyl rings aligned parallel to the surface. With decreasing oxide film thickness, we observe an increasing tendency for deprotonation and the formation of flat-lying BDA molecules anchored as dicarboxylates. After saturation of the first monolayer, intact BDA multilayers grow with molecules aligned parallel to the surface. The BDA multilayer desorbs at around 360 K. Completely different growth behavior is observed if BDA is deposited above the multilayer desorption temperature. Initially, doubly deprotonated dicarboxylates are formed by adopting a flat-lying orientation. With increasing exposure, however, the adsorbate layer transforms into upright standing monocarboxylates. A sharp OH stretching band (3584 cm -1 ) and a blue-shifted CO stretching band (1759 cm -1 ) indicate weakly interacting apical carboxylic acid groups at the vacuum interface. The anchored monocarboxylate phase slowly desorbs in a temperature range of up to 470 K. At higher temperature, a flat-lying doubly deprotonated BDA is formed, which desorbs and decomposes in a temperature range of up to 600 K.

  13. Synthesis, structure and properties of zinc(II) coordination polymers with 9H-carbazole-2,7-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun; Su, Zhao; Gao, En-Qing

    2013-10-01

    From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H2CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn5(μ3-OH)2(2,7-CDC)4(DEF)2] (1) (DEF=N,N-diethylformamide), [Zn2(2,7-CDC)2(DABCO)(H2O)]·5DMF·H2O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn2(2,7-CDC)2(bpea)]·3DMA·2 H2O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn5(μ3-OH)2(COO)8] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle-wheel [Zn2(COO)4] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2 shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle-wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied.

  14. The development of benzo- and naphtho-fused quinoline-2,4-dicarboxylic acids as vesicular glutamate transporter (VGLUT) inhibitors reveals a possible role for neuroactive steroids

    PubMed Central

    Carrigan, Christina N.; Patel, Sarjubhai A.; Cox, Holly D.; Bolstad, Erin S.; Gerdes, John M.; Smith, Wesley E.; Bridges, Richard J.

    2014-01-01

    Substituted quinoline-2,4-dicarboxylates (QDCs) are conformationally-restricted mimics of glutamate that were previously reported to selectively block the glutamate vesicular transporters (VGLUTs). We find that expanding the QDC scaffold to benzoquinoline dicarboxylic acids (BQDC) and naphthoquinoline dicarboxylic acids (NQDCs) improves inhibitory activity with the NQDCs showing IC50 ~ 70 µM. Modeling overlay studies showed that the polycyclic QDCs resembled steroid structures and led to the identification and testing of estrone sulfate, pregnenolone sulfate and pregnanolone sulfate that blocked the uptake of l-Glu by 50%, 70% and 85% of control, respectively. Pregnanolone sulfate was further characterized by kinetic pharmacological determinations that demonstrated competitive inhibition and a Ki of ≈ 20 µM. PMID:24424130

  15. Stereoselective synthesis of unsaturated α-amino acids.

    PubMed

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  16. Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators

    PubMed Central

    2015-01-01

    α,β-Unsaturated carboxylic acids undergo Rh(III)-catalyzed decarboxylative coupling with α,β-unsaturated O-pivaloyl oximes to provide substituted pyridines in good yield. The carboxylic acid, which is removed by decarboxylation, serves as a traceless activating group, giving 5-substituted pyridines with very high levels of regioselectivity. Mechanistic studies rule out a picolinic acid intermediate, and an isolable rhodium complex sheds further light on the reaction mechanism. PMID:24512241

  17. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2015-07-01

    We present here a novel experimental setup able to measure the enthalpy of sublimation of a given compound by means of Piezoelectric Crystal Microbalances (PCM). This experiment was performed in the TG-Lab facility in IAPS-INAF, dedicated to the development of TGA sensors for space measurements, such as detection of organic and non-organic volatile species and refractory materials in planetary environments. In order to study physical-chemical processes concerning the Volatile Organic Compounds (VOC) present in atmospheric environments, the setup has been tested on Dicarboxylic acids. Acids with low molecular weight are among the components of organic fraction of particulate matter in the atmosphere, coming from different sources (biogenic and anthropogenic). Considering their relative abundance, it is useful to consider Dicarboxylic acid as "markers" to define the biogenic or anthropogenic origin of the aerosol, thus obtaining some information of the emission sources. In this work, a temperature controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC re-condensed onto the PCM quartz crystal allowing the determination of the deposition rate. From the measurements of deposition rates, it was possible to infer the enthalpy of sublimation of Adipic acid, i.e. Δ Hsub: 141.6 ± 0.8 kJ mol-1, Succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, Oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1 and Azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1 (weight average values). The results obtained are in very good agreement with literature within 10 % for the Adipic, Succinic and Oxalic acid.

  18. Green and low-cost production of thermally stable and carboxylated cellulose Nanocrystals and nanofibrils using highly recyclable dicarboxylic acids

    Treesearch

    Huiyang Bian; Liheng Chen; Ruibin Wang; Junyong Zhu

    2016-01-01

    Here we demonstrate potentially low cost and green productions of high thermally stable and carboxylated cellulose nanocrystals (CNCs) and nanofibrils (CNF) from bleached eucalyptus pulp (BEP) and unbleached mixed hardwood kraft pulp (UMHP) fibers using highly recyclable dicarboxylic solid acids. Typical operating conditions were acid concentrations of 50 - 70 wt% at...

  19. Alteration in levels of unsaturated fatty acids in mutants of Escherichia coli defective in DNA replication.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-07-01

    We previously reported that mutations in the dnaA gene which encodes the initiator of chromosomal DNA replication in Escherichia coli caused an alteration in the levels of unsaturated fatty acids of phospholipids in membranes. In this study, we examined fatty acid compositions in other mutants which are defective in DNA replication. As in the case of temperature-sensitive dnaA mutants, temperature-sensitive dnaC and dnaE mutants, which have defects in initiation and elongation, respectively, of DNA replication showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) compared with the wild-type strain, especially at high temperatures. On the other hand, temperature-sensitive mutants defective in cellular processes other than DNA replication, such as RNA synthesis and cell division, did not show a lower level of unsaturation of fatty acids compared with the wild-type strain. These results suggest that the inhibition of DNA replication causes a lower level of unsaturation of fatty acids in Escherichia coli cells.

  20. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China.

    PubMed

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Liu, Xiaoyan; Yang, Chi; Xu, Zufei; Fan, Meiyi; Zhang, Wenqi; Bao, Mengying; Chang, Yunhua; Song, Wenhuai; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yan-Lin

    2017-12-01

    Fine particulate matter (PM2.5) samples were collected using a high-volume air sampler and pre-combusted quartz filters during May 2013 to January 2014 at a background rural site (47 ∘ 35 N, 133 ∘ 31 E) in Sanjiang Plain, Northeast China. A homologous series of dicarboxylic acids (C 2 -C 11 ) and related compounds (oxoacids, α-dicarbonyls and fatty acids) were analyzed by using a gas chromatography (GC) and GC-MS method employing a dibutyl ester derivatization technique. Intensively open biomass-burning (BB) episodes during the harvest season in fall were characterized by high mass concentrations of PM2.5, dicarboxylic acids and levoglucosan. During the BB period, mass concentrations of dicarboxylic acids and related compounds were increased by up to >20 times with different factors for different organic compounds (i.e., succinic (C 4 ) acid > oxalic (C 2 ) acid > malonic (C 3 ) acid). High concentrations were also found for their possible precursors such as glyoxylic acid (ωC 2 ), 4-oxobutanoic acid, pyruvic acid, glyoxal, and methylglyoxal as well as fatty acids. Levoglucosan showed strong correlations with carbonaceous aerosols (OC, EC, WSOC) and dicarboxylic acids although such good correlations were not observed during non-biomass-burning seasons. Our results clearly demonstrate biomass burning emissions are very important contributors to dicarboxylic acids and related compounds. The selected ratios (e.g., C 3 /C 4 , maleic acid/fumaric acid, C 2 /ωC 2 , and C 2 /levoglucosan) were used as tracers for secondary formation of organic aerosols and their aging process. Our results indicate that organic aerosols from biomass burning in this study are fresh without substantial aging or secondary production. The present chemical characteristics of organic compounds in biomass-burning emissions are very important for better understanding the impacts of biomass burning on the atmosphere aerosols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    PubMed

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  2. Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-04-01

    DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature-sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42 degrees C (non-permissive temperature) and at 37 degrees C (semi-permissive temperature), but not at 28 degrees C (permissive temperature), compared with the wild-type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature-sensitive dnaA mutants showed similar results. On the other hand, a cold-sensitive dnaAcos mutant, in which over-initiation of DNA replication occurs at low temperature (28 degrees C), showed a higher level of unsaturation of fatty acids at 28 degrees C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.

  3. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka

    2010-11-01

    To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.

  4. Preferential deprotonation and conformational stability of dicarboxylic acids: A packing effect

    NASA Astrophysics Data System (ADS)

    Barooah, Nilotpal; Singh, W. Marjit; Baruah, Jubaraj B.

    2008-03-01

    Crystal structures of a series of salts of (6-carboxymethyl-1,3,5,7-tetraoxo-3,5,6,7-tetrahydro-1 H-pyrrolo[3,4- f]isoindol-2-yl)-acetic acid ( 1) and 2-carboxymethyl-1,3-dioxo-2,3-dihydro-1 H-isoinodole-5-carboxylic acid ( 2) with different polynuclear nitrogen containing heterocyclic compounds, namely, quinoline, 1,10-phenanthroline and 8-hydroxyquinoline are determined. In the case of salt of 1 with quinolinium and 1,10-phenanthrolinium cations syn disposition between the carboxylate anion and carboxylic acid groups is observed; whereas in the case of the 8-hydroxyquinolinium salt of 1, it is the anti disposition. It is also found that the solid state structure of 1,10-phenanthrolinium salt of 2 has deprotonation at the aromatic end, whereas in 8-hydroxy-quinolinium salt of 2 is formed by deprotonation of carboxylic acid group on the aliphatic side. The dicarboxylic acid 2 forms 1:2 co-crystals with quinoline. From crystallographic study it is shown that the weak interactions become prominent in stabilising the observed conformers and also in stabilising specific deprotonated species.

  5. Two novel dicarboxylic Acid derivatives and a new dimeric hydrolyzable tannin from walnuts.

    PubMed

    Ito, Hideyuki; Okuda, Takahiro; Fukuda, Toshiyuki; Hatano, Tsutomu; Yoshida, Takashi

    2007-02-07

    In addition to the 16 previously reported polyphenols including 3 new ellagitannins, 2 novel dicarboxylic acid derivatives, glansreginins A (1) and B (2), and a new dimeric hydrolyzable tannin, glansrin D (3), were isolated, together with 15 known compounds from walnuts, the seeds of Juglans regia. The structures of the new compounds were elucidated on the basis of 1D- and 2D-NMR analyses and chemical data. The antioxidant effect of these isolates was also evaluated by SOD-like and DPPH radical scavenging activities.

  6. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    PubMed

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  7. Production of 8,11-dihydroxy and 8-hydroxy unsaturated fatty acids from unsaturated fatty acids by recombinant Escherichia coli expressing 8,11-linoleate diol synthase from Penicillium chrysogenum.

    PubMed

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-03-01

    Hydroxy unsaturated fatty acids can be used as antimicrobial surfactants. 8,11-Linoleate diol synthase (8,11-LDS) catalyzes the conversion of unsaturated fatty acid to 8-hydroperoxy unsaturated fatty acid, and it is subsequently isomerized to 8,11-dihydroxy unsaturated fatty acid by the enzyme. The optimal reaction conditions of recombinant Escherichia coli expressing Penicillium chrysogenum 8,11-LDS for the production of 8,11-dihydroxy-9,12(Z,Z)-octadecadienoic acid (8,11-DiHODE), 8,11-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid (8,11-DiHOTrE), 8-hydroxy-9(Z)-hexadecenoic acid (8-HHME), and 8-hydroxy-9(Z)-octadecenoic acid (8-HOME) were pH 7.0, 25°C, 10 g/L linoleic acid, and 20 g/L cells; pH 6.0, 25°C, 6 g/L α-linolenic acid, and 60 g/L cells; pH 7.0, 25°C, 8 g/L palmitoleic acid, and 25 g/L cells; and pH 8.5, 30°C, 6 g/L oleic acid, and 25 g/L cells, respectively. Under these optimized conditions, the recombinant cells produced 6.0 g/L 8,11-DiHODE for 60 min, with a conversion of 60% (w/w) and a productivity of 6.0 g/L/h; 4.3 g/L 8,11-DiHOTrE for 60 min, with a conversion of 72% (w/w) and a productivity of 4.3 g/L/h; 4.3 g/L 8-HHME acid for 60 min, with a conversion of 54% (w/w) and a productivity of 4.3 g/L/h; and 0.9 g/L 8-HOME for 30 min, with a conversion of 15% (w/w) and a productivity of 1.8 g/L/h. To best of our knowledge, this is the first report on the biotechnological production of 8,11-DiHODE, 8,11-DiHOTrE, 8-HHME, and 8-HOME. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:390-396, 2017. © 2017 American Institute of Chemical Engineers.

  8. Non-methylene-interrupted fatty acids with Δ5 unsaturation in Sargassum species.

    PubMed

    Kim, Gwang-Woo; Itabashi, Yutaka

    2012-01-01

    Detailed fatty acid compositions of five species of the brown algae Sargassum (S. fulvellum, S. horneri, S. boreale, S. thunbergii, and S. yezoense) were determined using silver ion solid phase extraction, gas chromatography (GC), and GC-mass spectrometry (GC-MS) techniques. In addition to a high number of typical saturated and unsaturated fatty acids, the GC-MS spectra of the 4,4-dimethyloxazoline derivatives of fatty acids revealed the occurrence of small amounts of unusual non-methylene-interrupted (NMI) fatty acids with Δ5 unsaturation, namely, 5,9-eicosadienoic (5,9-20:2), 5,11,14-eicosatrienoic (5,11,14-20:3), and 5,11,14,17-eicosatetraenoic (5,11,14,17-20:4) acids. Of these three NMI acids, the 5,9-20:2 acid was found to be the most abundant (0.4%-2.3% of the total fatty acids) and was detected for the first time in algae.

  9. Camelina sativa cake improved unsaturated fatty acids in ewe's milk.

    PubMed

    Szumacher-Strabel, Malgorzata; Cieślak, Adam; Zmora, Pawel; Pers-Kamczyc, Emilia; Bielińska, Sylwia; Stanisz, Marek; Wójtowski, Jacek

    2011-08-30

    Camelina sativa cake (CSC), a rich source of unsaturated fatty acids, in the case of ruminants, may improve the energy value of a diet and also increase the unsaturated fatty acid content in milk. Effects of basal diet (control), basal diet plus 30 g kg(-1) of CSC in dietary dry matter (DM), basal diet plus 60 g kg(-1) of CSC in dietary dry matter on milk production and the fatty acid composition of ewe's milk with particular emphasis on the monoenes and conjugated isomers of linoleic acid content were examined. Elevated concentration of total monounsaturated fatty acids, the effect of an increase in monounsaturated fatty acids in the trans configuration, as well as the increased content of total polyunsaturated fatty acids, resulted from CSC supplementation. Total saturated fatty acid concentration was decreased. Milk from CSC-supplemented ewes was characterized by increased levels of beneficial nutritional factors, including mono- and n-3 polyunsaturated fatty acids, and was also by lower atherogenic and thrombogenic indices. Taking into consideration all the obtained results and recommended fat concentrations in a daily ruminant ration, we recommend supplementing a dairy ewe's diet with 30 g kg(-1) DM of CSC cake in practice. Copyright © 2011 Society of Chemical Industry.

  10. Protective Effect of Unsaturated Fatty Acids on Palmitic Acid-Induced Toxicity in Skeletal Muscle Cells is not Mediated by PPARδ Activation.

    PubMed

    Tumova, Jana; Malisova, Lucia; Andel, Michal; Trnka, Jan

    2015-10-01

    Unsaturated free fatty acids (FFA) are able to prevent deleterious effects of saturated FFA in skeletal muscle cells although the mechanisms involved are still not completely understood. FFA act as endogenous ligands of peroxisome proliferator-activated receptors (PPAR), transcription factors regulating the expression of genes involved in lipid metabolism. The aim of this study was to determine whether activation of PPARδ, the most common PPAR subtype in skeletal muscle, plays a role in mediating the protective effect of unsaturated FFA on saturated FFA-induced damage in skeletal muscle cells and to examine an impact on mitochondrial respiration. Mouse C2C12 myotubes were treated for 24 h with different concentrations of saturated FFA (palmitic acid), unsaturated FFA (oleic, linoleic and α-linolenic acid), and their combinations. PPARδ agonist GW501516 and antagonist GSK0660 were also used. Both mono- and polyunsaturated FFA, but not GW501516, prevented palmitic acid-induced cell death. Mono- and polyunsaturated FFA proved to be effective activators of PPARδ compared to saturated palmitic acid; however, in combination with palmitic acid their effect on PPARδ activation was blocked and stayed at the levels observed for palmitic acid alone. Unsaturated FFA at moderate physiological concentrations as well as GW501516, but not palmitic acid, mildly uncoupled mitochondrial respiration. Our results indicate that although unsaturated FFA are effective activators of PPARδ, their protective effect on palmitic acid-induced toxicity is not mediated by PPARδ activation and subsequent induction of lipid regulatory genes in skeletal muscle cells. Other mechanisms, such as mitochondrial uncoupling, may underlie their effect.

  11. 40 CFR 721.3025 - Fatty acids C12-18, C18 unsaturated, C12-18 alkyl esters (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids C12-18, C18 unsaturated... Significant New Uses for Specific Chemical Substances § 721.3025 Fatty acids C12-18, C18 unsaturated, C12-18... chemical substance identified generically as fatty acids C12-18, C18 unsaturated, C12-18 alkyl esters (PMNs...

  12. Microbial Transformation of Dicarboxylic Acids by Airborne Bacteria

    NASA Astrophysics Data System (ADS)

    Cote, V.; Ariya, P.

    2004-05-01

    Organic aerosols are assumed to be key players in driving climatic changes and can cause health problems for human. Dicarboxylic acids (DCA) include a large fraction of identified important class of organic aerosols. In addition to direct sources, DCA are partly formed as the result of ozonolysis of terpenes and cyclic alkenes. Previous works in our laboratory show that airborne fungi collected from urban and suburban air play an important role in the transformation of severals organic aerosols such as DCA. Our present study focuses on understanding the potential chemical transformation induced by airborne bacteria and on identification of the transformation products. Airborne bacteria have been collected using a biosampler and cultivated on a solid media. Each bacterial colony is being tested by HPLC for their ability to transform DCA in liquid cultures. Also, GC-MS, SPME and NMR are being used to identify the metabolites generated from the transformation. We will present our preliminary results and we will discuss the application of bacterial activities on the chemical transformation of organics in atmosphere.

  13. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus. Copyright © 2014 the American Physiological Society.

  14. Process for the synthesis of unsaturated alcohols

    DOEpatents

    Maughon, Bob R.; Burdett, Kenneth A.; Lysenko, Zenon

    2007-02-13

    A process of preparing an unsaturated alcohol (olefin alcohol), such as, a homo-allylic mono-alcohol or homo-allylic polyol, involving protecting a hydroxy-substituted unsaturated fatty acid or fatty acid ester, such as methyl ricinoleate, derived from a seed oil, to form a hydroxy-protected unsaturated fatty acid or fatty acid ester; homo-metathesizing or cross-metathesizing the hydroxy-protected unsaturated fatty acid or fatty acid ester to produce a product mixture containing a hydroxy-protected unsaturated metathesis product; and deprotecting the hydroxy-protected unsaturated metathesis product under conditions sufficient to prepare the unsaturated alcohol. Preferably, methyl ricinoleate is converted by cross-metathesis or homo-metathesis into the homo-allylic mono-alcohol 1-decene-4-ol or the homo-allylic polyol 9-octadecene-7,12-diol, respectively.

  15. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    PubMed

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  16. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    PubMed

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  17. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zima, Tatyana, E-mail: zima@solid.nsc.ru; Novosibirsk State Technical University, 20 K. Marx Prospect, Novosibirsk 630092; Bataev, Ivan

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO{sub 2} powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations.more » A single-phase Sn{sub 3}O{sub 4} in the form of the well-separated hexagonal nanoplates and mixed SnO{sub 2}/Sn{sub 3}O{sub 4} phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO{sub 2} in crystal structure. • A pure phase Sn{sub 3}O{sub 4} nanoplates and SnO{sub 2}/Sn{sub 3}O{sub 4} hierarchical structures are formed.« less

  18. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Zima, Tatyana.; Bataev, Ivan

    2016-11-01

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO2 powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO2-SnO2/Sn3O4-Sn3O4-SnO phase transformations. A single-phase Sn3O4 in the form of the well-separated hexagonal nanoplates and mixed SnO2/Sn3O4 phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed.

  19. Pathological hypertrophy and cardiac dysfunction are linked to aberrant endogenous unsaturated fatty acid metabolism

    PubMed Central

    Salomé Campos, Dijon Henrique; Grippa Sant’Ana, Paula; Okoshi, Katashi; Padovani, Carlos Roberto; Masahiro Murata, Gilson; Nguyen, Son; Kolwicz, Stephen C.; Cicogna, Antonio Carlos

    2018-01-01

    Pathological cardiac hypertrophy leads to derangements in lipid metabolism that may contribute to the development of cardiac dysfunction. Since previous studies, using high saturated fat diets, have yielded inconclusive results, we investigated whether provision of a high-unsaturated fatty acid (HUFA) diet was sufficient to restore impaired lipid metabolism and normalize diastolic dysfunction in the pathologically hypertrophied heart. Male, Wistar rats were subjected to supra-valvar aortic stenosis (SVAS) or sham surgery. After 6 weeks, diastolic dysfunction and pathological hypertrophy was confirmed and both sham and SVAS rats were treated with either normolipidic or HUFA diet. At 18 weeks post-surgery, the HUFA diet failed to normalize decreased E/A ratios or attenuate measures of cardiac hypertrophy in SVAS animals. Enzymatic activity assays and gene expression analysis showed that both normolipidic and HUFA-fed hypertrophied hearts had similar increases in glycolytic enzyme activity and down-regulation of fatty acid oxidation genes. Mass spectrometry analysis revealed depletion of unsaturated fatty acids, primarily linoleate and oleate, within the endogenous lipid pools of normolipidic SVAS hearts. The HUFA diet did not restore linoleate or oleate in the cardiac lipid pools, but did maintain body weight and adipose mass in SVAS animals. Overall, these results suggest that, in addition to decreased fatty acid oxidation, aberrant unsaturated fatty acid metabolism may be a maladaptive signature of the pathologically hypertrophied heart. The HUFA diet is insufficient to reverse metabolic remodeling, diastolic dysfunction, or pathologically hypertrophy, possibly do to preferentially partitioning of unsaturated fatty acids to adipose tissue. PMID:29494668

  20. Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  1. Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.

    1998-01-20

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  2. Two Dimensional Polyamides Prepared From Unsaturated Carboxylic Acids And Amines.

    DOEpatents

    McDonald, William F.; Huang, Zhi Heng; Wright, Stacy C.; Danzig, Morris; Taylor, Andrew C.

    2002-07-17

    A polyamide and a process for preparing the polyamide are disclosed. The process comprises reacting in a reaction mixture a monomer selected from unsaturated carboxylic acids, esters of unsaturated carboxylic acids, anhydrides of unsaturated carboxylic acids, and mixtures thereof, and a first amine to form an intermediate reaction product in the reaction mixture, wherein the first amine is selected from RR.sub.1 NH, RNH.sub.2, RR.sub.1 NH.sub.2.sup.+, RNH.sub.3.sup.+ and mixtures thereof, wherein R and R.sub.1 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, and reacting the intermediate reaction product and a second amine to form a polyamide, wherein the second amine is selected from R.sub.2 R.sub.3 NH, R.sub.2 NH.sub.2, R.sub.2 R.sub.3 NH.sub.2.sup.+, R.sub.2 NH.sub.3.sup.+ and mixtures thereof wherein R.sub.2 and R.sub.3 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, wherein multiple of the R, R.sub.1, R.sub.2, and R.sub.3 are in vertically aligned spaced relationship along a backbone formed by the polyamide. In one version of the invention, the monomer is selected from maleic anhydride, maleic acid esters, and mixtures thereof. In another version of the invention, the first amine is an alkylamine, such as tetradecylamine, and the second amine is a polyalkylene polyamine, such as pentaethylenehexamine. In yet another version of the invention, the first amine and the second amine are olefinic or acetylenic amines, such as the reaction products of an alkyldiamine and an acetylenic carboxylic acid. The first amine and the second amine may be the same or different depending on the desired polyamide polymer structure.

  3. Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters.

    PubMed

    Feng, Youjun; Cronan, John E

    2011-04-01

    Two transcriptional regulators, the FadR activator and the FabR repressor, control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was blocked in the absence of exogenous unsaturated fatty acids in a ΔfadR strain and found that the rates of transcription of fabA and fabB were unaffected by the lack of unsaturated thioesters. To examine the discrepancy between our in vivo results and the prior in vitro results we obtained active, natively folded forms of the E. coli and Vibrio cholerae FabRs by use of an in vitro transcription-translation system. We report that FabR bound the intact promoter regions of both fabA and fabB in the absence of unsaturated acyl thioesters, but bound the two promoters differently. Native FabR bound the fabA promoter region provided that the canonical FabR binding site is extended by inclusion of flanking sequences that overlap the neighbouring FadR binding site. In contrast, although binding to the fabB operator also required a flanking sequence, a non-specific sequence could suffice. However, unsaturated thioesters did allow FabR binding to the minimal FabR operator sites of both promoters which otherwise were not bound. Thus unsaturated thioester ligands were not essential for FabR/target DNA interaction, but acted to enhance binding. The gel mobility shift data plus in vivo expression data indicate that despite the remarkably similar arrangements of promoter elements, FadR predominately regulates fabA expression whereas FabR is the dominant regulator of fabB expression. We also report that E. coli fabR expression is not autoregulated. Complementation, qRT-PCR and fatty acid

  4. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    PubMed

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  5. Stabilized unsaturated polyesters

    NASA Technical Reports Server (NTRS)

    Vogl, O.; Borsig, E. (Inventor)

    1985-01-01

    An unsaturated polyester, such as propylene glycolmaleic acid phthalic acid prepolymer dissolved in styrene is interpolymerized with an ultraviolet absorber and/or an antioxidant. The unsaturated chain may be filled with H or lower alkyl such as methyl and tertiary alkyl such as tertiary butyl. A polymer stable to exposure to the outdoors without degradation by ultraviolet radiation, thermal and/or photooxidation is formed.

  6. Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and α-tocopherol by Caco-2 cells.

    PubMed

    Failla, Mark L; Chitchumronchokchai, Chureeporn; Ferruzzi, Mario G; Goltz, Shellen R; Campbell, Wayne W

    2014-06-01

    Bioavailability of carotenoids and tocopherols from foods is determined by the efficiency of transfer from food/meal to mixed micelles during digestion, incorporation into chylomicrons for trans-epithelial transport to lymphatic/blood system, and distribution to target tissues. Fats and oils are important factors for facilitating the absorption of lipophilic compounds. However, dietary fats and oils are composed of various types of saturated and unsaturated fatty acids which may differentially impact the bioavailability of carotenoids and tocopherols from foods. We have investigated the effects of several common commercial lipids on bioavailability using an in vitro digestion model and Caco-2 human intestinal cells. Meals consisted of mixed salad vegetables containing a single test lipid. Micellarization and cellular uptake of β-carotene (βC) and lycopene (LYC) during small intestinal digestion was increased by lipids rich in unsaturated fatty acids: soybean oil > olive > canola > butter. In contrast, type of lipid minimally affected the bioaccessibility of lutein (LUT) and zeaxanthin (ZEA). To examine the influence of type of dietary triglyceride on uptake and basolateral secretion of carotenoids, Caco-2 cells grown on Transwell membranes were incubated with micellar mixtures of fatty acids (1.0 mM) mimicking the types and ratio of saturated to unsaturated (mono- + poly-unsaturated) fatty acids (FA) present in butter (70 : 30), olive oil (7 : 93) and soybean oil (11 : 89). Cells were exposed to micelles containing βC, LUT, α-tocopherol (α-TC) and a mixture of test fatty acids. Uptake and basolateral secretion of βC, LUT and α-TC were greater in cells pre-treated with mixtures enriched in unsaturated compared to saturated FA and these effects were mediated by increased assembly and secretion of chylomicrons. These results suggest that dietary fats/oils rich in unsaturated fatty acids promote carotenoid and α-TC bioavailability by enhancing their

  7. Stable carbon isotope ratios of low molecular weight dicarboxylic acids, ketoacids and glyoxal in marine aerosols from the western North Pacific: Long-term trends in Chichijima Island

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.

    2012-12-01

    Dicarboxylic acids such as oxalic, malonic and succinic acids are the most abundant water-soluble organic compound class in aerosols. To better understand the source and photochemical processes of water-soluble organic aerosols in the remote marine aerosols, we measured stable carbon isotopic composition (δ13C) of dicarboxylic acids and related compounds using a GC/IR/MS technique. The aerosol samples were collected in 2001-2011 at a remote island, Chichijima (27°04'E; 142°13'N) in the western North Pacific. Here we present decadal variations of the isotopic composition of dicarboxylic acids (C2-C9), ketoacids (C2-C8) and glyoxal in summertime aerosols (June, July and August). The molecular distributions of diacids were characterized by the predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid showed higher δ13C values than other species ranging from -18‰ to -2‰ with no clear decadal trend. In contrast, C3 and C4 diacids showed δ13C values of -24 to -5‰ and -40 to -12‰ with a decadal decline. Glyoxal (-60 to -10‰) and ωC7 acid (-34 to -12‰) also showed lower values toward 2011. However, azelaic acid (C9) (-32 to -24‰) stayed relatively constant throughout the observation period. We will discuss the detailed isotopic compositions of these organic species in terms of the photochemical aging and processing in the western North Pacific and the changes in the sources and source regions.

  8. Structural requirements for the cytoprotective actions of mono-unsaturated fatty acids in the pancreatic β-cell line, BRIN-BD11

    PubMed Central

    Dhayal, S; Welters, H J; Morgan, N G

    2008-01-01

    Background and purpose: Exposure of pancreatic β-cells to long-chain free fatty acids leads to differential responses according to the chain length and degree of unsaturation. In particular, long-chain saturated molecules such as palmitate (C16:0) cause apoptosis, whereas equivalent mono-unsaturated species (for example, palmitoleate (C16:1)) are not overtly toxic. Moreover, mono-unsaturates exert a powerful cytoprotective response against a range of proapoptotic stimuli. However, the structural requirements that determine cytoprotection have not been determined and form the basis of the present study. Experimental approach: BRIN-BD11 and INS-1 β-cells were exposed either to the saturated fatty acid palmitate, or to serum withdrawal, to mediate cytotoxicity. The protective effects of a wide range of mono-unsaturated fatty acid derivatives were tested in cytotoxicity assays. Effector caspase activity was also measured and correlated with viability. Key results: The cytotoxic actions of palmitate were inhibited dose-dependently by long-chain mono-unsaturated fatty acids with a defined potency order C18:1>C16:1≫C14:1. The configuration of the double bond was also important with cis forms being more potent than trans forms. Alkylated mono-unsaturated fatty-acid derivates were also cytoprotective, although their efficacy declined as the alkyl chain length increased. Cytoprotection was achieved rapidly on addition of mono-unsaturates and correlated with a rapid and dramatic inhibition of caspase-3/7 activity in palmitate-treated cells. Conclusions and implications: The data reveal the structural requirements that dictate the cytoprotective actions of mono-unsaturated fatty acids in pancreatic β-cells. Metabolic activation is not required and the data point at the potential involvement of a fatty acid receptor in mediating cytoprotection. PMID:18297101

  9. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids.

    PubMed

    Remenar, Julius F; Morissette, Sherry L; Peterson, Matthew L; Moulton, Brian; MacPhee, J Michael; Guzmán, Héctor R; Almarsson, Orn

    2003-07-16

    Cocrystals of the poorly soluble antifungal drug cis-itraconazole (1) with 1,4-dicarboxylic acids have been prepared. The crystal structure of the succinic acid cocrystal with 1 was determined to be a trimer by single-crystal X-ray. The trimer is comprised of two molecules of 1 oriented in antiparallel fashion to form a pocket with a triazole at either end. The extended succinic acid molecule fills the pocket, bridging the triazole groups through hydrogen-bonding interactions rather than interacting with the more basic piperazine nitrogens. The solubility and dissolution rate of some of the cocrystals are approximately the same as those of the amorphous drug in the commercial formulation and are much higher than those for the crystalline free base. The results suggest that cocrystals of drug molecules have the possibility of achieving the higher oral bioavailability common for amorphous forms of water-insoluble drugs while maintaining the long-term chemical and physical stability that crystal forms provide.

  10. Cyclohexane-1,2-dicarboxylic acid diisononyl ester and metabolite effects on rat epididymal stromal vascular fraction differentiation of adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campioli, Enrico; Department of Medicine, McGill University, Montréal, Québec; Duong, Tam B.

    Plastics are generally mixed with additives like plasticizers to enhance their flexibility, pliability, and elasticity proprieties. Plasticizers are easily released into the environment and are absorbed mainly through ingestion, dermal contact, and inhalation. One of the main classes of plasticizers, phthalates, has been associated with endocrine and reproductive diseases. In 2002, 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) was introduced in the market for use in plastic materials and articles intended to come into contact with food, and it received final approval from the European Food Safety Authority in 2006. At present, there is limited knowledge about the safety and potentialmore » metabolic and endocrine-disrupting properties of DINCH and its metabolites. The purpose of this study was to evaluate the biological effects of DINCH and its active metabolites, cyclohexane-1,2-dicarboxylic acid (CHDA) and cyclohexane-1,2-dicarboxylic acid mono isononyl ester (MINCH), on rat primary stromal vascular fraction (SVF) of adipose tissue. DINCH and its metabolite, CHDA, were not able to directly affect SVF differentiation. However, exposure of SVF to 50 μM and 100 μM concentrations of MINCH affected the expression of Cebpa and Fabp4, thus inducing SVF preadipocytes to accumulate lipids and fully differentiate into mature adipocytes. The effect of MINCH was blocked by the specific peroxisome proliferator-activated receptor (PPAR)-α antagonist, GW6471. Taken together, these results suggest that MINCH is a potent PPAR-α agonist and a metabolic disruptor, capable of inducing SVF preadipocyte differentiation, that may interfere with the endocrine system in mammals. - Highlights: • DINCH and CHDA did not affect the adipogenesis of the SVF. • MINCH affected the adipogenesis of the SVF. • MINCH effect was blocked by the specific PPAR-α antagonist GW6471. • MINCH exerted a similar effect as MEHP on SVF adipogenesis. • DINCH/MINCH are potential

  11. Implication of azelaic acid in a Greenland Ice Core for oceanic and atmospheric changes in high latitudes

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Yokoyama, K.; Fujii, Y.; Watanabe, O.

    A Greenland ice core (450 years) has been studied for low molecular weight dicarboxylic acids (C2-C10) using a capillary gas chromatography and mass spectrometer. Their molecular distribution generally showed a predominance of succinic acid (C4) followed by oxalic (C2), malonic (C3), glutaric (C5), adipic (C6), and azelaic (C9) acids. Azelaic acid, that is a specific photochemical reaction product of biogenic unsaturated fatty acids, gave a characteristic historical trend in the ice core; i.e., the concentrations are relatively low during late 16th to 19th century (Little Ice Age) but become very high in late 19th to 20th century (warmer periods) with a large peak in 1940s AD. Lower concentrations of azelaic acid may have been caused by a depressed emission of unsaturated fatty acids from seawater microlayers due to enhanced sea ice coverage during Little Ice Age. Inversely, increased concentrations of azelaic acid in late 19th to 20th century are likely interpreted by an enhanced sea-to-air emission of the precursor unsaturated fatty acids due to a retreat of sea ice and/or by the enhanced production due to a potentially increased oxidizing capability of the atmosphere.

  12. Sophorolipid-derived unsaturated and epoxy fatty acid estolides as plasticizers for poly(3-hydroxybutyrate)

    USDA-ARS?s Scientific Manuscript database

    Unsaturated and epoxy fatty acid estolides were synthesized from the omega and omega-1 hydroxy fatty acids derived from sophorolipids (SLs) prepared by fermentation from glucose:soybean oil and glucose:oleic acid, respectively. These estolides were utilized as additives in solution-cast poly(3-hydro...

  13. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  14. A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.

    PubMed

    Rhie, Mi Na; Yoon, Hyo Eun; Oh, Hye Yun; Zedler, Sandra; Unden, Gottfried; Kim, Ok Bin

    2014-07-01

    Actinobacillus succinogenes, which is known to produce large amounts of succinate during fermentation of hexoses, was able to grow on C4-dicarboxylates such as fumarate under aerobic and anaerobic conditions. Anaerobic growth on fumarate was stimulated by glycerol and the major product was succinate, indicating the involvement of fumarate respiration similar to succinate production from glucose. The aerobic growth on C4-dicarboxylates and the transport proteins involved were studied. Fumarate was oxidized to acetate. The genome of A. succinogenes encodes six proteins with similarity to secondary C4-dicarboxylate transporters, including transporters of the Dcu (C4-dicarboxylate uptake), DcuC (C4-dicarboxylate uptake C), DASS (divalent anion : sodium symporter) and TDT (tellurite resistance dicarboxylate transporter) family. From the cloned genes, Asuc_0304 of the DASS family protein was able to restore aerobic growth on C4-dicarboxylates in a C4-dicarboxylate-transport-negative Escherichia coli strain. The strain regained succinate or fumarate uptake, which was dependent on the electrochemical proton potential and the presence of Na(+). The transport had an optimum pH ~7, indicating transport of the dianionic C4-dicarboxylates. Transport competition experiments suggested substrate specificity for fumarate and succinate. The transport characteristics for C4-dicarboxylate uptake by cells of aerobically grown A. succinogenes were similar to those of Asuc_0304 expressed in E. coli, suggesting that Asuc_0304 has an important role in aerobic fumarate uptake in A. succinogenes. Asuc_0304 has sequence similarity to bacterial Na(+)-dicarboxylate cotransporters and contains the carboxylate-binding signature. Asuc_0304 was named SdcA (sodium-coupled C4-dicarboxylate transporter from A. succinogenes). © 2014 The Authors.

  15. Stimulation by unsaturated fatty acid of squalene uptake in rat liver microsomes.

    PubMed

    Chin, J; Bloch, K

    1985-07-01

    Supernatant protein factor (SPF) and anionic phospholipids such as phosphatidylglycerol (PG) stimulate squalene epoxidase activity in rat liver microsomes by promoting [3H]squalene uptake as well as substrate translocation (Chin, J., and K. Bloch. 1984. J. Biol. Chem. 259: 11735-11738). This process is postulated to be membrane-mediated and not carrier-mediated. Here we show that treatment of PG with phospholipase A2 in the presence of bovine serum albumin abolishes the stimulatory effect of SPF on epoxidase activity. Disaturated fatty acyl-PGs are not as effective as egg yolk lecithin PG in the SPF effect. These findings suggest an important role for the unsaturated fatty acid moiety of PG. We also show that at submicellar concentrations, cis-unsaturated fatty acids stimulate microsomal epoxidase activity whereas saturated fatty acids do not. This effect is due to an increase in substrate uptake which in turn may facilitate substrate availability to the enzyme.

  16. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate.

    PubMed

    Yang, Chu-Fang; Huang, Ci-Ruei

    2016-08-01

    Thermal acid hydrolysis is often used to deal with lignocellulosic biomasses, but 5-hydroxy-methylfurfural (5-HMF) formed during hydrolysis deeply influences downstream fermentation. 2,5-Furan-dicarboxylic acid (FDCA), which is in the list of future important biomass platform molecules can be obtained using 5-HMF biotransformation. Based on the connection between 5-HMF removal in acid hydrolysate and FDCA production, the optimum thermal acid hydrolysis condition for macroalgae Chaetomorpha linum was established. Potential microbes capable of transforming 5-HMF into FDCA were isolated and characterized under various parameters and inoculated into algal hydrolysate to perform 5-HMF biotransformation. The optimum hydrolysis condition was to apply 0.5M HCl to treat 3% algal biomass under 121°C for 15min. Isolated Burkholderia cepacia H-2 could transform 2000mg/L 5-HMF at the initial pH of 7 at 28°C and 1276mg/L FDCA was received. Strain B. cepacia H-2 was suitable for treating the algal hydrolysate without dilution, receiving 989.5mg/L FDCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Designing and Creating a Synthetic Omega Oxidation Pathway in Saccharomyces cerevisiae Enables Production of Medium-Chain α, ω-Dicarboxylic Acids

    PubMed Central

    Han, Li; Peng, Yanfeng; Zhang, Yuangyuan; Chen, Wujiu; Lin, Yuping; Wang, Qinhong

    2017-01-01

    Medium-chain (C8–C14) α, ω-dicarboxylic acids (α, ω-DCAs), which have numerous applications as raw materials for producing various commodities and polymers in chemical industry, are mainly produced from chemical or microbial conversion of petroleum-derived alkanes or plant-derived fatty acids at present. Recently, significant attention has been gained to microbial production of medium-chain α, ω-DCAs from simple renewable sugars. Here, we designed and created a synthetic omega oxidation pathway in Saccharomyces cerevisiae to produce C10 and C12 α, ω-DCAs from renewable sugars and fatty acids by introducing a heterogeneous cytochrome P450 CYP94C1 and cytochrome reductase ATR1. Furthermore, the deletion of fatty acyl-CoA synthetase genes FAA1 and FAA4 increased the production of medium-chain α, ω-DCAs from 4.690 ± 0.088 mg/L to 12.177 ± 0.420 mg/L and enabled the production of C14 and C16 α, ω-DCAs at low percentage. But blocking β-oxidation pathway by deleting fatty-acyl coenzyme A oxidase gene POX1 and overexpressing different thioesterase genes had no significant impact on the production and the composition of α, ω-dicarboxylic acids. Overall, our study indicated the potential of microbial production of medium-chain α, ω-DCAs from renewable feedstocks using engineered yeast. PMID:29163455

  18. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira

    2017-10-01

    To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.

  19. Synthesis, characterization, crystal structure and solution studies of a novel proton transfer (charge transfer) complex of 2,2‧-dipyridylamine with 2,6-pyridine dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Zarghampour, Fereshteh; Moghimi, Abolghasem; García-Granda, Santiago; Mendoza-Meroño, Rafael

    2015-06-01

    Reaction between 2,2‧-dipyridylamine (DPA) and 2,6-pyridine dicarboxylic acid (dipicolinic acid, dipicH2), in water results in the formation of a proton transfer or charge transfer (CT) complex, (DPAH)+(dipicH)-·H2O, 1. The characterization was performed using 1H NMR and FTIR spectroscopy, elemental analysis and X-ray crystallography. The crystal system is triclinic with space group P1. The structural investigations exhibit that the hydrogen bonds and π-π stacking interactions stabilize the crystal structure of proton transfer complex. The protonation constants of 2,6-pyridine dicarboxylic acid, 2,2‧-dipyridylamine and the equilibrium constants for dipic-DPA (1:1) proton transfer system were calculated by potentiometric pH titration method using Hyperquad2008 program. The stoichiometries of the proton transfer species in solution was in agreement with the solid state result.

  20. Field Observation of Heterogeneous Formation of Dicarboxylic acids, Keto-carboxylic acids, α-Dicarbonyls and Nitrate in Xi'an, China during Asian dust storm periods

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wang, J.; Ren, Y.; Li, J.

    2015-12-01

    To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids (C2-C11), keto-carboxylic acids (C3-C7), α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, China during the nondust storm and dust storm periods of 2009 and 2011. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1μm), and oxalic acid well correlated with NO3- (R2=0.72, p<0.001) rather than SO42-.This phenomenon differs greatly from the SOA in any other nondust period that is characterized by an enrichment of oxalic acid in fine particles and a strong correlation of oxalic acid with SO42-. Our results further demonstrate that NO3- in the dust periods in Xi'an was mostly derived from secondary oxidation, whereas SO42- during the events was largely derived from surface soil of Gobi deserts. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of Asian dust.

  1. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    PubMed

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA.

  2. Dietary unsaturated fatty acids differently affect catecholamine handling by adrenal chromaffin cells.

    PubMed

    Gomes, Andreia; Correia, Gustavo; Coelho, Marisa; Araújo, João Ricardo; Pinho, Maria João; Teixeira, Ana Luisa; Medeiros, Rui; Ribeiro, Laura

    2015-05-01

    Catecholamines (CA) play an important role in cardiovascular (CDV) disease risk. Namely, noradrenaline (NA) levels positively correlate whereas adrenaline (AD) levels negatively correlate with obesity and/or CDV disease. Western diets, which are tipically rich in Ω-6 fatty acids (FAs) and deficient in Ω-3 FAs, may contribute to the development of obesity, type 2 diabetes and/or coronary artery disease. Taking this into consideration and the fact that our group has already described that saturated FAs affect catecholamine handling by adrenal chromaffin cells, this work aimed to investigate the effect of unsaturated FAs upon catecholamine handling in the same model. Our results showed that chronic exposure to unsaturated FAs differently modulated CA cellular content and release, regardless of both FA series and number of carbon atoms. Namely, the Ω-6 arachidonic and linoleic acids, based on their effect on CA release and cellular content, seemed to impair NA and AD vesicular transport, whereas γ-linolenic acid selectively impaired AD synthesis and release. Within the Ω-9 FAs, oleic acid was devoid of effect, and elaidic acid behaved similarly to γ-linolenic acid. Eicosapentaenoic and docosahexaenoic acids (Ω-3 series) impaired the synthesis and release of both NA and AD. These results deserve attention and future development, namely, in what concerns the mechanisms involved and correlative effects in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A Strategy Combining Higher Energy C-Trap Dissociation with Neutral Loss- and Product Ion-Based MSn Acquisition for Global Profiling and Structure Annotation of Fatty Acids Conjugates

    NASA Astrophysics Data System (ADS)

    Bi, Qi-rui; Hou, Jin-jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-hong; Dai, Zhuo; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Wu, Wan-ying; Guo, De-an

    2017-03-01

    Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB.

  4. A Family of Uranyl Coordination Polymers Containing O-Donor Dicarboxylates and Trispyridyltriazine Guests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangavelu, Sonia G.; Cahill, Christopher L.

    Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less

  5. A Family of Uranyl Coordination Polymers Containing O-Donor Dicarboxylates and Trispyridyltriazine Guests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangavelu, Sonia G.; Cahill, Christopher L.

    2016-01-06

    Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less

  6. High-fat feeding reduces endothelium-dependent vasodilation in rats: differential mechanisms for saturated and unsaturated fatty acids?

    PubMed

    Song, Guang-Yao; Gao, Yu; Di, Yu-Wei; Pan, Li-Li; Zhou, Yu; Ye, Ji-Ming

    2006-08-01

    1. Chronic feeding with a high-fat diet can cause metabolic syndrome in rodents similar to humans, but the role of saturated versus unsaturated fats in vascular tension remains unclear. 2. The present study shows that rats on a diet rich in either saturated or unsaturated fat had higher blood pressure compared with chow-fed rats (approximately 130 vs 100 mmHg, respectively), along with hyperlipidaemia and insulin resistance. Compared with responses of phenylephrine-preconstricted artery segments from chow-fed rats, vasorelaxation of isolated renal arteries from high-fat fed rats was reduced substantially (> 50%) in response to acetylcholine (0.01-10 micromol/L) and moderately to nitroprusside (>or=1 micromol/L) at low concentrations. Acetylcholine-induced vasorelaxation of arteries from high-fat fed rats was also more sensitive to inhibition by the nitric oxide (NO) synthase inhibitors NG-nitro-L-arginine and methylene blue. 3. In human umbilical vein endothelial cells, the production of NO and endothelin-1 was significantly inhibited by unsaturated fatty acids. In comparison, saturated fatty acids stimulated endothelin-1 production without altering NO production. 4. The data indicate that both saturated and unsaturated high-fat feeding may result in an increase in blood pressure owing to reduced endothelium-dependent vasorelaxation in the arterial system. The impaired endothelium-dependent vasorelaxation induced by saturated and unsaturated fatty acids may involve different mechanisms.

  7. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.I.

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less

  8. Molecular distributions and isotopic compositions of marine aerosols over the western North Atlantic: Dicarboxylic acids, ketoacids, α-dicarbonyls (glyoxal and methylglyoxal), fatty acids, sugars, and SOA tracers

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Ono, K.; Tachibana, E.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosols were collected over the western North Atlantic from off the coast of Boston to Bermuda during the WACS (Western Atlantic Climate Study) cruise of R/V Ronald H. Brown in August 2012 using a high volume air sampler and pre-combusted quartz fiber filters. Aerosol filter samples (n=5) were analyzed for OC/EC, major inorganic ions, low molecular weight dicarboxylic acids and various secondary organic aerosol (SOA) tracers using carbon analyzer, ion chromatograph, GC/FID and GC/MS, respectively. Homologous series (C2-C12) of dicarboxylic acids (31-335 ng m-3) were detected with a predominance of oxalic acid. Total carbon and nitrogen and their stable isotope ratios were determined as well as stable carbon isotopic compositions of individual diacids using IRMS. Diacids were found to be the most abundant compound class followed by monoterpene-SOA tracers > isoprene-SOA tracers > sugar compounds > ketoacids > fatty alcohols > fatty acids > α-dicarbonyls > aromatic acids > n-alkanes. The concentrations of these compounds were higher in the coastal site and decreased in the open ocean. However, diacids stayed relatively high even in the remote ocean. Interestingly, contributions of oxalic acid to total aerosol carbon increased from the coast (2.3%) to the remote ocean (5.6%) during long-range atmospheric transport. Stable carbon isotopic composition of oxalic acid increased from the coast (-17.5‰) to open ocean (-12.4‰), suggesting that photochemical aging of organic aerosols occurred during the atmospheric transport over the ocean. Stable carbon isotope ratios of bulk aerosol carbon also increased from the coast near Boston to the open ocean near Bermuda.

  9. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water.

    PubMed

    Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2015-04-20

    The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Sources and formation processes of water-soluble dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, and major ions in summer aerosols from eastern central India

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Deb, Manas K.; Boreddy, Suresh K. R.

    2017-03-01

    The sources and formation processes of dicarboxylic acids are still under investigation. Size-segregated aerosol (nine-size) samples collected in the urban site (Raipur: 21.2°N and 82.3°E) in eastern central India during summer of 2013 were measured for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), α-dicarbonyls (C2-C3), and inorganic ions to better understand their sources and formation processes. Diacids showed the predominance of oxalic acid (C2), whereas ω-oxoacids showed the predominance of glyoxylic acid (ωC2), and glyoxal (Gly) was a major α-dicarbonyl in all the sizes. Diacids, ω-oxoacids, and α-dicarbonyls as well as SO42

  11. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids.

    PubMed

    Sousa, Diana Z; Smidt, Hauke; Alves, Maria M; Stams, Alfons J M

    2009-06-01

    Syntrophic relationships are the key for biodegradation in methanogenic environments. We review the ecological and physiological features of syntrophic communities involved in the degradation of saturated and unsaturated long-chain fatty acids (LCFA), as well as their potential application to convert lipids/fats containing waste to biogas. Presently, about 14 species have been described with the ability to grow on fatty acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae. The principle pathway of LCFA degradation is through beta-oxidation, but the initial steps in the conversion of unsaturated LCFA are unclear. Communities enriched on unsaturated LCFA also degrade saturated LCFA, but the opposite generally is not the case. For efficient methane formation, the physical and inhibitory effects of LCFA on methanogenesis need to be considered. LCFA adsorbs strongly to biomass, which causes encapsulation of active syntrophic communities and hampers diffusion of substrate and products in and out of the biomass. Quantification of archaea by real-time PCR analysis suggests that potential LCFA inhibitory effect towards methanogens might be reversible. Rather, the conversion of adsorbed LCFA in batch assays was shown to result in a significant increase of archaeal cell numbers in anaerobic sludge samples.

  12. Isolation and Characterization of the cis-trans-Unsaturated Fatty Acid Isomerase of Pseudomonas oleovorans GPo12

    PubMed Central

    Pedrotta, Valerian; Witholt, Bernard

    1999-01-01

    Pseudomonas oleovorans contains an isomerase which catalyzes the cis-trans conversion of the abundant unsaturated membrane fatty acids 9-cis-hexadecenoic acid (palmitoleic acid) and 11-cis-octadecenoic acid (vaccenic acid). We purified the isomerase from the periplasmic fraction of Pseudomonas oleovorans. The molecular mass of the enzyme was estimated to be 80 kDa under denaturing conditions and 70 kDa under native conditions, suggesting a monomeric structure of the active enzyme. N-terminal sequencing showed that the isomerase derives from a precursor with a signal sequence which is cleaved from the primary translation product in accord with the periplasmic localization of the enzyme. The purified isomerase acted only on free unsaturated fatty acids and not on esterified fatty acids. In contrast to the in vivo cis-trans conversion of lipids, this in vitro isomerization of free fatty acids did not require the addition of organic solvents. Pure phospholipids, even in the presence of organic solvents, could not serve as substrate for the isomerase. However, when crude membranes from Pseudomonas or Escherichia coli cells were used as phospholipid sources, a cis-trans isomerization was detectable which occurred only in the presence of organic solvents. These results indicate that isolated membranes from Pseudomonas or E. coli cells must contain factors which, activated by the addition of organic solvents, enable and control the cis-trans conversion of unsaturated acyl chains of membrane phospholipids by the periplasmic isomerase. PMID:10322030

  13. Ruthenium water oxidation catalysts containing the non-planar tetradentate ligand, biisoquinoline dicarboxylic acid (biqaH2).

    PubMed

    Scherrer, Dominik; Schilling, Mauro; Luber, Sandra; Fox, Thomas; Spingler, Bernhard; Alberto, Roger; Richmond, Craig J

    2016-12-06

    Two ruthenium complexes containing the tetradentate ligand [1,1'-biisoquinoline]-3,3'-dicarboxylic acid, and 4-picoline or 6-bromoisoquinoline as axial ligands have been prepared. The complexes have been fully characterised and initial studies on their potential to function as molecular water oxidation catalysts have been performed. Both complexes catalyse the oxidation of water in acidic media with Ce IV as a stoichiometric chemical oxidant, although turnover numbers and turnover frequencies are modest when compared with the closely related Ru-bda and Ru-pda analogues. Barriers for the water nucleophilic attack and intermolecular coupling pathways were obtained from density functional theory calculations and the crucial influence of the ligand framework in determining the most favourable reaction pathway was elucidated from a combined analysis of the theoretical and experimental results.

  14. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  15. Thermodynamics of the clusterization process of cis isomers of unsaturated fatty acids at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Aksenenko, E V; Miller, R

    2009-04-02

    In the framework of the semiempirical PM3 method, the thermodynamic parameters of cis isomers of unsaturated carboxylic acids at the air/water interface are studied. The model systems used are unsaturated cis fatty acid of the composition Delta = 12-15 and omega = 6-11, where Delta and omega refer to the number of carbon atoms between the functional group and double bond, and that between the double bond and methyl group, respectively. For dimers, trimers, and tetramers of the four acid series, the thermodynamic parameters of clusterization are calculated. It is shown that the position of the double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids for equal chain lengths (n = Delta + omega). The calculated results show that for cis unsaturated fatty acid with odd Delta values the spontaneous clusterization threshold corresponds to n = 17-18 carbon atoms in the alkyl chain, while for monounsaturated acids with even Delta values this threshold corresponds to n = 18-19 carbon atoms in the alkyl chain. These differences in the clusterization threshold between the acids with even and odd Delta values are attributed to the formation of additional intermolecular hydrogen bonds between the ketonic oxygen atom of one monomer and the hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with odd Delta values or between the hydroxyl oxygen atom of one monomer and hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with even Delta values. The results obtained in the study agree satisfactorily with our experimental data for cis unsaturated nervonic (Delta15, omega9) and erucic acids (Delta13, omega9), and published data for some fatty acids, namely cis-16-heptadecenoic (Delta16, omega1), cis-9-hexadecenoic (Delta7, omega9), cis-11-eicosenoic (Delta11, omega9) and cis-9-octadecenoic acid (Delta9, omega9).

  16. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    PubMed Central

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  17. Unsaturated fatty acids supplementation reduces blood lead level in rats.

    PubMed

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: "super lecithin" (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05).

  18. Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1).

    PubMed

    Schennink, A; Heck, J M L; Bovenhuis, H; Visker, M H P W; van Valenberg, H J F; van Arendonk, J A M

    2008-05-01

    With regard to human health aspects of milk fat, increasing the amount of unsaturated fatty acids in milk is an important selection objective. The cow's diet has an influence on the degree of unsaturation, but literature suggests that genetics also plays a role. To estimate genetic variation in milk fatty acid unsaturation indices, milk fatty acid composition of 1,933 Dutch Holstein Friesian heifers was measured and unsaturation indices were calculated. An unsaturation index represents the concentration of the unsaturated product proportional to the sum of the unsaturated product and the saturated substrate. Intraherd heritabilities were moderate, ranging from 0.23 +/- 0.07 for conjugated linoleic acid (CLA) index to 0.46 +/- 0.09 for C16 index. We genotyped the cows for the SCD1 A293V and DGAT1 K232A polymorphisms, which are known to alter milk fatty acid composition. Both genes explain part of the genetic variation in unsaturation indices. The SCD1 V allele is associated with lower C10, C12, and C14 indices, and with higher C16, C18, and CLA indices in comparison to the SCD1 A allele, with no differences in total unsaturation index. In comparison to the DGAT1 K allele, the DGAT1 A allele is associated with lower C10, C12, C14, and C16 indices and with higher C18, CLA, and total indices. We conclude that selective breeding can contribute to higher unsaturation indices, and that selective breeding can capitalize on genotypic information of both the SCD1 A293V and the DGAT1 K232A polymorphism.

  19. The effects of poly-unsaturated fatty acids on the physiology of hibernation in a South American marsupial, Dromiciops gliroides.

    PubMed

    Contreras, Carolina; Franco, Marcela; Place, Ned J; Nespolo, Roberto F

    2014-11-01

    Many mammals hibernate, which is a profound lethargic state of several weeks or months during winter, that represents a transitory episode of hetherothermy. As with other cases of dormancy, the main benefit of hibernation seems to be energy saving. However, the depth and duration of torpor can be experimentally modified by the composition of food, especially by fattyacid composition. In eutherians, diets rich in unsaturated fatty acids (i.e., fatty acids with at least one double bond) lengthen torpor, reduce metabolism and permit hibernation at lower temperatures. Here we studied whether diets varying in fatty acid composition have an effect on the physiology of hibernation in a South American marsupial, Dromiciops gliroides. We designed a factorial experiment where thermal acclimation (two levels: natural versus constant temperature) was combined with diet acclimation: saturated (i.e., diets with high concentration of saturated fatty acids) versus unsaturated (i.e., diets with high concentration of unsaturated fatty acids). We measured energy metabolism in active and torpid individuals, as well as torpor duration, and a suite of 12 blood biochemical parameters. After a cafeteria test, we found that D. gliroides did not show any preference for a given diet. Also, we did not find effects of diet on body temperature during torpor, or its duration. However, saturated diets, combined with high temperatures provoked a disproportionate increase in fat utilization, leading to body mass reduction. Those animals were more active, and metabolized more fats than those fed with a high proportion of unsaturated fatty acids (="unsaturated diets"). These results contrast with previous studies, which showed a significant effect of fatty acid composition of diets on food preferences and torpor patterns in mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)-pyridine-2,6-dicarboxylic acid probe.

    PubMed

    Azab, Hassan A; Duerkop, Axel; Anwar, Z M; Hussein, Belal H M; Rizk, Moustafa A; Amin, Tarek

    2013-01-08

    Luminescence quenching of a novel long lived Eu(III)-pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol-water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)-(PDCA)(2) probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)-pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0-35.0 μM. The detection limits were 0.24-0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)-(PDCA)(2) were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)-(PDCA)(2)-P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.

    PubMed

    Bowen, Christopher H; Bonin, Jeff; Kogler, Anna; Barba-Ostria, Carlos; Zhang, Fuzhong

    2016-03-18

    In search of sustainable approaches to plastics production, many efforts have been made to engineer microbial conversions of renewable feedstock to short-chain (C2-C8) bifunctional polymer precursors (e.g., succinic acid, cadaverine, 1,4-butanediol). Less attention has been given to medium-chain (C12-C14) monomers such as ω-hydroxy fatty acids (ω-OHFAs) and α,ω-dicarboxylic acids (α,ω-DCAs), which are precursors to high performance polyesters and polyamides. Here we engineer a complete microbial conversion of glucose to C12 and C14 ω-OHFAs and α,ω-DCAs, with precise control of product chain length. Using an expanded bioinformatics approach, we screen a wide range of enzymes across phyla to identify combinations that yield complete conversion of intermediates to product α,ω-DCAs. Finally, through optimization of culture conditions, we enhance production titer of C12 α,ω-DCA to nearly 600 mg/L. Our results indicate potential for this microbial factory to enable commercially relevant, renewable production of C12 α,ω-DCA-a valuable precursor to the high-performance plastic, nylon-6,12.

  2. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis

    NASA Astrophysics Data System (ADS)

    Fang, Xianjie; Cacherat, Bastien; Morandi, Bill

    2017-11-01

    The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.

  3. Unsaturated Fatty Acids Improve Atherosclerosis Markers in Obese and Overweight Non-diabetic Elderly Patients.

    PubMed

    de Oliveira, Patrícia Amante; Kovacs, Cristiane; Moreira, Priscila; Magnoni, Daniel; Saleh, Mohamed Hassan; Faintuch, Joel

    2017-10-01

    Several studies have demonstrated the benefits of replacing trans and saturated fats with unsaturated fatty acids on cardiovascular diseases. We aimed to demonstrate the effect of polyunsaturated and monounsaturated fat supplementation on the biochemical and endothelial markers of atherosclerotic disease in obese or overweight non-diabetic elderly patients. Seventy-nine patients were randomly divided into three groups: flaxseed oil, olive oil, and sunflower oil; patients in each group received 30 mL of oil for 90 days. Patients were subjected to anthropometric and bioimpedance assessments; biochemical and endothelial evaluations were performed through ultrasonography of the brachial artery and carotid artery for endothelium-dependent dilation and intima-media thickness assessment, respectively, before and after the intervention. The participants' usual diet remained unchanged. The flaxseed oil group had improved ultra-sensitive C-reactive protein levels (p = 0.074) and reduced carotid intima-media thickness (CIMT) (p = 0.028); the olive oil group exhibited an improved apolipoprotein (Apo)B/ApoA ratio (p = 0.021), reduced CIMT (p = 0.028), and improved flow-mediated vasodilation (FMV) (p = 0.054); and similarly, the sunflower oil group showed an improved ApoB/ApoA ratio (p = 0.024), reduced CIMT (p = 0.048), and improved FMV (p = 0.001). Unsaturated fatty acid supplementation using the three vegetable oils attenuated pro-inflammatory properties and improved prothrombotic conditions. Therefore, introducing or replacing saturated and trans fat with unsaturated fatty acids is beneficial for cardiovascular risk reduction in obese or overweight non-diabetic elderly people. Further studies are needed to determine which unsaturated fat best prevents cardiovascular disease in elderly patients.

  4. Crystal structures of 4-meth-oxy-benzoic acid-1,3-bis-(pyridin-4-yl)propane (2/1) and biphenyl-4,4'-di-carb-oxy-lic acid-4-meth-oxy-pyridine (1/2).

    PubMed

    Gotoh, Kazuma; Ishida, Hiroyuki

    2017-07-01

    The crystal structures of two hydrogen-bonded compounds, namely 4-meth-oxy-benzoic acid-1,3-bis-(pyridin-4-yl)propane (2/1), C 13 H 14.59 N 2 ·C 8 H 7.67 O 3 ·C 8 H 7.74 O 3 , (I), and biphenyl-4,4'-di-carb-oxy-lic acid-4-meth-oxy-pyridine (1/2), C 14 H 9.43 O 4 ·C 6 H 7.32 NO·C 6 H 7.25 NO, (II), have been determined at 93 K. In (I), the asymmetric unit consists of two crystallographically independent 4-meth-oxy-benzoic acid mol-ecules and one 1,3-bis-(pyridin-4-yl)propane mol-ecule. The asymmetric unit of (II) comprises one biphenyl-4,4'-di-carb-oxy-lic acid mol-ecule and two independent 4-meth-oxy-pyridine mol-ecules. In each crystal, the acid and base mol-ecules are linked by short O-H⋯N/N-H⋯O hydrogen bonds, in which H atoms are disordered over the acid O-atom and base N-atom sites, forming a linear hydrogen-bonded 2:1 or 1:2 unit of the acid and the base. The 2:1 units of (I) are linked via C-H⋯π, π-π and C-H⋯O inter-actions into a tape structure along [101], while the 1:2 units of (II) form a double-chain structure along [-101] through π-π and C-H⋯O inter-actions.

  5. Metal-organic complexes in geochemical processes: temperature dependence of the standard thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Prapaipong, Panjai; Shock, Everett L.; Koretsky, Carla M.

    1999-10-01

    By combining results from regression and correlation methods, standard state thermodynamic properties for aqueous complexes between metal cations and divalent organic acid ligands (oxalate, malonate, succinate, glutarate, and adipate) are evaluated and applied to geochemical processes. Regression of experimental standard-state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state yields standard partial molal entropies (S¯°) of aqueous metal-organic complexes, which allow determination of thermodynamic properties of the complexes at elevated temperatures. In cases where S¯° is not available from either regression or calorimetric measurement, the values of S¯° can be estimated from a linear correlation between standard partial molal entropies of association (ΔS¯°r) and standard partial molal entropies of aqueous cations (S¯°M). The correlation is independent of cation charge, which makes it possible to predict S¯° for complexes between divalent organic acids and numerous metal cations. Similarly, correlations between standard Gibbs free energies of association of metal-organic complexes (ΔḠ°r) and Gibbs free energies of formation (ΔḠ°f) for divalent metal cations allow estimates of standard-state equilibrium constants where experimental data are not available. These correlations are found to be a function of ligand structure and cation charge. Predicted equilibrium constants for dicarboxylate complexes of numerous cations were included with those for inorganic and other organic complexes to study the effects of dicarboxylate complexes on the speciation of metals and organic acids in oil-field brines. Relatively low concentrations of oxalic and malonic acids affect the speciation of cations more than similar concentrations of succinic, glutaric, and adipic acids. However, the extent to which metal-dicarboxylate complexes contribute to the speciation of dissolved metals depends on the type of dicarboxylic acid

  6. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review.

    PubMed

    Hunter, J Edward; Zhang, Jun; Kris-Etherton, Penny M

    2010-01-01

    High stearic acid (STA) soybean oil is a trans-free, oxidatively stable, non-LDL-cholesterol-raising oil that can be used to replace trans fatty acids (TFAs) in solid fat applications. The objective was to assess the cardiovascular health effects of dietary STA compared with those of trans, other saturated, and unsaturated fatty acids. We reviewed epidemiologic and clinical studies that evaluated the relation between STA and cardiovascular disease (CVD) risk factors, including plasma lipids and lipoproteins, hemostatic variables, and inflammatory markers. In comparison with other saturated fatty acids, STA lowered LDL cholesterol, was neutral with respect to HDL cholesterol, and directionally lowered the ratio of total to HDL cholesterol. STA tended to raise LDL cholesterol, lower HDL cholesterol, and increase the ratio of total to HDL cholesterol in comparison with unsaturated fatty acids. In 2 of 4 studies, high-STA diets increased lipoprotein(a) in comparison with diets high in saturated fatty acids. Three studies showed increased plasma fibrinogen when dietary STA exceeded 9% of energy (the current 90th percentile of intake is 3.5%). Replacing industrial TFAs with STA might increase STA intake from 3.0% (current) to approximately 4% of energy and from 4% to 5% of energy at the 90th percentile. One-to-one substitution of STA for TFAs showed a decrease or no effect on LDL cholesterol, an increase or no effect on HDL cholesterol, and a decrease in the ratio of total to HDL cholesterol. TFA intake should be reduced as much as possible because of its adverse effects on lipids and lipoproteins. The replacement of TFA with STA compared with other saturated fatty acids in foods that require solid fats beneficially affects LDL cholesterol, the primary target for CVD risk reduction; unsaturated fats are preferred for liquid fat applications. Research is needed to evaluate the effects of STA on emerging CVD risk markers such as fibrinogen and to understand the responses

  7. Supplementation with bypass fat in silvopastoral systems diminishes the ratio of milk saturated/unsaturated fatty acids.

    PubMed

    Mahecha, L; Angulo, J; Salazar, B; Cerón, M; Gallo, J; Molina, C H; Molina, E J; Suárez, J F; Lopera, J J; Olivera, M

    2008-04-01

    This study was conducted to evaluate if supplementing bypass fat to cows under silvopastoral systems, increases the concentration of unsaturated fatty acids in milk, thus improving the saturated/ unsaturated ratio without a negative effect on total milk yield in fat or protein. Two concentrations of two different sources of bypass fat were evaluated for 40 days, each in a group of 24 multiparous Lucerna (Colombian breed) cows. A cross-over design of 8 Latin squares 3 x 3 was used. The variables submitted to analysis were body condition, daily milk production and milk composition. Body condition, milk yield and milk quality were not different but there was a significant decrease in the amount of saturated fatty acid in both experiments while the unsaturated fat increased significantly in experiment 1 and remained stable in experiment 2. Results, such as these have as far as we know, not been reported previously and they provide an approach for the improvement of milk as a "functional food".

  8. Aedes aegypti (Diptera: culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids

    USDA-ARS?s Scientific Manuscript database

    In this study we systematically evaluated for the first time the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti [yellow fever mosquito (Diptera: Culicidae)] using the K & D bioassay system (Klun et al 2005). The saturated fatty acids (C6:0 to C16...

  9. 40 CFR 180.1284 - Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids are...

  10. 40 CFR 180.1284 - Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids are...

  11. Carboxylic and Dicarboxylic Acids Extracted from Crushed Magnesium Oxide Single Crystals

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Gupta, Alka D.; Kumar, Devendra; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THE) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and (sup 1)H-NMR (Nuclear Magnetic Resonance). The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS (Gas Chromatography - Mass Spectroscopy) analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P2(sub 1)/c with a(sub o) = 5.543 A, b(sub o) = 8.845 A, c(sub o) = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg/g MgO. The MgO crystals from which these organic acids were extracted grew from the 2360 C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H, and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)(sup n-). The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  12. Carboxylic and dicarboxylic acids extracted from crushed magnesium oxide single crystals

    NASA Technical Reports Server (NTRS)

    Freund, F.; Gupta, A. D.; Kumar, D.

    1999-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THF) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and 1H-NMR. The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P21/c with ao = 5.543 A, bo = 8.845 A, co = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg g-1 MgO. The MgO crystals from which these organic acids were extracted grew from the 2860 degrees C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)n-. The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  13. Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Lee, B.; Sweeney, M. J.; Klein, H. P.

    1989-01-01

    The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C16:1) of aerobically grown O. limnetica was shown to contain both the delta 7 (79%) and delta 9 (21%) isomers, while the octadecenoic (C18:1) acid was entirely the delta 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the delta 7 and delta 9 C16:1 and the delta 9 C18:1. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both delta 7 and delta 9 C16:1 and delta 9 and delta 11 C18:1. The synthesis of these is characteristic of a bacterial-type, anaerobic pathway.

  14. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid

    NASA Astrophysics Data System (ADS)

    Grabska, Justyna; Beć, Krzysztof B.; Ishigaki, Mika; Wójcik, Marek J.; Ozaki, Yukihiro

    2017-10-01

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5 · 10- 4 M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000 cm- 1, is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications.

  15. Photo and Thermal Behavior of New Reinforced Polyamide-nanocomposite Montmorillonite on 2,3-Pyrazin Dicarboxylic Acid

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Samiei, Mojtaba; Hajibeygi, Mohsen

    2012-06-01

    Two new samples of reinforce polyamidemontmorillonite nanocomposites were synthesized by a convenient solution intercalation technique. Polyamide (PA) 3 as a source of polymer matrix was synthesized by the direct polycondensation reaction of pyrazine 2,3-dicarboxylic acid 1 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PA matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  16. Aedes aegypti (Diptera: Culicidae) Biting Deterrence: Structure-Activity Relationship of Saturated and Unsaturated Fatty Acids

    DTIC Science & Technology

    2012-11-01

    rated fatty acids, including undecanoic acid were re- pellent to Ae. aegypti; and Reifenrath (2005) found that mixtures of unsaturated short chain acids...C18:0), oleic acid (C18:1), and linoleic acid (C18:2) were all purchased from SigmaÐAldrich (St. Louis, MO). Insects . Ae. aegypti used in Klun...Norridge, IL). The eggswere hatched by placing a piece of a paper towel with eggs in a cup Þlled with 100 ml de-ionized water containing a small quantity

  17. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  18. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2016-02-01

    We present here a novel experimental set-up that is able to measure the enthalpy of sublimation of a given compound by means of piezoelectric crystal microbalances (PCMs). The PCM sensors have already been used for space measurements, such as for the detection of organic and non-organic volatile species and refractory materials in planetary environments. In Earth atmospherics applications, PCMs can be also used to obtain some physical-chemical processes concerning the volatile organic compounds (VOCs) present in atmospheric environments. The experimental set-up has been developed and tested on dicarboxylic acids. In this work, a temperature-controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC recondensed onto the PCM quartz crystal, allowing the determination of the deposition rate. From the measurements of deposition rates, it has been possible to infer the enthalpy of sublimation of adipic acid, i.e. ΔHsub : 141.6 ± 0.8 kJ mol-1, succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1, and azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1. The results obtained show an accuracy of 1 % for succinic, adipic, and azelaic acid and within 5 % for oxalic acid and are in very good agreement with previous works (within 6 % for adipic, succinic, and oxalic acid and within 11 % or larger for azelaic acid).

  19. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast.

    PubMed

    Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H Ekkehard

    2005-03-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH(-) to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis.

  20. Cocrystallization of adamantane-1,3-dicarboxylic acid and 4,4'-bipyridine.

    PubMed

    Pan, Yue; Li, Kunhao; Bi, Wenhua; Li, Jing

    2008-02-01

    The cocrystallization of adamantane-1,3-dicarboxylic acid (adc) and 4,4'-bipyridine (4,4'-bpy) yields a unique 1:1 cocrystal, C(12)H(16)O(4).C(10)H(8)N(2), in the C2/c space group, with half of each molecule in the asymmetric unit. The mid-point of the central C-C bond of the 4,4'-bpy molecule rests on a center of inversion, while the adc molecule straddles a twofold rotation axis that passes through two of the adamantyl C atoms. The constituents of this cocrystal are joined by hydrogen bonds, the stronger of which are O-H...N hydrogen bonds [O...N = 2.6801 (17) A] and the weaker of which are C-H...O hydrogen bonds [C...O = 3.367 (2) A]. Alternate adc and 4,4'-bpy molecules engage in these hydrogen bonds to form zigzag chains. In turn, these chains are linked through pi-pi interactions along the c axis to generate two-dimensional layers. These layers are neatly packed into a stable crystalline three-dimensional form via weak C-H...O hydrogen bonds [C...O = 3.2744 (19) A] and van der Waals attractions.

  1. Partial Hydrothermal Oxidation of High Molecular Weight Unsaturated Carboxylic Acids for Upgrading of Biodiesel Fuel

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.

    2007-03-01

    With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.

  2. Urinary concentrations of cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester, a metabolite of the non-phthalate plasticizer di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), and markers of ovarian response among women attending a fertility center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mínguez-Alarcón, Lidia, E-mail: lminguez@hsph.harv

    Di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), a non-phthalate plasticizer, was introduced commercially in 2002 as an alternative to ortho-phthalate esters because of its favorable toxicological profile. However, the potential health effects from DINCH exposure remain largely unknown. We explored the associations between urinary concentrations of metabolites of DINCH on markers of ovarian response among women undergoing in vitro fertilization (IVF) treatments. Between 2011 and 2015, 113 women enrolled a prospective cohort study at the Massachusetts General Hospital Fertility Center and provided up to two urine samples prior to oocyte retrieval. The urinary concentrations of two DINCH metabolites, cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH) andmore » cyclohexane-1,2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH), were quantified by isotope dilution tandem mass spectrometry. We used generalized linear mixed models to evaluate the association between urinary metabolite concentrations and markers of ovarian response, accounting for multiple IVF cycles per woman via random intercepts. On average, women with detectable urinary MHiNCH concentrations, as compared to those below LOD, had a lower estradiol levels (−325 pmol/l, p=0.09) and number of retrieved oocytes (−1.8, p=0.08), with a stronger association among older women. However, urinary MHiNCH concentrations were unrelated to mature oocyte yield and endometrial wall thickness. In conclusion, we found suggestive negative associations between urinary MHiNCH concentrations and peak estradiol levels and number of total oocyte yields. This is the first study evaluating the effect of DINCH exposure on human reproductive health and raises the need for further experimental and epidemiological studies to better understand the potential effects of this chemical on health. - Highlights: • Women with detectable urinary MHiNCH concentrations had a lower estradiol levels and number of

  3. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production.

    PubMed

    Oberding, Lisa K; Gieg, Lisa M

    2018-01-01

    Paraffinic n -alkanes (>C 17 ) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n -octacosane (C 28 H 58 ). Compared with that in controls, the consumption of n -octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C 28 H 58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C 28 H 58 -degrading cultures compared with that in controls, suggesting n -octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C 28 H 58 -degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery. IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important

  4. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production

    PubMed Central

    Oberding, Lisa K.

    2017-01-01

    ABSTRACT Paraffinic n-alkanes (>C17) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n-octacosane (C28H58). Compared with that in controls, the consumption of n-octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C28H58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C28H58-degrading cultures compared with that in controls, suggesting n-octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C28H58-degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery. IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important applications for

  5. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid.

    PubMed

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro

    2017-10-05

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10 -4 M in CCl 4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm -1 , is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Binary Phase Behavior of Saturated-Unsaturated Mixed-Acid Triacylglycerols-A Review.

    PubMed

    Zhang, Lu; Ueno, Satoru; Sato, Kiyotaka

    2018-06-01

    Most natural lipids contain a complex mixture of individual triacylglycerols (TAGs). An in-depth knowledge of the mixing behavior of TAGs is necessary for the rational design and engineering of food materials. The binary phase diagram of TAGs is a simplified model that can be explored to help foster an understanding of the phase behavior of complex fats and oils. This article reviews recent research on the binary phase behavior of saturated-unsaturated mixed-acid TAGs, with special emphasis on the stearicunsaturated and palmitic-unsaturated diacid TAGs. The occurrence of polymorphic forms and mutual solubility of TAG mixtures are strongly related to the glycerol conformation of the saturated-oleic diacid TAGs; it appears to be most influenced by the chain-length mismatch in saturated-elaidic diacid TAGs. In addition, the polymorphism of pure enantiomers and racemic mixture of chiral TAGs was also reviewed, while the effect of chirality on mixing behavior was discussed.

  7. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  8. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  9. Preparation, characterisation and study of in vitro biologically active azamacrocyclic Cu(II) dicarboxylate complexes

    NASA Astrophysics Data System (ADS)

    Antonijević-Nikolić, Mirjana; Antić-Stanković, Jelena; Tanasković, Sladjana B.; Korabik, Maria J.; Gojgić-Cvijović, Gordana; Vučković, Gordana

    2013-12-01

    New cationic Cu(II) complexes with N, N‧, N″, N″‧-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and aliphatic dicarboxylic acids: pentanedioic (glutaric acid = glutH2), hexanedioic acid (adipic acid = adipH2) and decanedioic acid (sebacic acid = sebH2) of general formula [Cu4(L)(tpmc)2](ClO4)6·xH2O, L = glut, x = 2; L = adip, x = 7; L = seb, x = 6 were isolated. Their composition and charges are proposed based on elemental analyses and molar conductivity measurements. By the comparison of their UV-Vis, reflectance, FTIR and EPR spectral data, CV and SQUID magnetic measurements, with those for the complex with butanedioic acid (succinic acid = succH2) of known molecular structure and analysis of LC/MS spectra, geometry with two [Cu2tpmc]4+ units bridged by dicarboxylate dianion engaging all oxygens is proposed. Within units, Cu(II) ions are also bridged with N portion of cyclam ring. All four complexes were screened to in vitro antimicrobial and cytotoxic activity along with free primary and secondary ligands, Cu(II) salt and solvent controls. Detected antibacterial and cytotoxic activity for the complexes was enhanced in most cases than the corresponding controls.

  10. Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis.

    PubMed

    Diaz, E; Zacarias, A K; Pérez, S; Vanegas, O; Köhidai, L; Padrón-Nieves, M; Ponte-Sucre, A

    2015-11-01

    In the sand-fly mid gut, Leishmania promastigotes are exposed to acute changes in nutrients, e.g. amino acids (AAs). These metabolites are the main energy sources for the parasite, crucial for its differentiation and motility. We analysed the migratory behaviour and morphological changes produced by aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing AAs in Leishmania amazonensis and Leishmania braziliensis and demonstrated that L-methionine (10-12 m), L-tryptophan (10-11 m), L-glutamine and L-glutamic acid (10-6 m), induced positive chemotactic responses, while L-alanine (10-7 m), L-methionine (10-11 and 10-7 m), L-tryptophan (10-11 m), L-glutamine (10-12 m) and L-glutamic acid (10-9 m) induced negative chemotactic responses. L-proline and L-cysteine did not change the migratory potential of Leishmania. The flagellum length of L. braziliensis, but not of L. amazonensis, decreased when incubated in hyperosmotic conditions. However, chemo-repellent concentrations of L-alanine (Hypo-/hyper-osmotic conditions) and L-glutamic acid (hypo-osmotic conditions) decreased L. braziliensis flagellum length and L-methionine (10-11 m, hypo-/hyper-osmotic conditions) decreased L. amazonensis flagellum length. This chemotactic responsiveness suggests that Leishmania discriminate between slight concentration differences of small and structurally closely related molecules and indicates that besides their metabolic effects, AAs play key roles linked to sensory mechanisms that might determine the parasite's behaviour.

  11. Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers

    PubMed Central

    Bassanini, Ivan; Hult, Karl

    2015-01-01

    Summary Dicarboxylic acids and their derivatives (esters and anhydrides) have been used as acylating agents in lipase-catalyzed reactions in organic solvents. The synthetic outcomes have been dimeric or hybrid derivatives of bioactive natural compounds as well as functionalized polyesters. PMID:26664578

  12. Impaired pH Homeostasis in Arabidopsis Lacking the Vacuolar Dicarboxylate Transporter and Analysis of Carboxylic Acid Transport across the Tonoplast1

    PubMed Central

    Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH− to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis. PMID:15728336

  13. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.

    PubMed

    Mishra, Pranjul; Lee, Na-Rae; Lakshmanan, Meiyappan; Kim, Minsuk; Kim, Byung-Gee; Lee, Dong-Yup

    2018-03-19

    Recently, there have been several attempts to produce long-chain dicarboxylic acids (DCAs) in various microbial hosts. Of these, Yarrowia lipolytica has great potential due to its oleaginous characteristics and unique ability to utilize hydrophobic substrates. However, Y. lipolytica should be further engineered to make it more competitive: the current approaches are mostly intuitive and cumbersome, thus limiting its industrial application. In this study, we proposed model-guided metabolic engineering strategies for enhanced production of DCAs in Y. lipolytica. At the outset, we reconstructed genome-scale metabolic model (GSMM) of Y. lipolytica (iYLI647) by substantially expanding the previous models. Subsequently, the model was validated using three sets of published culture experiment data. It was finally exploited to identify genetic engineering targets for overexpression, knockout, and cofactor modification by applying several in silico strain design methods, which potentially give rise to high yield production of the industrially relevant long-chain DCAs, e.g., dodecanedioic acid (DDDA). The resultant targets include (1) malate dehydrogenase and malic enzyme genes and (2) glutamate dehydrogenase gene, in silico overexpression of which generated additional NADPH required for fatty acid synthesis, leading to the increased DDDA fluxes by 48% and 22% higher, respectively, compared to wild-type. We further investigated the effect of supplying branched-chain amino acids on the acetyl-CoA turn-over rate which is key metabolite for fatty acid synthesis, suggesting their significance for production of DDDA in Y. lipolytica. In silico model-based strain design strategies allowed us to identify several metabolic engineering targets for overproducing DCAs in lipid accumulating yeast, Y. lipolytica. Thus, the current study can provide a methodological framework that is applicable to other oleaginous yeasts for value-added biochemical production.

  14. Asymmetric conjugate 1,4-addition of arylboronic acids to alpha, beta-unsaturated esters catalyzed by Rhodium(I)/(S)-binap

    PubMed

    Sakuma; Sakai; Itooka; Miyaura

    2000-09-22

    Arylboronic acids underwent the conjugate 1,4-addition to alpha, beta-unsaturated esters to give beta-aryl esters in high yields in the presence of a rhodium(I) catalyst. The addition of arylboronic acids to isopropyl crotonate resulted in high yields and high enantioselectivity exceeding 90% ee in the presence of 3 mol % of Rh(acac)(C(2)H(4))(2) and (S)-binap at 100 degrees C. The rhodium/(S)-binap complex provided (R)-3-phenylbutanoate in the addition of phenylboronic acid to benzyl crotonate. The effects on the enantioselectivity of chiral phosphine ligands, rhodium precursors, and substituents on alpha,beta-unsaturated esters are discussed, as well as the mechanistic aspect of the catalytic cycle.

  15. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris.

    PubMed

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-05-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.

  16. Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy.

    PubMed

    Li, Z Jane; Abramov, Yuriy; Bordner, Jon; Leonard, Jason; Medek, Ales; Trask, Andrew V

    2006-06-28

    A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.

  17. Structure-activity relationships among derivatives of dicarboxylic acid esters of tropine.

    PubMed

    Gyermek, Laszlo

    2002-10-01

    Several categories of neuromuscular blocking bisquaternary tropine and tropane derivatives were synthesized and studied in the past five decades, mainly with the purpose of arriving at meaningful information about structure-activity relationships. Such a structure-activity relationship database is important in the development of new muscle relaxants with improved pharmacological characteristics. Although quaternary tropine diesters were explored since 1952, most of them were developed in the last decade. Over 250 such agents are being reviewed here. The skeleton of the majority of them consists of two tropines, connected through their 3-OH group with various dicarboxylic acid ester linkages and quaternized by several mostly di- and trisubstituted benzyl groups. The significance of changing the quaternizing group; the diester linker; and, to a smaller extent, the substituents and their steric orientation on the tropane ring and some alterations of the tropane ring itself have been explored in in vivo experiments on anesthetized rats. Di- or trisubstituted alkoxy and/or acyloxybenzyl quaternaries of certain tropinyl diesters, e.g., glutaryl, fumaryl, and cyclobutane-1,2-dicarboxylyl, showed an optimal profile with respect to desirable neuromuscular blocking actions and side effects, which was confirmed on other experimental animal species. The details of the structural changes toward obtaining new ultrashort-acting nondepolarizing muscle relaxants are discussed.

  18. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    PubMed

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  19. Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium.

    PubMed

    Lu, Qian; Li, Jun; Wang, Jinghan; Li, Kun; Li, Jingjing; Han, Pei; Chen, Paul; Zhou, Wenguang

    2017-11-01

    The ability of algae to produce lipids comprising of unsaturated fatty acids varies with strains and culture conditions. This study investigates the effect of temperature on the production of unsaturated fatty acids in Scenedesmus sp. grown on oil crop residue based medium. At low temperature (10°C), synthesis of lipids compromising of high contents of unsaturated fatty acids took place primarily in the early stage while protein accumulation mainly occurred in the late stage. This stepwise lipid-protein synthesis process was found to be associated with the contents of acetyl-CoA and α-KG in the algal cells. A mechanism was proposed and tested through simulation experiments which quantified the carbon flux allocation in algal cells at different cultivation stages. It is concluded that low culture temperature such as 10°C is suitable for the production of lipids comprising of unsaturated fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids.

    PubMed

    van Weeghel, Michel; te Brinke, Heleen; van Lenthe, Henk; Kulik, Wim; Minkler, Paul E; Stoll, Maria S K; Sass, Jörn Oliver; Janssen, Uwe; Stoffel, Wilhelm; Schwab, K Otfried; Wanders, Ronald J A; Hoppel, Charles L; Houten, Sander M

    2012-10-01

    Mitochondrial enoyl-CoA isomerase (ECI1) is an auxiliary enzyme involved in unsaturated fatty acid oxidation. In contrast to most of the other enzymes involved in fatty acid oxidation, a deficiency of ECI1 has yet to be identified in humans. We used wild-type (WT) and Eci1-deficient knockout (KO) mice to explore a potential presentation of human ECI1 deficiency. Upon food withdrawal, Eci1-deficient mice displayed normal blood β-hydroxybutyrate levels (WT 1.09 mM vs. KO 1.10 mM), a trend to lower blood glucose levels (WT 4.58 mM vs. KO 3.87 mM, P=0.09) and elevated blood levels of unsaturated acylcarnitines, in particular C12:1 acylcarnitine (WT 0.03 μM vs. KO 0.09 μM, P<0.01). Feeding an olive oil-rich diet induced an even greater increase in C12:1 acylcarnitine levels (WT 0.01 μM vs. KO 0.04 μM, P<0.01). Overall, the phenotypic presentation of Eci1-deficient mice is mild, possibly caused by the presence of a second enoyl-CoA isomerase (Eci2) in mitochondria. Knockdown of Eci2 in Eci1-deficient fibroblasts caused a more pronounced accumulation of C12:1 acylcarnitine on incubation with unsaturated fatty acids (12-fold, P<0.05). We conclude that Eci2 compensates for Eci1 deficiency explaining the mild phenotype of Eci1-deficient mice. Hypoglycemia and accumulation of C12:1 acylcarnitine might be diagnostic markers to identify ECI1 deficiency in humans.

  1. Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities

    PubMed Central

    Morais, Selene M.; Silva, Katherine A.; Araujo, Halisson; Vieira, Icaro G.P.; Alves, Daniela R.; Fontenelle, Raquel O.S.; Silva, Artur M.S.

    2017-01-01

    Anacardic acids are the main constituents of natural cashew nut shell liquid (CNSL), obtained via the extraction of cashew shells with hexane at room temperature. This raw material presents high technological potential due to its various biological properties. The main components of CNSL are the anacardic acids, salicylic acid derivatives presenting a side chain of fifteen carbon atoms with different degrees of unsaturation (monoene–15:1, diene–15:2, and triene–15:3). Each constituent was isolated by column chromatography using silica gel impregnated with silver nitrate. The structures of the compounds were characterized by nuclear magnetic resonance through complete and unequivocal proton and carbon assignments. The effect of the side chain unsaturation was also evaluated in relation to antioxidant, antifungal and anticholinesterase activities, and toxicity against Artemia salina. The triene anacardic acid provided better results in antioxidant activity assessed by the inhibition of the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), higher cytotoxicity against A. salina, and acetylcholinesterase (AChE) inhibition. Thus, increasing the unsaturation of the side chain of anacardic acid increases its action against free radicals, AChE enzyme, and A. salina nauplii. In relation to antifungal activity, an inverse result was obtained, and the linearity of the molecule plays an important role, with monoene being the most active. In conclusion, the changes in structure of anacardic acids, which cause differences in polarity, contribute to the increase or decrease in the biological activity assessed. PMID:28300791

  2. Selective Mono-reduction of Pyrrole-2,5 and 2,4-Dicarboxylates.

    PubMed

    Yasui, Eiko; Tsuda, Jyunpei; Ohnuki, Satoshi; Nagumo, Shinji

    2016-01-01

    Pyrrole-2,5-dicarboxylates were rapidly and selectively reduced to the corresponding mono-alcohol using 3 eq of diisobutylaluminum hydride at 0°C. Pyrrole-2,4-dicarboxylate showed the same reactivity; however, the selectivity decreased with pyrrole-3,4-dicarboxylate. When the nitrogen atom of the pyrrole-2,5-dicarboxylate is protected with a benzyl group, selective mono-reduction does not occur. Considering that furan-2,5-dicarboxylates did not give the corresponding mono-alcohol under the same conditions, the unprotected nitrogen atom of pyrrole apparently plays an important role in this selective mono-reduction.

  3. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    PubMed

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthesis of ω-Oxo Amino Acids and trans-5-Substituted Proline Derivatives Using Cross-Metathesis of Unsaturated Amino Acids.

    PubMed

    Salih, Nabaz; Adams, Harry; Jackson, Richard F W

    2016-09-16

    A range of 7-oxo, 8-oxo, and 9-oxo amino acids, analogues of 8-oxo-2-aminodecanoic acid, one of the key components of the cyclic tetrapeptide apicidin, have been prepared by a three-step process involving copper-catalyzed allylation of serine-, aspartic acid-, and glutamic acid-derived organozinc reagents, followed by cross-metathesis of the resulting terminal alkenes with unsaturated ketones and hydrogenation. The intermediate 7-oxo-5-enones underwent a highly diastereoselective (dr ≥96:4) acid-catalyzed aza-Michael reaction to give trans-2,5-disubstituted pyrrolidines, 5-substituted proline derivatives. The aza-Michael reaction was first observed when the starting enones were allowed to stand in solution in deuterochloroform but can be efficiently promoted by catalytic amounts of dry HCl.

  5. Cyclopropanation of Membrane Unsaturated Fatty Acids Is Not Essential to the Acid Stress Response of Lactococcus lactis subsp. cremoris ▿

    PubMed Central

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-01-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-l-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells. PMID:21421775

  6. Pyridine 2,4-dicarboxylic acid suppresses tomato seedling growth

    NASA Astrophysics Data System (ADS)

    Fragkostefanakis, Sotirios; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2018-01-01

    Pyridine 2,4-dicarboxylic acid is a structural analogue of 2-oxoglutarate and is known to inhibit 2-oxoglutare-dependent dioxygenases. The effect of this inhibitor in tomato seedlings grown in MS media supplied with various concentrations of PDCA was investigated, resulting in shorter roots and hypocotyls in a dose-dependent manner. The partial inhibition of growth in roots was more drastic compared to hypocotyls and was attributed to a decrease in the elongation of root and hypocotyl cells. Concentrations of 100 and 250 μΜ of PDCA decreased hydroxyproline content in roots while only the 250 μΜ treatment reduced the hydroxyproline content in shoots. Seedlings treated with 100 μΜ PDCA exhibited enhanced growth of hypocotyl and cotyledon cells and higher hydroxyproline content resulting in cotyledons with greater surface area. However, no alterations in hypocotyl length were observed. Prolyl 4 hydroxylases (P4Hs) are involved in the O-glycosylation of AGPs and were also highly expressed during seedling growth. Moreover PDCA induced a decrease in the accumulation of HRGPs and particularly in AGPs-bound epitopes in a dose dependent-manner while more drastic reduction were observed in roots compared to shoots. In addition, bulged root epidermal cells were observed at the high concentration of 250 μΜ which is characteristic of root tissues with glycosylation defects. These results indicate that PDCA induced pleiotropic effects during seedling growth while further studies are required to better investigate the physiological significance of this 2-oxoglutarate analogue. This pharmacological approach might be used as a tool to better understand the physiological significance of HRGPs and probably P4Hs in various growth and developmental programs in plants.

  7. Distribution of glycolipid and unsaturated fatty acids in human hair.

    PubMed

    Takahashi, Toshie; Yoshida, Satoshi

    2014-09-01

    It has been recognized that human hair lipids play crucial roles in the integrity of cells and matrices, while the details of distribution and structure of the minor lipids are hardly known. Here we investigated the lipids at the hair surface, at the interface between cuticle and cortex and in the interior of hair (cortex, medulla and melanin granules). Hair lipids and fatty acids and their metabolites were detected and characterized by using infrared spectroscopy and several mass spectrometry techniques (FTIR, ToF-SIMS, GCMS, and ESI-MS). As a result, it was found that unsaturated fatty acids were present more in the cortex of hair than at the hair surface. At the interface between cuticle and cortex, it is suggested that steryl glycoside-like lipids containing N-acetylglucosamine were present, and contributing to the adhesion between the cuticle and cortex of hair. Oxidative metabolites derived from integral fatty acids such as linoleic and alpha-linolenic acids were found in the hair bulb and melanin granules. Especially the oxidative metabolites of alpha-linolenic acid were integrated into the lipids non-covalently and tightly bound to melanin granules (namely, melanin lipids) and suggested as being involved in the biosynthetic processes of melanosome.

  8. Modification of the technical properties of Lactobacillus johnsonii NCC 533 by supplementing the growth medium with unsaturated fatty acids.

    PubMed

    Muller, J A; Ross, R P; Sybesma, W F H; Fitzgerald, G F; Stanton, C

    2011-10-01

    The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical

  9. Synthesis and physicochemical properties of the furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, an inhibitor of plasma protein binding in uraemia.

    PubMed

    Costigan, M G; Gilchrist, T L; Lindup, W E

    1996-06-01

    The furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (5-propyl FPA) accumulates in the plasma of patients with chronic renal failure and is a major contributor to the drug binding defect of uraemic plasma. This acid has also been implicated in several other aspects of the uraemic syndrome: anaemia, irregularities of thyroid function, neurological symptoms and inhibition of active tubular secretion. The acid is not commercially available and its synthesis, starting with Meldrum's acid and methyl succinyl chloride, is described. The pKa values were measured by titration and values of 3.2 and 3.6 respectively were assigned to the carboxylic acid groups attached directly to the ring at position 3 and at position 2 (on the side-chain). The partition coefficient (log P) between hydrochloric acid and octanol was 1.2 and the distribution coefficient (log D; octanol-phosphate buffer pH 7.4) was -0.59. The pKa values and the degree of hydrophobic character of 5-propyl FPA are consistent with those of other protein-bound acids which undergo active tubular secretion by the kidney and this substance may serve as an endogenous marker for the effects of drugs and disease on this process.

  10. Water-soluble dicarboxylic acids and ketocarboxylic acids in the aerosols collected during ACE-Asia/C-130 aircraft campaign 2001

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Mochida, M.; Uemoto, N.; Bertram, T.; Huebert, B.

    2001-12-01

    During the ACE-Asia campaign with C-130 aircraft, aerosol samples were collected over the western North Pacific, East China Sea, and Japan Sea, as well as over Japanese Islands and Korean Peninsula in 8 April to 3 May 2001. The filter samples (N=15) were extracted with organic-free pure water to separate water-soluble dicarboxylic acids and related compounds. The extracts were reacted with 14% BF3 in n-butanol and the dibutyl esters and other derivatives were determined using a capillary GC and GC/MS. The results showed that 14 species of diacids (C2-C11) and 4 species of ketoacids (C2-C4) were detected in the aerosols over the East Asia. Total concentrations of the diacids were 113-500 (av. 330) ng/m3 whereas those of ketoacids were 43-260 (av. 103) ng/m3. The concentrations are equivalent to or more abundant than those reported for the urban Tokyo atmosphere in this season on the ground level. All the samples showed that oxalic acid (C2) is the most abundant diacid, which accounted for 58-83% of total diacids. These values are greater than that (ca. 50%) reported in the urban air near the ground, suggesting that oxalic acid is preferentially produced and/or longer diacids are selectively decomposed in the upper troposphere. Malonic (C3) acid is the second most abundant species followed by succinic (C4) acid. Longer diacids are less abundant, but azelaic (C9) acid is generally more abundant than C6-C8 diacids. Glyoxylic acid (C2) is the most abundant ketoacid followed by pyruvic acid. However, C3 and C4 omega-oxoacids were found as minor species. Although oxalic acid is the dominant component in the aerosols, few samples showed the predominance of glyoxylic acid over oxalic acid. This feature has not been reported for the urban aerosols collected near the ground level. We will discuss a potential photochemical production of water-soluble organic acids in the upper troposphere over the eastern ridge of the Asian continent.

  11. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    PubMed

    Wei, Yongyue; Wang, Zhaoxi; Chang, Chiung-yu; Fan, Tianteng; Su, Li; Chen, Feng; Christiani, David C

    2013-01-01

    Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5) exposure (p<0.05). The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI) = -0.013(-0.022 ≈ -0.004); p = 0.005], docosapentaenoic acid n3 [β(95% CI) = -0.010(-0.018 ≈ -0.002); p = 0.017], and docosapentaenoic acid n6 [β(95% CI) = -0.007(-0.013 ≈ -0.001); p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009). The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  12. Biodegradation, sorption, and transport of 2,4-dichlorophenoxyacetic acid in saturated and unsaturated soils.

    PubMed Central

    Estrella, M R; Brusseau, M L; Maier, R S; Pepper, I L; Wierenga, P J; Miller, R M

    1993-01-01

    The fate of an organic contaminant in soil depends on many factors, including sorption, biodegradation, and transport. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model compound to illustrate the impact of these interacting factors on the fate of an organic contaminant. Batch and column experiments performed with a sandy loam soil mixture under saturated and unsaturated conditions were used to determine the effects of sorption and biodegradation on the fate and transport of 2,4-D. Sorption of 2,4-D was found to have a slight but significant effect on transport of 2,4-D under saturated conditions (retardation factor, 1.8) and unsaturated conditions (retardation factor, 3.4). Biodegradation of 2,4-D was extensive under both batch and column conditions and was found to have a significant impact on 2,4-D transport in column experiments. In batch experiments, complete mineralization of 2,4-D (100 mg kg-1) occurred over a 4-day period following a 3-day lag phase under both saturated and unsaturated conditions. The biodegradation rate parameters calculated for batch experiments were found to be significantly different from those estimated for column experiments. PMID:8285717

  13. Comparative evaluation of manganese peroxidase- and Mn(III)-initiated peroxidation of C18 unsaturated fatty acids by different methods

    Treesearch

    Alexander N. Kapich; Tatyana V. Korneichik; Kenneth E. Hammel; Annele Hatakka

    2011-01-01

    The peroxidation of C18 unsaturated fatty acids by fungal manganese peroxidase (MnP)/Mn(II) and by chelated Mn(III) was studied with application of three different methods: by monitoring oxygen consumption, by measuring conjugated dienes and by thiobarbituric acid-reactive substances (TBARS) formation. All tested polyunsaturated fatty acids (PUFAs) were oxidized by MnP...

  14. Synthesis, characterization and biological activities of metal(II) dipicolinate complexes derived from pyridine-2,6-dicarboxylic acid and 2-(piperazin-1-yl)ethanol

    NASA Astrophysics Data System (ADS)

    Büyükkıdan, Nurgün; Yenikaya, Cengiz; İlkimen, Halil; Karahan, Ceyda; Darcan, Cihan; Korkmaz, Tülin; Süzen, Yasemin

    2015-12-01

    The new water-soluble and air stable compounds (H2ppz)[Co(dipic)2]·6H2O (1), (H2ppz)[Ni(dipic)2]·6H2O (2) and (H2ppz)[Zn(dipic)2]·6H2O (3) were prepared by the reaction of corresponding metal(II) acetates and a proton transfer salt, (H2ppz) (Hdipic)2, (4) of pyridine-2,6-dicarboxylic acid (H2dipic) and 2-(piperazin-1-yl)ethanol (ppz). The compounds 1-3 were characterized by elemental, IR, UV-vis. thermal analyses, magnetic measurement and single crystal X-ray diffraction studies. The molecular structures of the title compounds consist of one 1-(2-hydroxyethyl)piperazine-1,4-diium (H2ppz+2) cation, one bis(pyridine-2,6-dicarboxylate)metal(II) [M(dipic)2]2- anion, and six uncoordinated water molecules. In compounds 1-3 the metal ions coordinate to two oxygen and one nitrogen atoms of two pyridine-2,6-dicarboxylate molecules forming an octahedral environment. Antimicrobial activities against Gram (-) wild type (Escherichia coli and Pseudomonas aeruginosa), Gram (+) wild type (Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus and Bacillus subtilis) and clinical isolate (Morganella morganii, Proteus vulgaris and Enterobacter aeruginosa) were also studied. The results were reported, discussed and compared with the corresponding starting materials ((H2ppz) (Hdipic)2 (4), H2dipic and ppz). MIC (Minimal Inhibition Concentration) values of the newly synthesized compounds were determined as 4000 μg/ml (except B. subtilis and clinical isolate E. aeruginosa, >4000 μg/ml).

  15. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    PubMed

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  16. Oxidizability of unsaturated fatty acids and of a non-phenolic lignin structure in the manganese peroxidase-dependent lipid peroxidation system

    Treesearch

    Alexander N. Kapich; Tatyana V. Korneichik; Annele Hatakka; Kenneth E. Hammel

    2010-01-01

    Unsaturated fatty acids have been proposed to mediate the oxidation of recalcitrant, non-phenolic lignin structures by fungal manganese peroxidases (MnP), but their precise role remains unknown. We investigated the oxidizability of three fatty acids with varying degrees of polyunsaturation (linoleic, linolenic, and arachidonic acids) by measuring conjugated dienes...

  17. Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in fine aerosols over central Alaska: Implications for sources and atmospheric processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Mozammel Haque, Md.; Kawamura, Kimitaka; Kim, Yongwon

    2018-04-01

    The presence of water-soluble dicarboxylic acids in atmospheric aerosols has a significant influence on the regional radiative forcing through direct aerosol effect and cloud formation process. Fine aerosol (PM2.5) samples collected in central Alaska (Fairbanks: 64.51°N and 147.51°W) during summer of 2009 were measured for water-soluble diacids (C2-C12), oxoacids (C2-C9) and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC) and water-soluble OC (WSOC) to assess their sources and formation processes. We found the predominance of oxalic acid (C2) followed by malonic (C3) and succinic acid (C4) in Alaskan aerosols. Higher C3/C4 diacid ratios (ave. 1.2) in Alaskan aerosols than those reported for fresh aerosols emitted from fossil fuel combustion (ave. 0.35) and biomass burning (0.51-0.66) suggest that organic aerosols in central Alaska were photochemically processed. The relatively high correlations of major diacids and related compounds with levoglucosan (r = 0.80-0.99) than those with 2-methylglyceric acid (r = 0.59-0.98) suggest that they were significantly produced from biomass burning emission. Strong correlations of C2 with normal-chain saturated diacids (C3-C9: r = 0.80-0.98), glyoxylic acid (ωC2: r = 0.95) and methylglyoxal (MeGly: r = 0.88), together with strong correlations of solar radiation with ratio of C2 to C2-C12 diacids (r = 0.83), ωC2 (r = 0.80) and MeGly (r = 0.82) suggest that oxalic acid in PM2.5 aerosol was produced by the photooxidation of higher homologous diacids, glyoxylic acid and methylglyoxal in the atmosphere of central Alaska. These results reveal that photochemical processing of organic precursors mainly produced from biomass burning control the water-soluble organic chemical composition of fine aerosols in central Alaska.

  18. Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF).

    PubMed

    Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom

    2014-08-01

    Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family-MurC, MurD, MurE and MurF-are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park's nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC-MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC-MurF enzymes in biochemical inhibition assays and molecules 10-14 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC-MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    USDA-ARS?s Scientific Manuscript database

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  20. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    PubMed

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Global Metabolomic Profiling Reveals an Association of Metal Fume Exposure and Plasma Unsaturated Fatty Acids

    PubMed Central

    Chang, Chiung-yu; Fan, Tianteng; Su, Li; Chen, Feng; Christiani, David C.

    2013-01-01

    Background Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. Objectives To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. Methods The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. Results Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5) exposure (p<0.05). The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [(95% CI) = −0.013(−0.022∼−0.004); p = 0.005], docosapentaenoic acid n3 [(95% CI) = −0.010(−0.018∼−0.002); p = 0.017], and docosapentaenoic acid n6 [(95% CI) = −0.007(−0.013∼−0.001); p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study−2011 = 0.025; p Study−2012 = 0.021; p Combined = 0.009). The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. Conclusions High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders. PMID:24143234

  2. Effects of long-term high-saturated and unsaturated fatty acid diets on relaxation and contraction of renal arteries in insulin resistant rats.

    PubMed

    Gao, Yu; Song, Guang-Yao; Ma, Hui-Juan; Zhang, Wen-Jie; Zhou, Yu

    2007-06-25

    The present study was designed to investigate the effects of high-saturated and high-unsaturated fatty acid diets on relaxation and contraction of the renal arteries in insulin resistance (IR) rats. Wistar rats were fed normal chow diet (control), high-saturated fatty acid diet or high-unsaturated fatty acid diet for 6 months (n=14 in each group). IR was evaluated by glucose infusion rate (GIR) of hyperinsulinemic euglycemic clamp. Blood pressure was measured via the tail-cuff method. Body weight (BW), plasma total triglyceride (TG), free fatty acid (FFA), insulin, fasting blood glucose (FBG) and nitric oxide metabolite (NO2(-)/NO3(-)) were compared among the three groups. The rats were sacrificed and the renal arterial rings were placed in the physiological tissue baths for measurement of vascular response to various agents. After the arterial rings were constricted with 3 mmol/L noradrenaline (NA), endothelium-dependent vasorelaxation to acetylcholine (ACh) and endothelium-independent vasorelaxation to sodium nitroprusside (NTP) were measured. Endothelium-dependent vasorelaxation to ACh was also observed in renal arterial rings incubated with L-arginine (L-Arg), N(omega)-nitro-L-arginine (L-NNA) and methylene blue (MB), respectively. Arterial contractility was evaluated from concentration-response curves to 10 nmol/L-100 micromol/L NA. Saturated or unsaturated fatty acids led to moderate rises in blood pressure (P<0.05). It was associated with higher levels of plasma lipids and lower whole body insulin sensitivity (P<0.01). There were no significant differences in BW, FBG, TG, insulin and FFA between saturated and unsaturated fatty acid-fed rats. A decrease in endothelium-dependent vasorelaxation of the renal arteries in saturated and unsaturated fatty acid-fed rats was observed (P<0.01), but there was no marked difference between the two high-fatty acid diet groups. Endothelium-dependent vasorelaxation was increased when the arteries were incubated with L

  3. Modification of the Technical Properties of Lactobacillus johnsonii NCC 533 by Supplementing the Growth Medium with Unsaturated Fatty Acids

    PubMed Central

    Muller, J. A.; Ross, R. P.; Sybesma, W. F. H.; Fitzgerald, G. F.; Stanton, C.

    2011-01-01

    The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical

  4. Unsaturated C3,5,7,9-Monocarboxylic Acids by Aqueous, One-Pot Carbon Fixation: Possible Relevance for the Origin of Life

    PubMed Central

    Scheidler, Christopher; Sobotta, Jessica; Eisenreich, Wolfgang; Wächtershäuser, Günter; Huber, Claudia

    2016-01-01

    All scientific approaches to the origin of life share a common problem: a chemical path to lipids as main constituents of extant cellular enclosures. Here we show by isotope-controlled experiments that unsaturated C3,5,7,9-monocarboxylic acids form by one-pot reaction of acetylene (C2H2) and carbon monoxide (CO) in contact with nickel sulfide (NiS) in hot aqueous medium. The primary products are toto-olefinic monocarboxylic acids with CO-derived COOH groups undergoing subsequent stepwise hydrogenation with CO as reductant. In the resulting unsaturated monocarboxylic acids the double bonds are mainly centrally located with mainly trans-configuration. The reaction conditions are compatible with an origin of life in volcanic-hydrothermal sub-seafloor flow ducts. PMID:27283227

  5. Supramolecular assembly of biphenyl dicarboxylic acid on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Zhu, N.; Osada, T.; Komeda, T.

    2007-04-01

    We investigate the structure of submonolayer film of 4,4'-biphenyl dicarboxylic acid (BDA) molecules on Au(1 1 1)-22 × √3 reconstructed surface with the use of scanning tunneling microscopy (STM). The BDA molecules form ordered structures on Au(1 1 1) surface which are commensurate with the substrate. We have concluded that the molecule-molecule interaction is mainly through hydrogen bonding formed by a straight dimer of BDA molecules. The straight dimer can be expressed as 4 s + 2 t or its six crystallographic equivalents using the unit vectors of the gold substrate of s and t. The length of hydrogen bonding (O-H-O) is estimated to be 0.31 nm assuming nearest neighbor distance of gold atoms of 0.275 nm. The ordering shows a clear contrast with the case of BDA on Cu(1 0 0) surface [S. Stepanow, N. Lin, F. Vidal, A. Landa, M. Ruben, J.V. Barth, K. Kern, Nanoletters 5 (2005) 901] in which a square type of ordering of molecules is observed by the formation of hydrogen bonding between a carboxylate (COO) and a benzene ring. The clear difference of the ordered structure on Cu(1 0 0) and Au(1 1 1) surface demonstrates that the absence (presence) of deprotonation of carboxyl group of BDA molecule on Au(1 1 1) (Cu(1 0 0)) switches the straight and square type ordering of BDA molecules.

  6. Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Ono, K.; Tachibana, E.; Charriére, B.; Sempéré, R.

    2012-11-01

    Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2) followed by malonic (C3) and/or succinic (C4) acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice was retreating. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m-3), except for one sample (up to 70 ng m-3) that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coast of Antarctica. Because the marine aerosols that showed a depletion of C2 were collected under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III) complex. We also determined stable carbon isotopic compositions (δ13C) of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed -26.5‰ (range: -29.7 to -24.7‰, suggesting that marine aerosol carbon is derived from both terrestrial and marine organic materials. In contrast, oxalic acid showed much larger δ13C values (average: -20.9‰, range

  7. Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Ono, K.; Tachibana, E.; Charriére, B.; Sempéré, R.

    2012-08-01

    Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2) followed by malonic (C3) and/or succinic (C4) acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice is retreated. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m-3), except for one sample (up to 70 ng m-3) that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coastal Antarctica. Because the marine aerosols that showed a depletion of C2 were observed under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III) complex. We also determined stable carbon isotopic compositions (δ13C) of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed -26.5‰ (range: -29.7‰ to -24.7‰), suggesting that marine aerosol carbon is derived from both terrestrial and marine organic materials. In contrast, oxalic acid showed much larger δ13C values (average: -20.9‰, range

  8. A new redox-active coordination polymer with cobalticinium dicarboxylate.

    PubMed

    Kondo, Mitsuru; Hayakawa, Yuri; Miyazawa, Makoto; Oyama, Aiko; Unoura, Kei; Kawaguchi, Hiroyuki; Naito, Tetsuyoshi; Maeda, Kenji; Uchida, Fumio

    2004-09-20

    A new two-dimensional coordination polymer with cobalticinium 1,1'-dicarboxylate (ccdc) incorporated in the framework has been prepared, the ccdc functioning as unique monoanionic dicarboxylate ligands. The compound shows a high redox activity based on the ccdc units. Copyright 2004 American Chemical Society

  9. Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.

    2010-06-01

    Tropical aerosol (PM10) samples (n = 49) collected from southeast coast of India were studied for water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal), together with analyses of total carbon (TC) and water-soluble organic carbon (WSOC). Their distributions were characterized by a predominance of oxalic acid followed by terephthalic (t-Ph), malonic, and succinic acids. Total concentrations of diacids (227-1030 ng m-3), ketoacids (16-105 ng m-3), and dicarbonyls (4-23 ng m-3) are comparative to those from other Asian megacities such as Tokyo and Hong Kong. t-Ph acid was found as the second most abundant diacid in the Chennai aerosols. This feature has not been reported previously in atmospheric aerosols. t-Ph acid is most likely derived from the field burning of plastics. Water-soluble diacids were found to contribute 0.4%-3% of TC and 4%-11% of WSOC. Based on molecular distributions and backward air mass trajectories, we found that diacids and related compounds in coastal South Indian aerosols are influenced by South Asian and Indian Ocean monsoons. Organic aerosols are also suggested to be significantly transported long distances from North India and the Middle East in early winter and from Southeast Asia in late winter, but some originate from photochemical reactions over the Bay of Bengal. In contrast, the Arabian Sea, Indian Ocean, and South Indian continent are suggested as major source regions in summer. We also found daytime maxima of most diacids, except for C9 and t-Ph acids, which showed nighttime maxima in summer. Emissions from marine and terrestrial plants, combined with land/sea breezes and in situ photochemical oxidation, are suggested especially in summer as an important factor that controls the composition of water-soluble organic aerosols over the southeast coast of India. Regional emissions from anthropogenic sources are also important in megacity Chennai, but their influence is

  10. Syntheses, structures, photoluminescence of four dicarboxylate-controlled Zn(II) coordination complexes incorporating flexible 1-(4-pyridylmethyl)-benzimidazole ligand

    NASA Astrophysics Data System (ADS)

    Hao, Hong-Jun; Du, Ming-Yue; Wang, Dan-Feng; Sun, Cheng-Jie; Wang, Zhan-Hui; Huang, Rong-Bin; Zheng, Lan-Sun

    2013-09-01

    Four Zn(II) coordination complexes, namely {[Zn(pmbm)2(tpa)]·H2O}n (1), {[Zn(pmbm)(phda)]·2(H2O)}n (2), [Zn(pmbm)(aze)]n (3), {[Zn(pmbm)(1,4-ndc)]·2(CH3OH)}n (4) [pmbm = 1-(4-pyridylmethyl)-benzimidazole, H2tpa = terephthalic acid, H2phda = phenylenediacetic acid, H2aze = azelaic acid, 1,4-ndcH2 = 1,4-naphthalenedicarboxylic acid] have been synthesized by solution phase ultrasonic reactions of Zn(AC)2·2H2O with pmbm and various dicarboxylates ligands under the ammoniacal condition. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Complexes 1 and 2 exhibit one-dimensional chains structure and complex 3 and 4 are two-dimensional sheets structure with (4,4) topology. Complexes 1-4 spanning from one-dimensional chains to two-dimensional sheets suggest that dicarboxylates play significant roles in the formation of such coordination architectures. The photoluminescences of the complexes were also investigated in the solid state at room temperature.

  11. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Molecular distribution, seasonal variation, chemical transformation and sources of dicarboxylic acids and related compounds in atmospheric aerosols at remote marine Gosan site, Jeju Island

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Kawamura, K.; Lee, M.

    2009-12-01

    : A homologous series of C2-C12 α, ω-dicarboxylic acids, ω-oxocarboxylic acids (C2-C9), pyruvic acid and α-dicarbonyls (C2-C3) were detected in atmospheric aerosols collected between April 2003 and April 2004 from remote marine Gosan site (33°29‧ N, 126°16‧ E) located in Jeju Island, South Korea. They were determined using a GC-FID and GC/MS. Total diacid concentration ranged from 130 to 1911 ng m-3 (av. 642 ng m-3), whereas total oxoacid concentration ranged from 7 to 155 ng m-3 (av. 43 ng m-3), and pyruvic acid and α-dicarbonyls ranged from 0.5 to 15 ng m-3 (av. 5 ng m-3) and 2-108 ng m-3 (av. 17.3 ng m-3), respectively. Oxalic (C2) acid was the most abundant in all seasons followed by malonic (C3) or succinic (C4) acid, and phthalic (Ph) acid. The concentration of diacids decreased with an increase in carbon number except for azelaic (C9) acid, which was more abundant than suberic (C8) acid. Glyoxylic acid was predominant ω-oxoacid contributing to 92% of total ω-oxoacid. Total diacids, oxoacids and dicarbonyls showed maximum concentrations in spring and occasionally in winter, while minimum concentrations were observed in summer. Air mass trajectory analysis suggests that either spring or winter maxima can be explained by strong continental outflow associated with cold front passages, while summer minima are associated with warm southerly flows, which transport clean marine air from low latitudes to Jeju Island. The comparison between total diacid concentration level of this study and other study results of urban and remote sites of East Asia reveals that Gosan site is more heavily influenced by the continental outflow from China. The seasonal variation of malonic/succinic (C3/C4), malic/succinic (hC4/C4), fumaric/maleic (F/M), oxalic/pyruvic (C2/Py) and oxalic/Glyoxal (C2/Gly) ratios showed maxima in summer due to an enhanced photo-production and degradation of diacids and related compounds. Throughout all seasons C3/C4 ratio at Gosan site, located

  13. Spatio-temporal distributions of dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid, α-dicarbonyls and fatty acids in the marine aerosols from the North and South Pacific

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka; Uematsu, Mitsuo

    2017-03-01

    Aerosol samples (TSP) were collected during a cruise in the North (3°05‧N-34°02‧N) and South (6°59‧S-25°46‧S) Pacific to investigate the spatio-temporal distributions of water-soluble dicarboxylic acids and related compounds. The molecular distributions of diacids were characterized by the predominance of oxalic (C2) acid followed by malonic (C3) and then succinic (C4) acid. However, we found a predominance of C4 over C3 in the aerosol sample that was collected in the western North Pacific Rim with a heavy influence from continental air masses. Atmospheric abundances of short chain diacids (C2-C4) are 2-3 times higher in the North Pacific than in the South Pacific. During the cruise, abundances of C2 in the western North Pacific are 5 times higher than those in the rest of the samples collected. Moreover, the aerosol samples collected in the western North Pacific demonstrated that glyoxylic (ωC2) acid and methylglyoxal (MeGly) were dominant together with C2. We found a strong correlation between C2 and ωC2 (r = 0.87) and C2 and MeGly (r = 0.97) in the western North Pacific aerosols but the correlations are significantly weak in the samples from the central North Pacific and Southern Ocean. Diacids were found to account for 1.6 to 14% of organic carbon with higher values in the western North Pacific. These results, together with 7-day backward air mass trajectories, indicate that ωC2 and MeGly are both originated from the photochemical oxidation of continent-derived organic precursors including isoprene, which can serve as precursors for the production of C2 during long-range atmospheric transport.

  14. Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations.

    PubMed

    Pérez-García, Fernando; Vasco-Cárdenas, María F; Barreiro, Carlos

    2016-09-02

    Production enhancement of industrial microbial products or strains has been traditionally tackled by mutagenesis with chemical methods, irradiation or genetic manipulation. However, the final yield increase must go hand in hand with the resistance increasing against the usual inherent toxicity of the final products. Few studies have been carried out on resistance improvement and even fewer on the initial selection of naturally-generated biotypes, which could decrease the artificial mutagenesis. This fact is vital in the case of GRAS microorganisms as Corynebacterium glutamicum involved in food, feed and cosmetics production. The characteristic wide diversity and plasticity in terms of their genetic material of Actinobacteria eases the biotypes generation. Thus, differences in morphology, glutamate and lysine production and growth in media supplemented with dicarboxylic acids were analysed in four biotypes of C. glutamicum ATCC 13032. A 2D-DIGE analysis of these biotypes growing with itaconic acid allowed us to define their differences. Thus, an optimized central metabolism and better protection against the generated stress conditions present the CgL biotype as a suitable platform for production of itaconic acid, which is used as a building block (e.g.: acrylic plastic). This analysis highlights the preliminary biotypes screening as a way to reach optimal industrial productions.

  15. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  16. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.

    PubMed

    Soe, Cho Z; Codd, Rachel

    2014-04-18

    To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical

  17. Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production.

    PubMed

    Lee, Heeseok; Sugiharto, Yohanes Eko Chandra; Lee, Seunghoon; Park, Gyuyeon; Han, Changpyo; Jang, Hyeran; Jeon, Wooyoung; Park, Heejoon; Ahn, Jungoh; Kang, Kyungbo; Lee, Hongwoen

    2017-08-01

    α, ω-Dicarboxylic acids (DCAs) are multipurpose chemicals widely used in polymers, perfumes, plasticizers, lubricants, and adhesives. The biotransformation of DCAs from alkanes and fatty acids by microorganisms has attracted recent interest, since synthesis via chemical oxidation causes problems in terms of the environment and safety. We isolated an ω-oxidizing yeast from a wastewater disposal facility of a petrochemical factory by chemostat enrichment culture. The haploid strain identified as Candida sorbophila DS02 grew on glucose and dodecane, exhibiting greater cell shrinkage on the latter. In flask cultures with mixed alkanes (C10-16) and fatty acid methyl esters (C10-16), DS02 used mixed alkanes simultaneously unlike Candida tropicalis and Yarrowia lipolytica and showed high substrate resistance. In flask cultures with acrylic acid-a known inhibitor of β-oxidation-DS02 produced 0.28 g/l dodecanedioic acid (DDDA) from dodecane, similar to wild-type C. tropicalis ATCC 20336. In fed-batch fermentation, DS02 produced 9.87 g/l DDDA, which was 5.7-fold higher than wild-type C. tropicalis. These results suggest that C. sorbophila strain DS02 has potential applications for the large-scale production of DCA.

  18. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  19. Gas chromatography/trace analysis of derivatized azelaic acid as a stability marker.

    PubMed

    Alzweiri, Muhammed; Tarawneh, Ruba; Khanfar, Mohammad A

    2013-10-01

    Azelaic acid, a naturally occurring saturated dicarboxylic acid, is found in many topical formulations for its various medical benefits or as a byproduct of the oxidative decomposition of unsaturated fatty acids. The poor volatility of azelaic acid hinders its applicability in GC analysis. Therefore, azelaic acid was derivatized by methylation and silylation procedures to enhance its volatility for GC analysis. Accordingly, dimethyl azelate (DMA) and di(trimethylsilyl) azelate were synthesized and characterized by GC-MS. Subsequently, a GC with flame ionization detection method was developed and validated to analyze trace amounts of azelaic acid in some marketed skin creams. Unlike DMA, di(trimethylsilyl) azelate was chemically unstable and degraded within few hours. Nonane was used as a stable internal standard. Variability due to derivatization and extraction was controlled by a standard addition procedure. DMA analysis was linear in a wide concentration range (100 ng/mL to 100 mg/mL). Moreover, the method was accurate (96.4-103.4%) and precise with inter- and intraday variability <2.0% and LOQ and LOD of 100 and 10 ng/mL, respectively. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids.

    PubMed

    Wang, Jun; Wang, Xu-Dong; Zhao, Xing-Yu; Liu, Xi; Dong, Tao; Wu, Fu-An

    2015-05-01

    Novel structured triacylglycerols (STAGs) enriched with unsaturated fatty acids (UFAs) and low palmitic acid (PA) content were firstly synthesized from Schizochytrium sp. oil and oleic acid (OA) via solvent-free acidolysis catalyzed by Lipozyme RM IM. The results indicated that, the PA content decreased from 24.49% to 6.95%, while the UFAs content increased from 70.20% to 90.9% at the sn-1,3 positions in the STAGs under the optimal condition (i.e., lipase load of 7%, molar ratio of microalgae oil TAGs to OA of 1:3, and temperature of 65 °C). The lipase Lipozyme RM IM could be reused 16 times without significant loss of activity. The improved plastic and storage ranges of STAGs are useful for infant formula formulations, by which a possible method is blending of this product and 1,3-dioleoyl-2-palmitoylglycerol enriched fats and minor lipids based on the corresponding chemical compositions of human milk fat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  2. Metabolic Flux Between Unsaturated and Saturated Fatty Acids is Controlled by the FabA:FabB Ratio in the Fully Reconstituted Fatty Acid Biosynthetic Pathway of E. coli#

    PubMed Central

    Xiao, Xirui; Yu, Xingye; Khosla, Chaitan

    2013-01-01

    The entire fatty acid biosynthetic pathway from Escherichia coli, starting from the acetyl-CoA carboxylase, has been reconstituted in vitro from fourteen purified protein components. Radiotracer analysis verified stoichiometric conversion of acetyl-CoA and NAD(P)H into the free fatty acid product, allowing implementation of a facile spectrophotometric assay for kinetic analysis of this multi-enzyme system. At steady state, a maximum turnover rate of 0.5 s−1 was achieved. Under optimal turnover conditions, the predominant products were C16 and C18 saturated as well as monounsaturated fatty acids. The reconstituted system allowed us to quantitatively interrogate the factors that influence metabolic flux toward unsaturated versus saturated fatty acids. In particular, the concentrations of the dehydratase FabA and the β-ketoacyl synthase FabB were found to be crucial for controlling this property. By altering these variables, the percentage of unsaturated fatty acid produced could be adjusted between 10 and 50% without significantly affecting the maximum turnover rate of the pathway. Our reconstituted system provides a powerful tool to understand and engineer rate-limiting and regulatory steps in this complex and practically significant metabolic pathway. PMID:24147979

  3. Aircraft measurement of dicarboxylic acids in the free tropospheric aerosols over the western to central North Pacific

    NASA Astrophysics Data System (ADS)

    Narukawa, M.; Kawamura, K.; Okada, K.; Zaizen, Y.; Makino, Y.

    2003-07-01

    Aircraft observation of aerosols was conducted in February 2000, for spatial and vertical distributions of dicarboxylic acids in the free troposphere over the western to central North Pacific. Oxalic, malonic, adipic and azelaic acids were detected in the aerosol samples as the major species. Concentrations of these diacids decreased exponentially with an increase in altitude. They were higher in the western North Pacific (130°E) and decrease eastward. Local flights conducted over Naha (Okinawa), Iwo-jima and Saipan showed that diacid concentrations decreased from the lower to upper troposphere. In the atmosphere over Saipan, where the air is not strongly affected from polluted East Asia, diacid concentrations were almost below the detection limit. Vertical profiles of diacids over Naha and Iwo-jima would be typical over the western North Pacific during winter, suggesting that diacids were significantly injected to the free troposphere from East Asia. Backward air mass trajectories also suggested that the diacids in the free troposphere over the North Pacific are strongly affected by the outflow from East Asia. Diacids, which were produced by both primary emission and secondary photochemical processes in polluted air of East Asia, could alter the physico-chemical properties of aerosols in the free troposphere over the western North Pacific.

  4. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties.

    PubMed

    Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo; Hajfathalian, Mona; Jacobsen, Charlotte

    2018-03-01

    Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). Gas chromatography of fatty acid methyl esters revealed that common carp roe oil contained high levels of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids.

    PubMed

    Tran, Nhiem; Mulet, Xavier; Hawley, Adrian M; Fong, Celesta; Zhai, Jiali; Le, Tu C; Ratcliffe, Julian; Drummond, Calum J

    2018-02-27

    Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.

  6. One- and two-dimensional divalent copper coordination polymers based on kinked organodiimine and long flexible aliphatic dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Mallika Krishnan, Subhashree; Supkowski, Ronald M.; LaDuca, Robert L.

    2008-11-01

    Hydrothermal synthesis under acidic conditions has afforded a pair of divalent copper coordination polymers containing the kinked dipodal tethering organodiimine 4,4'-dipyridylamine (dpa) and flexible long-chain aliphatic dicarboxylate ligands. The new materials were characterized by single crystal X-ray structure determination, infrared spectroscopy, and thermogravimetric analysis. [CuCl(suberate) 0.5(dpa)] ( 1) manifests 1-D ladder-like motifs aggregated into 3-D through hydrogen bonding and copper-mediated supramolecular interactions. Extension of the aliphatic chain within the dicarboxylate ligand by one methylene unit resulted in {[Cu(azelate)(dpa)(H 2O)] · 3H 2O} ( 2), a (4,4) rhomboid grid 2-D coordination polymer encapsulating acyclic water molecule trimers.

  7. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    PubMed

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  8. The Staphylococcus aureus Response to Unsaturated Long Chain Free Fatty Acids: Survival Mechanisms and Virulence Implications

    PubMed Central

    Kenny, John G.; Ward, Deborah; Josefsson, Elisabet; Jonsson, Ing-Marie; Hinds, Jason; Rees, Huw H.; Lindsay, Jodi A.; Tarkowski, Andrej; Horsburgh, Malcolm J.

    2009-01-01

    Staphylococcus aureus is an important human commensal and opportunistic pathogen responsible for a wide range of infections. Long chain unsaturated free fatty acids represent a barrier to colonisation and infection by S. aureus and act as an antimicrobial component of the innate immune system where they are found on epithelial surfaces and in abscesses. Despite many contradictory reports, the precise anti-staphylococcal mode of action of free fatty acids remains undetermined. In this study, transcriptional (microarrays and qRT-PCR) and translational (proteomics) analyses were applied to ascertain the response of S. aureus to a range of free fatty acids. An increase in expression of the σB and CtsR stress response regulons was observed. This included increased expression of genes associated with staphyloxanthin synthesis, which has been linked to membrane stabilisation. Similarly, up-regulation of genes involved in capsule formation was recorded as were significant changes in the expression of genes associated with peptidoglycan synthesis and regulation. Overall, alterations were recorded predominantly in pathways involved in cellular energetics. In addition, sensitivity to linoleic acid of a range of defined (sigB, arcA, sasF, sarA, agr, crtM) and transposon-derived mutants (vraE, SAR2632) was determined. Taken together, these data indicate a common mode of action for long chain unsaturated fatty acids that involves disruption of the cell membrane, leading to interference with energy production within the bacterial cell. Contrary to data reported for other strains, the clinically important EMRSA-16 strain MRSA252 used in this study showed an increase in expression of the important virulence regulator RNAIII following all of the treatment conditions tested. An adaptive response by S. aureus of reducing cell surface hydrophobicity was also observed. Two fatty acid sensitive mutants created during this study were also shown to diplay altered pathogenesis as assessed

  9. Humic Acid Effects on the Transport of Colloidal Particles in Unsaturated Porous Media: Humic Acid Dosage, pH, and Ionic Strength Dependence

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Gao, B.; Steenhuis, T. S.

    2008-12-01

    Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column

  10. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-08-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  11. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  12. Seasonal variations of low molecular weight hydroxy-dicarboxylic acids and oxaloacetic acid in remote marine aerosols from Chichijima Island in the western North Pacific (December 2010-November 2011)

    NASA Astrophysics Data System (ADS)

    Gowda, Divyavani; Kawamura, Kimitaka

    2018-05-01

    Concentrations of homologous hydroxy-dicarboxylic acids (diacids) (hC3-hC6) and keto-diacid (oxaloacetic acid) were measured in the atmospheric aerosols collected at Chichijima Island (27.04° N, 142.13° E) in the western North Pacific from December 2010 to November 2011. The monthly averaged concentrations of hydroxy-diacids and oxaloacetic acid were significantly higher in spring followed by winter and autumn. Molecular distributions of hydroxy-diacids demonstrated that malic acid was the most abundant species in all four seasons, followed by tartronic acid in winter and spring and 3- and 2-hydroxyglutaric acids in summer and autumn. Hydroxy-diacids and keto-diacid maximized in spring and winter when air masses originated from the Asian continent with westerly winds. The concentrations of total hydroxy-diacids and oxaloacetic acid ranged from 0.1 to 27.3 ng m-3 and <0.005 to 2 ng m-3, respectively. The enhanced concentrations of diacids and their intermediates in winter and spring are associated with a long-range atmospheric transport of pollutants from East Asia to remote Chichijima Island followed by photochemical processing of organic aerosols. Seasonal molecular distribution of hydroxy-diacids and oxaloacetic acid was found to be dependent on the source strengths and plausible photochemical processing to form smaller diacids. Moderate to strong correlations among hydroxy-diacids, oxaloacetic acid and low molecular weight (LMW) diacids suggest that hydroxy-diacids and oxaloacetic acid are the intermediates in the photochemical oxidation of LMW diacid. Hence, photochemical formation of the most abundant LMW diacids, i.e., oxalic acid, could be produced from hydroxy- and keto-diacid as intermediates.

  13. Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhao, Wanyu; Kawamura, Kimitaka; Yue, Siyao; Wei, Lianfang; Ren, Hong; Yan, Yu; Kang, Mingjie; Li, Linjie; Ren, Lujie; Lai, Senchao; Li, Jie; Sun, Yele; Wang, Zifa; Fu, Pingqing

    2018-02-01

    This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5) in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m-3, whereas oxoacids (9.50-353 ng m-3) and dicarbonyls (1.50-85.9 ng m-3) were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh), a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m-3) and tPh (48.7 ± 51.1 ng m-3) were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 / C4) were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of -17.1 ± 3.9 ‰ (winter) and -17.1 ± 2.0 ‰ (spring), while malonic acid is more enriched in 13C than others in autumn (-17.6 ± 4.6 ‰) and summer (-18.7 ± 4.0 ‰). The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our study demonstrates that in addition to photochemical oxidation, high abundances of diacids

  14. Saturated and Unsaturated Fatty Acids Differently Modulate Colonic Goblet Cells In Vitro and in Rat Pups.

    PubMed

    Benoit, Bérengère; Bruno, Jérémie; Kayal, Fanny; Estienne, Monique; Debard, Cyrille; Ducroc, Robert; Plaisancié, Pascale

    2015-08-01

    High-fat diets induce intestinal barrier alterations and promote intestinal diseases. Little is known about the effects of long-chain fatty acids (LCFAs) on mucin 2 (MUC2) production by goblet cells, which are crucial for intestinal protection. We investigated the effects of LCFAs on the differentiation of colonic goblet cells, MUC2 expression, and colonic barrier function. Upon reaching confluence, human colonic mucus-secreting HT29-MTX cells were stimulated (21 d) with a saturated LCFA (palmitic or stearic acid), a monounsaturated LCFA (oleic acid), or a polyunsaturated LCFA (linoleic, γ-linolenic, α-linolenic, or eicosapentaenoic acid). In addition, rat pups underwent oral administration of oil (palm, rapeseed, or sunflower oil) or water (10 μL/g body weight, postnatal days 10-15). Subsequently, colon goblet cells were studied by Western blotting, reverse transcriptase-quantitative polymerase chain reaction, and immunohistochemistry and colonic transmucosal electrical resistance was measured by using Ussing chambers. In vitro, palmitic acid enhanced MUC2 production (140% of control) and hepatocyte nuclear factor 4α expression, whereas oleic, linoleic, γ-linolenic, α-linolenic, and eicosapentaenoic acids reduced MUC2 expression (at least -50% of control). All unsaturated LCFAs decreased the expression of human atonal homolog 1, a transcription factor controlling goblet cell differentiation (at least -31% vs. control). In vivo, rats fed palm oil had higher palmitic acid concentrations (3-fold) in their colonic contents and increased mucus granule surfaces in their goblet cells (>2-fold) than did all other groups. Palm oil also increased colonic transmucosal electrical resistance (245% of control), yet had no effect on occludin and zonula occludens-1 expression. In contrast, sunflower and rapeseed oils decreased goblet cell number when compared with control (at least -10%) and palm oil (at least -14%) groups. Palm oil in rat pups and palmitic acid in HT29-MTX

  15. High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo; Fu, Pingqing

    2014-05-01

    Atmospheric dicarboxylic acids (DCA) are a ubiquitous water-soluble component of secondary organic aerosols (SOA), which can act as cloud condensation nuclei (CCN), affecting the Earth's climate. Despite the high abundances of oxalic acid and related compounds in the marine aerosols, there is no consensus on what controls their distributions over the open ocean. Marine biological productivity could play a role in the production of DCA, but there is no substantial evidence to support this hypothesis. Here we present latitudinal distributions of DCA, oxoacids and α-dicarbonyls in the marine aerosols from the remote Pacific. Their concentrations were found several times higher in more biologically influenced aerosols (MBA) than less biologically influenced aerosols. We propose isoprene and unsaturated fatty acids as sources of DCA as inferred from significantly higher abundances of isoprene-SOA tracers and azelaic acid in MBA. These results have implications toward the reassessment of climate forcing feedbacks of marine-derived SOA.

  16. Decomposing potassium peroxychromate produces hydroxyl radical (.OH) that can peroxidize the unsaturated fatty acids of phospholipid dispersions.

    PubMed

    Edwards, J C; Quinn, P J

    1982-09-01

    The unsaturated fatty acyl residues of egg yolk lecithin are selectively removed when bilayer dispersions of the lipid are exposed to decomposing peroxychromate at pH 7.6 or pH 9.0. Mannitol (50 mM or 100 mM)partially prevents the oxidation of the phospholipid due to decomposing peroxychromate at pH 7.6 and the amount of lipid lost is inversely proportional to the concentration of mannitol. N,N-Dimethyl-p-nitrosoaniline, mixed with the lipid in a molar ratio of 1.3:1, completely prevents the oxidation of lipid due to decomposing peroxychromate at pH 9.0, but some linoleic acid is lost if the incubation is done at pH 7.6. If the concentration of this quench reagent is reduced tenfold, oxidation of linoleic acid by decomposing peroxychromate at pH 9.0 is observed. Hydrogen peroxide is capable of oxidizing the unsaturated fatty acids of lecithin dispersions. Catalase or boiled catalase (2 mg/ml) protects the lipid from oxidation due to decomposing peroxychromate at pH 7.6 to approximately the same extent, but their protective effect is believed to be due to the non-specific removal of .OH. It is concluded that .OH is the species responsible for the lipid oxidation caused by decomposing peroxychromate. This is consistent with the observed bleaching of N,N-dimethyl-p-nitrosoanaline and the formation of a characteristic paramagnetic .OH adduct of the spin trap, 5,5-dimethylpyrroline-1-oxide.

  17. Alternative plasticizer, 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester, for blood containers with protective effects on red blood cells and improved cold resistance.

    PubMed

    Morishita, Yuki; Nomura, Yusuke; Fukui, Chie; Fujisawa, Ayano; Watanabe, Kayo; Fujimaki, Hideo; Kumada, Hidefumi; Inoue, Kaoru; Morikawa, Tomomi; Takahashi, Miwa; Kawakami, Tsuyoshi; Sakoda, Hideyuki; Mukai, Tomokazu; Yuba, Toshiyasu; Inamura, Ken-Ichi; Tanoue, Akito; Miyazaki, Ken-Ichi; Chung, Ung-Il; Ogawa, Kumiko; Yoshida, Midori; Haishima, Yuji

    2018-04-01

    Di (2-ethylhexyl) phthalate (DEHP), a typical plasticizer used for polyvinyl chloride (PVC), is eluted from PVC-made blood containers and protects against red blood cell (RBC) hemolysis. However, concerns have arisen regarding the reproductive and developmental risks of DEHP in humans, and the use of alternative plasticizers for medical devices has been recommended worldwide. In this study, we propose that the use of a novel plasticizer, 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester (DL9TH), could help produce more useful and safe blood containers. PVC sheet containing DL9TH and di (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (DOTH) provides comparable or superior protective effects to RBCs relative to PVC sheet containing DEHP or di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH ® , an alternative plasticizer that has been used in PVC sheets for blood containers). The total amount of plasticizer eluted from DOTH/DL9TH-PVC sheets is nearly the same as that eluted from DEHP-PVC sheets. In addition, DOTH/DL9TH-PVC has better cold resistance than DEHP- and DINCH ® -PVC sheets. In vitro and in vivo tests for biological safety based on International Organization for Standardization guidelines (10993 series) suggest that the DOTH/DL9TH-PVC sheet can be used safely. Subchronic toxicity testing of DL9TH in male rats in accordance with the principles of Organisation for Economic Co-operation and Development Test Guideline 408 showed that DL9TH did not induce adverse effects up to the highest dose level tested (717 mg/kg body weight/day). There were no effects on testicular histopathology and sperm counts, and no indications of endocrine effects: testosterone, thyroid-stimulating hormone, follicle-stimulating hormone, and 17β-estradiol were unchanged by the treatment, compared with the control group. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1052-1063, 2018. © 2017 Wiley Periodicals, Inc.

  18. α,β-Unsaturated monoterpene acid glucose esters: structural diversity, bioactivities and functional roles.

    PubMed

    Goodger, Jason Q D; Woodrow, Ian E

    2011-12-01

    The glycosylation of lipophilic small molecules produces many important plant secondary metabolites. The majority of these are O-glycosides with relatively fewer occurring as glucose esters of aromatic or aliphatic acids. In particular, monoterpene acid glucose esters have much lower structural diversity and distribution compared to monoterpene glycosides. Nevertheless, there have been over 20 monoterpene acid glucose esters described from trees in the genus Eucalyptus (Myrtaceae) in recent years, all based on oleuropeic acid, menthiafolic acid or both. Here we review all of the glucose esters containing these monoterpenoids identified in plants to date. Many of the compounds contain phenolic aglycones and all contain at least one α,β-unsaturated carbonyl, affording a number of important potential therapeutic reactivities such as anti-tumor promotion, carcinogenesis suppression, and anti-oxidant and anti-inflammatory activities. Additional properties such as cytotoxicity, bitterness, and repellency are suggestive of a role in plant defence, but we also discuss their localization to the exterior of foliar secretory cavity lumina, and suggest they may also protect secretory cells from toxic terpenes housed within these structures. Finally we discuss how the use of a recently developed protocol to isolate secretory cavities in a functional state could be used in conjunction with systems biology approaches to help characterize their biosynthesis and roles in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Two novel copper(II) complexes constructed from dicarboxylate ligands with different spacer lengths and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP): Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia

    2009-09-01

    Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.

  20. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Guocheng; Chen Yongqiang; Wang Xiuli

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compoundmore » 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.« less

  1. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2‧,3‧-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    NASA Astrophysics Data System (ADS)

    Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan

    2009-03-01

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.

  2. Quantitative analysis of glycerol in dicarboxylic acid-rich cutins provides insights into Arabidopsis cutin structure.

    PubMed

    Yang, Weili; Pollard, Mike; Li-Beisson, Yonghua; Ohlrogge, John

    2016-10-01

    Cutin is an extracellular lipid polymer that contributes to protective cuticle barrier functions against biotic and abiotic stresses in land plants. Glycerol has been reported as a component of cutin, contributing up to 14% by weight of total released monomers. Previous studies using partial hydrolysis of cuticle-enriched preparations established the presence of oligomers with glycerol-aliphatic ester links. Furthermore, glycerol-3-phosphate 2-O-acyltransferases (sn-2-GPATs) are essential for cutin biosynthesis. However, precise roles of glycerol in cutin assembly and structure remain uncertain. Here, a stable isotope-dilution assay was developed for the quantitative analysis of glycerol by GC/MS of triacetin with simultaneous determination of aliphatic monomers. To provide clues about the role of glycerol in dicarboxylic acid (DCA)-rich cutins, this methodology was applied to compare wild-type (WT) Arabidopsis cutin with a series of mutants that are defective in cutin synthesis. The molar ratio of glycerol to total DCAs in WT cutins was 2:1. Even when allowing for a small additional contribution from hydroxy fatty acids, this is a substantially higher glycerol to aliphatic monomer ratio than previously reported for any cutin. Glycerol content was strongly reduced in both stem and leaf cutin from all Arabidopsis mutants analyzed (gpat4/gpat8, att1-2 and lacs2-3). In addition, the molar reduction of glycerol was proportional to the molar reduction of total DCAs. These results suggest "glycerol-DCA-glycerol" may be the dominant motif in DCA-rich cutins. The ramifications and caveats for this hypothesis are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity.

    PubMed Central

    Heipieper, H J; Diefenbach, R; Keweloh, H

    1992-01-01

    A trans unsaturated fatty acid was found as a major constituent in the lipids of Pseudomonas putida P8. The fatty acid was identified as 9-trans-hexadecenoic acid by gas chromatography, argentation thin-layer chromatography, and infrared absorption spectrometry. Growing cells of P. putida P8 reacted to the presence of sublethal concentrations of phenol in the medium with changes in the fatty acid composition of the lipids, thereby increasing the degree of saturation. At phenol concentrations which completely inhibited the growth of P. putida, the cells were still able to increase the content of the trans unsaturated fatty acid and simultaneously to decrease the proportion of the corresponding 9-cis-hexadecenoic acid. This conversion of fatty acids was also induced by 4-chlorophenol in nongrowing cells in which the de novo synthesis of lipids had stopped, as shown by incorporation experiments with labeled acetate. The isomerization of the double bond in the presence of chloramphenicol indicates a constitutively operating enzyme system. The cis-to-trans modification of the fatty acids studied here apparently is a new way of adapting the membrane fluidity to the presence of phenols, thereby compensating for the elevation of membrane permeability induced by these toxic substances. PMID:1622260

  4. Effects of Chain Length and Degree of Unsaturation of Fatty Acids on Structure and in Vitro Digestibility of Starch-Protein-Fatty Acid Complexes.

    PubMed

    Zheng, Mengge; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-02-28

    The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.

  5. Mobilization of aluminum by the acid percolates within unsaturated zone of sandstones.

    PubMed

    Navrátil, Tomáš; Vařilová, Zuzana; Rohovec, Jan

    2013-09-01

    The area of the Black Triangle has been exposed to extreme levels of acid deposition in the twentieth century. The chemical weathering of sandstones found within the Black Triangle became well-known phenomenon. Infiltration of acid rain solutions into the sandstone represents the main input of salt components into the sandstone. The infiltrated solutions--sandstone percolates--react with sandstone matrix and previously deposited materials such as salt efflorescence. Acidic sandstone percolates pH 3.2-4.8 found at ten sites within the National Park Bohemian Switzerland contained high Al-tot (0.8-10 mg L(-1)) concentrations and high concentrations of anions SO4 (5-66 mg L(-1)) and NO3 (2-42 mg L(-1)). A high proportion (50-98 %) of Al-tot concentration in acid percolates was represented by toxic reactive Al(n+). Chemical equilibrium modeling indicated as the most abundant Al species Al(3+), AlSO4 (+), and AlF(2+). The remaining 2-50 % of Al-tot concentration was present in the form of complexes with dissolved organic matter Al-org. Mobilization and transport of Al from the upper zones of sandstone causes chemical weathering and sandstone structure deterioration. The most acidic percolates contained the highest concentrations of dissolved organic material (estimated up to 42 mg L(-1)) suggesting the contribution of vegetation on sandstone weathering processes. Very low concentrations of Al-tot in springs at BSNP suggest that Al mobilized in unsaturated zone is transported deeper into the sandstone. This process of mobilization could represent a threat for the water quality small-perched aquifers.

  6. Construction of Eu(III)- and Tb(III)-MOFs with photoluminescence for sensing small molecules based on furan-2,5-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Zhao, Shuai; Hao, Xue-Min; Liu, Jia-Lin; Wu, Lin-Wei; Wang, Hao; Wu, Yi-Bo; Yang, Dan; Guo, Wen-Li

    2017-11-01

    Two isostructural lanthanide MOFs, [Ln3K2(FDA)4(NO3)3(MeCN)2]n (Ln = Eu 1, Tb 2) (H2FDA= furan-2,5-dicarboxylic acid), have been constructed under solvothermal conditions. Structures analyses demonstrate two complexes possess three-dimensional network with monoclinic space group C2/c. The topology analysis shows that the whole framework can be simplified to a 3,8T24 topology constructed from trinuclear {Ln3} as secondary building units (SBUs) without considering K+ ions. Solid state luminescent studies indicate that 1 and 2 show the characteristic red and green emissions of the corresponding Ln3+ ions, respectively. The luminescence lifetimes of 1 and 2 are approximately 1.04 ms and 0.41 ms. In addition, activated 1 exhibits excellent fluorescence sensing for small molecules, especially for nitrobenzene.

  7. Identification of Conformationally Sensitive Amino Acids in the Na+/Dicarboxylate Symporter (SdcS)†

    PubMed Central

    Joshi, Aditya D.; Pajor, Ana M.

    2009-01-01

    The Na+/dicarboxylate symporter (SdcS) from Staphylococcus aureus is a homolog of the mammalian Na+/dicarboxylate cotransporters (NaDC1) from solute carrier family 13 (SLC 13). The present study examined succinate transport by SdcS heterologously expressed in Escherichia coli, using right-side-out (RSO) and inside-out (ISO) membrane vesicles. The Km values for succinate in RSO and ISO vesicles were similar, about 30 μM. The single cysteine of SdcS was replaced to produce the cysteineless transporter, C457S, which demonstrated similar functional characteristics as the wild-type. Single cysteine mutants were made in SdcS-C457S at positions that are functionally important in the mammalian NaDC1. Mutant N108C of SdcS was sensitive to chemical labeling by MTSET ([2-(trimethylammonium)ethyl]-methanethiosulfonate) from both the cytoplasmic and extracellular side, depending on the conformational state of the transporter, suggesting that Asn-108 may be found in the translocation pore of the protein. Mutant D329C was sensitive to MTSET in the presence of Na+ but only from the extracellular side. Finally, mutant L436C was insensitive to MTSET although changes in its kinetic properties indicate that this residue may be important in substrate binding. In conclusion, this work identifies Asn-108 as a key residue in the translocation pathway of the protein, accessible in different states from both sides of the membrane. Functional characterization of SdcS should provide useful structural as well as functional details about mammalian transporters from the SLC 13 family. PMID:19260674

  8. Synthesis and characterization of Mg-Al-layered double hydroxides intercalated with cubane-1,4-dicarboxylate anions.

    PubMed

    Rezvani, Zolfaghar; Arjomandi Rad, Farzad; Khodam, Fatemeh

    2015-01-21

    In the present work, Mg2Al-layered double hydroxide (LDH) intercalated with cubane-1,4-dicarboxylate anions was prepared from the reaction of solutions of Mg(ii) and Al(iii) nitrate salts with an alkaline solution of cubane-1,4-dicarboxylic acid by using the coprecipitation method. The successful preparation of a nanohybrid of cubane-1,4-dicarboxylate(cubane-dc) anions with LDH was confirmed by powder X-ray diffraction, FTIR spectroscopy and thermal gravimetric analysis (TGA). The increase in the basal spacing of LDHs from 8.67 Å to 13.40 Å shows that cubane-dc anions were successfully incorporated into the interlayer space. Thermogravimetric analyses confirm that the thermal stability of the intercalated cubane-dc anions is greater than that of the pure form before intercalation because of host-guest interactions involving hydrogen bonds. The interlayer structure, hydrogen bonding, and subsequent distension of LDH compounds containing cubane-dc anions were shown by molecular simulation. The RDF (radial distribution function), mean square displacement (MSD), and self-diffusion coefficient were calculated using the trajectory files on the basis of molecular dynamics (MD) simulations, and the results indicated that the cubane-dc anions were more stable when intercalated into the LDH layers. A good agreement was obtained between calculated and measured X-ray diffraction patterns and between experimental and calculated basal spacings.

  9. Thermodynamic aspects of dicarboxylate recognition by simple artificial receptors.

    PubMed

    Linton, B R; Goodman, M S; Fan, E; van Arman, S A; Hamilton, A D

    2001-11-02

    Recognition of dicarboxylates by bis-functional hydrogen-bonding receptors displays divergent thermodynamics in different solvent systems. NMR titration and isothermal titration calorimetry indicated that neutral bis-urea and bis-thiourea receptors form exothermic complexes with dicarboxylates in DMSO, with a near zero entropic contribution to binding. The increased binding strength of bis-guanidinium receptors precluded quantitative measurement of binding constants in DMSO, but titration calorimetry offered a qualitative picture of the association. Formation of these 1:1 complexes was also exothermic, but additional endothermic events occurred at both lower and higher host-guest ratios. These events indicated multiple binding equilibria but did not always occur at a discrete 2:1 or 1:2 host-guest molar ratio, suggesting higher aggregates. With increasing amounts of methanol as solvent, bis-guanidinium receptors form more endothermic complexes with dicarboxylates, with a favorable entropy of association. This switch from association driven by enthalpy to one driven by entropy may reflect a change from complexation involving the formation of hydrogen bonds to that promoted by solvent liberation from binding sites.

  10. Effect of type of emulsifiers and antioxidants on oxidative stability, colour and fatty acid profile of low-fat beef burgers enriched with unsaturated fatty acids and phytosterols.

    PubMed

    Pennisi Forell, S C; Ranalli, N; Zaritzky, N E; Andrés, S C; Califano, A N

    2010-10-01

    Low-fat beef burgers were formulated using fresh lean meat, 9.9% oleic sunflower oil and 0.1% deodorized fish oil to obtain a product enriched in unsaturated fatty acids. The effect of two emulsifiers (whey proteins or egg white) and natural antioxidants (tocopherols and/or oregano-rosemary), as well as the influence of frozen storage on the oxidative stability, colour, and fatty acid (FA) profile was determined on the cooked products. Whey proteins protected better against oxidation than egg white, and tocopherols demonstrated an adequate antioxidant effect in formulations with egg white. For all the formulations the unsaturated/saturated FA ratio was higher than 5.8, showing a good lipid balance in the products. The consumption of 100g of the cooked product would provide 6% of the recommended daily intake of phytosterols suggested to decrease cholesterol and the risk of heart disease. Formulated low-fat burgers with pre-emulsified oils and phytosterols could be considered to be potentially functional foodstuffs. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  11. Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA

    USGS Publications Warehouse

    Hancock, T.C.; Sandstrom, M.W.; Vogel, J.R.; Webb, R.M.T.; Bayless, E.R.; Barbash, J.E.

    2008-01-01

    Pesticide transport through the unsaturated zone is a function of chemical and soil characteristics, application, and water recharge rate. The fate and transport of 82 pesticides and degradates were investigated at five different agricultural sites. Atrazine and metolachlor, as well as several of the degradates of atrazine, metolachlor, acetochlor, and alachlor, were frequently detected in soil water during the 2004 growing season, and degradates were generally more abundant than parent compounds. Metolachlor and atrazine were applied at a Nebraska site the same year as sampling, and focused recharge coupled with the short time since application resulted in their movement in the unsaturated zone 9 m below the surface. At other sites where the herbicides were applied 1 to 2 yr before sampling, only degradates were found in soil water. Transformations of herbicides were evident with depth and during the 4-mo sampling time and reflected the faster degradation of metolachlor oxanilic acid and persistence of metolachor ethanesulfonic acid. The fraction of metolachlor ethanesulfonic acid relative to metolachlor and metolachlor oxanilic acid increased from 0.3 to > 0.9 at a site in Maryland where the unsaturated zone was 5 m deep and from 0.3 to 0.5 at the shallowest depth. The flux of pesticide degradates from the deepest sites to the shallow ground water was greatest (3.0–4.9 μmol m−2 yr−1) where upland recharge or focused flow moved the most water through the unsaturated zone. Flux estimates based on estimated recharge rates and measured concentrations were in agreement with fluxes estimated using an unsaturated-zone computer model (LEACHM).

  12. Liposomes as carriers of macrolides: preferential association of erythromycin A and azithromycin with liposomes of phosphatidylglycerol containing unsaturated fatty acid(s).

    PubMed

    Stuhne-Sekalec, L; Stanacev, N Z; Djokic, S

    1991-01-01

    To assess the most favourable phospholipid composition of a liposomal carrier for antibiotics, small multilamellar liposomes were prepared from phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol of varying fatty acid composition in the presence of erythromycin A and azithromycin. Crude liposomes were subjected to Sepharose CL-4B column chromatography, and liposomes containing antibiotics were well separated from free antibiotics. These experiments established that the greatest association of antibiotics was achieved with liposomes prepared from phosphatidylglycerol rather than phosphatidylcholine or phosphatidylethanolamine. Furthermore, the composition of fatty acids in phosphatidylglycerol liposomes influenced the amount of antibiotics associated with liposomes; the highest amount was obtained with dioleoylphosphatidylglycerol followed by phosphatidylglycerol of fatty acid composition similar to that of egg yolk lecithin. It was established that purified liposomes, prepared from [3H]phosphatidylglycerol containing unsaturated fatty acid(s) bind about 25 per cent of originally present antibiotic. Both antibiotics, erythromycin A and azithromycin, were similar in respect to the amount of their association with liposomes. Determination of the size of phosphatidylglycerol/antibiotic liposomes established that the mean diameter of liposomes containing antibiotics was 200-350 nm, very close to that of liposomes without them.

  13. Fragment-based discovery of novel and selective mPGES-1 inhibitors Part 1: identification of sulfonamido-1,2,3-triazole-4,5-dicarboxylic acid.

    PubMed

    Lee, Kijae; Pham, Van Chung; Choi, Min Ji; Kim, Kyung Ju; Lee, Kyung-Tae; Han, Seong-Gu; Yu, Yeon Gyu; Lee, Jae Yeol

    2013-01-01

    Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH(2) to PGE(2) and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC(50) of 1.1 μM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 μM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Characterization of polar organics in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ambe, Y.

    The methanol-extractable highly polar organics in atmospheric aerosol were characterized using GC-MS. Dicarboxylic acids having 2-16 carbon numbers were detected with a total concentration of 172 ng m -3. Azelaic acid ( C9) was the most abundant diacid and it possibly originated from the ozonolysis of unsaturated carboxylic acids such as oleic acid and linoleic acid, which mainly originate from terrestrial plants. A compound, which was tentatively identified as tetrahydrofuroic acid, contributed to about 10% of the highly polar organics. Other polyfunctional compounds found in the samples included some ketocarboxylic acids and aromatic acids such as phthalic acids, anisic acid and vanillic acid.

  15. The influence of thermal processing on the fatty acid profile of pork and lamb meat fed diet with increased levels of unsaturated fatty acids.

    PubMed

    Janiszewski, Piotr; Grześkowiak, Eugenia; Lisiak, Dariusz; Borys, Bronisław; Borzuta, Karol; Pospiech, Edward; Poławska, Ewa

    2016-01-01

    The research was carried out on 32 crossbred pigs of Polish Large White × Danish Landrace with Duroc and 80 rams, crossbreds of the Prolific-Dairy Koludzka Sheep with the Ile de France, a meat sheep. The fodder for the animals was enriched with the unsaturated fatty acids originated mainly from linseed and rapeseed oils. The fatty acid profile was determined in cooked longissimus lumborum, roasted triceps brachii and raw ripened rump from pigs as well as in grilled lambs' legs and their corresponding raw materials. Roasting caused the most pronounced increase of the saturated fatty acids and decrease in the polyunsaturated fatty acids of heated pork muscles. The smallest changes were observed in grilled lamb legs. The heating processes applied in this study, in most cases, did not cause essential changes in the indices of pro-health properties of fatty acid, therefore meat in the majority fulfil the latest recommendations of EFSA and FAO/WHO according to human health.

  16. Effect of poly and mono-unsaturated fatty acids on stability and structure of recombinant S100A8/A9.

    PubMed

    Asghari, Hamideh; Chegini, Koorosh Goodarzvand; Amini, Abbas; Gheibi, Nematollah

    2016-03-01

    Recombinant pET 15b vectors containing the coding sequences S100A8 and S100A9 are expressed in Escherichia coli BL21 (DE3) and purified using Ni-NTA affinity chromatography. The structural changes of S100A8/A9 complex are analyzed upon interaction with poly/mono-unsaturated fatty acids (UFAs). The thermodynamic values, Gibbs free energy and the protein melting point, are obtained through thermal denaturation of protein both with and without UFAs by thermal scanning of protein emission using the fluorescence spectroscopy technique. The far-ultraviolet circular dichroism spectra show that all studied unsaturated fatty acids, including arachidonic, linoleic, alpha-linolenic and oleic acids, induce changes in the secondary structure of S100A8/A9 by reducing the α-helix and β-sheet structures. The tertiary structure of S100A8/A9 has fluctuations in the fluorescence emission spectra after the incubation of protein with UFAs. The blue-shift of emission maximum wavelength and the increase in fluorescence intensity of anilino naphthalene-8-sulfonic acid confirm that the partial unfolding is caused by the conformational changes in the tertiary structure in the presence of UFAs. The structural changes in S100A8/A9 and its lower stability in the presence of UFAs may be necessary for S100A8/A9 to play a biological role in the inflammatory milieu. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Benzoate Mediates Repression of C4-Dicarboxylate Utilization in “Aromatoleum aromaticum” EbN1

    PubMed Central

    Trautwein, Kathleen; Grundmann, Olav; Wöhlbrand, Lars; Eberlein, Christian; Boll, Matthias

    2012-01-01

    Diauxic growth was observed in anaerobic C4-dicarboxylate-adapted cells of “Aromatoleum aromaticum” EbN1 due to preferred benzoate utilization from a substrate mixture of a C4-dicarboxylate (succinate, fumarate, or malate) and benzoate. Differential protein profiles (two-dimensional difference gel electrophoresis [2D DIGE]) revealed dynamic changes in abundance for proteins involved in anaerobic benzoate catabolism and C4-dicarboxylate uptake. In the first active growth phase, benzoate utilization was paralleled by maximal abundance of proteins involved in anaerobic benzoate degradation (e.g., benzoyl-coenzyme A [CoA] reductase) and minimal abundance of DctP (EbA4158), the periplasmic binding protein of a predicted C4-dicarboxylate tripartite ATP-independent periplasmic (TRAP) transporter (DctPQM). The opposite was observed during subsequent succinate utilization in the second active growth phase. The increased dctP (respectively, dctPQM) transcript and DctP protein abundance following benzoate depletion suggests that repression of C4-dicarboxylate uptake seems to be a main determinant for the observed diauxie. PMID:22081395

  18. A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus.

    PubMed

    Takanashi, Kojiro; Sasaki, Takayuki; Kan, Tomohiro; Saida, Yuka; Sugiyama, Akifumi; Yamamoto, Yoko; Yazaki, Kazufumi

    2016-07-01

    Legume plants can establish symbiosis with soil bacteria called rhizobia to obtain nitrogen as a nutrient directly from atmospheric N2 via symbiotic nitrogen fixation. Legumes and rhizobia form nodules, symbiotic organs in which fixed-nitrogen and photosynthetic products are exchanged between rhizobia and plant cells. The photosynthetic products supplied to rhizobia are thought to be dicarboxylates but little is known about the movement of dicarboxylates in the nodules. In terms of dicarboxylate transporters, an aluminum-activated malate transporter (ALMT) family is a strong candidate responsible for the membrane transport of carboxylates in nodules. Among the seven ALMT genes in the Lotus japonicus genome, only one, LjALMT4, shows a high expression in the nodules. LjALMT4 showed transport activity in a Xenopus oocyte system, with LjALMT4 mediating the efflux of dicarboxylates including malate, succinate, and fumarate, but not tricarboxylates such as citrate. LjALMT4 also mediated the influx of several inorganic anions. Organ-specific gene expression analysis showed LjALMT4 mRNA mainly in the parenchyma cells of nodule vascular bundles. These results suggest that LjALMT4 may not be involved in the direct supply of dicarboxylates to rhizobia in infected cells but is responsible for supplying malate as well as several anions necessary for symbiotic nitrogen fixation, via nodule vasculatures.

  19. Dicarboxylic acids and levoglucosan in aerosols from Indo-Gangetic Plain: Inferences from day night variability during wintertime.

    PubMed

    Sorathia, Fena; Rajput, Prashant; Gupta, Tarun

    2018-05-15

    This study assesses daytime and nighttime atmospheric abundance and molecular distribution of dicarboxylic acids (DCA: C 2 -C 10 ) and biomass burning tracers (levoglucosan and biomass burning derived potassium: K + BB ) in PM 10 (particulate matter with aerodynamic diameter≤10μm) from an urban location, Kanpur (in central Indo-Gangetic Plain: IGP) during wintertime (December 2015-February 2016). In this study, PM 10 varied from 130 to 242 and 175-388μgm -3 during daytime and nighttime, respectively. The average ratios of OC/EC (day: 12.3; night: 9.3) and WSOC/OC (day: 0.74; night: 0.48) were relatively high during daytime (OC: organic carbon; EC: elemental carbon; WSOC: water-soluble organic carbon). Strong linear correlations (R 2 ≥0.6; p<0.05) of OC with levoglucosan and K + BB suggest biomass burning emission as predominant source of organic aerosols over the IGP. The measured concentrations of total DCA (ΣC 2 -C 10 ) showed pronounced diurnal variability with a higher concentration during nighttime (2510±1025ngm -3 ) as compared to that in daytime (1499±562ngm -3 ). Concentrations of oxalic acid (C 2 ), succinic acid (C 4 ) and malonic acid (C 3 ) were predominantly high as compared to other congeners of DCA (C 2 -C 10 ) over central IGP. Relatively higher mass fraction (73.4%) of C 2 in total DCA during nighttime than that in daytime (61.5%) indicates role of secondary organic aerosols (SOAs) formation involving aqueous-phase chemistry. Strong linear correlations of C 2 with C 3 and C 4 plausibly suggest that C 2 can have predominant formation pathways via decomposition of higher congeners of DCA. Overall, strong linear correlations of C 2 with levoglucosan and sulphate suggest that biomass burning emission and secondary transformations are predominant sources of DCA over IGP during wintertime. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: Implications for sources and photochemical processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.; Tachibana, Eri

    2011-09-01

    The tropical Indian aerosols (PM10) collected on day- and nighttime bases in winter and summer, 2007 from Chennai (13.04°N; 80.17°E) were studied for stable carbon isotopic compositions (δ13C) of total carbon (TC), individual dicarboxylic acids (C2-C9) and glyoxylic acid (ωC2). δ13C values of TC ranged from -23.9‰ to -25.9‰ (-25.0 ± 0.6‰; n = 49). Oxalic (C2) (-17.1 ± 2.5‰), malonic (C3) (-20.8 ± 1.8‰), succinic (C4) (-22.5 ± 1.5‰) and adipic (C6) (-20.6 ± 4.1‰) acids and ωC2 acid (-22.4 ± 5.5‰) were found to be more enriched with 13C compared to TC. In contrast, suberic (C8) (-29.4 ± 1.8‰), phthalic (Ph) (-30.1 ± 3.5‰) and azelaic (C9) (-28.4 ± 5.8‰) acids showed smaller δ13C values than TC. Based on comparisons of δ13C values of TC in Chennai aerosols to those (-24.7 ± 2.2‰) found in unburned cow-dung samples collected from Chennai and isotopic signatures of the particles emitted from point sources, we found that biofuel/biomass burning are the major sources of carbonaceous aerosols in South and Southeast Asia. The decrease in δ13C values of C9 diacid by about 5‰ from winter to summer suggests that tropical plant emissions also significantly contribute to organic aerosol in this region. Significant increase in δ13C values from C4 to C2 diacids in Chennai aerosols could be attributed for their photochemical processing in the tropical atmosphere during long-range transport from source regions.

  1. Application of microalgae hydrolysate as a fermentation medium for microbial production of 2-pyrone 4,6-dicarboxylic acid.

    PubMed

    Htet, April N; Noguchi, Mana; Ninomiya, Kazuaki; Tsuge, Yota; Kuroda, Kosuke; Kajita, Shinya; Masai, Eiji; Katayama, Yoshihiro; Shikinaka, Kazuhiro; Otsuka, Yuichiro; Nakamura, Masaya; Honda, Ryo; Takahashi, Kenji

    2018-06-01

    Actual biomass of microalgae was tested as a fermentation substrate for microbial production of 2-pyrone 4,6-dicarboxylic acid (PDC). Acid-hydrolyzed green microalgae Chlorella emersonii (algae hydrolysate) was diluted to adjust the glucose concentration to 2 g/L and supplemented with the nutrients of Luria-Bertani (LB) medium (tryptone 10 g/L and yeast extract 5 g/L). When the algae hydrolysate was used as a fermentation source for recombinant Escherichia coli producing PDC, 0.43 g/L PDC was produced with a yield of 20.1% (mol PDC/mol glucose), whereas 0.19 g/L PDC was produced with a yield of 8.6% when LB medium supplemented with glucose was used. To evaluate the potential of algae hydrolysate alone as a fermentation medium for E. coli growth and PDC production, the nutrients of LB medium were reduced from the algae hydrolysate medium. Interestingly, 0.17 g/L PDC was produced even without additional nutrient, which was comparable to the case using pure glucose medium with nutrients of LB medium. When using a high concentration of hydrolysate without additional nutrients, 1.22 g/L PDC was produced after a 24-h cultivation with the yield of 16.1%. Overall, C. emersonii has high potential as cost-effective fermentation substrate for the microbial production of PDC. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Seasonal variations and source identification of selected organic acids associated with PM10 in the coastal area of Southeastern China

    NASA Astrophysics Data System (ADS)

    Wu, Shui-Ping; Schwab, James; Liu, Bi-Lian; Li, Tsung-Chang; Yuan, Chung-Shin

    2015-03-01

    PM10 aerosols from the coastal area of Southeastern China were collected from April 2010 to March 2011 and were measured for C2-C10 dicarboxylic acids, phthalic acids (Ph) and five fatty acids (palmitic, stearic, oleic, linoleic and elaidic acids). For all sites and seasons, molecular distributions of diacids were always characterized by a predominance of oxalic acid (C2), with a relative abundance of 68-87%, followed by malonic acid (C3) and by either succinic acid (C4) or phthalic acid (Ph). This observed molecular composition was different from that in Chinese megacities where Ph was significantly higher than C3 and C4 diacids, which was likely due to the less intensive traffic emissions in the coastal area. Seasonal means of total diacids ranged between 394 and 547 ng m- 3 at the coastal urban sites and between 163 and 245 ng m- 3 at off-island sites. These levels were much lower than those reported in Chinese megacities (668-1568 ng m- 3) and slightly lower than those in Jeju Island, Korea (464-744 ng m- 3) but higher than those in marine and continental background locations. In all seasons, saturated fatty acids were significantly higher than unsaturated fatty acids due to their greater photochemical stabilities in the atmosphere. Most organic acids showed higher levels in spring and winter and lower levels in summer and fall, which was likely due to the influence of transport and meteorology. The diagnostic ratios of malonic acid to succinic acid (C3/C4), adipic acid to azelaic acid (C6/C9) and phthalic acid to azelaic acid (Ph/C9) were significantly higher in summer than in winter. These diagnostic ratios in the sampled ambient aerosols were completely different from those in primary emissions, suggesting the importance of photochemical production - especially in summer. The diurnal variations of diacids and fatty acid as well as the diagnostic ratios are associated with higher solar radiation and anthropogenic activities during the daytime. Principal

  3. Combined effects of endurance training and dietary unsaturated fatty acids on physical performance, fat oxidation and insulin sensitivity.

    PubMed

    Boss, Andreas; Lecoultre, Virgile; Ruffieux, Christiane; Tappy, Luc; Schneiter, Philippe

    2010-04-01

    Endurance training improves exercise performance and insulin sensitivity, and these effects may be in part mediated by an enhanced fat oxidation. Since n-3 and n-9 unsaturated fatty acids may also increase fat oxidation, we hypothesised that a diet enriched in these fatty acids may enhance the effects of endurance training on exercise performance, insulin sensitivity and fat oxidation. To assess this hypothesis, sixteen normal-weight sedentary male subjects were randomly assigned to an isoenergetic diet enriched with fish and olive oils (unsaturated fatty acid group (UFA): 52 % carbohydrates, 34 % fat (12 % SFA, 12 % MUFA, 5 % PUFA), 14 % protein), or a control diet (control group (CON): 62 % carbohydrates, 24 % fat (12 % SFA, 6 % MUFA, 2 % PUFA), 14 % protein) and underwent a 10 d gradual endurance training protocol. Exercise performance was evaluated by measuring VO2max and the time to exhaustion during a cycling exercise at 80 % VO2max; glucose homeostasis was assessed after ingestion of a test meal. Fat oxidation was assessed by indirect calorimetry at rest and during an exercise at 50 % VO2max. Training significantly increased time to exhaustion, but not VO2max, and lowered incremental insulin area under the curve after the test meal, indicating improved insulin sensitivity. Those effects were, however, of similar magnitude in UFA and CON. Fat oxidation tended to increase in UFA, but not in CON. This difference was, however, not significant. It is concluded that a diet enriched with fish- and olive oil does not substantially enhance the effects of a short-term endurance training protocol in healthy young subjects.

  4. Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries.

    PubMed

    Regalado, Ana; Pierri, Ciro Leonardo; Bitetto, Maria; Laera, Valentina Liliana; Pimentel, Catarina; Francisco, Rita; Passarinho, José; Chaves, Maria M; Agrimi, Gennaro

    2013-03-01

    Grape berries (Vitis vinifera L fruit) exhibit a double-sigmoid pattern of development that results from two successive periods of vacuolar swelling during which the nature of accumulated solutes changes significantly. Throughout the first period, called green or herbaceous stage, berries accumulate high levels of organic acids, mainly malate and tartrate. At the cellular level fruit acidity comprises both metabolism and vacuolar storage. Malic acid compartmentation is critical for optimal functioning of cytosolic enzymes. Therefore, the identification and characterization of the carriers involved in malate transport across sub-cellular compartments is of great importance. The decrease in acid content during grape berry ripening has been mainly associated to mitochondrial malate oxidation. However, no Vitis vinifera mitochondrial carrier involved in malate transport has been reported to date. Here we describe the identification of three V. vinifera mitochondrial dicarboxylate/tricarboxylate carriers (VvDTC1-3) putatively involved in mitochondrial malate, citrate and other di/tricarboxylates transport. The three VvDTCs are very similar, sharing a percentage of identical residues of at least 83 %. Expression analysis of the encoding VvDTC genes in grape berries shows that they are differentially regulated exhibiting a developmental pattern of expression. The simultaneous high expression of both VvDTC2 and VvDTC3 in grape berry mesocarp close to the onset of ripening suggests that these carriers might be involved in the transport of malate into mitochondria.

  5. Peripancreatic fat necrosis worsens acute pancreatitis independent of pancreatic necrosis via unsaturated fatty acids increased in human pancreatic necrosis collections

    PubMed Central

    Noel, Pawan; Patel, Krutika; Durgampudi, Chandra; Trivedi, Ram N; de Oliveira, Cristiane; Crowell, Michael D; Pannala, Rahul; Lee, Kenneth; Brand, Randall; Chennat, Jennifer; Slivka, Adam; Papachristou, Georgios I; Khalid, Asif; Whitcomb, David C; DeLany, James P; Cline, Rachel A; Acharya, Chathur; Jaligama, Deepthi; Murad, Faris M; Yadav, Dhiraj; Navina, Sarah; Singh, Vijay P

    2016-01-01

    Background and aims Peripancreatic fat necrosis occurs frequently in necrotising pancreatitis. Distinguishing markers from mediators of severe acute pancreatitis (SAP) is important since targeting mediators may improve outcomes. We evaluated potential agents in human pancreatic necrotic collections (NCs), pseudocysts (PCs) and pancreatic cystic neoplasms and used pancreatic acini, peripheral blood mononuclear cells (PBMC) and an acute pancreatitis (AP) model to determine SAP mediators. Methods We measured acinar and PBMC injury induced by agents increased in NCs and PCs. Outcomes of caerulein pancreatitis were studied in lean rats coadministered interleukin (IL)-1β and keratinocyte chemoattractant/growth-regulated oncogene, triolein alone or with the lipase inhibitor orlistat. Results NCs had higher fatty acids, IL-8 and IL-1β versus other fluids. Lipolysis of unsaturated triglyceride and resulting unsaturated fatty acids (UFA) oleic and linoleic acids induced necro-apoptosis at less than half the concentration in NCs but other agents did not do so at more than two times these concentrations. Cytokine coadministration resulted in higher pancreatic and lung inflammation than caerulein alone, but only triolein coadministration caused peripancreatic fat stranding, higher cytokines, UFAs, multisystem organ failure (MSOF) and mortality in 97% animals, which were prevented by orlistat. Conclusions UFAs, IL-1β and IL-8 are elevated in NCs. However, UFAs generated via peripancreatic fat lipolysis causes worse inflammation and MSOF, converting mild AP to SAP. PMID:25500204

  6. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Ling-Yun; Liu, Guang-Zhen, E-mail: gzliuly@126.com; Ma, Lu-Fang

    A non-coplanar dicarboxylate ndca (H{sub 2}ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H{sub 2}O)]{sub n} (1), ([Co(ndca)(bpe)(H{sub 2}O)]·H{sub 2}O){sub n} (2), [Co(ndca)(bpa){sub 0.5}(H{sub 2}O)]{sub n} (3), [Cd(ndca)(bpe)(H{sub 2}O)]{sub n} (4), ([Cd(ndca)(bpa)(H{sub 2}O)]·0.5H{sub 2}O){sub n} (5), and ([Cd(ndca)(bpp) (H{sub 2}O)]·H{sub 2}O){sub n} (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)–carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layermore » (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given. - Graphical abstract: Six various cadmium(II)/cobalt(II)–organic frameworks were constructed by 5-norbornene-2,3-dicarboxylic acid and different bis(pyridine) rod-like tectons, and Cd (II) complexes exhibit blue–violet emissions, whereas Co (II) complexes show antiferromagnetic behaviours. Display Omitted.« less

  7. Self-assembly in solvates of 2,4-diamino-6-(4-methyl- phenyl)-1,3,5-triazine and in its molecular adducts with some aliphatic dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Nandy, Purnendu; Nayak, Amrita; Biswas, Sharmita Nandy; Pedireddi, V. R.

    2016-03-01

    Solid state structures of 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine, 1, in the form of methanol and dimethylsulfoxide (DMSO) solvates, as well as supramolecular assemblies of 1 with various aliphatic dicarboxylic acids, oxalic (a), malonic (b), succinic (c), glutaric (d) and adipic (e) have been reported. Analysis of the assemblies has been carried out by single crystal X-ray diffraction and thermal methods. Triazine 1 yields anhydrous molecular adducts with acids a-d, upon co-crystallization either from CH3OH and DMSO solvents. However acid e gives anhydrous adduct from DMSO solvent, while it gives a methanol adduct from CH3OH. Structure determination reveals that molecular adducts 1a, 1d and 1e are in a 2:1 ratio of 1 and the corresponding acid. However the ratio is 1:1, in 1b, perhaps due to the involvement of one of the acid groups in the intramolecular hydrogen bonding and in adduct 1c the ratio observed is 3:2. Structural features in all these assemblies have been rationalised in terms of various recognition patterns formed between the acceptor and donor groups. A noteworthy feature is that -COOH groups in acid a establish interaction with 1 through amino groups, while such interactions are observed to be through hetero -N atoms in case of the acids b-e.

  8. 2,3-Pyridine dicarboxylic acid functionalized gold nanoparticles: Insight into experimental conditions for Cr3 + sensing

    NASA Astrophysics Data System (ADS)

    Shaikh, Ruqaya; Memon, Najma; Solangi, Amber R.; Shaikh, Huma I.; Agheem, Muhammad Hassan; Ali, Syed Abid; Shah, Muhammad Raza; Kandhro, Aftab

    2017-02-01

    Selectivity of gold nanoparticles (AuNPs) depends upon surface functionality; small changes in structure or concentration bring significant changes in the behavior of AuNPs. In this study, citrate-capped AuNPs were functionalized with ortho-dicarboxylate substituted pyridine (2,3-PDCA) and detailed studies on experimental conditions were carried out to check the stability of AuNPs and response for Cr3 +. Stability of PDCA-AuNPs was found sensitive to the pH, ionic strength of buffer and its type. Capping behavior of PDCA on C-AuNPs was examined by FTIR spectroscopy. Surface morphology and size of synthesized AuNPs were confirmed by AFM, XRD, and DLS techniques where particles were found 11 nm in size, monodisperse and spherical in shape. Interaction of stabilized AuNPs was tested with various metal ions; where Cr3 + induced the changes in localized surface plasmon band (LSPR) of PDCA-AuNPs which leads to a color change from wine red to violet blue. The phenomenon is explained as cooperative effect of citrate and pyridine nitrogen on surface of AuNPs in contrary to meta-dicarboxylate substituted pyridine derivatives. Further, under optimized and controlled conditions Cr3 + shows linear response with decrease in absorbance at LSPR intensity of AuNPs (518 nm). Moreover, to demonstrate the applicability of method, Cr3 + was determined in the presence of Cr (VI) which shows 96% recovery.

  9. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages[S

    PubMed Central

    L'homme, Laurent; Esser, Nathalie; Riva, Laura; Scheen, André; Paquot, Nicolas; Piette, Jacques; Legrand-Poels, Sylvie

    2013-01-01

    The NLRP3 inflammasome is involved in many obesity-associated diseases, such as type 2 diabetes, atherosclerosis, and gouty arthritis, through its ability to induce interleukin (IL)-1β release. The molecular link between obesity and inflammasome activation is still unclear, but free fatty acids have been proposed as one triggering event. Here we reported opposite effects of saturated fatty acids (SFAs) compared with unsaturated fatty acids (UFAs) on NLRP3 inflammasome in human monocytes/macrophages. Palmitate and stearate, both SFAs, triggered IL-1β secretion in a caspase-1/ASC/NLRP3-dependent pathway. Unlike SFAs, the UFAs oleate and linoleate did not lead to IL-1β secretion. In addition, they totally prevented the IL-1β release induced by SFAs and, with less efficiency, by a broad range of NLRP3 inducers, including nigericin, alum, and monosodium urate. UFAs did not affect the transcriptional effect of SFAs, suggesting a specific effect on the NLRP3 activation. These results provide a new anti-inflammatory mechanism of UFAs by preventing the activation of the NLRP3 inflammasome and, therefore, IL-1β processing. By this way, UFAs might play a protective role in NLRP3-associated diseases. PMID:24006511

  10. Actual ratios of triacylglycerol positional isomers and enantiomers comprising saturated fatty acids and highly unsaturated fatty acids in fishes and marine mammals.

    PubMed

    Nagai, Toshiharu; Matsumoto, Yumiko; Jiang, Yanying; Ishikawa, Keiko; Wakatabe, Tokuhisa; Mizobe, Hoyo; Yoshinaga, Kazuaki; Kojima, Koichi; Kuroda, Ikuma; Saito, Tadao; Beppu, Fumiaki; Gotoh, Naohiro

    2013-01-01

    It has been previously shown that the positional isomers of triacylglycerol (TAG) containing palmitic acid (P) and highly unsaturated fatty acids (HUFAs) such as DHA (D) and EPA (E) vary between fishes and marine mammals. However, it has not yet been understood why in marine mammals HUFAs are located only at the α position when two palmitic acid chains combine, and not in fishes. In order to gain further understanding of the biosynthetic pathways involved in the formation of these asymmetric TAGs, we investigated whether the HUFA in the TAG of marine mammals exists predominantly at the sn-1 or sn-3 position. We examined the TAG positional isomers and enantiomers in marine organisms in detail. As a result, while PDP and PEP were not detected, sn-PPD and sn-PPE were found in abundance in marine mammals. For fishes, on the other hand, PDP, PEP, sn-PPD, and sn-PPE were all identified. In the case of TAGs that contain two HUFAs and one palmitic acid, marine mammals were rich in DPD and EPE whereas fishes were rich in sn-PDD and sn-PEE.

  11. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    PubMed

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Identification of three new phase II metabolites of a designer drug methylone formed in rats by N-demethylation followed by conjugation with dicarboxylic acids.

    PubMed

    Židková, Monika; Linhart, Igor; Balíková, Marie; Himl, Michal; Dvořáčková, Veronika; Lhotková, Eva; Páleníček, Tomáš

    2018-06-01

    1. Methylone (3,4-methylenedioxy-N-methylcathinone, MDMC), which appeared on the illicit drug market in 2004, is a frequently abused synthetic cathinone derivative. Known metabolic pathways of MDMC include N-demethylation to normethylone (3,4-methylenedioxycathinone, MDC), aliphatic chain hydroxylation and oxidative demethylenation followed by monomethylation and conjugation with glucuronic acid and/or sulphate. 2. Three new phase II metabolites, amidic conjugates of MDC with succinic, glutaric and adipic acid, were identified in the urine of rats dosed subcutaneously with MDMC.HCl (20 mg/kg body weight) by LC-ESI-HRMS using synthetic reference standards to support identification. 3. The main portion of administered MDMC was excreted unchanged. Normethylone, was a major urinary metabolite, of which a minor part was conjugated with dicarboxylic acids. 4. Previously identified ring-opened metabolites 4-hydroxy-3-methoxymethcathinone (4-OH-3-MeO-MC), 3-hydroxy-4-methoxymeth-cathinone (3-OH-4-MeO-MC) and 3,4-dihydroxymethcathinone (3,4-di-OH-MC) mostly in conjugated form with glucuronic and/or sulphuric acids were also detected. 5. Also, ring-opened metabolites derived from MDC, namely, 4-hydroxy-3-methoxycathinone (4-OH-3-MeO-C), 3-hydroxy-4-methoxycathinone (3-OH-4-MeO-C) and 3,4-dihydroxycathinone (3,4-di-OH-C) were identified for the first time in vivo.

  13. Metabolic incorporation of unsaturated fatty acids into boar spermatozoa lipids and de novo formation of diacylglycerols.

    PubMed

    Svetlichnyy, Valentin; Müller, Peter; Pomorski, Thomas G; Schulze, Martin; Schiller, Jürgen; Müller, Karin

    2014-01-01

    Lipids play an important role in the maturation, viability and function of sperm cells. In this study, we examined the neutral and polar lipid composition of boar spermatozoa by thin-layer chromatography/mass spectrometry. Main representatives of the neutral lipid classes were diacylglycerols containing saturated (myristoyl, palmitoyl and stearoyl) fatty acyl residues. Glycerophosphatidylcholine and glycerophosphatidylethanolamine with alk(en)yl ether residues in the sn-1 position and unsaturated long chained fatty acyl residues in sn-2 position were identified as the most prominent polar lipids. The only glycoglycerolipid was sulfogalactosylglycerolipid carrying 16:0-alkyl- and 16:0-acyl chains. Using stable isotope-labelling, the metabolic incorporation of exogenously supplied fatty acids was analysed. Boar spermatozoa incorporated hexadecenoic (16:1), octadecenoic (18:1), octadecadienoic (18:2) and octadecatrienoic (18:3) acids primarily in the diacylglycerols and glycerophosphatidylcholines. In contrast, incorporation of eicosapentaenoic acid (20:5) was not detected. The analysis of molecular species composition subsequent to the incorporation of exogenous [(14)C]-octadecadienoic acid suggests two pathways for incorporation of exogenous fatty acids into glycerophosphatidylcholine: (1) de novo synthesis of glycerophosphatidylcholine via the CDP-choline pathway and (2) reacylation of lysophosphatidylcholine via an acyltransferase. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth.

    PubMed

    Diomandé, Sara Esther; Nguyen-the, Christophe; Abee, Tjakko; Tempelaars, Marcel H; Broussolle, Véronique; Brillard, Julien

    2015-11-20

    Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dietary Conjugated Linoleic Acid-Enriched Cheeses Influence the Levels of Circulating n-3 Highly Unsaturated Fatty Acids in Humans.

    PubMed

    Murru, Elisabetta; Carta, Gianfranca; Cordeddu, Lina; Melis, Maria Paola; Desogus, Erika; Ansar, Hastimansooreh; Chilliard, Yves; Ferlay, Anne; Stanton, Catherine; Coakley, Mairéad; Ross, R Paul; Piredda, Giovanni; Addis, Margherita; Mele, Maria Cristina; Cannelli, Giorgio; Banni, Sebastiano; Manca, Claudia

    2018-06-11

    n-3 highly unsaturated fatty acids (n-3 HUFA) directly and indirectly regulate lipid metabolism, energy balance and the inflammatory response. We investigated changes to the n-3 HUFA score of healthy adults, induced by different types and amounts of conjugated linoleic acid (CLA)-enriched (ENCH) cheeses consumed for different periods of time, compared to dietary fish oil (FO) pills (500 mg, each containing 100 mg of eicosapentaenoic and docosahexaenoic acids—EPA+DHA) or α-linolenic acid (ALA)-rich linseed oil (4 g, containing 2 g of ALA). A significant increase in the n-3 HUFA score was observed, in a dose-dependent manner, after administration of the FO supplement. In terms of the impact on the n-3 HUFA score, the intake of ENCH cheese (90 g/day) for two or four weeks was equivalent to the administration of one or two FO pills, respectively. Conversely, the linseed oil intake did not significantly impact the n-3 HUFA score. Feeding ENCH cheeses from different sources (bovine, ovine and caprine) for two months improved the n-3 HUFA score by increasing plasma DHA, and the effect was proportional to the CLA content in the cheese. We suggest that the improved n-3 HUFA score resulting from ENCH cheese intake may be attributed to increased peroxisome proliferator-activated receptor alpha (PPAR-α) activity. This study demonstrates that natural ENCH cheese is an alternative nutritional source of n-3 HUFA in humans.

  16. Dipeptides as effective prodrugs of the unnatural amino acid (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), a selective group II metabotropic glutamate receptor agonist.

    PubMed

    Bueno, Ana Belén; Collado, Iván; de Dios, Alfonso; Domínguez, Carmen; Martín, José Alfredo; Martín, Luisa M; Martínez-Grau, María Angeles; Montero, Carlos; Pedregal, Concepción; Catlow, John; Coffey, D Scott; Clay, Michael P; Dantzig, Anne H; Lindstrom, Terry; Monn, James A; Jiang, Haiyan; Schoepp, Darryle D; Stratford, Robert E; Tabas, Linda B; Tizzano, Joseph P; Wright, Rebecca A; Herin, Marc F

    2005-08-11

    (+)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (1), also known as LY354740, is a highly potent and selective agonist for group II metabotropic glutamate receptors (mGlu receptors 2 and 3) tested in clinical trials. It has been shown to block anxiety in the fear-potentiated startle model. Its relatively low bioavailability in different animal species drove the need for an effective prodrug form that would produce a therapeutic response at lower doses for the treatment of anxiety disorders. We have investigated the increase of intestinal absorption of this compound by targeting the human peptide transporter hPepT1 for active transport of di- and tripeptides derived from 1. We have found that oral administration of an N dipeptide derivative of 1 (12a) in rats shows up to an 8-fold increase in drug absorption and a 300-fold increase in potency in the fear-potentiated startle model in rats when compared with the parent drug 1.

  17. Rhodium-catalyzed 1,4-addition of arylboronic acids to alpha,beta-unsaturated carbonyl compounds: large accelerating effects of bases and ligands.

    PubMed

    Itooka, Ryoh; Iguchi, Yuki; Miyaura, Norio

    2003-07-25

    The effects of ligands and bases in the rhodium(I)-catalyzed 1,4-addition of arylboronic acids to alpha,beta-unsaturated carbonyl compounds were reinvestigated to carry out the reaction under mild conditions. Rhodium(I) complexes possessing a 1,5-cyclooctadiene (cod) and a hydroxo ligand such as [RhOH(cod)](2) exhibited excellent catalyst activities compared to those of the corresponding rhodium-acac or -chloro complexes and their phosphine derivatives. The reaction was further accelerated in the presence of KOH, thus allowing the 1,4-addition even at 0 degrees C. A cationic rhodium(I)-(R)-binap complex, [Rh(R-binap)(nbd)]BF(4), catalyzed the reaction at 25-50 degrees C in the presence of Et(3)N with high enantioselectivities of up to 99% ee for alpha,beta-unsaturated ketones, 92% for aldehydes, 94% for esters, and 92% for amides.

  18. Synthesis of 3,5-Isoxazolidinediones and 1H-2,3-Benzoxazine-1,4(3H)-diones from Aliphatic Oximes and Dicarboxylic Acid Chlorides

    PubMed Central

    2015-01-01

    The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a–f) and 2,2′-ethylidene-bis[4,4-dialkyl-3,5-isoxazolidinedione]s (9a–f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a–e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a–e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product. PMID:24620711

  19. Synthesis of 3,5-isoxazolidinediones and 1H-2,3-benzoxazine-1,4(3H)-diones from aliphatic oximes and dicarboxylic acid chlorides.

    PubMed

    Izydore, Robert A; Jones, Joseph T; Mogesa, Benjamin; Swain, Ira N; Davis-Ward, Ronda G; Daniels, Dwayne L; Kpakima, Felicia Frazier; Spaulding-Phifer, Sharnelle T

    2014-04-04

    The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a-f) and 2,2'-ethylidene-bis[4,4-dialkyl-3,5-isoxazolidinedione]s (9a-f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a-e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a-e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product.

  20. Anionic Four Electron Donor-Based Palladacycles as Catalysts for Addition Reactions of Arylboronic Acids with α,β-Unsaturated Ketones, Aldehydes and α-Ketoesters

    PubMed Central

    He, Ping; Lu, Yong; Dong, Cheng-Guo; Hu, Qiao-Sheng

    2008-01-01

    Anionic four electron donor-based palladacycle-catalyzed 1,4-additions of arylboronic acids with α,β-unsaturated ketones and 1,2-additions of arylboronic acids with aldehydes and α-ketoesters are described. Our study demonstrated that palladacycles were highly efficient, practical catalysts for these addition reactions. The work described here not only opened a new paradigm for the application of palladacycles, but may also pave the road for other metalacycles as practically useful catalysts for such addition reactions including asymmetric ones. PMID:17217300

  1. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier

    PubMed Central

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A.; Traub, Michaela; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2003-01-01

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter. PMID:12947042

  2. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.

    PubMed

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A; Traub, Michaela; Martinoia, Enrico; Neuhaus, H Ekkehard

    2003-09-16

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter.

  3. The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione

    PubMed Central

    Booty, Lee M.; King, Martin S.; Thangaratnarajah, Chancievan; Majd, Homa; James, Andrew M.; Kunji, Edmund R.S.; Murphy, Michael P.

    2015-01-01

    Glutathione carries out vital protective roles within mitochondria, but is synthesised in the cytosol. Previous studies have suggested that the mitochondrial dicarboxylate and 2-oxoglutarate carriers were responsible for glutathione uptake. We set out to characterise the putative glutathione transport by using fused membrane vesicles of Lactococcus lactis overexpressing the dicarboxylate and 2-oxoglutarate carriers. Although transport of the canonical substrates could be measured readily, an excess of glutathione did not compete for substrate uptake nor could transport of glutathione be measured directly. Thus these mitochondrial carriers do not transport glutathione and the identity of the mitochondrial glutathione transporter remains unknown. PMID:25637873

  4. Aerobic Oxidation of 5-(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furan-2,5-dicarboxylic Acid Formation with CeO2 -Supported Gold Catalyst.

    PubMed

    Kim, Minjune; Su, Yaqiong; Fukuoka, Atsushi; Hensen, Emiel J M; Nakajima, Kiyotaka

    2018-05-14

    The utilization of 5-(hydroxymethyl)furfural (HMF) for the large-scale production of essential chemicals has been largely limited by the formation of solid humin as a byproduct, which prevents the operation of stepwise batch-type and continuous flow-type processes. The reaction of HMF with 1,3-propanediol produces an HMF acetal derivative that exhibits excellent thermal stability. Aerobic oxidation of the HMF acetal with a CeO 2 -supported Au catalyst and Na 2 CO 3 in water gives a 90-95 % yield of furan 2,5-dicarboxylic acid, an increasingly important commodity chemical for the biorenewables industry, from concentrated solutions (10-20 wt %) without humin formation. The six-membered acetal ring suppresses thermal decomposition and self-polymerization of HMF in concentrated solutions. Kinetic studies supported by DFT calculations identify two crucial steps in the reaction mechanism, that is, the partial hydrolysis of the acetal into 5-formyl-2-furan carboxylic acid involving OH - and Lewis acid sites on CeO 2 , and subsequent oxidative dehydrogenation of the in situ generated hemiacetal involving Au nanoparticles. These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Diurnal variations of total carbon, dicarboxylic acids, ketoacids and α-dicarbonyls in aerosols in the northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, N.; Kawamura, K.; Okuzawa, K.; Kanaya, Y.; Wang, Z. F.

    2013-06-01

    Aerosol samples (TSP, n=58) were collected on day- and night-time basis at Mangshan in the north of Beijing, China in autumn 2007 to better understand the status of air quality and the influence of urban pollutants in the northern vicinity of Beijing. The samples were analyzed for aerosol mass, total carbon (TC), low molecular weight α, ω-dicarboxylic acids (C2-C12), ketoacids (ωC2-ωC9, pyruvic acid), α-dicarbonyls (glyoxal and methylglyoxal), as well as aromatic (phthalic, iso- and tere-phthalic) diacids. Aerosol mass and TC concentrations are higher in daytime than in nighttime. TC/aerosol mass ratios in this study are lower than those reported in megacities in East Asia, but higher than those reported in marine aerosols. Molecular distributions of diacids demonstrated that oxalic (C2) acid was the most abundant species, comprising 38-77% of total diacids, followed by succinic (C4) and malonic (C3) acids. For most compounds, the concentrations were higher in daytime than nighttime, indicating that diacids are produced in daytime by photochemical oxidation of organic precursors emitted from anthropogenic sources in Beijing during the transport to Mangshan area by the northward wind. However, we found that C2 concentrations are higher in nighttime than in daytime. A positive correlation of C2 to glyoxylic acid (ωC2) was obtained at night when relative humidity increased up to 100%, suggesting that aqueous phase production of C2 occurs in nighttime via the oxidation of ωC2. Depletion of C2 by photolysis of Fe-oxalato complexes might be another reason for the lower concentrations of C2 in daytime samples. High phthalic acid/C4 ratios in the aerosol samples suggest that automobile combustion and coal burning products are important sources, which are subjected to photochemical oxidation during the atmospheric transport of urban aerosols from Beijing. In contrast, higher concentrations of methylglyoxal in nighttime than daytime may suggest that isoprene emitted

  6. Effect of 2 ppm ozone exposure on rat lung lipid fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, J.L.; Bassett, D.J.

    Based on in vitro studies, the initial damage to lung cells by ozone exposure is believed to result in part from the breakdown of lipid polyunsaturated fatty acids to aldehydes, ozonides, and peroxides. The present study measured lipid breakdown products in lungs isolated from rats pretreated with (1-/sup 14/C)acetate 12 h before exposure for 4 h to either air or 2 ppm ozone. Lipid fatty acid breakdown was indicated by a 112% increase in thiobarbituric acid-reactive substances on ozone exposure and by changes in chemical and radioactive measurements of mono- and dicarboxylic acids formed by treatment of lipid fractions withmore » hydrogen peroxide. Ozone exposure resulted in a 63% increase in recovery of short-chain fatty acids accounted for by increased recoveries of malonic acid by 37%, hexanoic acid by 47%, nonanoic acid by 118%, and azelaic acid by 107%. Recovery of glutaric acid was enhanced 15-fold by ozone exposure. Although decreases in tissue arachidonic acid could not be detected, oleic acid was significantly decreased by 36%. Recovery of radiolabel as short-chain fatty acids was increased by 65% on ozone exposure and was mainly accounted for by enhanced labeling of nonanoic and glutaric acid fractions. The failure to observe significant increases in /sup 14/C recovery in the other fractions suggested ozone-induced breakdown of unlabeled fatty acids. These results demonstrate the cleavage of unsaturated fatty acid double bonds following in vivo exposure of lungs to ozone. Breakdown of arachidonic and oleic acids was specifically identified by increased recoveries of glutaric and nonanoic acids, respectively.« less

  7. ω-Oxidation of α-Chlorinated Fatty Acids

    PubMed Central

    Brahmbhatt, Viral V.; Albert, Carolyn J.; Anbukumar, Dhanalakshmi S.; Cunningham, Bryce A.; Neumann, William L.; Ford, David A.

    2010-01-01

    Myeloperoxidase-derived HOCl targets tissue- and lipoprotein-associated plasmalogens to generate α-chlorinated fatty aldehydes, including 2-chlorohexadecanal. Under physiological conditions, 2-chlorohexadecanal is oxidized to 2-chlorohexadecanoic acid (2-ClHA). This study demonstrates the catabolism of 2-ClHA by ω-oxidation and subsequent β-oxidation from the ω-end. Mass spectrometric analyses revealed that 2-ClHA is ω-oxidized in the presence of liver microsomes with initial ω-hydroxylation of 2-ClHA. Subsequent oxidation steps were examined in a human hepatocellular cell line (HepG2). Three different α-chlorinated dicarboxylic acids, 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-chloroadipic acid (2-ClAdA), were identified. Levels of 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-ClAdA produced by HepG2 cells were dependent on the concentration of 2-ClHA and the incubation time. Synthetic stable isotope-labeled 2-ClHA was used to demonstrate a precursor-product relationship between 2-ClHA and the α-chlorinated dicarboxylic acids. We also report the identification of endogenous 2-ClAdA in human and rat urine and elevations in stable isotope-labeled urinary 2-ClAdA in rats subjected to intraperitoneal administration of stable isotope-labeled 2-ClHA. Furthermore, urinary 2-ClAdA and plasma 2-ClHA levels are increased in LPS-treated rats. Taken together, these data show that 2-ClHA is ω-oxidized to generate α-chlorinated dicarboxylic acids, which include α-chloroadipic acid that is excreted in the urine. PMID:20956542

  8. Ozonization of polyfunctional and humic acids of sapropelites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verkhodanova, N.N.; Myakina, I.A.; Egor'kov, A.N.

    Data are presented which show that in the ozonization of polyfunctional acids (PFAs) and humic acids (HAs) in glacial acetic acid, all the organic carbon can be converted into the soluble form. Mono- and dicarboxylic acids of normal structure have been detected in the ozonization products. 5 refs.

  9. Unique (3,8)-connected lanthanide arenedisulfonate metal-organic frameworks containing benzimidazole-5,6-dicarboxylic acid co-ligand: Syntheses, structures and luminescence

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Qiong; Liu, Qi; Zhong, Jie-Cen; Pan, Qun-Feng; Chen, Yi-Ping

    2013-10-01

    Two isostructural 3D lanthanide arenedisulfonate metal-organic frameworks (MOFs) [Ln(Hbidc)(nds)0.5(H2O)]n(Ln=Eu(1), La(2)) have been successfully synthesized by the hydrothermal reaction of lanthanide oxide with 2,6-naphthalenedisulfonate sodium (Na2nds) and an auxiliary ligand, 1H-benzimidazole-5,6-dicarboxylic acid (H3bidc). The two complexes are both constructed from 2D [Ln(Hbidc)]+ double layers pillared by nds2- ligands to generate 3D (3, 8)-connected open-framework structures with 1D long narrow channels running along the a axis. From topological point of view, the 3D framework is a (3, 8)-connected tfz-d net. The weak interactions including N-H⋯O, O-H⋯O hydrogen bonds and π-π stacking are observed in 1. The 2D IR correlation spectroscopy was applied to study the molecular interactions induced by thermal perturbation. The emission spectra of 1 exhibit the characteristic transition of 5D0→7FJ(J=0-4) of Eu(III).

  10. Acidity enhancement of unsaturated bases of group 15 by association with borane and beryllium dihydride. Unexpected boron and beryllium Brønsted acids.

    PubMed

    Martín-Sómer, Ana; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2015-01-21

    The intrinsic acidity of CH2[double bond, length as m-dash]CHXH2, HC[triple bond, length as m-dash]CXH2 (X = N, P, As, Sb) derivatives and of their complexes with BeH2 and BH3 has been investigated by means of high-level density functional theory and molecular orbital ab initio calculations, using as a reference the ethyl saturated analogues. The acidity of the free systems steadily increases down the group for the three series of derivatives, ethyl, vinyl and ethynyl. The association with both beryllium dihydride and borane leads to a very significant acidity enhancement, being larger for BeH2 than for BH3 complexes. This acidity enhancement, for the unsaturated compounds, is accompanied by a change in the acidity trends down the group, which do not steadily decrease but present a minimum value for both the vinyl- and the ethynyl-phosphine. When the molecule acting as the Lewis acid is beryllium dihydride, the π-type complexes in which the BeH2 molecules interact with the double or triple bond are found, in some cases, to be more stable, in terms of free energies, than the conventional complexes in which the attachment takes place at the heteroatom, X. The most important finding, however, is that P, As, and Sb ethynyl complexes with BeH2 do not behave as P, As, or Sb Brønsted acids, but unexpectedly as Be acids.

  11. Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids.

    PubMed

    Sauvat, Allan; Chen, Guo; Müller, Kevin; Tong, Mingming; Aprahamian, Fanny; Durand, Sylvère; Cerrato, Giulia; Bezu, Lucillia; Leduc, Marion; Franz, Joakim; Rockenfeller, Patrick; Sadoshima, Junichi; Madeo, Frank; Kepp, Oliver; Kroemer, Guido

    2018-04-01

    Depending on the length of their carbon backbone and their saturation status, natural fatty acids have rather distinct biological effects. Thus, longevity of model organisms is increased by extra supply of the most abundant natural cis-unsaturated fatty acid, oleic acid, but not by that of the most abundant saturated fatty acid, palmitic acid. Here, we systematically compared the capacity of different saturated, cis-unsaturated and alien (industrial or ruminant) trans-unsaturated fatty acids to provoke cellular stress in vitro, on cultured human cells expressing a battery of distinct biosensors that detect signs of autophagy, Golgi stress and the unfolded protein response. In contrast to cis-unsaturated fatty acids, trans-unsaturated fatty acids failed to stimulate signs of autophagy including the formation of GFP-LC3B-positive puncta, production of phosphatidylinositol-3-phosphate, and activation of the transcription factor TFEB. When combined effects were assessed, several trans-unsaturated fatty acids including elaidic acid (the trans-isomer of oleate), linoelaidic acid, trans-vaccenic acid and palmitelaidic acid, were highly efficient in suppressing autophagy and endoplasmic reticulum stress induced by palmitic, but not by oleic acid. Elaidic acid also inhibited autophagy induction by palmitic acid in vivo, in mouse livers and hearts. We conclude that the well-established, though mechanistically enigmatic toxicity of trans-unsaturated fatty acids may reside in their capacity to abolish cytoprotective stress responses induced by saturated fatty acids. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  12. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Johnson, Seth R; Song, Yang; Tefft, Ryan; Gatto, Craig; Wilkinson, Brian J

    2016-01-01

    The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (<25%) with SCFAs (>37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.

  13. Highly Preorganized Ligand 1,10-Phenanthroline-2,9-dicarboxylic Acid for the Selective Recovery of Uranium from Seawater in the Presence of Competing Vanadium Species

    DOE PAGES

    Lashley, Mark A.; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.; ...

    2016-09-30

    Studies of the complexation of new promising ligands with uranyl (UO 2 2+) and other seawater cations can aid the development of more efficient, selective, and robust sorbents for the recovery of uranium from seawater. Here, we propose that the ligand design principles based on structural preorganization can be successfully applied to obtain a dramatic enhancement in UO 2 2+ ion binding affinity and selectivity. This concept is exemplified through the investigation of the com-plexes of UO 2 2+, VO 2+, and VO 2+ with the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) using a combination of fluores-cence and absorbance techniques,more » along with den-sity functional theory (DFT) calculations. Moreover, the measured stability constant value, log K1, of 16.5 for the UO 2 2+/PDA complex is very high compared to uranyl complexes with other dicarboxylic ligands. Moreover, PDA exhibits strong selectivity for uranyl over vanadium ions, since the determined sta-bility constant values of the PDA complexes of the vanadium ions are quite low (V(IV) log K1 = 7.4, V(V) = 7.3). Finally, the structures of the corresponding UO 2 2+, VO 2+, and VO 2+ complexes with PDA were identified by systematic DFT calculations, and helped to interpret the stronger binding affinity for uranium over the vanadium ions. Due to its high chemical stability, selectivity, and structural preor-ganization for UO 2 2+ complexation, PDA is a very promising candidate that can be potentially used in the development of novel adsorbent materials for the selective extraction of uranium from sea-water.« less

  14. Highly Preorganized Ligand 1,10-Phenanthroline-2,9-dicarboxylic Acid for the Selective Recovery of Uranium from Seawater in the Presence of Competing Vanadium Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashley, Mark A.; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    Studies of the complexation of new promising ligands with uranyl (UO 2 2+) and other seawater cations can aid the development of more efficient, selective, and robust sorbents for the recovery of uranium from seawater. Here, we propose that the ligand design principles based on structural preorganization can be successfully applied to obtain a dramatic enhancement in UO 2 2+ ion binding affinity and selectivity. This concept is exemplified through the investigation of the com-plexes of UO 2 2+, VO 2+, and VO 2+ with the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) using a combination of fluores-cence and absorbance techniques,more » along with den-sity functional theory (DFT) calculations. Moreover, the measured stability constant value, log K1, of 16.5 for the UO 2 2+/PDA complex is very high compared to uranyl complexes with other dicarboxylic ligands. Moreover, PDA exhibits strong selectivity for uranyl over vanadium ions, since the determined sta-bility constant values of the PDA complexes of the vanadium ions are quite low (V(IV) log K1 = 7.4, V(V) = 7.3). Finally, the structures of the corresponding UO 2 2+, VO 2+, and VO 2+ complexes with PDA were identified by systematic DFT calculations, and helped to interpret the stronger binding affinity for uranium over the vanadium ions. Due to its high chemical stability, selectivity, and structural preor-ganization for UO 2 2+ complexation, PDA is a very promising candidate that can be potentially used in the development of novel adsorbent materials for the selective extraction of uranium from sea-water.« less

  15. Identification of keto- and hydroxy-dicarboxylic acids in remote marine aerosols from the western North Pacific: GC and GC/TOF-MS measurements

    NASA Astrophysics Data System (ADS)

    Vani, D.; Kawamura, K.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Dicarboxylic acids (diacids) are dominant components of organic aerosols in the atmosphere. They contribute significantly to the total aerosol mass and have a serious impacts on global climate changes. However, studies on keto- and hydroxy-diacids in marine aerosols are limited. Compare to diacids, keto- and hydroxy-diacids are more hygroscopic due to the additional polar groups (OH and CO) and, hence, acts as cloud condensation nuclei (CCN). Molecular characterization of these compounds provides insight into organic aerosols sources and transformation pathways. We collected marine aerosols from remote Chichijima Island in the western North Pacific from December 2010 to November 2011 and studied for water-soluble keto- and hydroxy-diacids. Carboxyl groups were derivatized to dibutyl esters with 14% boron trifluoride/n-butanol, whereas hydroxyl groups were derivatized to trimethylsilyl ethers using N,O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA). After two-step derivatization, samples were injected to GC, GC/MS and GC/TOF-MS. In the GC chromatogram, we detected several new peaks after BSTFA derivatization of dibutyl ester fraction. Based on mass spectral interpretation, we found these peaks as homologues series of hydroxy-diacids and keto-diacids. Some of these hydroxy-diacids have been individually reported in literature in the laboratory photo-oxidation experiments and forest environments samples. But, there are no evidences to prove their sources and formation mechanism in the atmosphere. Here, we report for the first time homologous series of hydroxy-diacids (hC3di-hC6di) and keto-diacid (oxaloacetic acid, enol and keto forms) in remote marine atmosphere. Molecular distributions of hydroxy-diacids generally showed the predominance of malic acid followed by tartronic acid. Both hydroxy- and keto-diacids show significant positive correlation with oxalic acid and SO42-, suggesting that they are generated in the atmosphere and play an important role in the

  16. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae).

    PubMed

    Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A

    2017-09-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

  17. Fatty acids in sparry calcite fracture fills and microsparite cement of septarian diagenetic concretions

    NASA Astrophysics Data System (ADS)

    Pearson, M. J.; Hendry, J. P.; Taylor, C. W.; Russell, M. A.

    2005-04-01

    Sparry calcite fracture fills and concretion body cements in concretions from the Flodigarry Shale Member of the Staffin Shale Formation, Isle of Skye, Scotland, entrap and preserve mineral and organic materials of sedimentary and diagenetic origin. Fatty acids are a major component of the lipids recovered by decarbonation and comprise mainly n-alkanoic and α-ω dicarboxylic acids. Two generations of fracture-fill calcite (early brown and later yellow) and the concretion body microspar yield significantly different fatty acid profiles. Early brown calcites yield mainly medium-chain n-alkanoic acids with strong even predominance; later yellow calcites are dominated by α-ω dicarboxylic acids with no even predominance. Both fracture fills lack the long-chain n-alkanoic and α-ω dicarboxylic acids additionally recovered from the concretion bodies. The absence of longer chain acids in the calcite spar fracture fills is inferred to result from the transport of fatty acids by septarian mineralising fluids whereby low-aqueous solubility of longer chain acids or their salts accounts for their relative immobility. Comparative experiments have been carried out using conventional solvent extraction on the concretion body and associated shales, both decarbonated and untreated. Extracted lipid yields are higher, but the fatty acids probably derive from mixed locations in the rock including both kerogen- and carbonate-associated lipid pools. Only experiments involving decarbonation yielded α-ω dicarboxylic acids in molecular distributions probably controlled mainly by fluid transport. Alkane biomarker ratios indicate very low thermal maturity has been experienced by the concretions and their host sediments. Septarian cracks lined by brown calcite formed during early burial. Microbial CO 2 from sulphate-reducing bacteria was probably the main source of mineralising carbonate. Emplacement of the later septarian fills probably involved at least one episode of fluid invasion.

  18. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    NASA Astrophysics Data System (ADS)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  19. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.

    PubMed

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ.

  20. Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells

    PubMed Central

    Schiro, Faith R.; Pajor, Ana M.; Hamm, L. Lee

    2011-01-01

    Urinary citrate is an important inhibitor of calcium nephrolithiasis and is primarily determined by proximal tubule reabsorption. The major transporter to reabsorb citrate is Na+-dicarboxylate cotransporter (NaDC1), which transports dicarboxylates, including the divalent form of citrate. We previously found that opossum kidney (OK) proximal tubule cells variably express either divalent or trivalent citrate transport, depending on extracellular calcium. The present studies were performed to delineate the mechanism of the effect of calcium on citrate and succinate transport in these cells. Transport was measured using isotope uptake assays. In some studies, NaDC1 transport was studied in Xenopus oocytes, expressing either the rabbit or opossum ortholog. In the OK cell culture model, lowering extracellular calcium increased both citrate and succinate transport by more than twofold; the effect was specific in that glucose transport was not altered. Citrate and succinate were found to reciprocally inhibit transport at low extracellular calcium (<60 μM), but not at normal calcium (1.2 mM); this mutual inhibition is consistent with dicarboxylate transport. The inhibition varied progressively at intermediate levels of extracellular calcium. In addition to changing the relative magnitude and interaction of citrate and succinate transport, decreasing calcium also increased the affinity of the transport process for various other dicarboxylates. Also, the affinity for succinate, at low concentrations of substrate, was increased by calcium removal. In contrast, in oocytes expressing NaDC1, calcium did not have a similar effect on transport, indicating that NaDC1 could not likely account for the findings in OK cells. In summary, extracellular calcium regulates constitutive citrate and succinate transport in OK proximal tubule cells, probably via a novel transport process that is not NaDC1. The calcium effect on citrate transport parallels in vivo studies that demonstrate the

  1. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    PubMed

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  3. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  4. The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione.

    PubMed

    Booty, Lee M; King, Martin S; Thangaratnarajah, Chancievan; Majd, Homa; James, Andrew M; Kunji, Edmund R S; Murphy, Michael P

    2015-02-27

    Glutathione carries out vital protective roles within mitochondria, but is synthesised in the cytosol. Previous studies have suggested that the mitochondrial dicarboxylate and 2-oxoglutarate carriers were responsible for glutathione uptake. We set out to characterise the putative glutathione transport by using fused membrane vesicles of Lactococcus lactis overexpressing the dicarboxylate and 2-oxoglutarate carriers. Although transport of the canonical substrates could be measured readily, an excess of glutathione did not compete for substrate uptake nor could transport of glutathione be measured directly. Thus these mitochondrial carriers do not transport glutathione and the identity of the mitochondrial glutathione transporter remains unknown. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel

    2014-11-15

    Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract:more » Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.« less

  6. In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation.

    PubMed

    Maes, Michael; Mihaylova, Ivana; Leunis, Jean-Claude

    2005-12-01

    There is now evidence that major depression is accompanied by decreased levels of omega3 poly-unsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). There is a strong comorbidity between major depression and chronic fatigue syndrome (CFS). The present study has been carried out in order to examine PUFA levels in CFS. In twenty-two CFS patients and 12 normal controls we measured serum PUFA levels using gas chromatography and mass spectrometry. We found that CFS was accompanied by increased levels of omega6 PUFAs, i.e. linoleic acid and arachidonic acid (AA), and mono-unsaturated fatty acids (MUFAs), i.e. oleic acid. The EPA/AA and total omega3/omega6 ratios were significantly lower in CFS patients than in normal controls. The omega3/omega6 ratio was significantly and negatively correlated to the severity of illness and some items of the FibroFatigue scale, i.e. aches and pain, fatigue and failing memory. The severity of illness was significantly and positively correlated to linoleic and arachidonic acid, oleic acid, omega9 fatty acids and one of the saturated fatty acids, i.e. palmitic acid. In CFS subjects, we found significant positive correlations between the omega3/omega6 ratio and lowered serum zinc levels and the lowered mitogen-stimulated CD69 expression on CD3+, CD3+ CD4+, and CD3+ CD8+ T cells, which indicate defects in early T cell activation. The results of this study show that a decreased availability of omega3 PUFAs plays a role in the pathophysiology of CFS and is related to the immune pathophysiology of CFS. The results suggest that patients with CFS should respond favourably to treatment with--amongst other things--omega3 PUFAs, such as EPA and DHA.

  7. Bio-inspired nitrile hydration by peptidic ligands based on L-cysteine, L-methionine or L-penicillamine and pyridine-2,6-dicarboxylic acid.

    PubMed

    Byrne, Cillian; Houlihan, Kate M; Devi, Prarthana; Jensen, Paul; Rutledge, Peter J

    2014-12-12

    Nitrile hydratase (NHase, EC 4.2.1.84) is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide and nicotinamide and in the bioremediation of nitrile waste. Crystal structures of both cobalt(III)- and iron(III)-dependent NHases reveal an unusual metal binding motif made up from six sequential amino acids and comprising two amide nitrogens from the peptide backbone and three cysteine-derived sulfur ligands, each at a different oxidation state (thiolate, sulfenate and sulfinate). Based on the active site geometry revealed by these crystal structures, we have designed a series of small-molecule ligands which integrate essential features of the NHase metal binding motif into a readily accessible peptide environment. We report the synthesis of ligands based on a pyridine-2,6-dicarboxylic acid scaffold and L-cysteine, L-S-methylcysteine, L-methionine or L-penicillamine. These ligands have been combined with cobalt(III) and iron(III) and tested as catalysts for biomimetic nitrile hydration. The highest levels of activity are observed with the L-penicillamine ligand which, in combination with cobalt(III), converts acetonitrile to acetamide at 1.25 turnovers and benzonitrile to benzamide at 1.20 turnovers.

  8. Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: Mechanochemical synthesis and spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Al-Terkawi, Abdal-Azim; Scholz, Gudrun; Emmerling, Franziska; Kemnitz, Erhard

    2018-05-01

    A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)·0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflection-infrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments.

  9. Biocatalytic, one-pot diterminal oxidation and esterification of n-alkanes for production of α,ω-diol and α,ω-dicarboxylic acid esters.

    PubMed

    van Nuland, Youri M; de Vogel, Fons A; Scott, Elinor L; Eggink, Gerrit; Weusthuis, Ruud A

    2017-11-01

    Direct and selective terminal oxidation of medium-chain n-alkanes is a major challenge in chemistry. Efforts to achieve this have so far resulted in low specificity and overoxidized products. Biocatalytic oxidation of medium-chain n-alkanes - with for example the alkane monooxygenase AlkB from P. putida GPo1- on the other hand is highly selective. However, it also results in overoxidation. Moreover, diterminal oxidation of medium-chain n-alkanes is inefficient. Hence, α,ω-bifunctional monomers are mostly produced from olefins using energy intensive, multi-step processes. By combining biocatalytic oxidation with esterification we drastically increased diterminal oxidation upto 92mol% and reduced overoxidation to 3% for n-hexane. This methodology allowed us to convert medium-chain n-alkanes into α,ω-diacetoxyalkanes and esterified α,ω-dicarboxylic acids. We achieved this in a one-pot reaction with resting-cell suspensions of genetically engineered Escherichia coli. The combination of terminal oxidation and esterification constitutes a versatile toolbox to produce α,ω-bifunctional monomers from n-alkanes. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  11. Development of a Δ9-Tetrahydrocannabinol Amino Acid-Dicarboxylate Prodrug With Improved Ocular Bioavailability

    PubMed Central

    Adelli, Goutham R.; Bhagav, Prakash; Taskar, Pranjal; Hingorani, Tushar; Pettaway, Sara; Gul, Waseem; ElSohly, Mahmoud A.; Repka, Michael A.; Majumdar, Soumyajit

    2017-01-01

    Purpose The aim of the present study was to evaluate the utility of the relatively hydrophilic Δ9-tetrahydrocannabinol (THC) prodrugs, mono and di-valine esters (THC-Val and THC-Val-Val) and the amino acid (valine)-dicarboxylic acid (hemisuccinate) ester (THC-Val-HS), with respect to ocular penetration and intraocular pressure (IOP) lowering activity. THC, timolol, and pilocarpine eye drops were used as controls. Methods THC-Val, THC-Val-Val, and THC-Val-HS were synthesized and chemically characterized. Aqueous solubility and in vitro transcorneal permeability of THC and the prodrugs, in the presence of various surfactants and cyclodextrins, were determined. Two formulations were evaluated for therapeutic activity in the α-chymotrypsin induced rabbit glaucoma model, and the results were compared against controls comprising of THC emulsion and marketed timolol maleate and pilocarpine eye drops. Results THC-Val-HS demonstrated markedly improved solubility (96-fold) and in vitro permeability compared to THC. Selected formulations containing THC-Val-HS effectively delivered THC to the anterior segment ocular tissues in the anesthetized rabbits: 62.1 ng/100 μL of aqueous humor (AH) and 51.4 ng/50 mg of iris ciliary bodies (IC) (total THC). The duration and extent of IOP lowering induced by THC-Val-HS was 1 hour longer and 10% greater, respectively, than that obtained with THC and was comparable with the pilocarpine eye drops. Timolol ophthalmic drops, however, exhibited a longer duration of activity. Both THC and THC-Val-HS were detected in the ocular tissues following multiple dosing of THC-Val-HS in conscious animals. The concentration of THC in the iris-ciliary bodies at the 60- and 120-minute time points (53 and 57.4 ng/50 mg) were significantly greater than that of THC-Val-HS (24.2 and 11.3 ng/50 mg). Moreover, at the two time points studied, the concentration of THC was observed to increase or stay relatively constant, whereas THC-Val-HS concentration decreased

  12. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes

    NASA Technical Reports Server (NTRS)

    Hong, Mee Young; Chapkin, Robert S.; Barhoumi, Rola; Burghardt, Robert C.; Turner, Nancy D.; Henderson, Cara E.; Sanders, Lisa M.; Fan, Yang-Yi; Davidson, Laurie A.; Murphy, Mary E.; hide

    2002-01-01

    We have shown that a combination of fish oil (high in n-3 fatty acids) with the butyrate-producing fiber pectin, upregulates apoptosis in colon cells exposed to the carcinogen azoxymethane, protecting against colon tumor development. We now hypothesize that n-3 fatty acids prime the colonocytes such that butyrate can initiate apoptosis. To test this, 30 Sprague-Dawley rats were provided with diets differing in the fatty acid composition (corn oil, fish oil or a purified fatty acid ethyl ester diet). Intact colon crypts were exposed ex vivo to butyrate, and analyzed for reactive oxygen species (ROS), mitochondrial membrane potential (MMP), translocation of cytochrome C to the cytosol, and caspase-3 activity (early events in apoptosis). The fatty acid composition of the three major mitochondrial phospholipids was also determined, and an unsaturation index calculated. The unsaturation index in cardiolipin was correlated with ROS levels (R = 0.99; P = 0.02). When colon crypts from fish oil and FAEE-fed rats were exposed to butyrate, MMP decreased (P = 0.041); and translocation of cytochrome C to the cytosol (P = 0.037) and caspase-3 activation increased (P = 0.032). The data suggest that fish oil may prime the colonocytes for butyrate-induced apoptosis by enhancing the unsaturation of mitochondrial phospholipids, especially cardiolipin, resulting in an increase in ROS and initiating apoptotic cascade.

  13. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity.

    PubMed

    Yu, Keshun; Soares, Juliana Moreira; Mandal, Mihir Kumar; Wang, Caixia; Chanda, Bidisha; Gifford, Andrew N; Fowler, Joanna S; Navarre, Duroy; Kachroo, Aardra; Kachroo, Pradeep

    2013-04-25

    Systemic acquired resistance (SAR), a highly desirable form of plant defense, provides broad-spectrum immunity against diverse pathogens. The recent identification of seemingly unrelated chemical inducers of SAR warrants an investigation of their mutual interrelationships. We show that SAR induced by the dicarboxylic acid azelaic acid (AA) requires the phosphorylated sugar derivative glycerol-3-phosphate (G3P). Pathogen inoculation induced the release of free unsaturated fatty acids (FAs) and thereby triggered AA accumulation, because these FAs serve as precursors for AA. AA accumulation in turn increased the levels of G3P, which is required for AA-conferred SAR. The lipid transfer proteins DIR1 and AZI1, both of which are required for G3P- and AA-induced SAR, were essential for G3P accumulation. Conversely, reduced G3P resulted in decreased AZI1 and DIR1 transcription. Our results demonstrate that an intricate feedback regulatory loop among G3P, DIR1, and AZI1 regulates SAR and that AA functions upstream of G3P in this pathway. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Effects of unsaturated fatty acids on the kinetics of voltage‐gated proton channels heterologously expressed in cultured cells

    PubMed Central

    Kawanabe, Akira

    2016-01-01

    Key points Arachidonic acid (AA) greatly enhances the activity of the voltage‐gated proton (Hv) channel, although its mechanism of action and physiological function remain unclear.In the present study, we analysed the effects of AA on proton currents through Hv channels heterologously expressed in HEK293T cells.The dramatic increase in proton current amplitude elicited by AA was accompanied by accelerated activation kinetics and a leftward shift in the voltage‐dependence of activation.Mutagenesis studies suggest the two aforementioned effects of AA reflect two distinct structural mechanisms.Application of phospholipase A2, which liberates AA from phospholipids in the membrane, also enhances Hv channel activity, supporting the idea that AA modulates Hv channel activity within physiological contexts. Abstract Unsaturated fatty acids are key components of the biological membranes of all cells, and precursors of mediators for cell signalling. Arachidonic acid (AA) is an unsaturated fatty acid known to modulate the activities of various ion channels, including the voltage‐gated proton (Hv) channel, which supports the rapid production of reactive oxygen species (ROS) in phagocytes through regulation of pH and membrane potential. However, the molecular mechanisms and physiological functions of the effects of AA on Hv channels remain unclear. In the present study, we report an electrophysiological analysis of the effects of AA on the mouse Hv channel (mHv1) heterologously expressed in HEK293T cells. Application of AA to excised inside‐out patch membranes rapidly induced a robust increase in the amplitude of the proton current through mHv1. The current increase was accompanied by accelerated activation kinetics and a small leftward shift of the current–voltage relationship. In monomeric channels lacking the coiled‐coil region of the channel protein, the shift in the current–voltage relationship was diminished but activation and deactivation remained

  15. Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding

    PubMed Central

    Nile, Aaron H.; Mukund, Susmith; Stanger, Karen; Wang, Weiru; Hannoush, Rami N.

    2017-01-01

    Frizzled (FZD) receptors mediate Wnt signaling in diverse processes ranging from bone growth to stem cell activity. Moreover, high FZD receptor expression at the cell surface contributes to overactive Wnt signaling in subsets of pancreatic, ovarian, gastric, and colorectal tumors. Despite the progress in biochemical understanding of Wnt–FZD receptor interactions, the molecular basis for recognition of Wnt cis-unsaturated fatty acyl groups by the cysteine-rich domain (CRD) of FZD receptors remains elusive. Here, we determined a crystal structure of human FZD7 CRD unexpectedly bound to a 24-carbon fatty acid. We also report a crystal structure of human FZD5 CRD bound to C16:1 cis-Δ9 unsaturated fatty acid. Both structures reveal a dimeric arrangement of the CRD. The lipid-binding groove exhibits flexibility and spans both monomers, adopting a U-shaped geometry that accommodates the fatty acid. Re-evaluation of the published mouse FZD8 CRD structure reveals that it also shares the same architecture as FZD5 and FZD7 CRDs. Our results define a common molecular mechanism for recognition of the cis-unsaturated fatty acyl group, a necessary posttranslational modification of Wnts, by multiple FZD receptors. The fatty acid bridges two CRD monomers, implying that Wnt binding mediates FZD receptor dimerization. Our data uncover possibilities for the arrangement of Wnt–FZD CRD complexes and shed structural insights that could aide in the identification of pharmacological strategies to modulate FZD receptor function. PMID:28377511

  16. Saturated and unsaturated fatty acids differentially regulate in vitro and ex vivo placental antioxidant capacity.

    PubMed

    Manuel, Clarence R; Charron, Maureen J; Ashby, Charles R; Reznik, Sandra E

    2018-05-07

    Complications from prematurity are the leading cause of death among children under 5 years of age. Although clinical studies have shown a positive correlation between maternal high-fat diet (HFD) and preterm birth (PTB), the underlying mechanisms remain to be elucidated. Furthermore, it remains unclear how fatty acid type influences the effects of bacterial endotoxins. HTR-8/SVneo trophoblasts were cultured in either 0.5 mmol L -1 palmitic acid (PA) or linoleic acid (LA) in the absence or presence of 100 μg mL -1 of lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Murine placental explants were cultured in either 2 mmol L -1 PA or LA, and cell viability, total antioxidant capacity (TAC), lipid peroxidation, H 2 O 2 , heme oxygenase-1 (HO-1), and nuclear erythroid 2-related factor 2 (Nrf-2) and nuclear factor-kappa light-chain enhancer of activated B cells (NF-κB) transcription factor activity assays were assessed. Palmitic acid significantly (i) increased cell death, (ii) decreased TAC, and (iii) increased lipid peroxidation; but did not significantly increase HO-1. In contrast, LA maintained cell viability and significantly increased TAC and HO-1. In addition, incubating placental explants with PA significantly increased NF-κB activity. Co-incubating cells with PA and LPS or LTA significantly potentiated H 2 O 2 production and increased lipid peroxidation. Co-incubating cells with PA and LTA synergistically impaired TAC, and LTA decreased TAC more so than LPS. Co-incubation with PA/LA and LPS/LTA decreased HO-1 levels compared to treatment with either fatty acid alone. Our findings suggest that saturated and unsaturated fats differentially regulate placental viability, antioxidant capacity, and inflammation and the actions of gram-positive and gram-negative endotoxins. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Solvothermal synthesis and structure of 3D frameworks of Nd(III) and Y(III) with thiophene-2,5-dicarboxylate and N,N‧-diethylformamide

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Yawer, Mohd; Kariem, Mukaddus; Sheikh, Haq Nawaz

    2016-08-01

    Two new 3D MOFs [Nd2(TDA)3(DEF)2(H2O)]n (1) and [Y4(TDA)6(DEF)4]n (2) [Thiophene-2,5-dicarboxylic acid (H2TDA) and N,N‧-diethylformamide (DEF)] were synthesized by solvothermal method. They were characterized by elemental analyses, infrared spectroscopy and single crystal X-ray diffraction studies. The two MOFs (1) and (2) belong to the monoclinic system with space group P21/n and C 2 respectively. Structural characterizations by single-crystal X-ray crystallography reveal that 1 and 2 adopt three-dimensional frameworks constructed by cross-linking of rod shaped infinite chain secondary building unit (SBU) by thiophene-2,5-dicarboxylates as linker. These frameworks feature rhomboidal channels, inside which coordinated DEF/H2O solvent molecules are located. DEF plays pivotal role in reaction and design of MOFs. Thermogravimetric analysis shows that both MOFs are thermally robust.

  18. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men.

    PubMed

    Ribel-Madsen, Amalie; Ribel-Madsen, Rasmus; Brøns, Charlotte; Newgard, Christopher B; Vaag, Allan A; Hellgren, Lars I

    2016-10-01

    We hypothesized that an increased, incomplete fatty acid beta-oxidation in mitochondria could be part of the metabolic events leading to insulin resistance and thereby an increased type 2 diabetes risk in low birth weight (LBW) compared with normal birth weight (NBW) individuals. Therefore, we measured fasting plasma levels of 45 acylcarnitine species in 18 LBW and 25 NBW men after an isocaloric control diet and a 5-day high-fat, high-calorie diet. We demonstrated that LBW men had higher C2 and C4-OH levels after the control diet compared with NBW men, indicating an increased fatty acid beta-oxidation relative to the tricarboxylic acid cycle flux. Also, they had higher C6-DC, C10-OH/C8-DC, and total hydroxyl-/dicarboxyl-acylcarnitine levels, which may suggest an increased fatty acid omega-oxidation in the liver. Furthermore, LBW and NBW men decreased several acylcarnitine levels in response to overfeeding, which is likely a result of an upregulation of fatty acid oxidation due to the dietary challenge. Moreover, C10-OH/C8-DC and total hydroxyl-/dicarboxyl-acylcarnitine levels tended to be negatively associated with the serum insulin level, and the total hydroxyl-/dicarboxyl-acylcarnitine level additionally tended to be negatively associated with the hepatic insulin resistance index. This indicates that an increased fatty acid omega-oxidation could be a compensatory mechanism to prevent an accumulation of lipid species that impair insulin signaling. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. Oxygen transport and pyrite oxidation in unsaturated coal-mine spoil

    USGS Publications Warehouse

    Guo, Weixing; Cravotta, Charles A.

    1996-01-01

    An understanding of the mechanisms of oxygen (02) transport in unsaturated mine spoil is necessary to design and implement effective measures to exclude 02 from pyritic materials and to control the formation of acidic mine drainage. Partial pressure of oxygen (Po2) in pore gas, chemistry of pore water, and temperature were measured at different depths in unsaturated spoil at two reclaimed surface coal mines in Pennsylvania. At mine 1, where spoil was loose, blocky sandstone, Po2 changed little with depth, decreasing from 21 volume percent (vol%) at the ground surface to a minimum of about 18 vol% at 10 m depth. At mine 2, where spoil was compacted, friable shale, Po2 decreased to less than 2 vol% at depth of about 10 m. Although pore-water chemistry and temperature data indicate that acid-forming reactions were active at both mines, the pore-gas data indicate that mechanisms for 0 2 transport were different at each mine. A numerical model was developed to simulate 02 transport and pyrite oxidation in unsaturated mine spoil. The results of the numerical simulations indicate that differences in 02 transport at the two mines can be explained by differences in the air permeability of spoil. Po2 changes little with depth if advective transport of 02 dominates as at mine 1, but decreases greatly with depth if diffusive transport of 02 dominates, as in mine 2. Model results also indicate that advective transport becomes significant if the air permeability of spoil is greater than 10-9 m2, which is expected for blocky sandstone spoil. In the advective-dominant system, thermally-induced convective air flow, as a consequence of the exothermic oxidation of pyrite, supplies the 02 to maintain high Po2 within the deep unsaturated zone.

  20. Saturated and cis- and trans-unsaturated fatty acids intake in rural and urban Costa Rican adolescents.

    PubMed

    Monge-Rojas, Rafael; Campos, Hannia; Fernández Rojas, Xinia

    2005-08-01

    The purpose of this study is to determine whether intake of saturated fatty acids and cis- and trans-unsaturated fatty acids is associated with an urban compared to a rural lifestyle, and whether these associations are responsible for differences in plasma lipid concentrations. Two hundred seventy-five adolescents, aged 12 to 19 years, living in rural and urban areas of San José, Costa Rica, were included in the study. All participants completed three-day food records, provided a fasting blood sample, and carried out a modified Harvard Step Test. Compared to rural, urban adolescents reported higher intakes of energy-adjusted individual and total saturated fatty acids, total n-3, total n-6 (p < 0.05). Compared to rural, urban adolescents had higher intake of 18:1 (3.65 vs. 3.25, p = 0.0001) and 18:2 (0.62 vs. 0.80, p = 0.001) trans fatty acids, as well as lower intake of carbohydrate (p < 0.05). Palm shortening was the main source of saturated fat (32%), and partially hydrogenated soybean oil used for cooking was the main source of n-3 fatty acids (33%), n-6 fatty acids (33%) and trans fatty acids (34%). Compared to rural, urban adolescents had lower systolic and diastolic blood pressure and higher plasma HDL cholesterol concentration (44 vs. 40 mg/dL, p < 0.0001), but were more likely to be sedentary (68% vs. 57%, p < 0.0001). Among environmental factors, higher carbohydrate intake was a significant determinant of a lower HDL cholesterol (beta coeff = -1.45, p = 0.04), while lauric and myristic fatty acids correlated with increased LDL cholesterol (beta coeff = 3.6, 1.7, p < 0.05). A diet containing less carbohydrate and less saturated fatty acids contributes to a more beneficial lipid profile in Costa Rican adolescents, but a trend towards high trans fatty acids intake, particularly in the urban area, is worrisome given the well-known adverse effects of trans fatty acids.

  1. Characterization and quantification of odor-active compounds in unsaturated fatty acid/conjugated linoleic acid (UFA/CLA)-enriched butter and in conventional butter during storage and induced oxidation.

    PubMed

    Mallia, Silvia; Escher, Felix; Dubois, Sébastien; Schieberle, Peter; Schlichtherle-Cerny, Hedwig

    2009-08-26

    Dairy products enriched in unsaturated fatty acids (UFA) and conjugated linoleic acids (CLA) have a higher nutritional value and are suggested to have beneficial health effects. However, such acids are susceptible to oxidation, and off-flavors may be formed during storage. This study was aimed to compare the most important odorants in UFA/CLA-enriched butter to that of conventional butter during storage and induced oxidation. Volatiles were isolated by solvent-assisted flavor evaporation and identified by gas chromatography-olfactometry and mass spectrometry. Aroma extract dilution analysis revealed 18 odorants that were quantified by stable isotope dilution analysis. Another important odorant, 3-methyl-1H-indole (mothball-like odor), was quantified by high-performance liquid chromatography. After storage, UFA/CLA-enriched butter showed higher concentrations of pentanal (fatty), heptanal (green), butanoic acid (cheesy), and delta-decalactone (peach-like). Photo-oxidation of butter samples induced increases in heptanal, (E)-2-octenal, and trans-4,5-epoxy-(E)-2-decenal, especially in conventional butter. The higher vitamin content in UFA/CLA samples may protect this butter from oxidation.

  2. Domino-hydroformylation/aldol condensation catalysis: highly selective synthesis of α,β-unsaturated aldehydes from olefins.

    PubMed

    Fang, Xianjie; Jackstell, Ralf; Franke, Robert; Beller, Matthias

    2014-10-06

    A general and highly chemo-, regio-, and stereoselective synthesis of α,β-unsaturated aldehydes by a domino hydroformylation/aldol condensation reaction has been developed. A variety of olefins and aromatic aldehydes were efficiently converted into various substituted α,β-unsaturated aldehydes in good to excellent yields in the presence of a rhodium phosphine/acid-base catalyst system. In view of the easy availability of the substrates, the high atom-efficiency, the excellent selectivity, and the mild conditions, this method is expected to complement current methodologies for the preparation of α,β-unsaturated aldehydes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Maternal intake of trans-unsaturated or interesterified fatty acids during pregnancy and lactation modifies mitochondrial bioenergetics in the liver of adult offspring in mice.

    PubMed

    de Velasco, Patricia C; Chicaybam, Gustavo; Ramos-Filho, Dionizio M; Dos Santos, Raísa M A R; Mairink, Caroline; Sardinha, Fátima L C; El-Bacha, Tatiana; Galina, Antonio; Tavares-do-Carmo, Maria das Graças

    2017-07-01

    The quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.

  4. Effect of detergents, trypsin and unsaturated fatty acids on latent loquat fruit polyphenol oxidase: basis for the enzyme's activity regulation.

    PubMed

    Sellés-Marchart, Susana; Casado-Vela, Juan; Bru-Martínez, Roque

    2007-08-15

    The effects of detergents, trypsin and fatty acids on structural and functional properties of a pure loquat fruit latent polyphenol oxidase have been studied in relation to its regulation. Anionic detergents activated PPO at pH 6.0 below critical micelle concentration (cmc), but inhibited at pH 4.5 well above cmc. This behavior is due to a detergent-induced pH profile alkaline shift, accompanied by changes of intrinsic fluorescence of the protein. Gel filtration experiments demonstrate the formation of PPO-SDS mixed micelles. Partial PPO proteolysis suggest that latent PPO losses an SDS micelle-interacting region but conserves an SDS monomer-interacting site. Unsaturated fatty acids inhibit PPO at pH 4.5, the strongest being linolenic acid while the weakest was gamma-linolenic acid for both, the native and the trypsin-treated PPO. Down-regulation of PPO activity by anionic amphiphiles is discussed based on both, the pH profile shift induced upon anionic amphiphile binding and the PPO interaction with negatively charged membranes.

  5. Evaluation of biohydrogenation rate of canola vs. soya bean seeds as unsaturated fatty acids sources for ruminants in situ.

    PubMed

    Pashaei, S; Ghoorchi, T; Yamchi, A

    2016-04-01

    An experiment was conducted to study disappearance of C14 to C18 fatty acids, lag times and biohydrogenation (BH) rates of C18 fatty acids of ground soya bean and canola seeds in situ. Three ruminally fistulated Dallagh sheep were used to determine ruminal BH of unsaturated fatty acids (UFAs). Differences in the disappearance of fatty acids through the bags and lag times were observed between the oilseeds. We saw that the longer the incubation time of the oilseeds in the rumen, the lower the content of C18:2 and C18:3. Significantly higher lag times for both C18:2 and C18:3 were observed in ground canola compared to ground soya bean. BH rates of C18:2 and C18:3 fatty acids in soya bean were three times higher than those of canola. These results suggest that the fatty acid profile of fat source can affect the BH of UFAs by rumen micro-organisms. So that UFAs of canola had higher ability to escape from ruminal BH. It seems that fatty acid profile of ruminant products is more affected by canola seed compared to soya bean seed. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  6. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    NASA Astrophysics Data System (ADS)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  7. Anticonvulsant actions of LY 367385 ((+)-2-methyl-4-carboxyphenylglycine) and AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid).

    PubMed

    Chapman, A G; Yip, P K; Yap, J S; Quinn, L P; Tang, E; Harris, J R; Meldrum, B S

    1999-02-26

    We have studied the effects in three rodent models of generalised convulsive or absence epilepsy of two antagonists of group I metabotropic glutamate receptors that are selective for the mGlu1 receptor. LY 367385 ((+)-2-methyl-4-carboxyphenylglycine) and AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid) have been administered intracerebroventricularly (i.c.v.) to DBA/2 mice and lethargic mice (lh/lh), and focally into the inferior colliculus of genetically epilepsy prone rats (GEPR). In DBA/2 mice both compounds produce a rapid, transient suppression of sound-induced clonic seizures (LY 367385: ED50 = 12 nmol, i.c.v., 5 min; AIDA: ED50 = 79 nmol, i.c.v., 15 min). In lethargic mice both compounds significantly reduce the incidence of spontaneous spike and wave discharges on the electroencephalogram, from <30 to >150 min after the administration of AIDA, 500 nmol, i.c.v., and from 30 to >150 min after the administration of LY 367385, 250 nmol, i.c.v. LY 367385, 50 nmol, suppresses spontaneous spike and wave discharges from 30 to 60 min. In genetically epilepsy prone rats both compounds reduce sound-induced clonic seizures. LY 367385, 160 nmol bilaterally, fully suppresses clonic seizures after 2-4 h. AIDA is fully effective 30 min after 100 nmol bilaterally. It is concluded that antagonists of mGlu1 receptors are potential anticonvulsant agents and that activation of mGlu1 receptors probably contributes to a variety of epileptic syndromes.

  8. Trans unsaturated fatty acids inhibit lecithin: cholesterol acyltransferase and alter its positional specificity.

    PubMed

    Subbaiah, P V; Subramanian, V S; Liu, M

    1998-07-01

    Although dietary trans unsaturated fatty acids (TUFA) are known to decrease plasma HDL, the underlying mechanisms for this effect are unclear. We tested the hypothesis that the decreased HDL is due to an inhibition of lecithin:cholesterol acyltransferase (LCAT), the enzyme essential for the formation of HDL, by determining the activity of purified LCAT in the presence of synthetic phosphatidylcholine (PC) substrates containing TUFA. Both human and rat LCATs exhibited significantly lower activity (-37% to -50%) with PCs containing 18:1t or 18:2t, when compared with the PCs containing corresponding cis isomers. TUFA-containing PCs also inhibited the enzyme activity competitively, when added to egg PC substrate. The inhibition of LCAT activity was not due to changes in the fluidity of the substrate particle. However, the inhibition depended on the position occupied by TUFA in the PC, as well as on the paired fatty acid. Thus, for human LCAT, 18:1t was more inhibitory when present at sn-2 position of PC, than at sn-1, when paired with 16:0. In contrast, when paired with 20:4, 18:1t was more inhibitory at sn-1 position of PC. Both human and rat LCATs, which are normally specific for the sn-2 acyl group of PC, exhibited an alteration in their positional specificity when 16:0-18:1t PC or 16:1t-20:4 PC was used as substrate, deriving 26-86% of the total acyl groups for cholesterol esterification from the sn-1 position. These results show that the trans fatty acids decrease high density lipoprotein through their inhibition of lecithin: cholesterol acyltransferase (LCAT) activity, and also alter LCAT's positional specificity, inducing the formation of more saturated cholesteryl esters, which are more atherogenic.

  9. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks.

    PubMed

    Kim, Sam-Moon; Neuendorff, Nichole; Chapkin, Robert S; Earnest, David J

    2016-05-01

    Inflammatory signaling may play a role in high-fat diet (HFD)-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA) in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA), docosahexaenoic acid (DHA), were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin) repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    PubMed

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  11. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  12. Nutritional quality of fish faeces is enhanced by highly unsaturated fatty acid-producing heterotrophic protozoa

    NASA Astrophysics Data System (ADS)

    Fujibayashi, Megumu; Tanaka, Nobuyuki; Hashido, Shun; Takasawa, Aya; Nishimura, Osamu

    2018-05-01

    Highly unsaturated fatty acids such as 20:5n3 (EPA) are both hormone precursors and cell membrane components, making them important nutrients for aquatic animals. Many animals must obtain EPA from their diets because they cannot synthesize enough EPA to meet their requirements, and algae are the main source of EPA in aquatic ecosystems. In a previous study, we detected EPA in the faeces of Danio rerio, a freshwater fish, even though the fish consumed a green algae diet that did not contain EPA. The objective of this study was to determine why EPA was detected in fish faeces. A significant positive relationship was detected between the number of heterotrophic protozoa and the concentration of EPA in the faeces, which suggests that this EPA was of protozoan origin. In addition, another experiment showed that protozoa adhered to faeces far more than the green algal diet remnants, which indicates that protozoa preferred to swarm on faeces. Furthermore, we cultured protozoa in an EPA-free medium and fed them a bacterial diet also lacking EPA, and found that Cyclidium sp. synthesized EPA de novo. The results demonstrate that protozoa produce essential fatty acids and enhance the nutritional quality of animal faeces in detritus-based food webs in freshwater ecosystems.

  13. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.

    PubMed

    Al-Sabahi, Bushra N; Fatope, Majekodunmi O; Essa, Musthafa Mohamed; Subash, Selvaraju; Al-Busafi, Saleh N; Al-Kusaibi, Fatma S M; Manivasagam, Thamilarasan

    2017-01-01

    Seed oils are used as cosmetics or topical treatment for wounds, allergy, dandruff, and other purposes. Natural antioxidants from plants were recently reported to delay the onset or progress of various neurodegenerative conditions. Over one thousand cultivars of Punica granatum (Punicaceae) are known and some are traditionally used to treat various ailments. The effect of pomegranate oil on 3-nitropropionic acid- (3-NP) induced cytotoxicity in rat pheochromocytoma (PC12) neuronal cells was analyzed in this study. Furthermore, the analysis of unsaturated fatty acid composition of the seed oil of pomegranate by gas chromatography-electron impact mass spectrometry (GC-MS) was done. GC-MS study showed the presence of 6,9-octadecadiynoic acid (C18:2(6,9)) as a major component (60%) as 4,4-dimethyloxazoline derivative. The total extractable oil with light petroleum ether by Soxhlet from the dry seed of P. granatum was 4-6%. The oil analyzed for 48.90 ± 1.50 mg gallic acid equivalents/g of oil, and demonstrated radical-scavenging-linked antioxidant activities in various in vitro assays like the DPPH (2,2-diphenyl-l-picrylhydrazyl, % IP = 35.2 ± 0.9%), ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), % IP 2.2 ± 0.1%), and β-carotene bleaching assay (% IP = 26 ± 3%), respectively, which could be due the possible role of one methylene interrupted diynoic acid system for its radical-scavenging/antioxidant properties of oil. The oil also reduced lipid peroxidation, suppressed reactive oxygen species, extracellular nitric oxide, lactate/pyruvate ratio, and lactase dehydrogenase generated by 3-NP- (100 mM) induced neurotoxicity in PC12 cells, and enhanced the levels of enzymatic and non-enzymatic antioxidants at 40 μg of gallic acid equivalents. The protective effect of pomegranate seed oil might be due to the ability of an oil to neutralize ROS or enhance the expression of antioxidant gene and the exact mechanism of action yet to be elucidated.

  14. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, D. K.; Kawamura, K.; Lazaar, M.; Kunwar, B.; Boreddy, S. K. R.

    2015-09-01

    Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.

  15. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.

    2015-11-01

    A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

  16. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  17. Influences of rich in saturated and unsaturated fatty acids diets in rat myocardium.

    PubMed

    Pinotti, Matheus Fécchio; Silva, Maeli Dal-Pai; Sugizaki, Mário Mateus; Novelli, Yeda Santana Diniz; Sant'ana, Lea Sílvia; Aragon, Flávio Ferrari; Padovani, Carlos Roberto; Novelli, Ethel Lourenzi Barbosa; Cicogna, Antonio Carlos

    2007-03-01

    To study the influence of saturated (SFA) and unsaturated fatty acid (UFA) rich diets on mechanical function, morphology and oxidative stress in rat myocardium. Male, 60-day-old Wistar rats were fed a control (n=8), a SFA (n=8), or a UFA-rich diet (n=8) for sixty days. Mechanical function was studied in isolated left ventricle papillary muscle under isometric and isotonic contractions, in basal conditions (1.25 mM calcium chloride) and after 5.2 mM calcium chloride and beta-adrenergic stimuli with 1.0 microM isoproterenol. Left ventricle fragments were used to study oxidative stress and morphology under light and electron microscopy. SFA and UFA-rich diets did not change myocardium mechanical function. Both diets caused oxidative stress, with high lipid hydroperoxide and low superoxide-dismutase concentrations. UFA rich diet decreased catalase expression and SFA rich diet decreased the amount of myocardial glutathione-peroxidase. Both diets promoted light ultrastructural injuries such as lipid deposits and cell membrane injuries. Results suggest that SFA and UFA rich diets do not alter isolated muscle mechanical function, but promote light myocardial morphological injuries and oxidative stress.

  18. The Role of Highly Unsaturated Fatty Acids in Aquatic Food Webs

    NASA Astrophysics Data System (ADS)

    Perhar, G.; Arhonditsis, G. B.

    2009-05-01

    Highly unsaturated fatty acids (HUFAs) are important molecules transferred across the plant-animal interface in aquatic food webs. Defined here as carbon chains of length 18 (carbons) or more, with a double bond in the third (Omega 3) or sixth (Omega 6) bond from the methyl end, HUFAs are formed in primary producers (phytoplankton). With limited abilities to synthesize de novo, consumers and higher trophic organisms are required to obtain their HUFAs primarily from diet. Bioconversion of HUFAs from one form to another is in theory possible, as is synthesis via elongation and the transformation of a saturated to highly saturated fatty acid, but the enzymes required for these processes are absent in most species. HUFAs are hypothesized to be somatic growth limiting compounds for herbivorous zooplankton and have been shown to be critical for juvenile fish growth and wellbeing. Zooplankton tend to vary their fatty acid concentrations, collection strategies and utilization methods based on taxonomy, and various mechanisms have been suggested to account for these differences i.e., seasonal and nervous system hypotheses. Considering also the facts that copepods overwinter in an active state while daphnids overwinter as resting eggs, and that copepods tend to accumulate Docosahexaenoic acid (DHA) through collection and bioconversion, while daphnids focus on Eicosapentaenoic acid (EPA), one can link high DHA concentrations to active overwintering; but both EPA and DHA have similar melting points, putting DHA's cold weather adaptation abilities into question. Another characteristic setting copepods apart from daphnids is nervous system complexity: copepod axons are coated in thick myelin sheaths, permitting rapid neural processing, such as rapid prey attack and intelligent predator avoidance; DHA may be required for the proper functioning of copepod neurons. Recent modeling results have suggested food webs with high quality primary producers (species high in HUFAs, i

  19. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  20. Generation of gas-phase sodiated arenes such as [(Na3(C6H4)+] from benzene dicarboxylate salts.

    PubMed

    Attygalle, Athula B; Chan, Chang-Ching; Axe, Frank U; Bolgar, Mark

    2010-01-01

    Upon collision-induced activation, gaseous sodium adducts generated by electrospray ionization of disodium salts of 1,2- 1,3-, and 1,4-benzene dicarboxylic acids (m/z 233) undergo an unprecedented expulsion of CO(2) by a rearrangement process to produce an ion of m/z 189 in which all three sodium atoms are retained. When isolated in a collision cell of a tandem-in-space mass spectrometer, and subjected to collision-induced dissociation (CID), only the m/z 189 ions derived from the meta and para isomers underwent a further CO(2) loss to produce a peak at m/z 145 for a sodiated arene of formula (Na(3)C(6)H(4))(+). This previously unreported m/z 145 ion, which is useful to differentiate meta and para benzene dicarboxylates from their ortho isomer, is in fact the sodium adduct of phenelenedisodium. Moreover, the m/z 189 ion from all three isomers readily expelled a sodium radical to produce a peak at m/z 166 for a radical cation [(*C(6)H(4)CO(2)Na(2))(+)], which then eliminated CO(2) to produce a peak at m/z 122 for the distonic cation (*C(6)H(4)Na(2))(+). Copyright 2009 John Wiley & Sons, Ltd.

  1. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  2. Dietary supplementation with either saturated or unsaturated fatty acids does not affect the mechanoenergetics of the isolated rat heart.

    PubMed

    Goo, Soyeon; Han, June-Chiew; Nisbet, Linley A; Legrice, Ian J; Taberner, Andrew J; Loiselle, Denis S

    2014-01-01

    Abstract It is generally recognized that increased consumption of polyunsaturated fatty acids, fish oil (FO) in particular, is beneficial to cardiac and cardiovascular health, whereas equivalent consumption of saturated fats is deleterious. In this study, we explore this divergence, adopting a limited purview: The effect of dietary fatty acids on the mechanoenergetics of the isolated heart per se. Mechanical indices of interest include left-ventricular (LV) developed pressure, stroke work, cardiac output, coronary perfusion, and LV power. The principal energetic index is whole-heart oxygen consumption, which we subdivide into its active and basal moieties. The primary mechanoenergetic index of interest is cardiac efficiency, the ratio of work performance to metabolic energy expenditure. Wistar rats were divided into three Diet groups and fed, ad libitum, reference (REF), fish oil-supplemented (FO), or saturated fatty acid-supplemented (SFA) food for 6 weeks. At the end of the dietary period, hearts were excised, mounted in a working-heart rig, and their mechanoenergetic performance quantified over a range of preloads and afterloads. Analyses of Variance revealed no difference in any of the individual mechanoenergetic indices among the three Diet groups. In particular, we found no effect of prior dietary supplementation with either saturated or unsaturated fatty acids on the global efficiency of the heart.

  3. Wormlike micelle formation by acylglutamic acid with alkylamines.

    PubMed

    Sakai, Kenichi; Nomura, Kazuyuki; Shrestha, Rekha Goswami; Endo, Takeshi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko

    2012-12-21

    Rheological properties of alkyl dicarboxylic acid-alkylamine complex systems have been characterized. The complex materials employed in this study consist of an amino acid-based surfactant (dodecanoylglutamic acid, C12Glu) and a tertiary alkylamine (dodecyldimethylamine, C12DMA) or a secondary alkylamine (dodecylmethylamine, C12MA). (1)H NMR and mass spectroscopic data have suggested that C12Glu forms a stoichiometric 1:1 complex with C12DMA and C12MA. Rheological measurements have suggested that the complex systems yield viscoelastic wormlike micellar solutions and the rheological behavior is strongly dependent on the aqueous solution pH. This pH-dependent behavior results from the structural transformation of the wormlike micelles to occur in the narrow pH range 5.5-6.2 (in the case of C12Glu-C12DMA system); i.e., positive curved aggregates such as spherical or rodlike micelles tend to be formed at high pH values. Our current study offers a unique way to obtain viscoelastic wormlike micellar solutions by means of alkyl dicarboxylic acid-alkylamine complex as gemini-like amphiphiles.

  4. Copper and manganese complexes based on 1,4-naphthalene dicarboxylic acid ligand and its derivative: Syntheses, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xing, Yubo; Liu, Yuqi; Xue, Xiaofei; Wang, Xinying; Li, Wei

    2018-02-01

    Three new metal-organic coordination polymers, {[Mn2(1,4-NDC)2 (C2H5OH) (DMF) (H2O)]·CH3OH}n(1), {[Mn(III)(1,4-NDC)(C2H5O)][Mn(II)(1,4-NDC)(DMF)(H2O)]}n(2) and {[Cu2(C13H9O4)4(H2O)2]}n(3) based on1,4-H2NDC and its derivative were hydrothermally synthesized (1,4-H2NDC = 1,4-naphthalene-dicarboxylic acid, C13H10O4 = 4-methyl formate-1-naphthalenecarboxylic acid), and characterized by techniques of single crystal X-ray diffraction, infrared spectra (IR), elemental analysis, powder X-ray diffraction(PXRD) and variable-temperature magnetic susceptibility measurements. X-ray crystal structure analyses reveal that complexes 1 and 2 show a same 3,5-connected fsc 3D topology network with the Schlȁfli symbol of {4·6·8}{4·66·83}. But, the valence of some Mn atom in complex 2 take place transition from the +II oxidation state to the +III oxidation state, which may be the effect of the different solvent ratio. In complex 3, the Cu⋯Cu distance of 2.620(13) Å is significantly shorter than the sum of the van der Waals radii of Cu (1.40 Å), resulting in a strong ferromagnetic interaction between the Cu(II) centers. Furthermore, the temperature-dependent magnetic susceptibility measurements exhibit overall antiferromagnetic interactions between manganese ions for complexes 1 and 2, and a strong ferromagnetic interaction between the Cu(II) centers for complex 3.

  5. Effects of Diets High in Unsaturated Fatty Acids on Socially Induced Stress Responses in Guinea Pigs

    PubMed Central

    Nemeth, Matthias; Millesi, Eva; Wagner, Karl-Heinz; Wallner, Bernard

    2014-01-01

    Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3), walnuts (high in omega-6), or peanuts (high in omega-9) per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling individuals to cope

  6. Effect of fatty acids on self-assembly of soybean lecithin systems.

    PubMed

    Godoy, C A; Valiente, M; Pons, R; Montalvo, G

    2015-07-01

    With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. Copyright © 2015

  7. Programming of a Mn-coordinated 4-4‧-biphenyl dicarboxylic acid nanosystem on Au(1 1 1) and investigation of the non-covalent binding of C60 molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Feng; Zhu, Na; Komeda, T.

    The fabrication of Mn-based coordination networks on a Au(1 1 1) substrate with 4-4 '-biphenyl dicarboxylic acid (BDA) as the linker molecule was investigated by scanning tunneling microscopy. Intriguing structures of ladder and rectangular-shaped networks were obtained by controlling the ratios of deposited amount of BDA molecules and Mn atoms. These structures are well explained by models in which BDA molecules occupy the perimeter of the rectangles and a pair of two Mn atoms are placed at the lattice points. For the rectangular structure, further two phases of a rectangular and a square networks were identified in which the paired Mn atoms were directing an identical direction and 90° rotated in an alternate manner, respectively. In addition, it was revealed that the open space surrounded by rectangle BDA molecules could capture a dimer of C60 molecules which were deposited on the Mn-based BDA networks.

  8. Synthesis and Pharmacological Characterization of C4-(Thiotriazolyl)-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1R,2S,4R,5R,6R)-2-Amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2812223), a Highly Potent, Functionally Selective mGlu2 Receptor Agonist.

    PubMed

    Monn, James A; Prieto, Lourdes; Taboada, Lorena; Hao, Junliang; Reinhard, Matthew R; Henry, Steven S; Beadle, Christopher D; Walton, Lesley; Man, Teresa; Rudyk, Helene; Clark, Barry; Tupper, David; Baker, S Richard; Lamas, Carlos; Montero, Carlos; Marcos, Alicia; Blanco, Jaime; Bures, Mark; Clawson, David K; Atwell, Shane; Lu, Frances; Wang, Jing; Russell, Marijane; Heinz, Beverly A; Wang, Xushan; Carter, Joan H; Getman, Brian G; Catlow, John T; Swanson, Steven; Johnson, Bryan G; Shaw, David B; McKinzie, David L

    2015-09-24

    Identification of orthosteric mGlu(2/3) receptor agonists capable of discriminating between individual mGlu2 and mGlu3 subtypes has been highly challenging owing to the glutamate-site sequence homology between these proteins. Herein we detail the preparation and characterization of a series of molecules related to (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate 1 (LY354740) bearing C4-thiotriazole substituents. On the basis of second messenger responses in cells expressing other recombinant human mGlu2/3 subtypes, a number of high potency and efficacy mGlu2 receptor agonists exhibiting low potency mGlu3 partial agonist/antagonist activity were identified. From this, (1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 14a (LY2812223) was further characterized. Cocrystallization of 14a with the amino terminal domains of hmGlu2 and hmGlu3 combined with site-directed mutation studies has clarified the underlying molecular basis of this unique pharmacology. Evaluation of 14a in a rat model responsive to mGlu2 receptor activation coupled with a measure of central drug disposition provides evidence that this molecule engages and activates central mGlu2 receptors in vivo.

  9. Visible light-induced oxidation of unsaturated components of cutins: a significant process during the senescence of higher plants.

    PubMed

    Rontani, Jean-François; Rabourdin, Adélaïde; Pinot, Franck; Kandel, Sylvie; Aubert, Claude

    2005-02-01

    9-Hydroperoxy-18-hydroxyoctadec-10(trans)-enoic and 10-hydroperoxy-18-hydroxyoctadec-8(trans)-enoic acids deriving from type II (i.e. involving 1O2) photooxidation of 18-hydroxyoleic acid were detected after visible light-induced senescence experiments carried out with Petroselinum sativum and subsequent cutin depolymerisation. These results showed that in senescent plants, where the 1O2 formation rate exceeds the quenching capacity of the photoprotective system, 1O2 can migrate outside the chloroplasts and affect the unsaturated components of cutins. Significant amounts of 9,18-dihydroxyoctadec-10(trans)-enoic and 10,18-dihydroxyoctadec-8(trans)-enoic acids resulting from the reduction of these photoproducts of 18-hydroxyoleic acid were also detected in different natural samples. These results well support the significance of the photooxidation of the unsaturated components of higher plant cutins in the natural environment.

  10. Identification of activities that catalyze the cis-trans isomerization of the double bond of a mono-unsaturated fatty acid in Pseudomonas sp. strain E-3.

    PubMed

    Okuyama, H; Enari, D; Shibahara, A; Yamamoto, K; Morita, N

    1996-06-01

    A cell-free extract of Pseudomonas sp. strain E-3 catalyzed the conversion of 9-cis-hexadecenoic acid [16:1(9c)] to 9-trans-hexadecenoic acid [16:1(9t)] in the free acid form and when 16:1(9c) was esterified to phosphatidylethanolamine (PE). The cytosolic fraction catalyzed the isomerizations of free 16:1(9c) by itself and of 16:1(9c) esterified to PE in the presence of the membrane fraction. Tracer experiments using [2,2-2H2]16:1(9c) demonstrated that the isomerization of free 16:1(9c) occurred independently of the isomerization of 16:1(9c) esterified to PE, indicating that this bacterium has two types of activities that catalyze the cis-trans isomerization of the double bond of a mono-unsaturated fatty acid.

  11. Increased Degree of Unsaturation in the Lipid of Antifungal Cationic Amphiphiles Facilitates Selective Fungal Cell Disruption.

    PubMed

    Steinbuch, Kfir B; Benhamou, Raphael I; Levin, Lotan; Stein, Reuven; Fridman, Micha

    2018-05-11

    Antimicrobial cationic amphiphiles derived from aminoglycosides act through cell membrane permeabilization but have limited selectivity for microbial cell membranes. Herein, we report that an increased degree of unsaturation in the fatty acid segment of antifungal cationic amphiphiles derived from the aminoglycoside tobramycin significantly reduced toxicity to mammalian cells. A collection of tobramycin-derived cationic amphiphiles substituted with C 18 lipid chains varying in degree of unsaturation and double bond configuration were synthesized. All had potent activity against a panel of important fungal pathogens including strains with resistance to a variety of antifungal drugs. The tobramycin-derived cationic amphiphile substituted with linolenic acid with three cis double bonds (compound 6) was up to an order of magnitude less toxic to mammalian cells than cationic amphiphiles composed of lipids with a lower degree of unsaturation and than the fungal membrane disrupting drug amphotericin B. Compound 6 was 12-fold more selective (red blood cell hemolysis relative to antifungal activity) than compound 1, the derivative with a fully saturated lipid chain. Notably, compound 6 disrupted the membranes of fungal cells without affecting the viability of cocultured mammalian cells. This study demonstrates that the degree of unsaturation and the configuration of the double bond in lipids of cationic amphiphiles are important parameters that, if optimized, result in compounds with broad spectrum and potent antifungal activity as well as reduced toxicity toward mammalian cells.

  12. Unsaturated Lipids Change in Olive Tree Drupe and Seed during Fruit Development and in Response to Cold-Stress and Acclimation

    PubMed Central

    D’Angeli, Simone; Altamura, Maria Maddalena

    2016-01-01

    The olive tree is a plant of economic value for the oil of its drupe. It is a cultigen complex composed of genotypes with differences in cold-hardiness. About 90% of the oil is stored in oil bodies (OBs) in the drupe during the oleogenic phase. Phenols and lipids contribute to oil quality, but the unsaturated fatty acid (FA) fraction is emerging as the most important for quality, because of the very high content in oleic acid, the presence of ω6-linoleic acid and ω3-linolenic acid, and the very low saturated FA content. Another 10% of oil is produced by the seed. Differences in unsaturated FA-enriched lipids exist among seed coat, endosperm, and embryo. Olive oil quality is also affected by the environmental conditions during fruit growth and genotype peculiarities. Production of linoleic and α-linolenic acids, fruit growth, fruit and leaf responses to low temperatures, including cuticle formation, and cold-acclimation are related processes. The levels of unsaturated FAs are changed by FA-desaturase (FAD) activities, involving the functioning of chloroplasts and endoplasmic reticulum. Cold induces lipid changes during drupe and seed development, affecting FADs, but its effect is related to the genotype capability to acclimate to the cold. PMID:27845749

  13. Mechanistic Insights on the Hydrogenation of α,β-Unsaturated Ketones and Aldehydes to Unsaturated Alcohols over Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, Matthew S.; Hao, Bing; Neurock, Matthew

    The selective hydrogenation of unsaturated ketones (methyl vinyl ketone and benzalacetone) and unsaturated aldehydes (crotonaldehyde and cinnamaldehyde) was carried out with H₂ at 2 bar absolute over Pd/C, Pt/C, Ru/C, Au/C, Au/TiO₂, or Au/Fe₂O₃ catalysts in ethanol or water solvent at 333 K. Comparison of the turnover frequencies revealed Pd/C to be the most active hydrogenation catalyst, but the catalyst failed to produce unsaturated alcohols, indicating hydrogenation of the C=C bond was highly preferred over the C=O bond on Pd. The Pt and Ru catalysts were able to produce unsaturated alcohols from unsaturated aldehydes, but not from unsaturated ketones. Althoughmore » Au/ Fe₂O₃ was able to partially hydrogenate unsaturated ketones to unsaturated alcohols, the overall hydrogenation rate over gold was the lowest of all of the metals examined. First-principles density functional theory calculations were therefore used to explore the reactivity trends of methyl vinyl ketone (MVK) and benzalacetone (BA) hydrogenation over model Pt(111) and Ru(0001) surfaces. The observed selectivity over these metals is likely controlled by the significantly higher activation barriers to hydrogenate the C=O bond compared with those required to hydrogenate the C=C bond. Both the unsaturated alcohol and the saturated ketone, which are the primary reaction products, are strongly bound to Ru and can react further to the saturated alcohol. The lower calculated barriers for the hydrogenation steps over Pt compared with Ru account for the higher observed turnover frequencies for the hydrogenation of MVK and BA over Pt. The presence of a phenyl substituent α to the C=C bond in BA increased the barrier for C=C hydrogenation over those associated with the C=C bond in MVK; however, the increase in barriers with phenyl substitution was not adequate to reverse the selectivity trend.« less

  14. Solvothermal syntheses, structures, and magnetic properties of three cobalt coordination polymers constructed from naphthalene-1,4-dicarboxylic acid and bis(imidazole) linkers

    NASA Astrophysics Data System (ADS)

    Dong, Jun-Liang; He, Kun-Huan; Wang, Duo-Zhi; Zhang, Ying-Hui; Wang, Dan-Hong

    2018-07-01

    Three new Co(II) coordination polymers with formulas of {[Co2(L1)(1,4-NDC)2]·3H2O}n (1), [Co3(L2)2(HCOO)2(1,4-NDC)2]n (2) and [Co2(L2)(μ3-OH)(1,4-NDC)1.5]n (3) (1,4-H2NDC = Naphthalene-1,4-dicarboxylic acid, L1 = di(1H-imidazol-1-yl)methane, L2 = 1,4-di(1H-imidazol-1-yl)benzene) were solvothermal synthesized from 1,4-H2NDC with the aid of three different length-controllable auxiliary ligands and fully characterized. Their structures are determined by single-crystal X-ray diffraction, IR spectra, elemental analysis, powder X-ray diffraction and thermogravimetric analysis. Complexes 1 and 3 display 3D framework structures, corresponding to a 6-connected (412·63) net, a 8-connected (424·5·63) net, respectively. However, it is noteworthy that the complex 1 displays a 2-fold interpenetrating framework structure, complex 3 possesses a self-interpenetrating framework structure. Complex 2 displays 2D 4-connected undulating plane net structure. Moreover, magnetic studies indicate antiferromagnetic interactions between the Co(II) ions in the four complexes.

  15. Determination of unsaturation grade and trans isomers generated during thermal oxidation of edible oils and fats by FTIR

    NASA Astrophysics Data System (ADS)

    Moya Moreno, M. C. M.; Mendoza Olivares, D.; Amézquita López, F. J.; Gimeno Adelantado, J. V.; Bosch Reig, F.

    1999-05-01

    The oxidative deterioration of culinary oils and fats during episodes of heating associated with normal usage (80°C-300°C, 20-40 min) was monitored by FTIR spectroscopy. The thermal oxidation of polyunsaturated fatty acids during heating was studied by the determination of unsaturation percentage and trans isomers at various temperatures and heating times. Oils frequently used in food frying such as olive oil, sunflower oil, corn oil and seeds oil (sunflower, safflower and canola seed), and lard were studied. The Absorbance Correction Method is proposed to correct the spectral interference and allows the analytic use of signal which would not be initially valid for quantitative analysis. The results show that there is a decrease in unsaturation and an increase in trans isomers starting at 150°C and becomes more pronounced at temperatures around 250°C. This variation in unsaturation grade and conformation provides evidence of the transformation of essential polyunsaturated fatty acids and subsequent decrease in the oils' nutritional value.

  16. Recovery of Oil with Unsaturated Fatty Acids and Polyphenols from Chaenomelessinensis (Thouin) Koehne: Process Optimization of Pilot-Scale Subcritical Fluid Assisted Extraction.

    PubMed

    Zhu, Zhenzhou; Zhang, Rui; Zhan, Shaoying; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Wu, Weizhong; Li, Shuyi

    2017-10-22

    The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids) on the recovery of oil from Chaenomelessinensis (Thouin) Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction). This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE) provided the highest yield-25.79 g oil/100 g dry seeds-of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography-mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%), and polyunsaturated fatty acids (42.14%), after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles), showed significant polyphenol (527.36 mg GAE/kg oil), and flavonoid (15.32 mg RE/kg oil), content, had a good appearance and was of high quality.

  17. Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions.

    PubMed

    Vidyashankar, S; Deviprasad, K; Chauhan, V S; Ravishankar, G A; Sarada, R

    2013-09-01

    Five indigenous microalgal strains of Scenedesmus, Chlorococcum, Coelastrum, and Ankistrodesmus genera, isolated from Indian fresh water habitats, were studied for carbon-dioxide tolerance and its effect on growth, lipid and fatty acid profile. Scenedesmus dimorphus strain showed maximum growth (1.5 g/L) and lipid content (17.83% w/w) under CO2 supplementation, hence selected for detailed evaluation. The selected strain was alkaline adapted but tolerated (i) wide range of pH (5-11); (ii) elevated salinity levels (up to 100 mM, NaCl) with low biomass yields and increased carotenoids (19.34 mg/g biomass); (iii) elevated CO2 levels up to 15% v/v with enhancement in specific growth rate (0.137 d(-1)), biomass yield (1.57 g/L), lipid content (19.6% w/w) and CO2 biofixation rate (0.174 g L(-1) d(-1)). Unsaturated fatty acid content (alpha linolenic acid) increased with CO2 supplementation in the strain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  19. Clinical Outcomes of Dietary Replacement of Saturated Fatty Acids with Unsaturated Fat Sources in Adults with Overweight and Obesity: A Systematic Review and Meta-Analysis of Randomized Control Trials.

    PubMed

    Hannon, Bridget A; Thompson, Sharon V; An, Ruopeng; Teran-Garcia, Margarita

    2017-01-01

    Obesity and dyslipidemia are frequently treated with dietary interventions before pharmacotherapy is given. Diets high in unsaturated fat have proven advantageous to disease treatment. The purpose of this systematic review and meta-analysis was to assess the evidence of the effect of saturated fatty acids (SFA) replacement with unsaturated fatty acids (UFA) in metabolically healthy adults with overweight and obesity on markers of dyslipidemia and body composition. Keyword search was performed in PubMed, CINAHL, and Cochrane Library for randomized controlled trials (RCTs) evaluating the effects of fatty acid substitution in adults with overweight and obesity. Meta-analysis was performed on interventions assessing lipoprotein levels and body composition. Publication bias was assessed by funnel plot inspection, Begg's, and Egger's test. Eight RCTs enrolling 663 participants were included in the review, with intervention durations between 4 and 28 weeks. Although nonsignificant (p = 0.06), meta-analysis found UFA replacement to reduce total cholesterol concentrations by 10.68 mg/dL (95%CI -21.90 to 0.53). Reductions in low-density lipoprotein cholesterol and triglycerides were statistically nonsignificant. Due to null results and a small number of studies included, there is no strong evidence that replacement of SFA with UFA may benefit lipid profiles in this population. © 2017 S. Karger AG, Basel.

  20. Rapid radiosynthesis of [11C] and [14C]azelaic, suberic, and sebacic acids for in vivo mechanistic studies of systemic acquired resistance in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best M.; Fowler J.; Best, M.

    2011-11-25

    A recent report that the aliphatic dicarboxylic acid, azelaic acid (1,9-nonanedioic acid) but not related acids, suberic acid (1,8-octanedioic acid) or sebacic (1,10-decanedioic acid) acid induces systemic acquired resistance to invading pathogens in plants stimulated the development of a rapid method for labeling these dicarboxylic acids with {sup 11}C and {sup 14}C for in vivo mechanistic studies in whole plants. {sup 11}C-labeling was performed by reaction of ammonium [{sup 11}C]cyanide with the corresponding bromonitrile precursor followed by hydrolysis with aqueous sodium hydroxide solution. Total synthesis time was 60 min. Median decay-corrected radiochemical yield for [{sup 11}C]azelaic acid was 40% relativemore » to trapped [{sup 11}C]cyanide, and specific activity was 15 GBq/{micro}mol. Yields for [{sup 11}C]suberic and sebacic acids were similar. The {sup 14}C-labeled version of azelaic acid was prepared from potassium [{sup 14}C]cyanide in 45% overall radiochemical yield. Radiolabeling procedures were verified using {sup 13}C-labeling coupled with {sup 13}C-NMR and liquid chromatography-mass spectrometry analysis. The {sup 11}C and {sup 14}C-labeled azelaic acid and related dicarboxylic acids are expected to be of value in understanding the mode-of-action, transport, and fate of this putative signaling molecule in plants.« less

  1. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Cao, Junji

    2013-11-01

    Summertime PM2.5 aerosols collected from Qinghai Lake (3200 m a.s.l.), a remote continental site in the northeastern part of Tibetan Plateau, were analyzed for dicarboxylic acids (C2-C11), ketocarboxylic acids and α-dicarbonyals. Oxalic acid (C2) is the dominant dicarboxylic acid in the samples, followed by malonic, succinic and azelaic acids. Total dicarboxylic acids (231 ± 119 ng m-3), ketocarboxylic acids (8.4 ± 4.3 ng m-3), and α-dicarbonyls (2.7 ± 2.1 ng m-3) at the Tibetan background site are 2-5 times less than those detected in lowland areas such as 14 Chinese megacities. Compared to those in other urban and marine areas enhancements in relative abundances of C2/total diacids and diacids-C/WSOC of the PM2.5 samples suggest that organic aerosols in the region are more oxidized due to strong solar radiation. Molecular compositions and air mass trajectories demonstrate that the above secondary organic aerosols in the Qinghai Lake atmosphere are largely derived from long-range transport. Ratios of oxalic acid, glyoxal and methylglyoxal to levoglucosan in PM2.5 aerosols emitted from household burning of yak dung, a major energy source for Tibetan in the region, are 30-400 times lower than those in the ambient air, which further indicates that primary emission from biomass burning is a negligible source of atmospheric oxalic acid and α-dicarbonyls at this background site.

  2. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.

  3. Degree of fatty acyl chain unsaturation in biliary lecithin dictates cholesterol nucleation and crystal growth.

    PubMed

    Tazuma, S; Ochi, H; Teramen, K; Yamashita, Y; Horikawa, K; Miura, H; Hirano, N; Sasaki, M; Aihara, N; Hatsushika, S

    1994-11-17

    To clarify factors involved in the formation of cholesterol gallstones, we studied the relationship between the degree of fatty acyl chain unsaturation of biliary lecithin and bile metastability. We used supersaturated model bile solutions (molar taurocholate/lecithin/cholesterol ratio (73:19.5:7.5), total lipid concentration 9 g/dl) that contained equimolar egg yolk or soybean lecithins or a sn-1 palmitoyl, sn-2 linoleoyl phosphatidylcholine. Gel permeation chromatographic studies showed that the vesicular cholesterol distribution and dimension were inversely related to the degree of unsaturation of the lecithin species, estimated by reverse phase, high-performance liquid chromatography. Differential interference contrast microscopy and assay of cholesterol crystal growth showed that a higher degree of fatty acyl chain unsaturation of the lecithin species was associated with a faster nucleation time and rate of crystal growth. Our results suggest that vesicular lecithins containing more unsaturated fatty acyl chains bind less tightly to cholesterol than lecithins containing predominantly saturated fatty acids, and that the biliary lecithin species dictates, in part, the nucleation and growth of cholesterol crystals in bile.

  4. Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum)

    PubMed Central

    Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping

    2017-01-01

    Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene (SlTDT) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analysis. Confocal microscopic study using green fluorescent fusion proteins revealed that SlTDT was localized on tonoplast. The expression patterns of SlTDT in tomato were analyzed by RT-qPCR. The results indicated that SlTDT expressed in leaves, roots, flowers and fruits at different ripening stages, suggesting SlTDT may be associated with the development of different tissues. To further explore the function of SlTDT, we constructed both overexpression and RNAi vectors and obtained transgenic tomato plants by agrobacterium-mediated method. Gas chromatography-mass spectrometer (GC-MS) analysis showed that overexpression of SlTDT significantly increased malate content, and reduced citrate content in tomato fruit. By contrast, repression of SlTDT in tomato reduced malate content of and increased citrate content. These results indicated that SlTDT played an important role in remobilization of malate and citrate in fruit vacuoles. PMID:28261242

  5. Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum).

    PubMed

    Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping

    2017-01-01

    Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene ( SlTDT ) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analysis. Confocal microscopic study using green fluorescent fusion proteins revealed that SlTDT was localized on tonoplast. The expression patterns of SlTDT in tomato were analyzed by RT-qPCR. The results indicated that SlTDT expressed in leaves, roots, flowers and fruits at different ripening stages, suggesting SlTDT may be associated with the development of different tissues. To further explore the function of SlTDT , we constructed both overexpression and RNAi vectors and obtained transgenic tomato plants by agrobacterium-mediated method. Gas chromatography-mass spectrometer (GC-MS) analysis showed that overexpression of SlTDT significantly increased malate content, and reduced citrate content in tomato fruit. By contrast, repression of SlTDT in tomato reduced malate content of and increased citrate content. These results indicated that SlTDT played an important role in remobilization of malate and citrate in fruit vacuoles.

  6. [Biosynthesis of adipic acid].

    PubMed

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  7. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin.

    PubMed

    Okere, Isidore C; Chandler, Margaret P; McElfresh, Tracy A; Rennison, Julie H; Sharov, Victor; Sabbah, Hani N; Tserng, Kou-Yi; Hoit, Brian D; Ernsberger, Paul; Young, Martin E; Stanley, William C

    2006-07-01

    Fatty acids are the primary fuel for the heart and are ligands for peroxisome proliferator-activated receptors (PPARs), which regulate the expression of genes encoding proteins involved in fatty acid metabolism. Saturated fatty acids, particularly palmitate, can be converted to the proapoptotic lipid intermediate ceramide. This study assessed cardiac function, expression of PPAR-regulated genes, and cardiomyocyte apoptosis in rats after 8 wk on either a low-fat diet [normal chow control (NC); 10% fat calories] or high-fat diets composed mainly of either saturated (Sat) or unsaturated fatty acids (Unsat) (60% fat calories) (n = 10/group). The Sat group had lower plasma insulin and leptin concentrations compared with the NC or Unsat groups. Cardiac function and mass and body mass were not different. Cardiac triglyceride content was increased in the Sat and Unsat groups compared with NC (P < 0.05); however, ceramide content was higher in the Sat group compared with the Unsat group (2.9 +/- 0.2 vs. 1.4 +/- 0.2 nmol/g; P < 0.05), whereas the NC group was intermediate (2.3 +/- 0.3 nmol/g). The number of apoptotic myocytes, assessed by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining, was higher in the Sat group compared with the Unsat group (0.28 +/- 0.05 vs. 0.17 +/- 0.04 apoptotic cells/1,000 nuclei; P < 0.04) and was positively correlated to ceramide content (P < 0.02). Both high-fat diets increased the myocardial mRNA expression of the PPAR-regulated genes encoding uncoupling protein-3 and pyruvate dehydrogenase kinase-4, but only the Sat diet upregulated medium-chain acyl-CoA dehydrogenase. In conclusion, dietary fatty acid composition affects cardiac ceramide accumulation, cardiomyocyte apoptosis, and expression of PPAR-regulated genes independent of cardiac mass or function.

  8. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Lazaar, Manuel; Kunwar, Bhagawati; Boreddy, Suresh K. R.

    2016-04-01

    Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and MSA-). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65-1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3-4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2-C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r = 0.86-0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r = 0.82-0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r = 0.85-0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  9. CYP86B1 Is Required for Very Long Chain ω-Hydroxyacid and α,ω-Dicarboxylic Acid Synthesis in Root and Seed Suberin Polyester1[W][OA

    PubMed Central

    Compagnon, Vincent; Diehl, Patrik; Benveniste, Irène; Meyer, Denise; Schaller, Hubert; Schreiber, Lukas; Franke, Rochus; Pinot, Franck

    2009-01-01

    Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid ω-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven β-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and α,ω-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development. PMID:19525321

  10. Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease.

    PubMed

    Leskovjan, Andreana C; Kretlow, Ariane; Miller, Lisa M

    2010-04-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p < 0.01) but remained low and relatively constant in PSAPP mice. Thus, these findings indicate that unsaturated lipid content is reduced in hippocampal white matter during amyloid pathogenesis and that maintaining unsaturated lipid content early in the disease may be critical in avoiding progression of the disease.

  11. Six uranyl-organic frameworks with naphthalene-dicarboxylic acid and bipyridyl-based spacers: syntheses, structures, and properties.

    PubMed

    Xu, Wei; Ren, Ya-Nan; Xie, Miao; Zhou, Lin-Xia; Zheng, Yue-Qing

    2018-03-28

    A new series of uranium coordination polymers have been hydrothermally synthesized by using 1,4-naphthalene dicarboxylic acid (H 2 NDC), namely, (H 3 O) 2 [(UO 2 ) 2 (NDC) 3 ]·H 2 O (1), (H 2 -bpp)[(UO 2 ) 2 (NDC) 3 ]·EtOH·5H 2 O (2), (H 2 -bpe) 2/2 [(UO 2 ) 2 (NDC) 3 ]·EtOH (3), (H 2 -bpp)[(UO 2 ) 2 (NDC) 3 ]·5H 2 O (4), (H 2 -bpp)[(UO 2 )(HNDC)(NDC)] 2 ·2H 2 O (5), and (H 2 -bpy)[(UO 2 )(NDC) 2 ] (6) [bpp = 1,3-di(4-pyridyl) propane, bpe = 4,4'-vinylenedipyridine, bpy = 4,4'-bipyridine]. Single-crystal X-ray diffraction demonstrates that complex 1 represents the uranyl-organic polycatenated framework derived from a simple two-dimensional honeycomb grid network structure via a H 2 NDC linker. Complexes 2-4 contain the dinuclear motifs of the two UO 7 pentagonal and one UO 8 hexagonal bipyramids which are linked by NDC 2- anions creating a (UO 2 ) 4 (NDC) 2 unit, and further extend to a 2D layer through NDC 2- anions. Complex 5 displays a 1D zigzag double chain structure, in which the carboxylate groups of the NDC 2- anions adopt a chelate mode and further extends to a 2D framework via hydrogen bonds. The 1D structure of complex 6 is similar to the zigzag chain of complex 5. In addition, powder X-ray diffraction, elemental analysis, IR, thermal stability and luminescence properties of all complexes have also been investigated in this paper. The photocatalytic properties of the six complexes for the degradation of tetracycline hydrochloride (TC) under UV irradiation have been examined. Moreover, density functional theory (DFT) calculations were carried out to explore the electronic structural and bonding properties of the uranyl complexes 1-6.

  12. Synthesis of Unsaturated Polyester Resins from Various Bio-Derived Platform Molecules.

    PubMed

    Farmer, Thomas J; Castle, Rachael L; Clark, James H; Macquarrie, Duncan J

    2015-07-02

    Utilisation of bio-derived platform molecules in polymer synthesis has advantages which are, broadly, twofold; to digress from crude oil dependence of the polymer industry and secondly to reduce the environmental impact of the polymer synthesis through the inherent functionality of the bio-derived platform molecules. Bulk polymerisation of bio-derived unsaturated di-acids has been employed to produce unsaturated polyester (UPEs) which have been analysed by GPC, TGA, DSC and NMR spectroscopy, advancing on the analysis previously reported. UPEs from the diesters of itaconic, succinic, and fumaric acids were successfully synthesised with various diols and polyols to afford resins of MN 480-477,000 and Tg of -30.1 to -16.6 °C with solubilities differing based on starting monomers. This range of properties allows for many applications and importantly due to the surviving Michael acceptor moieties, solubility and cross-linking can be specifically tailored, post polymerisation, to the desired function. An improved synthesis of itaconate and succinate co-polymers, via the initial formation of an itaconate bis-diol, is also demonstrated for the first time, resulting in significantly improved itaconate incorporation.

  13. Synthesis of 2-acyl-1,4-diketones via the diacylation of {alpha},{beta}-unsaturated ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, N.S.; Yu, S.; Kabalka, G.W.

    1998-08-17

    The first example of a diacylation of the carbon-carbon double bond in {alpha},{beta}-unsaturated ketones is described. The reaction of acylcyanocuprate reagents with {alpha},{beta}-unsaturated ketones, followed by C-acylation, produces 2-acyl-1,4-diketones in good yields (50--89%). The 1,4-addition of organocuprate reagents to conjugated enones, followed by trapping of the enolate intermediates with various electrophiles, is one of the most useful synthetic reactions. However, to the best of the authors` knowledge, 1,4-acylation followed by trapping of the enolate intermediates with acid chloride has not been reported.

  14. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    PubMed

    Cao, Wenqing; Ma, ZhiFan; Rasenick, Mark M; Yeh, ShuYan; Yu, JiangZhou

    2012-01-01

    Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA) on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa) MCF-7 and T47D cells. 17 β-estradiol (E2) enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM) treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2). E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0) as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear) estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1) may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  15. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  16. Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kawamura, Kimitaka

    2011-09-01

    In order to investigate water-soluble dicarboxylic acids and related compounds in the aerosol samples under the Asian continent outflow, total suspended particle (TSP) samples ( n = 32) were collected at the Gosan site in Jeju Island over 2-5 days integration during 23 March-1 June 2007 and 16-24 April 2008. The samples were analyzed for water-soluble dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls using a capillary gas chromatography technique. We found elevated concentrations of atmospheric citric acid (range: 20-320 ng m -3) in the TSP samples during mid- to late April of 2007 and 2008. To specify the sources of citric acid, dicarboxylic acids and related compounds were measured in the pollen sample collected at the Gosan site (Pollen_Gosan), authentic pollen samples from Japanese cedar ( Cryptomeria) (Pollen_cedar) and Japanese cypress ( Chamaecyparis obtusa) (Pollen_cypress), and tangerine fruit produced from Jeju Island. Citric acid (2790 ng in unit mg of pollen mass) was found as most abundant species in the Pollen_Gosan, followed by oxalic acid (2390 ng mg -1). Although citric acid was not detected in the Pollen_cedar and Pollen_cypress as major species, it was found as a dominant species in the tangerine juice while malic acid was detected as major species in the tangerine peel, followed by oxalic and citric acids. Since Japanese cedar trees are planted around tangerine farms to prevent strong winds from the Pacific Ocean, citric acid that may be directly emitted from tangerine is likely adsorbed on pollens emitted from Japanese cedar and then transported to the Gosan site. Much lower malic/citric acid ratios obtained under cloudy condition than clear condition suggest that malic acid may rapidly decompose to lower molecular weight compounds such as oxalic and malonic acids (

  17. A 3D metal-organic framework with a pcu net constructed from lead(II) and thiophene-2, 5-dicarboxylic acid: Synthesis, structure and ferroelectric property

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Di; Rong, Cheng; Lv, Ri-Xin; Wang, Zu-Jian; Long, Xi-Fa; Guo, Guo-Cong; Pan, Chun-Yang

    2018-01-01

    Self-assembly reaction of Pb(NO3)2 with thiophene-2, 5-dicarboxylic acid (H2TDC) led to an acentric three-dimensional (3D) metal-organic framework under solvothermal conditions, namely, Pb(TDC) (1). The 3D framework of 1 is a pillared-layer structure with the I2O1 type which is composed of a 2D inorganic Pb-O-Pb substructural layer and two independent μ6-TDC2- anions pillars. This 3D framework shows a six-connected pcu topological net according to the topological analysis. Compound 1 crystallizes in an acentric space group and displays potential ferroelectric property which could be due to the swing of the thiophene rings. The remnant polarization (Pr), coercive field (Ec) and saturation spontaneous polarization (Ps) of 1 are ca. 0.034 μC cm-2, 15.7 kV cm-1 and 0.0997 μC cm-2, respectively. Among the H2TDC-based MOFs, the present compound is the first example which shows ferroelectric property. In addition, 1 also exhibits photoluminescent property which can be attributed to ligand-to-metal charge transfer.

  18. Considerations regarding neuropsychiatric nutritional requirements for intakes of omega-3 highly unsaturated fatty acids.

    PubMed

    Hibbeln, Joseph R; Davis, John M

    2009-01-01

    Adverse neurodevelopmental and neuropsychiatric outcomes have been established as signs of nutrient deficiencies and may be applicable to insufficient dietary intakes of omega-3 highly unsaturated fatty acids (n-3 HUFAs). Consider if statistical definitions for Daily Reference Intakes can be applied to n-3 HUFAs intakes during pregnancy for maternal and neurodevelopmental deficiencies. Data were prospectively collected from women during pregnancy and children up to age 8 years participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Statistical analyses took social and lifestyle factors into account. During pregnancy, n-3 HUFA intakes from seafood that putatively meet statistical definitions of an estimated average requirement ranged from 0.05 to 0.06 en% (111-139 mg/d/2000 Cal) for suboptimal fine motor control at 42 m and 0.065-0.08 en% (114-181 mg/d/2000 Cal) for suboptimal verbal IQ at age 8 years and 0.18-0.22 en% (389-486 mg/d/2000 Cal) for maternal depression at 32 weeks. Intakes of n-3 ranging from 0.2 to 0.41 en% (445-917 mg/d/2000 Cal) prevented both increased risk of maternal depression and adverse neurodevelopmental outcomes for children among 97.5% of the population. No upper limit for safety was found. During pregnancy, a n-3 HUFA intake of 0.40 en% (900 mg/d/2000 Cal) from seafood is likely to meet the nutritional requirements for 97.5% of the mothers and children of this population. These considerations do not constitute DRI's for docosahexaenoic acid and n-3 HUFAs, but may contribute to their formulation.

  19. α-lipoic acid ameliorates n-3 highly-unsaturated fatty acids induced lipid peroxidation via regulating antioxidant defenses in grass carp (Ctenopharyngodon idellus).

    PubMed

    Shi, Xiao-Chen; Jin, Ai; Sun, Jian; Yang, Zhou; Tian, Jing-Jing; Ji, Hong; Yu, Hai-Bo; Li, Yang; Zhou, Ji-Shu; Du, Zhen-Yu; Chen, Li-Qiao

    2017-08-01

    This study evaluated the protective effect of α-lipoic acid (LA) on n-3 highly unsaturated fatty acids (HUFAs)-induced lipid peroxidation in grass carp. The result indicated that diets with n-3 HUFAs increased the production of malondialdehyde (MDA) (P < 0.05), thereby inducing lipid peroxidation in liver and muscle of grass carp. Meanwhile, compared with control group, the hepatosomatic index (HSI) and kidney index (KI) of grass carp were markedly increased in n-3 HUFAs-only group. However, diets with LA remarkably inhibited the n-3 HUFAs-induced increase of HSI, KI, and MDA level in serum, liver and muscle (P < 0.05). Interestingly, LA also significantly elevated the ratio of total n-3 HUFAs in fatty acid composition of muscle and liver (P < 0.05). Furthermore, LA significantly promoted the activity of antioxidant enzymes in serum, muscle and liver of grass carp (P < 0.05), including superoxide dismutase (SOD), catalase (CAT), and glutathione s-transferase (GST). The further results showed that LA significantly elevated mRNA expression of antioxidant enzymes with promoting the mRNA expression of NF-E2-related nuclear factor 2 (Nrf2) and decreasing Kelch-like-ECH-associated protein 1 (Keap1) mRNA level. From the above, these results suggested that LA could attenuate n-3 HUFAs-induced lipid peroxidation, remit the toxicity of the lipid peroxidant, and protect n-3 HUFAs against lipid peroxidation to promote its deposition in fish, likely strengthening the activity of antioxidant enzymes through regulating mRNA expressions of antioxidant enzyme genes via mediating Nrf2-Keap1 signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Relationship between the culture medium and the fatty acid composition of diphtheria and non-pathogenic corynebacteria].

    PubMed

    Vasiurenko, Z P; Siniak, K M

    1977-04-01

    The gasochromatic method was applied to the study of the cellular fatty acids composition in diphtheria and nonpathogenic corynebacteria (diphtheroids and psendo diptheria bacillus). Marked differences in the content of unsaturated fatty acids were revealed in them. Thus, palmito leic acid served the preponderant unsaturated fatty acid in Corynebacteria diphtheriae, and unsaturated fatty acids with 18 carbon atoms (octadeconoic and linoleic)--in nonpathogenic corynebacteria. The mentioned changes permit use this sign as differential. When grown on Loeffler's medium all the corynebacteria under study had a similar fatty acid composition characterized by the prevalence of unsaturated fatty acids with 18 carbon atoms. On the basis of studying the fatty acid spectrum of the nutrient media used it is supposed that one of the factors determining the revealed dependence of the corynebacterial fatty acid composition on the culture medium was the fatty acid composition of the latter.

  1. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors

    Treesearch

    Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF)...

  2. Trans-hemispheric contribution of C2-C10 α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions

    NASA Astrophysics Data System (ADS)

    SempéRé, Richard; Kawamura, Kimitaka

    2003-06-01

    Marine aerosol samples were collected during a western Pacific cruise covering the latitude range between 35°N and 40°S (140°E-180°E). They were analyzed for total carbon (TC), total nitrogen (TN), water-soluble organic carbon (WSOC) along with the molecular distributions of C2-C10 α, ω-dicarboxylic acids, and related polar compounds, mainly, ω-oxocarboxylic acids (C2-C9) and α-dicarbonyls (C2-C3). Oxalic acid (C2) was the most abundant followed by malonic (C3) and succinic (C4) acids. The total diacid concentration range was 7-605 ng m-3 (av. 85 ng m-3) and the diacid-carbon accounted for 2-15% (average 8%) of WSOC which comprised 29-55% (average 40%) of TC. Dry depositions of total diacids over the northern and southern Pacific Ocean were estimated to be 256-1907 μg m-2 yr-1 (average 735; n = 4) and 22-396 μg m-2 yr-1 (average 134; n = 14), respectively, whereas the air-to-sea flux of oxalic acid was 18-1351 μg m-2 yr-1 (average 466 μg m-2 yr-1) and 7.5-275 μg m-2 yr-1 (average 75 μg m-2 yr-1) in the Northern and Southern Hemispheres. We observed that the concentration ratios of diacid-C/WSOC, azelaic acid (C9)/ω-oxononanoic acid, maleic acid (iC4cis)/fumaric (iC4trans) acid and succinic acid (C4)/total diacids were correlated with air temperature. These findings showed that the intensity of photochemical oxidation reactions and thus the variation in sunlight intensity characterized here by air temperature, significantly control the molecular distribution of water-soluble organic compounds during the long-range transport of anthropogenic and/or biogenic higher molecular weight organic compounds.

  3. Study of the effect of surface treatment of kenaf fibre on mechanical properties of kenaf filled unsaturated polyester composite

    NASA Astrophysics Data System (ADS)

    Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.

    2017-10-01

    In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. Tensile strength of untreated UP/KF composites was found to be higher for 40 wt% loading of kenaf fiber. The highest tensile strength value was obtained after treatment with 0.4 wt% concentration of stearic acid at 56 MPa and tensile modulus was at 2409 MPa. From the flexural strength result obtained, it is clearly seen that 40 wt% loading of kenaf fiber and treatment with 0.4 wt% concentration of stearic acid give the highest value at 72 MPa and flexural modulus at 3929 MPa.

  4. By-products of electrochemical synthesis of suberic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.

    By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.

  5. Frictional response of fatty acids on steel.

    PubMed

    Sahoo, Rashmi R; Biswas, S K

    2009-05-15

    Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the surface as carboxylate in a bidentate manner. To explore the effect of saturation in the carbon backbone on friction in sliding tribology, we study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. It is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.

  6. Thermokinetic profile of NDM-1 and its inhibition by small carboxylic acids

    PubMed Central

    Wang, Qian; He, Yuan; Lu, Rui; Wang, Wen-Ming; Yang, Ke-Wu; Fan, Hai Ming; Jin, Yi; Blackburn, G. Michael

    2018-01-01

    The New Delhi metallo-β-lactamase (NDM-1) is an important clinical target for antimicrobial research, but there are insufficient clinically useful inhibitors and the details of NDM-1 enzyme catalysis remain unclear. The aim of this work is to provide a thermodynamic profile of NDM-1 catalysed hydrolysis of β-lactams using an isothermal titration calorimetry (ITC) approach and to apply this new method to the identification of new low-molecular-weight dicarboxylic acid inhibitors. The results reveal that hydrolysis of penicillin G and imipenem by NDM-1 share the same thermodynamic features with a significant intrinsic enthalpy change and the release of one proton into solution, while NDM-1 hydrolysis of cefazolin exhibits a different mechanism with a smaller enthalpy change and the release of two protons. The inhibitory constants of four carboxylic acids are found to be in the micromolar range. The compounds pyridine-2,6-dicarboxylic acid and thiazolidine-2,4-dicarboxylic acid show the best inhibitory potency and are confirmed to inhibit NDM-1 using a clinical strain of Escherichia coli. The pyridine compound is further shown to restore the susceptibility of this E. coli strain to imipenem, at an inhibitor concentration of 400 μM, while the thiazoline compound also shows a synergistic effect with imipenem. These results provide valuable information to enrich current understanding on the catalytic mechanism of NDM-1 and to aid the future optimisation of β-lactamase inhibitors based on these scaffolds to tackle the problem of antibiotic resistance. PMID:29507059

  7. Grape seed and linseed, alone and in combination, enhance unsaturated fatty acids in the milk of Sarda dairy sheep.

    PubMed

    Correddu, F; Gaspa, G; Pulina, G; Nudda, A

    2016-03-01

    This study evaluated the effect of dietary inclusion of grape seed and linseed, alone or in combination, on sheep milk fatty acids (FA) profile using 24 Sarda dairy ewes allocated to 4 isoproductive groups. Groups were randomly assigned to 4 dietary treatments consisting of a control diet (CON), a diet including 300 g/d per animal of grape seed (GS), a diet including 220 g/d per animal of extruded linseed (LIN), and a diet including a mix of 300 g/d per animal of grape seed and 220 g/d per animal of extruded linseed (MIX). The study lasted 10 wk, with a 2-wk adaptation period and an 8-wk experimental period. Milk FA composition was analyzed in milk samples collected in the last 4 wk of the trial. The milk concentration of saturated fatty acids (SFA) decreased and that of unsaturated, monounsaturated, and polyunsaturated fatty acids (UFA, MUFA, and PUFA, respectively) increased in GS, LIN, and MIX groups compared with CON. The MIX group showed the lowest values of SFA and the highest of UFA, MUFA, and PUFA. Milk from ewes fed linseed (LIN and MIX) showed an enrichment of vaccenic acid (VA), oleic acid (OA), α-linolenic acid (LNA), and cis-9,trans-11 conjugated linoleic acid (CLA) compared with milk from the CON group. The GS group showed a greater content of milk oleic acid (OA) and linoleic acid (LA) and tended to show a greater content of VA and cis-9,trans-11 CLA than the CON group. The inclusion of grape seed and linseed, alone and in combination, decreased the milk concentration of de novo synthesized FA C10:0, C12:0, and C14:0, with the MIX group showing the lowest values. In conclusion, grape seed and linseed could be useful to increase the concentration of FA with potential health benefits, especially when these ingredients are included in combination in the diet. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long-range atmospheric transport

    NASA Astrophysics Data System (ADS)

    Aggarwal, Shankar G.; Kawamura, Kimitaka

    2008-07-01

    Molecular and stable carbon isotopic (δ13C value) compositions of dicarboxylic acids, ketoacids, and dicarbonyls in aerosol samples (i.e., total suspended particles) collected in Sapporo, northern Japan during spring and summer were determined to better understand the photochemical aging of organic aerosols during long-range transport from East Asia and Siberia. Their molecular distributions were characterized by the predominance of oxalic acid (C2) followed by malonic (C3) or occasionally succinic (C4) acids. Concentrations of total diacids ranged from 106-787 ng m-3 with ketoacids (13-81 ng m-3) and dicarbonyls (2.6-28 ng m-3) being less abundant. Water-soluble organic carbon (WSOC) comprised 23-69% of aerosol organic carbon (OC). OC to elemental carbon (EC) ratios were high (3.6-19, mean: 8.7). The ratios of C3/C4 and WSOC/OC did not show significant diurnal changes, suggesting that the Sapporo aerosols were not seriously affected by local photochemical processes and instead they were already aged. δ13C values of the dominant diacids (C2 - C4) ranged from -14.0 to -25.3‰. Largest δ13C values (-14.0 to -22.4‰, mean: -18.8‰) were obtained for C2, whereas smallest values (-25.1 to -31.4‰, mean: -28.1‰) were for azelaic acid (C9). In general, δ13C values of C2 - C4 diacids became less negative with aerosol aging (i.e., WSOC/OC), presumably due to isotopic fractionation during photochemical degradation of diacids. By comparing the δ13C values of diacids in the Sapporo aerosols with different air mass source regions, we suggest that although initial δ13C values of diacids depend on their precursor sources, the enrichment in 13C can be ascribed to aerosol photochemical aging.

  9. The formation of unsaturated zones within cemented paste backfill mixtures-effects on the release of copper, nickel, and zinc.

    PubMed

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2018-05-13

    Flooding of cemented paste backfill (CPB) filled mine workings is, commonly, a slow process and could lead to the formation of unsaturated zones within the CPB fillings. This facilitates the oxidation of sulfide minerals and thereby increases the risk of trace metal leaching. Pyrrhotitic tailings from a gold mine (cyanidation tailing (CT)), containing elevated concentrations of nickel (Ni), copper (Cu), and zinc (Zn), were mixed with cement and/or fly ash (1-3 wt%) to form CT-CPB mixtures. Pyrrhotite oxidation progressed more extensively during unsaturated conditions, where acidity resulted in dissolution of the Ni, Cu, and Zn associated with amorphous Fe precipitates and/or cementitious phases. The establishment of acidic, unsaturated conditions in CT-CBP:s with low fractions (1 wt%) of binders increased the Cu release (to be higher than that from CT), owing to the dissolution of Cu-associated amorphous Fe precipitates. In CT-CPB:s with relatively high proportions of binder, acidity from pyrrhotite oxidation was buffered to a greater extent. At this stage, Zn leaching increased due the occurrence of fly ash-specific Zn species soluble in alkaline conditions. Irrespective of binder proportion and water saturation level, the Ni and Zn release were lower, compared to that in CT. Fractions of Ni, Zn, and Cu associated with acid-soluble phases or amorphous Fe precipitates, susceptible to remobilization under acidic conditions, increased in tandem with binder fractions. Pyrrhotite oxidation occurred irrespective of the water saturation level in the CPB mixtures. That, in turn, poses an environmental risk, whereas a substantial proportion of Ni, Cu, and Zn was associated with acid-soluble phases.

  10. Comparison of the skin sensitizing potential of unsaturated compounds as assessed by the murine local lymph node assay (LLNA) and the guinea pig maximization test (GPMT).

    PubMed

    Kreiling, R; Hollnagel, H M; Hareng, L; Eigler, D; Lee, M S; Griem, P; Dreessen, B; Kleber, M; Albrecht, A; Garcia, C; Wendel, A

    2008-06-01

    The skin sensitization potential of eight unsaturated and one saturated lipid (bio)chemicals was tested in both the LLNA and the GPMT to address the hypothesis that chemicals with unsaturated carbon-carbon double bonds may result in a higher number of unspecific (false positive) results in the LLNA compared to the GPMT. Seven substances (oleic acid, linoleic acid, linolenic acid, undecylenic acid, maleic acid, squalene and octinol) gave clear positive results in the LLNA (stimulation index (SI)> or = 3) and thus would require labelling as skin sensitizer. Fumaric acid and succinic acid gave clearly negative results. In the GPMT, besides some sporadic skin reactions, reproducible skin reactions indicating an allergic response were found in a few animals for four test substances. Based on the GPMT results, only undecylenic acid would have to be classified and labelled as a skin sensitizer according to the European Dangerous Substance Directive (67/548/EEC) (results for linoleic acid were inconclusive), while the other seven test substances would not require labelling. Possible mechanisms for unspecific skin cell stimulation and lymph node responses are discussed. In conclusion, the suitability of the LLNA for unsaturated compounds bearing structural similarity to the tested substances should be carefully considered and the GPMT should remain available as an accepted test method for skin sensitization hazard identification.

  11. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P < 0.05), indicating the positive effects of n-3 HUFAs on the growth of sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Treesearch

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  13. Base flow recession from unsaturated-saturated porous media considering lateral unsaturated discharge and aquifer compressibility

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith

    2017-09-01

    Unsaturated flow is an important process in base flow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. The effects of the lateral discharge of the unsaturated zone and aquifer compressibility are specifically taken into consideration. Semianalytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. A larger dimensionless constitutive exponent κD (a smaller retention capacity) of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. The compressibility of the aquifer has a nonnegligible impact on the discharge at early times. For late times, the power index b of the recession curve -dQ/dt˜ aQb, is 1 and independent of κD, where Q is the base flow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→0. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  14. Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol.

    PubMed

    Kirpich, Irina A; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Arteel, Gavin E; Falkner, K Cameron; Barve, Shirish S; McClain, Craig J

    2013-05-01

    Alcohol and dietary fat both play an important role in alcohol-mediated multi-organ pathology, including gut and liver. In the present study we hypothesized that the combination of alcohol and dietary unsaturated fat (USF) would result in intestinal inflammatory stress and mucus layer alterations, thus contributing to disruption of intestinal barrier integrity. C57BL/6N mice were fed Lieber-DeCarli liquid diets containing EtOH and enriched in USF (corn oil/linoleic acid) or SF (medium chain triglycerides: beef tallow) for 8 weeks. Intestinal histology, morphometry, markers of inflammation, as well as levels of mucus protective factors were evaluated. Alcohol and dietary USF triggered an intestinal pro-inflammatory response, characterized by increase in Tnf-α, MCP1, and MPO activity. Further, alcohol and dietary USF, but not SF, resulted in alterations of the intestinal mucus layer, characterized by decreased expression of Muc2 in the ileum. A strong correlation was observed between down-regulation of the antimicrobial factor Cramp and increased Tnf-α mRNA. Therefore, dietary unsaturated fat (corn oil/LA enriched) is a significant contributing factor to EtOH-mediated intestinal inflammatory response and mucus layer alterations in rodents. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer

    NASA Astrophysics Data System (ADS)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent

    2015-04-01

    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto

  16. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  17. C–H Functionalization of Cyclic Amines: Redox-Annulations with α,β-Unsaturated Carbonyl Compounds

    PubMed Central

    Kang, YoungKu; Richers, Matthew T.; Sawicki, Conrad H.; Seidel, Daniel

    2015-01-01

    Cyclic amines such as pyrrolidine and 1,2,3,4-tetrahydroisoquinoline undergo redox-annulations with α,β-unsaturated aldehydes and ketones. Carboxylic acid promoted generation of a conjugated azomethine ylide is followed by 6π-electrocylization, and, in some cases, tautomerization. The resulting ring-fused pyrrolines are readily oxidized to the corresponding pyrroles or reduced to pyrrolidines. PMID:26051897

  18. Greater enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III after meals rich in saturated fatty acids than after meals rich in unsaturated fatty acids.

    PubMed

    Jackson, Kim G; Wolstencroft, Emma J; Bateman, Paul A; Yaqoob, Parveen; Williams, Christine M

    2005-01-01

    Although there is considerable interest in the postprandial events involved in the absorption of dietary fats and the subsequent metabolism of diet-derived triacylglycerol-rich lipoproteins, little is known about the effects of meal fatty acids on the composition of these particles. We examined the effect of meal fatty acids on the lipid and apolipoprotein contents of triacylglycerol-rich lipoproteins. Ten normolipidemic men received in random order a mixed meal containing 50 g of a mixture of palm oil and cocoa butter [rich in saturated fatty acids (SFAs)], safflower oil [n-6 polyunsaturated fatty acids (PUFAs)], or olive oil [monounsaturated fatty acids (MUFAs)] on 3 occasions. Fasting and postprandial apolipoproteins B-48, B-100, E, C-II, and C-III and lipids (triacylglycerol and cholesterol) were measured in plasma fractions with Svedberg flotation rates (S(f)) >400, S(f) 60-400, and S(f) 20-60. Calculation of the composition of the triacylglycerol-rich lipoproteins (expressed per mole of apolipoprotein B) showed notable differences in the lipid and apolipoprotein contents of the SFA-enriched particles in the S(f) > 400 and S(f) 60-400 fractions. After the SFA meal, triacylglycerol-rich lipoproteins in these fractions showed significantly greater amounts of triacylglycerol and of apolipoproteins C-II (S(f) 60-400 fraction only), C-III, and E than were found after the MUFA meal (P < 0.02) and more cholesterol, apolipoprotein C-III (S(f) > 400 fraction only), and apolipoprotein E than after the PUFA meal (P < 0.02). Differences in the composition of S(f) > 400 and S(f) 60-400 triacylglycerol-rich lipoproteins formed after saturated compared with unsaturated fatty acid-rich meals may explain differences in the metabolic handling of dietary fats.

  19. Conversion of Cn-Unsaturated into Cn-2-Saturated LCFA Can Occur Uncoupled from Methanogenesis in Anaerobic Bioreactors.

    PubMed

    Cavaleiro, Ana J; Pereira, Maria Alcina; Guedes, Ana P; Stams, Alfons J M; Alves, M Madalena; Sousa, Diana Z

    2016-03-15

    Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.

  20. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vardon, Derek R.; Rorrer, Nicholas A.; Salvachúa, Davinia

    cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid -- the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstratesmore » bioreactor production of muconate at 34.5 g L-1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1-9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical

  1. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  2. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  3. Structural modulation and luminescent properties of four Cd{sup II} coordination architectures based on 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole and flexible/rigid dicarboxylate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Liang; Dong, Wen-Wen, E-mail: dongww1@126.com; Ye, Xiao

    To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d{sup 10} coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt){sub 2}]{sub n} (1), [Cd{sub 3}(4-pzpt){sub 2}(suc){sub 2}]{sub n} (2), [Cd{sub 2}(4-Hpzpt)(nbc){sub 2}(H{sub 2}O)]{sub n} (3) and ([Cd{sub 2}(4-pzpt){sub 2}(tfbdc)(H{sub 2}O){sub 4}]·H{sub 2}O){sub n} (4) (H{sub 2}suc=1,2-ethanedicarboxylic acid, H{sub 2}nbc=hthalene-1,4-dicarboxylic acid, H{sub 2}tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 4{sup 4}-sql layer, which is extended to a 3D network via nonclassical C–H{sup …}N hydrogen bonds. Compound 2more » possesses a 6-connected pcu-4{sup 12}0.6{sup 3} net composed of trinuclear Cd{sup II}-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·5{sup 3}·7{sup 2})(5{sup 3}·6·7·9)(4{sup 2}·5{sup 5}·6·7{sup 2}). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 6{sup 3}-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O–H{sup …}N and O–H{sup …}O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated. - Graphical abstract: Four new Cd{sup II} coordination architectures constructed from the primary ligand 4-Hpzpt and flexible/rigid dicarboxylate coligands. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. And more, the thermal stability and luminescence are discussed. - Highlights

  4. Effect of unsaturations on the physical properties of a model membrane with the highly polyunsaturated docosahexaenoic fatty acid

    NASA Astrophysics Data System (ADS)

    Saiz, Leonor; Klein, Michael L.

    2001-03-01

    Polyunsaturated fatty acids are an essential component of biomembranes. The docosahexaenoic fatty acid (DHA), in particular, is found in high concentrations in retinal and neuronal tissue and in the olfactory bulb. Furthermore, it is well known the ability of DHA rich membranes to modulate membrane protein function, in some situations, by modifying the membrane physical properties. A particularly well studied situation is the DHA effect onthe activity of the visual receptor (protein) rhodopsin. Here, we study at a microscopic level this type of complex systems under physiological conditions. In this way, we can probe the molecular origin of the peculiarities that the system confers to membranes. To this purpose, the structure of a fully hydrated mixed (saturated/polyunsaturated) chain lipid bilayer in the biologically relevant liquid crystalline phase has been examined by performing molecular dynamics simulations. The model membrane, a 1-stearoyl- 2-docosahexaenoic- sn-glycero- 3-phosphatidylcholine (18:0/22:6 PC) lipid bilayer, was investigated at room temperature and ambient pressure and the results obtained in the nanosecond time scale were in good agreement with the available experimental data. Among the effects of the multiple unsaturations on the physical properties of these membranes, we focus on the enhanced permeability to water and small organic solvents, the decreased area compressibility modulus, and the domain formation and chain segregation.

  5. Measurement and modeling of unsaturated hydraulic conductivity

    USGS Publications Warehouse

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others. This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K. The parameters that describe the K curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  6. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking

    NASA Astrophysics Data System (ADS)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    The emissions from food cooking could be a significant contributor to atmospheric particulate organic matter (POM) and its chemical composition would vary with different cooking styles. In this study, the chemical composition of POM emitted from Western-style fast food cooking was investigated. A total of six PM 2.5 samples was collected from a commercial restaurant and determined by gas chromatography-mass spectrometry (GC-MS). It is found that the total amount of quantified compounds of per mg POM in Western-style fast food cooking is much higher than that in Chinese cooking. The predominant homologue is fatty acids, accounting for 78% of total quantified POM, with the predominant one being palmitic acid. Dicarboxylic acids display the second highest concentration in the quantified homologues with hexanedioic acid being predominant, followed by nonanedioic acid. Cmax of n-alkanes occurs at C25, but they still appear relative higher concentrations at C29 and C31. In addition, both levoglucosan and cholesterol are quantified. The relationship of concentrations of unsaturated fatty acids (C16 and C18) with a double bond at C9 position and C9 acids indicates the reduction of the unsaturated fatty acids in the emissions could form the C9 acids. Moreover, the nonlinear fit indicates that other C9 species or other compounds are also produced, except for the C9 acids. The potential candidates of tracers for the emissions from Western-fast food cooking could be: tetradecanoic acid, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, nonanal, lactones, levoglucosan, hexanedioic acid and nonanedioic acid.

  7. Relative stability and proton transfer reactions of unsaturated isocyanides and cyanides

    NASA Astrophysics Data System (ADS)

    Adamson, Aiko; Kaljurand, Ivari; Guillemin, Jean-Claude; Burk, Peeter

    2016-09-01

    The typical Gibbs free energy difference between hydrocarbon substituted isocyanides and the corresponding cyanides is 25 to 28 kcal/mol in favor of the cyanides and is mostly independent of the substituent. Triple bonded species with a -C ≡ C-RN,C (RN,C = CN, NC) structure can be considered as exceptions. Because isocyanide and cyanide species have very similar structures, the relative energy is independent of the pressure and temperature conditions. Theoretical and experimental gas-phase investigations show that basicity of isocyanides ranges from 182.1 to 198.2 kcal/mol which is 14.0 to 19.7 kcal/mol higher than the basicity of respective cyanides. The most favored protonation centers are located on isocyanide or cyanide group depending on the species. The biggest increase of basicity was caused by bulkier substituents. The substitutions have greater influence on the basicity of cyanides than on the basicity of isocyanides. In regard to deprotonation, the cyanides are more acidic than the corresponding isocyanides. For most of the unsaturated cyanide and isocyanide species the (N,C)-CHR' hydrogen (the one connected to the carbon next to cyanide/isocyanide group) is the most acidic. Our work suggests that for derivatives bearing unsaturated substituent the favored deprotonation center may be different and some cyanides and isocyanides are unstable towards gas-phase deprotonation equilibrium as the formed anion tends to isomerize.

  8. Identification of EayjjPB encoding a dicarboxylate transporter important for succinate production under aerobic and anaerobic conditions in Enterobacter aerogenes.

    PubMed

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Tokura, Mitsunori; Abe, Keietsu

    2018-05-01

    Enterobacter aerogenes, a gram-negative, rod-shaped bacterium, is an effective producer of succinate from glucose via the reductive tricarboxylic acid cycle under anaerobic conditions. However, to date, succinate-exporter genes have not been identified in E. aerogenes, although succinate exporters have a large impact on fermentative succinate production. Recently, we genetically identified yjjP and yjjB, as genes encoding a succinate transporter in Escherichia coli. Evaluation of the yjjPB homologs in E. aerogenes (EayjjPB genes) showed that succinate accumulation increased from 4.1 g L -1 to 9.1 g L -1 when the EayjjPB genes were expressed under aerobic conditions. Under anaerobic conditions, succinate yield increased from 53% to 60% by EayjjPB expression and decreased to 48% by deletion of EayjjPB. Furthermore, the production levels of fumarate and malate, which are intermediates of the succinate-biosynthesis pathway, were also increased by EayjjPB expression. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both EaYjjP and EaYjjB are required for the restoration of succinate production. Taken together, these results suggest that EaYjjPB function as a dicarboxylate transporter in E. aerogenes and that the products of both genes are required for dicarboxylate transport. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana.

    PubMed

    Chen, Yicun; Cui, Qinqin; Xu, Yongjie; Yang, Susu; Gao, Ming; Wang, Yangdong

    2015-08-01

    Genetic engineering to produce valuable lipids containing unsaturated fatty acids (UFAs) holds great promise for food and industrial applications. Efforts to genetically modify plants to produce desirable UFAs with single enzymes, however, have had modest success. The key enzymes fatty acid desaturase (FAD) and diacylglycerol acyltransferase (DGAT) are responsible for UFA biosynthesis (a push process) and assembling fatty acids into lipids (a pull process) in plants, respectively. To examine their roles in UFA accumulation, VfFAD2 and VfDGAT2 genes cloned from Vernicia fordii (tung tree) oilseeds were conjugated and transformed into Rhodotorula glutinis and Arabidopsis thaliana via Agrobacterium tumefaciens. Real-time quantitative PCR revealed variable gene expression levels in the transformants, with a much higher level of VfDGAT2 than VfFAD2. The relationship between VfFAD2 expression and linoleic acid (C18:2) increases in R. glutinis (R (2) = 0.98) and A. thaliana (R (2) = 0.857) transformants was statistically linear. The VfDGAT2 expression level was statistically correlated with increased total fatty acid content in R. glutinis (R (2) = 0.962) and A. thaliana (R (2) = 0.8157) transformants. With a similar expression level between single- and two-gene transformants, VfFAD2-VfDGAT2 co-transformants showed a higher linolenic acid (C18:3) yield in R. glutinis (174.36 % increase) and A. thaliana (14.61 % increase), and eicosatrienoic acid (C20:3) was enriched (17.10 % increase) in A. thaliana. Our data suggest that VfFAD2-VfDGAT2 had a synergistic effect on UFA metabolism in R. glutinis, and to a lesser extent, A. thaliana. These results show promise for further genetic engineering of plant lipids to produce desirable UFAs.

  10. Two new coordination polymers constructed by naphthalene-1,4-dicarboxylic acid and 2,4-diamino-6-methyl-triazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yamin, E-mail: liyamin@henu.edu.cn; Xiao, Changyu; Zhang, Xudong

    2013-08-15

    Two new transition metal coordination complexes, ([MnO(nda)](H{sub 2}dmt)(H{sub 2}O)){sub n} (1), [Ag{sub 5}(nda){sub 2.5}(dmt)]{sub n} (2), (H{sub 2}nda=naphthalene-1,4-dicarboxylic acid, dmt=2,4-diamine-6-methyl-1,3,5-triazine) have been hydrothermally synthesized by the reactions of H{sub 2}nda and dmt with the homologous MnCl{sub 2}·4H{sub 2}O and AgNO{sub 3}, respectively, and characterized by single-crystal X-ray diffraction, IR spectra, elemental analysis, thermogravimetric analysis (TGA). The compound 1 exhibits a 3D network comprising 1D metal chain (MnO(CO{sub 2}){sub 2}){sub n} connected by the ligand nda{sup 2−}, featuring a four-connected uninodal diamond -like topology. In compound 2, it is firstly observed that decanuclear silver units as secondary building units to constructmore » 3D network by the ligands dmt and nda{sup 2−}, with a rare 2-nodal (3,8)-connected tfz-d topology ((4{sup 3}){sub 2}(4{sup 6}.6{sup 18}.8{sup 4})). The interactions within each Mn(II)—Mn(II) pair of compound 1 are antiferromagnetic (g=2.07, J=−1.42(1) cm{sup −1}, zj′=−0.73(2) cm{sup −1}). In addition, compound 2 exhibits photoluminescent property at about 472 nm (λ{sub ex}=394 nm). - Graphical abstract: Two new transition metal coordination complexes 1–2 have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction, IR spectra, elemental analysis thermogravimetric analysis (TGA). Highlights: • The compound 1 exhibits a 3D network with four-connected uninodal diamond-like topology. • The first 3D network of 2 with a rare tfz-d topology consists of decanuclear silver clusters as secondary building units. • The magnetic measurement indicates the compound 1 shows antiferromagnetic interactions. • The photoluminescent property of 2 has been measured.« less

  11. Furan-based benzene mono- and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC-MurF): experimental and computational characterization.

    PubMed

    Perdih, Andrej; Hrast, Martina; Pureber, Kaja; Barreteau, Hélène; Grdadolnik, Simona Golič; Kocjan, Darko; Gobec, Stanislav; Solmajer, Tom; Wolber, Gerhard

    2015-06-01

    Bacterial resistance to the available antibiotic agents underlines an urgent need for the discovery of novel antibacterial agents. Members of the bacterial Mur ligase family MurC-MurF involved in the intracellular stages of the bacterial peptidoglycan biosynthesis have recently emerged as a collection of attractive targets for novel antibacterial drug design. In this study, we have first extended the knowledge of the class of furan-based benzene-1,3-dicarboxylic acid derivatives by first showing a multiple MurC-MurF ligase inhibition for representatives of the extended series of this class. Steady-state kinetics studies on the MurD enzyme were performed for compound 1, suggesting a competitive inhibition with respect to ATP. To the best of our knowledge, compound 1 represents the first ATP-competitive MurD inhibitor reported to date with concurrent multiple inhibition of all four Mur ligases (MurC-MurF). Subsequent molecular dynamic (MD) simulations coupled with interaction energy calculations were performed for two alternative in silico models of compound 1 in the UMA/D-Glu- and ATP-binding sites of MurD, identifying binding in the ATP-binding site as energetically more favorable in comparison to the UMA/D-Glu-binding site, which was in agreement with steady-state kinetic data. In the final stage, based on the obtained MD data novel furan-based benzene monocarboxylic acid derivatives 8-11, exhibiting multiple Mur ligase (MurC-MurF) inhibition with predominantly superior ligase inhibition over the original series, were discovered and for compound 10 it was shown to possess promising antibacterial activity against S. aureus. These compounds represent novel leads that could by further optimization pave the way to novel antibacterial agents.

  12. Furan-based benzene mono- and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC-MurF): experimental and computational characterization

    NASA Astrophysics Data System (ADS)

    Perdih, Andrej; Hrast, Martina; Pureber, Kaja; Barreteau, Hélène; Grdadolnik, Simona Golič; Kocjan, Darko; Gobec, Stanislav; Solmajer, Tom; Wolber, Gerhard

    2015-06-01

    Bacterial resistance to the available antibiotic agents underlines an urgent need for the discovery of novel antibacterial agents. Members of the bacterial Mur ligase family MurC-MurF involved in the intracellular stages of the bacterial peptidoglycan biosynthesis have recently emerged as a collection of attractive targets for novel antibacterial drug design. In this study, we have first extended the knowledge of the class of furan-based benzene-1,3-dicarboxylic acid derivatives by first showing a multiple MurC-MurF ligase inhibition for representatives of the extended series of this class. Steady-state kinetics studies on the MurD enzyme were performed for compound 1, suggesting a competitive inhibition with respect to ATP. To the best of our knowledge, compound 1 represents the first ATP-competitive MurD inhibitor reported to date with concurrent multiple inhibition of all four Mur ligases (MurC-MurF). Subsequent molecular dynamic (MD) simulations coupled with interaction energy calculations were performed for two alternative in silico models of compound 1 in the UMA/ d-Glu- and ATP-binding sites of MurD, identifying binding in the ATP-binding site as energetically more favorable in comparison to the UMA/ d-Glu-binding site, which was in agreement with steady-state kinetic data. In the final stage, based on the obtained MD data novel furan-based benzene monocarboxylic acid derivatives 8- 11, exhibiting multiple Mur ligase (MurC-MurF) inhibition with predominantly superior ligase inhibition over the original series, were discovered and for compound 10 it was shown to possess promising antibacterial activity against S. aureus. These compounds represent novel leads that could by further optimization pave the way to novel antibacterial agents.

  13. Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction.

    PubMed

    Yamagiwa, Noriyuki; Qin, Hongbo; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2005-09-28

    The full details of a catalytic asymmetric aza-Michael reaction of methoxylamine promoted by rare earth-alkali metal heterobimetallic complexes are described, demonstrating the effectiveness of Lewis acid-Lewis acid cooperative catalysis. First, enones were used as substrates, and the 1,4-adducts were obtained in good yield (57-98%) and high ee (81-96%). Catalyst loading was successfully reduced to 0.3-3 mol % with enones. To broaden the substrate scope of the reaction to carboxylic acid derivatives, alpha,beta-unsaturated N-acylpyrroles were used as monodentate, carboxylic acid derivatives. With beta-alkyl-substituted N-acylpyrroles, the reaction proceeded smoothly and the products were obtained in high yield and good ee. Transformation of the 1,4-adducts from enones and alpha,beta-unsaturated N-acylpyrroles afforded corresponding chiral aziridines and beta-amino acids. Detailed mechanistic studies, including kinetics, NMR analysis, nonlinear effects, and rare earth metal effects, are also described. The Lewis acid-Lewis acid cooperative mechanism, including the substrate coordination mode, is discussed in detail.

  14. Numerical model for thermodynamical behaviors of unsaturated soil

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuji; Yamada, Mitsuhide; Sako, Kazunari; Araki, Kohei; Kitamura, Ryosuke

    Kitamura et al. have proposed the numerical models to establish the unsaturated soil mechanics aided by probability theory and statistics, and to apply the unsaturated soil mechanics to the geo-simulator, where the numerical model for the thermodynamical behaviors of unsaturated soil are essential. In this paper the thermodynamics is introduced to investigate the heat transfer through unsaturated soil and the evaporation of pore water in soil based on the first and second laws of thermodynamics, i.e., the conservation of energy, and increasing entropy. On the other hand the lysimeter equipment is used to obtain the data for the evaporation of pore water during fine days and seepage of rain water during rainy days. The numerical simulation is carried out by using the proposed numerical model and the results are compared with those obtained from the lysimeter test.

  15. Synthesis of α,β-unsaturated aldehydes as potential substrates for bacterial luciferases.

    PubMed

    Brodl, Eveline; Ivkovic, Jakov; Tabib, Chaitanya R; Breinbauer, Rolf; Macheroux, Peter

    2017-02-15

    Bacterial luciferase catalyzes the monooxygenation of long-chain aldehydes such as tetradecanal to the corresponding acid accompanied by light emission with a maximum at 490nm. In this study even numbered aldehydes with eight, ten, twelve and fourteen carbon atoms were compared with analogs having a double bond at the α,β-position. These α,β-unsaturated aldehydes were synthesized in three steps and were examined as potential substrates in vitro. The luciferase of Photobacterium leiognathi was found to convert these analogs and showed a reduced but significant bioluminescence activity compared to tetradecanal. This study showed the trend that aldehydes, both saturated and unsaturated, with longer chain lengths had higher activity in terms of bioluminescence than shorter chain lengths. The maximal light intensity of (E)-tetradec-2-enal was approximately half with luciferase of P. leiognathi, compared to tetradecanal. Luciferases of Vibrio harveyi and Aliivibrio fisheri accepted these newly synthesized substrates but light emission dropped drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence were much slower, when using unsaturated substrates, indicating a kinetic effect. As a result the duration of the light emission is doubled. These results suggest that the substrate scope of bacterial luciferases is broader than previously reported. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  17. Amylose-dicarboxylic acid inclusion complexes: Characterization and comparison to monocarboxylic acid complexes

    USDA-ARS?s Scientific Manuscript database

    One of the main components in starch, amylose is an essentially linear polymer composed of glucose connected through alpha-1,4-bonds. Amylose is well known to form helical inclusion complexes with various types of ligands such as iodine, medium and long chain fatty acids, alcohols, lactones, and fl...

  18. Kinetic and molecular orbital analyses of dicarboxylic acylcarnitine methylesterification show that derivatization may affect the screening of newborns by tandem mass spectrometry.

    PubMed

    Maeda, Yasuhiro; Nakajima, Yoko; Gotoh, Kana; Hotta, Yuji; Kataoka, Tomoya; Sugiyama, Naruji; Shirai, Naohiro; Ito, Tetsuya; Kimura, Kazunori

    2016-01-01

    Newborns are routinely screened for organic acidemias by acylcarnitine analysis. We previously reported the partial catalytic methylesterification of dicarboxylic acylcarnitines by benzenesulfonic acid moiety in the solid extraction cartridge during extraction from serum. Since the diagnosis of organic acidemias by tandem mass spectrometry is affected by the higher molecular weight of these derivatized acylcarnitines, we investigated the methylesterification conditions. The kinetic constants for the methylesterification of carboxyl groups on the acyl and carnitine sides of carnitine were 2.5 and 0.24h(-1), respectively. The physical basis underlying this difference in methylesterification rates was clarified theoretically, illustrating that methylesterification during extraction proceeds easily and must be prevented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver.

    PubMed

    Gnoni, Antonio; Giudetti, Anna M

    2016-09-01

    The activities of lipogenic enzymes appear to fluctuate with changes in the level and type of dietary fats. Polyunsaturated fatty acids (PUFAs) are known to induce on hepatic de novo lipogenesis (DNL) the highest inhibitory effect, which occurs through a long-term adaptation. Data on the acute effects of dietary fatty acids on DNL are lacking. In this study with rats, the acute 1-day effect of high-fat (15 % w/w) diets (HFDs) enriched in saturated fatty acids (SFAs) or unsaturated fatty acids (UFAs), i.e., monounsaturated (MUFA) and PUFA, of the ω-6 and ω-3 series on DNL and plasma lipid level was investigated; a comparison with a longer time feeding (21 days) was routinely carried out. After 1-day HFD administration UFA, when compared to SFA, reduced plasma triacylglycerol (TAG) level and the activities of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), a decreased activity of the citrate carrier (CIC), a mitochondrial protein linked to lipogenesis, was also detected. In this respect, ω-3 PUFA was the most effective. On the other hand, PUFA maintained the effects at longer times, and the acute inhibition induced by MUFA feeding on DNL enzyme and CIC activities was almost nullified at 21 days. Mitochondrial fatty acid composition was slightly but significantly changed both at short- and long-term treatment, whereas the early changes in mitochondrial phospholipid composition vanished in long-term experiments. Our results suggest that in the early phase of administration, UFA coordinately reduced both the activities of de novo lipogenic enzymes and of CIC. ω-3 PUFA showed the greatest effect.

  20. Studies on unsaturated flow in dual-scale fiber fabrics

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Yan, Shilin; Li, Yongjing

    2018-03-01

    Fiber fabrics in liquid composite molding (LCM) can be recognized as a dual-scale structure. As sink theory developed, this unsaturated flow behavior has already been simulated successfully; however, most of simulated results based on a unit cell under ideal status, thus making results were not agreement with experiment. In this study, an experimental method to establish sink function was proposed. After compared the simulation results by this sink function, it shows high accuracy with the experimental data. Subsequently, the key influencing factors for unsaturated flow have been further investigated; results show that the filling time for unsaturated flow was much longer than saturated flow. In addition, the injection pressure and permeability were the key factors lead to unsaturated flow.

  1. Azelaic acid (15% gel) in the treatment of acne rosacea.

    PubMed

    Gupta, Aditya K; Gover, Melissa D

    2007-05-01

    In December of 2002, the FDA approved azelaic acid 15% gel for the topical treatment of inflammatory papules and pustules of mild to moderate rosacea. Azelaic acid is a saturated dicarboxylic acid, which is naturally occurring and has been used in the treatment of rosacea, acne, and melasma. The 15% gel has a high efficacy and is generally well tolerated, with the local irritation (burning, stinging, itching, and scaling) being typically mild and transient. Azelaic acid 15% gel is considered effective and safe as a therapy for inflammatory papulo-pustular rosacea and is suitable for use on all skin types.

  2. Optimal Production of 7,10-dihydroxy-8(E)-hexadecenoic Acid from Palmitoleic Acid by Pseudomonas aeruginosa PR3

    USDA-ARS?s Scientific Manuscript database

    The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion process. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains te...

  3. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, A

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, wasmore » proposed utilizing the kinetic fitting of the coupled differential equations.« less

  4. Pumping Test Determination of Unsaturated Aquifer Properties

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  5. Autoxidation of unsaturated lipids in food emulsion.

    PubMed

    Sun, Yue-E; Wang, Wei-Dong; Chen, Hong-Wei; Li, Chao

    2011-05-01

    Unsaturated lipids having various physiological roles are of significance in biochemistry, nutrition, medicine, and food. However, the susceptibility of lipids to oxidation is a major cause of quality deterioration in food emulsions. The reaction mechanism and factors that influence oxidation are appreciably different for emulsified lipids and bulk lipids. This article gives a brief overview of the current knowledge on autoxidation of oil-in-water food emulsions, especially those that contain unsaturated lipids, which are important in the food industry. Autoxidation of unsaturated lipids in oil-in-water emulsion is discussed, and so also their oxidation mechanism, the major factors influencing oxidation, determination measures, research status, and the problems encountered in recent years. Some effective strategies for controlling lipid oxidation in food emulsion have been presented in this review.

  6. Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α,β-unsaturated carboxylic acids.

    PubMed

    Takimoto, Masanori; Hou, Zhaomin

    2013-08-19

    The sequential hydroalumination or methylalumination of various alkynes catalyzed by different catalyst systems, such those based on Sc, Zr, and Ni complexes, and the subsequent carboxylation of the resulting alkenylaluminum species with CO2 catalyzed by an N-heterocyclic carbene (NHC)-copper catalyst have been examined in detail. The regio- and stereoselectivity of the overall reaction relied largely on the hydroalumination or methylalumination reactions, which significantly depended on the catalyst and alkyne substrates. The subsequent Cu-catalyzed carboxylation proceeded with retention of the stereoconfiguration of the alkenylaluminum species. All the reactions could be carried out in one-pot to afford efficiently a variety of α,β-unsaturated carboxylic acids with well-controlled configurations, which are difficult to construct by previously reported methods. This protocol could be practically useful and attractive because of its high regio- and stereoselectivity, simple one-pot reaction operation, and the use of CO2 as a starting material. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cerebral microvascular changes induced by rich cholesterol and saturated fatty acid diet in Wistar rats.

    PubMed

    Stănescu, R; Stănescu, M R; Bold, Adriana; Mateescu, Garofiţa Olivia

    2013-01-01

    The impact of an excess of fatty acids in the diet on cardiovascular diseases has been studied and discussed both in human and animal studies. Generally, excessive saturated fats increase the risk, while unsaturated fats are considered less harmful. Our aim was to perform an experimental study in order to analyze how fatty diet quality (unsaturated vs. saturated fatty acids) influences atherogenesis. In our experimental study, 18 adult Wistar rats were randomly divided into two equal groups. One group was subjected to a rich unsaturated fatty acid diet (untar) and the other group to a rich saturated one (palm oil). Three animals from each group were sacrificed after 12, 18, and 48 weeks. The brain was removed and microscopically examined after Hematoxylin-Eosin, Orcein and Masson's trichrome classical staining, and after immunohistochemical marking using the anti-alpha smooth muscle actin antibody. Rats sacrificed after 12 weeks revealed modicum lesions, as intimal vacuoles or minute intraluminal thrombosis, and cerebral parenchymal edema. After 18 weeks, some of rats subjected to a rich saturated fatty acid diet presented vacuoles found in all arteriolar wall layers, and a tendency towards parietal thrombosis. In rats subjected to a rich unsaturated fatty acid diet, the subintimal arteriolar vacuolization was associated with an intramural and adventitial fibrosis. In rats sacrificed after 48 weeks, lesional polymorphism was pronounced, but in rats subjected to a rich unsaturated fatty acid diet complete luminal thrombosis was followed by a an organized thrombus with multiple capillary channels. Although in Wistar rats atherosclerosis appeared only after intensive changes in diet, different experimental studies showed that, in transgenic rats, rich saturated fatty acid diet induced progressive atherosclerotic lesions, resembling those observed by us, but also some aspects described in human pathology. Our experimental study reveals differences in atherogenesis

  8. Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment.

    PubMed

    Roberts, Rosebud O; Geda, Yonas E; Cerhan, James R; Knopman, David S; Cha, Ruth H; Christianson, Teresa J H; Pankratz, V Shane; Ivnik, Robert J; Boeve, Bradley F; O'Connor, Helen M; Petersen, Ronald C

    2010-01-01

    To investigate associations of the Mediterranean diet (MeDi) components and the MeDi score with mild cognitive impairment (MCI). Participants (aged 70-89 years) were clinically evaluated to assess MCI and dementia, and completed a 128-item food frequency questionnaire. 163 of 1,233 nondemented persons had MCI. The odds ratio of MCI was reduced for high vegetable intake [0.66 (95% CI = 0.44-0.99), p = 0.05] and for high mono- plus polyunsaturated fatty acid to saturated fatty acid ratio [0.52 (95% CI = 0.33-0.81), p = 0.007], adjusted for confounders. The risk of incident MCI or dementia was reduced in subjects with a high MeDi score [hazard ratio = 0.75 (95% CI = 0.46-1.21), p = 0.24]. Vegetables, unsaturated fats, and a high MeDi score may be beneficial to cognitive function.

  9. Tris(5,6-dimethyl-1H-benzimidazole-κN(3))(pyridine-2,6-dicarboxyl-ato-κ(3)O(2),N,O(6))nickel(II).

    PubMed

    Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan

    2012-06-01

    The title mononuclear complex, [Ni(C(7)H(3)NO(4))(C(9)H(10)N(2))(3)], shows a central Ni(II) atom which is coordinated by two carboxyl-ate O atoms and the N atom from a pyridine-2,6-dicarboxyl-ate ligand and by three N atoms from different 5,6-dimethyl-1H--benzimidazole ligands in a distorted octa-hedral geometry. The crystal structure shows intermolecular N-H⋯O hydrogen bonds.

  10. Determination of Perfluorocarboxylic Acids in Sludge

    EPA Science Inventory

    Methods were developed for the extraction from wastewater-treatment sludge and quantitation by LC/MS/MS of perfluorocarboxylic acids (PFCAs, C6 to C12), 7-3 fluorotelomer carboxylic acid (7-3 FTCA) and 8-2 fluorotelomer 2-unsaturated carboxylic acid (8-2 FTUCA) using LC/MS/MS.

  11. Anti-allergic Hydroxy Fatty Acids from Typhonium blumei Explored through ChemGPS-NP

    PubMed Central

    Korinek, Michal; Tsai, Yi-Hong; El-Shazly, Mohamed; Lai, Kuei-Hung; Backlund, Anders; Wu, Shou-Fang; Lai, Wan-Chun; Wu, Tung-Ying; Chen, Shu-Li; Wu, Yang-Chang; Cheng, Yuan-Bin; Hwang, Tsong-Long; Chen, Bing-Hung; Chang, Fang-Rong

    2017-01-01

    Increasing prevalence of allergic diseases with an inadequate variety of treatment drives forward search for new alternative drugs. Fatty acids, abundant in nature, are regarded as important bioactive compounds and powerful nutrients playing an important role in lipid homeostasis and inflammation. Phytochemical study on Typhonium blumei Nicolson and Sivadasan (Araceae), a folk anti-cancer and anti-inflammatory medicine, yielded four oxygenated fatty acids, 12R-hydroxyoctadec-9Z,13E-dienoic acid methyl ester (1) and 10R-hydroxyoctadec-8E,12Z-dienoic acid methyl ester (2), 9R-hydroxy-10E-octadecenoic acid methyl ester (3), and 12R*-hydroxy-10E-octadecenoic acid methyl ester (4). Isolated compounds were identified by spectroscopic methods along with GC-MS analysis. Isolated fatty acids together with a series of saturated, unsaturated and oxygenated fatty acids were evaluated for their anti-inflammatory and anti-allergic activities in vitro. Unsaturated (including docosahexaenoic and eicosapentaenoic acids) as well as hydroxylated unsaturated fatty acids exerted strong anti-inflammatory activity in superoxide anion generation (IC50 2.14–3.73 μM) and elastase release (IC50 1.26–4.57 μM) assays. On the other hand, in the anti-allergic assays, the unsaturated fatty acids were inactive, while hydroxylated fatty acids showed promising inhibitory activity in A23187- and antigen-induced degranulation assays (e.g., 9S-hydroxy-10E,12Z-octadecadienoic acid, IC50 92.4 and 49.7 μM, respectively). According to our results, the presence of a hydroxy group in the long chain did not influence the potent anti-inflammatory activity of free unsaturated acids. Nevertheless, hydroxylation of fatty acids (or their methyl esters) seems to be a key factor for the anti-allergic activity observed in the current study. Moreover, ChemGPS-NP was explored to predict the structure-activity relationship of fatty acids. The anti-allergic fatty acids formed different cluster distant from

  12. Acoustic waves in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison

    2013-09-01

    Seminal papers by Brutsaert (1964) and Brutsaert and Luthin (1964) provided the first rigorous theoretical framework for examining the poroelastic behavior of unsaturated soils, including an important application linking acoustic wave propagation to soil hydraulic properties. Theoretical developments during the 50 years that followed have led Lo et al., (2005) to a comprehensive model of these phenomena, but the relationship of its elasticity parameters to standard poroelasticity parameters measured in hydrogeology has not been established. In the present study, we develop this relationship for three key parameters, the Gassman modulus, Skempton coefficient, and Biot-Willis coefficient by generalizing them to an unsaturated porous medium. We demonstrate the remarkable result that well-known and widely applied relationships among these parameters for a porous medium saturated by a single fluid are also valid under very general conditions for unsaturated soils. We show further that measurement of the Biot-Willis coefficient along with three of the six elasticity coefficients in the model of Lo et al. (2005) is sufficient to characterize poroelastic behavior. The elasticity coefficients in the model of Lo et al. (2005) are sensitive to the dependence of capillary pressure on water saturation and its viscous-drag coefficients are functions of relative permeability, implying that hysteresis in the water retention curve and hydraulic conductivity function should affect acoustic wave behavior in unsaturated soils. To quantify these as-yet unknown effects, we performed numerical simulations for Dune sand at two representative wave excitation frequencies. Our results show that the acoustic wave investigated by Brutsaert and Luthin (1964) propagates at essentially the same speed during imbibition and drainage, but is attenuated more during drainage than imbibition. Overall, effects on acoustic wave behavior caused by hysteresis become more significant as the excitation

  13. Pumping-Induced Unsaturated Regions Beneath a Perennial River

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Jasperse, J.; Seymour, D.; Constantz, J.; Delaney, C.; Zhou, Q.

    2006-12-01

    The development of an unsaturated region beneath a streambed during groundwater pumping near streams reduces the capacity of the pumping system, changes flow paths, and alters the types of biological transformations in the streambed sediments. To investigate the formation of an unsaturated region beneath the streambed during near-stream groundwater pumping, a three-dimensional, multi-phase flow model was developed using TOUGH2 of the region near two horizontal collector wells operated by the Sonoma County Water Agency along the Russian River near Forestville, California. The simulations focus on the impact of streambed permeability on the development of an unsaturated region since streambed permeability controls the flux of river water entering and recharging the aquifer. The results indicate that as the streambed permeability decreases relative to the aquifer permeability, the size of the unsaturated region beneath the streambed increases. The simulations also demonstrate that the streambed permeabilities over which the aquifer beneath the streambed is unsaturated and able to extract water at the specified rate of 3200 m3/hr occurs over a relatively narrow range of values. Field measurements of streambed flow velocities, volumetric water content, and temperatures near the collector wells are also presented and compared with the simulation results. This work was supported by the Sonoma County Water Agency, through U.S. Department of Energy Contract No. DE-AC03-76SF00098.

  14. Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes

    PubMed Central

    Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.

    2011-01-01

    The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881

  15. Synthesis and characterization of new polyamides derived from alanine and valine derivatives

    PubMed Central

    2012-01-01

    Background Many efforts have been recently devoted to design, investigate and synthesize biocompatible, biodegradable polymers for applications in medicine for either the fabrication of biodegradable devices or as drug delivery systems. Many of them consist of condensation of polymers having incorporated peptide linkages susceptible to enzymatic cleavage. Polyamides (PAs) containing α-amino acid residues such as L-leucine, L-alanine and L-phenylalanine have been reported as biodegradable materials. Furthermore, polyamides (PAs) derived from C10 and C14 dicarboxylic acids and amide-diamines derived from 1,6-hexanediamine or 1,12-dodecanediamine and L-phenylalanine, L-valyl-L-phenylalanine or L-phenylalanyl-L-valine residues have been reported as biocompatible polymers. We have previously described the synthesis and thermal properties of a new type of polyamides-containing amino acids based on eight new symmetric meta-oriented protected diamines derived from coupling of amino acids namely; Fomc-glycine, Fmoc-alanine, Fomc-valine and Fomc-leucine with m-phenylene diamine or 2,6-diaminopyridine. Results revealed that incorporation of pyridine onto the polymeric backbone of all series decreases the thermal stability. Here we describe another family of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of the polymers. Results We report here the preparation of a new type of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of polymers. The thermal properties of the polymers were evaluated by different techniques. Results revealed that structure-thermal property correlation based on

  16. Triglyceride accumulation protects against fatty acid-induced lipotoxicity

    PubMed Central

    Listenberger, Laura L.; Han, Xianlin; Lewis, Sarah E.; Cases, Sylvaine; Farese, Robert V.; Ory, Daniel S.; Schaffer, Jean E.

    2003-01-01

    Excess lipid accumulation in non-adipose tissues is associated with insulin resistance, pancreatic β-cell apoptosis and heart failure. Here, we demonstrate in cultured cells that the relative toxicity of two common dietary long chain fatty acids is related to channeling of these lipids to distinct cellular metabolic fates. Oleic acid supplementation leads to triglyceride accumulation and is well tolerated, whereas excess palmitic acid is poorly incorporated into triglyceride and causes apoptosis. Unsaturated fatty acids rescue palmitate-induced apoptosis by channeling palmitate into triglyceride pools and away from pathways leading to apoptosis. Moreover, in the setting of impaired triglyceride synthesis, oleate induces lipotoxicity. Our findings support a model of cellular lipid metabolism in which unsaturated fatty acids serve a protective function against lipotoxicity though promotion of triglyceride accumulation. PMID:12629214

  17. Host cells and methods for producing diacid compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.

    The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.

  18. Unsaturated fatty acid, cis-2-decenoic acid, in combination with disinfectants or antibiotics removes pre-established biofilms formed by food-related bacteria.

    PubMed

    Sepehr, Shayesteh; Rahmani-Badi, Azadeh; Babaie-Naiej, Hamta; Soudi, Mohammad Reza

    2014-01-01

    Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA), an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants) on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward developing new strategies

  19. Unsaturated Fatty Acid, cis-2-Decenoic Acid, in Combination with Disinfectants or Antibiotics Removes Pre-Established Biofilms Formed by Food-Related Bacteria

    PubMed Central

    Sepehr, Shayesteh; Rahmani-Badi, Azadeh; Babaie-Naiej, Hamta; Soudi, Mohammad Reza

    2014-01-01

    Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA), an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants) on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward developing new strategies

  20. Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood-brain barrier and the choroid plexus.

    PubMed

    Sauer, Sven W; Opp, Silvana; Mahringer, Anne; Kamiński, Marcin M; Thiel, Christian; Okun, Jürgen G; Fricker, Gert; Morath, Marina A; Kölker, Stefan

    2010-06-01

    Intracerebral accumulation of neurotoxic dicarboxylic acids (DCAs) plays an important pathophysiological role in glutaric aciduria type I and methylmalonic aciduria. Therefore, we investigated the transport characteristics of accumulating DCAs - glutaric (GA), 3-hydroxyglutaric (3-OH-GA) and methylmalonic acid (MMA) - across porcine brain capillary endothelial cells (pBCEC) and human choroid plexus epithelial cells (hCPEC) representing in vitro models of the blood-brain barrier (BBB) and the choroid plexus respectively. We identified expression of organic acid transporters 1 (OAT1) and 3 (OAT3) in pBCEC on mRNA and protein level. For DCAs tested, transport from the basolateral to the apical site (i.e. efflux) was higher than influx. Efflux transport of GA, 3-OH-GA, and MMA across pBCEC was Na(+)-dependent, ATP-independent, and was inhibited by the OAT substrates para-aminohippuric acid (PAH), estrone sulfate, and taurocholate, and the OAT inhibitor probenecid. Members of the ATP-binding cassette transporter family or the organic anion transporting polypeptide family, namely MRP2, P-gp, BCRP, and OATP1B3, did not mediate transport of GA, 3-OH-GA or MMA confirming the specificity of efflux transport via OATs. In hCPEC, cellular import of GA was dependent on Na(+)-gradient, inhibited by NaCN, and unaffected by probenecid suggesting a Na(+)-dependent DCA transporter. Specific transport of GA across hCPEC, however, was not found. In conclusion, our results indicate a low but specific efflux transport for GA, 3-OH-GA, and MMA across pBCEC, an in vitro model of the BBB, via OAT1 and OAT3 but not across hCPEC, an in vitro model of the choroid plexus. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis

    Treesearch

    Ruibin Wang; Liheng Chen; J.Y. Zhu; Rendang Yang

    2017-01-01

    This study demonstrates the feasibility of tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) from bleached pulp fibers through hydrolysis using a recyclable dicarboxylic acid. Hydrolysis experiments were conducted using ranges of 15–75 wt% maleic acid concentrations, 60–120°C temperatures, and 5–300 min reaction...

  2. Development of an Unsaturated Region Below a Perennial River

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Zhou, Q.; Constantz, J.; Hatch, C.

    2004-12-01

    Field observations at the Russian River Bank Filtration Facility in Sonoma County, California indicate that an unsaturated region exists below the streambed near two adjacent groundwater pumping wells located along the riverbank. Understanding the conditions that give rise to unsaturated flow below the streambed is critical for improving and optimizing riverbank well pumping operations. To investigate the development of an unsaturated region below a perennial river near pumping wells, a three-dimensional model was developed using the multi-phase subsurface flow model, TOUGH2. The model is based on the region around the two pumping wells in the Russian River Bank Filtration Facility. The pumping wells consist of 9 perforated pipes that are projected horizontally into the aquifer at a depth of approximately 20 m below the land surface. A grid was developed for the TOUGH2 model with finer resolution near the wells to represent individual pipes. The effect of varying the pumping operation and the streambed permeability on the extent of the unsaturated region was investigated with the TOUGH2 model. The formation remained saturated below the streambed when only one of the wells was pumped at a rate of 1600 m3/hr, but an unsaturated region developed below the streambed when the two wells each pumped at a rate of 1600 m3/hr. This unsaturated region was deeper when the permeability of the streambed was lower than the aquifer material compared to when the streambed and aquifer permeabilities were the same.

  3. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    PubMed Central

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θ s - θ r), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process. PMID:24672332

  4. Analysis of rainfall infiltration law in unsaturated soil slope.

    PubMed

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  5. Production of a novel 9,12-dihydroxy-10(E)-eicosenoic acid from eicosenoic acid by Pseudomonas aeruginosa PR3

    USDA-ARS?s Scientific Manuscript database

    Microbial conversions of unsaturated fatty acids often generate polyhydroxy fatty acids rendering them to have new properties such as higher viscosity and reactivity. A bacterial strain Pseudomonas aeruginosa (PR3) has been intensively studied to produce mono-, di-, and tri-hydroxy fatty acids from...

  6. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  7. Influence of cadmium and mycorrhizal fungi on the fatty acid profile of flax (Linum usitatissimum) seeds.

    PubMed

    Kaplan, Matthew E; Simmons, Ellen R; Hawkins, Jack C; Ruane, Lauren G; Carney, Jeffrey M

    2015-09-01

    The soil environment can affect not only the quantity of crops produced but also their nutritional quality. We examined the combined effects of below-ground cadmium (0, 5, and 15 ppm) and mycorrhizal fungi (presence and absence) on the concentration of five major fatty acids within flax seeds (Linum usitatissimum). Plants grown with mycorrhizal fungi produced seeds that contained higher concentrations of unsaturated (18:1, 18:2 and 18:3), but not saturated (16:0 and 18:0) fatty acids. The effects of mycorrhizal fungi on the concentration of unsaturated fatty acids in seeds were most pronounced when plant roots were exposed to 15 ppm Cd (i.e. the concentrations of 18:1, 18:2 and 18:3 increased by 169%, 370% and 150%, respectively). The pronounced effects of mycorrhizal fungi on the concentration of unsaturated fatty acids at 15 ppm Cd may have been due to the presence of elevated levels of Cd within seeds. Our results suggest that, once the concentration of cadmium within seeds reaches a certain threshold, this heavy metal may improve the efficiency of enzymes that convert saturated fatty acids to unsaturated fatty acids. © 2014 Society of Chemical Industry.

  8. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI

    PubMed Central

    Marr, Allen G.; Ingraham, John L.

    1962-01-01

    Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260–1267. 1962.—Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature. PMID:16561982

  9. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Or, Dani

    2014-09-01

    The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were

  10. Molecular and polymeric uranyl and thorium hybrid materials featuring methyl substituted pyrazole dicarboxylates and heterocyclic 1,3-diketones

    NASA Astrophysics Data System (ADS)

    Carter, Korey P.; Kerr, Andrew T.; Taydakov, Ilya V.; Cahill, Christopher L.

    2018-02-01

    A series of seven novel f-element bearing hybrid materials have been prepared from either methyl substituted 3,4 and 4,5-pyrazoledicarboxylic acids, or heterocyclic 1,3- diketonate ligands using hydrothermal conditions. Compounds 1, [UO2(C6H4N2O4)2(H2O)], and 3, [Th(C6H4N2O4)4(H2O)5]·H2O feature 1-Methyl-1H-pyrazole-3,4-dicarboxylate ligands (SVI-COOH 3,4), whereas 2, [UO2(C6H4N2O4)2(H2O)], and 4, [Th(C6H5N2O4)(OH)(H2O)6]2·2(C6H5N2O4)·3H2O feature 1-Methyl-1H-pyrazole-4,5-dicarboxylate moieties (SVI-COOH 4,5). Compounds 5, [UO2(C13H15N4O2)2(H2O)]·2H2O and 6, [UO2(C11H11N4O2)2(H2O)]·4.5H2O feature 1,3-bis(4-N1-methyl-pyrazolyl)propane-1,3-dione and 1,3-bis(4-N1,3-dimethyl-pyrazolyl)propane-1,3-dione respectively, whereas the heterometallic 7, [UO2(C11H11N4O2)2(CuCl2)(H2O)]·2H2O is formed by using 6 as a metalloligand starting material. Single crystal X-ray diffraction indicates that all coordination to either [UO2]2+ or Th(IV) metal centers is through O-donation as anticipated. Room temperature, solid-state luminescence studies indicate characteristic uranyl emissive behavior for 1 and 2, whereas those for 5 and 6 are weak and poorly resolved.

  11. Photosensitized oxidation of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Golub, M. A.

    1979-01-01

    The photosensitized oxidation or singlet oxygenation of unsaturated hydrocarbon polymers and of their model compounds was reviewed. Emphasis was on cis and trans forms of 1,4-polyisoprene, 1,4-polybutadiene and 1,2-poly(1,4-hexadiene), and on 1,4-poly(2,3-dimethyl-1,3-butadiene). The microstructural changes which occur in these polymers on reaction with O2-1 in solution were investigated by infrared H-1 and C-13 NMR spectroscopy. The polymers were shown to yield allylic hydroperoxides with shifted double bonds according to the ene mechanism established for simple olefins. The photosensitized oxidation of the above unsaturated polymer exhibited zero order kinetics, the relative rates paralleling the reactivities of the corresponding simple olefins towards O2-1.

  12. Secondary formation of water-soluble organic acids and α-dicarbonyls and their contributions to total carbon and water-soluble organic carbon: Photochemical aging of organic aerosols in the Arctic spring

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Kasukabe, Hideki; Barrie, Leonard A.

    2010-11-01

    Water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C6, C9), and α-dicarbonyls (glyoxal and methylglyoxal) were determined in the Arctic aerosols collected in winter to early summer, as well as aerosol total carbon (TC) and water-soluble organic carbon (WSOC). Concentrations of TC and WSOC gradually decreased from late February to early June with a peak in spring, indicating a photochemical formation of water-soluble organic aerosols at a polar sunrise. We found that total (C2-C11) diacids (7-84 ng m-3) increased at polar sunrise by a factor of 4 and then decreased toward summer. Their contributions to TC (average 4.0%) peaked in early April and mid-May. The contribution of total diacids to WSOC was on average 7.1%. It gradually increased from February (5%) to a maximum in April (12.7%) with a second peak in mid-May (10.4%). Although oxalic acid (C2) is the dominant diacid until April, its predominance was replaced by succinic acid (C4) after polar sunrise. This may indicate that photochemical production of C2 was overwhelmed by its degradation when solar radiation was intensified and the atmospheric transport of its precursors from midlatitudes to the Arctic was ended in May. Interestingly, the contributions of azelaic (C9) and ω-oxobutanoic acids to WSOC increased in early summer possibly due to an enhanced emission of biogenic unsaturated fatty acids from the ocean followed by photochemical oxidation in the atmosphere. An enhanced contribution of diacids to TC and WSOC at polar sunrise may significantly alter the hygroscopic properties of organic aerosols in the Arctic.

  13. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    Preferential flow through deep unsaturated zones of fractured rock is hydrologically important to a variety of contaminant transport and water-resource issues. The unsaturated zone of the English Chalk Aquifer provides an important opportunity for a case study of unsaturated preferential flow in isolation from other flow modes. The chalk matrix has low hydraulic conductivity and stays saturated, owing to its fine uniform pores and the wet climate of the region. Therefore the substantial fluxes observed in the unsaturated chalk must be within fractures and interact minimally with matrix material. Price et al. [2000] showed that irregularities on fracture surfaces provide a significant storage capacity in the chalk unsaturated zone, likely accounting for volumes of water required to explain unexpected dry-season water-table stability during substantial continuing streamflow observed by Lewis et al. [1993] In this presentation we discuss and quantify the dynamics of replenishment and drainage of this unsaturated zone fracture-face storage domain using a modification of the source-responsive model of Nimmo [2010]. This model explains the processes in terms of two interacting flow regimes: a film or rivulet preferential flow regime on rough fracture faces, active on an individual-storm timescale, and a regime of adsorptive and surface-tension influences, resembling traditional diffuse formulations of unsaturated flow, effective mainly on a seasonal timescale. The modified model identifies hydraulic parameters for an unsaturated fracture-facial domain lining the fractures. Besides helping to quantify the unsaturated zone storage described by Price et al., these results highlight the importance of research on the topic of unsaturated-flow relations within a near-fracture-surface domain. This model can also facilitate understanding of mechanisms for reinitiation of preferential flow after temporary cessation, which is important in multi-year preferential flow through deep

  14. Purification and characterization of monoclonal antibodies to alpha-linolenic acid.

    PubMed

    Buffière, F; Cook-Moreau, J; Gualde, N; Rigaud, M

    1989-01-01

    The covalently linked antigenic complex, bovine serum albumin-alpha-linolenic acid, was used to immunize Balb/c mice against the hapten. Hybridization between splenocytes and the myeloma cell line, P 3 X63 Ag 8,651, resulted in stable clones synthesizing monoclonal antibodies (Mab) that were subsequently purified and characterized. Four Mab (A, B, C, D) were retained and their specificities studied by ELISA. Antibody D only recognized 18-carbon fatty acids having a cis,cis,-cis-1,4,7 unsaturated system in the omega-3 position: it was specific for alpha-linolenic acid. B recognized all fatty acids containing the structure cis,cis,cis-1,4,7-octatriene. A and C recognized polyunsaturated fatty acids with a degree of unsaturation superior to two double bonds.

  15. Effect of Selection for High Activity-Related Metabolism on Membrane Phospholipid Fatty Acid Composition in Bank Voles.

    PubMed

    Stawski, Clare; Valencak, Teresa G; Ruf, Thomas; Sadowska, Edyta T; Dheyongera, Geoffrey; Rudolf, Agata; Maiti, Uttaran; Koteja, Paweł

    2015-01-01

    Endothermy, high basal metabolic rates (BMRs), and high locomotor-related metabolism were important steps in the evolution of mammals. It has been proposed that the composition of membrane phospholipid fatty acids plays an important role in energy metabolism and exercise muscle physiology. In particular, the membrane pacemaker theory of metabolism suggests that an increase in cell membrane fatty acid unsaturation would result in an increase in BMR. We aimed to determine whether membrane phospholipid fatty acid composition of heart, liver, and gastrocnemius muscles differed between lines of bank voles selected for high swim-induced aerobic metabolism-which also evolved an increased BMR-and unselected control lines. Proportions of fatty acids significantly differed among the organs: liver was the least unsaturated, whereas the gastrocnemius muscles were most unsaturated. However, fatty acid proportions of the heart and liver did not differ significantly between selected and control lines. In gastrocnemius muscles, significant differences between selection directions were found: compared to control lines, membranes of selected voles were richer in saturated C18:0 and unsaturated C18:2n-6 and C18:3n-3, whereas the pattern was reversed for saturated C16:0 and unsaturated C20:4n-6. Neither unsaturation index nor other combined indexes of fatty acid proportions differed between lines. Thus, our results do not support the membrane pacemaker hypothesis. However, the differences between selected and control lines in gastrocnemius muscles reflect chain lengths rather than number of double bonds and are probably related to differences in locomotor activity per se rather than to differences in the basal or routine metabolic rate.

  16. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  17. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  18. Differentiation of DctA and DcuS function in the DctA/DcuS sensor complex of Escherichia coli: function of DctA as an activity switch and of DcuS as the C4-dicarboxylate sensor.

    PubMed

    Steinmetz, Philipp Aloysius; Wörner, Sebastian; Unden, Gottfried

    2014-10-01

    The C4-dicarboxylate responsiveness of the sensor kinase DcuS is only provided in concert with C4-dicarboxylate transporters DctA or DcuB. The individual roles of DctA and DcuS for the function of the DctA/DcuS sensor complex were analysed. (i) Variant DctA(S380D) in the C4-dicarboxylate site of DctA conferred C4-dicarboxylate sensitivity to DcuS in the DctA/DcuS complex, but was deficient for transport and for growth on C4-dicarboxylates. Consequently transport activity of DctA is not required for its function in the sensor complex. (ii) Effectors like fumarate induced expression of DctA/DcuS-dependent reporter genes (dcuB-lacZ) and served as substrates of DctA, whereas citrate served only as an inducer of dcuB-lacZ without affecting DctA function. (iii) Induction of dcuB-lacZ by fumarate required 33-fold higher concentrations than for transport by DctA (Km  = 30 μM), demonstrating the existence of different fumarate sites for both processes. (iv) In titration experiments with increasing dctA expression levels, the effect of DctA on the C4-dicarboxylate sensitivity of DcuS was concentration dependent. The data uniformly show that C4-dicarboxylate sensing by DctA/DcuS resides in DcuS, and that DctA serves as an activity switch. Shifting of DcuS from the constitutive ON to the C4-dicarboxylate responsive state, required presence of DctA but not transport by DctA. © 2014 John Wiley & Sons Ltd.

  19. Different water clusters dependent on long-chain dicarboxylates in two Ag(I) coordination polymers: Synthesis, structure and thermal stability

    NASA Astrophysics Data System (ADS)

    Sun, Di; Liu, Fu-Jing; Hao, Hong-Jun; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-10-01

    Two mixed-ligand Ag(I) coordination polymers (CPs), [Ag 2(bipy) 2(sub)·5H 2O] n ( 1), [Ag 2(bipy) 2(aze)·3H 2O] n ( 2), (bipy = 4,4'-bipyridine, H 2sub = suberic acid, H 2aze = azelaic acid) have been synthesized and structurally characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric (TG) analysis, and single crystal X-ray diffraction. Both 1 and 2 are two-dimensional (2D) sheets based on infinite [Ag(bipy)] n double chain incorporating Ag⋯Ag interactions. Interestingly, two different water clusters are encapsulated in the voids between the sheets of 1 and 2. For 1, one water decamer (H 2O) 10 based on a cyclic water tetramer was hydrogen-bonded with the host 2D sheet. While, one water hexamer (H 2O) 6 also based on a cyclic water tetramer was observed in 2. Comparing the experimental results, it is comprehensible that the dicarboxylates play a crucial role in the formation of the different water clusters. Moreover, the thermal stabilities of them were also discussed.

  20. Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents.

    PubMed

    Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize

    2014-11-26

    Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency.

  1. Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides

    PubMed Central

    Fazzari, Marco; Khoo, Nicholas; Woodcock, Steven R.; Li, Lihua; Freeman, Bruce A.; Schopfer, Francisco J.

    2015-01-01

    Electrophilic fatty acid nitroalkenes (NO2-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO2-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial β–oxidation and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO2-FA-containing triacylglycerides (NO2-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO2-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO2-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO2-OA supplemented adipocytes. These data revealed that NO2-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events. PMID:26066303

  2. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis.

    PubMed

    Karnati, S K R; Sylvester, J T; Ribeiro, C V D M; Gilligan, L E; Firkins, J L

    2009-08-01

    Methane is an end product of ruminal fermentation that is energetically wasteful and contributes to global climate change. Bromoethanesulfonate, animal-vegetable fat, and monensin were compared with a control treatment to suppress different functional groups of ruminal prokaryotes in the presence or absence of protozoa to evaluate changes in fermentation, digestibility, and microbial N outflow. Four dual-flow continuous culture fermenter systems were used in 4 periods in a 4 x 4 Latin square design split into 2 subperiods. In subperiod 1, a multistage filter system (50-microm smallest pore size) retained most protozoa. At the start of subperiod 2, conventional filters (300-microm pore size) were substituted to efflux protozoa via filtrate pumps over 3 d; after a further 7 d of adaptation, the fermenters were sampled for 3 d. Treatments were retained during both subperiods. Flow of total N and digestibilities of NDF and OM were 18, 16, and 9% higher, respectively, for the defaunated subperiod but were not different among treatments. Ammonia concentration was 33% higher in the faunated fermenters but was not affected by treatment. Defaunation increased the flow of nonammonia N and bacterial N from the fermenters. Protozoal counts were not different among treatments, but bromoethanesulfonate increased the generation time from 43.2 to 55.6 h. Methanogenesis was unaffected by defaunation but tended to be increased by unsaturated fat. Defaunation did not affect total volatile fatty acid production but decreased the acetate:propionate ratio; monensin increased production of isovalerate and valerate. Biohydrogenation of unsaturated fatty acids was impaired in the defaunated fermenters because effluent flows of oleic, linoleic, and linolenic acids were 60, 77, and 69% higher, and the ratio of vaccenic acid:unsaturated FA ratio was decreased by 34% in the effluent. This ratio was increased in both subperiods with the added fat diet, indicating an accumulation of

  3. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    PubMed

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 1D helix, 2D brick-wall and herringbone, and 3D interpenetration d10 metal-organic framework structures assembled from pyridine-2,6-dicarboxylic acid N-oxide.

    PubMed

    Wen, Li-Li; Dang, Dong-Bin; Duan, Chun-Ying; Li, Yi-Zhi; Tian, Zheng-Fang; Meng, Qing-Jin

    2005-10-03

    Five novel interesting d(10) metal coordination polymers, [Zn(PDCO)(H2O)2]n (PDCO = pyridine-2,6-dicarboxylic acid N-oxide) (1), [Zn2(PDCO)2(4,4'-bpy)2(H2O)2.3H2O]n (bpy = bipyridine) (2), [Zn(PDCO)(bix)]n (bix = 1,4-bis(imidazol-1-ylmethyl)benzene) (3), [Zn(PDCO)(bbi).0.5H2O]n (bbi = 1,1'-(1,4-butanediyl)bis(imidazole)) (4), and [Cd(PDCO)(bix)(1.5).1.5H2O]n (5), have been synthesized under hydrothermal conditions and structurally characterized. Polymer 1 possesses a one-dimensional (1D) helical chainlike structure with 4(1) helices running along the c-axis with a pitch of 10.090 Angstroms. Polymer 2 has an infinite chiral two-dimensional (2D) brick-wall-like layer structure in the ac plane built from achiral components, while both 3 and 4 exhibit an infinite 2D herringbone architecture, respectively extended in the ac and ab plane. Polymer 5 features a most remarkable and unique three-dimensional (3D) porous framework with 2-fold interpenetration related by symmetry, which contains channels in the b and c directions, both distributed in a rectangular grid fashion. Compounds 1-5, with systematic variation in dimensionality from 1D to 2D to 3D, are the first examples of d(10) metal coordination polymers into which pyridinedicarboxylic acid N-oxide has been introduced. In addition, polymers 1, 4, and 5 display strong blue fluorescent emissions in the solid state. Polymer 3 exhibits a strong SHG response, estimated to be approximately 0.9 times that of urea.

  5. Effects of unsaturated zone on ground-water mounding

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Marino, M.A.

    1999-01-01

    The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the

  6. Comparison of the Distribution of Unsaturated Fatty Acids at the Sn-2 Position of Phospholipids and Triacylglycerols in Marine Fishes and Mammals.

    PubMed

    Beppu, Fumiaki; Yasuda, Keiko; Okada, Ayako; Hirosaki, Yoshitsugu; Okazaki, Masako; Gotoh, Naohiro

    2017-11-01

    Highly unsaturated fatty acid (HUFA) binding at the sn-2 position of phospholipids (PL) becomes a resource for prostaglandin, leukotriene, resolvin, and protectin synthesis. Both triacylglycerol (TAG) and PL synthesis pathways in vivo are via phosphatidic acid; therefore, the distribution of fatty acid species at the sn-2 position must theoretically be the same for TAG and PL if rearrangement does not occur. However, it is known that little HUFA is located at the sn-2 position of TAG in marine mammals. Therefore, distribution of fatty acid species at the sn-2 position of TAG and PL was compared between marine fishes and mammals in this study. The composition of fatty acids binding at the sn-2 or sn-1,3 position of PL and TAG was analyzed via hydrolysis with enzymes and GC-FID. The results showed that 20:4n-6, 20:5n-3, 22:5n-3, and 22:6n-3 were primarily located at the sn-1,3 positions of TAG in marine mammals. Comparison of the binding positions of HUFA and 16:0 in PL and TAG suggested the existence of Lands' cycle in marine fishes and mammals. In conclusion, both marine fishes and mammals condensed HUFA as a source of eicosanoid at the sn-2 position of PL. Furthermore, abundance ratios for 22:5n-3 or 22:6n-3 at the sn-2 position (sn-2 ratio) in TAG and PL (calculated by the equation: [abundance ratio at sn-2 position of TAG]/[abundance ratio at sn-2 position of PL]) was less than 0.35 in marine mammals; however, it was greater than 0.80 in marine fishes. These differences suggested that the HUFA consisted of 22 carbon atoms and had different roles in marine fishes and mammals.

  7. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    PubMed

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  8. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay.

    PubMed

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi

    2015-12-01

    The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was < 10%. Therefore, these chemicals were classified as moderate skin sensitizers in the LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE.

  9. Changes in dietary intake and food sources of saturated and cis and trans unsaturated fatty acids in Costa Rican adolescents: 1996 versus 2006.

    PubMed

    Monge-Rojas, Rafael; Aragón, M Catalina; Chinnock, Anne; Campos, Hannia; Colón-Ramos, Uriyoán

    2013-04-01

    To identify how dietary intake and food sources of saturated (SFA) and cis (PUFA) and trans (TFA) unsaturated fatty acids in the diet of Costa Rican adolescents changed from 1996 to 2006--a period with several public health nutrition changes. Cross-sectional comparisons used data from measured food records of 133 adolescents (ages 12-17 y) surveyed in 1996 and a similar group of adolescents surveyed in 2006. Values obtained in 1996 and 2006 were compared with the current World Health Organization guidelines for chronic disease prevention. Adolescents surveyed in 2006 reported a significantly higher mean daily energy intake from linoleic acid (LA) and alpha-linolenic acid (ALA) (0.9% and 7.8%, respectively) compared with the 1996 cohort, whereas SFA and TFA were significantly lower (9.5% and 1.3%, respectively). Food sources of fat also changed. In 2006, 2% of SFA in the diet came from palm shortening (compared with 34% in 1996); 39% of TFA came from ruminant-derived foods (in 1996, soybean oil was the main contributor of TFA, 34%), and bakery products (mainly pre-packaged cookies) provided 25% of the source of TFA, compared with only 11% in 1996. Dietary fatty intake of Costa Rican adolescents in 2006 is closer to WHO guidelines compared with 1996. After public health initiatives that changed fatty acid profile of most foods, intakes of TFA, SFA, and food sources of fatty acids in adolescents' diets improved. Public health nutrition efforts should continue to strengthen diets that are low in SFA and TFA and higher in ALA content among Costa Rican adolescents. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Intravenous iron-dextran: studies on unsaturated iron-binding capacity

    PubMed Central

    Cox, J. S. G.; Moss, G. F.; Bremner, I.; Reason, Janet

    1968-01-01

    A method is described for measuring the plasma unsaturated iron-binding capacity in the presence of very high concentrations of iron as iron-dextran. The procedure utilizes 59Fe to label the apotransferrin with subsequent separation of ionic iron from transferrin-bound iron on an ion exchange or Sephadex G.25 column. The unsaturated iron-binding capacity has been measured in rabbits and dogs after intravenous injection of iron-dextran and in human subjects after total dose infusion of iron-dextran. No evidence of saturation of the unsaturated iron-binding capacity was found even when the plasma iron values were greater than 40,000 μg Fe/100 ml. PMID:5697365

  11. Genetic parameters for milk fatty acids in Danish Holstein cattle based on SNP markers using a Bayesian approach.

    PubMed

    Krag, Kristian; Poulsen, Nina A; Larsen, Mette K; Larsen, Lotte B; Janss, Luc L; Buitenhuis, Bart

    2013-09-11

    For several years, in human nutrition there has been a focus on the proportion of unsaturated fatty acids (UFA) and saturated fatty acids (SFA) found in bovine milk. The positive health-related properties of UFA versus SFA have increased the demand for food products with a higher proportion of UFA. To be able to change the UFA and SFA content of the milk by breeding it is important to know whether there is a genetic component underlying the individual FA in the milk. We have estimated the heritability for individual FA in the milk of Danish Holstein. For this purpose we used information of SNP markers instead of the traditional pedigree relationships. Estimates of heritability were moderate within the range of 0.10 for C18:1 trans-11 to 0.34 for C8:0 and C10:0, whereas the estimates for saturated fatty acids and unsaturated fatty acids were 0.14 and 0.18, respectively. Posterior standard deviations were in the range from 0.07 to 0.17. The correlation estimates showed a general pattern of two groups, one group mainly consisting of saturated fatty acids and one group mainly consisting of unsaturated fatty acids. The phenotypic correlation ranged from -0.95 (saturated fatty acids and unsaturated fatty acids) to 0.99 (unsaturated fatty acids and monounsaturated fatty acids) and the genomic correlation for fatty acids ranged from -0.29 to 0.91. The heritability estimates obtained in this study are in general accordance with heritability estimates from studies using pedigree data and/or a genomic relationship matrix in the context of a REML approach. SFA and UFA expressed a strong negative phenotypic correlation and a weaker genetic correlation. This is in accordance with the theory that SFA is synthesized de novo, while UFA can be regulated independently from the regulation of SFA by the feeding regime.

  12. Uptake of Alkylamines on Dicarboxylic Acids Relevant to Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Secrest, J.; Zhang, R.

    2017-12-01

    Aerosols play a critical role in climate directly by scattering and absorbing solar radiation, and indirectly by functioning as cloud condensation nuclei (CCN); both represent the largest uncertainties in climate predictions. New particle formation contributes significantly to CCN production; however, the mechanisms related to particle nucleation and growth processes are not well understood. Organic acids are atmospherically abundant, and their neutralization by low molecular weight amines may result in the formation of stable low volatility aminium salt products contributing to the growth of secondary organic aerosols and even the alteration of the aerosol properties. The acid-base neutralization of particle phase succinic acid and tartaric acid by low molecular weight aliphatic amines, i.e. methylamine, dimethylamine, and trimethylamine, has been investigated by employing a low-pressure fast flow reactor at 298K with an ion drift - chemical ionization mass spectrometer (ID-CIMS). The heterogeneous uptake is time dependent and influenced by organic acids functionality, alkylamines basicity, and steric effect. The implications of our results to atmospheric nanoparticle growth will be discussed.

  13. Study of the effect of surface treatment of kenaf fiber on chemical structure and water absorption of kenaf filled unsaturated polyester composite

    NASA Astrophysics Data System (ADS)

    Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.

    2017-10-01

    In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. The Fourier transform infrared (FT-IR) spectra of kenaf fiber shows high intensity of the peak around 3300-3400 cm-1, which is attributed to the hydrogen bonded O-H stretching. However, the treated kenaf fiber with stearic acid shows the elimination of O-H group and this peak is vanished. This is due to the reaction of (-COOH) group of stearic with (-OH) group of kenaf fiber. The results of water absorption study revealed that increasing the loading of KF in the composite will result is increasing the tendency to absorb water. However, the absorption was significantly decreased after treatment with stearic acid as well as the time to reach to the equilibrium state.

  14. Biological variability of transferrin saturation and unsaturated iron binding capacity

    PubMed Central

    Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH

    2007-01-01

    Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429

  15. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    PubMed Central

    Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818

  16. Genetic variants of the unsaturated fatty acid receptor GPR120 relating to obesity in dogs

    PubMed Central

    MIYABE, Masahiro; GIN, Azusa; ONOZAWA, Eri; DAIMON, Mana; YAMADA, Hana; ODA, Hitomi; MORI, Akihiro; MOMOTA, Yutaka; AZAKAMI, Daigo; YAMAMOTO, Ichiro; MOCHIZUKI, Mariko; SAKO, Toshinori; TAMURA, Katsutoshi; ISHIOKA, Katsumi

    2015-01-01

    G protein-coupled receptor (GPR) 120 is an unsaturated fatty acid receptor, which is associated with various physiological functions. It is reported that the genetic variant of GPR120, p.Arg270His, is detected more in obese people, and this genetic variation functionally relates to obesity in humans. Obesity is a common nutritional disorder also in dogs, but the genetic factors have not ever been identified in dogs. In this study, we investigated the molecular structure of canine GPR120 and searched for candidate genetic variants which may relate to obesity in dogs. Canine GPR120 was highly homologous to those of other species, and seven transmembrane domains and two N-glycosylation sites were conserved. GPR120 mRNA was expressed in lung, jejunum, ileum, colon, hypothalamus, hippocampus, spinal cord, bone marrow, dermis and white adipose tissues in dogs, as those in mice and humans. Genetic variants of GPR120 were explored in client-owned 141 dogs, resulting in that 5 synonymous and 4 non-synonymous variants were found. The variant c.595C>A (p.Pro199Thr) was found in 40 dogs, and the gene frequency was significantly higher in dogs with higher body condition scores, i.e. 0.320 in BCS4–5 dogs, 0.175 in BCS3 dogs and 0.000 in BCS2 dogs. We conclude that c.595C>A (p.Pro199Thr) is a candidate variant relating to obesity, which may be helpful for nutritional management of dogs. PMID:25960032

  17. Genetic variants of the unsaturated fatty acid receptor GPR120 relating to obesity in dogs.

    PubMed

    Miyabe, Masahiro; Gin, Azusa; Onozawa, Eri; Daimon, Mana; Yamada, Hana; Oda, Hitomi; Mori, Akihiro; Momota, Yutaka; Azakami, Daigo; Yamamoto, Ichiro; Mochizuki, Mariko; Sako, Toshinori; Tamura, Katsutoshi; Ishioka, Katsumi

    2015-10-01

    G protein-coupled receptor (GPR) 120 is an unsaturated fatty acid receptor, which is associated with various physiological functions. It is reported that the genetic variant of GPR120, p.Arg270His, is detected more in obese people, and this genetic variation functionally relates to obesity in humans. Obesity is a common nutritional disorder also in dogs, but the genetic factors have not ever been identified in dogs. In this study, we investigated the molecular structure of canine GPR120 and searched for candidate genetic variants which may relate to obesity in dogs. Canine GPR120 was highly homologous to those of other species, and seven transmembrane domains and two N-glycosylation sites were conserved. GPR120 mRNA was expressed in lung, jejunum, ileum, colon, hypothalamus, hippocampus, spinal cord, bone marrow, dermis and white adipose tissues in dogs, as those in mice and humans. Genetic variants of GPR120 were explored in client-owned 141 dogs, resulting in that 5 synonymous and 4 non-synonymous variants were found. The variant c.595C>A (p.Pro199Thr) was found in 40 dogs, and the gene frequency was significantly higher in dogs with higher body condition scores, i.e. 0.320 in BCS4-5 dogs, 0.175 in BCS3 dogs and 0.000 in BCS2 dogs. We conclude that c.595C>A (p.Pro199Thr) is a candidate variant relating to obesity, which may be helpful for nutritional management of dogs.

  18. Can conventional bases and unsaturated hydrocarbons be converted into gas-phase superacids that are stronger than most of the known oxyacids? The role of beryllium bonds.

    PubMed

    Yáñez, Manuel; Mó, Otilia; Alkorta, Ibon; Elguero, José

    2013-08-26

    The association of BeX2 (X: H, F, Cl) derivatives with azoles leads to a dramatic increase of their intrinsic acidity. Hence, whereas 1H-tetrazole can be considered as a typical N base in the gas phase, the complex 1H-tetrazole-BeCl2 is predicted to be, through the use of high-level G4 ab initio calculations, a nitrogen acid stronger than perchloric acid. This acidity enhancement is due to a more favorable stabilization of the deprotonated species after the beryllium bond is formed, because the deprotonated anion is a much better electron donor than the neutral species. Consequently, this is a general phenomenon that should be observed for any Lewis base, including those in which the basic site is a hydroxy group, an amino group, a carbonyl group, an aromatic N atom, a second-row atom, or the π system of unsaturated hydrocarbons. The consequence is that typical bases like aniline or formamide lead to BeX2 complexes that are stronger acids than phosphoric or chloric acids. Similarly, water, methanol, and SH2 become stronger acids than sulfuric acid, pyridine becomes a C acid almost as strong as acetic acid, and unsaturated hydrocarbons such as ethylene and acetylene become acids as strong as nitric and sulfuric acids, respectively. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    PubMed

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    encapsulate the salt or act as a sustainable salt sink due to over time reduction in pore water pH. The leaching behaviours of Ca, Mg, Na+, K+, Se, Cr and Sr are controlled by the pH of the leachant in both fresh and unsaturated weathered ash. Other trace metals like As, Mo and Pb showed amphoteric behaviour with respect to the pH of the leachant. The precipitation of minor quantities of secondary mineral phases in the unsaturated weathered ash has significant effects on the acid susceptibility and leaching patterns of chemical species in comparison with fresh ash. The unsaturated weathered ash had lower buffering capacity at neutral pH (7.94-8.00) compared to fresh (unweathered) ash. This may be due to the initial high leaching/flushing of soluble basic buffering constituents from fly ash after disposal. The overall results of the acid susceptibility tests suggest that both fresh ash and unsaturated weathered ash would release a large percentage of their chemical species when in contact with slightly acidified rain. Proper management of ash dumps is therefore essential to safeguard the environmental risks of water percolation in different fly ashes behaviour. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Degree of free fatty acid saturation influences chocolate rejection in human assessors.

    PubMed

    Running, Cordelia A; Hayes, John E; Ziegler, Gregory R

    2017-02-01

    In foods, free fatty acids (FFAs) traditionally have been viewed as contributing an odor, yet evidence has accumulated that FFAs also contribute a unique taste ("oleogustus"). However, minimal work has been conducted using actual foods to test the contribution of FFA to taste preferences. Here, we investigate flavor, taste, and aroma contributions of added FFA in chocolate, as some commercial manufacturers already use lipolysis of triglycerides to generate unique profiles. We hypothesized that small added concentrations of FFAs would increase preferences for chocolate, whereas higher added concentrations would decrease preferences. We also hypothesized a saturated fatty acid (stearic C18) would have a lesser effect than a monounsaturated (oleic C18:1), which would have a lesser effect than a polyunsaturated (linoleic C18:2) fatty acid. For each, paired preference tests were conducted for 10 concentrations (0.04% to 2.25%) of added FFAs compared with the control chocolate without added FFAs. Stearic acid was tested for flavor (tasting and nares open), whereas the unsaturated fatty acids were tested for both aroma (orthonasal only and no tasting) and taste (tasting with nares blocked to eliminate retronasal odor). We found no preference for any added FFA chocolate; however, rejection was observed independently for both taste and aroma of unsaturated fatty acids, with linoleic acid reaching rejection at lower concentrations than oleic acid. These data indicate that degree of unsaturation influences rejection of both FFA aroma and taste in chocolate. Thus, alterations of FFA profiles in foods should be approached cautiously to avoid shifting concentrations of unsaturated fatty acids to hedonically unacceptable levels. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Genetic correlations of mid-infrared-predicted milk fatty acid groups with milk production traits.

    PubMed

    Fleming, A; Schenkel, F S; Malchiodi, F; Ali, R A; Mallard, B; Sargolzaei, M; Jamrozik, J; Johnston, J; Miglior, F

    2018-05-01

    The objective of this research was to estimate the genetic correlations between milk mid-infrared-predicted fatty acid groups and production traits in first-parity Canadian Holsteins. Contents of short-chain, medium-chain, long-chain, saturated, and unsaturated fatty acid groupings in milk samples can be predicted using mid-infrared spectral data for cows enrolled in milk recording programs. Predicted fatty acid group contents were obtained for 49,127 test-day milk samples from 10,029 first-parity Holstein cows in 810 herds. Milk yield, fat and protein yield, fat and protein percentage, fat-to-protein ratio, and somatic cell score were also available for these test days. Genetic parameters were estimated for the fatty acid groups and production traits using multiple-trait random regression test day models by Bayesian methods via Gibbs sampling. Three separate 8- or 9-trait analyses were performed, including the 5 fatty acid groups with different combinations of the production traits. Posterior standard deviations ranged from <0.001 to 0.01. Average daily genetic correlations were negative and similar to each other for the fatty acid groups with milk yield (-0.62 to -0.59) and with protein yield (-0.32 to -0.25). Weak and positive average daily genetic correlations were found between somatic cell score and the fatty acid groups (from 0.25 to 0.36). Stronger genetic correlations with fat yield, fat and protein percentage, and fat-to-protein ratio were found with medium-chain and saturated fatty acid groups compared with those with long-chain and unsaturated fatty acid groups. Genetic correlations were very strong between the fatty acid groups and fat percentage, ranging between 0.88 for unsaturated and 0.99 for saturated fatty acids. Daily genetic correlations from 5 to 305 d in milk with milk, protein yield and percentage, and somatic cell score traits showed similar patterns for all fatty acid groups. The daily genetic correlations with fat yield at the beginning

  2. Rat urinary metabolites of [9,10-methylene-14C] sterculic acid.

    PubMed

    Eisele, T A; Yoss, J K; Nixon, J E; PAwlowski, N E; Libbey, L M; Sinnhuber, R O

    1977-07-20

    1. The metabolism of [9,10-methylene-14C] sterculic acid was studied in corn oil and Stercula foetida oil fed rats. The majority of the radioactivity was excreted into the urine as short chain dicarboxylic acids. The main urinary metabolites were cis-3,4-methylene adipic acid, cis-3,4-methylene suberic acid, trans-3,4-methylene adipic acid, cis-3,4-methylene pimelic acid, and cis-3,4-methylene azelic acid. 2. Formation of these urinary metabolites requires alpha-, beta-, and omega-oxidation plus reduction of the cyclopropene ring to a cyclopropane ring. Sterculic acid must be transported through both mitochondrial and microsomal systems. 3. Other non-radioactive urinary compounds were also identified. A proposed pathway for the metabolism of sterculic acid and possible detrimental effects caused by these metabolites is discussed.

  3. In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid – Important steps towards biobased production of adipic acid

    PubMed Central

    Westman, Gunnar; Eriksson, Leif A.; Mapelli, Valeria

    2018-01-01

    The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocellulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2-hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them. PMID:29474495

  4. Hydrothermal synthesis and structural characterization of a novel three-dimensional supramolecular framework constructed by zinc salt and pyridine-2,5-dicarboxylate

    NASA Astrophysics Data System (ADS)

    Wang, Xinlong; Qin, Chao; Wang, Enbo; Hu, Changwen; Xu, Lin

    2004-07-01

    A novel metal-organic coordination polymer, [Zn(PDB)(H 2O) 2] 4 n (H 2PDB=pyridine-2,5-dicarboxylic acid), has been hydrothermally synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Colorless crystals crystallized in the triclinic system, space group P-1, a=7.0562(14) Å, b=7.38526(15) Å, c=18.4611(4) Å, α=90.01(3)°, β=96.98(3)°, γ=115.67(3)°, V=859.1(3) Å 3, Z=1 and R=0.0334. The structure of the compound exhibits a novel three-dimensional supramolecular network, mainly based on multipoint hydrogen bonds originated from within and outside of a large 24-membered ring. Interestingly, the three-dimensional network consists of one-dimensional parallelogrammic channels in which coordinated water molecules point into the channel wall.

  5. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.

  6. Effect of dietary fatty acids on jejunal and ileal oleic acid uptake by rat brush border membrane vesicles.

    PubMed

    Prieto, R M; Stremmel, W; Sales, C; Tur, J A

    1996-04-18

    To test the effect of dietary fatty acids on fatty acid uptake, the influx kinetics of a representative long-chain fatty acid, 3H-oleic acid, in both the jejunum and ileum of rats has been studied using brush border membrane vesicles (BBMV). Animals were fed with semipurified diets containing 5 g fat/100 g diet, as corn oil (control group), safflower oil (unsaturated group) and coconut oil hydrogenated (saturated group). With increasing unbound oleate concentration in the medium, the three dietary groups showed saturable kinetics in both jejunal and ileal BBMV (controls: Vmax = 0.15 +/- 0.01 nmol x mg protein-1 x 5 min-1 and Km = 136 +/- 29.1 nmol for jejunum, and Vmax = 0.23 +/- 0.03 nmol x mg protein-1 x 5 min-1 and Km = 196 +/- 50.3 nmol for ileum; unsaturated: Vmax = 0.28 +/- 0.05 nmol x mg protein-1 x 5 min-1 and Km = 242.7 +/- 91.8 nmol for jejunum, and Vmax = 1.29 +/- 0.06 nmol x mg protein-1 x 5 min-1 and Km = 509.8 +/- 97.5 nmol for ileum; saturated: Vmax = 0.03 +/- 0.01 nmol x mg protein-1 x 5 min-1 and Km = 124.5 +/- 72.6 nmol for jejunum, and Vmax = 0.04 +/- 0.01 nmol x mg protein -1.5 min-1 and Km = 205.6 +/- 85.3 nmol for ileum). These results support the theory that feeding an isocaloric diet containing only unsaturated fatty acids enhanced oleic acid uptake, and feeding an isocaloric diet containing only saturated fatty acids decreased oleic acid uptake. The results obtained in the present work also show the adaptative ability of jejunum and ileum to the type of dietary fat.

  7. Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling Unsaturated Flow Between the Land Surface and the Water Table with MODFLOW-2005

    USGS Publications Warehouse

    Niswonger, Richard G.; Prudic, David E.; Regan, R. Steven

    2006-01-01

    Percolation of precipitation through unsaturated zones is important for recharge of ground water. Rain and snowmelt at land surface are partitioned into different pathways including runoff, infiltration, evapotranspiration, unsaturated-zone storage, and recharge. A new package for MODFLOW-2005 called the Unsaturated-Zone Flow (UZF1) Package was developed to simulate water flow and storage in the unsaturated zone and to partition flow into evapotranspiration and recharge. The package also accounts for land surface runoff to streams and lakes. A kinematic wave approximation to Richards? equation is solved by the method of characteristics to simulate vertical unsaturated flow. The approach assumes that unsaturated flow occurs in response to gravity potential gradients only and ignores negative potential gradients; the approach further assumes uniform hydraulic properties in the unsaturated zone for each vertical column of model cells. The Brooks-Corey function is used to define the relation between unsaturated hydraulic conductivity and water content. Variables used by the UZF1 Package include initial and saturated water contents, saturated vertical hydraulic conductivity, and an exponent in the Brooks-Corey function. Residual water content is calculated internally by the UZF1 Package on the basis of the difference between saturated water content and specific yield. The UZF1 Package is a substitution for the Recharge and Evapotranspiration Packages of MODFLOW-2005. The UZF1 Package differs from the Recharge Package in that an infiltration rate is applied at land surface instead of a specified recharge rate directly to ground water. The applied infiltration rate is further limited by the saturated vertical hydraulic conductivity. The UZF1 Package differs from the Evapotranspiration Package in that evapotranspiration losses are first removed from the unsaturated zone above the evapotranspiration extinction depth, and if the demand is not met, water can be removed

  8. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    NASA Astrophysics Data System (ADS)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown

  9. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California

    NASA Astrophysics Data System (ADS)

    Izbicki, John A.; Flint, Alan L.; O'Leary, David R.; Nishikawa, Tracy; Martin, Peter; Johnson, Russell D.; Clark, Dennis A.

    2015-05-01

    Mobilization of natural and septic nitrate from the unsaturated zone as a result of managed aquifer recharge has degraded water quality from public-supply wells near Yucca Valley in the western Mojave Desert, California. The effect of nitrate storage and potential for denitrification in the unsaturated zone to mitigate increasing nitrate concentrations were investigated. Storage of water extractable nitrate in unsaturated alluvium up to 160 meters (m) thick, ranged from 420 to 6600 kilograms per hectare (kg/ha) as nitrogen (N) beneath undeveloped sites, from 6100 to 9200 kg/ha as N beneath unsewered sites. Nitrate reducing and denitrifying bacteria were less abundant under undeveloped sites and more abundant under unsewered sites; however, δ15N-NO3, and δ18O-NO3 data show only about 5-10% denitrification of septic nitrate in most samples-although as much as 40% denitrification occurred in some parts the unsaturated zone and near the top of the water table. Storage of nitrate in thick unsaturated zones and dilution with low-nitrate groundwater are the primary attenuation mechanisms for nitrate from septic discharges in the study area. Numerical simulations of unsaturated flow, using the computer program TOUGH2, showed septic effluent movement through the unsaturated zone increased as the number and density of the septic tanks increased, and decreased with increased layering, and increased slope of layers, within the unsaturated zone. Managing housing density can delay arrival of septic discharges at the water table, especially in layered unsaturated alluvium, allowing time for development of strategies to address future water-quality issues.

  10. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    PubMed

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  11. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    DTIC Science & Technology

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  12. Assessing acid rain and climate effects on the temporal variation of dissolved organic matter in the unsaturated zone of a karstic system from southern China

    NASA Astrophysics Data System (ADS)

    Liao, Jin; Hu, Chaoyong; Wang, Miao; Li, Xiuli; Ruan, Jiaoyang; Zhu, Ying; Fairchild, Ian J.; Hartland, Adam

    2018-01-01

    Acid rain has the potential to significantly impact the quantity and quality of dissolved organic matter (DOM) leached from soil to groundwater. Yet, to date, the effects of acid rain have not been investigated in karstic systems, which are expected to strongly buffer the pH of atmospheric rainfall. This study presents a nine-year DOM fluorescence dataset from a karst unsaturated zone collected from two drip sites (HS4, HS6) in Heshang Cave, southern China between 2005 and 2014. Cross-correlograms show that fluorescence intensity of both dripwaters lagged behind rainfall by ∼1 year (∼11 months lag for HS4, and ∼13 months for HS6), whereas drip rates responded quite quickly to rainfall (0 months lag for HS4, and ∼3 months for HS6), based on optimal correlation coefficients. The rapid response of drip rates to rainfall is related to the change of reservoir head pressure in summer, associated with higher rainfall. In winter, low rainfall has a limited effect on head pressure, and drip rates gradually slow to a constant value associated with base flow from the overlying reservoir- this effect being most evident on inter-annual timescales (R2 = 0.80 for HS4 and R2 = 0.86 for HS6, n = 9, p < 0.01). We ascribed the ∼1 year lag of fluorescence intensity to the effect of the soil moisture deficit and the karst process on delaying water and solute transport. After eliminating the one year lag, the congruent seasonal pacing and amplitude between fluorescence intensity and rainfall observed suggests that the seasonality of fluorescence intensity was mainly controlled by the monsoonal rains which can govern the output of DOM from the soil, as well as the residence time of water in the unsaturated zone. On inter-annual timescales, a robust linear relationship between fluorescence intensity and annual (effective) precipitation amount (R2 = 0.86 for HS4 and R2 = 0.77 for HS6, n = 9, p < 0.01) was identified, implying that annual (effective) precipitation is the main

  13. Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior.

    PubMed

    Medeiros, David B; Barros, Kallyne A; Barros, Jessica Aline S; Omena-Garcia, Rebeca P; Arrivault, Stéphanie; Sanglard, Lílian M V P; Detmann, Kelly C; Silva, Willian Batista; Daloso, Danilo M; DaMatta, Fábio M; Nunes-Nesi, Adriano; Fernie, Alisdair R; Araújo, Wagner L

    2017-11-01

    Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis ( Arabidopsis thaliana ) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO 2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Structural modulation and luminescent properties of four CdII coordination architectures based on 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole and flexible/rigid dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Xia, Liang; Dong, Wen-Wen; Ye, Xiao; Zhao, Jun; Li, Dong-Sheng

    2016-10-01

    To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d10 coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt)2]n (1), [Cd3(4-pzpt)2(suc)2]n (2), [Cd2(4-Hpzpt)(nbc)2(H2O)]n (3) and {[Cd2(4-pzpt)2(tfbdc)(H2O)4]·H2O}n (4) (H2suc=1,2-ethanedicarboxylic acid, H2nbc=hthalene-1,4-dicarboxylic acid, H2tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 44-sql layer, which is extended to a 3D network via nonclassical C-H…N hydrogen bonds. Compound 2 possesses a 6-connected pcu-4120.63 net composed of trinuclear CdII-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·53·72)(53·6·7·9)(42·55·6·72). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 63-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O-H…N and O-H…O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated.

  15. Optimal production of 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Suh, Min-Jung; Kim, Beom-Soo; Hou, Ching T; Lee, In-Jung; Kim, In-Hwan; Kim, Hak-Ryul

    2010-09-30

    The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion processes. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains tested for HFA production, Pseudomonas aeruginosa PR3 is well known to utilize various unsaturated fatty acids to produce mono-, di- and tri-hydroxy fatty acids. Previously we reported that strain PR3 could produce a novel value-added hydroxy fatty acid 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) from palmitoleic acid (Bae et al. (2007) Appl. Microbiol. Biotechnol. 75, 435-440). In this study, we focused on the development of the optimal nutritional and environmental conditions for DHD production from palmitoleic acid by PR3. Optimal carbon and nitrogen sources for DHD production were fructose and yeast extract, respectively. Optimal initial medium pH and incubation temperature were pH 8.0 and 30 degrees C and magnesium ion was essentially required for DHD production. Substrate concentration and time of substrate addition were also optimized. Under optimized conditions, maximal DHD production was 1600mg/l representing 26.7% conversion yield. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California

    USGS Publications Warehouse

    Izbicki, John A.; Flint, Alan L.; O'Leary, David R.; Nishikawa, Tracy; Martin, Peter; Johnson, Russell D.; Clark, Dennis A.

    2015-01-01

    Mobilization of natural and septic nitrate from the unsaturated zone as a result of managed aquifer recharge has degraded water quality from public-supply wells near Yucca Valley in the western Mojave Desert, California. The effect of nitrate storage and potential for denitrification in the unsaturated zone to mitigate increasing nitrate concentrations were investigated. Storage of water extractable nitrate in unsaturated alluvium up to 160 meters (m) thick, ranged from 420 to 6600 kilograms per hectare (kg/ha) as nitrogen (N) beneath undeveloped sites, from 6100 to 9200 kg/ha as N beneath unsewered sites. Nitrate reducing and denitrifying bacteria were less abundant under undeveloped sites and more abundant under unsewered sites; however, δ15N–NO3, and δ18O–NO3 data show only about 5–10% denitrification of septic nitrate in most samples—although as much as 40% denitrification occurred in some parts the unsaturated zone and near the top of the water table. Storage of nitrate in thick unsaturated zones and dilution with low-nitrate groundwater are the primary attenuation mechanisms for nitrate from septic discharges in the study area. Numerical simulations of unsaturated flow, using the computer program TOUGH2, showed septic effluent movement through the unsaturated zone increased as the number and density of the septic tanks increased, and decreased with increased layering, and increased slope of layers, within the unsaturated zone. Managing housing density can delay arrival of septic discharges at the water table, especially in layered unsaturated alluvium, allowing time for development of strategies to address future water-quality issues.

  17. Synthesis and stereochemical analysis of β-nitromethane substituted γ-amino acids and peptides.

    PubMed

    Ganesh Kumar, Mothukuri; Mali, Sachitanand M; Gopi, Hosahudya N

    2013-02-07

    The high diastereoselectivity in the Michael addition of nitromethane to α,β-unsaturated γ-amino esters, crystal conformations of β-nitromethane substituted γ-amino acids and peptides are studied. Results suggest that the N-Boc protected amide NH, conformations of α,β-unsaturated γ-amino esters and alkyl side chains play a crucial role in dictating the high diastereoselectivity of nitromethane addition to E-vinylogous amino esters. Investigation of the crystal conformations of both α,β-unsaturated γ-amino esters and the Michael addition products suggests that an H-C(γ)-C(β)=C(α) eclipsed conformer of the unsaturated amino ester leads to the major (anti) product compared to that of an N-C(γ)-C(β)=C(α) eclipsed conformer. The major diastereomers were separated and subjected to the peptide synthesis. The single crystal analysis of the dipeptide containing β-nitromethane substituted γ-amino acids reveals a helical type of folded conformation with an isolated H-bond involving a nine-atom pseudocycle.

  18. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst.

  19. Transport of citrate-coated silver nanoparticles in unsaturated sand

    NASA Astrophysics Data System (ADS)

    Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg

    2015-04-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.

  20. Sulphate transport by H+ symport and by the dicarboxylate carrier in mitochondria.

    PubMed Central

    Saris, N E

    1980-01-01

    1. Swelling of mitochondria was induced in non-respiring mitochondria by 30 mM or more Na2SO4 or by respiration in the presence of K2SO4. Respiration-drive swelling resulted in loss of respiratory control. Sulphate, when present at 10 mM concentration, promoted the release of accumulated Ca2+. 2. Swelling was prevented by N-ethylmaleimide and formaldehyde, known inhibitors of the phosphate carrier. Sulphate-induced swelling was more sensitive to the inhibitors than was phosphate-induced swelling. At lower concentration of sulphate, 5 mM, an alkalinisation of the medium was observed in addition of sulphate, indicating H+-sulphate symport. There was competition between sulphate and phosphate for transport by this mechanism. It is suggested that sulphate may be transported, though at a comparatively slow rate, by the phosphate carrier. 3. Uptake of sulphate was stimulated when preceded by energy-dependent accumulation of Ba2+, especially when acetate was also present, indicating precipitation of BaSO4 in the matrix. Using this system the influx of sulphate was studied at lower concentrations, 10 mM or less. the contributions of the H+ symporter (sensitive to N-ethylmaleimide) and the dicarboxylate carrier (sensitive to butylmalonate) could then be studied. The dicarboxylate carrier had a lower Km and was mainly responsible for sulphate transport at lower concentration range. At 10 mM-sulphate the transport rates by the two systems appeared to be similar; at still higher concentrations the H+ symporter may become more important. PMID:7236245