Sample records for unsaturated zone model

  1. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    Preferential flow through deep unsaturated zones of fractured rock is hydrologically important to a variety of contaminant transport and water-resource issues. The unsaturated zone of the English Chalk Aquifer provides an important opportunity for a case study of unsaturated preferential flow in isolation from other flow modes. The chalk matrix has low hydraulic conductivity and stays saturated, owing to its fine uniform pores and the wet climate of the region. Therefore the substantial fluxes observed in the unsaturated chalk must be within fractures and interact minimally with matrix material. Price et al. [2000] showed that irregularities on fracture surfaces provide a significant storage capacity in the chalk unsaturated zone, likely accounting for volumes of water required to explain unexpected dry-season water-table stability during substantial continuing streamflow observed by Lewis et al. [1993] In this presentation we discuss and quantify the dynamics of replenishment and drainage of this unsaturated zone fracture-face storage domain using a modification of the source-responsive model of Nimmo [2010]. This model explains the processes in terms of two interacting flow regimes: a film or rivulet preferential flow regime on rough fracture faces, active on an individual-storm timescale, and a regime of adsorptive and surface-tension influences, resembling traditional diffuse formulations of unsaturated flow, effective mainly on a seasonal timescale. The modified model identifies hydraulic parameters for an unsaturated fracture-facial domain lining the fractures. Besides helping to quantify the unsaturated zone storage described by Price et al., these results highlight the importance of research on the topic of unsaturated-flow relations within a near-fracture-surface domain. This model can also facilitate understanding of mechanisms for reinitiation of preferential flow after temporary cessation, which is important in multi-year preferential flow through deep unsaturated zones [Pruess, 1999]. Lewis, M.A., H.K. Jones, D.M.J. Macdonald, M. Price, J.A. Barker, T.R. Shearer, A.J. Wesselink, and D.J. Evans (1993), Groundwater storage in British aquifers--Chalk, National Rivers Authority R&D Note, 169, Bristol, UK. Nimmo, J.R. (2010), Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow, Vadose Zone Journal, 9(2), 295-306, doi:10.2136/vzj2009.0085. Price, M., R.G. Low, and C. McCann (2000), Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer, Journal of Hydrology, 233(1-4), 54-71. Pruess, K. (1999), A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability, Water Resources Research, 35(4), 1039-1051.

  2. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides

    NASA Astrophysics Data System (ADS)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming

    2015-04-01

    Sliding zone soil is a special soil layer formed in the development of a landslide. Its creep behavior plays a significant role in long-term deformation of landslides. Due to rainfall infiltration and reservoir water level fluctuation, the soils in the slide zone are often in unsaturated state. Therefore, the investigation of creep behaviors of the unsaturated sliding zone soils is of great importance for understanding the mechanism of the long-term deformation of a landslide in reservoir areas. In this study, the full-process creep curves of the unsaturated soils in the sliding zone in different net confining pressure, matric suctions and stress levels were obtained from a large number of laboratory triaxial creep tests. A nonlinear creep model for unsaturated soils and its three-dimensional form was then deduced based on the component model theory and unsaturated soil mechanics. This creep model was validated with laboratory creep data. The results show that this creep model can effectively and accurately describe the nonlinear creep behaviors of the unsaturated sliding zone soils. In order to apply this creep model to predict the long-term deformation process of landslides, a numerical model for simulating the coupled seepage and creep deformation of unsaturated sliding zone soils was developed based on this creep model through the finite element method (FEM). By using this numerical model, we simulated the deformation process of the Shuping landslide located in the Three Gorges reservoir area, under the cycling reservoir water level fluctuation during one year. The simulation results of creep displacement were then compared with the field deformation monitoring data, showing a good agreement in trend. The results show that the creeping deformations of landslides have strong connections with the changes of reservoir water level. The creep model of unsaturated sliding zone soils and the findings obtained by numerical simulations in this study are conducive to reveal the mechanisms of the dynamic process of landslide deformation, and serve as an important basis for the prediction and evaluation of landslides.

  3. Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.

    2017-12-01

    The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008). Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the HYDRUS package. The developed integrated model is verified using HYDRUS-2D and analyzed for its computational time requirements.

  4. Two applications of the Recently Developed UZF-MT3DMS Model for Evaluating Nonpoint-Source Fluxes (Invited)

    NASA Astrophysics Data System (ADS)

    Morway, E. D.; Niswonger, R. G.; Nishikawa, T.

    2013-12-01

    The solute-transport model MT3DMS was modified to simulate transport in the unsaturated-zone by incorporating the additional flow terms calculated by the Unsaturated-Zone Flow (UZF) package developed for MODFLOW. Referred to as UZF-MT3DMS, the model simulates advection and dispersion of conservative and reactive solutes in unsaturated and saturated porous media. Significant time savings are realized owing to the efficiency of the kinematic -wave approximation used by the UZF1 package relative to Richards' equation-based approaches, facilitating the use of automated parameter-estimation routines wherein thousands of model runs may be required. Currently, UZF-MT3DMS is applied to two real-world applications of existing MODFLOW and MT3DMS models retro-fitted to use the UZF1 package for simulating the unsaturated component of the sub-surface system. In the first application, two regional-scale investigations located in Colorado's Lower Arkansas River Valley (LARV) are developed to evaluate the extent and severity of unsaturated-zone salinization contributing to crop yield loss. Preliminary results indicate root zone concentrations over both regions are at or above salinity-thresholds of most crop types grown in the LARV. Regional-scale modeling investigations of salinization found in the literature commonly use lumped-parameter models rather than physically-based distributed-parameter models. In the second application, located near Joshua Tree, CA, nitrate loading to the underlying unconfined aquifer from domestic septic systems is evaluated. Due to the region's thick unsaturated-zone and correspondingly long unsaturated-zone residence times (multi-decade), UZF-MT3DMS enabled direct simulation of spatially-varying concentration break-through curves at the water table.

  5. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin

    2016-01-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  6. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    NASA Astrophysics Data System (ADS)

    Kennedy, Jeffrey; Ferré, Ty P. A.; Creutzfeldt, Benjamin

    2016-09-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  7. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  8. PRZM-2, A MODEL FOR PREDICTING PESTICIDE FATE IN THE CROP ROOT AND UNSATURATED SOIL ZONES: USERS MANUAL FOR RELEASE 2.0

    EPA Science Inventory

    PRZM-2 links two subordinate models--PRZM and VADOFT--in order to predict pesticide transport and transformation down through the crop root and unsaturated zones. RZM is a one-dimensional, finite difference model that accounts for pesticide fate in the crop root zone. his release...

  9. A shallow water table fluctuation model in response to precipitation with consideration of unsaturated gravitational flow

    NASA Astrophysics Data System (ADS)

    Park, E.; Jeong, J.

    2017-12-01

    A precise estimation of groundwater fluctuation is studied by considering delayed recharge flux (DRF) and unsaturated zone drainage (UZD). Both DRF and UZD are due to gravitational flow impeded in the unsaturated zone, which may nonnegligibly affect groundwater level changes. In the validation, a previous model without the consideration of unsaturated flow is benchmarked where the actual groundwater level and precipitation data are divided into three periods based on the climatic condition. The estimation capability of the new model is superior to the benchmarked model as indicated by the significantly improved representation of groundwater level with physically interpretable model parameters.

  10. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    NASA Astrophysics Data System (ADS)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  11. Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: Laboratory sandbox experiments

    NASA Astrophysics Data System (ADS)

    Berg, Steven J.; Illman, Walter A.

    2012-11-01

    SummaryInterpretation of pumping tests in unconfined aquifers has largely been based on analytical solutions that disregard aquifer heterogeneity. In this study, we investigate whether the prediction of drawdown responses in a heterogeneous unconfined aquifer and the unsaturated zone above it with a variably saturated groundwater flow model can be improved by including information on hydraulic conductivity (K) and specific storage (Ss) from transient hydraulic tomography (THT). We also investigate whether these predictions are affected by the use of unsaturated flow parameters estimated through laboratory hanging column experiments or calibration of in situ drainage curves. To investigate these issues, we designed and conducted laboratory sandbox experiments to characterize the saturated and unsaturated properties of a heterogeneous unconfined aquifer. Specifically, we conducted pumping tests under fully saturated conditions and interpreted the drawdown responses by treating the medium to be either homogeneous or heterogeneous. We then conducted another pumping test and allowed the water table to drop, similar to a pumping test in an unconfined aquifer. Simulations conducted using a variably saturated flow model revealed: (1) homogeneous parameters in the saturated and unsaturated zones have a difficult time predicting the responses of the heterogeneous unconfined aquifer; (2) heterogeneous saturated hydraulic parameter distributions obtained via THT yielded significantly improved drawdown predictions in the saturated zone of the unconfined aquifer; and (3) considering heterogeneity of unsaturated zone parameters produced a minor improvement in predictions in the unsaturated zone, but not the saturated zone. These results seem to support the finding by Mao et al. (2011) that spatial variability in the unsaturated zone plays a minor role in the formation of the S-shape drawdown-time curve observed during pumping in an unconfined aquifer.

  12. SIMULATING RADIONUCLIDE FATE AND TRANSPORT IN THE UNSATURATED ZONE: EVALUATION AND SENSITIVITY ANALYSES OF SELECT COMPUTER MODELS

    EPA Science Inventory

    Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Many models require extensive input parameters which include uncertainty due to soil variabil...

  13. On the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Liu, Jin

    2017-03-01

    Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace-finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W) during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.

  14. An updated model of induced airflow in the unsaturated zone

    USGS Publications Warehouse

    Baehr, Arthur L.; Joss, Craig J.

    1995-01-01

    Simulation of induced movement of air in the unsaturated zone provides a method to determine permeability and to design vapor extraction remediation systems. A previously published solution to the airflow equation for the case in which the unsaturated zone is separated from the atmosphere by a layer of lower permeability (such as a clay layer) has been superseded. The new solution simulates airflow through the layer of lower permeability more rigorously by defining the leakage in terms of the upper boundary condition rather than by adding a leakage term to the governing airflow equation. This note presents the derivation of the new solution. Formulas for steady state pressure, specific discharge, and mass flow in the domain are obtained for the new model and for the case in which the unsaturated zone is in direct contact with the atmosphere.

  15. Comparison of different filter methods for data assimilation in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Lange, Natascha; Berkhahn, Simon; Erdal, Daniel; Neuweiler, Insa

    2016-04-01

    The unsaturated zone is an important compartment, which plays a role for the division of terrestrial water fluxes into surface runoff, groundwater recharge and evapotranspiration. For data assimilation in coupled systems it is therefore important to have a good representation of the unsaturated zone in the model. Flow processes in the unsaturated zone have all the typical features of flow in porous media: Processes can have long memory and as observations are scarce, hydraulic model parameters cannot be determined easily. However, they are important for the quality of model predictions. On top of that, the established flow models are highly non-linear. For these reasons, the use of the popular Ensemble Kalman filter as a data assimilation method to estimate state and parameters in unsaturated zone models could be questioned. With respect to the long process memory in the subsurface, it has been suggested that iterative filters and smoothers may be more suitable for parameter estimation in unsaturated media. We test the performance of different iterative filters and smoothers for data assimilation with a focus on parameter updates in the unsaturated zone. In particular we compare the Iterative Ensemble Kalman Filter and Smoother as introduced by Bocquet and Sakov (2013) as well as the Confirming Ensemble Kalman Filter and the modified Restart Ensemble Kalman Filter proposed by Song et al. (2014) to the original Ensemble Kalman Filter (Evensen, 2009). This is done with simple test cases generated numerically. We consider also test examples with layering structure, as a layering structure is often found in natural soils. We assume that observations are water content, obtained from TDR probes or other observation methods sampling relatively small volumes. Particularly in larger data assimilation frameworks, a reasonable balance between computational effort and quality of results has to be found. Therefore, we compare computational costs of the different methods as well as the quality of open loop model predictions and the estimated parameters. Bocquet, M. and P. Sakov, 2013: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlinear Processes in Geophysics 20(5): 803-818. Evensen, G., 2009: Data assimilation: The ensemble Kalman filter. Springer Science & Business Media. Song, X.H., L.S. Shi, M. Ye, J.Z. Yang and I.M. Navon, 2014: Numerical comparison of iterative ensemble Kalman filters for unsaturated flow inverse modeling. Vadose Zone Journal 13(2), 10.2136/vzj2013.05.0083.

  16. Field investigation into unsaturated flow and transport in a fault: Model analyses

    USGS Publications Warehouse

    Liu, H.-H.; Salve, R.; Wang, J.-S.; Bodvarsson, G.S.; Hudson, D.

    2004-01-01

    Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model. ?? 2004 Published by Elsevier B.V.

  17. Simulated fate and transport of metolachlor in the unsaturated zone, Maryland, USA

    USGS Publications Warehouse

    Bayless, E.R.; Capel, P.D.; Barbash, J.E.; Webb, R.M.T.; Hancock, T.L.C.; Lampe, D.C.

    2008-01-01

    An unsaturated-zone transport model was used to examine the transport and fate of metolachlor applied to an agricultural site in Maryland, USA. The study site was instrumented to collect data on soil-water content, soil-water potential, ground water levels, major ions, pesticides, and nutrients from the unsaturated zone during 2002-2004. The data set was enhanced with site-specific information describing weather, soils, and agricultural practices. The Root Zone Water Quality Model was used to simulate physical, chemical, and biological processes occurring in the unsaturated zone. Model calibration to bromide tracer concentrations indicated flow occurred through the soil matix. Simulated recharge rates were within the measured range of values. The pesticide transport model was calibrated to the intensive data collection period (2002-2004), and the calibrated model was then used to simulate the period 1984 through 2004 to examine the impact of sustained agricultural management practices on the concentrations of metolachlor and its degradates at the study site. Simulation results indicated that metolachlor degrades rapidly in the root zone but that the degradates are transported to depth in measurable quantities. Simulations indicated that degradate transport is strongly related to the duration of sustained use of metolachlor and the extent of biodegradation. 

  18. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.

    PubMed

    Delin, Geoffrey N; Herkelrath, William N

    2017-05-01

    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites. Published by Elsevier B.V.

  19. PRZM-3, A MODEL FOR PREDICTING PESTICIDE AND NITROGEN FATE IN THE CROP ROOT AND UNSATURATED SOIL ZONES: USER'S MANUAL FOR RELEASE 3.12.2

    EPA Science Inventory

    This publication contains documentation for the PRZM-3 model. PRZM-3 is the most recent version of a modeling system that links two subordinate models, PRZM and VADOFT, in order to predict pesticide transport and transformation down through the crop root and unsaturated soil zone...

  20. Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian J.; Krabbenhoft, D.P.; Striegl, Robert G.

    2008-01-01

    Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey’s Amargosa Desert Research Site (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m−3, respectively. The vertical distribution of gaseous Hg in the borehole closest to the disposal site shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release.

  1. RISK OF UNSATURATED/SATURATED TRANSPORT AND TRANSFORMATION OF CHEMICAL CONCENTRATIONS (RUSTIC): VOLUME 1. THEORY AND CODE VERIFICATION

    EPA Science Inventory

    The RUSTIC program links three subordinate models--PRZM, VADOFT, and SAFTMOD--in order to predict pesticide transport and transformation through the crop root zone, the unsaturated zone, and the saturated zone to drinking water wells. PRZM is a one-dimensional finite-difference m...

  2. Importance of unsaturated zone flow for simulating recharge in a humid climate

    USGS Publications Warehouse

    Hunt, R.J.; Prudic, David E.; Walker, J.F.; Anderson, M.P.

    2008-01-01

    Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.

  3. Estimating Unsaturated Zone N Fluxes and Travel Times to Groundwater at Watershed Scales

    NASA Astrophysics Data System (ADS)

    Liao, L.; Green, C. T.; Harter, T.; Nolan, B. T.; Juckem, P. F.; Shope, C. L.

    2016-12-01

    Nitrate concentrations in groundwater vary at spatial and temporal scales. Local variability depends on soil properties, unsaturated zone properties, hydrology, reactivity, and other factors. For example, the travel time in the unsaturated zone can cause contaminant responses in aquifers to lag behind changes in N inputs at the land surface, and variable leaching-fractions of applied N fertilizer to groundwater can elevate (or reduce) concentrations in groundwater. In this study, we apply the vertical flux model (VFM) (Liao et al., 2012) to address the importance of travel time of N in the unsaturated zone and its fraction leached from the unsaturated zone to groundwater. The Fox-Wolf-Peshtigo basins, including 34 out of 72 counties in Wisconsin, were selected as the study area. Simulated concentrations of NO3-, N2 from denitrification, O2, and environmental tracers of groundwater age were matched to observations by adjusting parameters for recharge rate, unsaturated zone travel time, fractions of N inputs leached to groundwater, O2 reduction rate, O2 threshold for denitrification, denitrification rate, and dispersivity. Correlations between calibrated parameters and GIS parameters (land use, drainage class and soil properties etc.) were evaluated. Model results revealed a median of recharge rate of 0.11 m/yr, which is comparable with results from three independent estimates of recharge rates in the study area. The unsaturated travel times ranged from 0.2 yr to 25 yr with median of 6.8 yr. The correlation analysis revealed that relationships between VFM parameters and landscape characteristics (GIS parameters) were consistent with expected relationships. Fraction N leached was lower in the vicinity of wetlands and greater in the vicinity of crop lands. Faster unsaturated zone transport in forested areas was consistent with results of studies showing rapid vertical transport in forested soils. Reaction rate coefficients correlated with chemical indicators such as Fe and P concentrations. Overall, the results demonstrate applicability of the VFM at a regional scale, as well as potential to generate N transport estimates continuously across regions based on statistical relationships between VFM model parameters and GIS parameters.

  4. CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.

    2005-01-01

    Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.

  5. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    NASA Astrophysics Data System (ADS)

    Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.

    2017-03-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  6. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    USGS Publications Warehouse

    Nimmo, John R.; Creasey, Kaitlyn M; Perkins, Kimberlie; Mirus, Benjamin B.

    2017-01-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  7. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Wealthall, Gary P.; Dearden, Rachel A.; McAlary, Todd A.

    2011-04-01

    Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone — VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site — VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes — e.g., multi-mechanistic sorption phase partitioning, and provide good opportunity for further sensitivity analysis and development to practitioner use. There remains a significant need to obtain intermediate laboratory-scale and particularly field-scale (actual site and controlled release) datasets that address the scenario as a whole and permit validation of the available models. Integrated assessment of the range of simultaneous processes that combine to influence leached plume generation, transport and attenuation in the unsaturated zone is required. Component process research needs are required across the problem scenario and include: the simultaneous volatilisation and dissolution of source zones; development of appropriate field-scale dispersion estimates for the unsaturated zone; assessment of transient VOC exchanges between aqueous, vapour and sorbed phases and their influence upon plume attenuation; development of improved field methods to recognise and quantify biodegradation of CAHs; establishment of the influence of co-contaminants; and, finally, translation of research findings into more robust practitioner practice.

  8. Biogenic Volatile Organic Compounds as Indicators of Change in a Deep Arid Unsaturated Zone, Amargosa Desert, USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Baker, R. J.; Luo, W.; Andraski, B. J.; Haase, K.; Stonestrom, D. A.

    2016-12-01

    Biogenic volatile organic compounds (bVOCs) are important agents in atmospheric chemistry, climatic forcing, plant physiology, and ecologic signaling. Despite a marked increase in scientific attention to bVOCs since the 1990s, relatively little is known about bVOC dynamics in soils and virtually nothing is known about bVOCs in deep unsaturated zones. The goal of this study was to systematically explore subsurface bVOCs through characterization and analysis of deep unsaturated zone VOCs in an arid setting. A wide range of VOCs have been sampled from the unsaturated zone at the Amargosa Desert Research Site (ADRS) at least annually for over a decade in the vicinity of a hazardous waste repository in southwestern Nevada. Grid- and transect-based soil gas samples were collected at shallow (0.5-m and 1.5-m) depths, and vertical arrays of samples were collected from three unsaturated zone boreholes ( 10m intervals from 0 to 110 m below ground surface), one of which is in an undisturbed area 3000 m from the waste repository. The VOC data were analyzed to identify bVOCs and processes related to bVOC transport in the deep unsaturated zone. Locally generated bVOCs were identified on the basis of (1) frequency of detections at the remote borehole location, (2) patterns of distribution in shallow unsaturated zone samples around the waste repository, (3) comparisons with atmospheric concentrations, and (4) comparisons with travel blank samples. Several dozen compounds met the criteria to be characterized as bVOCs. The relatively abundant compound m,p-xylene was selected as a tracer for subsequent modeling analysis of vertical and horizontal transport processes in the unsaturated zone. Targeted processes comprised (1) changes in vertical bVOC profiles as a result of ecological shifts, and (2) predominantly horizontal transport of unsaturated-zone gases following installation of the low level nuclear waste repository at the ADRS. To the best of our knowledge the results document, for the first time, the presence of a substantial reservoir of bVOCs in the deep unsaturated zone of a desert ecosystem and demonstrate that such reservoirs can serve as potential windows into past ecological changes and unsaturated zone disturbances.

  9. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  10. Measurement and modeling of unsaturated hydraulic conductivity

    USGS Publications Warehouse

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others. This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K. The parameters that describe the K curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  11. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS

    USGS Publications Warehouse

    Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.

    2013-01-01

    The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.

  12. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.

    PubMed

    Morway, Eric D; Niswonger, Richard G; Langevin, Christian D; Bailey, Ryan T; Healy, Richard W

    2013-03-01

    The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  13. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.

    2010-01-01

    Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.

  14. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport

    USGS Publications Warehouse

    Baehr, A.L.; Hoag, G.E.; Marley, M.C.

    1989-01-01

    Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.

  15. Programming a hillslope water movement model on the MPP

    NASA Technical Reports Server (NTRS)

    Devaney, J. E.; Irving, A. R.; Camillo, P. J.; Gurney, R. J.

    1987-01-01

    A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine.

  16. Towards a simple representation of chalk hydrology in land surface modelling

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael

    2017-01-01

    Modelling and monitoring of hydrological processes in the unsaturated zone of chalk, a porous medium with fractures, is important to optimize water resource assessment and management practices in the United Kingdom (UK). However, incorporating the processes governing water movement through a chalk unsaturated zone in a numerical model is complicated mainly due to the fractured nature of chalk that creates high-velocity preferential flow paths in the subsurface. In general, flow through a chalk unsaturated zone is simulated using the dual-porosity concept, which often involves calibration of a relatively large number of model parameters, potentially undermining applications to large regions. In this study, a simplified parameterization, namely the Bulk Conductivity (BC) model, is proposed for simulating hydrology in a chalk unsaturated zone. This new parameterization introduces only two additional parameters (namely the macroporosity factor and the soil wetness threshold parameter for fracture flow activation) and uses the saturated hydraulic conductivity from the chalk matrix. The BC model is implemented in the Joint UK Land Environment Simulator (JULES) and applied to a study area encompassing the Kennet catchment in the southern UK. This parameterization is further calibrated at the point scale using soil moisture profile observations. The performance of the calibrated BC model in JULES is assessed and compared against the performance of both the default JULES parameterization and the uncalibrated version of the BC model implemented in JULES. Finally, the model performance at the catchment scale is evaluated against independent data sets (e.g. runoff and latent heat flux). The results demonstrate that the inclusion of the BC model in JULES improves simulated land surface mass and energy fluxes over the chalk-dominated Kennet catchment. Therefore, the simple approach described in this study may be used to incorporate the flow processes through a chalk unsaturated zone in large-scale land surface modelling applications.

  17. Documentation of the Streamflow-Routing (SFR2) Package to Include Unsaturated Flow Beneath Streams - A Modification to SFR1

    USGS Publications Warehouse

    Niswonger, Richard G.; Prudic, David E.

    2005-01-01

    Many streams in the United States, especially those in semiarid regions, have reaches that are hydraulically disconnected from underlying aquifers. Ground-water withdrawals have decreased water levels in valley aquifers beneath streams, increasing the occurrence of disconnected streams and aquifers. The U.S. Geological Survey modular ground-water model (MODFLOW-2000) can be used to model these interactions using the Streamflow-Routing (SFR1) Package. However, the approach does not consider unsaturated flow between streams and aquifers and may not give realistic results in areas with significantly deep unsaturated zones. This documentation describes a method for extending the capabilities of MODFLOW-2000 by incorporating the ability to simulate unsaturated flow beneath streams. A kinematic-wave approximation to Richards' equation was solved by the method of characteristics to simulate unsaturated flow beneath streams in SFR1. This new package, called SFR2, includes all the capabilities of SFR1 and is designed to be used with MODFLOW-2000. Unlike SFR1, seepage loss from the stream may be restricted by the hydraulic conductivity of the unsaturated zone. Unsaturated flow is simulated independently of saturated flow within each model cell corresponding to a stream reach whenever the water table (head in MODFLOW) is below the elevation of the streambed. The relation between unsaturated hydraulic conductivity and water content is defined by the Brooks-Corey function. Unsaturated flow variables specified in SFR2 include saturated and initial water contents; saturated vertical hydraulic conductivity; and the Brooks-Corey exponent. These variables are defined independently for each stream reach. Unsaturated flow in SFR2 was compared to the U.S. Geological Survey's Variably Saturated Two-Dimensional Flow and Transport (VS2DT) Model for two test simulations. For both test simulations, results of the two models were in good agreement with respect to the magnitude and downward progression of a wetting front through an unsaturated column. A third hypothetical simulation is presented that includes interaction between a stream and aquifer separated by an unsaturated zone. This simulation is included to demonstrate the utility of unsaturated flow in SFR2 with MODFLOW-2000. This report includes a description of the data input requirements for simulating unsaturated flow in SFR2.

  18. Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling Unsaturated Flow Between the Land Surface and the Water Table with MODFLOW-2005

    USGS Publications Warehouse

    Niswonger, Richard G.; Prudic, David E.; Regan, R. Steven

    2006-01-01

    Percolation of precipitation through unsaturated zones is important for recharge of ground water. Rain and snowmelt at land surface are partitioned into different pathways including runoff, infiltration, evapotranspiration, unsaturated-zone storage, and recharge. A new package for MODFLOW-2005 called the Unsaturated-Zone Flow (UZF1) Package was developed to simulate water flow and storage in the unsaturated zone and to partition flow into evapotranspiration and recharge. The package also accounts for land surface runoff to streams and lakes. A kinematic wave approximation to Richards? equation is solved by the method of characteristics to simulate vertical unsaturated flow. The approach assumes that unsaturated flow occurs in response to gravity potential gradients only and ignores negative potential gradients; the approach further assumes uniform hydraulic properties in the unsaturated zone for each vertical column of model cells. The Brooks-Corey function is used to define the relation between unsaturated hydraulic conductivity and water content. Variables used by the UZF1 Package include initial and saturated water contents, saturated vertical hydraulic conductivity, and an exponent in the Brooks-Corey function. Residual water content is calculated internally by the UZF1 Package on the basis of the difference between saturated water content and specific yield. The UZF1 Package is a substitution for the Recharge and Evapotranspiration Packages of MODFLOW-2005. The UZF1 Package differs from the Recharge Package in that an infiltration rate is applied at land surface instead of a specified recharge rate directly to ground water. The applied infiltration rate is further limited by the saturated vertical hydraulic conductivity. The UZF1 Package differs from the Evapotranspiration Package in that evapotranspiration losses are first removed from the unsaturated zone above the evapotranspiration extinction depth, and if the demand is not met, water can be removed directly from ground water whenever the depth to ground water is less than the extinction depth. The UZF1 Package also differs from the Evapotranspiration Package in that water is discharged directly to land surface whenever the altitude of the water table exceeds land surface. Water that is discharged to land surface, as well as applied infiltration in excess of the saturated vertical hydraulic conductivity, may be routed directly as inflow to specified streams or lakes if these packages are active; otherwise, this water is removed from the model. The UZF1 Package was tested against the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model for a vertical unsaturated flow problem that includes evapotranspiration losses. This report also includes an example in which MODFLOW-2005 with the UZF1 Package was used to simulate a realistic surface-water/ground-water flow problem that includes time and space variable infiltration, evapotranspiration, runoff, and ground-water discharge to land surface and to streams. Another simpler problem is presented so that the user may use the input files as templates for new problems and to verify proper code installation.

  19. Modeling a thick unsaturated zone at San Gorgonio Pass, California: lessons learned after five years of artificial recharge

    USGS Publications Warehouse

    Flint, Alan L.; Ellett, Kevin M.; Christensen, Allen H.; Martin, Peter

    2012-01-01

    The information flow among the tasks of framework assessment, numerical modeling, model forecasting and hind casting, and system-performance monitoring is illustrated. Results provide an understanding of artificial recharge in high-altitude desert settings where large vertical distances may separate application ponds from their target aquifers.Approximately 3.8 million cubic meters of surface water was applied to spreading ponds from 2003–2007 to artificially recharge the underlying aquifer through a 200-meter thick unsaturated zone in the San Gorgonio Pass area in southern California. A study was conducted between 1997 and 2003, and a numerical model was developed to help determine the suitability of the site for artificial recharge. Ongoing monitoring results indicated that the existing model needed to be modified and recalibrated to more accurately predict artificial recharge at the site. The objective of this work was to recalibrate the model by using observation of the application rates, the rise and fall of the water level above a perching layer, and the approximate arrival time to the water table during the 5-yr monitoring period following initiation of long-term artificial recharge. Continuous monitoring of soil-matric potential, temperature, and water levels beneath the site indicated that artificial recharge reached the underlying water table between 3.75 and 4.5 yr after the initial application of the recharge water. The model was modified to allow the simulation to more adequately match the perching layer dynamics and the time of arrival at the water table. The instrumentation also showed that the lag time between changes in application of water at the surface and the response at the perching layer decreased from about 4 mo to less than 1 mo due to the wet-up of the unsaturated zone and the increase in relative permeability. The results of this study demonstrate the importance of iteratively monitoring and modeling the unsaturated zone in layered alluvial systems in the context of artificial recharge. They show that adequate geologic and hydraulic-property data on perching layers are critical to success. Continuous monitoring in the unsaturated and saturated zones beneath a site provides data to develop and constrain numerical models, better understand local unsaturated zone process, manage artificial recharge operations, and to determine the timing and volume of recoverable water for consumptive use.

  20. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation.

    PubMed

    Brouyère, Serge; Dassargues, Alain; Hallet, Vincent

    2004-08-01

    This paper presents the results of a detailed field investigation that was performed for studying groundwater recharge processes and solute downward migration mechanisms prevailing in the unsaturated zone overlying a chalk aquifer in Belgium. Various laboratory measurements were performed on core samples collected during the drilling of boreholes in the experimental site. In the field, experiments consisted of well logging, infiltration tests in the unsaturated zone, pumping tests in the saturated zone and tracer tests in both the saturated and unsaturated zones. Results show that gravitational flows govern groundwater recharge and solute migration mechanisms in the unsaturated zone. In the variably saturated chalk, the migration and retardation of solutes is strongly influenced by recharge conditions. Under intense injection conditions, solutes migrate at high speed along the partially saturated fissures, downward to the saturated zone. At the same time, they are temporarily retarded in the almost immobile water located in the chalk matrix. Under normal recharge conditions, fissures are inactive and solutes migrate slowly through the chalk matrix. Results also show that concentration dynamics in the saturated zone are related to fluctuations of groundwater levels in the aquifer. A conceptual model is proposed to explain the hydrodispersive behaviour of the variably saturated chalk. Finally, the vulnerability of the chalk to contamination issues occurring at the land surface is discussed.

  1. Modeling Raw Sewage Leakage and Transport in the Unsaturated Zone of Carbonate Aquifer Using Carbamazepine as an Indicator

    NASA Astrophysics Data System (ADS)

    Yakirevich, A.; Kuznetsov, M.; Livshitz, Y.; Gasser, G.; Pankratov, I.; Lev, O.; Adar, E.; Dvory, N. Z.

    2016-12-01

    Fast contamination of groundwater in karstic aquifers can be caused due to leaky sewers, for example, or overflow from sewer networks. When flowing through a karst system, wastewater has the potential to reach the aquifer in a relatively short time. The Western Mountain Aquifer (Yarkon-Taninim) of Israel is one of the country's major water resources. During late winter 2013, maintenance actions were performed on a central sewage pipe that caused raw sewage to leak into the creek located in the study area. The subsequent infiltration of sewage through the thick ( 100 m) fractured/karst unsaturated zone led to a sharp increase in contaminant concentrations in the groundwater, which was monitored in a well located 29 meters from the center of the creek. Carbamazepine (CBZ) was used as an indicator for the presence of untreated raw sewage and its quantification in groundwater. The ultimate research goal was to develop a mathematical model for quantifying flow and contaminant transport processes in the fractured-porous unsaturated zone and karstified groundwater system. A quasi-3D dual permeability numerical model, representing the 'vadose zone - aquifer' system, was developed by a series of 1D equations solved in variably-saturated zone and by 3D-saturated flow and transport equation in groundwater. The 1D and 3D equations were coupled at the moving phreatic surface. The model was calibrated and applied to a simulated water flow scenario and CBZ transport during and after the observed sewage leakage event. The results of simulation showed that after the leakage stopped, significant amounts of CBZ were retained in the porous matrix of the unsaturated zone below the creek. Water redistribution and slow recharge during the dry summer season contributed to elevated CBZ concentrations in the groundwater in the vicinity of the creek and tens of meters downstream. The resumption of autumn rains enhanced flushing of CBZ from the unsaturated zone and led to an increase in groundwater concentrations.

  2. Estimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, Using a Source-Responsive Preferential-Flow Model

    USGS Publications Warehouse

    Ebel, Brian A.; Nimmo, John R.

    2009-01-01

    Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of th

  3. Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian A. Ebel; John R. Nimmo

    2009-09-11

    Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travelmore » within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.« less

  4. Water movement in the unsaturated zone at a low-level radioactive-waste burial site near Barnwell, South Carolina

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1987-01-01

    Four unsaturated zone monitoring sites and a meteorologic station were installed at the low level radioactive waste burial site near Barnwell, South Carolina, to investigate the geohydrologic and climatologic factors affecting water movement in the unsaturated zone. The study site is located in the Atlantic Coastal Plain. The unsaturated zone consists of a few centimeters to > 1 m of surface sand, underlain by up to 15 m of clayey sand. Two monitoring sites were installed in experimental trenches and two were installed in radioactive waste trenches. Two different trench designs were evaluated at the monitoring sites. A meteorologic station was used to measure precipitation and to calculate actual evapotranspiration using the Bowen ratio method. Soil-moisture tensiometers, soil-moisture conductance probes, and temperature sensors were used to monitor soil-water movement in and adjacent to the trenches. Tracer tests using sodium chloride were conducted at each monitoring site. Data collection at the monitoring sites began in January 1982 and continued until early May 1984. Tensiometer data show that the unsaturated materials had their highest percent saturations in the winter and spring. Saturations in the backfill sand varied from 20 to 100%. They varied from about 75 to 100% in the adjacent undisturbed and overlying compacted clayey sand. Additionally, because tensiometer data indicate negligible water storage changes in the unsaturated zone, it is estimated that approximately 43 cm of recharge reached the water table. During 1984, the rise and fall of ponded water in an experimental trench was continuously monitored with a digital recorder. A cross-sectional finite element model of variably saturated flow was used to test the conceptual model of water movement in the unsaturated zone and to illustrate the effect of trench design on water movement into the experimental trenches. Monitoring and model results show that precipitation on trenches infiltrated the trench cap and moved vertically into the trench backfill material. The trench construction practice of placing a compacted clayey-sand barrier around the trench greatly inhibits soil water from entering the trench. (Author 's abstract)

  5. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    PubMed

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones

    NASA Astrophysics Data System (ADS)

    Gehrels, J. C.; van Geer, F. C.; de Vries, J. J.

    1994-05-01

    Time series analysis of the fluctuations in shallow groundwater levels in the Netherlands lowlands have revealed a large-scale decline in head during recent decades as a result of an increase in land drainage and groundwater withdrawal. The situation is more ambiguous in large groundwater bodies located in the eastern part of the country, where the unsaturated zone increases from near zero along the edges to about 40 m in the centre of the area. As depth of the unsaturated zone increases, groundwater level reacts with an increasing delay to fluctuations in climate and influences of human activities. The aim of the present paper is to model groundwater level fluctuations in these areas using a linear stochastic transfer function model, relating groundwater levels to estimated precipitation excess, and to separate artificial components from the natural groundwater regime. In this way, the impact of groundwater withdrawal and the reclamation of a 1000 km 2 polder area on the groundwater levels in the adjoining higher ground could be assessed. It became evident that the linearity assumption of the transfer functions becomes a serious drawback in areas with the deepest groundwater levels, because of non-linear processes in the deep unsaturated zone and the non-synchronous arrival of recharge in the saturated zone. Comparison of the results from modelling the influence of reclamation with an analytical solution showed that the lowering of groundwater level is partly compensated by reduced discharge and therefore is less than expected.

  7. Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Ireson, A. M.; Keim, D.

    2015-12-01

    A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.

  8. A generalized groundwater fluctuation model based on precipitation for estimating water table levels of deep unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Jeong, Jina; Park, Eungyu; Shik Han, Weon; Kim, Kue-Young; Suk, Heejun; Beom Jo, Si

    2018-07-01

    A generalized water table fluctuation model based on precipitation was developed using a statistical conceptualization of unsaturated infiltration fluxes. A gamma distribution function was adopted as a transfer function due to its versatility in representing recharge rates with temporally dispersed infiltration fluxes, and a Laplace transformation was used to obtain an analytical solution. To prove the general applicability of the model, convergences with previous water table fluctuation models were shown as special cases. For validation, a few hypothetical cases were developed, where the applicability of the model to a wide range of unsaturated zone conditions was confirmed. For further validation, the model was applied to water table level estimations of three monitoring wells with considerably thick unsaturated zones on Jeju Island. The results show that the developed model represented the pattern of hydrographs from the two monitoring wells fairly well. The lag times from precipitation to recharge estimated from the developed system transfer function were found to agree with those from a conventional cross-correlation analysis. The developed model has the potential to be adopted for the hydraulic characterization of both saturated and unsaturated zones by being calibrated to actual data when extraneous and exogenous causes of water table fluctuation are limited. In addition, as it provides reference estimates, the model can be adopted as a tool for surveilling groundwater resources under hydraulically stressed conditions.

  9. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer

    NASA Astrophysics Data System (ADS)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent

    2015-04-01

    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto fluvio-glacial deposits, retention of S-metolachlor and its ionic metabolites is low in column tests and high mobility was observed meaning these molecules are prone to reach groundwater.

  10. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  11. Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA

    USGS Publications Warehouse

    Hancock, T.C.; Sandstrom, M.W.; Vogel, J.R.; Webb, R.M.T.; Bayless, E.R.; Barbash, J.E.

    2008-01-01

    Pesticide transport through the unsaturated zone is a function of chemical and soil characteristics, application, and water recharge rate. The fate and transport of 82 pesticides and degradates were investigated at five different agricultural sites. Atrazine and metolachlor, as well as several of the degradates of atrazine, metolachlor, acetochlor, and alachlor, were frequently detected in soil water during the 2004 growing season, and degradates were generally more abundant than parent compounds. Metolachlor and atrazine were applied at a Nebraska site the same year as sampling, and focused recharge coupled with the short time since application resulted in their movement in the unsaturated zone 9 m below the surface. At other sites where the herbicides were applied 1 to 2 yr before sampling, only degradates were found in soil water. Transformations of herbicides were evident with depth and during the 4-mo sampling time and reflected the faster degradation of metolachlor oxanilic acid and persistence of metolachor ethanesulfonic acid. The fraction of metolachlor ethanesulfonic acid relative to metolachlor and metolachlor oxanilic acid increased from 0.3 to > 0.9 at a site in Maryland where the unsaturated zone was 5 m deep and from 0.3 to 0.5 at the shallowest depth. The flux of pesticide degradates from the deepest sites to the shallow ground water was greatest (3.0–4.9 μmol m−2 yr−1) where upland recharge or focused flow moved the most water through the unsaturated zone. Flux estimates based on estimated recharge rates and measured concentrations were in agreement with fluxes estimated using an unsaturated-zone computer model (LEACHM).

  12. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.

    2015-01-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.

  13. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-06-01

    Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada ( Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.

  14. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic conductivity of the lower layer over that of the unconfined aquifer) is smaller than 0.1. The present solution is compared with the numerical solution from FEMWATER for validation and the results indicate good match between these two solutions. Finally, the present solution is applied to a set of field drawdown data obtained from a CHT for the estimation of hydrogeologic parameters.

  15. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  16. Geohydrology, water quality, and nitrogen geochemistry in the saturated and unsaturated zones beneath various land uses, Riverside and San Bernardino counties, California, 1991-93

    USGS Publications Warehouse

    Rees, Terry F.; Bright, Daniel J.; Fay, Ronald G.; Christensen, Allen H.; Anders, Robert; Baharie, Brian S.; Land, Michael T.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Eastern Municipal Water District, the Metropolitan Water District of Southern California, and the Orange County Water District, has completed a detailed study of the Hemet groundwater basin. The quantity of ground water stored in the basin in August 1992 is estimated to be 327,000 acre-feet. Dissolved-solids concentration ranged from 380 to 700 mg/L (milligrams per liter), except in small areas where the concentration exceeded 1,000 mg/L. Nitrate concentrations exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10 mg/L nitrate (as nitrogen) in the southeastern part of the basin, in the Domenigoni Valley area, and beneath a dairy in the Diamond Valley area. Seven sites representing selected land uses-- residential, turf grass irrigated with reclaimed water, citrus grove, irrigated farm, poultry farm, and dairy (two sites)--were selected for detailed study of nitrogen geochemistry in the unsaturated zone. For all land uses, nitrate was the dominant nitrogen species in the unsaturated zone.Although nitrate was seasonally present in the shallow unsaturated zone beneath the residential site, it was absent at moderate depths, suggesting negligible migration of nitrate from the surface at this time. Microbial denitrification probably is occurring in the shallow unsaturated zone. High nitrate concentrations in the deep unsaturated zone (greater than 100 ft) suggest either significantly higher nitrate loading at some time in the past, or lateral movement of nitrate at depth. Nitrate also is seasonally present in the shallow unsaturated zone beneath the reclaimed-water site, and (in contrast with the residential site), nitrate is perennially present in the deeper unsaturated zone. Microbial denitrification in the unsaturated zone and in the capillary fringe above the water table decreases the concentrations of nitrate in pore water to below the MCL before reaching the water table.Pore water in the unsaturated zone beneath the citrus grove site contains very high concentrations of nitrate. Even though there are zones of microbial denitrification, nitrate seems to be migrating downward to the water table. The presence of a shallow perched-water zone beneath the irrigated-farm site prevents the vertical movement of nitrate from the surface to the regional water table. Above the perched zone, nitrate concentrations in the unsaturated zone are variable, ranging from below the MCL to four times the MCL. Periodically, nitrate is flushed from the shallow unsaturated zone to the perched-water zone. The unsaturated zone pore-moisture quality could not be adequately addressed because of the very dry conditions in the unsaturated zone beneath the poultry-farm site. Surficial clay deposits prevent water from percolating downward.At the two dairy sites, nitrate loading in pore water at the surface was very high, as great as 7,000 mg/L. Microbial denitrification in the unsaturated zone causes such concentrations to decrease rapidly with depth. At a depth of 20 ft, nitrate concentration was less than 100 mg/L. In areas where the depth to water is less than 20 ft, nitrate loading to ground water can be very high, whereas in areas where depth to water is greater than 100 ft, most of the nitrate is microbially removed before reaching the water table.

  17. A set of constitutive relationships accounting for residual NAPL in the unsaturated zone.

    PubMed

    Wipfler, E L; van der Zee, S E

    2001-07-01

    Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.

  18. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    NASA Astrophysics Data System (ADS)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  19. Pena blanca natural analogue project: summary of activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Schon S; Goldstein, Steven J; Abdel - Fattah, Amr I

    2010-12-08

    The inactive Nopal I uranium mine in silicic tuff north of Chihuahua City, Chihuahua, Mexico, was studied as a natural analogue for an underground nuclear-waste repository in the unsaturated zone. Site stratigraphy was confirmed from new drill core. Datafrom site studies include chemical and isotopic compositions of saturated- and unsaturated-zone waters. A partial geochronology of uranium enrichment and mineralization was established. Evidence pertinent to uranium-series transport in the soil zone and changing redox conditions was collected. The investigations contributed to preliminary, scoping-level performance assessment modeling.

  20. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  1. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California

    USGS Publications Warehouse

    Izbicki, John A.; Flint, Alan L.; O'Leary, David R.; Nishikawa, Tracy; Martin, Peter; Johnson, Russell D.; Clark, Dennis A.

    2015-01-01

    Mobilization of natural and septic nitrate from the unsaturated zone as a result of managed aquifer recharge has degraded water quality from public-supply wells near Yucca Valley in the western Mojave Desert, California. The effect of nitrate storage and potential for denitrification in the unsaturated zone to mitigate increasing nitrate concentrations were investigated. Storage of water extractable nitrate in unsaturated alluvium up to 160 meters (m) thick, ranged from 420 to 6600 kilograms per hectare (kg/ha) as nitrogen (N) beneath undeveloped sites, from 6100 to 9200 kg/ha as N beneath unsewered sites. Nitrate reducing and denitrifying bacteria were less abundant under undeveloped sites and more abundant under unsewered sites; however, δ15N–NO3, and δ18O–NO3 data show only about 5–10% denitrification of septic nitrate in most samples—although as much as 40% denitrification occurred in some parts the unsaturated zone and near the top of the water table. Storage of nitrate in thick unsaturated zones and dilution with low-nitrate groundwater are the primary attenuation mechanisms for nitrate from septic discharges in the study area. Numerical simulations of unsaturated flow, using the computer program TOUGH2, showed septic effluent movement through the unsaturated zone increased as the number and density of the septic tanks increased, and decreased with increased layering, and increased slope of layers, within the unsaturated zone. Managing housing density can delay arrival of septic discharges at the water table, especially in layered unsaturated alluvium, allowing time for development of strategies to address future water-quality issues.

  2. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California

    NASA Astrophysics Data System (ADS)

    Izbicki, John A.; Flint, Alan L.; O'Leary, David R.; Nishikawa, Tracy; Martin, Peter; Johnson, Russell D.; Clark, Dennis A.

    2015-05-01

    Mobilization of natural and septic nitrate from the unsaturated zone as a result of managed aquifer recharge has degraded water quality from public-supply wells near Yucca Valley in the western Mojave Desert, California. The effect of nitrate storage and potential for denitrification in the unsaturated zone to mitigate increasing nitrate concentrations were investigated. Storage of water extractable nitrate in unsaturated alluvium up to 160 meters (m) thick, ranged from 420 to 6600 kilograms per hectare (kg/ha) as nitrogen (N) beneath undeveloped sites, from 6100 to 9200 kg/ha as N beneath unsewered sites. Nitrate reducing and denitrifying bacteria were less abundant under undeveloped sites and more abundant under unsewered sites; however, δ15N-NO3, and δ18O-NO3 data show only about 5-10% denitrification of septic nitrate in most samples-although as much as 40% denitrification occurred in some parts the unsaturated zone and near the top of the water table. Storage of nitrate in thick unsaturated zones and dilution with low-nitrate groundwater are the primary attenuation mechanisms for nitrate from septic discharges in the study area. Numerical simulations of unsaturated flow, using the computer program TOUGH2, showed septic effluent movement through the unsaturated zone increased as the number and density of the septic tanks increased, and decreased with increased layering, and increased slope of layers, within the unsaturated zone. Managing housing density can delay arrival of septic discharges at the water table, especially in layered unsaturated alluvium, allowing time for development of strategies to address future water-quality issues.

  3. Transport of environmental tracers through a karst system with a thick unsaturated zone

    NASA Astrophysics Data System (ADS)

    Geyer, Tobias; Sültenfuss, Jürgen; Eichinger, Florian; Sauter, Martin

    2010-05-01

    The transport of the environmental tracers tritium (3H), krypton-85 (85Kr) and helium (3He) in a karst system is investigated. Differences between mean tracer ages determined in spring water are explained by slow percolation of water through the thick unsaturated zone reflecting the importance of slow and diffuse unsaturated flow processes in these systems. Mean tracer ages on the Gallusquelle spring (Swabian Alb) were determined with lumped parameter modeling and decrease in the following order: 3H >> 85Kr > 3He. Since 3H is part of the water molecule it enters a karst system via precipitation, i.e. the mean 3H age is a measure of water flow through the whole karst system, including the unsaturated and saturated zone. The mean 85Kr age and 3H/3He age are measures of time since groundwater recharge arrived at the water table. Therefore our results indicate a long travel time of 3H through the unsaturated zone of the karst system. The interpretation is supported by a two-dimensional numerical simulation of flow and transport in a fissured matrix block that contains a thick unsaturated zone (ca. 100 m) and is drained by a conduit. Transport simulation is performed in the sense of backtracking, i.e. the flow field is reversed, and the boundary conditions are adapted accordingly. At any position in the model domain, the time required for a water molecule to reach the outlet is estimated corresponding to the "life expectancy" (Cornaton and Perrochet 2006), i.e. the life expectancy on the outlet is zero. The simulation of life expectancy of water in the matrix block shows (1) the importance of heterogeneities for interpretation of groundwater ages, (2) the location of stagnant zones in areas of low hydraulic permeability and/or low hydraulic gradient and (3) that flow through unsaturated fissured matrix blocks may cause a considerable travel time of water through a karst system. The travel time of water from the recharge area to the discharge point for the shown example is about 15 years with a travel time of water through the unsaturated zone of 10 years (Geyer 2008). This result reflects the variation of estimated ages for different tracers sampled at the Gallusquelle spring. Additionally, we demonstrate that depending on boundary conditions, the unsaturated zone of a karst system may provide a large water storage since the porous matrix can be expected to be close to saturation and the volume fraction of fissures and conduits is small. Literature Cornaton, F., Perrochet, P. (2006): Ground-water age, life expectancy and transit time distributions in advective-dispersive systems: 1. Generalized reservoir theory. - Advances in Water Resources 29 (9): 1267-1291. Geyer, T. (2008): Characterisation of flow and transport in karst aquifers at catchment scale, Ph.D. diss., Georg-August-Universität Göttingen, 103 pp.

  4. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLO-GICAL MATERIAL (EPA/600/SR-97/099)

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  5. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Whelan, J.F.; Neymark, L.A.; Moscati, R.J.; Marshall, B.D.; Roedder, E.

    2008-01-01

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ???80 ??C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite ??18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ???35 to ???90 ??C. Calcite ??18O values range from ???0 to ???22??? (SMOW) but most fall between 12 and 20???. The highest Th and the lowest ??18O values are found in the older calcite. Calcite Th and ??18O values indicate that most calcite precipitated from water with ??18O values between -13 and -7???, similar to modern meteoric waters. Twenty-two 207Pb/235U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from ???9.5 to 1.9 Ma. New and published 207Pb/235U and 230Th/Uages coupled with the Th values and estimates of temperature from calcite ??18O values indicate that maximum unsaturated zone temperatures probably predate ???10 Ma and that the unsaturated zone had cooled to near-present-day temperatures (24-26 ??C at a depth of 250 m) by 2-4 Ma. The evidence of elevated temperatures persisting in ash flow tuffs adjacent to parent calderas for as much as ???8 Ma is a new finding, but consistent with thermal modeling. Simulations using the HEAT code demonstrate that prolonged cooling of the unsaturated zone is consistent with magmatic heat inputs and deep-seated (sub-water table) hydrothermal activity generated by the large magma body ???8 km to the north that produced the 15-11 Ma ash flows and ash falls that make up Yucca Mountain. The evidence discussed in this and preceding papers strongly supports unsaturated zone deposition of the secondary minerals from descending meteoric waters. Although depositional temperatures reflect conductive (and possibly vapor-phase convective) heating of the unsaturated zone related to regional magmatic sources until perhaps 6 Ma, depositional conditions similar to the present-day unsaturated zone have prevailed for at least the past 2-4 Ma.

  6. Balancing practicality and hydrologic realism: a parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow

    USGS Publications Warehouse

    Mirus, Benjamin B.; Nimmo, J.R.

    2013-01-01

    The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value.

  7. Methyl tert‐butyl ether degradation in the unsaturated zone and the relation between MTBE in the atmosphere and shallow groundwater

    USGS Publications Warehouse

    Baehr, Arthur L.; Charles, Emmanuel G.; Baker, Ronald J.

    2001-01-01

    Atmospheric methyl tert‐butyl ether (MTBE) concentrations in southern New Jersey generally exceeded concentrations in samples taken from the unsaturated zone. A simple unsaturated zone transport model indicates that MTBE degradation can explain the attenuation with half‐lives from a few months to a couple of years. Tert‐butyl alcohol (TBA), a possible degradation product of MTBE, was detected in unsaturated‐zone samples at concentrations exceeding atmospheric levels at some sites, suggesting the possible conversion of MTBE to TBA. At sites where MTBE was detected in shallow groundwater, the concentration was typically higher than the overlying unsaturated‐zone concentration. This observation is consistent with outgassing from the aquifer and combined with the unsaturated‐zone attenuation suggests some of the MTBE detections in shallow groundwater are nonatmospheric in origin, coming from leaking tanks, road runoff, or other sources. The identification of sources of MTBE in groundwater and attenuation mechanisms through the hydrologic cycle is critical in developing an understanding of the long‐term effect of MTBE releases.

  8. Response of deep groundwater to land use change in desert basins of the Trans-Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes

    USGS Publications Warehouse

    Robertson, Wendy Marie; Böhlke, John Karl; Sharp, John M.

    2017-01-01

    Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans-Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3−concentrations. Median increases in groundwater NO3− (by 0.7–0.9 mg-N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans-Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human-influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3− to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3− (122–910 kg-N/ha) was sufficient to cause the observed groundwater NO3− increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3− trends can be explained by small volumes of high NO3− modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long-term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.

  9. Vadose zone microbiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieft, Thomas L.; Brockman, Fred J.

    2001-01-17

    The vadose zone is defined as the portion of the terrestrial subsurface that extends from the land surface downward to the water table. As such, it comprises the surface soil (the rooting zone), the underlying subsoil, and the capillary fringe that directly overlies the water table. The unsaturated zone between the rooting zone and the capillary fringe is termed the "intermediate zone" (Chapelle, 1993). The vadose zone has also been defined as the unsaturated zone, since the sediment pores and/or rock fractures are generally not completely water filled, but instead contain both water and air. The latter characteristic results inmore » the term "zone of aeration" to describe the vadose zone. The terms "vadose zone," "unsaturated zone", and "zone of aeration" are nearly synonymous, except that the vadose zone may contain regions of perched water that are actually saturated. The term "subsoil" has also been used for studies of shallow areas of the subsurface immediately below the rooting zone. This review focuses almost exclusively on the unsaturated region beneath the soil layer since there is already an extensive body of literature on surface soil microbial communities and process, e.g., Paul and Clark (1989), Metting (1993), Richter and Markowitz, (1995), and Sylvia et al. (1998); whereas the deeper strata of the unsaturated zone have only recently come under scrutiny for their microbiological properties.« less

  10. Water movement in the unsaturated zone at a low-level radioactive-waste burial site near Barnwell, South Carolina

    USGS Publications Warehouse

    Dennehy, Kevin F.; McMahon, Peter B.

    1989-01-01

    Four unsaturated-zone monitoring sites and a meteorologic station were installed at the low-level radioactive-waste burial site near Barnwell, S.C., to investigate the geohydrologic and climatologic factors affecting water movement in the unsaturated zone. The study site is located in the Atlantic Coastal Plain. The unsaturated zone consists of a few centimeters to more than 1 meter of surface sand, underlain by up to 15 meters of clayey sand. Two monitoring sites were installed in experimental trenches, and two were installed in radioactive-waste trenches. Two different trench designs were evaluated at the monitoring sites. A meteorologic station was used to measure precipitation and to calculate actual evapotranspiration using the Bowen ratio method. Soil-moisture tensiometers, soil-moisture conductance probes, and temperature sensors were used to monitor soil-water movement in and adjacent to the trenches. Tracer tests using sodium chloride were conducted at each monitoring site. Hydrologic properties of unsaturated-zone materials were also determined. Data collection at the monitoring sites began in January 1982 and continued until early May 1984. Tensiometer data show that the unsaturated materials had their highest percent saturations in winter and spring. Saturations in the backfill sand varied from 20 to 100 percent, and in the adjacent undisturbed and overlying compacted clayey sand, from about 75 to 100 percent. The same pattern generally was observed at all four monitoring sites. The tracer-test data indicate that water movement occurred mainly during the recharge period, winter and spring. The tracer-test results enabled computation of rates of unsaturated flow in the compacted clayey-sand cap, the compacted clayey-sand barrier, and the backfill sand. A micro-scale hydrologic budget was determined for an undisturbed part of the site from July 1983 through June 1984.Total precipitation was 144 centimeters, and actual evapotranspiration was 101 centimeters. Additionally, because tensiometer data indicate negligible water-storage changes in the unsaturated zone, it is estimated that approximately 43 centimeters of recharge reached the water table. During 1984, the rise and fall of ponded water in an experimental trench was continuously monitored with a digital recorder. This water-level record was used to compute the rate of leakage of ponded water from that trench--1 x 10 -5 centimeter per second. A cross-sectional finite-element model of variably saturated flow was used to test the conceptual model of water movement in the unsaturated zone and to illustrate the effect of trench design on water movement into the experimental trenches. Monitoring and model results show that precipitation on trenches infiltrated the trench cap and moved vertically into the trench backfill material. Precipitation on the undisturbed material adjacent to the trenches moved vertically through the surface sand and continued either downward into undisturbed clayey sand or laterally along the sand/clayey-sand interface into the backfill sand, depending on trench design. The trench construction practice of placing a compacted clayey-sand barrier around the trench greatly inhibits soil water from entering the trench.

  11. Using a bias aware EnKF to account for unresolved structure in an unsaturated zone model

    NASA Astrophysics Data System (ADS)

    Erdal, D.; Neuweiler, I.; Wollschläger, U.

    2014-01-01

    When predicting flow in the unsaturated zone, any method for modeling the flow will have to define how, and to what level, the subsurface structure is resolved. In this paper, we use the Ensemble Kalman Filter to assimilate local soil water content observations from both a synthetic layered lysimeter and a real field experiment in layered soil in an unsaturated water flow model. We investigate the use of colored noise bias corrections to account for unresolved subsurface layering in a homogeneous model and compare this approach with a fully resolved model. In both models, we use a simplified model parameterization in the Ensemble Kalman Filter. The results show that the use of bias corrections can increase the predictive capability of a simplified homogeneous flow model if the bias corrections are applied to the model states. If correct knowledge of the layering structure is available, the fully resolved model performs best. However, if no, or erroneous, layering is used in the model, the use of a homogeneous model with bias corrections can be the better choice for modeling the behavior of the system.

  12. Water movement through thick unsaturated zones overlying the central High Plains aquifer, southwestern Kansas, 2000-2001

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, K.F.; Michel, R.L.; Sophocleous, M.A.; Ellett, K.M.; Hurlbut, D.B.

    2003-01-01

    The role of irrigation as a driving force for water and chemical movement to the central High Plains aquifer is uncertain because of the thick unsaturated zone overlying the aquifer. Water potentials and profiles of tritium, chloride, nitrate, and pesticide concentrations were used to evaluate water movement through thick unsaturated zones overlying the central High Plains aquifer at three sites in southwestern Kansas. One site was located in rangeland and two sites were located in areas dominated by irrigated agriculture. In 2000?2001, the depth to water at the rangeland site was 50 meters and the depth to water at the irrigated sites was about 45.4 meters. Irrigation at the study sites began in 1955?56. Measurements of matric potential and volumetric water content indicate wetter conditions existed in the deep unsaturated zone at the irrigated sites than at the rangeland site. Total water potentials in the unsaturated zone at the irrigated sites systematically decreased with depth to the water table, indicating a potential existed for downward water movement from the unsaturated zone to the water table at those sites. At the rangeland site, total water potentials in the deep unsaturated zone indicate small or no potential existed for downward water movement to the water table. Postbomb tritium was not detected below a depth of 1.9 meters in the unsaturated zone or in ground water at the rangeland site. In contrast, postbomb tritium was detected throughout most of the unsaturated zone and in ground water at both irrigated sites. These results indicate post-1953 water moved deeper in the unsaturated zone at the irrigated sites than at the rangeland site. The depth of the interface between prebomb and postbomb tritium and a tritium mass-balance method were used to estimate water fluxes in the unsaturated zone at each site. The average water fluxes at the rangeland site were 5.4 and 4.4 millimeters per year for the two methods, which are similar to the average water flux (5.1 millimeters per year) estimated using a chloride mass-balance method. Tritium profiles in the unsaturated zone at the irrigated sites were complicated by the presence of tritium-depleted intervals separating upper and lower zones containing postbomb tritium. If the interface between prebomb and postbomb tritium was at the top of the tritium-depleted interval and postbomb tritium detected beneath that interval was from the declining water table in the area, then the average water flux at the irrigated sites was estimated to be 21 to 54 millimeters per year. If postbomb tritium detected beneath the tritium-depleted interval was from bypass or preferential water movement through the local unsaturated zone instead of the declining water table, then the minimum water flux at the irrigated sites was estimated to be 106 to 116 millimeters per year. In either case, water fluxes at the irrigated sites were at least 4 to 12 times larger than the flux at the rangeland site, indicating irrigation was an important driving force for water movement through the unsaturated zone. The presence of postbomb tritium and large nitrate and total pesticide concentrations (24 milligrams per liter as nitrogen and 0.923 microgram per liter, respectively) in ground water at the irrigated sites indicates irrigation water also was an important driving force for chemical movement to the water table. The persistence of a downward hydraulic gradient from the deep unsaturated zone to the water table at the irrigated sites, in addition to large nitrate and atrazine concentrations in deep soil water (34 milligrams per liter as nitrogen and 0.79 microgram per liter, respectively), indicate that the deep unsaturated zone will be a source of nitrate and atrazine to the aquifer in the future.

  13. Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF, and creating the new CFL package

    USGS Publications Warehouse

    Borsia, I.; Rossetto, R.; Schifani, C.; Hill, Mary C.

    2013-01-01

    In this paper two modifications to the MODFLOW code are presented. One concerns an extension of Local Grid Refinement (LGR) to Variable Saturated Flow process (VSF) capability. This modification allows the user to solve the 3D Richards’ equation only in selected parts of the model domain. The second modification introduces a new package, named CFL (Cascading Flow), which improves the computation of overland flow when ground surface saturation is simulated using either VSF or the Unsaturated Zone Flow (UZF) package. The modeling concepts are presented and demonstrated. Programmer documentation is included in appendices.

  14. Predicting unsaturated zone nitrogen mass balances in agricultural settings of the United States

    USGS Publications Warehouse

    Nolan, Bernard T.; Puckett, Larry J.; Ma, Liwang; Green, Christopher T.; Bayless, E. Randall; Malone, Robert W.

    2009-01-01

    Unsaturated zone N fate and transport were evaluated at four sites to identify the predominant pathways of N cycling: an almond [Prunus dulcis (Mill.) D.A. Webb] orchard and cornfield (Zea mays L.) in the lower Merced River study basin, California; and corn–soybean [Glycine max (L.) Merr.] rotations in study basins at Maple Creek, Nebraska, and at Morgan Creek, Maryland. We used inverse modeling with a new version of the Root Zone Water Quality Model (RZWQM2) to estimate soil hydraulic and nitrogen transformation parameters throughout the unsaturated zone; previous versions were limited to 3-m depth and relied on manual calibration. The overall goal of the modeling was to derive unsaturated zone N mass balances for the four sites. RZWQM2 showed promise for deeper simulation profiles. Relative root mean square error (RRMSE) values for predicted and observed nitrate concentrations in lysimeters were 0.40 and 0.52 for California (6.5 m depth) and Nebraska (10 m), respectively, and index of agreement (d) values were 0.60 and 0.71 (d varies between 0 and 1, with higher values indicating better agreement). For the shallow simulation profile (1 m) in Maryland, RRMSE and d for nitrate were 0.22 and 0.86, respectively. Except for Nebraska, predictions of average nitrate concentration at the bottom of the simulation profile agreed reasonably well with measured concentrations in monitoring wells. The largest additions of N were predicted to come from inorganic fertilizer (153–195 kg N ha−1 yr−1 in California) and N fixation (99 and 131 kg N ha−1 yr−1 in Maryland and Nebraska, respectively). Predicted N losses occurred primarily through plant uptake (144–237 kg N ha−1 yr−1) and deep seepage out of the profile (56–102 kg N ha−1 yr−1). Large reservoirs of organic N (up to 17,500 kg N ha−1 m−1 at Nebraska) were predicted to reside in the unsaturated zone, which has implications for potential future transfer of nitrate to groundwater.

  15. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-01-01

    Yucca Mountain is an arid site proposed for consideration as the United States’ first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500–1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5–4.5 mm/yr, or 2–3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada (Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.

  16. WTAQ version 2-A computer program for analysis of aquifer tests in confined and water-table aquifers with alternative representations of drainage from the unsaturated zone

    USGS Publications Warehouse

    Barlow, Paul M.; Moench, Allen F.

    2011-01-01

    The computer program WTAQ simulates axial-symmetric flow to a well pumping from a confined or unconfined (water-table) aquifer. WTAQ calculates dimensionless or dimensional drawdowns that can be used with measured drawdown data from aquifer tests to estimate aquifer hydraulic properties. Version 2 of the program, which is described in this report, provides an alternative analytical representation of drainage to water-table aquifers from the unsaturated zone than that which was available in the initial versions of the code. The revised drainage model explicitly accounts for hydraulic characteristics of the unsaturated zone, specifically, the moisture retention and relative hydraulic conductivity of the soil. The revised program also retains the original conceptualizations of drainage from the unsaturated zone that were available with version 1 of the program to provide alternative approaches to simulate the drainage process. Version 2 of the program includes all other simulation capabilities of the first versions, including partial penetration of the pumped well and of observation wells and piezometers, well-bore storage and skin effects at the pumped well, and delayed drawdown response of observation wells and piezometers.

  17. ESTIMATION OF INFILTRATION RATE IN THE VADOSE ZONE: COMPILATION OF SIMPLE MATHEMATICAL MODELS - VOLUME I

    EPA Science Inventory

    The unsaturated or vadose zone provides a complex system for the simulation of water movement and contaminant transport and fate. Numerous models are available for performing simulations related to the movement of water. There exists extensive documentation of these models. Ho...

  18. Impact of switching crop type on water and solute fluxes in deep vadose zone

    NASA Astrophysics Data System (ADS)

    Turkeltaub, T.; Kurtzman, D.; Russak, E. E.; Dahan, O.

    2015-12-01

    Switching crop type and consequently changing irrigation and fertilization regimes lead to alterations in deep percolation and solute concentrations of pore water. Herein, observations from the deep vadose zone and model simulations demonstrate the changes in water, chloride, and nitrate fluxes under a commercial greenhouse following the change from tomato to lettuce cropping. The site, located above a phreatic aquifer, was monitored for 5 years. A vadose-zone monitoring system was implemented under the greenhouse and provided continuous data on both temporal variations in water content and chemical composition of the pore water at multiple depths in the deep vadose zone (up to 20 m). Following crop switching, a significant reduction in chloride concentration and dramatic increase in nitrate were observed across the unsaturated zone. The changes in chemical composition of the vadose-zone pore water appeared as sequential breakthroughs across the unsaturated zone, initiating at land surface and propagating down toward the water table. Today, 3 years after switching the crops, penetration of the impact exceeds 10 m depth. Variations in the isotopic composition of nitrate (18O and 15N) in water samples obtained from the entire vadose zone clearly support a fast leaching process and mobilization of solutes across the unsaturated zone following the change in crop type. Water flow and chloride transport models were calibrated to observations acquired during an enhanced infiltration experiment. Forward simulation runs were performed with the calibrated models, constrained to tomato and lettuce cultivation regimes as surface boundary conditions. Predicted chloride and nitrate concentrations were in agreement with the observed concentrations. The simulated water drainage and nitrogen leaching implied that the observed changes are an outcome of recommended agricultural management practices.

  19. Transport and time lag of chlorofluorocarbon gases in the unsaturated zone, Rabis Creek, Denmark

    USGS Publications Warehouse

    Engesgaard, Peter; Højberg, Anker L.; Hinsby, Klaus; Jensen, Karsten H.; Laier, Troels; Larsen, Flemming; Busenberg, Eurybiades; Plummer, Niel

    2004-01-01

    Transport of chlorofluorocarbon (CFC) gases through the unsaturated zone to the water table is affected by gas diffusion, air–water exchange (solubility), sorption to the soil matrix, advective–dispersive transport in the water phase, and, in some cases, anaerobic degradation. In deep unsaturated zones, this may lead to a time lag between entry of gases at the land surface and recharge to groundwater. Data from a Danish field site were used to investigate how time lag is affected by variations in water content and to explore the use of simple analytical solutions to calculate time lag. Numerical simulations demonstrate that either degradation or sorption of CFC-11 takes place, whereas CFC-12 and CFC-113 are nonreactive. Water flow did not appreciably affect transport. An analytical solution for the period with a linear increase in atmospheric CFC concentrations (approximately early 1970s to early 1990s) was used to calculate CFC profiles and time lags. We compared the analytical results with numerical simulations. The time lags in the 15-m-deep unsaturated zone increase from 4.2 to between 5.2 and 6.1 yr and from 3.4 to 3.9 yr for CFC-11 and CFC-12, respectively, when simulations change from use of an exponential to a linear increase in atmospheric concentrations. The CFC concentrations at the water table before the early 1990s can be estimated by displacing the atmospheric input function by these fixed time lags. A sensitivity study demonstrates conditions under which a time lag in the unsaturated zone becomes important. The most critical parameter is the tortuosity coefficient. The analytical approach is valid for the low range of tortuosity coefficients (τ = 0.1–0.4) and unsaturated zones greater than approximately 20 m in thickness. In these cases the CFC distribution may still be from either the exponential or linear phase. In other cases, the use of numerical models, as described in our work and elsewhere, is an option.

  20. Improved solution for saturated-unsaturated flow to a partially penetrating well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2009-12-01

    Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.

  1. Radial flow towards well in leaky unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Kuhlman, K. L.

    2012-12-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  2. Artificial recharge through a thick, heterogeneous unsaturated zone

    USGS Publications Warehouse

    Izbicki, J.A.; Flint, A.L.; Stamos, C.L.

    2008-01-01

    Thick, heterogeneous unsaturated zones away from large streams in desert areas have not previously been considered suitable for artificial recharge from ponds. To test the potential for recharge in these settings, 1.3 ?? 10 6 m3 of water was infiltrated through a 0.36-ha pond along Oro Grande Wash near Victorville, California, between October 2002 and January 2006. The pond overlies a regional pumping depression 117 m below land surface and is located where thickness and permeability of unsaturated deposits allowed infiltration and saturated alluvial deposits were sufficiently permeable to allow recovery of water. Because large changes in water levels caused by nearby pumping would obscure arrival of water at the water table, downward movement of water was measured using sensors in the unsaturated zone. The downward rate of water movement was initially as high as 6 m/d and decreased with depth to 0.07 m/d; the initial time to reach the water table was 3 years. After the unsaturated zone was wetted, water reached the water table in 1 year. Soluble salts and nitrate moved readily with the infiltrated water, whereas arsenic and chromium were less mobile. Numerical simulations done using the computer program TOUGH2 duplicated the downward rate of water movement, accumulation of water on perched zones, and its arrival at the water table. Assuming 10 ?? 10 6 m3 of recharge annually for 20 years, a regional ground water flow model predicted water level rises of 30 m beneath the ponds, and rises exceeding 3 m in most wells serving the nearby urban area.

  3. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    PubMed

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  4. Modelling nitrate from land-surface to wells-perforations under Mediterranean agricultural land: success, failure, and future scenarios

    NASA Astrophysics Data System (ADS)

    Levy, Yehuda; Chefetz, Benny; Shapira, Roi; Kurtzman, Daniel

    2017-04-01

    Contamination of groundwater resources by nitrate due to leaching under agricultural land is probably the most troublesome agriculture-related water contamination, worldwide. Deep soil sampling (10 m) were used for calibrating vertical flow and nitrogen-transport numerical models of the unsaturated zone, under different agricultural land uses. Vegetables fields (potato and strawberries) and deciduous (persimmon) orchards in the Sharon area overlaying the coastal aquifer of Israel, were examined. Average nitrate-nitrogen fluxes below vegetables fields were 210-290 kg ha-1 a-1 and under deciduous orchards were 110-140 kg ha-1 a-1. The output water and nitrate-nitrogen fluxes of the unsaturated zone models were used as input for a three dimensional flow and nitrate-transport model in the aquifer under an area of 13.3 square kilometers of agricultural land. The area was subdivided to 4 agricultural land-uses: vegetables, deciduous, citrus orchards and non-cultivated. Fluxes of water and nitrate-nitrogen below citrus orchards were taken from a previous study in this area (Kurtzman et al., 2013, j. Contam. Hydrol.). The groundwater flow model was calibrated to well heads only by changing the hydraulic conductivity while transient recharge fluxes were constraint to the bottom-fluxes of the unsaturated zone flow models. The nitrate-transport model in the aquifer, which was fed at the top by the nitrate fluxes of the unsaturated zone models, succeeded in reconstructing the average nitrate concentration in the wells. On the other hand, this transport model failed in calculating the high concentrations in the most contaminated wells and the large spatial variability of nitrate-concentrations in the aquifer. In order to reconstruct the spatial variability and enable predictions nitrate-fluxes from the unsaturated zone were multiplied by local multipliers. This action was rationalized by the fact that the high concentrations in some wells cannot be explained by regular agricultural activity, and are probably a result of some malfunction in the well area. Prediction of the nitrate concentration 40 years to the future with 3 nitrogen-fertilization scenarios showed the following: 1) under "business as usual" fertilization scenario, the NO3 concentration will increase in average by 19 mg l-1; 2) In reducing 25% of the nitrogen fertilization mass scenario, the nitrate concentration in the aquifer will stabilize; 3) In reducing 50% of the nitrogen fertilization mass scenario, the concentration will decrease in average by 18 mg l-1.

  5. Data worth and prediction uncertainty for pesticide transport and fate models in Nebraska and Maryland, United States

    USDA-ARS?s Scientific Manuscript database

    Few studies have attempted to quantify mass balances of both pesticides and degradates in multiple agricultural settings of the United States. We used inverse modeling to calibrate the Root Zone Water Quality Model (RZWQM) for predicting the unsaturated-zone transport and fate of metolachlor, metola...

  6. Limited denitrification in glacial deposit aquifers having thick unsaturated zones (Long Island, USA)

    NASA Astrophysics Data System (ADS)

    Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert

    2013-12-01

    The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3-41.1 μmol L-1) and high dissolved oxygen concentrations (58-100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.

  7. Quasi 3D modeling of water flow in vadose zone and groundwater

    USDA-ARS?s Scientific Manuscript database

    The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In ...

  8. Comparison of different assimilation methodologies of groundwater levels to improve predictions of root zone soil moisture with an integrated terrestrial system model

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjuan; Kurtz, Wolfgang; Kollet, Stefan; Vereecken, Harry; Franssen, Harrie-Jan Hendricks

    2018-01-01

    The linkage between root zone soil moisture and groundwater is either neglected or simplified in most land surface models. The fully-coupled subsurface-land surface model TerrSysMP including variably saturated groundwater dynamics is used in this work. We test and compare five data assimilation methodologies for assimilating groundwater level data via the ensemble Kalman filter (EnKF) to improve root zone soil moisture estimation with TerrSysMP. Groundwater level data are assimilated in the form of pressure head or soil moisture (set equal to porosity in the saturated zone) to update state vectors. In the five assimilation methodologies, the state vector contains either (i) pressure head, or (ii) log-transformed pressure head, or (iii) soil moisture, or (iv) pressure head for the saturated zone only, or (v) a combination of pressure head and soil moisture, pressure head for the saturated zone and soil moisture for the unsaturated zone. These methodologies are evaluated in synthetic experiments which are performed for different climate conditions, soil types and plant functional types to simulate various root zone soil moisture distributions and groundwater levels. The results demonstrate that EnKF cannot properly handle strongly skewed pressure distributions which are caused by extreme negative pressure heads in the unsaturated zone during dry periods. This problem can only be alleviated by methodology (iii), (iv) and (v). The last approach gives the best results and avoids unphysical updates related to strongly skewed pressure heads in the unsaturated zone. If groundwater level data are assimilated by methodology (iii), EnKF fails to update the state vector containing the soil moisture values if for (almost) all the realizations the observation does not bring significant new information. Synthetic experiments for the joint assimilation of groundwater levels and surface soil moisture support methodology (v) and show great potential for improving the representation of root zone soil moisture.

  9. High-quality unsaturated zone hydraulic property data for hydrologic applications

    USGS Publications Warehouse

    Perkins, Kimberlie; Nimmo, John R.

    2009-01-01

    In hydrologic studies, especially those using dynamic unsaturated zone moisture modeling, calculations based on property transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values has become increasingly common with the use of neural networks. High-quality data are needed for databases used in this way and for theoretical and property transfer model development and testing. Hydraulic properties predicted on the basis of existing databases may be adequate in some applications but not others. An obvious problem occurs when the available database has few or no data for samples that are closely related to the medium of interest. The data set presented in this paper includes saturated and unsaturated hydraulic conductivity, water retention, particle-size distributions, and bulk properties. All samples are minimally disturbed, all measurements were performed using the same state of the art techniques and the environments represented are diverse.

  10. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  11. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    PubMed

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding the achievability of water quality targets. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Waste isolation and contaminant migration - Tools and techniques for monitoring the saturated zone-unsaturated zone-plant-atmosphere continuum

    USGS Publications Warehouse

    Andraski, Brian J.; Stonestrom, David A.; Nicholson, T.J.; Arlt, H.D.

    2011-01-01

    In 1976 the U.S. Geological Survey (USGS) began studies of unsaturated zone hydrology next to the Nation’s first commercial disposal facility for low-level radioactive waste (LLRW) near Beatty, NV. Recognizing the need for long-term data collection, the USGS in 1983 established research management areas in the vicinity of the waste-burial facility through agreements with the Bureau of Land Management and the State of Nevada. Within this framework, the Amargosa Desert Research Site (ADRS; http://nevada.usgs.gov/adrs/) is serving as a field laboratory for the sustained study of water-, gas-, and contaminant-transport processes, and the development of models and methods to characterize flow and transport. The research is built on multiple lines of data that include: micrometeorology; evapotranspiration; plant metrics; soil and sediment properties; unsaturated-zone moisture, temperature, and gas composition; geology and geophysics; and groundwater. Contaminant data include tritium, radiocarbon, volatile-organic compounds (VOCs), and elemental mercury. Presented here is a summary of monitoring tools and techniques that are being applied in studies of waste isolation and contaminant migration.

  13. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    NASA Astrophysics Data System (ADS)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.

  14. Simplified subsurface modelling: data assimilation and violated model assumptions

    NASA Astrophysics Data System (ADS)

    Erdal, Daniel; Lange, Natascha; Neuweiler, Insa

    2017-04-01

    Integrated models are gaining more and more attention in hydrological modelling as they can better represent the interaction between different compartments. Naturally, these models come along with larger numbers of unknowns and requirements on computational resources compared to stand-alone models. If large model domains are to be represented, e.g. on catchment scale, the resolution of the numerical grid needs to be reduced or the model itself needs to be simplified. Both approaches lead to a reduced ability to reproduce the present processes. This lack of model accuracy may be compensated by using data assimilation methods. In these methods observations are used to update the model states, and optionally model parameters as well, in order to reduce the model error induced by the imposed simplifications. What is unclear is whether these methods combined with strongly simplified models result in completely data-driven models or if they can even be used to make adequate predictions of the model state for times when no observations are available. In the current work we consider the combined groundwater and unsaturated zone, which can be modelled in a physically consistent way using 3D-models solving the Richards equation. For use in simple predictions, however, simpler approaches may be considered. The question investigated here is whether a simpler model, in which the groundwater is modelled as a horizontal 2D-model and the unsaturated zones as a few sparse 1D-columns, can be used within an Ensemble Kalman filter to give predictions of groundwater levels and unsaturated fluxes. This is tested under conditions where the feedback between the two model-compartments are large (e.g. shallow groundwater table) and the simplification assumptions are clearly violated. Such a case may be a steep hill-slope or pumping wells, creating lateral fluxes in the unsaturated zone, or strong heterogeneous structures creating unaccounted flows in both the saturated and unsaturated compartments. Under such circumstances, direct modelling using a simplified model will not provide good results. However, a more data driven (e.g. grey box) approach, driven by the filter, may still provide an improved understanding of the system. Comparisons between full 3D simulations and simplified filter driven models will be shown and the resulting benefits and drawbacks will be discussed.

  15. Analytical and numerical analyses of an unconfined aquifer test considering unsaturated zone characteristics

    USGS Publications Warehouse

    Moench, A.F.

    2008-01-01

    A 7-d, constant rate aquifer test conducted by University of Waterloo researchers at Canadian Forces Base Borden in Ontario, Canada, is useful for advancing understanding of fluid flow processes in response to pumping from an unconfined aquifer. Measured data include not only drawdown in the saturated zone but also volumetric soil moisture measured at various times and distances from the pumped well. Analytical analyses were conducted with the model published in 2001 by Moench and colleagues, which allows for gradual drainage but does not include unsaturated zone characteristics, and the model published in 2006 by Mathias and Butler, which assumes that moisture retention and relative hydraulic conductivity (RHC) in the unsaturated zone are exponential functions of pressure head. Parameters estimated with either model yield good matches between measured and simulated drawdowns in piezometers. Numerical analyses were conducted with two versions of VS2DT: one that uses traditional Brooks and Corey functional relations and one that uses a RHC function introduced in 2001 by Assouline that includes an additional parameter that accounts for soil structure and texture. The analytical model of Mathias and Butler and numerical model of VS2DT with the Assouline model both show that the RHC function must contain a fitting parameter that is different from that used in the moisture retention function. Results show the influence of field-scale heterogeneity and suggest that the RHC at the Borden site declines more rapidly with elevation above the top of the capillary fringe than would be expected if the parameters were to reflect local- or core-scale soil structure and texture.

  16. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  17. Effects of Unsaturated Zones on Baseflow Recession: Analytical Solution and Application

    NASA Astrophysics Data System (ADS)

    Zhan, H.; Liang, X.; Zhang, Y. K.

    2017-12-01

    Unsaturated flow is an important process in baseflow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. Semi-analytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. The result indicates that a larger dimensionless constitutive exponent κD of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. For late times, the power index b of the recession curve-dQ/dt aQb, is 1 and independent of κD, where Q is the baseflow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→1. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  18. Base flow recession from unsaturated-saturated porous media considering lateral unsaturated discharge and aquifer compressibility

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith

    2017-09-01

    Unsaturated flow is an important process in base flow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. The effects of the lateral discharge of the unsaturated zone and aquifer compressibility are specifically taken into consideration. Semianalytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. A larger dimensionless constitutive exponent κD (a smaller retention capacity) of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. The compressibility of the aquifer has a nonnegligible impact on the discharge at early times. For late times, the power index b of the recession curve -dQ/dt˜ aQb, is 1 and independent of κD, where Q is the base flow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→0. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  19. Hydrology of the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Lecain, Gary D.; Stuckless, John S.

    2012-01-01

    The unsaturated zone at Yucca Mountain was investigated as a possible site for the nation's first high-level nuclear waste repository. Scientific investigations included infiltration studies, matrix properties testing, borehole testing and monitoring, underground excavation and testing, and the development of conceptual and numerical models of the hydrologic processes at Yucca Mountain. Infiltration estimates by empirical and geochemical methods range from 0.2 to 1.4 mm/yr and 0.2–6.0 mm/yr, respectively. Infiltration estimates from numerical models range from 4.5 mm/yr to 17.6 mm/yr. Rock matrix properties vary vertically and laterally as the result of depositional processes and subsequent postdepositional alteration. Laboratory tests indicate that the average matrix porosity and hydraulic conductivity values for the main level of the proposed repository (Topopah Spring Tuff middle nonlithophysal zone) are 0.08 and 4.7 × 10−12 m/s, respectively. In situ fracture hydraulic conductivity values are 3–6 orders of magnitude greater. The permeability of fault zones is approximately an order of magnitude greater than that of the surrounding rock unit. Water samples from the fault zones have tritium concentrations that indicate some component of postnuclear testing. Gas and water vapor movement through the unsaturated zone is driven by changes in barometric pressure, temperature-induced density differences, and wind effects. The subsurface pressure response to surface barometric changes is controlled by the distribution and interconnectedness of fractures, the presence of faults and their ability to conduct gas and vapor, and the moisture content and matrix permeability of the rock units. In situ water potential values are generally less than −0.2 MPa (−2 bar), and the water potential gradients in the Topopah Spring Tuff units are very small. Perched-water zones at Yucca Mountain are associated with the basal vitrophyre of the Topopah Spring Tuff or the Calico Hills bedded tuff. Thermal gradients in the unsaturated zone vary with location, and range from ~2.0 °C to 6.0 °C per 100 m; the variability appears to be associated with topography. Large-scale heater testing identified a heat-pipe signature at ~97 °C, and identified thermally induced and excavation-induced changes in the stress field. Elevated gas-phase CO2 concentrations and a decrease in the pH of water from the condensation zone also were identified. Conceptual and numerical flow and transport models of Yucca Mountain indicate that infiltration is highly variable, both spatially and temporally. Flow in the unsaturated zone is predominately through fractures in the welded units of the Tiva Canyon and Topopah Spring Tuffs and predominately through the matrix in the Paintbrush Tuff nonwelded units and Calico Hills Formation. Isolated, transient, fast-flow paths, such as faults, do exist but probably carry only a small portion of the total liquid-water flux at Yucca Mountain. The Paintbrush Tuff nonwelded units act as a storage buffer for transient infiltration pulses. Faults may act as flow boundaries and/or fast pathways. Below the proposed repository horizon, low-permeability lithostratigraphic units of the Topopah Spring Tuff and/or the Calico Hills Formation may divert flow laterally to faults that act as conduits to the water table. Advective transport pathways are consistent with flow pathways. Matrix diffusion is the major mechanism for mass transfer between fractures and the matrix and may contribute to retardation of radionuclide transport when fracture flow is dominant. Sorption may retard the movement of radionuclides in the unsaturated zone; however, sorption on mobile colloids may enhance radionuclide transport. Dispersion is not expected to be a major transport mechanism in the unsaturated zone at Yucca Mountain. Natural analogue studies support the concepts that percolating water may be diverted around underground openings and that the percentage of infiltration that becomes seepage decreases as infiltration decreases.

  20. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  1. Limited denitrification in glacial deposit aquifers having thick unsaturated zones (Long Island, USA)

    USGS Publications Warehouse

    Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert

    2013-01-01

    The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3–41.1 μmol L−1) and high dissolved oxygen concentrations (58–100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.

  2. Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating

    USGS Publications Warehouse

    Han, Liang-Feng; Plummer, Niel

    2013-01-01

    The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of organic carbon, radiocarbon ages are best estimated by inverse geochemical modeling techniques.

  3. Gas transport in unsaturated porous media: the adequacy of Fick's law

    USGS Publications Warehouse

    Thorstenson, D.C.; Pollock, D.W.

    1989-01-01

    The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. -from Authors

  4. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    NASA Astrophysics Data System (ADS)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  5. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Guzel D.; Neuman, Shlomo P.

    2007-01-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman (1972, 1974) by accounting for unsaturated flow above the water table. Three-dimensional, axially symmetric flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length or, equivalently, a dimensionless exponent κD = κb, where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan (1975), who, however, have ignored internal (artesian) aquifer storage. According to Kroszynski and Dagan, aquifers that are not excessively shallow have values of κD (their parameter a) much greater than 10. We find that in such typical cases, unsaturated flow has little impact on early and late dimensionless time drawdown a short distance below the water table. Unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian-dominated to a late water-table-dominated flow regime. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as κD → ∞, this effect dies out, and drawdown is controlled entirely by delayed decline in the water table as in the model of Neuman. The unsaturated zone has a major impact on drawdown at intermediate time and a significant impact at early and late times, in the atypical case of κD ≤ 1, becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant). Our new solution was used to analyze field data from a pumping test conducted by Moench et al. (2001) in a glacial outwash deposit at Cape Cod, Massachusetts. The solution was fitted individually and simultaneously to time-drawdown data from 20 piezometers and observation wells and simultaneously to data from three piezometers in each of two clusters at various depths and distances from the pumping well, with very good results. Our parameter estimates of hydraulic conductivities from the simultaneous fit are similar to those obtained previously by Moench (2004), but our estimates of specific yield and storage are smaller and larger, respectively, while our estimate of κ is not comparable with his estimates of three empirical parameters.

  6. PHT3D-UZF: A reactive transport model for variably-saturated porous media

    USGS Publications Warehouse

    Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric D.; Prommer, H.

    2016-01-01

    A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.

  7. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  8. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  9. Three-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (3DFATMIC) Model

    EPA Pesticide Factsheets

    This model simulates subsurface flow, fate and transport of contaminants that are undergoing chemical or biological transformations. The model is applicable to transient conditions in both saturated and unsaturated zones.

  10. Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) Model

    EPA Pesticide Factsheets

    This model simulates subsurface flow, fate, and transport of contaminants that are undergoing chemical or biological transformations. This model is applicable to transient conditions in both saturated and unsaturated zones.

  11. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    USGS Publications Warehouse

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  12. Determination of Transport Parameters in Unsaturated Zone by Tracer Experiment in the Porous Aquifer located at Ljubljana, Slovenia

    NASA Astrophysics Data System (ADS)

    Vidmar, S.; Cencur Curk, B.

    2009-04-01

    The gravel sandy aquifer of Ljubljansko polje is the source of drinking water for nearly 300.000 inhabitants of the Ljubljana city and vicinity. There are two main waterworks: Kleče and Hrastje. The plain area of Ljubljansko polje is a tectonic sink and consists of river sediments that can reach in thickness more than 100 m in the deepest part. The bedrock is the impermeable permocarbonic clayey shale, mudstones and sandstones. The hydraulic conductivity of Ljubljansko polje sediments is very good, from 10-2 m/s in the central part to 3.7•10-3 m/s on the borders of the plain. The average groundwater level is 20 m below surface. A numerical groundwater flow model was established for the wider area of the Ljubljansko polje aquifer. The fore mentioned model was not calibrated on solute transport parameters but only on water levels and this lead to unreliability in the transport model and its predictions of pollution scenarios. The transport model needs to calculate reliable scenarios of pollution dispersion, which can only be achieved with the application of real transport parameters. Human activities in the area of the Hrastje waterworks of Ljubljana threaten to degrade groundwater quality. For this reason several tracer experiments were carried out in the past. Despite a great risk, the experiments were performed on the catchment area of the Hrastje waterworks, inside the second water protection zone. During the experiments the water from Hrastje waterworks was still in use for drinking water supply. The tracer experiments were carried out in order to determine the solute transport parameters such as advection, dispersion and sorption. The research proved that the tracers could be used safely on sensitive area and that the researchers are capable and qualified to carry it out with a highest level of security. Since none of the past tracer experiments, carried out in the same area, gave us any detailed information on pollutant spreading in unsaturated zone a new tracer experiment was performed. Uranine was used as a tracer with a single time injection (1 kg) directly into the unsaturated zone. To achieve no sorption on organic particles the top layer of the ground (approx. 1m) was removed. The concentrations of the tracer spreading were observed in the well which is down gradient (approx. 22m) from the injection point. The tracer experiment was monitored for 305 days with records recorded every 4 minutes. All major events observed from the breakthrough curve, corresponded to rain events with a different delay depending on the water content in the unsaturated zone. When the unsaturated zone contains water the response in the observation well was faster than when the unsaturated zone was dry. The obtained data have been used in an analytical method (Multi-Dispersion-Model (MDM)). This solution provided the following transport parameters: mean transit time, mean velocity, longitudinal dispersion and dispersivity. The obtained parameters from the analytical solution will also be verified in the numerical model. The final results should enable better knowledge of the solute transport parameters and thus a better understanding of pollution dispersion as a help for water supply management system including measures for pollution prevention and as an actions/measure scenario in case of pollution.

  13. Data from a thick unsaturated zone in Joshua Tree, San Bernardino County, California, 2007--09

    USGS Publications Warehouse

    Burgess, Matthew; Izbicki, John; Teague, Nicholas; O'Leary, David R.; Clark, Dennis; Land, Michael

    2012-01-01

    Data were collected on the physical properties of unsaturated alluvial deposits, the chemical composition of leachate extracted from unsaturated alluvial deposits, the chemical and isotopic composition of groundwater and unsaturated-zone water, and the chemical composition of unsaturated-zone gas at four monitoring sites in the southwestern part of the Mojave Desert in the town of Joshua Tree, San Bernardino County, California. The presence of denitrifying and nitrate-reducing bacteria from unsaturated alluvial deposits was evaluated for two of these monitoring sites that underlie unsewered residential development. Four unsaturated-zone monitoring sites were installed in the Joshua Tree area—two in an unsewered residential development and two adjacent to a proposed artificial-recharge site in an undeveloped area. The two boreholes in residential development areas were installed by using the ODEX air-hammer method. One borehole was drilled through the unsaturated zone to a depth of 541 ft (feet) below land surface; a well screened across the water table was installed. Groundwater was sampled from this well. The second borehole was drilled to a depth of 81 ft below land surface. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described. Core material was analyzed for water content, bulk density, matric potential, particle size, and water retention. The leachate from over 500 subsamples of cores and cuttings was analyzed for soluble anions, including fluoride, sulfate, bromide, chloride, nitrate, nitrite, and orthophosphate. Groundwater was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone water from suction-cup lysimeters was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone gas samples were analyzed for argon, oxygen, nitrogen, methane, carbon dioxide, ethane, nitrous oxide, and carbon monoxide. Drill cuttings were analyzed for denitrifying and nitrate-reducing bacteria. One of the boreholes installed adjacent to the Joshua Basin Water District proposed groundwater-recharge facility was installed by using the ODEX air-hammer method and the other was installed by using a 7.875-inch hollow-stem auger. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described; however, geochemical data were not available at the time of publication.

  14. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  15. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  16. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  17. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  18. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  19. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA

    USGS Publications Warehouse

    Fisher, R.S.; Mullican, W. F.

    1997-01-01

    Groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA, occurs in both carbonate and siliciclastic aquifers beneath a thick unsaturated zone and in shallow Rio Grande alluvium. Groundwater hydrochemical evolution was investigated by analyzing soils, soil leachates, bolson-fill sediments, water from the unsaturated zone, and groundwater from three major aquifers. Ionic relations, mineral saturation states, and geochemical modeling show that groundwater compositions are controlled by reactions in the unsaturated zone, mineralogy of unsaturated sediments and aquifers, position in the groundwater flow system, and extensive irrigation. Recharge to aquifers unaffected by irrigation is initially a Ca-HCO3 type as a result of dissolving carbonate surficial salts. With continued flow and mineral-water interaction, saturation with calcite and dolomite is maintained, gypsum is dissolved, and aqueous Ca and Mg are exchanged for adsorbed Na to produce a Na-SO4 water. Groundwater in Rio Grande alluvium is a Na-Cl type, reflecting river-water composition and the effects of irrigation, evapotranspiration, and surficial salt recycling. These results document two hydrochemical evolution paths for groundwater in arid lands. If recharge is dilute precipitation, significant changes in water chemistry can occur in unsaturated media, ion exchange can be as important as dissolution-precipitation reactions in determining groundwater composition, and mineral-water reactions ultimately control groundwater composition. If recharge is return flow of irrigation water that already contains appreciable solutes, mineral-water reactions are less important than irrigation-water composition in determining groundwater chemistry.

  20. Reactive transport simulations of alternative flow pathways in the ambient unsaturated zone at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Browning, L.; Murphy, W.; Manepally, C.; Fedors, R.

    2003-04-01

    Uncertainties in simulated ambient system unsaturated zone flow could have a significant impact on performance evaluations of the proposed nuclear waste repository at Yucca Mountain, Nevada. In addition to determining variations in the quantity of water available to corrode engineered materials and transport radionuclides, model assumptions regarding flow pathways may significantly affect estimates of groundwater chemistry. The manner and extent to which groundwater compositions evolve along a flow pathway are determined mainly by thermohydrologic conditions, the types of reactive materials encountered, and the interaction times with those materials. Simulated groundwater compositions can thus vary significantly depending on whether or not the flow model includes lateral diversion of infiltrating waters, or preferential flow pathways in variably-saturated materials. To assist a regulatory review of a potential license application for a geologic repository for high-level waste, we developed a reactive transport model for the ambient hydrogeochemical system at Yucca Mountain. The model simulates two phase, nonisothermal, advective and diffusive flow and transport through a one dimensional, matrix and fracture continua (dual permeability) containing ten kinetically reactive hydrostatigraphic layers in the vicinity of the SD-9 borehole at Yucca Mountain. In this presentation, we describe how the model was used to evaluate alternative ambient unsaturated zone flow pathways proposed by the U.S. Department of Energy. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.

  1. Effects of carbon dioxide variations in the unsaturated zone on water chemistry in a glacial-outwash aquifer

    USGS Publications Warehouse

    Lee, R.W.

    1997-01-01

    The research site at Otis Air Base, Cape Cod, Massachusetts, has been developed for hydrogeological and geochemical studies of sewage-effluent contaminated groundwater since 1982. Research of hydrologic properties, transport, and chemical and biological processes is ongoing, but the origin of background water chemistry has not been determined. The principal geochemical process giving rise to the observed background water chemistry is CO2-controlled hydrolysis of Na feldspar. Geochemical modeling demonstrated that CO2 sources could vary over the project area. Analyses of unsaturated zone gases showed variations in CO2 which were dependent on land use and vegetative cover in the area of groundwater recharge. Measurements of CO2 in unsaturated-zone gases showed that concentrations of total inorganic C in recharge water should range from about 0.035 to 1.0 mmoles/L in the vicinity of Otis Air Base. Flux of CO2 from the unsaturated zone varied for a principal land uses, ranging from 86 gC/m2/yr for low vegetated areas to 1630 gC/m2/yr for a golf course. Carbon dioxide flux from woodlands was 220 gC/m2/yr, lower than reported fluxes of 500 to 600 gC/m2/yr for woodlands in a similar climate. Carbon dioxide flux from grassy areas was 540 gC/m2/yr, higher than reported fluxes of 230 to 490 gC/m2/yr for grasslands in a similar climate.

  2. Effects of unsaturated zone on ground-water mounding

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Marino, M.A.

    1999-01-01

    The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water, or the interception of the basin floor by the capillary fringe.

  3. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-04-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3- at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3- extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3- transport processes in a statistical framework based on readily mappable GIS input variables.

  4. Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers.

    PubMed

    Yuan, Lijuan; Pang, Zhonghe; Huang, Tianming

    2012-12-01

    By employing chemical and isotopic tracers ((15)N and (18)O in NO(3)(-)), we investigated the main processes controlling nitrate distribution in the unsaturated zone and aquifer. Soil water was extracted from two soil cores drilled in a typical agricultural cropping area of the North China Plain (NCP), where groundwater was also sampled. The results indicate that evaporation and denitrification are the two major causes of the distribution of nitrate in soil water extracts in the unsaturated zone. Evaporation from unsaturated zone is evidenced by a positive correlation between chloride and nitrate, and denitrification by a strong linear relationship between [Formula: see text] and ln(NO(3)(-)/Cl). The latter is estimated to account for up to 50% of the nitrate loss from soil drainage. In the saturated zone, nitrate is reduced at varying extents (100 mg/L and 10 mg/L at two sites, respectively), largely by dilution of the aquifer water. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. COMPILATION OF SATURATED AND UNSATURATED ZONE MODELING SOFTWARE (EPA/600/SR-96/009)

    EPA Science Inventory

    The study reflects the ongoing groundwater modeling information collection and processing activities at the International Ground Water Modeling Center (IGWMC). The full report briefly discusses the information acquisition and processing procedures, the MARS information database, ...

  6. EVALUATION OF UNSATURATED/VADOSE ZONE MODELS FOR SUPERFUND SITES

    EPA Science Inventory

    Mathematical models of water and chemical movement in soils are being used as decision aids for defining groundwater protection practices for Superfund sites. Numerous transport models exist for predicting movementand degradation of hazardous chemicals through soils. Many of thes...

  7. EVALUATION OF UNSATURATED/VADOSE ZONE MODELS FOR SUPERFUND SITES

    EPA Science Inventory

    Mathematical models of water and chemical movement in soils are being used as decision aids for defining groundwater protection practices for Superfund sites. umerous transport models exist for predicting movement and degradation of hazardous chemicals through soil& Many of these...

  8. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    NASA Astrophysics Data System (ADS)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown during this transition period is caused by delayed drainage from the unsaturated zone, whose relatively small effect is superimposed on the more pronounced phenomenon of delay in water table decline relative to artesian head drops below it. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as it approaches infinity, this effect dies out completely and drawdown is controlled entirely by delayed decline in the water table. The unsaturated zone has major impact on drawdown at intermediate time, and significant impact at early and late times, in the atypical case of small κD values (1 or less), becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant).

  9. Evaluation of volatilization as a natural attenuation pathway for MTBE

    USGS Publications Warehouse

    Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.

    2004-01-01

    Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m-2/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.

  10. Using environmental tracers to determine the relative importance of travel times in the unsaturated and saturated zones for the delay of nitrate reduction measures

    NASA Astrophysics Data System (ADS)

    Gerber, Christoph; Purtschert, Roland; Hunkeler, Daniel; Hug, Rainer; Sültenfuss, Jürgen

    2018-06-01

    Groundwater quality in many regions with intense agriculture has deteriorated due to the leaching of nitrate and other agricultural pollutants. Modified agricultural practices can reduce the input of nitrate to groundwater bodies, but it is crucial to determine the time span over which these measures become effective at reducing nitrate levels in pumping wells. Such estimates can be obtained from hydrogeological modeling or lumped-parameter models (LPM) in combination with environmental tracer data. Two challenges in such tracer-based estimates are (i) accounting for the different modes of transport in the unsaturated zone (USZ), and (ii) assessing uncertainties. Here we extend a recently published Bayesian inference scheme for simple LPMs to include an explicit USZ model and apply it to the Dünnerngäu aquifer, Switzerland. Compared to a previous estimate of travel times in the aquifer based on a 2D hydrogeological model, our approach provides a more accurate assessment of the dynamics of nitrate concentrations in the aquifer. We find that including tracer measurements (3H/3He, 85Kr, 39Ar, 4He) reduces uncertainty in nitrate predictions if nitrate time series at wells are not available or short, but does not necessarily lead to better predictions if long nitrate time series are available. Additionally, the combination of tracer data with nitrate time series allows for a separation of the travel times in the unsaturated and saturated zone.

  11. MODELING LEACHING OF VIRUSES BY THE MONTE CARLO METHOD

    EPA Science Inventory

    A predictive screening model was developed for fate and transport
    of viruses in the unsaturated zone. A database of input parameters
    allowed Monte Carlo analysis with the model. The resulting kernel
    densities of predicted attenuation during percolation indicated very ...

  12. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    USGS Publications Warehouse

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (<1 mm y−1), as it may be at many locations in a desert landscape, the thermal vapor flux must be balanced mostly by a matric‐potential‐induced upward flux of water. This return flux may include both vapor and liquid components. Below any near‐surface zone of weather‐related fluctuations of matric potential, maintenance of this upward flux requires an increase with depth in the annual mean matric potential; this theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.

  13. Pumping Test Determination of Unsaturated Aquifer Properties

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum likelihood- based model selection criteria to compare the abilities of numerical models based on the STOMP code to reproduce observed drawdowns during the test when saturated and unsaturated aquifer parameters are estimated either in the above manner or by means of the inverse code PEST.

  14. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone.

    PubMed

    Wang, L; Butcher, A S; Stuart, M E; Gooddy, D C; Bloomfield, J P

    2013-10-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the 'store' of nitrate and its potentially long travel time in the unsaturated and saturated zones. However, this time lag is rarely considered in current water nitrate management and policy development. The aim of this study was to develop a catchment-scale integrated numerical method to investigate the nitrate lag time in the groundwater system, and the Eden Valley, UK, was selected as a case study area. The method involves three models, namely the nitrate time bomb-a process-based model to simulate the nitrate transport in the unsaturated zone (USZ), GISGroundwater--a GISGroundwater flow model, and N-FM--a model to simulate the nitrate transport in the saturated zone. This study answers the scientific questions of when the nitrate currently in the groundwater was loaded into the unsaturated zones and eventually reached the water table; is the rising groundwater nitrate concentration in the study area caused by historic nitrate load; what caused the uneven distribution of groundwater nitrate concentration in the study area; and whether the historic peak nitrate loading has reached the water table in the area. The groundwater nitrate in the area was mainly from the 1980s to 2000s, whilst the groundwater nitrate in most of the source protection zones leached into the system during 1940s-1970s; the large and spatially variable thickness of the USZ is one of the major reasons for unevenly distributed groundwater nitrate concentrations in the study area; the peak nitrate loading around 1983 has affected most of the study area. For areas around the Bowscar, Beacon Edge, Low Plains, Nord Vue, Dale Springs, Gamblesby, Bankwood Springs, and Cliburn, the peak nitrate loading will arrive at the water table in the next 34 years; statistical analysis shows that 8.7 % of the Penrith Sandstone and 7.3 % of the St Bees Sandstone have not been affected by peak nitrate. This research can improve the scientific understanding of nitrate processes in the groundwater system and support the effective management of groundwater nitrate pollution for the study area. With a limited number of parameters, the method and models developed in this study are readily transferable to other areas.

  15. Sanitary protection zoning based on time-dependent vulnerability assessment model - case examples at two different type of aquifers

    NASA Astrophysics Data System (ADS)

    Živanović, Vladimir; Jemcov, Igor; Dragišić, Veselin; Atanacković, Nebojša

    2017-04-01

    Delineation of sanitary protection zones of groundwater source is a comprehensive and multidisciplinary task. Uniform methodology for protection zoning for various type of aquifers is not established. Currently applied methods mostly rely on horizontal groundwater travel time toward the tapping structure. On the other hand, groundwater vulnerability assessment methods evaluate the protective function of unsaturated zone as an important part of groundwater source protection. In some particular cases surface flow might also be important, because of rapid transfer of contaminants toward the zones with intense infiltration. For delineation of sanitary protection zones three major components should be analysed: vertical travel time through unsaturated zone, horizontal travel time through saturated zone and surface water travel time toward intense infiltration zones. Integrating the aforementioned components into one time-dependent model represents a basis of presented method for delineation of groundwater source protection zones in rocks and sediments of different porosity. The proposed model comprises of travel time components of surface water, as well as groundwater (horizontal and vertical component). The results obtained using the model, represent the groundwater vulnerability as the sum of the surface and groundwater travel time and corresponds to the travel time of potential contaminants from the ground surface to the tapping structure. This vulnerability assessment approach do not consider contaminant properties (intrinsic vulnerability) although it can be easily improved for evaluating the specific groundwater vulnerability. This concept of the sanitary protection zones was applied at two different type of aquifers: karstic aquifer of catchment area of Blederija springs and "Beli Timok" source of intergranular shallow aquifer. The first one represents a typical karst hydrogeological system with part of the catchment with allogenic recharge, and the second one, the groundwater source within shallow intergranular alluvial aquifer, dominantly recharged by river bank filtration. For sanitary protection zones delineation, the applied method has shown the importance of introducing all travel time components equally. In the case of the karstic source, the importance of the surface flow toward ponor zones has been emphasized, as a consequence of rapid travel time of water in relation to diffuse infiltration from autogenic part. When it comes to the shallow intergranular aquifer, the character of the unsaturated zone gets more prominent role in the source protection, as important buffer of the vertical movement downward. The applicability of proposed method has been shown regardless of the type of the aquifer, and at the same time intelligible results of the delineated sanitary protection zones are possible to validate with various methods. Key words: groundwater protection zoning, time dependent model, karst aquifer, intergranular aquifer, groundwater source protection

  16. Preferential Flow Paths In A Karstified Spring Catchment: A Study Of Fault Zones As Conduits To Rapid Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.

    2017-12-01

    In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.

  17. A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.

    1997-02-01

    Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.

  18. BIODEGRADATION OF HYDROCARBON VAPORS IN THE UNSATURATED ZONE

    EPA Science Inventory

    The time-averaged concentration of hydrocarbon and oxygen vapors were measured in the unsaturated zone above the residually contaminated capillary fringe at the U.S. Coast Guard Air Station in Traverse City, Michigan. Total hydrocarbon and oxygen vapor concentrations were observe...

  19. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    PubMed

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are <2 x 10(-14), and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  20. Relation of pathways and transit times of recharge water to nitrate concentrations using stable isotopes

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.; Komor, S.C.; Regan, C.P.

    2000-01-01

    Oxygen and hydrogen stable isotope values of precipitation, irrigation water, soil water, and ground water were used with soil-moisture contents and water levels to estimate transit times and pathways of recharge water in the unsaturated zone of a sand and gravel aquifer. Nitrate-nitrogen (nitrate) concentrations in ground water were also measured to assess their relation to seasonal recharge. Stable isotope values indicated that recharge water usually had a transit time through the unsaturated zone of several weeks to months. However, wetting fronts usually moved through the unsaturated zone in hours to weeks. The much slower transit of isotopic signals than that of wetting fronts indicates that recharge was predominantly composed of older soil water that was displaced downward by more recent infiltrating water. Comparison of observed and simulated isotopic values from pure-piston flow and mixing-cell water and isotope mass balance models indicates that soil water isotopic values were usually highly mixed. Thus, movement of recharge water did not occur following a pure piston-flow displacement model but rather follows a hydrid model involving displacement of mixed older soil water with new infiltration water. An exception to this model occurred in a topographic depression, where movement of water along preferential flowpaths to the water table occurred within hours to days following spring thaw as result of depression-focused infiltration of snow melt. In an adjacent upland area, recharge of snow melt occurred one to two months later. Increases in nitrate concentrations at the water table during April-May 1993 and 1994 in a topographic lowland within a corn field were related to recharge of water that had infiltrated the previous summer and was displaced from the unsaturated zone by spring infiltration. Increases in nitrate concentrations also occurred during July-August 1994 in response to recharge of water that infiltrated during May-August 1994. These results indicate that the largest ground water nitrate concentrations were associated with recharge of water that infiltrated into the soil during May-August, when most nitrogen fertilizer was applied.

  1. Measurement and modeling of unsaturated hydraulic conductivity: Chapter 21

    USGS Publications Warehouse

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K(). The parameters that describe the K() curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  2. Fast ground-water mixing and basal recharge in an unconfined, alluvial aquifer, Konza LTER Site, Northeastern Kansas

    USGS Publications Warehouse

    Macpherson, G.L.; Sophocleous, M.

    2004-01-01

    Ground-water chemistry and water levels at three levels in a well nest were monitored biweekly for two and a half years in a shallow unconfined floodplain aquifer in order to study the dynamics of such shallow aquifers. The aquifer, in northeastern Kansas, consists of high porosity, low hydraulic conductivity fine-grained sediments dominated by silt and bounded by fractured limestone and shale bedrock. Results show that the aquifer underwent chemical stratification followed by homogenization three times during the study period. The length of time between maximum stratification and complete homogenization was 3-5 months. The chemical parameters most useful for demonstrating the mixing trends were dissolved nitrate and sulfate. Higher nitrate concentrations were typical of unsaturated zone water and were sourced from fertilizer applied to the cultivated fields on the floodplain. Variations in sulfate concentrations are attributed to dissolution of rare gypsum in limestone bedrock and variable evapoconcentration in the unsaturated zone. The mixing of three chemically different waters (entrained, unsaturated-zone water; water entering the base of the floodplain aquifer; and water in residence before each mixing event) was simulated. The resident water component for each mixing event was a fixed composition based on measured water chemistry in the intermediate part of the aquifer. The entrained water composition was calculated using a measured composition of the shallow part of the aquifer and measurements of soil-water content in the unsaturated zone. The incoming basal water composition and the fractions of each mixing component were fitted to match the measured chemistry at the three levels in the aquifer. A conceptual model for this site explains: (1) rapid water-level rises, (2) water-chemistry changes at all levels in the aquifer coincident with the water-level rises, (3) low measured hydraulic conductivity of the valley fill and apparent lack of preferential flow pathways, (4) minuscule amounts of unsaturated-zone recharge, and (5) dissolved oxygen peaks in the saturated zone lagging water-level peaks. We postulate that rainfall enters fractures in bedrock adjacent to the floodplain. This recharge water moves rapidly through the fractured bedrock into the base of the floodplain aquifer. The recharge event through the bedrock causes a rapid rise in water level in the floodplain aquifer, and the chemistry of the deepest water in the floodplain aquifer changes at that time. The rising water also entrains slow-moving, nitrate-rich, unsaturated-zone water, altering the chemistry of water in the shallow part of the aquifer. Vertical chemical stratification in the aquifer is thus created by the change in water chemistry in the upper and lower parts of the saturated zone. As the water level begins to decline, the aquifer undergoes mixing that eventually results in homogeneous water chemistry. The rise in water level from the recharge event also displaces gas from the unsaturated zone that is then replaced as the water level declines following the recharge event. This new, oxygen-rich vadose-zone air equilibrates rapidly with saturated-zone water, resulting in a dissolved oxygen pulse in the ground water that peaks one-half to 2 months after the water-level peak. This oxygen pulse subsequently declines over a period of 2-6 months. ?? 2003 Elsevier B.V. All rights reserved.

  3. Vapor Intrusion Estimation Tool for Unsaturated Zone Contaminant Sources. User’s Guide

    DTIC Science & Technology

    2016-08-30

    324449 Page Intentionally Left Blank iii Executive Summary Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants...strength and location, vadose zone transport, and a model for estimating movement of soil -gas vapor contamination into buildings. The tool may be...framework for estimating the impact of a vadose zone contaminant source on soil gas concentrations and vapor intrusion into a building

  4. A steady state solution for ditch drainage problem with special reference to seepage face and unsaturated zone flow contribution: Derivation of a new drainage spacing eqaution

    NASA Astrophysics Data System (ADS)

    Yousfi, Ammar; Mechergui, Mohammed

    2016-04-01

    The seepage face is an important feature of the drainage process when recharge occurs to a permeable region with lateral outlets. Examples of the formation of a seepage face above the downstream water level include agricultural land drained by ditches. Flow problem to these drains has been investigated extensively by many researchers (e.g. Rubin, 1968; Hornberger et al. 1969; Verma and Brutsaert, 1970; Gureghian and Youngs, 1975; Vauclin et al., 1975; Skaggs and Tang, 1976; Youngs, 1990; Gureghian, 1981; Dere, 2000; Rushton and Youngs, 2010; Youngs, 2012; Castro-Orgaz et al., 2012) and may be tackled either using variably saturated flow models, or the complete 2-D solution of Laplace equation, or using the Dupuit-Forchheimer approximation; the most widely accepted methods to obtain analytical solutions for unconfined drainage problems. However, the investigation reported by Clement et al. (1996) suggest that accounting for the seepage face alone, as in the fully saturated flow model, does not improve the discharge estimate because of disregarding flow the unsaturated zone flow contribution. This assumption can induce errors in the location of the water table surface and results in an underestimation of the seepage face and the net discharge (e.g. Skaggs and Tang, 1976; Vauclin et al., 1979; Clement et al., 1996). The importance of the flow in the unsaturated zone has been highlighted by many authors on the basis of laboratory experiments and/or numerical experimentations (e.g. Rubin, 1968; Verma and Brutsaert, 1970; Todsen, 1973; Vauclin et al., 1979; Ahmad et al., 1993; Anguela, 2004; Luthin and Day, 1955; Shamsai and Narasimhan, 1991; Wise et al., 1994; Clement et al., 1996; Boufadel et al., 1999; Romano et al., 1999; Kao et al., 2001; Kao, 2002). These studies demonstrate the failure of fully saturated flow models and suggested that the error made when using these models not only depends on soil properties but also on the infiltration rate as reported by Kao et al. (2001). In this work, a novel solution based on theoretical approach will be adapted to incorporate both the seepage face and the unsaturated zone flow contribution for solving ditch drained aquifers problems. This problem will be tackled on the basis of the approximate 2D solution given by Castro-Orgaz et al. (2012). This given solution yields the generalized water table profile function with a suitable boundary condition to be determined and provides a modified DF theory which permits as an outcome the analytical determination of the seepage face. To assess the ability of the developed equation for water-table estimations, the obtained results were compared with numerical solutions to the 2-D problem under different conditions. It is shown that results are in fair agreement and thus the resulting model can be used for designing ditch drainage systems. With respect to drainage design, the spacings calculated with the newly derived equation are compared with those computed from the DF theory. It is shown that the effect of the unsaturated zone flow contribution is limited to sandy soils and The calculated maximum increase in drain spacing is about 30%. Keywords: subsurface ditch drainage; unsaturated zone; seepage face; water-table, ditch spacing equation

  5. Potential effects of roadside dry wells on groundwater quality on the Island of Hawai'i-Assessment using numerical groundwater models

    USGS Publications Warehouse

    Izuka, Scot K.

    2011-01-01

    Widespread use of dry wells to dispose of roadside runoff has raised concern about the potential effects on the quality of groundwater on the Island of Hawai‘i. This study used semi-generic numerical models of groundwater flow and contaminant transport to assess the potential effect of dry wells on groundwater quality on the Island of Hawai‘i. The semi-generic models are generalized numerical groundwater-flow and solute-transport models that have a range of aquifer properties and regional groundwater gradients that are characteristic for the island. Several semi-generic models were created to study the effect of dry wells in different hydrogeologic conditions, such as different unsaturated-zone thicknesses or different aquifer characteristics. Results indicate that mixing of contaminated water from the surface with contaminant-free water in the saturated aquifer immediately reduces the contaminant concentration. The amount the concentration is reduced depends on the hydraulic properties of the aquifer in a given area, the thickness of the unsaturated zone, and whether the infiltration is focused in a small area of a dry well or spread naturally over a larger area. Model simulations indicate that focusing infiltration of contaminated runoff through a dry well can substantially increase contaminant concentrations in the underlying saturated aquifer relative to infiltration under natural conditions. Simulated concentrations directly beneath a dry well were nearly 8 times higher than the simulated concentrations directly beneath a broad infiltration area representing the natural condition. Where dry wells are present, contaminant concentrations in the underlying saturated aquifer are lower when the unsaturated zone is thicker and higher when the unsaturated zone is thinner. Contaminant concentrations decline quickly as the contaminant plume migrates, with the regional groundwater flow, away from the dry well. The differences among concentrations resulting from the various unsaturated-zone thicknesses also diminish with distance from the dry well. At a horizontal distance of about 700 ft downgradient from the dry well, all simulated maximum concentrations were less than 1 percent of the concentration in the infiltration water; at about 0.5 mi downgradient from the dry well, all simulated concentrations were equal to or less than 0.1 percent. Actual concentrations may be even lower than indicated by the models because of processes such as decay and reaction that were not simulated. Hydrologic and geologic differences from one location to the next also affect contaminant concentrations—simulations using models with properties representative of aquifers in the Hilo area resulted in lower overall concentrations than models with properties representative of aquifers in the Kona area. Results from this study can be used to assess how contaminants entering a dry well may affect receiving waters in a variety of situations on the Island of Hawai‘i. Better assessment would be obtained by using results from models having the most similar conditions (such as climate, hydraulic properties, regional groundwater gradient) to the dry well in question. The results of this study can help determine which dry wells are likely to have the greatest effect on nearby receiving waters and where more specific data and analyses may be needed.

  6. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone

    USGS Publications Warehouse

    Lahvis, Matthew A.; Baehr, Arthur L.

    1996-01-01

    The distribution of oxygen and carbon dioxide gases in the unsaturated zone provides a geochemical signature of aerobic hydrocarbon degradation at petroleum product spill sites. The fluxes of these gases are proportional to the rate of aerobic biodegradation and are quantified by calibrating a mathematical transport model to the oxygen and carbon dioxide gas concentration data. Reaction stoichiometry is assumed to convert the gas fluxes to a corresponding rate of hydrocarbon degradation. The method is applied at a gasoline spill site in Galloway Township, New Jersey, to determine the rate of aerobic degradation of hydrocarbons associated with passive and bioventing remediation field experiments. At the site, microbial degradation of hydrocarbons near the water table limits the migration of hydrocarbon solutes in groundwater and prevents hydrocarbon volatilization into the unsaturated zone. In the passive remediation experiment a site-wide degradation rate estimate of 34,400 g yr−1 (11.7 gal. yr−1) of hydrocarbon was obtained by model calibration to carbon dioxide gas concentration data collected in December 1989. In the bioventing experiment, degradation rate estimates of 46.0 and 47.9 g m−2 yr−1(1.45 × 10−3 and 1.51 × 10−3 gal. ft.−2yr−1) of hydrocarbon were obtained by model calibration to oxygen and carbon dioxide gas concentration data, respectively. Method application was successful in quantifying the significance of a naturally occurring process that can effectively contribute to plume stabilization.

  7. Transport of volatile organic compounds across the capillary fringe

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Richard L.

    1993-01-01

    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  8. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    NASA Astrophysics Data System (ADS)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68% of recharge season precipitation, VWC RMSE=7.0%) predicting much greater drainage than HYDRUS (38% of recharge season precipitation, VWC RMSE=6.6%). Results also show that when calculating drainage flux over the recharge period, HYDRUS is highly sensitive to model initialization using observed water content from in-situ instrumentation. Simulated recharge season drainage flux is as much as 3.5 times higher when a one-month spin-up period was performed in the HYDRUS model for the same site. SWB results are less sensitive to water content initialization, but drainage flux is 1.6 times higher at one site using the same spin-up analysis. The long-term goals of this effort are to leverage the robust calibration data set to establish optimal approaches for determining hydraulic parameters such that water fluxes in the lower vadose zone can be modeled for a wider range of geomorphic settings where calibration data are unavailable.

  9. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    USGS Publications Warehouse

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-01-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3− at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3− extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3− transport processes in a statistical framework based on readily mappable GIS input variables.

  10. Monitoring radionuclide contamination in the unsaturated zone - Lessons learned at the Amargosa Desert Research Site, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Abraham, Jared D.; Andraski, Brian J.; Baker, Ronald J.; Mayers, C. Justin; Michel, Robert L.; Prudic, David E.; Striegl, Robert G.; Walvoord, Michelle Ann

    2004-01-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey’s Amargosa Desert Research Site (A DRS), adjacent to the Nation’s first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Results relevant to long- term monitoring of radionuclides are summarized as follows. Contaminant plumes have unexpected histories and spatial configurations due to uncertainties in the: (1) geologic framework, (2) biochemical reactions involving waste components, (3) interactions between plume components and unsaturated-zone materials, (4) disposal practices, and (5) physical transport processes. Information on plume dynamics depends on ex-situ wet-chemical techniques because in-situ sensors for the radionuclides of interest do not exist. As at other radioactive-waste disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs). Carbon-dioxide and VOC anomalies provide proxies for radioactive contamination. Contaminants in the unsaturated zone migrate along preferential pathways. Effective monitoring thus requires accurate geologic characterization. Direct- current electrical-resistivity imaging successfully mapped geologic units controlling preferential transport at the ADRS. Direct sampling of water from the unsaturated zone is complex and time consuming. Sampling plant water is an efficient alternative for mapping shallow tritium contamination.

  11. COMPILATION OF SATURATED AND UNSATURATED ZONE MODELING SOFTWARE

    EPA Science Inventory

    The full report provides readers an overview of available ground-water modeling programs and related software. It is an update of EPA/600/R-93/118 and EPA/600/R-94/028, two previous reports from the same program at the International Ground Water Modeling Center (IGWMC) in Colora...

  12. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.

    2014-08-01

    A unique conceptual model describing the conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE to keep from considering hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. The evaluation presented in this paper shows that no computational modeling results have yet produced a satisfactory match with the empirical benchmark data, specifically with age and fluid inclusion data that indicate high temperatures (up to ca. 80 °C) in the unsaturated zone of Yucca Mountain. Auxiliary sub-models complementing the DOE model, as well as observations at a natural analog site, have also been evaluated. Summarily, the model cannot be considered as validated. Due to the lack of validation, the reliance on this model must be discontinued and the appropriateness of decisions which rely on this model must be re-evaluated.

  13. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  14. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  15. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  16. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  17. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  18. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Gonnenthal; N. Spyoher

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THCmore » Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required to fully document and address the requirements of the TWPs.« less

  19. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Sonnenthale

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THCmore » seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required to fully document and address the requirements of the TWPs.« less

  20. UZIG USGS research: Advances through interdisciplinary interaction

    USGS Publications Warehouse

    Nimmo, J.R.; Andraski, Brian J.; Rafael, M.-C.

    2009-01-01

    BBecause vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and field trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cutting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG.

  1. Hydrology of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Bodvarsson, G.S.; Fabryka-Martin, J. M.

    2001-01-01

    Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr-1 under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (~300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominately through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

  2. Global, spatial, and temporal sensitivity analysis for a complex pesticide fate and transport model.

    EPA Science Inventory

    Background/Questions/Methods As one ofthe most heavily used exposure models by U.S. EPA, Pesticide Root Zone Model (PRZM) is a one-dimensional, dynamic, compartment model that predicts the fate and transport of a pesticide in the unsaturated soil system around a plant's root zo...

  3. Variations in pesticide leaching related to land use, pesticide properties, and unsaturated zone thickness

    USGS Publications Warehouse

    Webb, R.M.T.; Wieczorek, M.E.; Nolan, B.T.; Hancock, T.C.; Sandstrom, M.W.; Barbash, J.E.; Bayless, E.R.; Healy, R.W.; Linard, J.

    2008-01-01

    Pesticide leaching through variably thick soils beneath agricultural fields in Morgan Creek, Maryland was simulated for water years 1995 to 2004 using LEACHM (Leaching Estimation and Chemistry Model). Fifteen individual models were constructed to simulate five depths and three crop rotations with associated pesticide applications. Unsaturated zone thickness averaged 4.7 m but reached a maximum of 18.7 m. Average annual recharge to ground water decreased from 15.9 to 11.1 cm as the unsaturated zone increased in thickness from 1 to 10 m. These point estimates of recharge are at the lower end of previously published values, which used methods that integrate over larger areas capturing focused recharge in the numerous detention ponds in the watershed. The total amount of applied and leached masses for five parent pesticide compounds and seven metabolites were estimated for the 32-km2 Morgan Creek watershed by associating each hectare to the closest one-dimensional model analog of model depth and crop rotation scenario as determined from land-use surveys. LEACHM parameters were set such that branched, serial, first-order decay of pesticides and metabolites was realistically simulated. Leaching is predicted to be greatest for shallow soils and for persistent compounds with low sorptivity. Based on simulation results, percent parent compounds leached within the watershed can be described by a regression model of the form e−depth (a ln t½−b ln KOC) where t 1/2 is the degradation half-life in aerobic soils, K OC is the organic carbon normalized sorption coefficient, and a and b are fitted coefficients (R 2 = 0.86, p value = 7 × 10−9).

  4. Influences of the unsaturated, saturated, and riparian zones on the transport of nitrate near the Merced River, California, USA

    USGS Publications Warehouse

    Domagalski, Joseph L.; Phillips, S.P.; Bayless, E.R.; Zamora, C.; Kendall, C.; Wildman, R.A.; Hering, J.G.

    2008-01-01

    Transport and transformation of nitrate was evaluated along a 1-km groundwater transect from an almond orchard to the Merced River, California, USA, within an irrigated agricultural setting. As indicated by measurements of pore-water nitrate and modeling using the root zone water quality model, about 63% of the applied nitrogen was transported through a 6.5-m unsaturated zone. Transport times from recharge locations to the edge of a riparian zone ranged from approximately 6 months to greater than 100 years. This allowed for partial denitrification in horizons having mildly reducing conditions, and essentially no denitrification in horizons with oxidizing conditions. Transport times across a 50-100-m-wide riparian zone of less than a year to over 6 years and more strongly reducing conditions resulted in greater rates of denitrification. Isotopic measurements and concentrations of excess N2 in water were indicative of denitrification with the highest rates below the Merced River. Discharge of water and nitrate into the river was dependent on gradients driven by irrigation or river stage. The results suggest that the assimilative capacity for nitrate of the groundwater system, and particularly the riverbed, is limiting the nitrate load to the Merced River in the study area. ?? Springer-Verlag 2007.

  5. Modeling nitrate from land surface to wells' perforations under agricultural land: success, failure, and future scenarios in a Mediterranean case study

    NASA Astrophysics Data System (ADS)

    Levy, Yehuda; Shapira, Roi H.; Chefetz, Benny; Kurtzman, Daniel

    2017-07-01

    Contamination of groundwater resources by nitrate leaching under agricultural land is probably the most troublesome agriculture-related water contamination worldwide. Contaminated areas often show large spatial variability of nitrate concentration in wells. In this study, we tried to assess whether this spatial variability can be characterized on the basis of land use and standard agricultural practices. Deep soil sampling (10 m) was used to calibrate vertical flow and nitrogen-transport numerical models of the unsaturated zone under different agricultural land uses. Vegetable fields (potato and strawberry) and deciduous orchards (persimmon) in the Sharon area overlying the coastal aquifer of Israel were examined. Average nitrate-nitrogen fluxes below vegetable fields were 210-290 kg ha-1 yr-1 and under deciduous orchards were 110-140 kg ha-1 yr-1. The output water and nitrate-nitrogen fluxes of the unsaturated-zone models were used as input data for a three-dimensional flow and nitrate-transport model in the aquifer under an area of 13.3 km2 of agricultural land. The area was subdivided into four agricultural land uses: vegetables, deciduous orchards, citrus orchards, and non-cultivated. Fluxes of water and nitrate-nitrogen below citrus orchards were taken from a previous study in the area. The groundwater flow model was calibrated to well heads by changing the hydraulic conductivity. The nitrate-transport model, which was fed by the above-mentioned models of the unsaturated zone, succeeded in reconstructing the average nitrate concentration in the wells. However, this transport model failed in calculating the high concentrations in the most contaminated wells and the large spatial variability of nitrate concentrations in the aquifer. To reconstruct the spatial variability and enable predictions, nitrate fluxes from the unsaturated zone were multiplied by local multipliers. This action was rationalized by the fact that the high concentrations in some wells cannot be explained by regular agricultural activity and are probably due to malfunctions in the well area. Prediction of the nitrate concentration 40 years in the future with three nitrogen-fertilization scenarios showed that (i) under the business as usual fertilization scenario, the nitrate concentration (as NO3-) will increase on average by 19 mg L-1; (ii) under a scenario of 25 % reduction of nitrogen fertilization, the nitrate concentration in the aquifer will stabilize; (iii) with a 50 % reduction of nitrogen fertilization, the nitrate concentration will decrease on average by 18 mg L-1.

  6. Response curves for phosphorus plume lengths from reactive-solute-transport simulations of onland disposal of wastewater in noncarbonate sand and gravel aquifers

    USGS Publications Warehouse

    Colman, John A.

    2005-01-01

    Surface-water resources in Massachusetts often are affected by eutrophication, excessive plant growth, which has resulted in impaired use for a majority of the freshwater ponds and lakes and a substantial number of river-miles in the State. Because supply of phosphorus usually is limiting to plant growth in freshwater systems, control of phosphorus input to surface waters is critical to solving the impairment problem. Wastewater is a substantial source of phosphorus for surface water, and removal of phosphorus before disposal may be necessary. Wastewater disposed onland by infiltration loses phosphorus from the dissolved phase during transport through the subsurface and may be an effective disposal method; quantification of the phosphorus loss can be simulated to determine disposal feasibility. In 2003, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated a project to simulate distance of phosphorus transport in the subsurface for plausible conditions of onland wastewater disposal and subsurface properties. A coupled one-dimensional unsaturated-zone and three-dimensional saturated-zone reactive-solute-transport model (PHAST) was used to simulate lengths of phosphorus plumes. Knowledge of phosphorus plume length could facilitate estimates of setback distances for wastewater-infiltration sites from surface water that would be sufficient to protect the surface water from eutrophication caused by phosphorus transport through the subsurface and ultimate discharge to surface water. The reactive-solute-transport model PHAST was used to simulate ground-water flow, solute transport, equilibrium chemistry for dissolved and sorbed species, and kinetic regulation of organic carbon decomposition and phosphate mineral formation. The phosphorus plume length was defined for the simulations as the maximum extent of the contour for the 0.015 milligram-per-liter concentration of dissolved phosphorus downgradient from the infiltration bed after disposal cessation. Duration of disposal before cessation was assumed to be 50 years into an infiltration bed of 20,000 square feet at the rate of 3 gallons per square foot per day. Time for the maximum extent of the phosphorus plume to develop is on the order of 100 years after disposal cessation. Simulations indicated that phosphorus transport beyond the extent of the 0.015 milligram-per-liter concentration contour was never more than 0.18 kilogram per year, an amount that would likely not alter the ecology of most surface water. Simulations of phosphorus plume lengths were summarized in a series of response curves. Simulated plume lengths ranged from 200 feet for low phosphorus-concentration effluents (0.25 milligram per liter) and thick (50 feet) unsaturated zones to 3,400 feet for high phosphorus-concentration effluents (14 milligrams per liter) discharged directly into the aquifer (unsaturated-zone thickness of 0 feet). Plume length was nearly independent of unsaturated-zone thickness at phosphorus concentrations in the wastewater that were less than 2 milligrams per liter because little or no phosphorus mineral formed at low phosphorus concentrations. For effluents of high phosphorus concentration, plume length varied from 3,400 feet for unsaturated-zone thickness of 0 to 2,550 feet for unsaturated-zone thickness of 50 feet. Model treatments of flow and equilibrium-controlled chemistry likely were more accurate than rates of kinetically controlled reactions, notably precipitation of iron-phosphate minerals; the kinetics of such reactions are less well known and thus less well defined in the model. Sensitivity analysis indicated that many chemical and physical aquifer properties, such as hydraulic gradient and model width, did not affect the simulated plume length appreciably, but duration of discharge, size of infiltration bed, amount of dispersion, and number of sorption sites on the aquifer sediments did affect plume length ap

  7. Predicting Unsaturated Zone Nitrogen Mass Balances in Agricultural Settings of the United States

    USDA-ARS?s Scientific Manuscript database

    Unsaturated zone N fate and transport were evaluated at four sites to identify the predominant pathways of N cycling: an almond orchard and cornfield in the lower Merced River study basin, California (CA); and corn-soybean rotations in study basins at Maple Creek, Nebraska (NE) and at Morgan Creek, ...

  8. Preferential dealkylation reactions of s-triazine herbicides in the unsaturated zone

    USGS Publications Warehouse

    Mills, M.S.; Michael, Thurman E.

    1994-01-01

    The preferential dealkylation pathways of the s-triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), propazine [2-chloro-4,6-bis(isopropylamino)-s-triazine], and simazine [2-chloro-4,6-bis(ethylamino)-s-triazine], and two monodealkylated triazine metabolites, deisopropylatrazine (DIA: 2-amino-4-chloro-6-ethylamino-s-triazine) and deethylatrazine (DEA: 2-amino-4-chloro-6-isopropylamino-s-triazine) were investigated on two adjacent Eudora silt-loam plots growing corn (Zea mays L.). Results from the shallow unsaturated zone and surface-water runoff showed preferential removal of an ethyl side chain from atrazine, simazine, and DIA relative to an isopropyl side chain from atrazine, propazine, and DEA. It is hypothesized that deethylation reactions may proceed at 2-3 times the rate of deisopropylation reactions. It is concluded that small concentrations of DIA reportedly associated with the degradation of atrazine may be due to a rapid turnover rate of the metabolite in the unsaturated zone, not to small production levels. Because of continued dealkylation of both monodealkylated metabolites, a strong argument is advanced for the presence of a didealkylated metabolite in the unsaturated zone.

  9. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    NASA Astrophysics Data System (ADS)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2017-05-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  10. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    NASA Astrophysics Data System (ADS)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters. Data from the lysimeter and soil moisture probes were used to calibrate the model. The overall simulation time period included the dry (irrigation as main source of water) and the wet season (precipitation as main source of water). Future investigation concerning groundwater affections and contaminant transport at the field site will be based on the results obtained through the flow model developed in this study.

  11. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.

  12. Modeling tritium transport through a deep unsaturated zone in an arid environment

    USGS Publications Warehouse

    Mayers, C.J.; Andraski, Brian J.; Cooper, C.A.; Wheatcraft, S.W.; Stonestrom, David A.; Michel, R.L.

    2005-01-01

    Understanding transport of tritium (3H) in unsaturated zones is critical to evaluating options for waste isolation. Tritium typically is a large component of low-level radioactive waste (LLRW). Studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in Nevada investigate 3H transport from a closed LLRW facility. Two boreholes are 100 and 160 m from the nearest waste trench and extend to the water table at 110 m. Soil-water vapor samples from the deep boreholes show elevated levels of 3H at all depths. The objectives of this study were to (i) test source thermal and gas-advection mechanisms driving 3H transport and (ii) evaluate model sensitivity to these mechanisms and to selected physical and hydraulic properties including porosity, tortuosity, and anisotropy. A two-dimensional numerical model incorporated a non-isothermal, heterogeneous domain of the unsaturated zone and instantaneous isotopic equilibrium. The TOUGH2 code was used; however, it required modification to account for temperature dependence of both the Henry's law equilibrium constant and isotopic fractionation with respect to tritiated water. Increases in source temperature, pressure, and porosity enhanced 3H migration, but failed to match measured 3H distributions. All anisotropic simulations with a source pressure component resembled, in shape, the upper portion of the 3H distribution of the nearest borehole. Isotopic equilibrium limited migration of 3H, while effects of radioactive decay were negligible. A 500 Pa pressure increase above ambient pressure in conjunction with a high degree of anisotropy (1:100) was necessary for simulated 3H transport to reach the nearest borehole.

  13. THE RETC CODE FOR QUANTIFYING THE HYDRAULIC FUNCTIONS OF UNSATURATED SOILS

    EPA Science Inventory

    This report describes the RETC computer code for analyzing the soil water retention and hydraulic conductivity functions of unsaturated soils. These hydraulic properties are key parameters in any quantitative description of water flow into and through the unsaturated zone of soil...

  14. Impact of water overstock on groundwater quality of the Bassee plain area (France)

    NASA Astrophysics Data System (ADS)

    Gourcy, L.; Pettenati, M.; Baran, N.; Durand, P. Y.

    2009-04-01

    The project, inspired by the structural flood plain management measures of the Rhine River, consists in the temporal removal of a maximum amount of water from the Seine River in order to leave priority to the water from the River Yonne. Yonne River and the Seine are presenting their maximum water flow usually at a same time. The space located between Bray-sur-Seine and Montereau-Fault-Yonne corresponding to the La Bassée plain (agricultural area of 23 km2) is well adapted to this project of temporary and artificial flood. The objective of the project financed by the Institution Interdépartementale des barrages Réservoirs du Bassin de la Seine (IIBRBS), the BRGM, the Seine-Normandie Water Agency, the European Communauty through the Interreg IIIB SAND project is the evaluation, at a local scale, of the impact on groundwater quality of the temporal Seine water storage. Indeed, the water over storage i) changes hydraulic conditions and therefore modify water and pollutants transfers through the unsaturated and saturated zones and ii) bring at soil surface a water (Seine River) potentially containing contaminants that may move to groundwater and consequently changed physico-chemicals conditions (redox) of groundwater. The estimation of the vulnerability of groundwater to changes and loads needs hydraulic and geochemical modelling of transfer through the unsaturated zone as well as the study of pollutants fate in static conditions. Retention properties of some metals (Pb, Ni, Cu, Cr, Zn) in soils and materials of the unsaturated zone by chemical processes were performed determining adsorption coefficient (Kd) by laboratory experiments. These experiments are showing that nickel mobility is lower in the argillous layers than in the sandy part of the unsaturated zone. Ni mobility is controlled by iron hydroxides and precipitation of other secondary minerals. Its complexation on organic ligands increases its mobility in soils. Copper concentration is influenced by CaCO3 presence and soluble organic ligands. Zinc is strongly adsorbed on the solid matrix at all tested soils. At basic condition, such as normally encountered at the Bassée floodplain, chromium adsorption is very low or null. Based on these results, batch modelling (without transport) were carried out for Cu and Ni. That confirms that nickel adsorption is controlled by iron hydroxides in porous media. For copper, the main processes controlling adsorption is organic ligands complexation that increases the mobility of this element in the soils. To complement the information acquired on metal comportment in the unsaturated zone and because pesticides were detected in soils and groundwater, laboratory experiments were performed using glyphosate alone and combining this pesticide with the tested heavy metals. The tests are highlighting the strong relationships between metals and pesticides. For the 5 soils used glyphosate adsorption is increased when metals are added to the solution. At the opposite, the experiences for the evaluation of the impact of the increase of glyphosate on the quantity of metals adsorbed (Cu, Ni, Ni) were not conclusive. The geochemical calculation code PHREEQC was used to model reactive transfer of solutes in a 1 D saturated column. Results obtained indicate that some contaminants (nickel) are mainly retained at the iron hydroxides surfaces even at very high concentration. Stability of metal depends then on the maintaining of oxic conditions in the porous media. After adsorption, nickel concentrations in soils remains well under average natural concentrations. Results of the project allowed the risk evaluation of a groundwater contamination by the Seine River during overstock episodes. During derivation of the Seine River into the Bassée floodplain, infiltration of water and solutes in the unsaturated zones will be done quickly. Some metals (Zn, Ni, Cu), and the glyphosate, will stay in the first centimetres of the soils due to their intrinsic properties. Even if a change of the physico-chemical conditions (mainly redox, organic matter contents) of the Bassée floodplain has very little probability to occur, this change may lead to very important changes in the comportment of heavy metals and pesticides. Other elements (Cr and other anionic metals) are not retained in the shallow soil horizons and, as water, will infiltrate very quickly in the unsaturated zone during inundation phases. Persistence time, estimated by modelling, of dissolved elements in the unsaturated zone is few years. The results showed that the probability of groundwater contamination due to overstock episodes is very low to null but consequences may be important. This assessment obliges to consider the installation of a water quality monitoring program for the control of the Seine River upstream the alluvial plain about 5 days before filling up the retention basins and up to the end of the replenishment procedure.

  15. Widespread natural perchlorate in unsaturated zones of the southwest United States

    USGS Publications Warehouse

    Rao, Balaji; Anderson, Todd A.; Orris, Greta J.; Rainwater, Ken A.; Rajagopalan, Srinath; Sandvig, Renee M.; Scanlon, Bridget R.; Stonestrom, David A.; Walvoord, Michelle Ann; Jackson, W Andrew

    2007-01-01

    A substantial reservoir (up to 1 kg ha-1) of natural perchlorate is present in diverse unsaturated zones of the arid and semi-arid southwestern United States. The perchlorate co-occurs with meteoric chloride that has accumulated in these soils throughout the Holocene [0 to 10−15 ka (thousand years ago)] and possibly longer periods. Previously, natural perchlorate widely believed to be limited to the Atacama Desert, now appears widespread in steppe-to-desert ecoregions. The perchlorate reservoir becomes sufficiently large to affect groundwater when recharge from irrigation or climate change flushes accumulated salts from the unsaturated zone. This new source may help explain increasing reports of perchlorate in dry region agricultural products and should be considered when evaluating overall source contributions.

  16. Modeling leaching of viruses by the Monte Carlo method.

    PubMed

    Faulkner, Barton R; Lyon, William G; Khan, Faruque A; Chattopadhyay, Sandip

    2003-11-01

    A predictive screening model was developed for fate and transport of viruses in the unsaturated zone by applying the final value theorem of Laplace transformation to previously developed governing equations. A database of input parameters allowed Monte Carlo analysis with the model. The resulting kernel densities of predicted attenuation during percolation indicated very small, but finite probabilities of failure for all homogeneous USDA classified soils to attenuate reovirus 3 by 99.99% in one-half meter of gravity drainage. The logarithm of saturated hydraulic conductivity and water to air-water interface mass transfer coefficient affected virus fate and transport about 3 times more than any other parameter, including the logarithm of inactivation rate of suspended viruses. Model results suggest extreme infiltration events may play a predominant role in leaching of viruses in soils, since such events could impact hydraulic conductivity. The air-water interface also appears to play a predominating role in virus transport and fate. Although predictive modeling may provide insight into actual attenuation of viruses, hydrogeologic sensitivity assessments for the unsaturated zone should include a sampling program.

  17. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions.

    PubMed

    Tillman, Fred D; Smith, James A

    2004-11-01

    To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.

  18. Review on airflow in unsaturated zones induced by natural forcings

    NASA Astrophysics Data System (ADS)

    Kuang, Xingxing; Jiao, Jiu Jimmy; Li, Hailong

    2013-10-01

    Subsurface airflow in unsaturated zones induced by natural forcings is of importance in many environmental and engineering fields, such as environmental remediation, water infiltration and groundwater recharge, coastal soil aeration, mine and tunnel ventilation, and gas exchange between soil and atmosphere. This review synthesizes the published literature on subsurface airflow driven by natural forcings such as atmospheric pressure fluctuations, topographic effect, water table fluctuations, and water infiltration. The present state of knowledge concerning the mechanisms, analytical and numerical models, and environmental and engineering applications related to the naturally occurring airflow is discussed. Airflow induced by atmospheric pressure fluctuations is studied the most because of the applications to environmental remediation and transport of trace gases from soil to atmosphere, which are very important in understanding biogeochemical cycling and global change. Airflow induced by infiltration is also an extensively investigated topic because of its implications in rainfall infiltration and groundwater recharge. Airflow induced by water table fluctuations is important in coastal areas because it plays an important role in coastal environmental remediation and ecological systems. Airflow induced by topographic effect is studied the least. However, it has important applications in unsaturated zone gas transport and natural ventilation of mines and tunnels. Finally, the similarities and differences in the characteristics of the air pressure and airflow are compared and future research efforts are recommended.

  19. The influence of irrigation-induced water table fluctuation on iron redistribution and arsenic immobilization within the unsaturation zone.

    PubMed

    Chi, Zeyong; Xie, Xianjun; Pi, Kunfu; Wang, Yanxin; Li, Junxia; Qian, Kun

    2018-05-08

    Given the long-term potential risk of arsenic (As)-contaminated agricultural soil to public health, the redistribution of iron (Fe) and immobilization of As within the unsaturation zone during irrigation and consequent water table fluctuations were studied via a column experiment and corresponding geochemical modeling. Experimental results show that As and Fe accumulated significantly at the top of the column during irrigation. A tremendous increase in As and Fe accumulation rates exists after water table recovery. It was deduced that Fe(II) and As(III) were oxidized directly by O 2 at the period of low water table. But the production of hydroxyl radical (OH) was promoted at the period of high water table due to the oxidation of adsorbed Fe(II). The generated OH further accelerate the oxidation of Fe(II) and As(III). Moreover, the combination of As and Fe is more stronger at the top of the column due to the transformation of combined states of As from surface complexation into surface precipitation with the growth of Fe(III) minerals. This study details the processes and mechanisms of As and Fe immobilization within the unsaturation zone during different irrigation periods and accordingly provides some insights to mitigate As accumulation in topsoil. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Sediment properties and water movement through shallow unsaturated alluvium at an arid site for disposal of low-level radioactive waste near Beatty, Nye County, Nevada

    USGS Publications Warehouse

    Fischer, Jeffrey M.

    1992-01-01

    A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.

  1. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach.

    PubMed

    Geng, Xiaolong; Boufadel, Michel C; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L; Miller, Richard S

    2014-09-01

    A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Project Summary. THE RETC CODE FOR QUANTIFYING THE HYDRAULIC FUNCTIONS OF UNSATURATED SOILS

    EPA Science Inventory

    This summary describes the RETC computer code for analyzing the soil water retention and hydraulic conductivity functions of unsaturated soils. These hydraulic properties are key parameters in any quantitative description of water flow into and through the unsaturated zone of soi...

  3. Investigation and simulation on fate and transport of leachate from a livestock mortality burial site

    NASA Astrophysics Data System (ADS)

    Lim, J.-W.; Lee, S.; Kaown, D.; Lee, K.-K.

    2012-04-01

    Leachate released from livestock mortality burial during decomposition of carcasses can be a threat to groundwater quality. Monitoring study of groundwater quality in the vicinity of livestock burial reported that a caution is needed to prevent contamination of both groundwater and soil, especially in case of mortality burial (Glanville, 2000; Ritter and Chirnside, 1995). The average concentration of ammonium-N and chloride is reported to be 12,600 mg/l and 2,600 mg/l respectively, which is 2-4 times higher than leachate from earthen manure storages and landfills (Pratt, 2009). To assess the potential threat of burial leachate to groundwater quality, simulation of leachate transport is performed based on a hydrogeologic model of an actual mortality burial site. At the burial site of this study located at a hill slope, two mortality pits have been constructed along the slope to bury swine during the outbreak of nationwide foot and mouth disease(FMD) in 2011. Though the pits were partially lined with impermeable material, potential threat of leachate leakage is still in concern. Electrical resistivity survey has been performed several times at the burial site and abnormal resistivity zones have been detected which are supposed as leachate leakage from the burial. Subsurface model including unsaturated zone is built since the leakage is supposed to occur mainly in lateral of the burial pits which is in unsaturated zone. When examining leachate transport, main focus is given to a nitrogenous compound and colloidal character of FMD virus. Nitrifying of denitrifying characters of nitrogenous compound and transport of colloidal particles are affected mainly by soil water content in unsaturated zone. Thus, the fate and transport of burial leachate affected by seasonal variation in recharge pattern is investigated.

  4. IDENTIFICATION AND COMPILATION OF UNSATURATED/VADOSE ZONE MODELS

    EPA Science Inventory

    Many ground-water contamination problems are derived from sources at or near the soil surface. Consequently, the physical and (bio-)chemical behavior of contaminants in the shallow subsurface is of critical importance to the development of protection and remediation strategies. M...

  5. IMPROVING THE CALIBRATION OF MODELS TO EVALUATE VAPOR MOVEMENT AT UST SITES BY VERTICAL PROFILING OF CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    A risk assessment of the movement of vapors of volatile organic contaminants (VOCs) from ground water through the unsaturated zone and into living spaces usually involves a transport and fate model such as the Johnson and Ettinger model. The concentration of volatile organic con...

  6. Volatile organic compounds in the unsaturated zone from radioactive wastes

    USGS Publications Warehouse

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  7. Direct observations of rock moisture, a hidden component of the hydrologic cycle.

    PubMed

    Rempe, Daniella M; Dietrich, William E

    2018-03-13

    Recent theory and field observations suggest that a systematically varying weathering zone, that can be tens of meters thick, commonly develops in the bedrock underlying hillslopes. Weathering turns otherwise poorly conductive bedrock into a dynamic water storage reservoir. Infiltrating precipitation typically will pass through unsaturated weathered bedrock before reaching groundwater and running off to streams. This invisible and difficult to access unsaturated zone is virtually unexplored compared with the surface soil mantle. We have proposed the term "rock moisture" to describe the exchangeable water stored in the unsaturated zone in weathered bedrock, purposely choosing a term parallel to, but distinct from, soil moisture, because weathered bedrock is a distinctly different material that is distributed across landscapes independently of soil thickness. Here, we report a multiyear intensive campaign of quantifying rock moisture across a hillslope underlain by a thick weathered bedrock zone using repeat neutron probe measurements in a suite of boreholes. Rock moisture storage accumulates in the wet season, reaches a characteristic upper value, and rapidly passes any additional rainfall downward to groundwater. Hence, rock moisture storage mediates the initiation and magnitude of recharge and runoff. In the dry season, rock moisture storage is gradually depleted by trees for transpiration, leading to a common lower value at the end of the dry season. Up to 27% of the annual rainfall is seasonally stored as rock moisture. Significant rock moisture storage is likely common, and yet it is missing from hydrologic and land-surface models used to predict regional and global climate.

  8. Are faults preferential flow paths through semiarid and arid vadose zones?

    NASA Astrophysics Data System (ADS)

    Sigda, John M.; Wilson, John L.

    2003-08-01

    Numerous faults crosscut the poorly lithified, basin-fill sands found in New Mexico's Rio Grande rift and in other extensional regimes. The deformational processes that created these faults sharply reduced both fault porosity and fault saturated hydraulic conductivity by altering grains and pores, particularly in structures referred to as deformation bands. The resulting pore distribution changes, which create barriers to saturated flow, should enhance fault unsaturated flow relative to parent sand under the relatively dry conditions of the semiarid southwest. We report the first measurements of unsaturated hydraulic properties for undisturbed fault materials, using samples from a small-displacement normal fault and parent sands in the Bosque del Apache Wildlife Refuge, central New Mexico. Fault samples were taken from a narrow zone of deformation bands. The unsaturated flow apparatus (UFA) centrifuge system was used to measure both relative permeability and moisture retention curves. We compared these relations and fitted hydraulic conductivity-matric potential models to test whether the fault has significantly different unsaturated hydraulic properties than its parent sand. Saturated conductivity is 3 orders of magnitude less in the fault than the undeformed sand. As matric potential decreases from 0 to -200 cm, unsaturated conductivity decreases roughly 1 order of magnitude in the fault but 5-6 orders of magnitude in undeformed sands. Fault conductivity is greater by 2-6 orders of magnitude at matric potentials between -200 and -1000 cm, which are typical potentials for semiarid and arid vadose zones. Fault deformation bands have much higher air-entry matric potential values than parent sands and remain close to saturation well after the parent sands have begun to approach residual moisture content. Under steady state, one-dimensional, gravity-driven flow conditions, moisture transport and solute advection is 102-106 times larger in the fault material than parent sands. Faults are sufficiently conductive to hasten the downward movement of water and solutes through vadose-zone sands under semiarid and arid conditions like those in the Rio Grande rift, thereby potentially enhancing recharge, contaminant migration, and diagenesis.

  9. Hydro-geophysical observations integration in numerical model: case study in Mediterranean karstic unsaturated zone (Larzac, france)

    NASA Astrophysics Data System (ADS)

    Champollion, Cédric; Fores, Benjamin; Le Moigne, Nicolas; Chéry, Jean

    2016-04-01

    Karstic hydro-systems are highly non-linear and heterogeneous but one of the main water resource in the Mediterranean area. Neither local measurements in boreholes or analysis at the spring can take into account the variability of the water storage. Since a few years, ground-based geophysical measurements (such as gravity, electrical resistivity or seismological data) allows following water storage in heterogeneous hydrosystems at an intermediate scale between boreholes and basin. Behind classical rigorous monitoring, the integration of geophysical data in hydrological numerical models in needed for both processes interpretation and quantification. Since a few years, a karstic geophysical observatory (GEK: Géodésie de l'Environnement Karstique, OSU OREME, SNO H+) has been setup in the Mediterranean area in the south of France. The observatory is surrounding more than 250m karstified dolomite, with an unsaturated zone of ~150m thickness. At the observatory water level in boreholes, evapotranspiration and rainfall are classical hydro-meteorological observations completed by continuous gravity, resistivity and seismological measurements. The main objective of the study is the modelling of the whole observation dataset by explicit unsaturated numerical model in one dimension. Hydrus software is used for the explicit modelling of the water storage and transfer and links the different observations (geophysics, water level, evapotranspiration) with the water saturation. Unknown hydrological parameters (permeability, porosity) are retrieved from stochastic inversions. The scale of investigation of the different observations are discussed thank to the modelling results. A sensibility study of the measurements against the model is done and key hydro-geological processes of the site are presented.

  10. Basalt-flow imaging using a high-resolution directional borehole radar

    USGS Publications Warehouse

    Moulton, C.W.; Wright, D.L.; Hutton, S.R.; Smith, D.V.G.; Abraham, J.D.

    2002-01-01

    A new high-resolution directional borehole radar-logging tool (DBOR tool) was used to log three wells at the Idaho National Engineering and Environmental Laboratory (INEEL). The radar system uses identical directional cavity-backed monopole transmitting and receiving antennas that can be mechanically rotated while the tool is stationary or moving slowly in a borehole. Faster reconnaissance logging with no antenna rotation was also done to find zones of interest. The microprocessor-controlled motor/encoder in the tool can rotate the antennas azimuthally, to a commanded angle, accurate to a within few degrees. The three logged wells in the unsaturated zone at the INEEL had been cored with good core recovery through most zones. After coring, PVC casing was installed in the wells. The unsaturated zone consists of layered basalt flows that are interbedded with thin layers of coarse-to-fine grained sediments. Several zones were found that show distinctive signatures consistent with fractures in the basalt. These zones may correspond to suspected preferential flow paths. The DBOR data were compared to core, and other borehole log information to help provide better understanding of hydraulic flow and transport in preferential flow paths in the unsaturated zone basalts at the INEEL.

  11. Long-term evolution of biodegradation and volatilization rates in a crude oil-contaminated aquifer

    USGS Publications Warehouse

    Chaplin, B.P.; Delin, G.N.; Baker, R.J.; Lahvis, M.A.

    2002-01-01

    Volatilization and subsequent biodegradation near the water Table make up a coupled natural attenuation pathway that results in significant mass loss of hydrocarbons. Rates of biodegradation and volatilization were documented twice 12 years apart at a crude-oil spill site near Bemidji, Minnesota. Biodegradation rates were determined by calibrating a gas transport model to O2, CO2, and CH4 gas-concentration data in the unsaturated zone. Reaction stoichiometry was assumed in converting O2 and CO2 gas-flux estimates to rates of aerobic biodegradation and CH4 gas-flux estimates to rates of methanogenesis. Model results indicate that the coupled pathway has resulted in significant hydrocarbon mass loss at the site, and it was estimated that approximately 10.52 kg/day were lost in 1985 and 1.99 kg/day in 1997. In 1985 3% of total volatile hydrocarbons diffusing from the floating oil were biodegraded in the lower 1 m of the unsaturated zone and increased to 52% by 1997. Rates of hydrocarbon biodegradation above the center of the floating oil were relatively stable from 1985 to 1997, as the primary metabolic pathway shifted from aerobic to methanogenic biodegradation. Model results indicate that in 1997 biodegradation under methanogenenic conditions represented approximately one-half of total hydrocarbon biodegradation in the lower 1 m of the unsaturated zone. Further downgradient, where substrate concentrations have greatly increased, total biodegradation rates increased by greater than an order of magnitude from 0.04 to 0.43 g/m2-day. It appears that volatilization is the primary mechanism for attenuation in early stages of plume evolution, while biodegradation dominates in later stages.

  12. Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States

    USGS Publications Warehouse

    Green, C.T.; Fisher, L.H.; Bekins, B.A.

    2008-01-01

    The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha-1 yr-1. Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  13. NaturAnalogs for the Unsaturated Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Simmons; A. Unger; M. Murrell

    2000-03-08

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturatedmore » Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.« less

  14. Palaeoclimate Records in Dryland Dunes: Progress and Remaining Challenges Utilizing the Unsaturated Zone for Palaeomoisture Reconstruction.

    NASA Astrophysics Data System (ADS)

    Stone, A.

    2016-12-01

    Reconstructions of past rainfall in dryland regions underpin our understanding the links between climatic forcing and palaeohydrological response. However, there are only few proxies in drylands that record palaeorainfall, or palaeomoisture, in a straightforward manner. The unsaturated zone (USZ) has very significant potential as a novel dryland palaeomoisture archive. The approach is simple, based on variations in the concentration of pore-moisture tracers with depth, representing a hydrostratigraphical record through time. The tracer input is meteoric, with the concentration of this tracer established in the near-surface zone as a function of the level of evapotranspiration before that pore-moisture is transmitted vertically down to the water table. This presentation will highlight key regions where hydrostratigraphies have been successfully applied in drylands. It will also set out challenges regarding the assumptions of the approach, with the intention to stimulate discussion regarding the future development of the unsaturated zone as a palaeoclimate archive over a range of timescales and resolutions. Depending on the rate of moisture flux and the depth of the unsaturated zone, dryland hydrostratigraphies may record (i) broad climatic shifts since the last interglacial at low temporal resolution or multi-millennial length palaeomoisture records with a decadal temporal resolution. USZ hydrostratigraphies may also contain a record of changes in the amount of infiltration (and groundwater recharge) caused by changes to land-use.

  15. Ecohydrological factors affecting nitrate concentrations in a phreatic desert aquifer in northwestern China

    USGS Publications Warehouse

    Gates, J.B.; Böhlke, J.K.; Edmunds, W.M.

    2008-01-01

    Aerobic conditions in desert aquifers commonly allow high nitrate (NO 3-) concentrations in recharge to persist for long periods of time, an important consideration for N-cycling and water quality. In this study, stable isotopes of NO3- (??15N NO3 and ??18ONO3) were used to trace NO3- cycling processes which affect concentrations in groundwater and unsaturated zone moisture in the arid Badain Jaran Oesert in northwestern China. Most groundwater NO3- appears to be depleted relative to Cl- in rainfall concentrated by evapotranspiration, indicating net N losses. Unsaturated zone NO 3- is generally higher than groundwater NO 3- in terms of both concentration (up to 15 476 ??M, corresponding to 3.6 mg NO3--N per kg sediment) and ratios with Cl-. Isotopic data indicate that the NO3- derives primarily from nitrification, with a minor direct contribution of atmospheric NO3- inferred for some samples, particularly in the unsaturated zone. Localized denitrification in the saturated zone is suggested by isotopic and geochemical indicators in some areas. Anthropogenic inputs appear to be minimal, and variability is attributed to environmental factors. In comparison to other arid regions, the sparseness of vegetation in the study area appears to play an important role in moderating unsaturated zone NO3- accumulation by allowing solute flushing and deterring extensive N2 fixation. ?? 2008 American Chemical Society.

  16. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian J.; Green, Christopher T.; Stonestrom, David A.; Striegl, Robert G.

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  17. Uncertainty Quantification and Global Sensitivity Analysis of Subsurface Flow Parameters to Gravimetric Variations During Pumping Tests in Unconfined Aquifers

    NASA Astrophysics Data System (ADS)

    Maina, Fadji Zaouna; Guadagnini, Alberto

    2018-01-01

    We study the contribution of typically uncertain subsurface flow parameters to gravity changes that can be recorded during pumping tests in unconfined aquifers. We do so in the framework of a Global Sensitivity Analysis and quantify the effects of uncertainty of such parameters on the first four statistical moments of the probability distribution of gravimetric variations induced by the operation of the well. System parameters are grouped into two main categories, respectively, governing groundwater flow in the unsaturated and saturated portions of the domain. We ground our work on the three-dimensional analytical model proposed by Mishra and Neuman (2011), which fully takes into account the richness of the physical process taking place across the unsaturated and saturated zones and storage effects in a finite radius pumping well. The relative influence of model parameter uncertainties on drawdown, moisture content, and gravity changes are quantified through (a) the Sobol' indices, derived from a classical decomposition of variance and (b) recently developed indices quantifying the relative contribution of each uncertain model parameter to the (ensemble) mean, skewness, and kurtosis of the model output. Our results document (i) the importance of the effects of the parameters governing the unsaturated flow dynamics on the mean and variance of local drawdown and gravity changes; (ii) the marked sensitivity (as expressed in terms of the statistical moments analyzed) of gravity changes to the employed water retention curve model parameter, specific yield, and storage, and (iii) the influential role of hydraulic conductivity of the unsaturated and saturated zones to the skewness and kurtosis of gravimetric variation distributions. The observed temporal dynamics of the strength of the relative contribution of system parameters to gravimetric variations suggest that gravity data have a clear potential to provide useful information for estimating the key hydraulic parameters of the system.

  18. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    NASA Astrophysics Data System (ADS)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  19. Effect of grain-coating mineralogy on nitrate and sulfate storage in the unsaturated zone

    USGS Publications Warehouse

    Reilly, T.J.; Fishman, N.S.; Baehr, A.L.

    2009-01-01

    Unsaturated-zone sediments and the chemistry of shallow groundwater underlying a small (???8-km2) watershed were studied to identify the mechanisms responsible for anion storage within the Miocene Bridgeton Formation and weathered Coastal Plain deposits in southern New Jersey. Lower unsaturated-zone sediments and shallow groundwater samples were collected and concentrations of selected ions (including NO3- and SO42-) from 11 locations were determined. Grain size, sorting, and color of the lower unsaturated-zone sediments were determined and the mineralogy of these grains and the composition of coatings were analyzed by petrographic examination, scanning electron microscopy and energy dispersive analysis of x-rays, and quantitative whole-rock x-ray diffraction. The sediment grains, largely quartz and chert (80-94% w/w), are coated with a very fine-grained (<20 ??m), complex mixture of kaolinite, halloysite, goethite, and possibly gibbsite and lepidocrocite. The mineral coatings are present as an open fabric, resulting in a large surface area in contact with pore water. Significant correlations between the amount of goethite in the grain coatings and the concentration of sediment-bound SO42- were observed, indicative of anion sorption. Other mineral-chemical relations indicate that negatively charged surfaces and competition with SO 42- results in exclusion of NO3- from inner sphere exchange sites. The observed NO3- storage may be a result of matrix forces within the grain coatings and outer sphere complexation. The results of this study indicate that the mineralogy of grain coatings can have demonstrable effects on the storage of NO 3- and SO42- in the unsaturated zone. ?? Soil Science Society of America. All rights reserved.

  20. New Hydrologic Insights to Advance Geophysical Investigation of the Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Perkins, K. S.

    2015-12-01

    Advances in hydrology require information from the unsaturated zone, especially for problems related to groundwater contamination, water-supply sustainability, and ecohydrology. Unsaturated-zone processes are notoriously difficult to quantify; soils and rocks are visually opaque, spatially variable in the extreme, and easily disturbed by instrument installation. Thus there is great value in noninvasive techniques that produce water-related data of high density in space and time. Methods based on resistivity and electromagnetic waves have already produced significant new understanding of percolation processes, root-zone water retention, influences of evapotranspiration on soil-water, and effects of preferential flow. Further developments are underway for such purposes as noninvasive application to greater depths, increased resolution, adaptation for lab-scale experiments, and calibration in heterogeneous media. Beyond these, however, there is need for a stronger marriage of hydrologic and geophysical knowledge and perspective. Possible means to greater and faster progress include: Apply the latest hydrologic understanding, both pore-scale and macroscopic, to the detection of preferential flow paths and their degree of activation. In the continuing advancement of hardware and techniques, draw creatively from developments in such fields as high-energy physics, medical imaging, astrogeology, high-tech semiconductors, and bioinstrumentation. Sidestep the imaging process where possible to measure essential properties and fluxes more directly. Pose questions that have a strong end-use character, like "how does storm intensity relate to aquifer recharge rate" rather than "what is the shape of the wetting front". The greatest advances in geophysical investigation of the unsaturated zone will come from methods informed by the latest understanding of unsaturated systems and processes, and aimed as directly as possible at the answers to important hydrologic questions.

  1. Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Weaver, W.; Kibbey, T. C. G.; Papelis, C.

    2016-12-01

    Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.

  2. A reaction-transport model for calcite precipitation and evaluation of infiltration fluxes in unsaturated fractured rock.

    PubMed

    Xu, Tianfu; Sonnenthal, Eric; Bodvarsson, Gudmundur

    2003-06-01

    The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO(2) diffusive transport and partitioning in liquid and gas phases, (4) fracture-matrix interaction for water flow and chemical constituents, and (5) water-rock interaction. Over a bounding range of 2-20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water-rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture-matrix interaction as well as conditions and parameters controlling calcite deposition.

  3. Barometric fluctuations in wells tapping deep unconfined aquifers

    USGS Publications Warehouse

    Weeks, Edwin P.

    1979-01-01

    Water levels in wells screened only below the water table in unconfined aquifers fluctuate in response to atmospheric pressure changes. These fluctuations occur because the materials composing the unsaturated zone resist air movement and have capacity to store air with a change in pressure. Consequently, the translation of any pressure change at land surface is slowed as it moves through the unsaturated zone to the water table, but it reaches the water surface in the well instantaneously. Thus a pressure imbalance is created that results in a water level fluctuation. Barometric effects on water levels in unconfined aquifers can be computed by solution of the differential equation governing the flow of gas in the unsaturated zone subject to the appropriate boundary conditions. Solutions to this equation for two sets of boundary conditions were applied to compute water level response in a well tapping the Ogallala Formation near Lubbock, Texas from simultaneous microbarograph records. One set of computations, based on the step function unit response solution and convolution, resulted in a very good match between computed and measured water levels. A second set of computations, based on analysis of the amplitude ratios of simultaneous cyclic microbarograph and water level fluctuations, gave inconsistent results in terms of the unsaturated zone pneumatic properties but provided useful insights on the nature of unconfined-aquifer water level fluctuations.

  4. Regional coupling of unsaturated and saturated flow and transport modeling - implementation at an alpine foothill aquifer in Austria

    NASA Astrophysics Data System (ADS)

    Klammler, G.; Rock, G.; Kupfersberger, H.; Fank, J.

    2012-04-01

    For many European countries nitrate leaching from the soil zone into the aquifer due to surplus application of mineral fertilizer and animal manure by farmers constitutes the most important threat to groundwater quality. Since this is a diffuse pollution situation measures to change agricultural production have to be investigated at the aquifer scale. In principal, the problem could be solved by the 3 dimensional equation describing variable saturated groundwater flow and solute transport. However, this is computationally prohibitive due to the temporal and spatial scope of the task, particularly in the framework of running numerous simulations to compromise between conflicting interests (i.e. good groundwater status and high agricultural yield). For the aquifer 'Westliches Leibnitzer Feld' we break down this task into 1d vertical movement of water and nitrate mass in the unsaturated zone and 2d horizontal flow of water and solutes in the saturated compartment. The aquifer is located within the Mur Valley about 20 km south of Graz and consists of early Holocene gravel with varying amounts of sand and some silt. The unsaturated flow and nitrate leaching package SIMWASER/STOTRASIM (Stenitzer, 1988; Feichtinger, 1998) is calibrated to the lysimeter data sets and further on applied to so called hydrotopes which are unique combinations of soil type and agricultural management. To account for the unknown regional distribution of crops grown and amount, timing and kind of fertilizers used a stochastic tool (Klammler et al, 2011) is developed that generates sequences of crop rotations derived from municipal statistical data. To match the observed nitrate concentrations in groundwater with a saturated nitrate transport model it is of utmost importance to apply a realistic input distribution of nitrate mass in terms of spatial and temporal characteristics. A table is generated by running SIMWASER/STOTRASIM that consists of unsaturated water and nitrate fluxes for each 10 cm interval of every hydrotope vertical profile until the lowest observed groundwater table is reached. The fluctuation range of the phreatic surface is also discretized in 10 cm intervals and used as outflow boundary condition. By this procedure, the influence of the groundwater table on the water and nitrate mass leaving the unsaturated can be considered taken into account varying soil horizons. To cover saturated flow in the WLF aquifer a 2-dimensional transient horizontal flow and solute transport model is set up. A sequential coupling between the two models is implemented, i.e. a unidirectional transfer of recharge and nitrate mass outflow from the hydrotopes to the saturated compartment. For this purpose, a one-time assignment between the spatial discretization of the hydrotopes and the finite element mesh has to be set up. The resulting groundwater table computed for a given time step with the input from SIMWASER/STOTRASIM is then used to extract the corresponding water and nitrate mass values from the look-up table to be used for the consecutive time step. This process is being repeated until the end of the simulation period. Within this approach there is no direct feedback between the unsaturated and the saturated aquifer compartment, i.e. there is no simultaneous (within the same time step) update of the pressure head - unsaturated head relationship at the soil and the phreatic surface (like is shown e.g. in Walsum and Groedendijk, 2008). For the dominating coarse sand conditions of the WLF aquifer we believe that this simplification is not of further relevance. For higher soil moisture contents (i.e. almost full saturation near the groundwater table) the curve returns to specific retention within a short vertical distance. Thus, there might only be mutual impact between soil and phreatic surface conditions for shallow groundwater tables. However, it should be mentioned here that all other processes in the two compartments (including capillary rise due to clay rich soils and groundwater withdrawn by root plants or evaporation losses) are accordingly considered given the capabilities of the used models. If we impose the computed groundwater table elevation as the outflow condition of the hydrotope for the next time step we postulate that the associated water volume of the saturated storage change will lead to the same change of the phreatic surface in the hydrotope column. This is only valid if the storage characteristics of the affected unsaturated soil layers can be adequately described by the co-located porosity of the saturated model. Moreover, the current soil moisture content of the respective soil layers is not being considered by the implemented new outflow boundary condition. Thus, from the perspective of continuity of mass it might be more correct, to transfer the same water volume that led to the saturated change (rise and fall) of the groundwater table to the unsaturated hydrotope column and compute the adjusted outflow boundary position for use in the next time step. Due to the hydrogeological conditions in our application, for almost all hydrotopes we have the same soil type (i.e. coarse sand) in the range of groundwater table fluctuations and thus, we expect no further impact of transferring the groundwater table from the saturated computation to the unsaturated domain. Summarizing, for the hydrogeologic conditions of our test site and the scope of the problem to be solved the sequential coupling between 1d unsaturated vertical and 2d saturated horizontal simulation of water movement and solute transport is regarded as an appropriate conceptual and numerical approach. Due to the extensive look-up table containing unsaturated water and nitrate fluxes for each hydrotope at a vertical resolution of 10 cm no further feedback processes between the unsaturated and saturated subsurface compartment need to be considered. Feichtinger, F. (1998). STOTRASIM - Ein Modell zur Simulation der Stickstoffdynamik in der ungesättigten Zone eines Ackerstandortes. Schriftenreihe des Bundesamtes für Wasserwirtschaft, Bd. 7, 14-41. Klammler, G., Rock, G., Fank, J. & H. Kupfersberger, H. (2011): Generating land use information to derive diffuse water and nitrate transfer as input for groundwater modelling at the aquifer scale, Proc of MODELCARE 2011 Models - Repository of Knowledge, Leipzig. Stenitzer, E. (1988). SIMWASER - Ein numerisches Modell zur Simulation des Bodenwasserhaushaltes und des Pflanzenertrages eines Standortes. Mitteilung Nr. 31, Bundesanstalt für Kulturtechnik und Bodenwasserhaushalt, A-3252 Petzenkirchen. Van Walsum, P.E.V. and P. Groedendilk (2008). Quasi steady-state simulation of the unsaturated zone in groundwater modeling of lowland regions. Vadose Zone J. 7:769-781 doi:10.2136/vzj2007.0146.

  5. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    NASA Astrophysics Data System (ADS)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ < 45 Ω m) at elevations ranging between -5 and -10 m. At one site near the shore of Biscayne Bay, the resistivity is less than 10 Ω m at -5 m elevation reflecting the presence of salt water in the aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  6. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA

    USGS Publications Warehouse

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant

    2018-01-01

    Process-based modeling of regional NO3− fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3− reactive transport processes make implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3− in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3−, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3−, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3− front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g. limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  7. Regional Variability of Nitrate Fluxes in the Unsaturated Zone and Groundwater, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant C.

    2018-01-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3- reactive transport processes makes implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3- in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams, (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3-, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3- front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g., limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  8. Direct observations of rock moisture, a hidden component of the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Rempe, Daniella M.; Dietrich, William E.

    2018-03-01

    Recent theory and field observations suggest that a systematically varying weathering zone, that can be tens of meters thick, commonly develops in the bedrock underlying hillslopes. Weathering turns otherwise poorly conductive bedrock into a dynamic water storage reservoir. Infiltrating precipitation typically will pass through unsaturated weathered bedrock before reaching groundwater and running off to streams. This invisible and difficult to access unsaturated zone is virtually unexplored compared with the surface soil mantle. We have proposed the term “rock moisture” to describe the exchangeable water stored in the unsaturated zone in weathered bedrock, purposely choosing a term parallel to, but distinct from, soil moisture, because weathered bedrock is a distinctly different material that is distributed across landscapes independently of soil thickness. Here, we report a multiyear intensive campaign of quantifying rock moisture across a hillslope underlain by a thick weathered bedrock zone using repeat neutron probe measurements in a suite of boreholes. Rock moisture storage accumulates in the wet season, reaches a characteristic upper value, and rapidly passes any additional rainfall downward to groundwater. Hence, rock moisture storage mediates the initiation and magnitude of recharge and runoff. In the dry season, rock moisture storage is gradually depleted by trees for transpiration, leading to a common lower value at the end of the dry season. Up to 27% of the annual rainfall is seasonally stored as rock moisture. Significant rock moisture storage is likely common, and yet it is missing from hydrologic and land-surface models used to predict regional and global climate.

  9. Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California

    USGS Publications Warehouse

    Umari, A.M.; Martin, P.M.; Schroeder, R.A.; Duell, L.F.; Fay, R.G.

    1993-01-01

    Septic-tank wastewater disposed in 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley. As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisturefrom suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where thenitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the residual nitrate with an isotope-separation factor of about -10 permil. Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the thick unsaturated zone and mixes with the ground water. The observed low nitrate concentrations also could be explained by a dilution by vertical mixing in the saturated zone and retention of the wastewater in the unsaturated zone. Results of a single-cell mixing model that allows nitrate from wastewater to be mixedinstantaneously with the underlying ground water suggest that measurable increases in nitrate concentration should be expected within 5 to 10 years after wastewater reaches the water table if the mixing depth is less than 100 feet. Although high fecal-coliform densities were measured in wastewater from septic tanks and seepage pits, removal of these enteric bacteria in the unsaturated zone is very effective, as was indicated by their absence in soil only a few feet from the seepage pits. In testing for organic priority pollutants in wastewater, 17 of 85 compounds were detected. Most compounds detected were present in low concentrations, except at one residence where the concentration of three compounds exceeded 100 micrograms per liter. These high concentrations may be a consequence of disposal practices unique to this residence. Extractable organic priority pollutants were not found in any soil cores taken adjacent to seepage pits and, therefore, are not of concern.

  10. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only recycle wastewater, but can also increase the likelihood of denitrification. Thus the farmer essentially can choose whether, and to which extent, to install capture wells and take advantage of the ecosystem attenuation services. Decision rules from the dynamic optimization model demonstrate best management practices for the farm to improve its economic and environmental performance. I further use an economic valuation technique to value these services. Under the Millennium Ecosystem Assessment framework, nitrate attenuation in the unsaturated and saturated zone provides regulatory ecosystem services to humans, mainly nutrient regulation and waste treatment. With the integrated farm model, the production function approach is adopted to get the economic value of these regulatory services. The results highlight the significant role the environment can play in nitrate pollution control and potential benefits from designing policies that acknowledge this role. The most desirable policies are those that create incentive for farmers to use potential ecosystem services, which significantly reduce environmental compliance costs and increase social welfare.

  11. Characterization and quantification of geochemical reaction rates in mine waste piles using unsaturated zone gases

    NASA Astrophysics Data System (ADS)

    Birkham, T.; Hendry, J.; Kirkland, R.; Bradley, S.; Mendoza, C.; Wassenaar, L.

    2003-04-01

    From 1997 to the present, we have installed and monitored 240 gas probes (maximum depth of 43 m) in unsaturated waste rock, overburden and tailings piles at a uranium mine in northern Saskatchewan, Canada and an oil sands mine in northern Alberta, Canada. Depth profiles of O2, CO2, N2 and CH4 pore-gas concentrations, temperature, and moisture content were measured in the field and used to characterize and quantifyin situ geochemical reaction rates. An innovative field-portable GC system has been developed to monitor pore-gas concentrations. At most sites, gas migration has been attributed to diffusion. At sites where advective transport may be important, subsurface total pressure measurements have been used to assess the contribution of advection to gas migration. The stable isotopes of molecular O2 (16O2 and 18O16O) and C in CO2 (12CO2 and 13CO2) have also been measured and modeled. At the uranium mine, the modelling of the O2, CO2, δ18OO2, and δ13CCO2 depth profiles was used to identify an alternative mechanism of O2 consumption and CO2 production in mine waste-rock piles. At the oil sands mine, a complex and unique system involving O2, CO2, and CH4 fluxes in the unsaturated zone and across the capillary fringe has been identified and is currently being modeled.

  12. Variability and scaling of hydraulic properties for 200 Area soils, Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaleel, R.; Freeman, E.J.

    Over the years, data have been obtained on soil hydraulic properties at the Hanford Site. Much of these data have been obtained as part of recent site characterization activities for the Environmental Restoration Program. The existing data on vadose zone soil properties are, however, fragmented and documented in reports that have not been formally reviewed and released. This study helps to identify, compile, and interpret all available data for the principal soil types in the 200 Areas plateau. Information on particle-size distribution, moisture retention, and saturated hydraulic conductivity (K{sub s}) is available for 183 samples from 12 sites in themore » 200 Areas. Data on moisture retention and K{sub s} are corrected for gravel content. After the data are corrected and cataloged, hydraulic parameters are determined by fitting the van Genuchten soil-moisture retention model to the data. A nonlinear parameter estimation code, RETC, is used. The unsaturated hydraulic conductivity relationship can subsequently be predicted using the van Genuchten parameters, Mualem`s model, and laboratory-measured saturated hydraulic conductivity estimates. Alternatively, provided unsaturated conductivity measurements are available, the moisture retention curve-fitting parameters, Mualem`s model, and a single unsaturated conductivity measurement can be used to predict unsaturated conductivities for the desired range of field moisture regime.« less

  13. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie

    2017-07-01

    The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone. From our results we build the functional scheme of the karst system. It demonstrates the impact of the saturated zone on matrix-conduit exchanges in this shallow phreatic aquifer and highlights the important role of the unsaturated zone on storage and transfer functions of the system.

  14. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kim S.

    2008-01-01

    Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

  15. Application of Analysis and Modeling for Surface Water-Ground Water System: Preliminary Study of Artificial Recharge in Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Koo, M.; Lee, K.; Ko, K.; Barry, J. M.

    2008-12-01

    The primary goal of this study is to secure sustainable groundwater resources with application of the analysis and modeling of coupled surface water-groundwater system to Jeju Island in the form of artificial recharge. Artificial recharge technology is a feasible method to augment groundwater resources in Jeju Island, Korea. Jeju-friendly Aquifer Recharge Technology (J-ART) that will be developed in this study is a technology for securing sustainable water resources by capturing ephemeral stream water with no interference in the environment such as natural recharge or eco-system, capturing the water in the reservoirs, recharging it through designed borehole after appropriate treatment, and then making it to be used at down-gradient production wells. Precipitation pattern in the study area is shifting to more sparsely-distributed and heavier rain type in summer season which reduces infiltration and/or groundwater recharge but increases runoff and flash flood on stream. Stream water as a source for J-ART is available only a few times a year since the stream bed is highly feasible to be percolated. To characterize quantitatively stream water, automatic temporal data collection system for water level, water velocity, and water qualities of total 8 parameters including temperature, water depth, pH, EC, DO, turbidity, NO3-N and Cl-. Characterizing groundwater flow from recharge area to discharge area should be achieved to evaluate the efficiency of J-ART. Jeju volcanic island has very thick unsaturated zone which is approximately 50 percent of the elevation on which it is. This hydrogeological property is good to inject source water through unsaturated zone to increase transport time, to get main basal aquifer, and to naturally filter the injected water during the transport. However, characterizing groundwater flow through the thick unsaturated zone with repeatedly overlapping permeable/impermeable layers would be a challenge. Estimation method of the infiltration velocity of soil water, groundwater age dating, and evaluation method for groundwater flow/circulation using stable isotopes are developed to evaluate artificial recharge. Input parameters for groundwater flow model are collected and analyzed quantitatively to develop model for simulating groundwater flow and thermal transport during artificial recharge. Self-potential survey method is reviewed theoretically as a geophysical evaluation method to characterize unsaturated flow during artificial recharge.

  16. Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2011-05-01

    Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown records from a 7 day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada. We validate our parameter estimates against manually measured drawdown records in 14 other piezometers at Borden. We compare our estimates of aquifer parameters with those obtained on the basis of all these records by Moench (2008) and on the basis of 11 transducer-measured drawdown records by Endres et al. (2007), and we compare our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by Akindunni and Gillham (1992); finally, we compare our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well.

  17. Archaeology and public perception of a trans-scientific problem; disposal of toxic wastes in the unsaturated zone

    USGS Publications Warehouse

    Winograd, Isaac Judah

    1986-01-01

    Predicting the effects of toxic-waste disposal on the environment over periods of millenia to hundreds of millenia is a transscientific problem; that is, one not fully addressed by quantitative scientific and engineering endeavors. Archaeology is a pertinent adjunct to such predictions in several ways. First, and foremost, archaeological records demonstrate that delicate, as well as durable, objects buried in thick unsaturated zones of arid and semiarid environments may survive intact for millenia to tens of millenia. This successful preservation of Late Paleolithic to Iron Age artifacts provides independent support for the tentative favorable conclusions of earth scientists regarding the general utility of thick unsaturated zones for toxic-waste isolation. By analogy with the archaeological record, solidified toxic wastes of low solubility that are buried in arid unsaturated zones should remain isolated from the environment indefinitely; modern man presumably should be able to improve upon the techniques used by his ancestors to isolate and preserve their sacred and utilitarian objects. Second, archaeological evidence pertinent to the fate of objects buried in unsaturated zones-although qualitative in nature and subject to the limitations of arguments by analogy-is meaningful to the public and to the courts who, with some scientists and engineers, are reluctant to rely exclusively on computer-generated predictions of the effects of buried toxic wastes on the environment. Third, the archaeological record issues a warning that our descendants may intrude into our waste disposal sites and that we must therefore take special measures to minimize such entry and, if it occurs, to warn of the dangers by a variety of symbols. And fourth, archaeology provides a record of durable natural and manmade materials that may prove to be suitable for encapsulation of our wastes and from which we can construct warning markers that will last for millenia. For these four reasons, archaeologists must join with earth scientists, and other scientists and engineers, in addressing the likely fate of solidfied toxic wastes buried in the thick (200-600 m) unsaturated zones of arid and semiarid regions. Indeed, the input of archaeology might be crucial to public acceptance of even the most carefully chosen and technically sound waste repository.

  18. Herbicide Transport and Transformations in the Unsaturated Zone of Three Small Agricultural Basins with Corn and Soybean Row Crops

    NASA Astrophysics Data System (ADS)

    Hancock, T. C.; Vogel, J. R.; Sandstrom, M. W.; Capel, P. D.; Bayless, R. E.; Webb, R. M.

    2006-05-01

    In the United States, herbicides are among the most significant nonpoint-source pollutants and were applied to 95% of all fields in corn production and 97% of all fields in soybean production in 2003 and 2004. The United States Geological Survey (USGS) has conducted a study on select herbicides in the unsaturated zone under corn and soybean fields in three predominantly agricultural basins: Morgan Creek (Maryland), Leary Weber Ditch within Sugar Creek (Indiana), and Maple Creek (Nebraska). In 2004, the Morgan Creek and Leary Weber Ditch fields were in soybeans and the Maple Creek fields were in corn. The Maple Creek fields were irrigated, whereas those in Morgan Creek and Leary Weber Ditch were not. Similarities and differences in agricultural management practices, climatic conditions, and natural features, such as soil types and geology, were evaluated as part of the study. In general, the amounts of herbicides entering the unsaturated zone from rain in these basins were minor (1%) compared to amounts commonly applied to the land surface during agricultural practices. Few herbicides were detected on solid core samples from the unsaturated zones of these basins. An exception was found at a Morgan Creek site in an upland recharge area with sandier soils. Here, atrazine concentrations were highest in the near surface solids and decreased with depth. In the unsaturated-zone porewater of the Morgan Creek Basin, parent triazine and acetanilide herbicides were detected and only at the site in the upland recharge area at relatively low concentrations at depths greater than 4 meters, probably because these compounds had not been applied for several years. At the Morgan Creek and Leary Weber Ditch sites, acetanilide metabolites were frequently detected in the unsaturated-zone porewater. In general, the fraction of metolachlor ethane sulfonic acid (ESA) relative to the total mass of parent and metabolites increased with depth overall and at several individual sampling locations this fraction increased over time. At the Maple Creek sites, atrazine, metalochlor, acetochlor, and alachlor were detected, typically at concentrations higher than their metabolites. The Maple Creek site is influenced by focused recharge, macropore flow, and variable soil-moisture retention properties in soils that transition from loess to sand.

  19. The UK Nitrate Time Bomb (Invited)

    NASA Astrophysics Data System (ADS)

    Ward, R.; Wang, L.; Stuart, M.; Bloomfield, J.; Gooddy, D.; Lewis, M.; McKenzie, A.

    2013-12-01

    The developed world has benefitted enormously from the intensification of agriculture and the increased availability and use of synthetic fertilizers during the last century. However there has also been unintended adverse impact on the natural environment (water and ecosystems) with nitrate the most significant cause of water pollution and ecosystem damage . Many countries have introduced controls on nitrate, e.g. the European Union's Water Framework and Nitrate Directives, but despite this are continuing to see a serious decline in water quality. The purpose of our research is to investigate and quantify the importance of the unsaturated (vadose) zone pathway and groundwater in contributing to the decline. Understanding nutrient behaviour in the sub-surface environment and, in particular, the time lag between action and improvement is critical to effective management and remediation of nutrient pollution. A readily-transferable process-based model has been used to predict temporal loading of nitrate at the water table across the UK. A time-varying nitrate input function has been developed based on nitrate usage since 1925. Depth to the water table has been calculated from groundwater levels based on regional-scale observations in-filled by interpolated river base levels and vertical unsaturated zone velocities estimated from hydrogeological properties and mapping. The model has been validated using the results of more than 300 unsaturated zone nitrate profiles. Results show that for about 60% of the Chalk - the principal aquifer in the UK - peak nitrate input has yet to reach the water table and concentrations will continue to rise over the next 60 years. The implications are hugely significant especially where environmental objectives must be achieved in much shorter timescales. Current environmental and regulatory management strategies rarely take lag times into account and as a result will be poorly informed, leading to inappropriate controls and conflicts between policy makers, environmentalists and industry.

  20. A genetic meta-algorithm-assisted inversion approach: hydrogeological study for the determination of volumetric rock properties and matrix and fluid parameters in unsaturated formations

    NASA Astrophysics Data System (ADS)

    Szabó, Norbert Péter

    2018-03-01

    An evolutionary inversion approach is suggested for the interpretation of nuclear and resistivity logs measured by direct-push tools in shallow unsaturated sediments. The efficiency of formation evaluation is improved by estimating simultaneously (1) the petrophysical properties that vary rapidly along a drill hole with depth and (2) the zone parameters that can be treated as constant, in one inversion procedure. In the workflow, the fractional volumes of water, air, matrix and clay are estimated in adjacent depths by linearized inversion, whereas the clay and matrix properties are updated using a float-encoded genetic meta-algorithm. The proposed inversion method provides an objective estimate of the zone parameters that appear in the tool response equations applied to solve the forward problem, which can significantly increase the reliability of the petrophysical model as opposed to setting these parameters arbitrarily. The global optimization meta-algorithm not only assures the best fit between the measured and calculated data but also gives a reliable solution, practically independent of the initial model, as laboratory data are unnecessary in the inversion procedure. The feasibility test uses engineering geophysical sounding logs observed in an unsaturated loessy-sandy formation in Hungary. The multi-borehole extension of the inversion technique is developed to determine the petrophysical properties and their estimation errors along a profile of drill holes. The genetic meta-algorithmic inversion method is recommended for hydrogeophysical logging applications of various kinds to automatically extract the volumetric ratios of rock and fluid constituents as well as the most important zone parameters in a reliable inversion procedure.

  1. Use of a reactive gas transport model to determine rates of hydrocarbon biodegradation in unsaturated porous media

    USGS Publications Warehouse

    Baehr, Arthur L.; Baker, Ronald J.

    1995-01-01

    A mathematical model is presented that simulates the transport and reaction of any number of gaseous phase constituents (e.g. CO2, O2, N2, and hydrocarbons) in unsaturated porous media. The model was developed as part of a method to determine rates of hydrocarbon biodegradation associated with natural cleansing at petroleum product spill sites. The one-dimensional model can be applied to analyze data from column experiments or from field sites where gas transport in the unsaturated zone is approximately vertical. A coupled, non-Fickian constitutive relation between fluxes and concentration gradients, together with the capability of incorporating heterogeneity with respect to model parameters, results in model applicability over a wide range of experimental and field conditions. When applied in a calibration mode, the model allows for the determination of constituent production/consumption rates as a function of the spatial coordinate. Alternatively, the model can be applied in a predictive mode to obtain the distribution of constituent concentrations and fluxes on the basis of assumed values of model parameters and a biodegradation hypothesis. Data requirements for the model are illustrated by analyzing data from a column experiment designed to determine the aerobic degradation rate of toluene in sediments collected from a gasoline spill site in Galloway Township, New Jersey.

  2. Quantification of natural vapor fluxes of trichloroethene in the unsaturated zone at Picatinny Arsenal, New Jersey

    USGS Publications Warehouse

    Smith, James A.; Tisdale, Amy K.; Cho, H. Jean

    1996-01-01

    The upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-month period. Vertical gas-phase diffusion fluxes were estimated indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick's law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that mechanisms other than steady-state vapor diffusion are contributing to the vertical transport of TCE vapors through the unsaturated zone. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream. The net upward flux of TCE is reduced significantly during a storm event, presumably due to the mass transfer of TCE from the soil gas to the infiltrating rainwater and its subsequent downward advection. Several potential problems associated with the measurement of total gas-phase fluxes are discussed.

  3. Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site

    NASA Astrophysics Data System (ADS)

    Warren, Ean; Bekins, Barbara A.

    2018-04-01

    Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site.

  4. Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site.

    PubMed

    Warren, Ean; Bekins, Barbara A

    2018-04-01

    Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site. Published by Elsevier B.V.

  5. Discussion of pore pressure transmission under rain infiltration in a soil layer

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jan, C. D.

    2017-12-01

    The vadose zone (or unsaturated zone) denotes the geologic media between ground surface and the water table in situ where the openings, or pores, in the soil (rock) layers are partially filled with water and air. In this landscape, rainwater infiltrates into soils advancing through this vadose zone and could generates a shallow saturation zone at soil bedrock boundary due to permeability contrast. This saturation zone leads to downslope shallow subsurface storm runoff that contributes to a part of saturation overland flow, dominating water reaching river channels. Hence, unsaturated processes (e.g., rain infiltration) is an important issue that can determine the timing and magnitude of positive pore pressure and discharge peaks, and the characteristics of runoff, water chemistry, hillslope stability is also tie to the processes. In this study, we investigated the transmission of pore pressure evolution in the vadose zone for diverse soil materials based on poroelasticity theory. Commonly, a traditional way is to utilize the Richard's equation to predict pore pressure evolution under unsaturated rain infiltration, ignoring the inertial effect on the process. Here we relax this limitation and propose two reference time tk and tep that can represent the arriving time at a certain depth of wave propagation and dissipation, respectively. Form ground surface to a depth of 1 m, tk has significant differences under nearly unsaturated conditions for diverse soil properties; however, no evident variations in tk can be observed under nearly saturated conditions. Values of tep for loose, cohesionless soils are much greater but decreases to the smallest one (within 1 day) than those for other soil properties under a nearly saturated condition. Results indicate that transient pore pressure transmission is mainly dominated by dynamic wave propagation but the effect of dissipation could become more important with increase in water saturation.

  6. Nitrogen fluxes through unsaturated zones in five agricultural settings across the USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Fisher, L. H.; Bekins, B. A.

    2006-12-01

    The main controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Washington, Nebraska, Indiana, and Maryland in 2004 and 2005. Sites included irrigated and non-irrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 0.5 to 20 m. Chemical analyses of water from lysimeters, shallow wells, and sediment cores indicate that advective transport of nitrate is the dominant process affecting the rate of N transport below the root zone. Vertical profiles of (1) N species, (2) stable N and O isotopes, and (3) oxygen gas in unsaturated zone air and shallow ground water, and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. Relatively stable concentrations at depths greater than a few meters allow calculation of nitrogen fluxes to the saturated zone. These fluxes are equivalent to 14 - 64% of the N application rates. At the same locations, median vertical fluxes of N in ground water are generally lower, ranging from 4 - 37% of N application rates. The lower nitrate fluxes in ground water reflect processes including lateral flow to tile drains and denitrification in the capillary fringe, as well as historical changes in N inputs.

  7. Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS

    NASA Astrophysics Data System (ADS)

    Bordoni, M.; Meisina, C.; Valentino, R.; Bittelli, M.; Chersich, S.

    2015-05-01

    Rainfall-induced shallow landslides are common phenomena in many parts of the world, affecting cultivation and infrastructure and sometimes causing human losses. Assessing the triggering zones of shallow landslides is fundamental for land planning at different scales. This work defines a reliable methodology to extend a slope stability analysis from the site-specific to local scale by using a well-established physically based model (TRIGRS-unsaturated). The model is initially applied to a sample slope and then to the surrounding 13.4 km2 area in Oltrepo Pavese (northern Italy). To obtain more reliable input data for the model, long-term hydro-meteorological monitoring has been carried out at the sample slope, which has been assumed to be representative of the study area. Field measurements identified the triggering mechanism of shallow failures and were used to verify the reliability of the model to obtain pore water pressure trends consistent with those measured during the monitoring activity. In this way, more reliable trends have been modelled for past landslide events, such as the April 2009 event that was assumed as a benchmark. The assessment of shallow landslide triggering zones obtained using TRIGRS-unsaturated for the benchmark event appears good for both the monitored slope and the whole study area, with better results when a pedological instead of geological zoning is considered at the regional scale. The sensitivity analyses of the influence of the soil input data show that the mean values of the soil properties give the best results in terms of the ratio between the true positive and false positive rates. The scheme followed in this work allows us to obtain better results in the assessment of shallow landslide triggering areas in terms of the reduction in the overestimation of unstable zones with respect to other distributed models applied in the past.

  8. Chlorine-36 data at Yucca Mountain: Statistical tests of conceptual models for unsaturated-zone flow

    USGS Publications Warehouse

    Campbell, K.; Wolfsberg, A.; Fabryka-Martin, J.; Sweetkind, D.

    2003-01-01

    An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Monitoring technologies for the evaluation of a Soil-Aquifer-Treatment system in coastal aquifer environments.

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Tsertou, Athanasia; Foglia, Laura; Bumberger, Jan; Vienken, Thomas; Dietrich, Peter; Schüth, Christoph

    2014-05-01

    Artificial recharge of groundwater has an important role to play in water reuse. Treated sewage effluent can be infiltrated into the ground for recharge of aquifers. As the effluent water moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. Recharge systems for SAT can be designed as infiltration-recovery systems, where all effluent water is recovered as such from the aquifer, or after blending with native groundwater. SAT typically removes essentially all suspended solids, biochemical oxygen demand (BOD), and pathogens (viruses, bacteria, protozoa, and helminthic eggs). Concentrations of synthetic organic carbon, phosphorous, and heavy metals are greatly reduced. The pilot site of LTCP will involve the employment of infiltration basins, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. T he LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved through the development and installation of an integrated system of prototype sensors, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time Domain Reflectometry (TDR) sensors will be developed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. The above technique will offer continuous monitoring of infiltration rates and possible mechanical clogging effects. The qualitative monitoring of the unsaturated zone will be achieved through the installation of appropriate pore-water samplers within a multi-level basis, ensuring repeatability of sampling of infiltrating water of impaired quality. This study also involves the qualitative and quantitative assessment of the Lavrion multi-aquifer system through continuous monitoring of the performance of (i) the alluvial aquifer and its potential for additional water treatment as well as (ii) the effects of the SAT system for countermeasuring seawater intrusion in the area of Lavrion. Additionally, setup and calibration of numerical flow and transport models for evaluating and optimizing different operational modes of the SAT system within both saturated and unsaturated zones will be conducted. The monitoring system will be connected to an ad-hoc wireless network for continuous data transfer within the SAT facilities. It is envisaged that the development and combined application of all the above technologies will provide an integrated monitoring platform for the evaluation of SAT system performance.

  10. Bubble-facilitated VOC transport: Laboratory experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Mumford, K. G.; Soucy, N. C.

    2017-12-01

    Most conceptual and numerical models of vapor intrusion assume that the transport of volatile organic compounds (VOCs) from the source to near the building foundation is a diffusion-limited processes. However, the transport of VOCs by mobilized gas bubbles through the saturated zone could lead to increased rates of transport and advection through the unsaturated zone, thereby increasing mass flux and risks associated with vapor intrusion. This mobilized gas could be biogenic (methanogenic) but could also result from the partitioning of VOC to trapped atmospheric gases in light non-aqueous phase liquid (LNAPL) smear zones. The potential for bubble-facilitated VOC transport to increase mass flux was investigated in a series of 1D and 2D laboratory experiments. Pentane source zones were emplaced in sand using sequential drainage and imbibition steps to mimic a water table fluctuation and trap air alongside LNAPL residual. This source was placed below an uncontaminated, water saturated sand (occlusion zone) and a gravel-sized (glass beads) unsaturated zone. Water was pumped laterally through the source zone and occlusion zone to deliver the dissolved gases (air) that are required for the expansion of trapped gas bubbles. Images from 2D flow cell experiments were used to demonstrate fluid rearrangement in the source zone and gas expansion to the occlusion zone, and 1D column experiments were used to measure gas-phase pentane mass flux. This flux was found to be 1-2 orders of magnitude greater than that measured in diffusion-dominated control columns, and showed intermittent behavior consistent with bubble transport by repeated expansion, mobilization, coalescence and trapping. Numerical simulation results under a variety of conditions using an approach that couples macroscopic invasion percolation with mass transfer (MIP-MT) between the aqueous and gas phases will also be presented. The results of this study demonstrate the potential for bubble-facilitated transport to increase transport rates linked to vapor intrusion, and will serve as a basis for further development of conceptual and numerical models to investigate the conditions under which this mechanism may play an important role.

  11. Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: A mass balance approach

    USGS Publications Warehouse

    Desimone, Leslie A.; Howes, Brian L.

    1998-01-01

    Nitrogen transport and transformations were followed over the initial 3 years of development of a plume of wastewater-contaminated groundwater in Cape Cod, Massachusetts. Ammonification and nitrification in the unsaturated zone and ammonium sorption in the saturated zone were predominant, while loss of fixed nitrogen through denitrification was minor. The major effect of transport was the oxidation of discharged organic and inorganic forms to nitrate, which was the dominant nitrogen form in transit to receiving systems. Ammonification and nitrification in the unsaturated zone transformed 16–19% and 50–70%, respectively, of the total nitrogen mass discharged to the land surface during the study but did not attenuate the nitrogen loading. Nitrification in the unsaturated zone also contributed to pH decrease of 2 standard units and to an N2O increase (46–660 µg N/L in the plume). Other processes in the unsaturated zone had little net effect: Ammonium sorption removed <1% of the total discharged nitrogen mass; filtering of particulate organic nitrogen was less than 3%; ammonium and nitrate assimilation was less than 6%; and ammonia volatilization was less than 0.25%. In the saturated zone a central zone of anoxic groundwater (DO ≤ 0.05 mg/L) was first detected 17 months after effluent discharge to the aquifer began, which expanded at about the groundwater-flow velocity. Although nitrate was dominant at the water table, the low, carbon-limited rates of denitrification in the anoxic zone (3.0–9.6 (ng N/cm3)/d) reduced only about 2% of the recharged nitrogen mass to N2. In contrast, ammonium sorption in the saturated zone removed about 16% of the recharged nitrogen mass from the groundwater. Ammonium sorption was primarily limited to anoxic zone, where nitrification was prevented, and was best described by a Langmuir isotherm in which effluent ionic concentrations were simulated. The initial nitrogen load discharged from the groundwater system may depend largely on the growth and stability of the sorbed ammonium pool, which in turn depends on effluent-loading practices, subsurface microbial processes, and saturation of available exchange sites.

  12. User Requirements for the Application of Remote Sensing in the Planning and Management of Water Resource Systems

    NASA Technical Reports Server (NTRS)

    Burgy, R. H.

    1972-01-01

    Data relating to hydrologic and water resource systems and subsystems management are reported. Systems models, user application, and remote sensing technology are covered. Parameters governing water resources include evaportranspiration, vegetation, precipitation, streams and estuaries, reservoirs and lakes, and unsaturate and saturated soil zones.

  13. DOE-EPSCOR SPONSORED PROJECT FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jianting

    Concern over the quality of environmental management and restoration has motivated the model development for predicting water and solute transport in the vadose zone. Soil hydraulic properties are required inputs to subsurface models of water flow and contaminant transport in the vadose zone. Computer models are now routinely used in research and management to predict the movement of water and solutes into and through the vadose zone of soils. Such models can be used successfully only if reliable estimates of the soil hydraulic parameters are available. The hydraulic parameters considered in this project consist of the saturated hydraulic conductivity andmore » four parameters of the water retention curves. To quantify hydraulic parameters for heterogeneous soils is both difficult and time consuming. The overall objective of this project was to better quantify soil hydraulic parameters which are critical in predicting water flows and contaminant transport in the vadose zone through a comprehensive and quantitative study to predict heterogeneous soil hydraulic properties and the associated uncertainties. Systematic and quantitative consideration of the parametric heterogeneity and uncertainty can properly address and further reduce predictive uncertainty for contamination characterization and environmental restoration at DOE-managed sites. We conducted a comprehensive study to assess soil hydraulic parameter heterogeneity and uncertainty. We have addressed a number of important issues related to the soil hydraulic property characterizations. The main focus centered on new methods to characterize anisotropy of unsaturated hydraulic property typical of layered soil formations, uncertainty updating method, and artificial neural network base pedo-transfer functions to predict hydraulic parameters from easily available data. The work also involved upscaling of hydraulic properties applicable to large scale flow and contaminant transport modeling in the vadose zone and geostatistical characterization of hydraulic parameter heterogeneity. The project also examined the validity of the some simple average schemes for unsaturated hydraulic properties widely used in previous studies. A new suite of pedo-transfer functions were developed to improve the predictability of hydraulic parameters. We also explored the concept of tension-dependent hydraulic conductivity anisotropy of unsaturated layered soils. This project strengthens collaboration between researchers at the Desert Research Institute in the EPSCoR State of Nevada and their colleagues at the Pacific Northwest National Laboratory. The results of numerical simulations of a field injection experiment at Hanford site in this project could be used to provide insights to the DOE mission of appropriate contamination characterization and environmental remediation.« less

  14. Modeling solute transport in a heterogeneous unsaturated porous medium under dynamic boundary conditions on different spatial scales

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel

    2013-04-01

    Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical simulations differ in lateral scale reaching from 0.2 m to 1.5 m, while the height of the domain is kept constant to 1.5m. Strong material heterogeneity is realized through vertical layers of coarse and fine sand. Both materials remain permanently under liquid-flow-dominated ('stage1') evaporation conditions. Spatial moments as well as the dilution index (Kitanidis, 1994) are used for quantification of transport behaviour. Results show that, while all simulations led to anomalous transport, infiltration-evaporation cycles lead to faster solute leaching rates than solely infiltration at the same net-infiltration rate in both homogeneous and heterogeneous media. Flow and transport-paths significantly differed between infiltration and evaporation, resulting in lateral water fluxes and hence lateral solute transport. Variation of the width of the model domain shows faster leaching rates for domains with small horizontal extent.

  15. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Ill. Chemical data were evaluated to determine the principal, naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on-site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rainwater or snowmelt changed to an ionic composition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.

  16. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.

  17. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    NASA Astrophysics Data System (ADS)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on the water salinity driven by drought and periodic flooding conditions. This study shows that although 14C cannot be directly applied as a dating tool in some circumstances, carbon geochemical/isotopic data can be useful in hydrological investigations related to identifying groundwater sources, mixing relations, recharge processes, geochemical evolution, and interaction with surface water.

  18. Organic Compounds Complexify Transport in the Amargosa Desert—The Case for Phytotritiation

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Luo, W.; Andraski, B. J.; Baker, R. J.; Maples, S.; Mayers, C. J.; Young, M. B.

    2014-12-01

    Civilian low-level radioactive waste containing organic compounds was disposed in 2- to 15-m deep unlined trenches in a 110-m deep unsaturated zone at the present-day USGS Amargosa Desert Research Site. Tritium represents the plurality of disposed activity. A plume of gas-phase contaminants surrounds the disposal area, with 60 distinct volatile organic compounds (VOCs) identified to date. The distribution of tritiated water in the unsaturated zone surrounding the disposal area is highly enigmatic, with orders of magnitude separating observed levels from those predicted by multiphase models of mass and energy transport. Peaks of tritium and VOCs are coincidently located in sediments tens of meters below the root zone, suggesting abiotic stratigraphic control on lateral transport at depth. Surprisingly, the highest observed levels of tritium occur at a depth of about 1.5 m, the base of the creosote-bush plant-community root zone, where levels of waste-derived VOCs are low (approaching atmospheric levels). Bulk water-vapor samples from shallow and deep unsaturated-zone profile hot spots were trapped as water ice in cold fingers immersed in dry ice-isopropyl alcohol filled Dewar flasks, then melted and sequentially extracted by purge-and-trap VOC degassing followed by elution through activated carbon solid-phase extraction (SPE) cartridges. Analysis of tritium activities and mass spectrometer results indicate that over 98% of tritium activity at depth is present as water, whereas about 15% of basal root zone tritium activity is present as organic compounds trapped with the water. Of these, the less-volatile compound group removed by SPE accounted for about 85% of the organic tritium activity, with mass spectrometry identifying 2-ethyl-1-hexanol as the principal compound removed. This plant-produced fatty alcohol is ubiquitous in the root zone of creosote-bush communities and represents a family of hydroxyl-containing plant produced compounds that give the plants their pungency. These findings suggest that tritiated hydroxyl groups on plant-produced organic compounds provide an important reservoir and pathway for tritium transport.

  19. The Effect of Dynamic Evaporation Rates on the Mobility of Pharmaceuticals in Unsaturated Environments

    NASA Astrophysics Data System (ADS)

    Normile, H.; Papelis, C.; Kibbey, T. C. G.

    2015-12-01

    The focus of this work was on investigating how dynamic rates of evaporation affect the fate and transport of pharmaceutical compounds in unsaturated porous media. The environmental processes of saturation and evaporation control local concentrations of contaminants in pore water of porous media. Specifically, the rate of evaporation can affect the identity and extent of solid formation of a pharmaceutical compound. A range of experiments with different evaporation rates were conducted on sand columns saturated with a solution of ciprofloxacin, a fluoroquinolone antibiotic. Experiments were designed to simulate increased and decreased pore-water concentrations of a compound due to evaporation and resaturation, respectively. Results suggest that varied rates of evaporation cause differences in compound adsorption behavior. This result has significant implications for understanding fate and transport within the unsaturated zone. Preliminary models exploring the impact on contaminant mobility are discussed.

  20. Direct current resistivity profiling to study distribution of water in the unsaturated zone near the Amargosa Desert Research Site, Nevada

    USGS Publications Warehouse

    Abraham, Jared D.; Lucius, Jeffrey E.

    2004-01-01

    In order to study the distribution of water in the unsaturated zone and potential for ground-water recharge near the Amargosa Desert Research Site south of Beatty, Nevada, the U.S. Geological Survey collected direct-current resistivity measurements along three profiles in May 2003 using an eight-channel resistivity imaging system. Resistivity data were collected along profiles across the ADRS, across a poorly incised (distributary) channel system of the Amargosa River southwest of the ADRS, and across a well-incised flood plain of the Amargosa River northwest of the ADRS.This report describes results of an initial investigation to estimate the distribution of water in the unsaturated zone and to evaluate the shallow subsurface stratigraphy near the ADRS. The geophysical method of dc resistivity was employed by using automated data collection with numerous electrodes. "Cross sections" of resistivity, produced by using an inversion algorithm on the field data, at the three field sites are presented and interpreted.

  1. Determination of Matric Suction and Saturation Degree for Unsaturated Soils, Comparative Study - Numerical Method versus Analytical Method

    NASA Astrophysics Data System (ADS)

    Chiorean, Vasile-Florin

    2017-10-01

    Matric suction is a soil parameter which influences the behaviour of unsaturated soils in both terms of shear strength and permeability. It is a necessary aspect to know the variation of matric suction in unsaturated soil zone for solving geotechnical issues like unsaturated soil slopes stability or bearing capacity for unsaturated foundation ground. Mathematical expression of the dependency between soil moisture content and it’s matric suction (soil water characteristic curve) has a powerful character of nonlinearity. This paper presents two methods to determine the variation of matric suction along the depth included between groundwater level and soil level. First method is an analytical approach to emphasize one direction steady state unsaturated infiltration phenomenon that occurs between the groundwater level and the soil level. There were simulated three different situations in terms of border conditions: precipitations (inflow conditions on ground surface), evaporation (outflow conditions on ground surface), and perfect equilibrium (no flow on ground surface). Numerical method is finite element method used for steady state, two-dimensional, unsaturated infiltration calculus. Regarding boundary conditions there were simulated identical situations as in analytical approach. For both methods, was adopted the equation proposed by van Genuchten-Mualen (1980) for mathematical expression of soil water characteristic curve. Also for the unsaturated soil permeability prediction model was adopted the equation proposed by van Genuchten-Mualen. The fitting parameters of these models were adopted according to RETC 6.02 software in function of soil type. The analyses were performed in both methods for three major soil types: clay, silt and sand. For each soil type were concluded analyses for three situations in terms of border conditions applied on soil surface: inflow, outflow, and no flow. The obtained results are presented in order to highlight the differences/similarities between the methods and the advantages / disadvantages of each one.

  2. Temporal Variation and Scaling of Hydrological Variables in a Typical Watershed

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, Y. K.; Liang, X.; Liu, J.

    2016-12-01

    Temporal variations of the main hydrological variables over 16 years were systematically investigated based on the results from an integrated hydrological modeling at the Sagehen Creek Watershed in northern Sierra Nevada. Temporal scaling of these variables and damping effects of the hydrological system as well as its subsystems, i.e., the land surface, unsaturated zone, and saturated zone, were analyzed with spectral analyses. It was found that the hydrological system may act as a cascade of hierarchical fractal filters which sequentially transfer a non-fractal or less correlated fractal hydrological signal to a more correlated fractal signal. Temporal scaling of infiltration (I), actual evapotraspiration (ET), recharge (R), baseflow (BF), streamflow (SF) exist and the temporal autocorrelation of these variables increase as water moves through the system. The degree of the damping effect of the subsystems is different and is strongest in the unsaturated zone compared with that of the land surface and saturated zone. The temporal scaling of the groundwater levels (h) also exists and is strongly affected by the river: the temporal autocorrelation of h near the river is similar to that of the river stage fluctuations and increases away from the river. There is a break in the temporal scaling of h near the river at low frequencies due to the effect of the river. Temporal variations of the soil moisture (θ) is more complicated: the value of the scaling exponent (β) for θ increases with depth as water moves downwards and its high-frequency fluctuations are damped by the unsaturated zone. The temporal fluctuations of precipitation (P) and I are fractional Gauss noise (fGn), those of ET, R, BF, and SF are fractional Brownian motion (fBm), and those of h away from the river are 2nd-order fBm based on the values of β obtained in this study. Keywords: Temporal variations, Scaling, Damping effect, Hydrological system.

  3. Experimental studies in natural groundwater-recharge dynamics: The analysis of observed recharge events

    USGS Publications Warehouse

    Sophocleous, M.; Perry, C.A.

    1985-01-01

    The amounts and time distribution of groundwater recharge from precipitation over an approximately 19-month period were investigated at two instrumented sites in south-central Kansas. Precipitation and evapotranspiration sequences, soil-moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperatures, water-table hydrographs, and water-level changes in nearby wells clearly depict the recharge process. Antecedent moisture conditions and the thickness and nature of the unsaturated zone were found to be the major factors affecting recharge. Although the two instrumented sites are located in sand-dune environments in areas characterized by shallow water table and subhumid continental climate, a significant difference was observed in the estimated effective recharge. The estimates ranged from less than 2.5 to approximately 154 mm at the two sites from February to June 1983. The main reasons for this large difference in recharge estimates were the greater thickness of the unsaturated zone and the lower moisture content in that zone resulting from lower precipitation and higher potential evapotranspiration for one of the sites. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. ?? 1985.

  4. Measurement of Sedimentary Interbed Hydraulic Properties and Their Hydrologic Influence near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory

    USGS Publications Warehouse

    Perkins, Kim S.

    2003-01-01

    Disposal of wastewater to unlined infiltration ponds near the Idaho Nuclear Technology and Engineering Center (INTEC), formerly known as the Idaho Chemical Processing Plant, at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the formation of perched water bodies in the unsaturated zone (Cecil and others, 1991). The unsaturated zone at INEEL comprises numerous basalt flows interbedded with thinner layers of coarse- to fine-grained sediments and perched ground-water zones exist at various depths associated with massive basalts, basalt-flow contacts, sedimentary interbeds, and sediment-basalt contacts. Perched ground water is believed to result from large infiltration events such as seasonal flow in the Big Lost River and wastewater discharge to infiltration ponds. Evidence from a large-scale tracer experiment conducted in 1999 near the Radioactive Waste Management Complex (RWMC), approximately 13 km from the INTEC, indicates that rapid lateral flow of perched water in the unsaturated zone may be an important factor in contaminant transport at the INEEL (Nimmo and others, 2002b). Because sedimentary interbeds, and possibly baked-zone alterations at sediment-basalt contacts (Cecil and other, 1991) play an important role in the generation of perched water it is important to assess the hydraulic properties of these units.

  5. Modeling soil gas dynamics in the context of noble gas tracer applications

    NASA Astrophysics Data System (ADS)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Peregovich, Bernhard; Machado, Carlos

    2017-04-01

    Noble gas tracer applications show a particular relevance for the investigation of gas dynamics in the unsaturated zone, but also for a treatment of soil contamination as well as concerning exchange processes between soil and atmosphere. In this context, reliable conclusions require a profound understanding of underlying biogeochemical processes. With regard to noble gas tracer applications, the dynamics of reactive and inert gases in the unsaturated zone is investigated. Based on long-term trends and varying climatic conditions, this is the first study providing general insights concerning the role of unsaturated zone processes. Modeling approaches are applied, in combination with an extensive set of measured soil air composition data from appropriate sampling sites. On the one hand, a simple modeling approach allows to identify processes which predominantly determine inert gas mixing ratios in soil air. On the other hand, the well-proven and sophisticated modeling routine Min3P is applied to describe the measured data by accounting for the complex nature of subsurface gas dynamics. Both measured data and model outcomes indicate a significant deviation of noble gas mixing ratios in soil air from the respective atmospheric values, occurring on seasonal scale. Observed enhancements of noble gas mixing ratios are mainly caused by an advective balancing of depleted sum values of O2+CO2, resulting from microbial oxygen depletion in combination with a preferential dissolution of CO2. A contrary effect, meaning an enhanced sum value of O2+CO2, is shown to be induced at very dry conditions due to the different diffusivities of O2 and CO2. Soil air composition data show a yearlong mass-dependent fractionation, occurring as a relative enhancement of heavier gas species with respect to lighter ones. The diffusive balancing of concentration gradients between soil air and atmosphere is faster for lighter gas species compared to heavier ones. The rather uniform fractionation is a consequence of the time scale of diffusive transport which is decoupled from the typically stronger fluctuating advective impact.

  6. A simple model of variable residence time flow and nutrient transport in the chalk

    NASA Astrophysics Data System (ADS)

    Jackson, Bethanna M.; Wheater, Howard S.; Mathias, Simon A.; McIntyre, Neil; Butler, Adrian P.

    2006-10-01

    SummaryA basic problem of modelling flow and transport in Chalk catchments arises from the existence of a deep unsaturated zone, with complex interactions between flow in fractures and water held in the fine pores of the rock matrix. The response of the water table to major infiltration episodes is rapid (of the order of days). However, chemical signals are strongly damped, suggesting that this water is of varying age, with a corresponding mixed history of nutrient loading. Clearly this effect should be represented in any model of nutrients in Chalk systems. The applicability of simplified physically-based model formulations to represent the dual response in an integrated way has been investigated by a variety of researchers, but it has been shown that these approximations break down in application to the Chalk. Mathias et al. [Mathias, S., Butler, A.P., Jackson, B.M., Wheater, H.S., this issue. Characterising flow in the Chalk unsaturated zone. In: Wheater, H.S., Peach, D., Neal, C, editors, Hydrology on LOCAR in the Pang/Lambourn, special issue of J. Hydrol, doi:10.1016/j.jhydrol.2006.04.010] present a dual permeability model that explains the observed response, but such complex formulations are not readily incorporated in catchment-scale nutrient models. This paper reviews previous approaches to modelling the Chalk and then presents a pragmatic approach, with transport of solute and water through the unsaturated zone treated separately, and combined at the water table. Varying residence times are included through considering the distance between the water table and the soil surface, and the history of nutrient application at the surface. If an average rate of downwards migration of the nutrients is assumed, it is possible to derive a travel time distribution of nitrate transport to the water table using a DTM (digital terrain model) map of elevation and information on groundwater levels. This distribution can then be implemented through difference equations. The rationale behind the model and the resulting algorithm is described, and the algorithm then applied to a hypothetical case study of nutrient loading located in the Lambourn, a groundwater-dominated Chalk catchment in Southern England. Simulated groundwater concentrations are very similar in magnitude and variability to observed Chalk groundwater series, suggesting that this simple conceptual model may well be able to capture the dominant responses of nutrient transport through the Chalk.

  7. Data from a Thick Unsaturated Zone Underlying Two Artificial Recharge Sites along Oro Grande Wash in the Western Part of the Mojave Desert, near Victorville, San Bernardino County, California, 2001-2006

    USGS Publications Warehouse

    Clark, Dennis A.; Izbicki, John A.; Johnson, Russell D.; Land, Michael

    2009-01-01

    This report presents data on the physical and hydraulic properties of unsaturated alluvial deposits and on the chemical and isotopic composition of water collected at two recharge sites in the western part of the Mojave Desert, near Victorville, California, from 2001 to 2006. Unsaturated-zone monitoring sites were installed adjacent to the two recharge ponds using the ODEX air-hammer and air rotary method to depths of about 460 feet and 269 feet below land surface. Each of the two unsaturated-zone monitoring sites included a water-table well, matric-potential sensors, and suction-cup lysimeters installed in a single bore hole. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 400 samples of cores and cuttings was determined. Water from suction-cup lysimeters also was analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of groundwater from the two water-table wells are reported along with chemical and isotopic composition of the surface water in the recharge ponds.

  8. Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin Site

    USGS Publications Warehouse

    Nimmo, John R.; Deason, Jeffrey A.; Izbicki, John A.; Martin, Peter

    2002-01-01

    Vertical and horizontal water fluxes in the unsaturated zone near intermittent streams critically affect ecosystems, water supply, and contaminant transport in arid and semiarid regions. The subsurface near the Oro Grande Wash is typical in having great textural diversity, pronounced layer contrasts, and extremely low hydraulic conductivities associated with nearly dry media. These features prevent a straightforward application of the Darcian method for recharge estimation, which has provided high‐quality flux estimates at simpler, wetter sites. We have augmented the basic Darcian method with theoretical developments such that a small number of core sample unsaturated hydraulic property measurements, combined with additional, easily obtained data (e.g., drillers' logs) can provide useful flux estimates and knowledge of two‐dimensional water behavior beneath the wash.

  9. Tritium and 36Cl as constraints on fast fracture flow and percolation flux in the unsaturated zone at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Guerin, Marianne

    2001-10-01

    An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.

  10. Tritium and 36Cl as constraints on fast fracture flow and percolation flux in the unsaturated zone at Yucca Mountain.

    PubMed

    Guerin, M

    2001-10-01

    An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.

  11. Slurry wall containment performance: monitoring and modeling of unsaturated and saturated flow.

    PubMed

    Pedretti, Daniele; Masetti, Marco; Marangoni, Tomaso; Beretta, Giovanni Pietro

    2012-01-01

    A specific 2-year program to monitor and test both the vadose zone and the saturated zone, coupled with a numerical analysis, was performed to evaluate the overall performance of slurry wall systems for containment of contaminated areas. Despite local physical confinement (slurry walls keyed into an average 2-m-thick aquitard), for at least two decades, high concentrations of chlorinated solvents (up to 110 mg l(-1)) have been observed in aquifers that supply drinking water close to the city of Milan (Italy). Results of monitoring and in situ tests have been used to perform an unsaturated-saturated numerical model. These results yielded the necessary quantitative information to be used both for the determination of the hydraulic properties of the different media in the area and for the calibration and validation of the numerical model. Backfill material in the shallower part of the investigated aquifer dramatically affects the natural recharge of the encapsulated area. A transient simulation from wet to drought periods highlights a change in the ratio between leakages from lateral barriers that support a specific scenario of water loss through the containment system. The combination of monitoring and modelling allows a reliable estimate of the overall performance of the physical confinement to be made without using any invasive techniques on slurry wall.

  12. Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater

    NASA Astrophysics Data System (ADS)

    Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A.

    2013-12-01

    The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater extracted at specific locations. Three scenarios were considered: (i) use of furrow irrigation and groundwater extraction (the present situation); (ii) increase of groundwater pumping by 50% compared to the first scenario; and (iii) transition from furrow irrigation to drip irrigation, thus decreasing irrigation volume by around 60% compared to the first scenario. Results indicate that in different irrigation areas, the simulated increase rates of total dissolved solids in groundwater vary from 3 to17 mg/L/ year, depending on hydrogeological and hydrochemical conditions, volumes of water extracted, and proportion between surface water and groundwater applied. The transition from furrow irrigation to drip irrigation can decrease the negative impact of return flow on groundwater quality; however drip irrigation causes faster simulated soil salinization compared to furrow irrigation. The quasi 3D modeling appeared to be efficient in elucidating solute recycling effects on soil and groundwater salinity.

  13. Land surface temperature as an indicator of the unsaturated zone thickness: A remote sensing approach in the Atacama Desert.

    PubMed

    Urqueta, Harry; Jódar, Jorge; Herrera, Christian; Wilke, Hans-G; Medina, Agustín; Urrutia, Javier; Custodio, Emilio; Rodríguez, Jazna

    2018-01-15

    Land surface temperature (LST) seems to be related to the temperature of shallow aquifers and the unsaturated zone thickness (∆Z uz ). That relationship is valid when the study area fulfils certain characteristics: a) there should be no downward moisture fluxes in an unsaturated zone, b) the soil composition in terms of both, the different horizon materials and their corresponding thermal and hydraulic properties, must be as homogeneous and isotropic as possible, c) flat and regular topography, and d) steady state groundwater temperature with a spatially homogeneous temperature distribution. A night time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image and temperature field measurements are used to test the validity of the relationship between LST and ∆Z uz at the Pampa del Tamarugal, which is located in the Atacama Desert (Chile) and meets the above required conditions. The results indicate that there is a relation between the land surface temperature and the unsaturated zone thickness in the study area. Moreover, the field measurements of soil temperature indicate that shallow aquifers dampen both the daily and the seasonal amplitude of the temperature oscillation generated by the local climate conditions. Despite empirically observing the relationship between the LST and ∆Z uz in the study zone, such a relationship cannot be applied to directly estimate ∆Z uz using temperatures from nighttime thermal satellite images. To this end, it is necessary to consider the soil thermal properties, the soil surface roughness and the unseen water and moisture fluxes (e.g., capillarity and evaporation) that typically occur in the subsurface. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. SIMS analyses of minor and trace element distributions in fracture calcite from Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Denniston, Rhawn F.; Shearer, Charles K.; Layne, Graham D.; Vaniman, David T.

    1997-05-01

    Fracture-lining calcite samples from Yucca Mountain, Nevada, obtained as part of the extensive vertical sampling in studies of this site as a potential high-level waste repository, have been characterized according to microbeam-scale (25-30 μm) trace and minor element chemistry, and cathodoluminescent zonation patterns. As bulk chemical analyses are limited in spatial resolution and are subject to contamination by intergrown phases, a technique for analysis by secondary ion mass spectrometry (SIMS) of minor (Mn, Fe, Sr) and trace (REE) elements in calcite was developed and applied to eighteen calcite samples from four boreholes and one trench. SIMS analyses of REE in calcite and dolomite have been shown to be quantitative to abundances < 1 × chondrite. Although the low secondary ion yields associated with carbonates forced higher counting times than is necessary in most silicates, Mn, Fe, Sr, and REE analyses were obtained with sub-ppm detection limits and 2-15% analytical precision. Bulk chemical signatures noted by Vaniman (1994) allowed correlation of minor and trace element signatures in Yucca Mountain calcite with location of calcite precipitation (saturated vs. unsaturated zone). For example, upper unsaturated zone calcite exhibits pronounced negative Ce and Eu anomalies not observed in calcite collected below in the deep unsaturated zone. These chemical distinctions served as fingerprints which were applied to growth zones in order to examine temporal changes in calcite crystallization histories; analyses of such fine-scale zonal variations are unattainable using bulk analytical techniques. In addition, LREE (particularly Ce) scavenging of calcite-precipitating solutions by manganese oxide phases is discussed as the mechanism for Ce-depletion in unsaturated zone calcite.

  15. Coupled Hydromechanical and Electromagnetic Responses in Unsaturated Porous Media: Theory, Observation, and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Mahardika, Harry

    Hydromechanical energy can be partially converted into electromagnetic energy due to electrokinetic effect, where mechanical energy causes the relative displacement of the charged pore water with respect to the solid skeleton of the porous material and generated electrical current density. An application of this phenomenon is seismoelectric method, a geophysical method in which electromagnetic signals are recorded and associated with the propagation of seismic waves. Due to its coupling nature, seismoelectric method promises advantages in characterizing the subsurface properties and geometry compared to independent employments of seismic or electromagnetic acquisition alone. Since the recorded seismoelectric signal are sensitive to water content changes this method have been applied for groundwater studies to delineates vadoze zone-aquifer boundary since the last twenty years. The problem, however, the existing governing equations of coupled seismic and electromagnetic are not accounted for unsaturated conditions and its petrophysical sensitivity to water content. In this thesis we extend the applications of seismoelectric method for unsaturated porous medium for several geophysical problems. (1) We begin our study with numerical study to localize and characterize a seismic event induced by hydraulic fracturing operation sedimentary rocks. In this problem, we use the fully-saturated case of seismoelectric method and we propose a new joint inversion scheme (seismic and seismoelectric) to determine the position and moment tensor that event. (2) We expand the seismoelectric theory for unsaturated condition and show that the generation of electrical current density are depend on several important petrophysical properties that are sensitive to water content. This new expansion of governing equation provide us theory for developing a new approach for seismoelectric method to image the oil water encroachment front during water flooding of an oil reservoir or an aquifer contaminated with DNAPL. (3) Next, we present a test case which is the first-attempt analysis of seismoelectric sounding measurements done on glacial environment of Glacier de Tsanfleuron through numerical forward modeling. Here we treat the snow-glacial environment similar as with vadoze zone-aquifer zone in unsaturated porous medium. (4) The modified governing equations also provides us foundations to do another case study, which is characterization of seismoelectrical events generated from water content changes in the vadoze zone measured using seismoelectric sounding from NE England. (5) We finalize the thesis with an interpretation of electrical signal generated from water injection experiment done on the top two meter of the soil surface (vadoze zone) using inverse calculation presented on the first topic of the thesis. The fundamental research presented on this thesis hopefully provides a basis for further advancement on seismoelectric or joint seismic-electrical methods for applications ranging from hydrogeology, volcanology and geothermal energy, and oil and gas cases.

  16. Planning and Analysis of Fractured Rock Injection Tests in the Cerro Brillador Underground Laboratory, Northern Chile

    NASA Astrophysics Data System (ADS)

    Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.

    2015-12-01

    Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.

  17. Factors governing sustainable groundwater pumping near a river.

    PubMed

    Zhang, Yingqi; Hubbard, Susan; Finsterle, Stefan

    2011-01-01

    The objective of this paper was to provide new insights into processes affecting riverbank filtration (RBF). We consider a system with an inflatable dam installed for enhancing water production from downstream collector wells. Using a numerical model, we investigate the impact of groundwater pumping and dam operation on the hydrodynamics in the aquifer and water production. We focus our study on two processes that potentially limit water production of an RBF system: the development of an unsaturated zone and riverbed clogging. We quantify river clogging by calibrating a time-dependent riverbed permeability function based on knowledge of pumping rate, river stage, and temperature. The dynamics of the estimated riverbed permeability reflects clogging and scouring mechanisms. Our results indicate that (1) riverbed permeability is the dominant factor affecting infiltration needed for sustainable RBF production; (2) dam operation can influence pumping efficiency and prevent the development of an unsaturated zone beneath the riverbed only under conditions of sufficient riverbed permeability; (3) slow river velocity, caused by dam raising during summer months, may lead to sedimentation and deposition of fine-grained material within the riverbed, which may clog the riverbed, limiting recharge to the collector wells and contributing to the development of an unsaturated zone beneath the riverbed; and (4) higher river flow velocities, caused by dam lowering during winter storms, scour the riverbed and thus increase its permeability. These insights can be used as the basis for developing sustainable water management of a RBF system. Journal compilation © 2010 National Ground Water Association. No claim to original US government works.

  18. Observations on preferential flow and horizontal transport of nitrogen fertilizer in the unsaturated zone

    USGS Publications Warehouse

    Wilkison, D.H.; Blevins, D.W.

    1999-01-01

    A study site underlain by a claypan soil was instrumented to examine the transport of fertilizer nitrogen (N) under corn (Zea mays L.) cultivation. The study was designed to examine N transport within the unsaturated zone and in interflow (the saturated flow of water on top of the claypan). A 15N- labeled fertilizer (labeled N), bromide (Br), and chloride (Cl) were used as field tracers. Rapid or prolonged infiltration events allowed water and dissolved solutes to perch on the claypan for brief periods. However, a well- developed network of preferential flow paths quickly diverted water and solutes through the claypan and into the underlying glacial till aquifer. Excess fertilizer N in the unsaturated zone supplied a continuous, but declining input of N to ground water for a period of 15 mo after a single fertilizer application. Calculated solute velocities through the claypan matrix (6.4 x 10-6 cm s-1) were similar to horizontal transport rates along the claypan (3.5 to 7.3 x 10-6 cm s-1) but much slower than infiltration rates determined for preferential flow paths (1.67 x 10-3 cm s-1). These flow paths accounted for 35% of the transport. A seasonally variable, dual mode of transport (matrix and preferential flow) prevented the claypan from being an effective barrier to vertical transport. Simulations of selected field observations, conducted using the variably saturated two- dimensional flow and transport model, VS2DT, confirmed the presence of a dual flow regime in the claypan.

  19. Determination of nitroaromatic explosives and their degradation products in unsaturated-zone water samples by high-performance liquid chromatography with photodiode-array, mass spectrometric, and tandem mass spectrometric detection

    USGS Publications Warehouse

    Gates, Paul M.; Furlong, E.T.; Dorsey, T.F.; Burkhardt, M.R.

    1996-01-01

    Mass spectrometry and tandem mass spectrometry, coupled by a thermospray interface to a high-performance liguid chromatography system and equipped with a photodiode array detector, were used to determine the presence of nitroaromatic explosives and their degradation products in USA unsaturated-zone water samples. Using this approach, the lower limits of quantitation for explosives determined by mass spectrometry in this study typically ranged from 10 to 100 ng/l.

  20. Numerical modeling of perched water under Yucca Mountain, Nevada

    USGS Publications Warehouse

    Hinds, J.J.; Ge, S.; Fridrich, C.J.

    1999-01-01

    The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.

  1. Fluid geochemistry of Yucca Mountain and vicinity

    USGS Publications Warehouse

    Marshall, Brian D.; Moscati, Richard J.; Patterson, Gary L.; Stuckless, John S.

    2012-01-01

    Yucca Mountain, a site in southwest Nevada, has been proposed for a deep underground radioactive waste repository. An extensive database of geochemical and isotopic characteristics has been established for pore waters and gases from the unsaturated zone, perched water, and saturated zone waters in the Yucca Mountain area. The development of this database has been driven by diverse needs of the Yucca Mountain Project, especially those aspects of the project involving process modeling and performance assessment. Water and gas chemistries influence the sorption behavior of radionuclides and the solubility of the radionuclide compounds that form. The chemistry of waters that may infiltrate the proposed repository will be determined in part by that of water present in the unsaturated zone above the proposed repository horizon, whereas pore-water compositions beneath the repository horizon will influence the sorption behavior of the radionuclides transported toward the water table. However, more relevant to the discussion in this chapter, development and testing of conceptual flow and transport models for the Yucca Mountain hydrologic system are strengthened through the incorporation of natural environmental tracer data into the process. Chemical and isotopic data are used to establish bounds on key hydrologic parameters and to provide corroborative evidence for model assumptions and predictions. Examples of specific issues addressed by these data include spatial and temporal variability in net fluxes, the role of faults in controlling flow paths, fracture-matrix interactions, the age and origin of perched water, and the distribution of water traveltimes.

  2. IN SITU FIELD TESTING OF PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license applicationmore » (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.« less

  3. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Moench, A.F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2000-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table. The aquifer was pumped at a rate of 320 gallons per minute for 72-hours and drawdown measurements were made in the pumped well and in 20 piezometers located at various distances from the pumped well and depths below the land surface. To facilitate the analysis, an automatic parameter estimation algorithm was used to obtain relevant unconfined aquifer parameters, including the saturated thickness and a set of empirical parameters that relate to gradual drainage from the unsaturated zone. Drainage from the unsaturated zone is treated in this paper as a finite series of exponential terms, each of which contains one empirical parameter that is to be determined. It was necessary to account for effects of gradual drainage from the unsaturated zone to obtain satisfactory agreement between measured and simulated drawdown, particularly in piezometers located near the water table. The commonly used assumption of instantaneous drainage from the unsaturated zone gives rise to large discrepancies between measured and predicted drawdown in the intermediate-time range and can result in inaccurate estimates of aquifer parameters when automatic parameter estimation procedures are used. The values of the estimated hydraulic parameters are consistent with estimates from prior studies and from what is known about the aquifer at the site. Effects of heterogeneity at the site were small as measured drawdowns in all piezometers and wells were very close to the simulated values for a homogeneous porous medium. The estimated values are: specific yield, 0.26; saturated thickness, 170 feet; horizontal hydraulic conductivity, 0.23 feet per minute; vertical hydraulic conductivity, 0.14 feet per minute; and specific storage, 1.3x10-5 per foot. It was found that drawdown in only a few piezometers strategically located at depth near the pumped well yielded parameter estimates close to the estimates obtained for the entire data set analyzed simultaneously. If the influence of gradual drainage from the unsaturated zone is not taken into account, specific yield is significantly underestimated even in these deep-seated piezometers. This helps to explain the low values of specific yield often reported for granular aquifers in the literature. If either the entire data set or only the drawdown in selected deep-seated piezometers was used, it was found unnecessary to conduct the test for the full 72-hours to obtain accurate estimates of the hydraulic parameters. For some piezometer groups, practically identical results would be obtained for an aquifer test conducted for only 8-hours. Drawdowns measured in the pumped well and piezometers at distant locations were diagnostic only of aquifer transmissivity.

  4. Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids.

    PubMed

    Sidoli, Pauline; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Baran, Nicole

    2016-07-01

    The transport of pesticides to groundwater is assumed to be impacted by flow processes and geochemical interactions occurring in the vadose zone. In this study, the transport of S-metolachlor (SMOC) and its two metabolites ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) in vadose zone materials of a glaciofluvial aquifer is studied at laboratory scale. Column experiments are used to study the leaching of a conservative tracer (bromide) and SMOC, MESA and MOXA under unsaturated conditions in two lithofacies, a bimodal gravel (Gcm,b) and a sand (S-x). Tracer experiments showed water fractionation into mobile and immobile compartments more pronounced in bimodal gravel columns. In both lithofacies columns, SMOC outflow is delayed (retardation factor>2) and mass balance reveals depletion (mass balance of 0.59 and 0.77 in bimodal gravel and sand, respectively). However, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. SMOC transport is characterized by non-equilibrium sorption and sink term in both bimodal gravel and sand columns. Batch experiments carried out using agitation times consistent with column water residence times confirmed a time-dependence of SMOC sorption and high adsorption rates (>80%) of applied concentrations. Desorption experiments confirm the irreversibility of a major part of the SMOC adsorption onto particles, corresponding to the sink term in columns. In the bimodal gravel column, SMOC adsorption occurs mainly on reactive particles in contact with mobile water because of flow regionalization whereas in the sand column, there is pesticide diffusion to the immobile water. Such results clearly show that sorption mechanisms in the vadose zone solids below the soil are both solute and contact-time-dependent and are impacted by hydrodynamic conditions. The more rapid transport of MESA and MOXA to the aquifer would be controlled mainly by water flow through the unsaturated zone whereas SMOC transport is retarded by sorption processes within the vadose zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE PAGES

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; ...

    2016-02-12

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO 2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe +2 and S -2 oxidation) to match locally-observed high CO 2 concentrations above reduced zones. Observed seasonal variations in CO 2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m -2 d -1, while including water table variations resulted in an overall decrease in the simulated fluxes. We thus conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  6. Quantitative assessment of key parameters in qualitative vulnerability methods applied in karst systems based on an integrated numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Kassem, Assaad

    2017-04-01

    In the framework of a three-year PEER (USAID/NSF) funded project, flow in a Karst system in Lebanon (Assal) dominated by snow and semi arid conditions was simulated and successfully calibrated using an integrated numerical model (MIKE-She 2016) based on high resolution input data and detailed catchment characterization. Point source infiltration and fast flow pathways were simulated by a bypass function and a high conductive lens respectively. The approach consisted of identifying all the factors used in qualitative vulnerability methods (COP, EPIK, PI, DRASTIC, GOD) applied in karst systems and to assess their influence on recharge signals in the different hydrological karst compartments (Atmosphere, Unsaturated zone and Saturated zone) based on the integrated numerical model. These parameters are usually attributed different weights according to their estimated impact on Groundwater vulnerability. The aim of this work is to quantify the importance of each of these parameters and outline parameters that are not accounted for in standard methods, but that might play a role in the vulnerability of a system. The spatial distribution of the detailed evapotranspiration, infiltration, and recharge signals from atmosphere to unsaturated zone to saturated zone was compared and contrasted among different surface settings and under varying flow conditions (e.g., in varying slopes, land cover, precipitation intensity, and soil properties as well point source infiltration). Furthermore a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge and indirectly on vulnerability. The preliminary analysis yields a new methodology that accounts for most of the factors influencing vulnerability while refining the weights attributed to each one of them, based on a quantitative approach.

  7. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  8. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

    USGS Publications Warehouse

    Warren, Ean; Bekins, Barbara A.

    2015-01-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150–200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9 °C above background near the oil to 1.2 °C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7 °C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge.

  9. Geodesic and hydrogeophysic long term observations in the Durzon karstic aquifer (Larzac, France)

    NASA Astrophysics Data System (ADS)

    Le Moigne, Nicolas; Bayer, Roger; Boudin, Frederick; Champollion, Cedric; Chery, Jean; Collard, Philippe; Daignières, Marc; Deville, Sabrina; Doerflinger, Erik; Vernant, Philippe

    2010-05-01

    Karsts are generally characterized by high heterogeneity at all scales for both the water storage properties and the mode of water transport. The Durzon karst system is located in south of France and is characterized by a unsaturated zone of 100-150 m width. The water input is exclusively rainfall and draining occurs at the Durzon perennial spring in a karstic valley. The Durzon aquifer has been monitored by our group by different geophysical methods (gravimetry, tiltmetry, more details below) for several years. The present-day stage of the project is to setup long term observations to assess hydrological properties of the karst in a small area of 500m*500m with numerous caves (up to 100 m deep and more than 2 km of development). The observations are of four major types: - Continuous high frequency and high accuracy gravimetry: Gravimetric observations can be directly linked to the variations of water masses in the unsaturated zone. The iGrav™ Superconducting Gravity Meter from GWR (San Diego, USA) will be used to record continuous gravity variations and track water mass variations at a few millimeters level. The iGrav™ is a new SG model from GWR that has been simplified for portable and field operation, but retains the stability and precision of previous SGs. With a drift rate of less than 0.5 microGal/month and a virtually constant scale factory, the iGrav™ will provide a much higher stability and precision than can be achieved with mechanical spring-type gravity meters. - Water flux measurements (atmospheric and in-situ): A flux tower provides evapo-transpiration measurements (output) allowing complete budget calculation with the help of gravity (storage variations) and rainfall (input). An original measurement corresponds to the measure of the in-situ flow inside karstic caves (stalactites and underground river). - Tiltmetry: In situ (in caves) measurements are completed by long base silica tiltmeters. Tiltmeters are sensible to water storage in fractures and provide another type of transfer observation with long term measurements recording. - Repeated hydro-geophysical methods (Resonance Magnetic Protonic, electric resistivity, seismic reflection): Repeated ground and boreholes electric resistivity measurements can be interpreted as a function of water saturation in the unsaturated zone and is perfectly complementary with Resonance Magnetic Protonic (RMP) which measures vertical profiles of water content. All the observations are used to constrained simple physical models of water transfer in the unsaturated zone of the karst. New observations as gravimetry, RMP or in-situ flow measurements are crucial to distinguish between different physical models and establish the level of heterogeneity of the water transfer. The observatory will be fully operational for the winter 2010 and welcomes collaborations. All data will be made publically available through the OREME and ORE H+ web services.

  10. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  11. Focused Flow During Infiltration Into Ethanol-Contaminated Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Jazwiec, A.; Smith, J. E.

    2017-12-01

    The increasing commercial and industrial use of ethanol, e.g. in biofuels, has generated increased incidents of vadose zone contamination by way of ethanol spills and releases. This has increased the interest in better understanding behaviors of ethanol in unsaturated porous media and it's multiphase interactions in the vadose zone. This study uses highly controlled laboratory experiments in a 2-D (0.6mx0.6mx0.01m) flow cell to investigate water infiltration behaviors into ethanol-contaminated porous media. Ethanol and water were applied by either constant head or constant flux methods onto the surface of sands homogenously packed into the flow cell. The constant flux experiments at both low and high application rates were conducted using a rainulator with a row of hypodermic needles connected to a peristaltic pump. The constant head experiments were conducted using an 8cm diameter tension disk infiltrometer set to both low and high tensions. The presence of ethanol contamination generated solute-dependent capillarity induced focused flow (SCIFF) of water infiltration, which was primarily due to decreases in interfacial tensions at the air-liquid interfaces in the unsaturated sands as a function of ethanol concentration. SCIFF was clearly expressed as an unsaturated water flow phenomenon comprised of narrowly focused vertical flow fingers of water within the initially ethanol contaminated porous media. Using analyses of photos and video, comparisons were made between constant flux and constant head application methods. Further comparisons were made between low and high infiltration rates and the two sand textures used. A high degree of sensitivity to minor heterogeneity in relatively homogeneous sands was also observed. The results of this research have implications for rainfall infiltration into ethanol contaminated vadose zones expressing SCIFF, including implications for associated mass fluxes and the nature of flushing of ethanol from the unsaturated zone to groundwaters.

  12. The implications of episodic nonequilibrium fracture-matrix flow on site suitability and total system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitao, J.J.; Buscheck, T.A.; Chesnut, D.A.

    1992-04-01

    We apply our work on fracture- and matrix-dominated flow to develop a conceptual model of hydrological flow processes in the unsaturated zone at Yucca Mountain. The possibility of fracture-dominated flow is discussed, and various deductions are made on its impact on natural and total system performance, site characterization activities, and site suitability determination.

  13. Steam stripping of the unsaturated zone of contaminated sub-soils: The effect of diffusion/dispersion in the start-up phase

    NASA Astrophysics Data System (ADS)

    Brouwers, H. J. H.; Gilding, B. H.

    2006-02-01

    The unsteady process of steam stripping of the unsaturated zone of soils contaminated with volatile organic compounds (VOCs) is addressed. A model is presented. It accounts for the effects of water and contaminants remaining in vapour phase, as well as diffusion and dispersion of contaminants in this phase. The model has two components. The first is a one-dimensional description of the propagation of a steam front in the start-up phase. This is based on Darcy's law and conservation laws of mass and energy. The second component describes the transport of volatile contaminants. Taking the view that non-equilibrium between liquid and vapour phases exists, it accounts for evaporation, transport, and condensation at the front. This leads to a moving-boundary problem. The moving-boundary problem is brought into a fixed domain by a suitable transformation of the governing partial differential equations, and solved numerically. For a broad range of the governing dimensionless numbers, such as the Henry, Merkel and Péclet numbers, computational results are discussed. A mathematical asymptotic analysis supports this discussion. The range of parameter values for which the model is valid is investigated. Diffusion and dispersion are shown to be of qualitative importance, but to have little quantitative effect in the start-up phase.

  14. Field determination of vertical permeability to air in the unsaturated zone

    USGS Publications Warehouse

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  15. Assessing the fate of explosives derived nitrate in mine waste rock dumps using the stable isotopes of oxygen and nitrogen.

    PubMed

    Hendry, M Jim; Wassenaar, Leonard I; Barbour, S Lee; Schabert, Marcie S; Birkham, Tyler K; Fedec, Tony; Schmeling, Erin E

    2018-05-29

    Ammonium nitrate (NH 4 NO 3 ) mixed with fuel oil is a common blasting agent used to fragment rock into workable size fractions at mines throughout the world. The decomposition and oxidation of undetonated explosives can result in high NO 3 - concentrations in waters emanating from waste rock dumps. We used the stable isotopic composition of NO 3 - (δ 15 N- and δ 18 O-NO 3 - ) to define and quantify the controls on NO 3 - composition in waste rock dumps by studying water-unsaturated and saturated conditions at nine coal waste rock dumps located in the Elk Valley, British Columbia, Canada. Estimates of the extent of nitrification of NH 4 NO 3 in oxic zones in the dumps, initial NO 3 - concentrations prior to denitrification, and the extent of NO 3 - removal by denitrification in sub-oxic to anoxic zones are provided. δ 15 N data from unsaturated waste rock dumps confirm NO 3 - is derived from blasting. δ 15 N- and δ 18 O-NO 3 - data show extensive denitrification can occur in saturated waste rock and in localized zones of elevated water saturation and low oxygen concentrations in unsaturated waste rock. At the mine dump scale, the extent of denitrification in the unsaturated waste rock was inferred from water samples collected from underlying rock drains. Copyright © 2018. Published by Elsevier B.V.

  16. The Vertical Flux Method (VFM) for regional estimates of temporally and spatially varying nitrate fluxes in unsaturated zone and groundwater

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Liao, L.; Nolan, B. T.; Juckem, P. F.; Ransom, K.; Harter, T.

    2017-12-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality. Measurements of atmospheric tracers of groundwater age and dissolved-gas indicators of denitrification progress have potential to improve estimates of NO3- reactive transport processes. This presentation introduces a regionalized version of a vertical flux method (VFM) that uses simple mathematical estimates of advective-dispersive reactive transport with regularization procedures to calibrate estimated tracer concentrations to observed equivalents. The calibrated VFM provides estimates of chemical, hydrologic and reaction parameters (source concentration time series, recharge, effective porosity, dispersivity, reaction rate coefficients) and derived values (e.g. mean unsaturated zone travel time, eventual depth of the NO3- front) for individual wells. Statistical learning methods are used to extrapolate parameters and predictions from wells to continuous areas. The regional VFM was applied to 473 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and triogiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with independent estimates. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) fractions of N leached to groundwater have changed over time, with increasing fractions from manure and decreasing fractions from fertilizer, and (3) under current practices and conditions, 60% of the shallow aquifer will eventually be affected by NO3- contamination. Based on GIS coverages of variables related to soils, land use and hydrology, the VFM results at individual wells were extrapolated regionally using boosted regression trees, a statistical learning approach, that related the GIS variables to the VFM parameters and predictions. Future work will explore applications at larger scales with direct integration of the statistical prediction model with the mechanistic VFM.

  17. Characterization of unsaturated zone hydrogeologic units using matrix properties and depositional history in a complex volcanic environment

    USGS Publications Warehouse

    Flint, Lorraine E.; Buesch, David C.; Flint, Alan L.

    2006-01-01

    Characterization of the physical and unsaturated hydrologic properties of subsurface materials is necessary to calculate flow and transport for land use practices and to evaluate subsurface processes such as perched water or lateral diversion of water, which are influenced by features such as faults, fractures, and abrupt changes in lithology. Input for numerical flow models typically includes parameters that describe hydrologic properties and the initial and boundary conditions for all materials in the unsaturated zone, such as bulk density, porosity, and particle density, saturated hydraulic conductivity, moisture-retention characteristics, and field water content. We describe an approach for systematically evaluating the site features that contribute to water flow, using physical and hydraulic data collected at the laboratory scale, to provide a representative set of physical and hydraulic parameters for numerically calculating flow of water through the materials at a site. An example case study from analyses done for the heterogeneous, layered, volcanic rocks at Yucca Mountain is presented, but the general approach for parameterization could be applied at any site where depositional processes follow deterministic patterns. Hydrogeologic units at this site were defined using (i) a database developed from 5320 rock samples collected from the coring of 23 shallow (<100 m) and 10 deep (500–1000 m) boreholes, (ii) lithostratigraphic boundaries and corresponding relations to porosity, (iii) transition zones with pronounced changes in properties over short vertical distances, (iv) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (v) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. Model parameters developed in this study, and the relation of flow properties to porosity, can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.

  18. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal site

    USGS Publications Warehouse

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas:Estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge);Analyzing the hydrologic performance of engineered components of a facility;Evaluating the application of models to the prediction of facility performance; andEstimating the uncertainty in predicted facility performance.An estimate of recharge at a LLW site is important since recharge is a principal factor in controlling the release of contaminants via the groundwater pathway. The most common methods for estimating recharge are discussed in Chapter 2. Many factors affect recharge; the natural recharge at an undisturbed site is not necessarily representative either of the recharge that will occur after the site has been disturbed or of the flow of water into a disposal facility at the site. Factors affecting recharge are discussed in Chapter 2.At many sites engineered components are required for a LLW facility to meet performance requirements. Chapter 3 discusses the use of engineered barriers to control the flow of water in a LLW facility, with a particular emphasis on cover systems. Design options and the potential performance and degradation mechanisms of engineered components are also discussed.Water flow in a LLW disposal facility must be evaluated before construction of the facility. In addition, hydrologic performance must be predicted over a very long time frame. For these reasons, the hydrologic evaluation relies on the use of predictive modeling. In Chapter 4, the evaluation of unsaturated water flow modeling is discussed. A checklist of items is presented to guide the evaluation. Several computer simulation codes that were used in the examples (Chapter 6) are discussed with respect to this checklist. The codes used include HELP, UNSAT-H, and VAM3DCG.To provide a defensible estimate of water flow in a LLW disposal facility, the uncertainty associated with model predictions must be considered. Uncertainty arises because of the highly heterogeneous nature of most subsurface environments and the long time frame required in the analysis. Sources of uncertainty in hydrologic evaluation of the unsaturated zone and several approaches for analysis are discussed in Chapter 5. The methods of analysis discussed include a bounding approach, sensitivity analysis, and Monte Carlo simulation.To illustrate the application of the discussion in Chapters 2 through 5, two examples are presented in Chapter 6. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.The report concludes with some final observations and recommendations.

  19. A quantitative approach to aquifer vulnerability mapping

    NASA Astrophysics Data System (ADS)

    Connell, L. D.; Daele, Gerd van den

    2003-05-01

    This paper presents a procedure for calculating the transport to groundwater of surface-released contaminants. The approach is derived from a series of analytical and semi-analytical solutions to the advection-dispersion equation that include root zone and unsaturated water movement effects on the transport process. The steady-state form of these equations provides an efficient means of calculating the maximum concentration at the watertable and therefore has potential for use in vulnerability mapping. A two-layer approach is used in the solutions to represent the unsaturated profile, with the root zone corresponding to the upper layer where evapotranspiration can occur and transport properties can be in contrast to the rest of the profile. A novel transformation is applied to the advection-dispersion equation that considerably simplifies the way in which water movement is represented. To provide a combined flow and transport model an approximate procedure for water movement, using averages of the infiltration and transpiration rates with a novel, simple, quasi-steady state solution, is presented that can be used in conjunction with the solutions to the advection-dispersion equation. This quasi-steady state approximation for water movement allows for layering in the soil profile and root water uptake. Results from the combined quasi-steady state water movement and semi-analytical solute transport procedure compare well with numerical solutions to the coupled unsaturated flow and solute transport equations in a series of hypothetical simulations.

  20. (Bio-)remediation of VCHC contaminants in a Technosol under unsaturated conditions.

    PubMed

    Baumgarten, W; Fleige, H; Peth, S; Horn, R

    2013-07-01

    The remediation of dense non-aqueous phase liquids has always been a concern of both public and scientific interest groups. In this research work a modified physical concept of (bio)remediation of a volatile chlorinated hydrocarbon (VCHC) contamination was elaborated under laboratory conditions and modeled with HYDRUS-2D. In field dechlorination is influenced by both physicochemical and hydraulic properties of the substrate, e.g. texture, pore size distribution, pore liquid characteristics, e.g. viscosity, pH, surface tension, and dependent on the degree of saturation of the vadose zone. Undisturbed soil cores (100 cm³) were sampled from a Spolic Technosol. Considering hydraulic properties and functions, unsaturated percolation was performed with vertically and horizontally structured samples. VCHC concentrations were calculated prior, during, and after each percolation cycle. According to laboratory findings, microemulsion showed the most efficient results with regard to flow behavior in the unsaturated porous media and its accessibility for bacteria as nutrient. The efficiency of VCHC remediation could be increased by the application of a modified pump-and-treat system: the injection of bacteria Dehalococcoides ethanogenes with microemulsion, and extraction at a constant matric potential level of -6 kPa. Achieved data was used for HYDRUS-2D simulations, modeling in situ conditions, demonstrating the practical relevance (field scale) of performed unsaturated percolation (core scale), and in order to exclude capillary barrier effects.

  1. Percolation induced heat transfer in deep unsaturated zones

    USGS Publications Warehouse

    Lu, N.; LeCain, G.D.

    2003-01-01

    Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.

  2. Evaluation of Nitrate Fluxes to Groundwater under Agriculture Land Uses across the Loess Plateau - A Catchment Scale Investigation

    NASA Astrophysics Data System (ADS)

    Turkeltaub, T.; Jia, X.; Binley, A. M.

    2016-12-01

    Nitrate management is required for fulfilling the objective of high agriculture productivity and concurrently reduced groundwater contamination to minimum. Yet, nitrate is considered as a non-point contaminant. Therefore, understanding the temporal and spatial processes controls of nitrate transport in the vadose zone are imperative for protection of groundwater. This study is conducted in the Loess Plateau which located in the north-central of mainland China and characterized with a semi-arid climate. Moreover, it accounts for about 6.6% of the Chinese territory and supports over 8.5% of the Chinese population. This area undergoes high pressure from human activities and requiring optimal management interventions. Integrated modelling frameworks, which include unsaturated and saturated processes, are able to simulate nitrate transport under various scenarios, and provide reasonable prediction for the decision-makers. We used data obtained from soil samples collected across a region of 41 × 104 km2 (243 samples, to 5 m depth) to derive unsaturated flow and transport properties. Particle size distributions, saturated hydraulic conductivity, water content at field capacity (0.33 atm) and saturated water content were also obtained for the shallower layers (0-40 cm). The van Genuchten - Mualem soil parameters describing the retention and the unsaturated hydraulic conductivity curves were estimated with the Rosetta code. The analysis of the soil samples indicated that the silt loam soil type is dominant. Hence, a scaling approach was chosen as an adequate method for estimation of representative retention and hydraulic conductivity curves. Water flow and nitrate leaching were simulated with mechanistic based 1-D model for each agriculture land use within the area. The simulated nitrate losses were compared with results of root zone model simulations. Subsequently, the calculated fluxes were input as upper boundary conditions in the Modflow model to examine the regional groundwater nitrate concentration levels. Ultimately, this integrated model framework is flexible and therefore allows testing various land-use scenarios.

  3. Water, Energy, and Biogeochemical Model (WEBMOD), user’s manual, version 1

    USGS Publications Warehouse

    Webb, Richard M.T.; Parkhurst, David L.

    2017-02-08

    The Water, Energy, and Biogeochemical Model (WEBMOD) uses the framework of the U.S. Geological Survey (USGS) Modular Modeling System to simulate fluxes of water and solutes through watersheds. WEBMOD divides watersheds into model response units (MRU) where fluxes and reactions are simulated for the following eight hillslope reservoir types: canopy; snowpack; ponding on impervious surfaces; O-horizon; two reservoirs in the unsaturated zone, which represent preferential flow and matrix flow; and two reservoirs in the saturated zone, which also represent preferential flow and matrix flow. The reservoir representing ponding on impervious surfaces, currently not functional (2016), will be implemented once the model is applied to urban areas. MRUs discharge to one or more stream reservoirs that flow to the outlet of the watershed. Hydrologic fluxes in the watershed are simulated by modules derived from the USGS Precipitation Runoff Modeling System; the National Weather Service Hydro-17 snow model; and a topography-driven hydrologic model (TOPMODEL). Modifications to the standard TOPMODEL include the addition of heterogeneous vertical infiltration rates; irrigation; lateral and vertical preferential flows through the unsaturated zone; pipe flow draining the saturated zone; gains and losses to regional aquifer systems; and the option to simulate baseflow discharge by using an exponential, parabolic, or linear decrease in transmissivity. PHREEQC, an aqueous geochemical model, is incorporated to simulate chemical reactions as waters evaporate, mix, and react within the various reservoirs of the model. The reactions that can be specified for a reservoir include equilibrium reactions among water; minerals; surfaces; exchangers; and kinetic reactions such as kinetic mineral dissolution or precipitation, biologically mediated reactions, and radioactive decay. WEBMOD also simulates variations in the concentrations of the stable isotopes deuterium and oxygen-18 as a result of varying inputs, mixing, and evaporation. This manual describes the WEBMOD input and output files, along with the algorithms and procedures used to simulate the hydrology and water quality in a watershed. Examples are presented that demonstrate hydrologic processes, weathering reactions, and isotopic evolution in an alpine watershed and the effect of irrigation on water flows and salinity in an intensively farmed agricultural area.

  4. Overview of research on water, gas, and radionuclide transport at the Amargosa Desert Research Site, Nevada: A section in U.S. Geological Survey Toxic Substances Hydrology Program: Proceedings of the technical meeting, Charleston, South Carolina, March 8-12, 1999: Volume 3 (Part C) (WRI 99-4018C)

    USGS Publications Warehouse

    Andraski, Brian J.; Stonestrom, David A.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    Studies at the U.S. Geological Survey Amargosa Desert Research Site have focused on characterizing factors and processes that control transport and fate of contaminants in arid environments. This paper summarizes research results that have been published through 1998. Results have improved understanding of water and gas movement through a thick unsaturated zone, including the degree to which features of the natural unsaturated-flow system can be altered by installation of a waste-disposal facility. The study of radioactive-contaminant transport at the site is at an early stage. Field data measured in association with this new component of research have generated speculation regarding the exact mechanisms that control tritium transport in arid unsaturated zones.

  5. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.

  6. The paleohydrology of unsaturated and saturated zones at Yucca Mountain, Nevada, and vicinity

    USGS Publications Warehouse

    Paces, James B.; Whelan, Joseph F.; Stuckless, John S.

    2012-01-01

    Surface, unsaturated-zone, and saturated-zone hydrologic conditions at Yucca Mountain responded to past climate variations and are at least partly preserved by sediment, fossil, and mineral records. Characterizing past hydrologic conditions in surface and subsurface environments helps to constrain hydrologic responses expected under future climate conditions and improve predictions of repository performance. Furthermore, these records provide a better understanding of hydrologic processes that operate at time scales not readily measured by other means. Pleistocene climates in southern Nevada were predominantly wetter and colder than the current interglacial period. Cyclic episodes of aggradation and incision in Fortymile Wash, which drains the eastern slope of Yucca Mountain, are closely linked to Pleistocene climate cycles. Formation of pedogenic cement is favored under wetter Pleistocene climates, consistent with increased soil moisture and vegetation, higher chemical solubility, and greater evapotranspiration relative to Holocene soil conditions. The distribution and geochemistry of secondary minerals in subsurface fractures and cavities reflect unsaturated-zone hydrologic conditions and the response of the hydrogeologic system to changes in temperature and percolation flux over the last 12.8 m.y. Physical and fluid-inclusion evidence indicates that secondary calcite and opal formed in air-filled cavities from fluids percolating downward through connected fracture pathways in the unsaturated zone. Oxygen, strontium, and carbon isotope data from calcite are consistent with a descending meteoric water source but also indicate that water compositions and temperatures evolved through time. Geochronological data indicate that secondary mineral growth rates are less than 1–5 mm/m.y., and have remained approximately uniform over the last 10 m.y. or longer. These data are interpreted as evidence for hydrological stability despite large differences in surface moisture caused by climate shifts between the Miocene and Pleistocene and between Pleistocene glacial-interglacial cycles. Secondary mineral distribution and δ18O profiles indicate that evaporation in the shallower welded tuffs reduces infiltration fluxes. Several near-surface and subsurface processes likely are responsible for diverting or dampening infiltration and percolation, resulting in buffering of percolation fluxes to the deeper unsaturated zone. Cooler and wetter Pleistocene climates resulted in increased recharge in upland areas and higher water tables at Yucca Mountain and throughout the region. Discharge deposits in the Amargosa Desert were active during glacial periods, but only in areas where the modern water table is within 7–30 m of the surface. Published groundwater models simulate water-table rises beneath Yucca Mountain of as much as 150 m during glacial climates. However, most evidence from Fortymile Canyon up gradient from Yucca Mountain limits water-table rises to 30 m or less, which is consistent with evidence from discharge sites in the Amargosa Desert. The isotopic compositions of uranium in tuffs spanning the water table in two Yucca Mountain boreholes indicate that Pleistocene water-table rises likely were restricted to 25–50 m above modern positions and are in approximate agreement with water-table rises estimated from zeolitic-to-vitric transitions in the Yucca Mountain tuffs (less than 60 m in the last 11.6 m.y.).

  7. Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA

    USGS Publications Warehouse

    Gurdak, J.J.; Hanson, R.T.; McMahon, P.B.; Bruce, B.W.; McCray, J.E.; Thyne, G.D.; Reedy, R.C.

    2007-01-01

    Responses in the vadose zone and groundwater to interannual, interdecadal, and multidecadal climate variability have important implications for groundwater resource sustainability, yet they are poorly documented and not well understood in most aquifers of the USA. This investigation systematically examines the role of interannual to multidecadal climate variability on groundwater levels, deep infiltration (3-23 m) events, and downward displacement (>1 m) of chloride and nitrate reservoirs in thick (15-50 m) vadose zones across the regionally extensive High Plains aquifer. Such vadose zone responses are unexpected across much of the aquifer given a priori that unsaturated total-potential profiles indicate upward water movement from the water table toward the root zone, mean annual potential evapotranspiration exceeds mean annual precipitation, and millennia-scale evapoconcentration results in substantial vadose zone chloride and nitrate reservoirs. Using singular spectrum analysis (SSA) to reconstruct precipitation and groundwater level time-series components, variability was identified in all time series as partially coincident with known climate cycles, such as the Pacific Decadal Oscillation (PDO) (10-25 yr) and the El Nin??o/Southern Oscillation (ENSO) (2-6 yr). Using these lag-correlated hydrologic time series, a new method is demonstrated to estimate climate-varying unsaturated water flux. The results suggest the importance of interannual to interdecadal climate variability on water-flux estimation in thick vadose zones and provide better understanding of the climate-induced transients responsible for the observed deep infiltration and chemical-mobilization events. Based on these results, we discuss implications for climate-related sustainability of the High Plains aquifer. ?? Soil Science Society of America.

  8. Chemical, isotopic, and microbiological evidence for denitrification during transport of domestic wastewater through a thick unsaturated zone in the Mojave Desert, San Bernardino County, California

    USGS Publications Warehouse

    Schroeder, R.A.; Martin, P.M.; Böhlke, J.K.

    1993-01-01

    Nitrogen in downward-infiltrating wastewater discharged from seepage pits (dry wells) at residences in the upper Mojave River Basin, California represents a significant potential source of nitrate contamination to the underlying ground water. However, increases in nitrate concentration in the ground water have not yet been observed. The low nitrate concentration in the ground water may be the result of lateral dispersion in the unsaturated zone, dilution below the water table, or denitrification of wastewater nitrate in the unsaturated zone. Measured vertical rates indicate that some wastewater has reached the water table beneath communities that are older than 5 to 10 years. As wastewater percolates from seepage pits into the unsaturated zone, reduced nitrogen is converted rapidly to nitrate at shallow depths and the nitrate concentrations commonly decrease with depth. The largest nitrate decreases seem to coincide with increased content of fine-grained sediments or with proximity to the water table. Between lysimeters at 160 and 199 feet at one residence, the decrease in nitrate concentration coincided with a large increase in sulfate, decrease in alkalinity, and increase in 815N in nitrate. Those data are consistent with denitrification by oxidation of iron sulfide to produce ferric oxides; but if such a reaction occurs, it must be in domains that are small in comparison with the sampled volumes because the waters also contain substantial quantities of dissolved oxygen. The predominantly low nitrate concentrations in the area's ground water are consistent with the operation of a nitrogen-removal mechanism, possibly denitrification; however, the reducing capacity of the sediments to maintain denitrification is not known.

  9. Water movement within the unsaturated zone in four agricultural areas of the United States

    USGS Publications Warehouse

    Fisher, L.H.; Healy, R.W.

    2008-01-01

    Millions of tons of agricultural fertilizer and pesticides are applied annually in the USA. Due to the potential for these chemicals to migrate to groundwater, a study was conducted in 2004 using field data to calculate water budgets, rates of groundwater recharge and times of water travel through the unsaturated zone and to identify factors that influence these phenomena. Precipitation was the only water input at sites in Indiana and Maryland; irrigation accounted for about 80% of total water input at sites in California and Washington. Recharge at the Indiana site (47.5 cm) and at the Maryland site (31.5 cm) were equivalent to 51 and 32%, respectively, of annual precipitation and occurred between growing seasons. Recharge at the California site (42.3 cm) and Washington site (11.9 cm) occurred in response to irrigation events and was about 29 and 13% of total water input, respectively. Average residence time of water in the unsaturated zone, calculated using a piston-flow approach, ranged from less than 1 yr at the Indiana site to more than 8 yr at the Washington site. Results of bromide tracer tests indicate that at three of the four sites, a fraction of the water applied at land surface may have traveled to the water table in less than 1 yr. The timing and intensity of precipitation and irrigation were the dominant factors controlling recharge, suggesting that the time of the year at which chemicals are applied may be important for chemical transport through the unsaturated zone. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. A gas sampling system for withdrawing humid gases from deep boreholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, J.P.; Thordarson, W.; Kurzmack, M.A.

    A gas sampling system, designed to withdraw nearly vapor-saturated gases (93 to 100% relative humidity) from deep, unsaturated zone boreholes, was developed by the U.S. Geological Survey for use in the unsaturated zone borehole instrumentation and monitoring program at Yucca Mountain, Nye County, Nevada. This gas sampling system will be used to: (1) sample formation rock gases in support of the unsaturated zone hydrochemical characterization program; and (2) verify downhole, thermocouple psychrometer measurements of water potential in support of the unsaturated zone borehole instrumentation and monitoring program. Using this sampling system, nearly vapor-saturated formation rock-gases can be withdrawn from deepmore » boreholes without condensing water vapor in the sampling tubes, and fractionating heavy isotopes of oxygen, hydrogen, and carbon. The sampling system described in this paper uses a dry carrier-gas (nitrogen) to lower the dew point temperature of the formation rock-gas at its source. Mixing of the dry carrier gas with the source gas takes place inside a specially designed downhole instrument station apparatus (DISA). Nitrogen inflow is regulated in a manner that lowers the dew point temperature of the source gas to a temperature that is colder than the coldest temperature that the mixed gas will experience in moving from warmer, deeper depths, to colder, shallower depths near the land surface. A test of this gas sampling system was conducted in December, 1992, in a 12.2 meter deep borehole that was instrumented in October, 1991. The water potential calculated using this system reproduced in-situ measurements of water potential to within five percent of the average value, as recorded by two thermocouple psychrometers that had been in operation for over 12 months.« less

  11. Holistic irrigation water management approach based on stochastic soil water dynamics

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly, the model has been applied in Dasht-e-Abbas and Ein-khosh Fakkeh Irrigation Districts (DAID and EFID) of the Karkheh Basin in southwest of Iran. The area suffers from the water scarcity problem and therefore the trade-off between the level of deficit and economical profit should be assessed. Based on the results, while the maximum net benefit has been obtained for the stress-avoidance (SA) irrigation policy, the highest water profitability, defined by economical net benefit gained from unit irrigation water volume application, has been resulted when only about 60% of water used in the SA policy is applied.

  12. Linking ground-water age and chemistry data along flow paths: Implications for trends and transformations of nitrate and pesticides

    USGS Publications Warehouse

    Tesoriero, A.J.; Saad, D.A.; Burow, K.R.; Frick, E.A.; Puckett, L.J.; Barbash, J.E.

    2007-01-01

    Tracer-based ground-water ages, along with the concentrations of pesticides, nitrogen species, and other redox-active constituents, were used to evaluate the trends and transformations of agricultural chemicals along flow paths in diverse hydrogeologic settings. A range of conditions affecting the transformation of nitrate and pesticides (e.g., thickness of unsaturated zone, redox conditions) was examined at study sites in Georgia, North Carolina, Wisconsin, and California. Deethylatrazine (DEA), a transformation product of atrazine, was typically present at concentrations higher than those of atrazine at study sites with thick unsaturated zones but not at sites with thin unsaturated zones. Furthermore, the fraction of atrazine plus DEA that was present as DEA did not increase as a function of ground-water age. These findings suggest that atrazine degradation occurs primarily in the unsaturated zone with little or no degradation in the saturated zone. Similar observations were also made for metolachlor and alachlor. The fraction of the initial nitrate concentration found as excess N2 (N2 derived from denitrification) increased with ground-water age only at the North Carolina site, where oxic conditions were generally limited to the top 5??m of saturated thickness. Historical trends in fluxes to ground water were evaluated by relating the times of recharge of ground-water samples, estimated using chlorofluorocarbon concentrations, with concentrations of the parent compound at the time of recharge, estimated by summing the molar concentrations of the parent compound and its transformation products in the age-dated sample. Using this approach, nitrate concentrations were estimated to have increased markedly from 1960 to the present at all study sites. Trends in concentrations of atrazine, metolachlor, alachlor, and their degradates were related to the timing of introduction and use of these compounds. Degradates, and to a lesser extent parent compounds, were detected in ground water dating back to the time these compounds were introduced.

  13. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the relation of flow properties to porosity that are described can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.

  14. Tracing long-term vadose zone processes at the Nevada Test Site, USA

    PubMed Central

    Hunt, James R.; Tompson, Andrew F. B.

    2010-01-01

    The nuclear weapons testing programme of the USA has released radionuclides to the subsurface at the Nevada Test Site. One of these tests has been used to study the hydrological transport of radionuclides for over 25 years in groundwater and the deep unsaturated zone. Ten years after the weapon’s test, a 16 year groundwater pumping experiment was initiated to study the mobility of radionuclides from that test in an alluvial aquifer. The continuously pumped groundwater was released into an unlined ditch where some of the water infiltrated into the 200 m deep vadose zone. The pumped groundwater had well-characterized tritium activities that were utilized to trace water migration in the shallow and deep vadose zones. Within the near-surface vadose zone, tritium levels in the soil water are modelled by a simple one-dimensional, analytical wetting front model. In the case of the near-surface soils at the Cambric Ditch experimental site, water flow and salt accumulation appear to be dominated by rooted vegetation, a mechanism not included within the wetting front model. Simulation results from a two-dimensional vadose groundwater flow model illustrate the dominance of vertical flow in the vadose zone and the recharge of the aquifer with the pumped groundwater. The long-time series of hydrological data provides opportunities to understand contaminant transport processes better in the vadose zone with an appropriate level of modelling. PMID:21785525

  15. Movement of Water Through the Chalk Unsaturated zone

    NASA Astrophysics Data System (ADS)

    Butler, A.; Ireson, A.; Wheater, H.; Mathias, S.; Finch, J.

    2006-12-01

    Despite many decades study, quantification of water movement through the Chalk unsaturated zone has proved difficult, due to its particular properties. Chalk comprises a fine grained porous matrix intersected by a fracture network. In much of the unsaturated zone, for most of the time, matric potentials remain between -20 and -0.5 m. Thus the matrix is largely saturated by capillary action, and the fractures are largely de-watered. Therefore, debate has often focussed on the importance of the fractures, as compared with the matrix, for the movement of water. Recently, Mathias et al. (J Hydrol., in press) and Brouyère (J Contam Hydrol,82:195-219,2006) have (independently) proposed an Equivalent Continuum Model, ECM, for the Chalk. This assumes that the fractures can be treated as a porous medium and that the fracture and matrix domains can be treated as a single domain i.e. an equivalent continuum. This requires that the fractures and matrix are in pressure equilibrium, and whilst the theoretical basis for this assumption is reasonable, it has not been demonstrated empirically. In addition, Mathias et al. have demonstrated the importance of rainfall attenuation in the near surface weathered and soil zones of the Chalk for attenuating flow. As part of a national research initiative into groundwater dominated catchments, an extensive field monitoring programme has been implemented at two Chalk catchments in Berkshire (UK). This includes comprehensive soil moisture measurements (water content and matric potential), an extensive network of piezometers and observation wells measuring water table response, and the direct measurement of actual evaporation as well as standard meteorological variables, including rainfall. Using the Kosugi (WRR,32:2697-2703,1996) relationships for soil water retention and hydraulic conductivity a methodology for characterising vertical variation in hydraulic properties from competent chalk at depth through weathered rock to surface soil has been developed using data from one of the above catchments. The model was defined by nine parameters, five of which were identified a priori from observed soil moisture characteristic curves at various elevations, the remaining four by calibration of the numerical model to detailed time series datasets. Effects of parameter identifiability were explored using Monte Carlo analysis. Using a performance criterion based on fitting to matric potentials at a range of depths (from 20 cm to 4 m) over a calendar year, the set of acceptable results appears to support the ECM representation and indicates that fractures in the near- surface competent and weathered rock play an important role in the storage and release of groundwater recharge, whereas the rock matrix is crucial for its transmission to a water table tens of metres below. This conclusion has helped to resolve the debate on the respective roles of fractures and matrix in unsaturated water movement in the Chalk. Furthermore, the model simulations indicate that groundwater recharge can occur continually throughout the year. This helps to explain the apparently enhanced groundwater yields calculated during drought conditions compared with results obtained from pumping tests. It also indicates that current recharge models for the Chalk may need to be revised.

  16. Lagtime of river systems to changes in pollutant load on the catchment: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Żurek, Anna J.; Różański, Kazimierz; Witczak, Stanisław

    2017-04-01

    Transport of conservative contaminants through groundwater systems (e.g. nitrate under oxidized conditions) is significantly delayed when compared to movement of those contaminants through surface water compartments. Characteristic time scales of groundwater movement may easily reach tens or hundreds of years. This results in large lagtimes of contaminant transport in the subsurface. These lagtimes are particularly important when response of river basins to measures aimed at recovery of good groundwater status is considered. Incorporating lagtime principles into water quality regulations may result in more realistic expectations when such policies are designed and implemented. The lagtime of contaminant transport in the subsurface with respect to transport through surface and near-surface (drainage) runoff can be separated into two components: (i) the delay associated with travel time of water (and contaminants) through the unsaturated zone, and (ii) the delay linked to time scales of groundwater flow, from the recharge area down to the discharge zone (river). Thus, the travel time of water through unsaturated and saturated zones can be considered a quantitative measure of the lagtime. Lagtime in the unsaturated zone on the territory of Poland was assessed on the basis of the existing Groundwater Vulnerability Map of Poland (GVMP) (Witczak et al., 2007; 2011). The adopted approach relies on MRT (Mean Residence Time) of water in the strata separating the saturated aquifer from the land surface, as an integrated vulnerability index. In the framework of GVMP, the MRT is calculated as turnover time of the infiltrating water in the vadose zone. The piston-flow type of water movement through the unsaturated zone is considered. The lagtime in the saturated zone (Tsat) can be approximated by travel time of water, flowing along the local hydraulic gradient to the closest river. The lagtime of river systems with respect to changes in pollutant load on the catchment is a sum of the travel time of water through the unsaturated zone (MRT) and the travel time associated with movement of water in the saturated zone (Tsat). Preliminary assessments of total lagtime (MRT + Tsat) suggest that for the territory of Poland the mean value of the total lagtime of conservative contaminant is in the order of 25 years, with the range of 10 to 60 years corresponding to one standard deviation. References: Witczak S. (Ed.) (2011). Groundwater Vulnerability Map of Poland. Ministerstwo Środowiska. Warszawa. Witczak S., Duda R., Zurek A. (2007). The Polish concept of groundwater vulnerability mapping. [In:] Witkowski A.J., Kowalczyk A., Vrba J., Groundwater Vulnerability Assessment and Mapping, Selected Papers on Hydrogeology 11, 45-59. Acknowledgements. The work was carried out as part of the project BONUS Soils2Sea and the statutory funds of the AGH University of Science and Technology (projects No.11.11.140.797 and 11.11.220.01).

  17. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone, the DE model denoted an anomalous behavior depending on the used formulation for the 'chi' parameter, with decreasing FS as soil moisture decreases.

  18. Distribution of gases in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Striegl, Robert G.

    1988-01-01

    The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)

  19. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer

    USGS Publications Warehouse

    Moench, Allen F.

    1995-01-01

    A Laplace transform solution is presented for flow to a well in a homogeneous, water-table aquifer with noninstanta-neous drainage of water from the zone above the water table. The Boulton convolution integral is combined with Darcy's law and used as an upper boundary condition to replace the condition used by Neuman. Boulton's integral derives from the assumption that water drained from the unsaturated zone is released gradually in a manner that varies exponentially with time in response to a unit decline in hydraulic head, whereas the condition used by Newman assumes that the water is released instantaneously. The result is a solution that reduces to the solution obtained by Neuman as the rate of release of water from the zone above the water table increases. A dimensionless fitting parameter, γ, is introduced that incorporates vertical hydraulic conductivity, saturated thickness, specific yield, and an empirical constant α1, similar to Boulton's α. Results show that theoretical drawdown in water-table piezometers is amplified by noninstantaneous drainage from the unsaturated zone to a greater extent than drawdown in piezometers located at depth in the saturated zone. This difference provides a basis for evaluating γ by type-curve matching in addition to the other dimensionless parameters. Analysis of drawdown in selected piezometers from the published results of two aquifer tests conducted in relatively homogeneous glacial outwash deposits but with significantly different hydraulic conductivities reveals improved comparison between the theoretical type curves and the hydraulic head measured in water-table piezometers.

  20. A compositional multiphase model for groundwater contamination by petroleum products: 1. Theoretical considerations

    USGS Publications Warehouse

    Corapcioglu, M. Yavuz; Baehr, Arthur L.

    1987-01-01

    A mathematical model is developed to describe the fate of hydrocarbon constituents of petroleum products introduced to soils as an immiscible liquid from sources such as leaking underground storage tanks and ruptured pipelines. The problem is one of multiphase transport (oil (immiscible), air, and water phases) of a reactive contaminant with constituents such as benzene, toluene, and xylene found in refined petroleum products like gasoline. In the unsaturated zone, transport of each constituent can occur as a solute in the water phase, vapor in the air phase, and as an unaltered constituent in the oil phase. Additionally, the model allows for adsorption. Molecular transformations, microbially mediated or abiotic, are incorporated as sink terms in the conservation of mass equations. An equilibrium approximation, applicable to any immiscible organic contaminant is applied to partition constituent mass between the air, oil, water, and adsorbed phases for points in the region where the oil phase exists. Outside the oil plume the equilibrium approximation takes on a simpler form to partition constituent mass between the air, water, and adsorbed phases only. Microbial degradation of petroleum products is first discussed in a general model, then the conservation of mass equation for oxygen is incorporated into the analysis which takes advantage of the key role played by oxygen in the metabolism of hydrocarbon utilizing microbes in soil environments. Approximations to two subproblems, oil plume establishment in the unsaturated zone, and solute and vapor transport subsequent to immiscible plume establishment are then developed from the general model.

  1. Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium

    USGS Publications Warehouse

    Pollock, David W.

    1986-01-01

    Many parts of the Great Basin have thick zones of unsaturated alluvium which might be suitable for disposing of high-level radioactive wastes. A mathematical model accounting for the coupled transport of energy, water (vapor and liquid), and dry air was used to analyze one-dimensional, vertical transport above and below an areally extensive repository. Numerical simulations were conducted for a hypothetical repository containing spent nuclear fuel and located 100 m below land surface. Initial steady state downward water fluxes of zero (hydrostatic) and 0.0003 m yr−1were considered in an attempt to bracket the likely range in natural water flux. Predicted temperatures within the repository peaked after approximately 50 years and declined slowly thereafter in response to the decreasing intensity of the radioactive heat source. The alluvium near the repository experienced a cycle of drying and rewetting in both cases. The extent of the dry zone was strongly controlled by the mobility of liquid water near the repository under natural conditions. In the case of initial hydrostatic conditions, the dry zone extended approximately 10 m above and 15 m below the repository. For the case of a natural flux of 0.0003 m yr−1 the relative permeability of water near the repository was initially more than 30 times the value under hydrostatic conditions, consequently the dry zone extended only about 2 m above and 5 m below the repository. In both cases a significant perturbation in liquid saturation levels persisted for several hundred years. This analysis illustrates the extreme sensitivity of model predictions to initial conditions and parameters, such as relative permeability and moisture characteristic curves, that are often poorly known.

  2. Hydrogeologic setting and simulation of pesticide fate and transport in the unsaturated zone of a regolith-mantled, carbonate-rock terrain near Newville, Pennsylvania

    USGS Publications Warehouse

    Hippe, D.J.; Hall, D.W.

    1996-01-01

    Physical and chemical data were collected from May 1991 through April 1993 at a 4.5 hectare field site in Cumberland County, Pa., about 5 kilometers southeast of Newville. These data were used to define the hydrogeologic setting of a field site representative of the intensively farmed carbonate valleys of southeastern and south-central Pennsylvania. The environmental processing of commonly used pesticides (herbicides, fungicides, and insecticides) in the unsaturated zone was simulated with a process- oriented digital model to evaluate the environmental fate and transport of pesticides to ground water. Site data and modelling results provide a basis for a discussion of water-quality implications of agricultural best-management practices. The carbonate valleys of Pennsylvania comprise regolith-mantled carbonate-rock terrains that consist of broad undulating upland areas dissected by mostly dry valleys and widely spaced spring-fed creeks. The upland areas are farmed and exhibit possess a doline karst topography with many closed depressions, sinkholes, and bedrock outcrops. Unsaturated materials at the field site consist of an almost continuous soil cover composed of fine-grained residuum underlain by an intermediate vadose zone composed of karstified limestone. Soils are absent on scattered bedrock outcrops and are more than 12 meters thick in other areas of the site. The soil profile stores appreciable quantities of water with a volumetric average of about 36 percent water at field capacity. Organic carbon content of soil materials is about 1.7 percent in the Ap-horizon and from 0.1 to 0.3 percent throughout the full thickness of the B- and C-horizons. Atrazine, metolachlor, simazine, and the atrazine soil metabolites deethylatrazine and deisopropylatrazine were detected at concentrations above 0.05 mg/L in just the upper 0.6 meters of soil materials. However, detectable concentrations of atrazine, simazine, and atrazine soil metabolites were measured in water samples from lysimeters installed in soil materials at depths of 1.2, 2.1, and 3.7 meters and from monitor wells completed in the saturated zone to depths of 122 meters. Data collected from the field site were used to configure a pesticide screening model based on the pesticide version of the leaching estimation and chemistry model (LEACHP) developed by Wagenet and Hutson (1987). Model simulations show that most field-applied pesticides volatilize to the atmosphere, accumulate in soils, degrade in the subsurface environment, or leach to ground water. Model results were used to rank the leaching potentials of 66 pesticides. Eighteen of 32 herbicides, 4 of 9 fungicides, and 10 of 25 insecticides have moderate to large potential for leaching to ground water. A review of available pesticide monitoring data suggests that many compounds given moderate or high leaching potentials have not been tested for in ground water and the presence of pesticides in Pennsylvania's ground water may be underreported. Monitoring data do not exist for more than two-thirds of the pesticide compounds currently used in agricultural, carbonate areas of Pennsylvania. Knowledge of processes that govern fate and transport of pesticides is needed to facilitate development of effective pesticide best-management practices. In addition to comprehensive monitoring for pesticides and pesticide degradation products in ground water downgradient of areas of pesticide use, improved (1) characterization of unsaturated flow and transport through regolith mantled carbonate rocks, (2) estimates of pesticide degradation rates, (3) understanding of soil-property controls on pesticide movement, and (4) management models developed from process-oriented research would aid in understanding the processes.

  3. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  4. Oxygen transport and pyrite oxidation in unsaturated coal-mine spoil

    USGS Publications Warehouse

    Guo, Weixing; Cravotta, Charles A.

    1996-01-01

    An understanding of the mechanisms of oxygen (02) transport in unsaturated mine spoil is necessary to design and implement effective measures to exclude 02 from pyritic materials and to control the formation of acidic mine drainage. Partial pressure of oxygen (Po2) in pore gas, chemistry of pore water, and temperature were measured at different depths in unsaturated spoil at two reclaimed surface coal mines in Pennsylvania. At mine 1, where spoil was loose, blocky sandstone, Po2 changed little with depth, decreasing from 21 volume percent (vol%) at the ground surface to a minimum of about 18 vol% at 10 m depth. At mine 2, where spoil was compacted, friable shale, Po2 decreased to less than 2 vol% at depth of about 10 m. Although pore-water chemistry and temperature data indicate that acid-forming reactions were active at both mines, the pore-gas data indicate that mechanisms for 0 2 transport were different at each mine. A numerical model was developed to simulate 02 transport and pyrite oxidation in unsaturated mine spoil. The results of the numerical simulations indicate that differences in 02 transport at the two mines can be explained by differences in the air permeability of spoil. Po2 changes little with depth if advective transport of 02 dominates as at mine 1, but decreases greatly with depth if diffusive transport of 02 dominates, as in mine 2. Model results also indicate that advective transport becomes significant if the air permeability of spoil is greater than 10-9 m2, which is expected for blocky sandstone spoil. In the advective-dominant system, thermally-induced convective air flow, as a consequence of the exothermic oxidation of pyrite, supplies the 02 to maintain high Po2 within the deep unsaturated zone.

  5. Modeling of Near-Surface Leakage and Seepage of CO2 for Risk Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.; Unger, Andre A.J.

    2004-02-18

    The injection of carbon dioxide (CO2) into deep geologic carbon sequestration sites entails risk that CO2 will leak away from the primary storage formation and migrate upwards to the unsaturated zone from which it can seep out of the ground. We have developed a coupled modeling framework called T2CA for simulating CO2 leakage and seepage in the subsurface and in the atmospheric surface layer. The results of model simulations can be used to calculate the two key health, safety, and environmental (HSE) risk drivers, namely CO2 seepage flux and nearsurface CO2 concentrations. Sensitivity studies for a subsurface system with amore » thick unsaturated zone show limited leakage attenuation resulting in correspondingly large CO2 concentrations in the shallow subsurface. Large CO2 concentrations in the shallow subsurface present a risk to plant and tree roots, and to humans and other animals in subsurface structures such as basements or utility vaults. Whereas CO2 concentrations in the subsurface can be high, surfacelayer winds reduce CO2 concentrations to low levels for the fluxes investigated. We recommend more verification and case studies be carried out with T2CA, along with the development of extensions to handle additional scenarios such as calm conditions, topographic effects, and catastrophic surface-layer discharge events.« less

  6. Fast determination of soil behavior in the capillary zone using simple laboratory tests.

    DOT National Transportation Integrated Search

    2012-12-01

    Frost heave and thaw weakening are typical problems for engineers building in northern regions. These unsaturated-soil behaviors are : caused by water flowing through the capillary zone to a freezing front, where it forms ice lenses. Although suction...

  7. Vadose zone water fluxmeter

    DOEpatents

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  8. Simulation of branched serial first-order decay of atrazine and metabolites in adapted and nonadapted soils

    USGS Publications Warehouse

    Webb, R.M.; Sandstrom, M.W.; Krutz, L.J.; Shaner, D.L.

    2011-01-01

    In the present study a branched serial first-order decay (BSFOD) model is presented and used to derive transformation rates describing the decay of a common herbicide, atrazine, and its metabolites observed in unsaturated soils adapted to previous atrazine applications and in soils with no history of atrazine applications. Calibration of BSFOD models for soils throughout the country can reduce the uncertainty, relative to that of traditional models, in predicting the fate and transport of pesticides and their metabolites and thus support improved agricultural management schemes for reducing threats to the environment. Results from application of the BSFOD model to better understand the degradation of atrazine supports two previously reported conclusions: atrazine (6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine) and its primary metabolites are less persistent in adapted soils than in nonadapted soils; and hydroxyatrazine was the dominant primary metabolite in most of the soils tested. In addition, a method to simulate BSFOD in a one-dimensional solute-transport unsaturated zone model is also presented. ?? 2011 SETAC.

  9. Simulation of branched serial first-order decay of atrazine and metabolites in adapted and nonadapted soils

    USGS Publications Warehouse

    Webb, Richard M.; Sandstrom, Mark W.; Jason L. Krutz,; Dale L. Shaner,

    2011-01-01

    In the present study a branched serial first-order decay (BSFOD) model is presented and used to derive transformation rates describing the decay of a common herbicide, atrazine, and its metabolites observed in unsaturated soils adapted to previous atrazine applications and in soils with no history of atrazine applications. Calibration of BSFOD models for soils throughout the country can reduce the uncertainty, relative to that of traditional models, in predicting the fate and transport of pesticides and their metabolites and thus support improved agricultural management schemes for reducing threats to the environment. Results from application of the BSFOD model to better understand the degradation of atrazine supports two previously reported conclusions: atrazine (6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine) and its primary metabolites are less persistent in adapted soils than in nonadapted soils; and hydroxyatrazine was the dominant primary metabolite in most of the soils tested. In addition, a method to simulate BSFOD in a one-dimensional solute-transport unsaturated zone model is also presented.

  10. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, In C.

    1994-07-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone watermore » on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.« less

  11. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface -groundwater interactions in riparian zones. In the future, a better prediction and targeted management of buffer mechanisms in riparian zones will be possible.

  12. Development of property-transfer models for estimating the hydraulic properties of deep sediments at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Winfield, Kari A.

    2005-01-01

    Because characterizing the unsaturated hydraulic properties of sediments over large areas or depths is costly and time consuming, development of models that predict these properties from more easily measured bulk-physical properties is desirable. At the Idaho National Engineering and Environmental Laboratory, the unsaturated zone is composed of thick basalt flow sequences interbedded with thinner sedimentary layers. Determining the unsaturated hydraulic properties of sedimentary layers is one step in understanding water flow and solute transport processes through this complex unsaturated system. Multiple linear regression was used to construct simple property-transfer models for estimating the water-retention curve and saturated hydraulic conductivity of deep sediments at the Idaho National Engineering and Environmental Laboratory. The regression models were developed from 109 core sample subsets with laboratory measurements of hydraulic and bulk-physical properties. The core samples were collected at depths of 9 to 175 meters at two facilities within the southwestern portion of the Idaho National Engineering and Environmental Laboratory-the Radioactive Waste Management Complex, and the Vadose Zone Research Park southwest of the Idaho Nuclear Technology and Engineering Center. Four regression models were developed using bulk-physical property measurements (bulk density, particle density, and particle size) as the potential explanatory variables. Three representations of the particle-size distribution were compared: (1) textural-class percentages (gravel, sand, silt, and clay), (2) geometric statistics (mean and standard deviation), and (3) graphical statistics (median and uniformity coefficient). The four response variables, estimated from linear combinations of the bulk-physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. For each core sample,values of each water-retention parameter were estimated from the appropriate regression equation and used to calculate an estimated water-retention curve. The degree to which the estimated curve approximated the measured curve was quantified using a goodness-of-fit indicator, the root-mean-square error. Comparison of the root-mean-square-error distributions for each alternative particle-size model showed that the estimated water-retention curves were insensitive to the way the particle-size distribution was represented. Bulk density, the median particle diameter, and the uniformity coefficient were chosen as input parameters for the final models. The property-transfer models developed in this study allow easy determination of hydraulic properties without need for their direct measurement. Additionally, the models provide the basis for development of theoretical models that rely on physical relationships between the pore-size distribution and the bulk-physical properties of the media. With this adaptation, the property-transfer models should have greater application throughout the Idaho National Engineering and Environmental Laboratory and other geographic locations.

  13. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities and discrete fracture patterns

    USGS Publications Warehouse

    Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.

    2006-01-01

    A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns. ?? 2006 Elsevier B.V. All rights reserved.

  14. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, K.; Galloway, D.

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes ismore » such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.« less

  15. Risk assessment of nitrate transport through subsurface layers and groundwater using experimental and modeling approach.

    PubMed

    Alslaibi, Tamer M; Abunada, Ziyad; Abu Amr, Salem S; Abustan, Ismail

    2017-09-22

    Landfills are one of the main point sources of groundwater pollution. This research mainly aims to assess the risk of nitrate [Formula: see text] transport from the unlined landfill to subsurface layers and groundwater using experimental results and the SESOIL model. Samples from 12 groundwater wells downstream of the landfill were collected and analyzed in 2008, 21 years after the landfill construction. The average [Formula: see text] concentration in the wells was 54 mg/L, slightly higher than the World Health Organization ([Formula: see text] 50 mg/L) standards. SESOIL model was used to predict the [Formula: see text] concentration at the bottom of the unsaturated zone. Results indicated that the current mean [Formula: see text] concentration at the bottom of the unsaturated zone is 75 mg/L. the model predicted that the level of NO 3 will increased up to 325 mg/L within 30 years. Accordingly, the [Formula: see text] concentration in groundwater wells near the landfill area is expected to gradually increase with time. Although the current risk associated with the [Formula: see text] level might not be harm to adults, however, it might pose severe risks to both adults and infants in the near future due to [Formula: see text] leaching. Urgent mitigation measures such as final cell cover (cap), lining system and vertical expansion should be considered at the landfill to protect the public health in the area.

  16. Numerical demonstration of surfactant concentration-dependent capillarity and viscosity effects on infiltration from a constant flux line source

    NASA Astrophysics Data System (ADS)

    Henry, Eric J.; Smith, James E.

    2006-09-01

    SummarySurface infiltration line sources can deliver surfactant solutions for agricultural purposes or for use in subsurface remediation. Though the prediction of water distribution below a line source has received considerable attention in the scientific literature, little has been has been reported on how infiltration of surfactant solution from a line source differs from water infiltration. Few numerical models are capable of simulating surfactant-induced changes in moisture characteristic and hydraulic conductivity properties of unsaturated soil, so it is difficult to assess the importance of these effects when designing surfactant application schemes. We investigated surfactant infiltration behavior by using the variably-saturated flow and transport model HYDRUS-2D [Simunek, J., Sejna, M., van Genuchten, M.Th., 1999. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 2.0. IGWMC-TPS-53C. International Ground Water Modeling Center, Colorado School of Mines, Golden, CO] which was modified by [Henry, E.J., Smith, J.E., Warrick, A.W., 2002. Two-dimensional modeling of flow and transport in the vadose zone with surfactant-induced flow. Water Resour. Res. 38. DOI: doi:10.1029/2001WR000674] to incorporate surfactant effects on unsaturated flow. Significant differences were found between pure water and surfactant solution infiltration into a fine sand that was initially at residual moisture content. The surfactant solution wetted a larger area, both horizontally and vertically, relative to water, while the distribution of water within the wetted zone was more uniform than in the surfactant system. The surfactant system exhibited transient localized drainage and rewetting caused by surfactant-induced capillary pressure gradients within the wetting front. A standard unsaturated flow model (i.e., one that does not include surfactant effects on flow) is not capable of capturing the transient flow behavior. However, our results show that by using an effective scaled media (ESM) approach a standard model can be used to simulate later-time hydraulic conditions in a surfactant system.

  17. Vadose Zone Hydrology and Eco-hydrology in China

    NASA Astrophysics Data System (ADS)

    Wang, Wenke

    2016-04-01

    Vadose zone hydrology has long been a concern regarding groundwater recharge, evaporation, pollution, and the ecological effects induced by groundwater and water & salt contents in the unsaturated zone. The greater difference between day and night temperatures in arid and semi-arid areas influences water movement and heat transport in the vadose zone, and further influences the water and heat fluxes between the water table and the atmosphere as well as ecological environment. Unfortunately, these studies are lack in a systematic viewpoint in China. One of the main reasons is that the movement of water, vapor and heat from the surface to the water table is very complex in the arid and semi-arid areas. Another reason is lack of long term field observations for water content, vapor, heat, and soil matrix potential in the vadose zone. Three field observation sites, designed by the author, were set up to measure the changes in climate, water content , temperature and soil matrix potential of the unsaturated zone and groundwater level under the different conditions of climate and soil types over the period of 1-5 years. They are located at the Zhunngger Basin of Xinjing Uygur Autonomous Region in northwestern China, the Guanzhong Basin of Shaanxi Province in central China, and the Ordos Basin of the Inner Monggol Autonomous Region in north China, respectively. These three field observation sites have different climate and soil types in the vadose zone and the water table depth are also varied. Based on the observation data of climate, groundwater level, water content, temperature and soil matrix potential in the vadose zone from the three sites in associated with the field survey and numerical simulation method, the water movement and heat transport in the vadose zone, and the evaporation of phreatic water for different groundwater depths and soil types have been well explored. The differences in water movement of unsaturated zone between the bare surface soil and vegetation conditions were also compared. The concept of the ecological value of groundwater and unsaturated zone is presented in arid and semi-arid regions. This ecological value can be reflected in four aspects:(1) the maintenance of base flow in streams and areas of lakes and wetland;(2) the supply of physiological water demented by vegetation;(3) the regulation of soil moisture and salt content; and (4) the stability of the eco-environment. In addition, the threshold system between the ecological environment and multi-dimensional indices as variations in water and salt contents in the vadose zone, groundwater depth and quality as well as groundwater exploitation, are proposed in the arid and semi-arid areas. It is expected that this research could provide a scientific basis and technological support for better understanding on the movement of water, vapor and heat in the vadose zone in arid and semi-arid areas. It will also help to maintain sustainable development of the ecological environment and utilization of water resources.

  18. Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.R.; Liszewski, M.J.

    1997-08-01

    The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile{sup 2} area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area.

  19. Spatial and temporal variability of nitrate and nitrous oxide concentrations in the unsaturated zone at a corn field in the US Midwest

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C.

    2011-12-01

    There has been a significant increase in reactive nitrogen in the environment as a result of human activity. Reactive nitrogen of anthropogenic origin now equals that derived from natural terrestrial nitrogen fixation and is expected to exceed it by the end of the decade. Nitrogen is applied to crops as fertilizer and impacts the environment through water quality impairments (mostly as nitrate) and as greenhouse gas emissions (as nitrous oxide). Research on environmental impacts resulting from nitrogen application in the form of fertilizers has focused disproportionately on the degradation of water quality from agricultural non-point sources. The impacts of this degradation are registered both locally, with runoff and percolation of agrochemicals into local surface water and groundwater, and on a larger scale, such as the increase in the anoxic zone in the Gulf of Mexico attributed to nitrate from the Mississippi River. Impacts to the global climate from increased production of nitrous oxide as a result of increased fertilization are equally significant. Nitrous oxide is a greenhouse gas with a warming potential that is approximately 300 times greater than carbon dioxide. Direct emissions of nitrous oxide from the soil have been expressed as 1% of the applied nitrogen. Indirect emissions due to runoff, leaching and volatilization of the nitrogen from the field have been expressed as 0.75% of the applied nitrogen. Many studies have focused on processes governing nitrogen fluxes in the soil, surface water and groundwater systems. However, research on the biogeochemical processes regulating nitrogen fluxes in the unsaturated zone and consequent impacts on nitrate and nitrous oxide concentrations in groundwater are lacking. Our study explores the spatial and temporal variability of nitrate and nitrous oxide concentrations in the vadose zone at a 15 acre corn field in the US Midwest and links it to the concentrations found in the groundwater at the field site. Results indicated that nitrate concentrations in the vadose zone were an order of magnitude greater than in the groundwater. Nitrous oxide concentrations were significantly less in the vadose zone, suggesting that conditions for microbial degradation of the nitrate were not optimal. There was significant short-term variability in the nitrate concentrations as well as spatial variability over the field site. While the processes governing the linkage between nitrogen concentrations in the unsaturated and saturated zones are still unclear, our research suggests that current models may overestimate the indirect emissions of nitrous oxide produced in agricultural systems.

  20. A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades

    USGS Publications Warehouse

    Teh, S.Y.; DeAngelis, D.L.; Sternberg, L.D.S.L.; Miralles-Wilhelm, F. R.; Smith, T.J.; Koh, H. L.

    2008-01-01

    Sharp boundaries typically separate the salinity tolerant mangroves from the salinity intolerant hardwood hammock species, which occupy the similar geographical areas of southern Florida. Evidence of strong feedback between tree community-type and the salinity of the unsaturated (vadose) zone of the soil suggests that a severe disturbance that significantly tilts the salinity in the vadose zone might cause a shift from one vegetation type to the other. In this study, a model based upon the feedback dynamics between vegetation and salinity of the vadose zone of the soil was used to take account of storm surge events to investigate the mechanisms that by which this large-scale disturbance could affect the spatial pattern of hardwood hammocks and mangroves. Model simulation results indicated that a heavy storm surge that completely saturated the vadose zone at 30 ppt for 1 day could lead to a regime shift in which there is domination by mangroves of areas previously dominated by hardwood hammocks. Lighter storm surges that saturated the vadose zone at less than 7 ppt did not cause vegetation shifts. Investigations of model sensitivity analysis indicated that the thickness of the vadose zone, coupled with precipitation, influenced the residence time of high salinity in the vadose zone and therefore determined the rate of mangrove domination. The model was developed for a southern Florida coastal ecosystem, but its applicability may be much broader. ?? 2008 Elsevier B.V. All rights reserved.

  1. DEMONSTRATION BULLETIN: IN-SITU VACUUM EXRACTION: TERRA VAC, INC.

    EPA Science Inventory

    This in-situ vacuum extraction technology is a process for the removal and venting of volatile organic compounds (VOCs) from the vadose or unsaturated zone of soils. Often, these compounds can be removed from the vadose zone before they have a chance to contaminate groundwater. ...

  2. Household hazardous waste disposal to landfill: using LandSim to model leachate migration.

    PubMed

    Slack, Rebecca J; Gronow, Jan R; Hall, David H; Voulvoulis, Nikolaos

    2007-03-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW.

  3. A vadose zone water fluxmeter with divergence control

    NASA Astrophysics Data System (ADS)

    Gee, G. W.; Ward, A. L.; Caldwell, T. G.; Ritter, J. C.

    2002-08-01

    Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self-calibrating tipping bucket, with a sensitivity of ~4 mL tip-1. For our meter this is equivalent to detection limit of ~0.1 mm. Passive-wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two-dimensional (2-D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr-1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr-1 to more than 1000 mm yr-1.

  4. Experimental studies in natural groundwater recharge dynamics: Assessment of recent advances in instrumentation

    USGS Publications Warehouse

    Sophocleous, M.; Perry, C.A.

    1984-01-01

    To quantify and model the natural groundwater-recharge process, two sites in south-central Kansas, U.S.A., were instrumented with various modern sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a unified regime. Data from the various sensors were collected using microloggers in combination with magnetic-cassette tape, graphical and digital recorders, analog paper-tape recorders, and direct observations to evaluate and automate data collection and processing. Atmospheric sensors included an anemometer, a tipping-bucket raingage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron moisture probe operated by an observer. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicated that certain types of equipment such as pressure transducers are very sensitive to environmental conditions. Extraordinary steps had to be taken to protect some of the equipment, whereas other equipment seemed to be reliable under all conditions. Based on such experiences, a number of suggestions aimed at improving such investigations are outlined. ?? 1984.

  5. A vadose zone water fluxmeter with divergence control

    USGS Publications Warehouse

    Gee, G.W.; Ward, A.L.; Caldwell, T.G.; Ritter, J.C.

    2002-01-01

    Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self‐calibrating tipping bucket, with a sensitivity of ∼4 mL tip−1. For our meter this is equivalent to detection limit of ∼0.1 mm. Passive‐wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two‐dimensional (2‐D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr−1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr−1 to more than 1000 mm yr−1.

  6. Application of frequency- and time-domain electromagnetic surveys to characterize hydrostratigraphy and landfill construction at the Amargosa Desert Research Site, Beatty, Nevada

    USGS Publications Warehouse

    White, Eric A.; Day-Lewis, Frederick D.; Johnson, Carole D.; Lane, John W.

    2016-01-01

    In 2014 and 2015, the U.S. Geological Survey (USGS), conducted frequency-domain electromagnetic (FDEM) surveys at the USGS Amargosa Desert Research Site (ADRS), approximately 17 kilometers (km) south of Beatty, Nevada. The FDEM surveys were conducted within and adjacent to a closed low-level radioactive waste disposal site located at the ADRS. FDEM surveys were conducted on a grid of north-south and east-west profiles to assess the locations and boundaries of historically recorded waste-disposal trenches. In 2015, the USGS conducted time-domain (TDEM) soundings along a profile adjacent to the disposal site (landfill) in cooperation with the U.S. Environmental Protection Agency (USEPA), to assess the thickness and characteristics of the underlying deep unsaturated zone, and the hydrostratigraphy of the underlying saturated zone.FDEM survey results indicate the general location and extent of the waste-disposal trenches and reveal potential differences in material properties and the type and concentration of waste in several areas of the landfill. The TDEM surveys provide information on the underlying hydrostratigraphy and characteristics of the unsaturated zone that inform the site conceptual model and support an improved understanding of the hydrostratigraphic framework. Additional work is needed to interpret the TDEM results in the context of the local and regional structural geology.

  7. Lateral water flux in the unsaturated zone: A mechanism for the formation of spatial soil heterogeneity in a headwater catchment

    Treesearch

    John P. Gannon; Kevin J. McGuire; Scott W. Bailey; Rebecca R. Bourgault; Donald S. Ross

    2017-01-01

    Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table...

  8. Experimental constraints on the serpentinization rate of fore-arc peridotites: Implications for the upwelling condition of the slab-derived fluid

    NASA Astrophysics Data System (ADS)

    Nakatani, T.; Nakamura, M.

    2016-08-01

    To constrain the water circulation in subduction zones, the hydration rates of peridotites were investigated experimentally in fore-arc mantle conditions. Experiments were conducted at 400-580°C and 1.3 and 1.8 GPa, where antigorite is expected to form as a stable serpentine phase. Crushed powders of olivine ± orthopyroxene and orthopyroxene + clinopyroxene were reacted with 15 wt % distilled water for 4-19 days. The synthesized serpentine varieties were lizardite and aluminous lizardite (Al-lizardite) in all experimental conditions except those of 1.8 GPa and 580°C in the olivine + orthopyroxene system, in which antigorite was formed. In the olivine + orthopyroxene system, the reactions were interface-controlled except for the reaction at 400°C, which was transport-controlled. The corresponding reaction rates were 7.0 × 10-12 to 1.5 × 10-11 m s-1 at 500-580°C and 7.5 × 10-16 m2 s-1 at 400°C for the interface and transport-controlled reactions, respectively. Based on a simple reaction-transport model including these hydration rates, we infer that penetration of the slab-derived fluid all the way through a water-unsaturated fore-arc mantle is allowed only when focused flow occurs with a spacing larger than 77-229 km in hot subduction zones such as Nankai and Cascadia. However, the necessary spacing is only 2.3-4.6 m in intermediate-temperature subduction zones such as Kyushu and Costa Rica. These calculations imply that fluid leakage in hot subduction zones may occur after the fore-arc mantle is totally hydrated, whereas in intermediate-temperature subduction zones, leakage through a water-unsaturated fore-arc mantle may be facilitated.

  9. Field-lysimeter and Column Studies As Complementary Survey Tools For Monitored Natural Attenuation (mna)

    NASA Astrophysics Data System (ADS)

    Totsche, K. U.; Hensel, D.; Jann, S.; Jaesche, P.; Kögel-Knabner, I.; Scheibke, R.

    The contamination of the unsaturated soil zone with organic pollutants (PAH, BTEX, PCB, Phenols, etc.) and pollutant mixtures, e.g. light/dense non-aqueous phase liq- uids (L/D-NAPLs), represents a specific challenge for sanitation and remediation of contaminated sites. Monitored natural attenuation as an alternative option for remedi- ation of such sites requires (1) the proof of an effective pollutant reduction potential and (2) the proof that a further spreading of the contaminants and their potentially toxic metabolites is minimized to an acceptable minimum concentration level. These demands apply equally likely to contaminated soil and groundwater environments. However, a major problem arises when the task is to monitor the release and transport of contaminants within the unsaturated soil zone over a longer period (> 10 years) of time at an expenditure as small as possible. The aim of our presentation is to employ and test a survey technique to monitor pollutant release and redistribution within the unsaturated soil zone in the context of MNA. The proposed technique is based on the combination of laboratory-column and field-lysimeter studies. The first is used to ac- quire knowledge on the governing processes, the latter is used to monitor release and transport of the contaminants.

  10. Deep installations of monitoring instrumentation in unsaturated welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, S.

    1985-12-31

    The major goal of this research is to develop low cost techniques to measure matric potential, moisture content, and to sample liquid and vapor for chemical analysis in the deep unsaturated zones of the arid areas of Nevada. This work has been prompted by the high level waste repository proposed in the unsaturated zone of Yucca Mountain. The work presented focuses on two deep (250 meter) boreholes planned for completion at the southern end of Yucca Mountain in fractured tuff. One borehole will be drilled without water and cased to slightly below the zone of saturation in order to measuremore » the depth to saturation and to collect water samples for analysis. This hole will also be used for routine quarterly neutron logging. Between loggings, vapor liquid water samplers will be suspended in the borehole and packed off at selective screened intervals to collect water vapor for isotopic analysis. The second borehole will be drilled to slightly above the water table and serve as a multiple interval psychrometer installation. Thermocouple psychrometers will be placed in isolated screened intervals within the casing. These boreholes will be used for instrument testing, interference and permeability testing, and to monitor short term fluctuations of soil and rock moisture due to precipitation and recharge.« less

  11. Degradation rates of CFC-11, CFC-12 and CFC-113 in anoxic shallow aquifers of Araihazar, Bangladesh.

    PubMed

    Horneman, A; Stute, M; Schlosser, P; Smethie, W; Santella, N; Ho, D T; Mailloux, B; Gorman, E; Zheng, Y; van Geen, A

    2008-04-04

    Chlorofluorocarbons CFC-11 (CCl(3)F), CFC-12 (CCl(2)F(2)), and CFC-113 (CCl(2)F-CClF(2)) are used in hydrology as transient tracers under the assumption of conservative behavior in the unsaturated and saturated soil zones. However, laboratory and field studies have shown that these compounds are not stable under anaerobic conditions. To determine the degradation rates of CFCs in a tropical environment, atmospheric air, unsaturated zone soil gas, and anoxic groundwater samples were collected in Araihazar upazila, Bangladesh. Observed CFC concentrations in both soil gas and groundwater were significantly below those expected from atmospheric levels. The CFC deficits in the unsaturated zone can be explained by gas exchange with groundwater undersaturated in CFCs. The CFC deficits observed in (3)H/(3)He dated groundwater were used to estimate degradation rates in the saturated zone. The results show that CFCs are degraded to the point where practically no (<5%) CFC-11, CFC-12, or CFC-113 remains in groundwater with (3)H/(3)He ages above 10 yr. In groundwater sampled at our site CFC-11 and CFC-12 appear to degrade at similar rates with estimated degradation rates ranging from approximately 0.25 yr(-1) to approximately 6 yr(-1). Degradation rates increased as a function of reducing conditions. This indicates that CFC dating of groundwater in regions of humid tropical climate has to be carried out with great caution.

  12. Soil Gas Dynamics and Microbial Activity in the Unsaturated Zone of a Regulated River

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2017-12-01

    Over 60% of the world's rivers are dammed, and are therefore regulated. In some river systems, river regulation is the dominant factor governing fluid exchange and soil gas dynamics in the hyporheic region and overlying unsaturated zone of the river banks. Where this is the case, it is important to understand the effects that an artificially-induced change in river stage can have on the chemical, plant, and microbial components of the unsaturated zone. Daily releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River east of Austin, Texas. For this study, we utilized an array of water and gas wells along a transect perpendicular to the river to investigate the biogeochemical process occurring in this mixing zone. The gas wells were installed at several depths up to 1.5 meters, and facilitated the continuous monitoring of soil gases as the pulse percolated through the river bank. Water samples collected from the screened wells penetrated to depths below the water table and were analyzed for nutrients, carbon, and major ions. Additionally, two soil cores were taken at different distances from the river and analyzed for soil moisture and grain size. These cores were also analyzed for microbial activity using the total heterotroph count method and the acetylene inhibition technique, a sensitive method of measuring denitrifying activity. The results provide a detailed picture of soil gas flux and biogeochemical processes in the bank environment in a regulated river. Findings indicate that a river pulse that causes a meter-scale change in river stage causes small, centimeter-scale pulses in the water table. We propose that these conditions create an area of elevated microbial respiration at the base of the unsaturated zone that appears to be decoupled from normal diurnal fluctuations. Along the transect, CO2 concentrations increased with increasing depth down to the water table. CO2 concentrations were highest in the time following a pulse, and the lowest concentrations were recorded following the trough in river stage.

  13. Monitoring snowmelt and solute transport at Oslo airport by combining time-lapse electrical resistivity, soil water sampling and tensiometer measurements

    NASA Astrophysics Data System (ADS)

    Bloem, E.; French, H. K.

    2013-12-01

    Monitoring contaminant transport at contaminated sites requires optimization of the configuration of a limited number of samplings points combined with heterogeneous flow and preferential flowpaths. Especially monitoring processes in the unsaturated zone is a major challenge due to the limited volume monitored by for example suction cups and their risk to clog in a highly active degradation zone. To make progress on soil contamination assessment and site characterization there is a strong need to integrate field-sale extensively instrumented tools, with non-invasive (geophysical) methods which provide spatially integrated measurements also in the unsaturated zone. Examples of sites that might require monitoring activities in the unsaturated zone are airports with winter frost where large quantities of de-icing chemicals are used each winter; salt and contaminant infiltration along roads; constructed infiltration systems for treatment of sewerage or landfill seepage. Electrical resistivity methods have proved to be useful as an indirect measurement of subsurface properties and processes at the field-scale. The non-uniqueness of the interpretation techniques can be reduced by constraining the inversion through the addition of independent geophysical measurements along the same profile. Or interpretation and understanding of geophysical images can be improved by the combination with classical measurements of soil physical properties, soil suction, contaminant concentration and temperatures. In our experiment, at the research field station at Gardermoen, Oslo airport, we applied a degradable de-icing chemical and an inactive tracer to the snow cover prior to snowmelt. To study the solute transport processes in the unsaturated zone time-lapse cross borehole electrical resistivity tomography (ERT) measurements were conducted at the same time as soil water samples were extracted at multiple depths with suction cups. Measurements of soil temperature, and soil tension were also carried out during the monitoring period. We present a selection of results from the snowmelt experiments and how the combination of measurement techniques can help interpret and understand the relative importance of the various contributions to the bulk electrical conductivity during snowmelt and solute transport.

  14. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia).

    PubMed

    Ortegón, Gloria Páez; Arboleda, Fernando Muñoz; Candela, Lucila; Tamoh, Karim; Valdes-Abellan, Javier

    2016-01-01

    Extensive application of vinasse, a subproduct from sugar cane plantations for bioethanol production, is currently taking place as a source of nutrients that forms part of agricultural management in different agroclimatic regions. Liquid vinasse composition is characterised by high variability of organic compounds and major ions, acid pH (4.7), high TDS concentration (117,416-599,400mgL(-1)) and elevated EC (14,350-64,099μScm(-1)). A large-scale sugar cane field application is taking place in Valle del Cauca (Colombia), where monitoring of soil, unsaturated zone and the aquifer underneath has been made since 2006 to evaluate possible impacts on three experimental plots. For this assessment, monitoring wells and piezometers were installed to determine groundwater flow and water samples were collected for chemical analysis. In the unsaturated zone, tensiometers were installed at different depths to determine flow patterns, while suction lysimeters were used for water sample chemical determinations. The findings show that in the sandy loam plot (Hacienda Real), the unsaturated zone is characterised by low water retention, showing a high transport capacity, while the other two plots of silty composition presented temporal saturation due to La Niña event (2010-2011). The strong La Niña effect on aquifer recharge which would dilute the infiltrated water during the monitoring period and, on the other hand dissolution of possible precipitated salts bringing them back into solution may occur. A slight increase in the concentration of major ions was observed in groundwater (~5% of TDS), which can be attributed to a combination of factors: vinasse dilution produced by water input and hydrochemical processes along with nutrient removal produced by sugar cane uptake. This fact may make the aquifer vulnerable to contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Constraining the inferred paleohydrologic evolution of a deep unsaturated zone in the Amargosa Desert

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Stonestrom, David A.; Andraski, Brian J.; Striegl, Robert G.

    2004-01-01

    Natural flow regimes in deep unsaturated zones of arid interfluvial environments are rarely in hydraulic equilibrium with near-surface boundary conditions imposed by present-day plant–soil–atmosphere dynamics. Nevertheless, assessments of water resources and contaminant transport require realistic estimates of gas, water, and solute fluxes under past, present, and projected conditions. Multimillennial transients that are captured in current hydraulic, chemical, and isotopic profiles can be interpreted to constrain alternative scenarios of paleohydrologic evolution following climatic and vegetational shifts from pluvial to arid conditions. However, interpreting profile data with numerical models presents formidable challenges in that boundary conditions must be prescribed throughout the entire Holocene, when we have at most a few decades of actual records. Models of profile development at the Amargosa Desert Research Site include substantial uncertainties from imperfectly known initial and boundary conditions when simulating flow and solute transport over millennial timescales. We show how multiple types of profile data, including matric potentials and porewater concentrations of Cl−, δD, δ18O, can be used in multiphase heat, flow, and transport models to expose and reduce uncertainty in paleohydrologic reconstructions. Results indicate that a dramatic shift in the near-surface water balance occurred approximately 16000 yr ago, but that transitions in precipitation, temperature, and vegetation were not necessarily synchronous. The timing of the hydraulic transition imparts the largest uncertainty to model-predicted contemporary fluxes. In contrast, the uncertainties associated with initial (late Pleistocene) conditions and boundary conditions during the Holocene impart only small uncertainties to model-predicted contemporaneous fluxes.

  16. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    USDA-ARS?s Scientific Manuscript database

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  17. Modelling groundwater seepage zones in an unconfined aquifer with MODFLOW: different approaches

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Gedeon, Matej

    2014-05-01

    In areas where groundwater level occurs close to surface topography, the discharge of groundwater flow to the ground surface (or seepage) can be an important aspect of catchment hydrological cycle. It is also associated with valuable zones from an ecological point of view, often having a permanent shallow water table and constant lithotrophic water quality (Batelaan et al., 2003). In the present study, we try to implement a correct representation of this seepage process in a MODFLOW-HYDRUS coupled model for a small catchment (18.6 km²) of north-east Belgium. We started from an exisiting transient groundwater model of the unconfined aquifer in the study area (Gedeon and Mallants, 2009) discretized in 50x50 m cells. As the model did not account for seepage, hydraulic heads were simulated above the surface topography in certain zones. In the coupled MODFLOW-HYDRUS setup, transient boundary conditions (potential evapotranspiration and precipitation) are used to calculate the recharge with the HYDRUS package (Seo et al., 2007) for MODFLOW-2000 (Harbaugh et al., 2000). Coupling HYDRUS to MODFLOW involves the definition of a number of zones based on similarity in estimated groundwater depth, soil type and land cover. Concerning simulation of seepage, several existing packages are tested, including the DRAIN package (as in Reeve et al., 2006), the SPF package (from VSF Process; Thoms et al., 2006) and the PBC package (Post, 2011). Alternatively to the HYDRUS package for MODFLOW, the UZF package (Niswonger et al., 2006) for the simulation of recharge (and seepage) is also tested. When applicable, the parameterization of drain conductance in the top layer is critical and is investigated in relation to the soil hydraulic conductivity values used for the unsaturated zone (HYDRUS). Furthermore, stability issues are discussed, and where successful model runs are obtained, simulation results are compared with observed groundwater levels from a piezometric network. Spatial and temporal variability of the seepage zones is obtained and can be compared against seepage indicators such as soil maps or types of plant habitat. References Batelaan, O., De Smedt, F., Triest, L., 2003. Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. Journal of Hydrology 275, 86-108. Gedeon, M., Mallants, D., 2009. Local-scale transient groundwater flow calculations. Project near surface disposal of category A waste at Dessel, NIRAS/ONDRAF, 74 p. Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G., 2000. MODFLOW-2000, the U.S. Geological Survey modular ground-water model user guide to modularization concepts and the ground-water flow process. USGS, Denver, CO. Niswonger, R.G., Prudic, D.E., Regan, R.S., 2006. Documentation of the Unsaturated-Zone Flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005. Techniques and Methods 6-A19, USGS, Denver, CO. Post, V.E.A., 2011. A new package for simulating periodic boundary conditions in MODFLOW and SEAWAT. Computers & Geosciences 37, 1843-1849. Reeve, A.S., Evensen, R., Glaser, P.H., Siegel, D.I., Rosenberry, D., 2006. Flow path oscillations in transient ground-water simulations of large peatland systems. Journal of Hydrology 316, 313-324. Seo, H.S., Šimůnek, J., Poeter, E.P., 2007. Documentation of the HYDRUS Package for MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model. Colorado School of Mines, Golden, CO. Thoms, R.B., Johnson, R.L., Healy, R.W., 2006. User's guide to the Variably Saturated Flow (VSF) Process for MODFLOW. U.S. Geological Survey Techniques and Methods 6-A18, p. 58.

  18. Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer

    USGS Publications Warehouse

    Moench, Allen F.

    1997-01-01

    A Laplace transform solution is presented for the problem of flow to a partially penetrating well of finite diameter in a slightly compressible water table aquifer. The solution, which allows for evaluation of both pumped well and observation piezometer data, accounts for effects of well bore storage and skin and allows for the noninstantaneous release of water from the unsaturated zone. For instantaneous release of water from the unsaturated zone the solution approaches the line source solution derived by Neuman as the diameter of the pumped well approaches zero. Delayed piezometer response, which is significant during times of rapidly changing hydraulic head, is included in the theoretical treatment and shown to be an important factor in accurate evaluation of specific storage. By means of a hypothetical field example it is demonstrated that evaluations of specific storage (Ss) using classical line source solutions may yield values of Ss that are overestimated by a factor of 100 or more, depending upon the location of the observation piezometers and whether effects of delayed piezometer response are included in the analysis. Theoretical responses obtained with the proposed model are used to suggest methods for evaluating specific storage.

  19. Unsaturated hydraulic properties of porous sedimentary rocks explained by mercury porosimetry

    NASA Astrophysics Data System (ADS)

    Clementina Caputo, Maria; Turturro, Celeste; Gerke, Horst H.

    2016-04-01

    The understanding of hydraulic properties is essential in the modeling of flow and solute transport including contaminants through the vadose zone, which consists of the soil as well as of the underlying porous sediments or rocks. The aim of this work is to study the relationships between unsaturated hydraulic properties of porous rocks and their pore size distribution. For this purpose, two different lithotypes belonging to Calcarenite di Gravina Formation, a Plio-Pleistocene sedimentary rock of marine origin, were investigated. The two lithotypes differ mainly in texture and came from two distinct quarry districts, Canosa di Puglia (C) and Massafra (M) in southern Italy, respectively. This relatively porous rock formation (porosities range between 43% for C and 41% for M) often constitutes a thick layer of vadose zone in several places of Mediterranean basin. The water retention curves (WRCs) and the unsaturated hydraulic conductivity functions were determined using four different experimental methods that cover the full range from low to high water contents: the WP4 psychrometer test, the Wind's evaporation method, the Stackman's method and the Quasi-steady centrifuge method. Pore size estimation by means of mercury intrusion porosimetry (MIP) was performed. WRCs were compared with the pore size distributions to understand the influence of fabric, in terms of texture and porosity, features of pores and pore size distribution on the hydraulic behavior of rocks. The preliminary results show that the pore size distributions obtained by MIP do not cover the entire pore size range of the investigated Calcarenite. In fact, some pores in the rock samples of both lithotypes were larger than the maximum size that could be investigated by MIP. This implies that for explaining the unsaturated hydraulic properties over the full moisture range MIP results need to be combined with results obtained by other methods such as image analysis and SEM.

  20. Numerical evaluation and optimization of depth-oriented temperature measurements for the investigation of thermal influences on groundwater

    NASA Astrophysics Data System (ADS)

    Köhler, Mandy; Haendel, Falk; Epting, Jannis; Binder, Martin; Müller, Matthias; Huggenberger, Peter; Liedl, Rudolf

    2015-04-01

    Increasing groundwater temperatures have been observed in many urban areas such as London (UK), Tokyo (Japan) and also in Basel (Switzerland). Elevated groundwater temperatures are a result of different direct and indirect thermal impacts. Groundwater heat pumps, building structures located within the groundwater and district heating pipes, among others, can be addressed to direct impacts, whereas indirect impacts result from the change in climate in urban regions (i.e. reduced wind, diffuse heat sources). A better understanding of the thermal processes within the subsurface is urgently needed for decision makers as a basis for the selection of appropriate measures to reduce the ongoing increase of groundwater temperatures. However, often only limited temperature data is available that derives from measurements in conventional boreholes, which differ in construction and instrumental setup resulting in measurements that are often biased and not comparable. For three locations in the City of Basel models were implemented to study selected thermal processes and to investigate if heat-transport models can reproduce thermal measurements. Therefore, and to overcome the limitations of conventional borehole measurements, high-resolution depth-oriented temperature measurement systems have been introduced in the urban area of Basel. In total seven devices were installed with up to 16 sensors which are located in the unsaturated and saturated zone (0.5 to 1 m separation distance). Measurements were performed over a period of 4 years (ongoing) and provide sufficient data to set up and calibrate high-resolution local numerical heat transport models which allow studying selected local thermal processes. In a first setup two- and three-dimensional models were created to evaluate the impact of the atmosphere boundary on groundwater temperatures (see EGU Poster EGU2013-9230: Modelling Strategies for the Thermal Management of Shallow Rural and Urban Groundwater bodies). For Basel, where the mean thickness of the unsaturated zone amounts to 19 m, it could be observed that atmospheric seasonal temperature variations are small compared to advective groundwater heat transport. At chosen locations: i) near the river Rhine to study river-groundwater interaction processes, ii) downstream of a thermal groundwater user who uses water for cooling and infiltrates water with elevated temperatures and iii) downstream of a building structure reaching into the groundwater saturated zone, models were further extended to study selected thermal processes in detail and to investigate if these models can reproduce thermal impacts in the vicinity of the temperature measurement devices. Calibration, based on the depth-oriented temperature measurements, was performed for the saturated and unsaturated zone, respectively. Model results show that, although depth-oriented measurements provide valuable insights into local thermal processes, the identification of the governing impacts is strongly dependent on an appropriate positioning of the measurement device. Numerical simulations based on existing flow- and heat transport models, considering the site specific local hydraulic and thermal boundary conditions, allow optimizing the location of such systems before installation. Furthermore, the results of the local heat transport models can be transferred to regional scale models which are an important tool for thermal management in urban areas.

  1. Reactive Gas transport in soil: Kinetics versus Local Equilibrium Approach

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Jia, Ruijan

    2010-05-01

    Gas transport through the unsaturated soil zone was studied using an analytical solution of the gas transport model that is mathematically equivalent to the Two-Region model. The gas transport model includes diffusive and convective gas fluxes, interphase mass transfer between the gas and water phase, and biodegradation. The influence of non-equilibrium phenomena, spatially variable initial conditions, and transient boundary conditions are studied. The objective of this paper is to compare the kinetic approach for interphase mass transfer with the standard local equilibrium approach and to find conditions and time-scales under which the local equilibrium approach is justified. The time-scale of investigation was limited to the day-scale, because this is the relevant scale for understanding gas emission from the soil zone with transient water saturation. For the first time a generalized mass transfer coefficient is proposed that justifies the often used steady-state Thin-Film mass transfer coefficient for small and medium water-saturated aggregates of about 10 mm. The main conclusion from this study is that non-equilibrium mass transfer depends strongly on the temporal and small-scale spatial distribution of water within the unsaturated soil zone. For regions with low water saturation and small water-saturated aggregates (radius about 1 mm) the local equilibrium approach can be used as a first approximation for diffusive gas transport. For higher water saturation and medium radii of water-saturated aggregates (radius about 10 mm) and for convective gas transport, the non-equilibrium effect becomes more and more important if the hydraulic residence time and the Damköhler number decrease. Relative errors can range up to 100% and more. While for medium radii the local equilibrium approach describes the main features both of the spatial concentration profile and the time-dependence of the emission rate, it fails completely for larger aggregates (radius about 100 mm). From the comparative study of relevant scenarios with and without biodegradation it can be concluded that, under realistic field conditions, biodegradation within the immobile water phase is often mass-transfer limited and the local equilibrium approach assuming instantaneous mass transfer becomes rather questionable. References Geistlinger, H., Ruiyan Jia, D. Eisermann, and C.-F. Stange (2008): Spatial and temporal variability of dissolved nitrous oxide in near-surface groundwater and bubble-mediated mass transfer to the unsaturated zone, J. Plant Nutrition and Soil Science, in press. Geistlinger, H. (2009) Vapor transport in soil: concepts and mathematical description. In: Eds.: S. Saponari, E. Sezenna, and L. Bonoma, Vapor emission to outdoor air and enclosed spaces for human health risk assessment: Site characterization, monitoring, and modeling. Nova Science Publisher. Milano. Accepted for publication.

  2. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA

    USGS Publications Warehouse

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.

    2011-01-01

    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through preferential flow paths and that any water breaking through the capillary barrier (as potential recharge) likely does so in fingers which are difficult to detect with coring methods. In other areas where water levels have declined and soils have similar properties, the potential for transport of agricultural chemicals to the aquifer may be greater than previously assumed. ?? 2010 .

  3. Water movement through a thick unsaturated zone underlying an intermittent stream in the western Mojave Desert, southern California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Radyk, J.; Michel, R.L.

    2000-01-01

    Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, showy that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downward movement of water. Seasonal changes in water vapor composition underneath the wash are consistent with the rapid infiltration of a small quantity of water to great depths and subsequent equilibration of vapor with water in the surrounding material. It may be possible to supplement natural recharge from the wash with imported water. Recharge to the wash may be advantageous because the unsaturated zone is not as dry as most areas in the desert and concentrations of soluble salts are generally lower underneath the wash.Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, show that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downwa

  4. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland

    PubMed Central

    Exner, Mary E; Hirsh, Aaron J; Spalding, Roy F

    2014-01-01

    A 31 year record of ∼44,000 nitrate analyses in ∼11,500 irrigation wells was utilized to depict the decadal expansion of groundwater nitrate contamination (N ≥ 10 mg/L) in the irrigated corn-growing areas of eastern and central Nebraska and analyze long-term nitrate concentration trends in 17 management areas (MAs) subject to N fertilizer and budgeting requirements. The 1.3 M contaminated hectares were characterized by irrigation method, soil drainage, and vadose zone thickness and lithology. The areal extent and growth of contaminated groundwater in two predominately sprinkler-irrigated areas was only ∼20% smaller beneath well-drained silt loams with thick clayey-silt unsaturated layers and unsaturated thicknesses >15 m (400,000 ha and 15,000 ha/yr) than beneath well and excessively well-drained soils with very sandy vadose zones (511,000 ha and 18,600 ha/yr). Much slower expansion (3700 ha/yr) occurred in the 220,000 contaminated hectares in the central Platte valley characterized by predominately gravity irrigation on thick, well-drained silt loams above a thin (∼5.3 m), sandy unsaturated zone. The only reversals in long-term concentration trends occurred in two MAs (120,500 ha) within this contaminated area. Concentrations declined 0.14 and 0.20 mg N/L/yr (p < 0.02) to ∼18.3 and 18.8 mg N/L, respectively, during >20 years of management. Average annual concentrations in 10 MAs are increasing (p < 0.05) and indicate that average nitrate concentrations in leachates below the root zone and groundwater concentrations have not yet reached steady state. While management practices likely have slowed increases in groundwater nitrate concentrations, irrigation and nutrient applications must be more effectively controlled to retain nitrate in the root zone. PMID:25558112

  5. Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia

    USGS Publications Warehouse

    Scanlon, Bridget R.; Stonestrom, David A.; Reedy, Robert C.; Leaney, Fred W.; Gates, John; Cresswell, Richard G.

    2009-01-01

    Unsaturated zone salt reservoirs are potentially mobilized by increased groundwater recharge as semiarid lands are cultivated. This study explores the amounts of pore water sulfate and fluoride relative to chloride in unsaturated zone profiles, evaluates their sources, estimates mobilization due to past land use change, and assesses the impacts on groundwater quality. Inventories of water‐extractable chloride, sulfate, and fluoride were determined from borehole samples of soils and sediments collected beneath natural ecosystems (N = 4), nonirrigated (“rain‐fed”) croplands (N = 18), and irrigated croplands (N = 6) in the southwestern United States and in the Murray Basin, Australia. Natural ecosystems contain generally large sulfate inventories (7800–120,000 kg/ha) and lower fluoride inventories (630–3900 kg/ha) relative to chloride inventories (6600–41,000 kg/ha). Order‐of‐magnitude higher chloride concentrations in precipitation and generally longer accumulation times result in much larger chloride inventories in the Murray Basin than in the southwestern United States. Atmospheric deposition during the current dry interglacial climatic regime accounts for most of the measured sulfate in both U.S. and Australian regions. Fluoride inventories are greater than can be accounted for by atmospheric deposition in most cases, suggesting that fluoride may accumulate across glacial/interglacial climatic cycles. Chemical modeling indicates that fluorite controls fluoride mobility and suggests that water‐extractable fluoride may include some fluoride from mineral dissolution. Increased groundwater drainage/recharge following land use change readily mobilized chloride. Sulfate displacement fronts matched or lagged chloride fronts by up to 4 m. In contrast, fluoride mobilization was minimal in all regions. Understanding linkages between salt inventories, increased recharge, and groundwater quality is important for quantifying impacts of anthropogenic activities on groundwater quality and is required for remediating salinity problems.

  6. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.

    2002-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  7. A novel representation of chalk hydrology in a land surface model

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael

    2016-04-01

    Unconfined chalk aquifers contain a significant portion of water in the United Kingdom. In order to optimize the assessment and management practices of water resources in the region, modelling and monitoring of soil moisture in the unsaturated zone of the chalk aquifers are of utmost importance. However, efficient simulation of soil moisture in such aquifers is difficult mainly due to the fractured nature of chalk, which creates high-velocity preferential flow paths in the unsaturated zone. In this study, the Joint UK Land Environment Simulator (JULES) is applied on a study area encompassing the Kennet catchment in Southern England. The fluxes and states of the coupled water and energy cycles are simulated for 10 consecutive years (2001-2010). We hypothesize that explicit representation for the soil-chalk layers and the inclusion of preferential flow in the fractured chalk aquifers improves the reproduction of the hydrological processes in JULES. In order to test this hypothesis, we propose a new parametrization for preferential flow in JULES. This parametrization explicitly describes the flow of water in soil matrices and preferential flow paths using a simplified approach which can be beneficial for large-scale hydrometeorological applications. We also define the overlaying soil properties obtained from the Harmonized World Soil Database (HWSD) in the model. Our simulation results are compared across spatial scales with measured soil moisture and river discharge, indicating the importance of accounting for the physical properties of the medium while simulating hydrological processes in the chalk aquifers.

  8. Performance-assessment progress for the Rozan low-level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smietanski, L.; Mitrega, J.; Frankowski, Z.

    1995-12-31

    The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangeredmore » unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.« less

  9. Lithologic influences on groundwater recharge through incised glacial till from profile to regional scales: Evidence from glaciated Eastern Nebraska

    USGS Publications Warehouse

    Gates, John B.; Steele, Gregory V.; Nasta, Paolo; Szilagyi, Jozsef

    2014-01-01

    Variability in sediment hydraulic properties associated with landscape depositional and erosional features can influence groundwater recharge processes by affecting soil-water storage and transmission. This study considers recharge to aquifers underlying river-incised glaciated terrain where the distribution of clay-rich till is largely intact in upland locations but has been removed by alluvial erosion in stream valleys. In a stream-dissected glacial region in eastern Nebraska (Great Plains region of the United States), recharge estimates were developed for nested profile, aquifer, and regional scales using unsaturated zone profile measurements (matric potentials, Cl- and 3H), groundwater tracers (CFC-12 and SF6), and a remote sensing-assisted water balance model. Results show a consistent influence of till lithology on recharge rates across nested spatial scales despite substantial uncertainty in all recharge estimation methods, suggesting that minimal diffuse recharge occurs through upland glacial till lithology whereas diffuse recharge occurs in river valleys where till is locally absent. Diffuse recharge is estimated to account for a maximum of 61% of total recharge based on comparison of diffuse recharge estimated from the unsaturated zone (0-43 mm yr-1) and total recharge estimated from groundwater tracers (median 58 mm yr-1) and water balance modeling (median 56 mm yr-1). The results underscore the importance of lithologic controls on the distributions of both recharge rates and mechanisms.

  10. Evaluation of liquid aerosol transport through porous media

    NASA Astrophysics Data System (ADS)

    Hall, R.; Murdoch, L.; Falta, R.; Looney, B.; Riha, B.

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.

  11. EXPERIENCES FROM THE SOURCE-TERM ANALYSIS OF A LOW AND INTERMEDIATE LEVEL RADWASTE DISPOSAL FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park,Jin Beak; Park, Joo-Wan; Lee, Eun-Young

    2003-02-27

    Enhancement of a computer code SAGE for evaluation of the Korean concept for a LILW waste disposal facility is discussed. Several features of source term analysis are embedded into SAGE to analyze: (1) effects of degradation mode of an engineered barrier, (2) effects of dispersion phenomena in the unsaturated zone and (3) effects of time dependent sorption coefficient in the unsaturated zone. IAEA's Vault Safety Case (VSC) approach is used to demonstrate the ability of this assessment code. Results of MASCOT are used for comparison purposes. These enhancements of the safety assessment code, SAGE, can contribute to realistic evaluation ofmore » the Korean concept of the LILW disposal project in the near future.« less

  12. A Catchment-Based Land Surface Model for GCMs and the Framework for its Evaluation

    NASA Technical Reports Server (NTRS)

    Ducharen, A.; Koster, R. D.; Suarez, M. J.; Kumar, P.

    1998-01-01

    A new GCM-scale land surface modeling strategy that explicitly accounts for subgrid soil moisture variability and its effects on evaporation and runoff is now being explored. In a break from traditional modeling strategies, the continental surface is disaggregated into a mosaic of hydrological catchments, with boundaries that are not dictated by a regular grid but by topography. Within each catchment, the variability of soil moisture is deduced from TOP-MODEL equations with a special treatment of the unsaturated zone. This paper gives an overview of this new approach and presents the general framework for its off-line evaluation over North-America.

  13. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Zhang, Yaning; Jin, Guangri; Li, Bingxi; Kim, Yong-Song; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    A three-phase model capable of predicting the heat transfer and moisture migration for soil freezing process was developed based on the Shen-Chen model and the mechanisms of heat and mass transfer in unsaturated soil freezing. The pre-melted film was taken into consideration, and the relationship between film thickness and soil temperature was used to calculate the liquid water fraction in both frozen zone and freezing fringe. The force that causes the moisture migration was calculated by the sum of several interactive forces and the suction in the pre-melted film was regarded as an interactive force between ice and water. Two kinds of resistance were regarded as a kind of body force related to the water films between the ice grains and soil grains, and a block force instead of gravity was introduced to keep balance with gravity before soil freezing. Lattice Boltzmann method was used in the simulation, and the input variables for the simulation included the size of computational domain, obstacle fraction, liquid water fraction, air fraction and soil porosity. The model is capable of predicting the water content distribution along soil depth and variations in water content and temperature during soil freezing process.

  14. Fracture and matrix hydrologic characteristics of tuffaceous materials from Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.R.; Klavetter, E.A.; Hall, I.J.

    1984-12-01

    The geological formations in the unsaturated zone at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS), are currently being studied for consideration as the host for a radioactive-waste repository; the US Department of Energy is carrying out these studies through the Nevada Nuclear Waste Storage Investigations project. The formations are composed of tuffaceous (tuff) materials that must be evaluated to estimate the rate at which radionuclides would migrate to the accessible environment. According to the available evidence, the flux of water in the unsaturated zone beneath the Yucca Mountain site is low; quantifying such low flow ratesmore » through direct measurements is difficult. To help provide data that can be used to assess unsaturated flow, Pacific Northwest Laboratory (PNL), under contract to Sandia National Laboratories (SNL), performed hydrologic tests on tuffaceous samples from 48 different locations in Yucca Mountain. This report contains the entire set of psychrometer measurements of desaturation curves for tuffs from Yucca Mountain as well as a substantial number of saturated conductivity measurements. 19 references, 132 figures, 23 tables.« less

  15. Vapor-phase interactions and diffusion of organic solvents in the unsaturated zone

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1990-01-01

    This article presents an analysis of the interactions and static movement of 37 organic solvents as vapors through the unsaturated soil zone. The physicochemical interactions of the organic vapors with unsaturated soil materials were emphasized with focus on diffusive, and adsorptive interactions. Fick's Law and porous media diffusion coefficients for most of the solvent vapors were either compiled or estimated; coefficients were not available for some of the fluorinated solvents. The adsorption of some of the solvent vapors by silica was concluded to be due to hydrogen bond formation with surface silanol groups. Heats of adsorption data for different adsorbents were also compiled. There were very few data on the adsorption of these solvent vapors by soils, but it appears that the magnitude of adsorption of nonpolar solvents is reduced as the relative humidity of the vapor-solid system is increased. Consequently, the interaction of the vapors may then separated into two processes; (1) gas-water partitioning described by Henry's Law constants, and (2) solid-water adsorption coefficients which may be estimated from liquid-solid partition coefficients (Kd values). ?? 1990 Springer-Verlag New York Inc.

  16. A comparative study of two approaches to analyse groundwater recharge, travel times and nitrate storage distribution at a regional scale

    NASA Astrophysics Data System (ADS)

    Turkeltaub, T.; Ascott, M.; Gooddy, D.; Jia, X.; Shao, M.; Binley, A. M.

    2017-12-01

    Understanding deep percolation, travel time processes and nitrate storage in the unsaturated zone at a regional scale is crucial for sustainable management of many groundwater systems. Recently, global hydrological models have been developed to quantify the water balance at such scales and beyond. However, the coarse spatial resolution of the global hydrological models can be a limiting factor when analysing regional processes. This study compares simulations of water flow and nitrate storage based on regional and global scale approaches. The first approach was applied over the Loess Plateau of China (LPC) to investigate the water fluxes and nitrate storage and travel time to the LPC groundwater system. Using raster maps of climate variables, land use data and soil parameters enabled us to determine fluxes by employing Richards' equation and the advection - dispersion equation. These calculations were conducted for each cell on the raster map in a multiple 1-D column approach. In the second approach, vadose zone travel times and nitrate storage were estimated by coupling groundwater recharge (PCR-GLOBWB) and nitrate leaching (IMAGE) models with estimates of water table depth and unsaturated zone porosity. The simulation results of the two methods indicate similar spatial groundwater recharge, nitrate storage and travel time distribution. Intensive recharge rates are located mainly at the south central and south west parts of the aquifer's outcrops. Particularly low recharge rates were simulated in the top central area of the outcrops. However, there are significant discrepancies between the simulated absolute recharge values, which might be related to the coarse scale that is used in the PCR-GLOBWB model, leading to smoothing of the recharge estimations. Both models indicated large nitrate inventories in the south central and south west parts of the aquifer's outcrops and the shortest travel times in the vadose zone are in the south central and east parts of the outcrops. Our results suggest that, for the LPC at least, global scale models might be useful for highlighting the locations with higher recharge rates potential and nitrate contamination risk. Global modelling simulations appear ideal as a primary step in recognizing locations which require investigations at the plot, field and local scales.

  17. Prediction of daily spring hydrographs for future climatic scenarios based on an integrated numerical modelling approach: Application on a snow-governed semi- arid karst catchment area.

    NASA Astrophysics Data System (ADS)

    Doummar, J.; Kassem, A.; Gurdak, J. J.

    2017-12-01

    In the framework of a three-year USAID/NSF- funded PEER Science project, flow in a karst system in Lebanon (Assal Spring; discharge 0.2-2.5 m3/s yearly volume of 22-30 Mm3) dominated by snow and semi arid conditions was simulated using an integrated numerical model (Mike She 2016). The calibrated model (Nash-Sutcliffe coefficient of 0.77) is based on high resolution input data (2014-2017) and detailed catchment characterization. The approach is to assess the influence of various model parameters on recharge signals in the different hydrological karst compartments (Atmosphere, unsaturated zone, and saturated zone) based on an integrated numerical model. These parameters include precipitation intensity and magnitude, temperature, snow-melt parameters, in addition to karst specific spatially distributed features such as fast infiltration points, soil properties and thickness, topographical slopes, Epikarst and thickness of unsaturated zone, and hydraulic conductivity among others. Moreover, the model is currently simulated forward using various scenarios for future climate (Global Climate Models GCM; daily downscaled temperature and precipitation time series for Lebanon 2020-2045) in order to depict the flow rates expected in the future and the effect of climate change on hydrographs recession coefficients, discharge maxima and minima, and total spring discharge volume . Additionally, a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge or indirectly on the vulnerability of the system (soil thickness, soil and rock hydraulic conductivity appear to be amongst the highly sensitive parameters). This study particularly unravels the normalized single effect of rain magnitude and intensity, snow, and temperature change on the flow rate (e.g., a change of temperature of 3° on the catchment yields a Residual Mean Square Error RMSE of 0.15 m3/s in the spring discharge and a 16% error in the total annual volume with respect to the calibrated model). Finally, such a study can allow decision makers to implement best informed management practices, especially in complex karst systems, to overcome impacts of climate change on water resources.

  18. Estimating water flow through a hillslope using the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Devaney, Judy E.; Camillo, P. J.; Gurney, R. J.

    1988-01-01

    A new two-dimensional model of water flow in a hillslope has been implemented on the Massively Parallel Processor at the Goddard Space Flight Center. Flow in the soil both in the saturated and unsaturated zones, evaporation and overland flow are all modelled, and the rainfall rates are allowed to vary spatially. Previous models of this type had always been very limited computationally. This model takes less than a minute to model all the components of the hillslope water flow for a day. The model can now be used in sensitivity studies to specify which measurements should be taken and how accurate they should be to describe such flows for environmental studies.

  19. LNAPL Removal from Unsaturated Porous Media using Surfactant Infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Oostrom, Martinus

    A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during surfactant solution infiltration. Surfactant-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration surfactant was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated surfactant solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the firstmore » surfactant infiltration in each column, indicating that a very low surfactant concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of surfactant infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total surfactant solution application, suggesting surfactant infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between surfactant sorption was negligible.« less

  20. Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring, SoilCAM project highlights

    NASA Astrophysics Data System (ADS)

    French, H. K.; Van Der Zee, S. E.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Tsocano, G.

    2013-12-01

    The SoilCAM project (2008- 2012, EU-FP7-212663) aimed at improving methods for monitoring subsurace contaminant distribution and biodegradation. Two test sites were chosen, Oslo airport Gardermoen, Norway where de-icing agents infiltrate the soil during snowmelt and the Trecate site in Italy where an inland crude oil spill occurred in 1994. A number of geophysical investigation techniques were combined with soil and water sampling techniques. Data obtained from time-lapse measurements were further analysed by numerical modelling of flow and transport at different scales in order to characterise transport processes in the unsaturated and saturated zones. Laboratory experiments provided physical and biogeochemical data for model parameterisation and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and to conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. Results showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport showed infiltration patterns during snowmelt and were used to validate 2D unsaturated flow and transport simulations using SUTRA. The simulations illustrate the effect of layering geological structures and membranes, buried parallel to the runway, on the flow pattern. Complex interaction between bio-geo-chemical processes in a 1D vertical profile along the runway were described with the ORCHESTRA model. Smaller scale field site measurements revealed increase of iron and manganese during degradation of de-icing chemicals. At the Trecate site a combination of georadar, electrical resistivity and radio magneto telluric provided a broad outline of the geology down to 50 m. Anomalies in the Induced polarisation and electrical resistivity data from the cross borehole measurements indicate where the remaining crude oil can be found. Water samples from multilevel samplers reveal crude oil present in emulsion in the zone of groundwater fluctuations, highlighting the importance of colloidal transport. Modelling of multiphase flow of the fluctuating groundwater level explains the lack of horizontal displacement of the plume in the area. Geochemistry of the groundwater clearly indicates degradation of hydrocarbons under iron- and sulphate reducing conditions, but changes were too slow to be mapped by time-lapse geophysical measurements during the project period. MODFLOW was used to simulate the regional groundwater flow and transport in the area. Highlights of the results from both test sites will be presented as an integrated overview. Snow removal at Oslo airport

  1. Isotopic composition of water in a deep unsaturated zone beside a radioactive-waste disposal area near Beatty, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.

  2. Ground air: A first approximation of the Earth's second largest reservoir of carbon dioxide gas.

    PubMed

    Baldini, James U L; Bertram, Rachel A; Ridley, Harriet E

    2018-03-01

    It is becoming increasingly clear that a substantial reservoir of carbon exists in the unsaturated zone of aquifers, though the total size of this reservoir on a global scale remains unquantified. Here we provide the first broad estimate of the amount of carbon dioxide gas found in this terrestrial reservoir. We calculate that between 2 and 53 PgC exists as gaseous CO 2 in aquifers worldwide, generated by the slow microbial oxidation of organic particles transported into aquifers by percolating groundwater. Importantly, this carbon reservoir is in the form of CO 2 gas, and is therefore transferable to the Earth's atmosphere without any phase change. On a coarse scale, water table depths are partially controlled by local sea level; sea level lowering therefore allows slow carbon sequestration into the reservoir and sea level increases force rapid CO 2 outgassing from this reservoir. High-resolution cave air pCO 2 data demonstrate that sea level variability does affect CO 2 outgassing rates from the unsaturated zone, and that the CO 2 outgassing due to sea level rise currently occurs on daily (tidal) timescales. We suggest that global mean water table depth must modulate the global unsaturated zone volume and the size of this carbon reservoir, potentially affecting atmospheric CO 2 on geological timescales. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The vadose zone as a geoindicator of environmental change and groundwater quality in water-scarce areas

    NASA Astrophysics Data System (ADS)

    Edmunds, W. M.; Baba Goni, I.; Gaye, C. B.; Jin, L.

    2013-12-01

    Inert and reactive tracers in moisture profiles provide considerable potential for the vadose zone to be used as an indicator of rapid environmental change. This indicator is particularly applicable in areas of water stress where long term (decade to century) scale records may be found in deep unsaturated zones in low rainfall areas and provide insights into recent recharge, climate variation and water-rock interactions which generate groundwater quality. Unsaturated zone Cl records obtained by elutriation of moisture are used widely for estimating recharge and water balance studies; isotope profiles (3H, δ2H, δ18O) from total water extraction procedures are used for investigation of residence times and hydrological processes. Apart from water taken using lysimeters, little work has been conducted directly on the geochemistry of pore fluids. This is mainly due to the difficulties of extraction of moisture from unsaturated material with low water contents (typically 2-6 wt%) and since dilution methods can create artifacts. Using immiscible liquid displacement techniques it is now possible to directly investigate the geochemistry of moisture from unsaturated zone materials. Profiles up to 35m from Quaternary sediments from dryland areas of the African Sahel (Nigeria, Senegal) as well as Inner Mongolia, China are used to illustrate the breadth of information obtainable from vadose zone profiles. Using pH, major and trace elements and comparing with isotopic data, a better understanding is gained of timescales of water movement, aquifer recharge, environmental records and climate history as well as water-rock interaction and contaminant behaviour. The usefulness of tritium as residence time indicator has now expired following cessation of atmospheric thermonuclear testing and through radioactive decay. Providing the rainfall Cl, moisture contents and bulk densities of the sediments are known, then Cl accumulation can be substituted to estimate timescales. Profiles from Africa show infiltration records at the decade to century scale and record periods of prolonged drought; these long term records also provide robust records of diffuse recharge and set the limits to regional groundwater renewability. Large increases in NO3/Cl ratio above rainfall are found in most profiles in the Sahel region as well as China and record N- fixation and are interpreted as release by natural leguminous vegetation. Br/Cl may be used also to validate the input Cl source. Major cation profiles record the significant water-rock interaction taking place near-surface; increases in Na/Cl, Mg/Ca and Si (as well as some minor cations) record silicate mineral dissolution and exchange reactions with depth. Trace element concentrations (Fe, Be, Co, Cr and U reflect especially the strongly oxidizing conditions in the vadose zone. The capilliary zone chemistry is distinct and can indicate a discontinuity between recent infiltration and older, regional groundwater

  4. Simple predictions of maximum transport rate in unsaturated soil and rock

    USGS Publications Warehouse

    Nimmo, John R.

    2007-01-01

    In contrast with the extreme variability expected for water and contaminant fluxes in the unsaturated zone, evidence from 64 field tests of preferential flow indicates that the maximum transport speed Vmax, adjusted for episodicity of infiltration, deviates little from a geometric mean of 13 m/d. A model based on constant‐speed travel during infiltration pulses of actual or estimated duration can predict Vmax with approximate order‐of‐magnitude accuracy, irrespective of medium or travel distance, thereby facilitating such problems as the prediction of worst‐case contaminant traveltimes. The lesser variability suggests that preferential flow is subject to rate‐limiting mechanisms analogous to those that impose a terminal velocity on objects in free fall and to rate‐compensating mechanisms analogous to Le Chatlier's principle. A critical feature allowing such mechanisms to dominate may be the presence of interfacial boundaries confined by neither solid material nor capillary forces.

  5. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Karssenberg, D.; Wanders, N.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system that is not directly linked to discharge, in particular the unsaturated zone, remains uncalibrated, or might be modified unrealistically. Soil moisture observations from satellites have the potential to fill this gap, as these provide the closest thing to a direct measurement of the state of the unsaturated zone, and thus are potentially useful in calibrating unsaturated zone model parameters. This is expected to result in a better identification of the complete hydrological system, potentially leading to improved forecasts of the hydrograph as well. Here we evaluate this added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: 1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to approaches that calibrate only with discharge, such that this leads to improved forecasts of soil moisture content and discharge as well? To answer these questions we use a dual state and parameter ensemble Kalman filter to calibrate the hydrological model LISFLOOD for the Upper Danube area. Calibration is done with discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Four scenarios are studied: no calibration (expert knowledge), calibration on discharge, calibration on remote sensing data (three satellites) and calibration on both discharge and remote sensing data. Using a split-sample approach, the model is calibrated for a period of 2 years and validated for the calibrated model parameters on a validation period of 10 years. Results show that calibration with discharge data improves the estimation of groundwater parameters (e.g., groundwater reservoir constant) and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate calibration of parameters related to land surface process (e.g., the saturated conductivity of the soil), which is not possible when calibrating on discharge alone. For the upstream area up to 40000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30 % in the RMSE for discharge simulations, compared to calibration on discharge alone. For discharge in the downstream area, the model performance due to assimilation of remotely sensed soil moisture is not increased or slightly decreased, most probably due to the longer relative importance of the routing and contribution of groundwater in downstream areas. When microwave soil moisture is used for calibration the RMSE of soil moisture simulations decreases from 0.072 m3m-3 to 0.062 m3m-3. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models leading to a better simulation of soil moisture content throughout and a better simulation of discharge in upstream areas, particularly if discharge observations are sparse.

  6. Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA

    USGS Publications Warehouse

    Delin, G.N.; Healy, R.W.; Lorenz, D.L.; Nimmo, J.R.

    2007-01-01

    Regional ground-water recharge estimates for Minnesota were compared to estimates made on the basis of four local- and basin-scale methods. Three local-scale methods (unsaturated-zone water balance, water-table fluctuations (WTF) using three approaches, and age dating of ground water) yielded point estimates of recharge that represent spatial scales from about 1 to about 1000 m2. A fourth method (RORA, a basin-scale analysis of streamflow records using a recession-curve-displacement technique) yielded recharge estimates at a scale of 10–1000s of km2. The RORA basin-scale recharge estimates were regionalized to estimate recharge for the entire State of Minnesota on the basis of a regional regression recharge (RRR) model that also incorporated soil and climate data. Recharge rates estimated by the RRR model compared favorably to the local and basin-scale recharge estimates. RRR estimates at study locations were about 41% less on average than the unsaturated-zone water-balance estimates, ranged from 44% greater to 12% less than estimates that were based on the three WTF approaches, were about 4% less than the age dating of ground-water estimates, and were about 5% greater than the RORA estimates. Of the methods used in this study, the WTF method is the simplest and easiest to apply. Recharge estimates made on the basis of the UZWB method were inconsistent with the results from the other methods. Recharge estimates using the RRR model could be a good source of input for regional ground-water flow models; RRR model results currently are being applied for this purpose in USGS studies elsewhere.

  7. Geohydrology of the near-surface unsaturated zone adjacent to the disposal site for low-level radioactive waste near Beatty, Nevada: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.

  8. Occurrence of Agricultural Chemicals in Shallow Ground Water and the Unsaturated Zone, Northeast Nebraska Glacial Till, 2002-04

    USGS Publications Warehouse

    Stanton, Jennifer S.; Steele, Gregory V.; Vogel, Jason R.

    2007-01-01

    Agricultural chemicals applied at the land surface in northeast Nebraska can move downward, past the crop root zone, to ground water. Because agricultural chemicals applied at the land surface are more likely to be observed in the shallowest part of an aquifer, an assessment of shallow ground-water and unsaturated zone quality in the northeast Nebraska glacial till was completed between 2002 and 2004. Ground-water samples were collected at the first occurrence of ground water or just below the water table at 32 sites located in areas likely affected by agriculture. Four of the 32 sites were situated along a ground-water flow path with its downgradient end next to Maple Creek. Twenty-eight sites were installed immediately adjacent to agricultural fields throughout the glacial-till area. In addition to those 32 sites, two sites were installed in pastures to represent ground-water conditions in a non-cropland setting. Ground-water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, selected pesticides and pesticide degradates, dissolved solids, major ions, trace elements, and dissolved organic carbon. Chlorofluorocarbons (CFCs) or sulfur hexafluoride (SF6) concentrations were analyzed at about 70 percent of the monitoring wells to estimate the residence time of ground water. Borehole-core samples were collected from 28 of the well boreholes. Sediment in the unsaturated zone was analyzed for nitrate, chloride, and ammonia concentrations. Analytical results indicated that the agricultural chemicals most often detected during this study were nitrates and herbicides. Nitrate as nitrogen (nitrate-N) concentrations (2003 median 9.53 milligrams per liter) indicated that human activity has affected the water quality of recently recharged ground water in approximately two-thirds of the wells near corn and soybean fields. The principal pesticide compounds that were detected reflect the most-used pesticides in the area and included parent or degradate compounds of acetochlor, alachlor, atrazine, and metolachlor. Overall, pesticide concentrations in ground-water samples collected in 2003 and 2004 were small and did not exceed public drinking-water standards where established. On average, more pesticides were detected in the flow-path wells than in the glacial-till network wells. The presence of a perennial stream within 1,640 feet of a well was correlated to smaller nitrate-N concentrations in the well water, and the presence of a road ditch within 164 feet of the well was correlated to the presence of detectable pesticides in the well water. All other variables tested showed no significant correlations to nitrate-N concentrations or pesticide detections. Unsaturated zone soil cores collected in 2002 from well boreholes indicated that nitrogen in the forms of nitrate-N and ammonia as nitrogen (ammonia-N) was available in the unsaturated zone for transport to ground water. Concentrations of nitrate-N and ammonia-N in these soil cores were inversely correlated to depth, and nitrate-N concentrations were correlated to chloride concentrations.

  9. Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.

    2016-12-01

    Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m/s over a volumetric water content range from 0.1938 to 0.4311 m3/m3. Using these measured properties, the water content estimated from geophysical measurements has been used to identify the unsaturated hydraulic conductivity indicative of the steady component of the aquifer recharge rate at Canosa.

  10. Controls on atrazine leaching through a soil-unsaturated fractured limestone sequence at Brévilles, France.

    PubMed

    Roulier, Stéphanie; Baran, Nicole; Mouvet, Christophe; Stenemo, Fredrik; Morvan, Xavier; Albrechtsen, Hans-Jørgen; Clausen, Liselotte; Jarvis, Nicholas

    2006-03-01

    The objective of this study was to identify the main controls on atrazine leaching through luvisols and calcisols overlying fissured limestone using the dual-permeability model MACRO. The model parameterisation was based on a combination of direct measurements (e.g. hydraulic properties, adsorption and degradation), literature data and calibration against bromide leaching experiments in field plots. A Monte Carlo sensitivity analysis was carried out for a typical application pattern, considering two different depths of unsaturated limestone (15 and 30 m). MACRO calibrations to the field experiments demonstrated the occurrence of strong macropore flow in the luvisol, while transport in the calcisol could be described by the advection-dispersion equation. MACRO simulations of tritium and atrazine leaching qualitatively matched tritium concentration profiles measured in the limestone and atrazine concentrations measured in piezometers and in aquifer discharge via a spring. The sensitivity analysis suggested that the thickness of the limestone, as well as the transport properties and processes occurring in the unsaturated rock (e.g. matrix vs. fissure flow) will have little significant long-term effect on atrazine leaching, mainly because degradation is very slow in the limestone. No mineralization of atrazine was detected in one-year incubations and a mean half-life of 10 years was assumed in the simulations. Instead, processes occurring in the soil exerted the main control on predicted atrazine leaching, especially variations in the degradation rate and the strength of sorption and macropore flow. However, fissure flow in unsaturated rock is expected to exert a much more significant control on groundwater contamination for compounds that degrade more readily in the deep vadose zone.

  11. Nitrate behaviors and its transportation time scale in unsaturated zone under farmlands with different fertilization log in Kumamoto region, southern Japan

    NASA Astrophysics Data System (ADS)

    Okumura, Azusa; Hosono, Takahiro; Shimada, Jun

    2017-04-01

    An application of fertilizers and manure often caused an increase of nitrate concentration in groundwater in the agricultural area. The study area, Kumamoto, is the field facing this type of problem. Previous studies using nitrogen-oxygen isotope ratios in nitrate showed that accumulation of chemical fertilizers is the major factor for observed nitrate contamination. However, once it loaded nitrogen compounds may change its form and isotopic composition during transportation within unsaturation zone prior to reach the aquifer. However, such kind of knowledge is still rarely accumulated. To clarify the behavior and transportation manner of nitrogen in the unsaturated zone, we analyzed the nitrogen-oxygen isotope ratios of the extracted soil water of the unsaturated zone soils from the farmland having different fertilization logs. In addition, we attempted to verify the origin of nitrate in soil water by comparing with previous isotopic results. The plateaus-like topography of the study area is consists of the pyroclastic flow deposits. Land use is mainly farmland and this area is a major source of nitrogen load and transport route into the aquifer. Nitrate concentration in groundwater at terraces recharge area has been reported about 40 mg/L. Drilling survey carried out in the unsaturated zone soil on 4 farmlands with the different land use logs in such terraces. Drilling points S1 and S2 were treated by both slurry and chemical fertilizers, on the other hand, point C1 and C2 were applied chemical fertilizers only. The drilling depth was up to 14-15 m, and soil samples were kept on evacuated condition after sectioning into 10 cm interval. The soil water was extracted using a centrifuge machine. The extracted soil water was measured for the nitrogen-oxygen isotope ratios in nitrate and major ions concentrations. All cores showed high nitrate concentrations in the surface layer (260, 440, 172 and 244 mg/L for S1, S2, C1, and C2 respectively). The concentrations became lower downwards for all cores. However, the concentrations were still high even at the point of 10 m (about 100-200 mg/L) for all cores. In the S1 and S2 cores nitrogen and oxygen isotopic results indicated occurrence of volatilization and nitrification in the surface layer, but in the C1 and C2 cores this signature was not clearly shown. The isotope compositions become homogenized downwards to have specific values depending on fertilization logs. This result is consistent with the previous studies. In the presentation, we will present detailed discussions regarding the behaviors of the isotope ratios in nitrate.

  12. Transport of tritium contamination to the atmosphere in an arid environment

    USGS Publications Warehouse

    Garcia, C. Amanda; Andraski, Brian J.; Johnson, Michael J.; Stonestrom, David A.; Michel, Robert L.; Cooper, C.A.; Wheatcraft, S.W.

    2009-01-01

    Soil–plant–atmosphere interactions strongly influence water movement in desert unsaturated zones, but little is known about how such interactions affect atmospheric release of subsurface water-borne contaminants. This 2-yr study, performed at the U.S. Geological Survey's Amargosa Desert Research Site in southern Nevada, quantified the magnitude and spatiotemporal variability of tritium (3H) transport from the shallow unsaturated zone to the atmosphere adjacent to a low-level radioactive waste (LLRW) facility. Tritium fluxes were calculated as the product of 3H concentrations in water vapor and respective evaporation and transpiration water-vapor fluxes. Quarterly measured 3H concentrations in soil water vapor and in leaf water of the dominant creosote-bush [Larrea tridentata (DC.) Coville] were spatially extrapolated and temporally interpolated to develop daily maps of contamination across the 0.76-km2 study area. Maximum plant and root-zone soil concentrations (4200 and 8700 Bq L−1, respectively) were measured 25 m from the LLRW facility boundary. Continuous evaporation was estimated using a Priestley–Taylor model and transpiration was computed as the difference between measured eddy-covariance evapotranspiration and estimated evaporation. The mean evaporation/transpiration ratio was 3:1. Tritium released from the study area ranged from 0.12 to 12 μg d−1 and totaled 1.5 mg (8.2 × 1010 Bq) over 2 yr. Tritium flux variability was driven spatially by proximity to 3H source areas and temporally by changes in 3H concentrations and in the partitioning between evaporation and transpiration. Evapotranspiration removed and limited penetration of precipitation beneath native vegetation and fostered upward movement and release of 3H from below the root zone.

  13. Heat tracer methods

    USGS Publications Warehouse

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    The flow of heat in the subsurface is closely linked to the movement of water (Ingebritsen et al., 2006). As such, heat has been used as a tracer in groundwater studies for more than 100 years (Anderson, 2005). As with chemical and isotopic tracers (Chapter 7), spatial or temporal trends in surface and subsurface temperatures can be used to infer rates of water movement. Temperature can be measured accurately, economically, at high frequencies, and without the need to obtain water samples, facts that make heat an attractive tracer. Temperature measurements made over space and time can be used to infer rates of recharge from a stream or other surface water body (Lapham, 1989; Stonestrom and Constantz, 2003); measurements can also be used to estimate rates of steady drainage through depth intervals within thick unsaturated zones (Constantz et al., 2003; Shan and Bodvarsson, 2004). Several thorough reviews of heat as a tracer in hydrologic studies have recently been published (Constantz et al., 2003; Stonestrom and Constantz, 2003; Anderson, 2005; Blasch et al., 2007; Constantz et al., 2008). This chapter summarizes heat-tracer approaches that have been used to estimate recharge.Some clarification in terminology is presented here to avoid confusion in descriptions of the various approaches that follow. Diffuse recharge is that which occurs more or less uniformly across large areas in response to precipitation, infiltration, and drainage through the unsaturated zone. Estimates of diffuse recharge determined using measured temperatures in the unsaturated zone are referred to as potential recharge because it is possible that not all of the water moving through the unsaturated zone will recharge the aquifer; some may be lost to the atmosphere by evaporation or plant transpiration. Estimated fluxes across confining units in the saturated zone are referred to as interaquifer flow (Chapter 1). Focused recharge is that which occurs directly from a point or line source, such as a stream, on land surface. Focused recharge may vary widely in space and time. If the water table intersects a stream channel, estimates of stream loss are called actual recharge, or just recharge. If the water table lies below the stream channel, estimates are referred to as potential recharge. For simplicity, all vertical water fluxes are referred to as drainage throughout this chapter. Whether the estimated quantity represents actual or potential recharge or drainage depends on the circumstances of each individual study.

  14. Effect of isolated fractures on accelerated flow in unsaturated porous rock

    USGS Publications Warehouse

    Su, Grace W.; Nimmo, John R.; Dragila, Maria I.

    2003-01-01

    Fractures that begin and end in the unsaturated zone, or isolated fractures, have been ignored in previous studies because they were generally assumed to behave as capillary barriers and remain nonconductive. We conducted a series of experiments using Berea sandstone samples to examine the physical mechanisms controlling flow in a rock containing a single isolated fracture. The input fluxes and fracture orientation were varied in these experiments. Visualization experiments using dyed water in a thin vertical slab of rock were conducted to identify flow mechanisms occurring due to the presence of the isolated fracture. Two mechanisms occurred: (1) localized flow through the rock matrix in the vicinity of the isolated fracture and (2) pooling of water at the bottom of the fracture, indicating the occurrence of film flow along the isolated fracture wall. These mechanisms were observed at fracture angles of 20 and 60 degrees from the horizontal, but not at 90 degrees. Pooling along the bottom of the fracture was observed over a wider range of input fluxes for low‐angled isolated fractures compared to high‐angled ones. Measurements of matrix water pressures in the samples with the 20 and 60 degree fractures also demonstrated that preferential flow occurred through the matrix in the fracture vicinity, where higher pressures occurred in the regions where faster flow was observed in the visualization experiments. The pooling length at the terminus of a 20 degree isolated fracture was measured as a function of input flux. Calculations of the film flow rate along the fracture were made using these measurements and indicated that up to 22% of the flow occurred as film flow. These experiments, apparently the first to consider isolated fractures, demonstrate that such features can accelerate flow through the unsaturated zone and should be considered when developing conceptual models.

  15. Preferential flow occurs in unsaturated conditions

    USGS Publications Warehouse

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  16. Coupling transfer function and GIS for assessing non-point-source groundwater vulnerability at regional scale

    NASA Astrophysics Data System (ADS)

    Coppola, A.; Comegna, V.; de Simone, L.

    2009-04-01

    Non-point source (NPS) pollution in the vadose zone is a global environmental problem. The knowledge and information required to address the problem of NPS pollutants in the vadose zone cross several technological and sub disciplinary lines: spatial statistics, geographic information systems (GIS), hydrology, soil science, and remote sensing. The main issues encountered by NPS groundwater vulnerability assessment, as discussed by Stewart [2001], are the large spatial scales, the complex processes that govern fluid flow and solute transport in the unsaturated zone, the absence of unsaturated zone measurements of diffuse pesticide concentrations in 3-D regional-scale space as these are difficult, time consuming, and prohibitively costly, and the computational effort required for solving the nonlinear equations for physically-based modeling of regional scale, heterogeneous applications. As an alternative solution, here is presented an approach that is based on coupling of transfer function and GIS modeling that: a) is capable of solute concentration estimation at a depth of interest within a known error confidence class; b) uses available soil survey, climatic, and irrigation information, and requires minimal computational cost for application; c) can dynamically support decision making through thematic mapping and 3D scenarios This result was pursued through 1) the design and building of a spatial database containing environmental and physical information regarding the study area, 2) the development of the transfer function procedure for layered soils, 3) the final representation of results through digital mapping and 3D visualization. One side GIS modeled environmental data in order to characterize, at regional scale, soil profile texture and depth, land use, climatic data, water table depth, potential evapotranspiration; on the other side such information was implemented in the up-scaling procedure of the Jury's TFM resulting in a set of texture based travel time probability density functions for layered soils each describing a characteristic leaching behavior for soil profiles with similar hydraulic properties. Such behavior, in terms of solute travel time to water table, was then imported back into GIS and finally estimation groundwater vulnerability for each soil unit was represented into a map as well as visualized in 3D.

  17. Linking Weathering, Rock Moisture Dynamics, Geochemistry, Runoff, Vegetation and Atmospheric Processes through the Critical Zone: Graduate Student led Research at the Eel River Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Dietrich, W. E.

    2014-12-01

    In the Eel River Critical Zone Observatory lies Rivendell, a heavily-instrumented steep forested hillslope underlain by nearly vertically dipping argillite interbedded with sandstone. Under this convex hillslope lies "Zb", the transition to fresh bedrock, which varies from less than 6 m below the surface near the channel to 20 m at the divide. Rempe and Dietrich (2014, PNAS) show that the Zb profile can be predicted from the assumption that weathering occurs when drainage is induced in the uplifting fresh bedrock under hillslopes by lateral head gradients driven by channel incision at the hillslope boundary. Infiltrating winter precipitation is impeded at the lower conductivity boundary at Zb, generating perched groundwater that dynamically pulses water laterally to the channel, controlling stream runoff. Below the soil and above the water table lies an unsaturated zone through which all recharge to the perched groundwater (and thus all runoff to channels) occurs. It is this zone and the waters in them that profoundly affect critical zone processes. In our seasonally dry environment, the first rains penetrate past the soil and moisten the underlying weathered bedrock (Salve et al., 2012, WRR). It takes about 200 to 400 mm of cumulative rain, however, before the underlying groundwater rises significantly. Oshun et al (in review) show that by this cumulative rainfall the average of the wide-ranging isotopic signature of rain reaches a nearly constant average annual value. Consequently, the recharging perched groundwater shows only minor temporal isotopic variation. Kim et al, (2014, GCA) find that the winter high-flow groundwater chemistry is controlled by relatively fast-reacting cation exchange processes, likely occurring in transit in the unsaturated zone. Oshun also demonstrates that the Douglas fir rely on this rock moisture as a water source, while the broadleaf trees (oaks and madrone) use mostly soil moisture. Link et al (2014 WRR) show that Doug fir declines in transpiration rate significantly compared to the madrone during summer high water stress periods, with may induce feedbacks from the forest to atmospheric temperature and humidity. Collectively these studies spotlight the seasonally dynamic unsaturated zone in the weathered bedrock beneath the soil as key to understanding critical zone processes.

  18. A numerical model for the movement of H 2O, H 218O, and 2HHO in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Shurbaji, Abdel-Rahman M.; Phillips, Fred M.

    1995-09-01

    Vertical profiles of H 218O and 2HHO concentrations have yielded useful information on evaporation and infiltration processes in soils. However, in the field, quantitative interpretation of such profiles has been limited by the restrictions inherent in the quasi-steady-state and transient analytical models available to describe the physical processes. This study presents a flexible numerical model that simulates transient fluxes of heat, liquid water, water vapor, and isotopic species. The model can simulate both infiltration and evaporation under fluctuating meteorological conditions and thus should be useful in reproducing changes in field isotope profiles. A transition factor is introduced in the isotope transport equation. This factor combines hydrologic and isotopic parameters and changes slowly with depth in the soil profile but strongly in the evaporation zone, owing to the rapid change in the dominant phase of water from liquid to vapor. Using the transition factor in the isotope transport equation facilitates obtaining the typical shape of the isotope profile (bulge at the evaporation zone). This factor also facilitates producing broad isotope enrichment peaks that may be seen in very dry soils.

  19. The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach

    NASA Astrophysics Data System (ADS)

    Carrière, Simon D.; Chalikakis, Konstantinos; Danquigny, Charles; Davi, Hendrik; Mazzilli, Naomi; Ollivier, Chloé; Emblanch, Christophe

    2016-11-01

    Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB - Laboratoire Souterrain à Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.

  20. Influence of Groundwater Hydraulic Gradient on Bank Storage Metrics.

    PubMed

    Welch, Chani; Harrington, Glenn A; Cook, Peter G

    2015-01-01

    The hydraulic gradient between aquifers and rivers is one of the most variable properties in a river/aquifer system. Detailed process understanding of bank storage under hydraulic gradients is obtained from a two-dimensional numerical model of a variably saturated aquifer slice perpendicular to a river. Exchange between the river and the aquifer occurs first at the interface with the unsaturated zone. The proportion of total water exchanged through the river bank compared to the river bed is a function of aquifer hydraulic conductivity, partial penetration, and hydraulic gradient. Total exchange may be estimated to within 50% using existing analytical solutions provided that unsaturated zone processes do not strongly influence exchange. Model-calculated bank storage is at a maximum when no hydraulic gradient is present and increases as the hydraulic conductivity increases. However, in the presence of a hydraulic gradient, the largest exchange flux or distance of penetration does not necessarily correspond to the highest hydraulic conductivity, as high hydraulic conductivity increases the components of exchange both into and out of an aquifer. Flood wave characteristics do not influence ambient groundwater discharge, and so in large floods, hydraulic gradients must be high to reduce the volume of bank storage. Practical measurement of bank storage metrics is problematic due to the limitations of available measurement technologies and the nested processes of exchange that occur at the river-aquifer interface. Proxies, such as time series concentration data in rivers and groundwater, require further development to be representative and quantitative. © 2014, National GroundWater Association.

  1. Green Remediation Best Management Practices: Soil Vapor Extraction & Air Sparging

    EPA Pesticide Factsheets

    Historically, approximately one-quarter of Superfund source control projects have involved soil vapor extraction (SVE) to remove volatile organic compounds (VOCs) sorbed to soil in the unsaturated (vadose) zone.

  2. Dissolved organic matter in the unsaturated zone: the view from the cave

    NASA Astrophysics Data System (ADS)

    Baker, A.; Duan, W.; Rutlidge, H.; McDonough, L.; Oudone, P.; Meredith, K.; Andersen, M. S.; O'Carroll, D. M.; Coleborn, K.; Treble, P. C.

    2017-12-01

    Soil organic matter content is typically a few percent of the total soil composition. Diffuse recharge can mobilise some of this soil-derived organic matter. While soil pore water dissolved organic matter (DOM) concentrations are up to 100 ppm, the resulting groundwater dissolved organic matter concentration is typically less than 2ppm. Dissolved organic matter transported from the soil can be both biodegraded and sorbed to minerals, and the relative importance of these two processes in the unsaturated zone is poorly understood. Caves in karstified limestone uniquely provide direct access to water percolating from the soil to the groundwater. Cave percolation waters can be analysed for their DOM concentration and character. This provides insights into the extent and type of biological and chemical processing of DOM during transport from the soil to the groundwater. We determine the concentration and characteristics of DOM in cave percolation waters using liquid chromatography (LC-OCD) and optical spectrophotometry (fluorescence and absorbance). We sample DOM from multiple caves in SE Australia (Cathedral Cave, Wellington; South Glory and Harrie Wood Caves, Yarrangobilly), permitting comparison of unsaturated zone DOM properties at different depths (up to 30m below land surface) and different climate zones (montane and temperate). We use caves with long-term hydrological monitoring programs so that DOM in waters of contrasting residence times can be compared. Additionally, we compare these cave percolation water DOM characteristics to those from local and regional groundwater, sampled from nearby wells. Our results will help improve our understanding of how DOM is processed from soil to groundwater, and is also relevant to speleothem scientists interested in using organic matter preserved in speleothems as a paleoclimate or paleoenvironmental proxy.

  3. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    NASA Astrophysics Data System (ADS)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the importance of considering the effects of transient soil moisture and oxygen availability on microbial mediated SOC transformations. The effects of these changes in carbon use efficiency need to be included in soil models in order to accurately predict SOC turnover.

  4. Two dimensional hydrological simulation in elastic swelling/shrinking peat soils

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Ferraris, S.; Paniconi, C.; Putti, M.; Salandin, P.; Teatini, P.

    2005-12-01

    Peatlands respond to natural hydrologic cycles of precipitation and evapotranspiration with reversible deformations due to variations of water content in both the unsaturated and saturated zone. This phenomenon results in short-term vertical displacements of the soil surface that superimpose to the irreversible long-term subsidence naturally occurring in drained cropped peatlands because of bio-oxidation of the organic matter. The yearly sinking rates due to the irreversible process are usually comparable with the short-term deformation (swelling/shrinkage) and the latter must be evaluated to achieve a thorough understanding of the whole phenomenon. A mathematical model describing swelling/shrinkage dynamics in peat soils under unsaturated conditions has been derived from simple physical considerations, and validated by comparison with laboratory shrinkage data. The two-parameter model relates together the void and moisture ratios of the soil. This approach is implemented in a subsurface flow model describing variably saturated porous media flow (Richards' equation), by means of an appropriate modification of the general storage term. The contribution of the saturated zone to total deformation is considered by using information from the elastic storage coefficient. Simulations have been carried out for a drained cropped peatland south of the Venice Lagoon (Italy), for which a large data set of hydrological and deformation measurements has been collected since the end of 2001. The considered domain is representative of a field section bounded by ditches, subject to rainfall and evapotranspiration. The comparison between simulated and measured quantities demonstrates the capability of the model to accurately reproduce both the hydrological and deformation dynamics of peat, with values of the relevant parameters that are in good agreement with the literature.

  5. Experimental studies and model analysis of noble gas fractionation in porous media

    USGS Publications Warehouse

    Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.

    2016-01-01

    The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.

  6. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments.

    PubMed

    Khan, Ali M; Wick, Lukas Y; Harms, Hauke; Thullner, Martin

    2016-04-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Water and tritium movement through the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1981-85

    USGS Publications Warehouse

    Mills, Patrick C.; Healy, Richard W.

    1993-01-01

    The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 mm (millimeters); mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 mm. Average annual tritium flux below the study trenches was estimated to be 3.4 mCi/yr (millicuries per year). Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 m (meters) in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10 -1 to 3.4x10 4 mm/d (millimeters per day). A 120-m-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the trenches primarily at the trench edges where the compacted zone was absent and the cover was relatively thin. Collapse holes in the trench covers that resulted from inadequate compaction of wastes within the trenches provided additional preferential pathways for surface-water drainage into the trenches; drainage into one collapse hole during a rainstorm was estimated to be 1,700 L (liters). Till deposits near trench bases induced lateral water and tritium movement. Limited temporal variation in water movement and small flow gradients (relative to the till deposits) were detected in the unsaturated subtrench sand deposit; maximum gradients during the spring recharge period averaged 1.62 mm/mm (millimeter per millimeter). Time-of-travel of water moving from the trench covers to below the trenches was estimated to be as rapid as 41 days (assuming individual water molecules move this distance in one recharge cycle). Tritium concentrations in water from the unsaturated zone ranged from 200 (background) to 10,000,000 pCi/L (picocuries per liter). Tritium concentrations generally were higher below trench bases (averaging 91,000 pCi/L) than below intertrench sediments (averaging 3,300 pCi/L), and in the subtrench Toulon Member of the Glasford Formation (sand) (averaging 110,000 pCi/L) than in the Hulick Till Member of the Glasford Formation (clayey silt) (averaging 59,000 pCi/L). Average subtrench tritium concentration increased from 28,000 to 100,000 pCi/L during the study period. Within the trench covers, there was a strong seasonal trend in tritium concentrations; the highest concentrations occurred in late summer when soil-moisture contents were at a minimum. Subtrench tritium movement occurred in association with the annual cycle of water movement, as well as independently of the cycle, in apparent response to continuous water movement through the subtrench sand deposits and to the deterioration of trench-waste containers. The increase in concen

  8. Water and tritium movement through the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1981-85

    USGS Publications Warehouse

    Mills, Patrick C.; Healy, R.W.

    1991-01-01

    The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 millimeters; mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 millimeters. Average annual tritium flux below the study trenches was estimated to be 3.4 millicuries per year. Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 meters in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10^-1 to 3.4x10^4 millimeters per day. A 120-meter-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the trenches primarily at the trench edges where the compacted zone was absent and the cover was relatively thin. Collapse holes in the trench covers that resulted from inadequate compaction of wastes within the trenches provided additional preferential pathways for surface-water drainage into the trenches; drainage into one collapse hole during a rainstorm was estimated to be 1,700 liters. Till deposits near trench bases induced lateral water and tritium movement. Limited temporal variation in water movement and small flow gradients (relative to the till deposits) were detected in the unsaturated subtrench sand deposit; maximum gradients during the spring recharge period averaged 1.62 millimeters per millimeter. Time-of-travel of water moving from the trench covers to below the trenches was estimated to be as rapid as 41 days (assuming individual water molecules move this distance in one recharge cycle). Tritium concentrations in water from the unsaturated zone ranged from 200 (background) to 10,000,000 pCi/L (picocuries per liter). Tritium concentrations generally were higher below trench bases (averaging 91,000 pCi/L) than below intertrench sediments (averaging 3,300 pCi/L), and in the subtrench Toulon Member of the Glasford Formation (sand) (averaging 110,000 pCi/L) than in the Hulick Till Member of the Glasford Formation (clayey silt) (averaging 59,000 pCi/L). Average subtrench tritium concentration increased from 28,000 to 100,000 pCi/L during the study period. Within the trench covers, there was a strong seasonal trend in tritium concentrations; the highest concentrations occurred in late summer when soil-moisture contents were at a minimum. Subtrench tritium movement occurred in association with the annual cycle of water movement, as well as independently of the cycle, in apparent response to continuous water movement through the subtrench sand deposits and to the deterioration of trench-waste containers. The increase in concentrations of tritium with incre

  9. NUCLEAR MAGNETIC RESONANCE IMAGING OF WATER CONTENT IN THE SUBSURFACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickx, Jan M.H.

    1999-12-31

    This report contains the experimental, theoretical and numerical studies performed under Department of Energy (DOE) Agreement Number DE-FG07-96ER14732 entitled ''Surface Nuclear Magnetic Resonance for Imaging Subsurface Water.'' DOE and Department of Defense (DOD) complexes and test ranges are situated in widely varying climatic conditions from the desert southwest to the humid east. The mission of the Office of Environmental Restoration and Waste Management (EM) is to clean up the inventory of inactive DOE sites and facilities, and the goal of the EM Office of Technology Development (OTD) is to deliver technologies to make environmental restoration more efficient and cost effective.more » In the western United States, where a number of DOE facilities are located, the water table can occur several hundred feet below the surface. The zone between surface and water table is called the vadose zone or unsaturated zone. A characteristic of that zone is that mobility of water and contaminants is greatly reduced compared to rate of movement in the saturated zone. A thick vadose zone lowers the risk and, at least, increases the time before contaminants enter drinking water supplies. The assessment of risk is often performed by modeling of ground water flow and contaminant migration by analytical methods or unsaturated flow models (e.g. Hendrickx et al 1991). Necessary inputs for these models are the hydraulic properties of the different geological formations (e.g. Hendrickx 1990) and the water content distribution in the vadose zone (Freeze and Cherry 1979). Accurate risk assessments for ground water contamination cannot be conducted without actual measurements of the water content distribution in the vadose zone. To date, very few techniques have been developed to provide such information at an acceptable speed and cost. Because soil water contents exhibit a large spatial and temporal variability, the costs of conventional measurement techniques, such as gravimetric sampling, gypsum blocks, and neutron probes, are high. Only non-intrusive tests with a cost factor much lower than that of an intrusive test will offer acceptable alternatives. Therefore, a definite need exists for a non-intrusive water content measurement method. The surface nuclear magnetic resonance (NMR) technique applied to imaging of ground water was first developed by Russian scientists from the Institute of Chemical and Combustion in Novosibirsk, Russia. Over the last two decades they have published a series of papers and reports describing the theory of the method, along with experimental measurements from the surface to a depth of about 100 m. Preliminary evaluation of the concepts and results merited further investigations, particularly because of the critical technical need for cost-effective water content measurements in environmental restoration.« less

  10. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    NASA Astrophysics Data System (ADS)

    Revil, A.; Mahardika, H.

    2013-02-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods.

  11. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    PubMed Central

    Revil, A; Mahardika, H

    2013-01-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods. PMID:23741078

  12. The grout/glass performance assessment code system (GPACS) with verification and benchmarking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepho, M.G.; Sutherland, W.H.; Rittmann, P.D.

    1994-12-01

    GPACS is a computer code system for calculating water flow (unsaturated or saturated), solute transport, and human doses due to the slow release of contaminants from a waste form (in particular grout or glass) through an engineered system and through a vadose zone to an aquifer, well and river. This dual-purpose document is intended to serve as a user`s guide and verification/benchmark document for the Grout/Glass Performance Assessment Code system (GPACS). GPACS can be used for low-level-waste (LLW) Glass Performance Assessment and many other applications including other low-level-waste performance assessments and risk assessments. Based on all the cses presented, GPACSmore » is adequate (verified) for calculating water flow and contaminant transport in unsaturated-zone sediments and for calculating human doses via the groundwater pathway.« less

  13. Proposed algorithm for determining the delta intercept of a thermocouple psychrometer curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzmack, M.A.

    1993-07-01

    The USGS Hydrologic Investigations Program is currently developing instrumentation to study the unsaturated zone at Yucca Mountain in Nevada. Surface-based boreholes up to 2,500 feet in depth will be drilled, and then instrumented in order to define the water potential field within the unsaturated zone. Thermocouple psychrometers will be used to monitor the in-situ water potential. An algorithm is proposed for simply and efficiently reducing a six wire thermocouple psychrometer voltage output curve to a single value, the delta intercept. The algorithm identifies a plateau region in the psychrometer curve and extrapolates a linear regression back to the initial startmore » of relaxation. When properly conditioned for the measurements being made, the algorithm results in reasonable results even with incomplete or noisy psychrometer curves over a 1 to 60 bar range.« less

  14. Physical and hydraulic properties of volcanic rocks from Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Lorraine E.

    2003-01-01

    A database of physical and hydraulic properties was developed for rocks in the unsaturated zone at Yucca Mountain, Nevada, a site under consideration as a geologic repository for high-level radioactive waste. The 5320 core samples were collected from 23 shallow (<100 m) and 10 deep (500-1000 m) vertical boreholes. Hydrogeologic units have been characterized in the unsaturated zone [Flint, 1998] that represent rocks with ranges of welding, lithophysae, and high and low temperature alteration (as a result of the depositional, cooling, and alterational history of the lithostratigraphic layers). Lithostratigraphy, the hydrogeologic unit, and the corresponding properties are described. In addition, the physical properties of bulk density, porosity, and particle density; the hydraulic properties of saturated hydraulic conductivity and moisture retention characteristics; and the field water content were measured and compiled for each core sample.

  15. Using one filter stage of unsaturated/saturated vertical flow filters for nitrogen removal and footprint reduction of constructed wetlands.

    PubMed

    Morvannou, Ania; Troesch, Stéphane; Esser, Dirk; Forquet, Nicolas; Petitjean, Alain; Molle, Pascal

    2017-07-01

    French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m 2 /P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter ® is one of the solutions developed in France by Epur Nature. Biho-Filter ® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter ® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter ® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO 3 -N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.

  16. Measuring and computing natural ground-water recharge at sites in south-central Kansas

    USGS Publications Warehouse

    Sophocleous, M.A.; Perry, C.A.

    1987-01-01

    To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a shallower depth to the water table. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. (Author 's abstract)

  17. Effect of suction-dependent soil deformability on landslide susceptibility maps

    NASA Astrophysics Data System (ADS)

    Lizarraga, Jose J.; Buscarnera, Giuseppe; Frattini, Paolo; Crosta, Giovanni B.

    2016-04-01

    This contribution presents a physically-based, spatially-distributed model for shallow landslides promoted by rainfall infiltration. The model features a set of Factor of Safety values aimed to capture different failure mechanisms, namely frictional slips with limited mobility and flowslide events associated with the liquefaction of the considered soils. Indices of failure associated with these two modes of instability have been derived from unsaturated soil stability principles. In particular, the propensity to wetting-induced collapse of unsaturated soils is quantified through the introduction of a rigid-plastic model with suction-dependent yielding and strength properties. The model is combined with an analytical approach (TRIGRS) to track the spatio-temporal evolution of soil suction in slopes subjected to transient infiltration. The model has been tested to reply the triggering of shallow landslides in pyroclastic deposits in Sarno (1998, Campania Region, Southern Italy). It is shown that suction-dependent mechanical properties, such as soil deformability, have important effects on the predicted landslide susceptibility scenarios, resulting on computed unstable zones that may encompass a wide range of slope inclinations, saturation levels, and depths. Such preliminary results suggest that the proposed methodology offers an alternative mechanistic interpretation to the variability in behavior of rainfall-induced landslides. Differently to standard methods the explanation to this variability is based on suction-dependent soil behavior characteristics.

  18. Root Water Uptake and Tracer Transport in a Lupin Root System: Integration of Magnetic Resonance Images and the Numerical Model RSWMS

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Vanderborght, Jan; Haber-Pohlmeier, Sabina; Wienke, Sandra; Vereecken, Harry; Javaux, Mathieu

    2010-05-01

    Combination of experimental studies with detailed deterministic models help understand root water uptake processes. Recently, Javaux et al. developed the RSWMS model by integration of Doussańs root model into the well established SWMS code[1], which simulates water and solute transport in unsaturated soil [2, 3]. In order to confront RSWMS modeling results to experimental data, we used Magnetic Resonance Imaging (MRI) technique to monitor root water uptake in situ. Non-invasive 3-D imaging of root system architecture, water content distributions and tracer transport by MR were performed and compared with numerical model calculations. Two MRI experiments were performed and modeled: i) water uptake during drought stress and ii) transport of a locally injected tracer (Gd-DTPA) to the soil-root system driven by root water uptake. Firstly, the high resolution MRI image (0.23x0.23x0.5mm) of the root system was transferred into a continuous root system skeleton by a combination of thresholding, region-growing filtering and final manual 3D redrawing of the root strands. Secondly, the two experimental scenarios were simulated by RSWMS with a resolution of about 3mm. For scenario i) the numerical simulations could reproduce the general trend that is the strong water depletion from the top layer of the soil. However, the creation of depletion zones in the vicinity of the roots could not be simulated, due to a poor initial evaluation of the soil hydraulic properties, which equilibrates instantaneously larger differences in water content. The determination of unsaturated conductivities at low water content was needed to improve the model calculations. For scenario ii) simulations confirmed the solute transport towards the roots by advection. 1. Simunek, J., T. Vogel, and M.T. van Genuchten, The SWMS_2D Code for Simulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated Media. Version 1.21. 1994, U.S. Salinity Laboratory, USDA, ARS: Riverside, California. 2. Javaux, M., et al., Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake. Vadose Zone J., 2008. 7(3): p. 1079-1088. 3. Schröder, T., et al., Effect of Local Soil Hydraulic Conductivity Drop Using a Three Dimensional Root Water Uptake Model. Vadose Zone J., 2008. 7(3): p. 1089-1098.

  19. Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers

    USGS Publications Warehouse

    Kwicklis, Edward M.; Wolfsberg, Andrew V.; Stauffer, Philip H.; Walvoord, Michelle Ann; Sully, Michael J.

    2006-01-01

    Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to characterize the uncertainty in moisture fluxes. ?? Soil Science Society of America.

  20. Estimation of deep infiltration in unsaturated limestone environments using cave lidar and drip count data

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2016-01-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management, and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger-scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of Golgotha Cave, south-western Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology, and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012 to 2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip rate time series are interpreted in terms of flow patterns, cave chamber morphology, and lithology. Moreover, we develop a new technique to estimate recharge in large-scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focussed areas of recharge and can help to better estimate the total recharge volume.

  1. Estimation of deep infiltration in unsaturated limestone environments using cave LiDAR and drip count data

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2015-09-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of the Golgotha Cave, South-West Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012-2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip-rate time series are interpreted in terms of flow patterns, cave chamber morphology and lithology. Moreover, we develop a new technique to estimate recharge in large scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focused areas of recharge and can help to better estimate the total recharge volume.

  2. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  3. Mobilization of aluminum by the acid percolates within unsaturated zone of sandstones.

    PubMed

    Navrátil, Tomáš; Vařilová, Zuzana; Rohovec, Jan

    2013-09-01

    The area of the Black Triangle has been exposed to extreme levels of acid deposition in the twentieth century. The chemical weathering of sandstones found within the Black Triangle became well-known phenomenon. Infiltration of acid rain solutions into the sandstone represents the main input of salt components into the sandstone. The infiltrated solutions--sandstone percolates--react with sandstone matrix and previously deposited materials such as salt efflorescence. Acidic sandstone percolates pH 3.2-4.8 found at ten sites within the National Park Bohemian Switzerland contained high Al-tot (0.8-10 mg L(-1)) concentrations and high concentrations of anions SO4 (5-66 mg L(-1)) and NO3 (2-42 mg L(-1)). A high proportion (50-98 %) of Al-tot concentration in acid percolates was represented by toxic reactive Al(n+). Chemical equilibrium modeling indicated as the most abundant Al species Al(3+), AlSO4 (+), and AlF(2+). The remaining 2-50 % of Al-tot concentration was present in the form of complexes with dissolved organic matter Al-org. Mobilization and transport of Al from the upper zones of sandstone causes chemical weathering and sandstone structure deterioration. The most acidic percolates contained the highest concentrations of dissolved organic material (estimated up to 42 mg L(-1)) suggesting the contribution of vegetation on sandstone weathering processes. Very low concentrations of Al-tot in springs at BSNP suggest that Al mobilized in unsaturated zone is transported deeper into the sandstone. This process of mobilization could represent a threat for the water quality small-perched aquifers.

  4. Identifying the Dynamic Catchment Storage That Does Not Drive Runoff

    NASA Astrophysics Data System (ADS)

    Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.

    2017-12-01

    The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of three pools of subsurface water: (i) seasonally dynamic vs. static; (ii) unsaturated vs. saturated, and (iii) storage whose magnitude directly influences runoff vs. that which does not. These results highlight the importance of hillslope monitoring for physically interpreting methods of runoff-based hydrologic analysis.

  5. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  6. Geohydrology of the unsaturated zone and simulated time of arrival of landfill leachate at the water table, municipal solid waste landfill facility, US Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Frenzel, Peter F.; Abeyta, Cynthia G.

    1999-01-01

    The U.S. Air Defense Artillery Center and Fort Bliss Municipal Solid Waste Landfill Facility (MSWLF) is located about 10 miles northeast of downtown El Paso, Texas. The landfill is built on the Hueco Bolson, a deposit that yields water to five public-supply wells within 1.1 miles of the landfill boundary on all sides. The bolson deposits consist of lenses and mixtures of sand, clay, silt, gravel, and caliche. The unsaturated zone at the landfill is about 300 feet thick. The Hydrologic Evaluation of Landfill Performance (HELP) and the Multimedia Exposure Assessment Model for Evaluating the Land Disposal of Wastes (MULTIMED) computer models were used to simulate the time of first arrival of landfill leachate at the water table. Site-specific data were collected for model input. At five sites on the landfill cover, hydraulic conductivity was measured by an in situ method; in addition, laboratory values were obtained for porosity, moisture content at field capacity, and moisture content at wilting point. Twenty-seven sediment samples were collected from two adjacent boreholes drilled near the southwest corner of the landfill. Of these, 23 samples were assumed to represent the unsaturated zone beneath the landfill. The core samples were analyzed in the laboratory for various characteristics required for the HELP and MULTIMED models: initial moisture content, dry bulk density, porosity, saturated hydraulic conductivity, moisture retention percentages at various suction values, total organic carbon, and pH. Parameters were calculated for the van Genuchten and Brooks-Corey equations that relate hydraulic conductivity to saturation. A reported recharge value of 0.008 inch per year was estimated on the basis of soil- water chloride concentration. The HELP model was implemented using input values that were based mostly on site-specific data or assumed in a conservative manner. Exceptions were the default values used for waste characteristics. Flow through the landfill was assumed to be at steady state. The HELP-estimated landfill leakage rate was 101.6 millimeters per year, approximately 500 times the estimated recharge rate for the area near the landfill. The MULTIMED model was implemented using input values that were based mainly on site-specific data and some conservatively assumed values. Landfill leakage was assumed to begin when the landfill was established and to continue at a steady-state rate of 101.6 millimeters per year as estimated by the HELP model. By using an assumed solute concentration in the leachate of 1 milligram per liter and assuming no delay or decay of solute, the solute serves as a tracer to indicate the first arrival of landfill leachate. The simulated first arrival of leachate at the water table was 204 to 210 years after the establishment of the landfill.

  7. Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals

    USGS Publications Warehouse

    Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.

    2005-01-01

    Of the models tested, RZWQM, HYDRUS2D, VS2DT, GLEAMS and PRZM had graphical user interfaces. Extensive documentation was available for RZWQM, HYDRUS2D, and VS2DT. RZWQM can explicitly simulate water and solute flux in macropores, and both HYDRUS2D and VS2DT can simulate water and solute flux in two dimensions. The version of RZWQM tested had a maximum simulation depth of 3 meters. The complex models simulate the formation, transport, and fate of degradates of up to three to five compounds including the parent, with the exception of VS2DT, which simulates the transport and fate of a single compound.

  8. An Approach for Developing Site-Specific Lateral and Vertical Inclusion Zones within which Structures Should be Evaluated for Petroleum Vapor Intrusion due to Releases of Motor Fuel from Underground Storage Tanks

    EPA Science Inventory

    Buildings may be at risk from Petroleum Vapor Intrusion (PVI) when they overlie petroleum hydrocarbon contamination in the unsaturated zone or dissolved in groundwater. The U.S. EPA Office of Underground Storage Tanks (OUST) is preparing Guidance for Addressing Petroleum Vapor I...

  9. Applying downscaled Global Climate Model data to a groundwater model of the Suwannee River Basin, Florida, USA

    USGS Publications Warehouse

    Swain, Eric D.; Davis, J. Hal

    2016-01-01

    The higher future rainfall causes simulated groundwater levels to rise in areas where they are deep and have little ET in either the recent or future case. However, in areas where groundwater levels were originally near the surface, the greater future ET causes groundwater levels to become lower despite the higher projected rainfall. The general implication is that unsaturated zone depth could be more spatially uniform in the future and vegetation that requires a range of conditions (substantially wetter or drier than aver¬age) could be detrimentally affected. This vegetation would include wetland species, especially in areas inland from the coast.

  10. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Reportmore » is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC Seepage Model and is not used for calibration to measured data.« less

  11. Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus

    2011-04-23

    A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D columnmore » and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.« less

  12. Vadose Zone and Surficial Monitoring a Controlled Release of Methane in the Borden Aquifer, Ontario.

    NASA Astrophysics Data System (ADS)

    Forde, O.; Mayer, K. U.; Cahill, A.; Parker, B. L.; Cherry, J. A.

    2015-12-01

    Development of shale gas resources and potential impacts on groundwater and fugitive gas emissions necessitates further research on subsurface methane gas (CH4) migration and fate. To address this issue, a controlled release experiment is undertaken at the Borden research aquifer, Ontario, Canada. Due to low solubility, it is expected that the injection will lead to gas exsolution and ebullition. Gas migration is expected to extend to the unsaturated zone and towards the ground surface, and may possibly be affected by CH4 oxidation. The project consists of multiple components targeting the saturated zone, unsaturated zone, and gas emissions at the ground surface. This presentation will focus on the analysis of surficial CO2 and CH4 effluxes and vadose zone gas composition to track the temporal and spatial evolution of fugitive gas. Surface effluxes are measured with flux chambers connected to a laser-based gas analyzer, and subsurface gas samples are being collected via monitoring wells equipped with sensors for oxygen, volumetric water content, electrical conductivity, and temperature to correlate with changes in gas composition. First results indicate rapid migration of CH4 to the ground surface in the vicinity of the injection locations. We will present preliminary data from this experiment and evaluate the distribution and rate of gas migration. This research specifically assesses environmental risks associated with fugitive gas emissions related to shale gas resource development.

  13. Impact of microwave derived soil moisture on hydrologic simulations using a spatially distributed water balance model

    NASA Technical Reports Server (NTRS)

    Lin, D. S.; Wood, E. F.; Famiglietti, J. S.; Mancini, M.

    1994-01-01

    Spatial distributions of soil moisture over an agricultural watershed with a drainage area of 60 ha were derived from two NASA microwave remote sensors, and then used as a feedback to determine the initial condition for a distributed water balance model. Simulated hydrologic fluxes over a period of twelve days were compared with field observations and with model predictions based on a streamflow derived initial condition. The results indicated that even the low resolution remotely sensed data can improve the hydrologic model's performance in simulating the dynamics of unsaturated zone soil moisture. For the particular watershed under study, the simulated water budget was not sensitive to the resolutions of the microwave sensors.

  14. Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions

    USGS Publications Warehouse

    Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.

    1999-01-01

    Aerobic biodegradation and volatilization near the water table constitute a coupled pathway that contributes significantly to the natural attenuation of hydrocarbons at gasoline spill sites. Rates of hydrocarbon biodegradation and volatilization were quantified by analyzing vapor transport in the unsaturated zone at a gasoline spill site in Beaufort, South Carolina. Aerobic biodgradation rates decreased with distance above the water table, ranging from 0.20 to 1.5 g m−3 d−1 for toluene, from 0.24 to 0.38 g m−3 d−1for xylene, from 0.09 to 0.24 g m−3 d−1 for cyclohexene, from 0.05 to 0.22 g m−3 d−1 for ethylbenzene, and from 0.02 to 0.08 g m−3 d−1 for benzene. Rates were highest in the capillary zone, where 68% of the total hydrocarbon mass that volatilized from the water table was estimated to have been biodegraded. Hydrocarbons were nearly completely degraded within 1m above the water table. This large loss underscores the importance of aerobic biodradation in limiting the transport of hydrocarbon vapors in the unsaturated zone and implies that vapor‐plume migration to basements and other points of contact may only be significant if a source of free product is present. Furthermore, because transport of the hydrocarbon in the unsaturated zone can be limited relative to that of oxygen and carbon dioxide, soil‐gas surveys conducted at hydrocarbon‐spill sites would benefit by the inclusion of oxygen‐ and carbon‐dioxide‐gas concentration measurements. Aerobic degradation kinetics in the unsaturated zone were approximately first‐order. First‐order rate constants near the water table were highest for cyclohexene (0.21–0.65 d−1) and nearly equivalent for ethylbenzene (0.11–0.31 d−1), xylenes (0.10–0.31 d−1), toluene (0.09–0.30 d−1), and benzene (0.07–0.31 d−1). Hydrocarbon mass loss rates at the water table resulting from the coupled aerobic biodgradation and volatilization process were determined by extrapolating gas transport rates through the capillary zone. Mass loss rates from groundwater were highest for toluene (0.20–0.84 g m−2 d−1), followed by xylenes (0.12–0.69 g m−2 d−1), cyclohexene (0.05–0.15 g m−2 d−1), ethylbenzene (0.02–0.12 g m−2 d−1), and benzene (0.01–0.04 g m−2 d−1). These rates exceed predicted rates of solubilization to groundwater, demonstrating the effectiveness of aerobic biodgradation and volatilization as a combined natural attenuation pathway.

  15. Natural attenuation of chlorinated-hydrocarbon contamination at Fort Wainwright, Alaska; a hydrogeochemical and microbiological investigation workplan

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Lilly, Michael R.; Braddock, Joan F.; Hinzman, Larry D.

    1998-01-01

    Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight into ground-water/surface-water interactions in the subsurface. Characterization of the unsaturated zone will improve our understanding of interactions among ground water, the unsaturated zone, and the atmosphere. The interactions likely of importance to this study include the migration of water, dissolved contaminants, nutrients, and gases (oxygen, carbon dioxide, and methane) between the saturated and unsaturated zones. We will use the results of ground-water chemical analyses to determine the spatial and temporal distribution of (1) chlorinated-hydrocarbon contaminants and their degradation products, (2) oxidation-reduction indicators, (3) nutrients, and (4) major ground-water ions. These water-quality data will provide insight into ground-water flow directions, interactions between ground water and surface water, attenuation of contaminant concentrations caused by dispersion, and intrinsic microbiological processes. Microbiological analyses will indicate whether microorganisms at the site are capable of degrading the contaminants of interest, and will allow us to estimate their potential to attenuate existing contamination. Physical and chemical data interpreted as part of the analysis of ground water and surface water mixing will improve our understanding of the relationship between water quality and contaminant source mixing.

  16. A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.

    PubMed

    Jeppesen, Jan; Christensen, Steen

    2015-01-01

    This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two-way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage-like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface-Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales. © 2014, National Ground Water Association.

  17. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5-2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone. Copyright ?? 2002 Elsevier Science B.V.

  18. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, Geoffrey N.; Landon, Matthew K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5–2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone.

  19. Natural Analogues - One Way to Help Build Public Confidence in the Predicted Performance of a Mined Geologic Repository for Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckless, J. S.

    2002-02-26

    The general public needs to have a way to judge the predicted long-term performance of the potential high-level nuclear waste repository at Yucca Mountain. The applicability and reliability of mathematical models used to make this prediction are neither easily understood nor accepted by the public. Natural analogues can provide the average person with a tool to assess the predicted performance and other scientific conclusions. For example, hydrologists with the Yucca Mountain Project have predicted that most of the water moving through the unsaturated zone at Yucca Mountain, Nevada will move through the host rock and around tunnels. Thus, seepage intomore » tunnels is predicted to be a small percentage of available infiltration. This hypothesis can be tested experimentally and with some quantitative analogues. It can also be tested qualitatively using a variety of analogues such as (1) well-preserved Paleolithic to Neolithic paintings in caves and rock shelters, (2) biological remains preserved in caves and rock shelters, and (3) artifacts and paintings preserved in man-made underground openings. These examples can be found in materials that are generally available to the non-scientific public and can demonstrate the surprising degree of preservation of fragile and easily destroyed materials for very long periods of time within the unsaturated zone.« less

  20. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    USGS Publications Warehouse

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  1. A Physically-based Model for Predicting Soil Moisture Dynamics in Wetlands

    NASA Astrophysics Data System (ADS)

    Kalin, L.; Rezaeianzadeh, M.; Hantush, M. M.

    2017-12-01

    Wetlands are promoted as green infrastructures because of their characteristics in retaining and filtering water. In wetlands going through wetting/drying cycles, simulation of nutrient processes and biogeochemical reactions in both ponded and unsaturated wetland zones are needed for an improved understanding of wetland functioning for water quality improvement. The physically-based WetQual model can simulate the hydrology and nutrient and sediment cycles in natural and constructed wetlands. WetQual can be used in continuously flooded environments or in wetlands going through wetting/drying cycles. Currently, WetQual relies on 1-D Richards' Equation (RE) to simulate soil moisture dynamics in unponded parts of the wetlands. This is unnecessarily complex because as a lumped model, WetQual only requires average moisture contents. In this paper, we present a depth-averaged solution to the 1-D RE, called DARE, to simulate the average moisture content of the root zone and the layer below it in unsaturated parts of wetlands. DARE converts the PDE of the RE into ODEs; thus it is computationally more efficient. This method takes into account the plant uptake and groundwater table fluctuations, which are commonly overlooked in hydrologic models dealing with wetlands undergoing wetting and drying cycles. For verification purposes, DARE solutions were compared to Hydrus-1D model, which uses full RE, under gravity drainage only assumption and full-term equations. Model verifications were carried out under various top boundary conditions: no ponding at all, ponding at some point, and no rain. Through hypothetical scenarios and actual atmospheric data, the utility of DARE was demonstrated. Gravity drainage version of DARE worked well in comparison to Hydrus-1D, under all the assigned atmospheric boundary conditions of varying fluxes for all examined soil types (sandy loam, loam, sandy clay loam, and sand). The full-term version of DARE offers reasonable accuracy compared to the full RE solutions from Hydrus-1D, with a significant reduction in computational time. The full-term version of DARE estimated the moisture content with better accuracy for the root zone by considering zero pressure head at a fixed groundwater depth as the bottom boundary condition. The accuracy of this model is lower for the second layer.

  2. Estimating groundwater recharge uncertainty from joint application of an aquifer test and the water-table fluctuation method

    NASA Astrophysics Data System (ADS)

    Delottier, H.; Pryet, A.; Lemieux, J. M.; Dupuy, A.

    2018-05-01

    Specific yield and groundwater recharge of unconfined aquifers are both essential parameters for groundwater modeling and sustainable groundwater development, yet the collection of reliable estimates of these parameters remains challenging. Here, a joint approach combining an aquifer test with application of the water-table fluctuation (WTF) method is presented to estimate these parameters and quantify their uncertainty. The approach requires two wells: an observation well instrumented with a pressure probe for long-term monitoring and a pumping well, located in the vicinity, for the aquifer test. The derivative of observed drawdown levels highlights the necessity to represent delayed drainage from the unsaturated zone when interpreting the aquifer test results. Groundwater recharge is estimated with an event-based WTF method in order to minimize the transient effects of flow dynamics in the unsaturated zone. The uncertainty on groundwater recharge is obtained by the propagation of the uncertainties on specific yield (Bayesian inference) and groundwater recession dynamics (regression analysis) through the WTF equation. A major portion of the uncertainty on groundwater recharge originates from the uncertainty on the specific yield. The approach was applied to a site in Bordeaux (France). Groundwater recharge was estimated to be 335 mm with an associated uncertainty of 86.6 mm at 2σ. By the use of cost-effective instrumentation and parsimonious methods of interpretation, the replication of such a joint approach should be encouraged to provide reliable estimates of specific yield and groundwater recharge over a region of interest. This is necessary to reduce the predictive uncertainty of groundwater management models.

  3. Conducting field studies for testing pesticide leaching models

    USGS Publications Warehouse

    Smith, Charles N.; Parrish, Rudolph S.; Brown, David S.

    1990-01-01

    A variety of predictive models are being applied to evaluate the transport and transformation of pesticides in the environment. These include well known models such as the Pesticide Root Zone Model (PRZM), the Risk of Unsaturated-Saturated Transport and Transformation Interactions for Chemical Concentrations Model (RUSTIC) and the Groundwater Loading Effects of Agricultural Management Systems Model (GLEAMS). The potentially large impacts of using these models as tools for developing pesticide management strategies and regulatory decisions necessitates development of sound model validation protocols. This paper offers guidance on many of the theoretical and practical problems encountered in the design and implementation of field-scale model validation studies. Recommendations are provided for site selection and characterization, test compound selection, data needs, measurement techniques, statistical design considerations and sampling techniques. A strategy is provided for quantitatively testing models using field measurements.

  4. Measurements of HFC-134a and HCFC-22 in groundwater and unsaturated-zone air: implications for HFCs and HCFCs as dating tracers

    USGS Publications Warehouse

    Haase, Karl B.; Busenberg, Eurybiades; Plummer, Niel; Casile, Gerolamo; Sanford, Ward E.

    2014-01-01

    A new analytical method using gas chromatography with an atomic emission detector (GC–AED) was developed for measurement of ambient concentrations of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in soil, air, and groundwater, with the goal of determining their utility as groundwater age tracers. The analytical detection limits of HCFC-22 (difluorochloromethane, CHClF2) and HFC-134a (1,2,2,2-tetrafluoroethane, C2H2F4) in 1 L groundwater samples are 4.3 × 10− 1 and 2.1 × 10− 1 pmol kg− 1, respectively, corresponding to equilibrium gas-phase mixing ratios of approximately 5–6 parts per trillion by volume (pptv). Under optimal conditions, post-1960 (HCFC-22) and post-1995 (HFC-134a) recharge could be identified using these tracers in stable, unmixed groundwater samples. Ambient concentrations of HCFC-22 and HFC-134a were measured in 50 groundwater samples from 27 locations in northern and western parts of Virginia, Tennessee, and North Carolina (USA), and 3 unsaturated-zone profiles were collected in northern Virginia. Mixing ratios of both HCFC-22 and HFC-134a decrease with depth in unsaturated-zone gas profiles with an accompanying increase in CO2 and loss of O2. Apparently, ambient concentrations of HCFC-22 and HFC-134a are readily consumed by methanotrophic bacteria under aerobic conditions in the unsaturated zone. The results of this study indicate that soils are a sink for these two greenhouse gases. These observations contradict the previously reported results from microcosm experiments that found that degradation was limited above-ambient HFC-134a. The groundwater HFC and HCFC concentrations were compared with concentrations of chlorofluorocarbons (CFCs, CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6). Nearly all samples had measured HCFC-22 or HFC-134a that were below concentrations predicted by the CFCs and SF6, with many samples showing a complete loss of HCFC-22 and HFC-134a. This study indicates that HCFC-22 and HFC-134a are not conservative as environmental tracers and leaves in question the usefulness of other HCFCs and HFCs as candidate age tracers.

  5. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, I.C.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less

  6. Free-Surface flow dynamics and its effect on travel time distribution in unsaturated fractured zones - findings from analogue percolation experiments

    NASA Astrophysics Data System (ADS)

    Noffz, Torsten; Kordilla, Jannes; Dentz, Marco; Sauter, Martin

    2017-04-01

    Flow in unsaturated fracture networks constitutes a high potential for rapid mass transport and can therefore possibly contributes to the vulnerability of aquifer systems. Numerical models are generally used to predict flow and transport and have to reproduce various complex effects of gravity-driven flow dynamics. However, many classical volume-effective modelling approaches often do not grasp the non-linear free surface flow dynamics and partitioning behaviour at fracture intersections in unsaturated fracture networks. Better process understanding can be obtained by laboratory experiments, that isolate single aspects of the mass partitioning process, which influence travel time distributions and allow possible cross-scale applications. We present a series of percolation experiments investigating partitioning dynamics of unsaturated multiphase flow at an individual horizontal fracture intersection. A high precision multichannel dispenser is used to establish gravity-driven free surface flow on a smooth and vertical PMMA (poly(methyl methacrylate)) surface at rates ranging from 1.5 to 4.5 mL/min to obtain various flow modes (droplets; rivulets). Cubes with dimensions 20 x 20 x 20 cm are used to create a set of simple geometries. A digital balance provides continuous real-time cumulative mass bypassing the network. The influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes is shown in single-inlet experiments. Droplet and rivulet flow are delineated and a transition zone exhibiting mixed flow modes can be determined. Furthermore, multi-inlet setups with constant total inflow rates are used to reduce variance and the effect of erratic free-surface flow dynamics. Investigated parameters include: variable aperture widths df, horizontal offsets dv of the vertical fracture surface and alternating injection methods for both droplet and rivulet flow. Repetitive structures with several horizontal fractures extend arrival times but also complexity and variance. Finally, impacts of variable geometric features and flow modes on partitioning dynamics are highlighted by normalized fracture inflow rates. For higher flow rates, i.e. rivulet flows dominates, the effectiveness of filling horizontal fractures strongly increases. We demonstrate that the filling can be described by plug flow, which transitions into a Washburn-type flow at later times, and derive an analytical solution for the case of rivulet flows. Droplet flow dominated flow experiments exhibit a high bypass efficiency, which cannot be described by plug-flow, however, they also transition into a Washburn stage.

  7. Economic impacts of urban flooding in South Florida: Potential consequences of managing groundwater to prevent salt water intrusion.

    PubMed

    Czajkowski, Jeffrey; Engel, Vic; Martinez, Chris; Mirchi, Ali; Watkins, David; Sukop, Michael C; Hughes, Joseph D

    2018-04-15

    High-value urban zones in coastal South Florida are considered particularly vulnerable to salt water intrusion into the groundwater-based, public water supplies caused by sea level rise (SLR) in combination with the low topography, existing high water table, and permeable karst substrate. Managers in the region closely regulate water depths in the extensive South Florida canal network to control closely coupled groundwater levels and thereby reduce the risk of saltwater intrusion into the karst aquifer. Potential SLR adaptation strategies developed by local managers suggest canal and groundwater levels may have to be increased over time to prevent the increased salt water intrusion risk to groundwater resources. However, higher canal and groundwater levels cause the loss of unsaturated zone storage and lead to an increased risk of inland flooding when the recharge from rainfall exceeds the capacity of the unsaturated zone to absorb it and the water table reaches the surface. Consequently, higher canal and groundwater levels are also associated with increased risk of economic losses, especially during the annual wet seasons. To help water managers and urban planners in this region better understand this trade-off, this study models the relationships between flood insurance claims and groundwater levels in Miami-Dade County. Via regression analyses, we relate the incurred number of monthly flood claims in 16 Miami-Dade County watersheds to monthly groundwater levels over the period from 1996 to 2010. We utilize these estimated statistical relationships to further illustrate various monthly flood loss scenarios that could plausibly result, thereby providing an economic quantification of a "too much water" trade-off. Importantly, this understanding is the first of its kind in South Florida and is exceedingly useful for regional-scale hydro-economic optimization models analyzing trade-offs associated with high water levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Subsurface Flow and Moisture Dynamics in Response to Swash Motions: Effects of Beach Hydraulic Conductivity and Capillarity

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Heiss, James W.; Michael, Holly A.; Boufadel, Michel C.

    2017-12-01

    A combined field and numerical study was conducted to investigate dynamics of subsurface flow and moisture response to waves in the swash zone of a sandy beach located on Cape Henlopen, DE. A density-dependent variably saturated flow model MARUN was used to simulate subsurface flow beneath the swash zone. Values of hydraulic conductivity (K) and characteristic pore size (α, a capillary fringe property) were varied to evaluate their effects on subsurface flow and moisture dynamics in response to swash motions in beach aquifers. The site-specific modeling results were validated against spatiotemporal measurements of moisture and pore pressure in the beach. Sensitivity analyses indicated that the hydraulic conductivity and capillary fringe thickness of the beach greatly influenced groundwater flow pathways and associated transit times in the swash zone. A higher value of K enhanced swash-induced seawater infiltration into the beach, thereby resulting in a faster expansion of a wedge of high moisture content induced by swash cycles, and a flatter water table mound beneath the swash zone. In contrast, a thicker capillary fringe retained higher moisture content near the beach surface, and thus, significantly reduced the available pore space for infiltration of seawater. This attenuated wave effects on pore water flow in the unsaturated zone of the beach. Also, a thicker capillary fringe enhanced horizontal flow driven by the larger-scale hydraulic gradient caused by tides.

  9. Pesticide fate at regional scale: Development of an integrated model approach and application

    NASA Astrophysics Data System (ADS)

    Herbst, M.; Hardelauf, H.; Harms, R.; Vanderborght, J.; Vereecken, H.

    As a result of agricultural practice many soils and aquifers are contaminated with pesticides. In order to quantify the side-effects of these anthropogenic impacts on groundwater quality at regional scale, a process-based, integrated model approach was developed. The Richards’ equation based numerical model TRACE calculates the three-dimensional saturated/unsaturated water flow. For the modeling of regional scale pesticide transport we linked TRACE with the plant module SUCROS and with 3DLEWASTE, a hybrid Lagrangian/Eulerian approach to solve the convection/dispersion equation. We used measurements, standard methods like pedotransfer-functions or parameters from literature to derive the model input for the process model. A first-step application of TRACE/3DLEWASTE to the 20 km 2 test area ‘Zwischenscholle’ for the period 1983-1993 reveals the behaviour of the pesticide isoproturon. The selected test area is characterised by an intense agricultural use and shallow groundwater, resulting in a high vulnerability of the groundwater to pesticide contamination. The model results stress the importance of the unsaturated zone for the occurrence of pesticides in groundwater. Remarkable isoproturon concentrations in groundwater are predicted for locations with thin layered and permeable soils. For four selected locations we used measured piezometric heads to validate predicted groundwater levels. In general, the model results are consistent and reasonable. Thus the developed integrated model approach is seen as a promising tool for the quantification of the agricultural practice impact on groundwater quality.

  10. In what root-zone N concentration does nitrate start to leach significantly? A reasonable answer from modeling Mediterranean field data and closed root-zone experiments

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Kanner, B.; Levy, Y.; Shapira, R. H.; Bar-Tal, A.

    2017-12-01

    Closed-root-zone experiments (e.g. pots, lyzimeters) reveal in many cases a mineral-nitrogen (N) concentration from which the root-N-uptake efficiency reduces significantly and nitrate leaching below the root-zone increases dramatically. A les-direct way to reveal this threshold concentration in agricultural fields is to calibrate N-transport models of the unsaturated zone to nitrate data of the deep samples (under the root-zone) by fitting the threshold concentration of the nitrate-uptake function. Independent research efforts of these two types in light soils where nitrate problems in underlying aquifers are common reviled: 1) that the threshold exists for most crops (filed, vegetables and orchards); 2) nice agreement on the threshold value between the two very different research methodologies; and 3) the threshold lies within 20-50 mg-N/L. Focusing on being below the threshold is a relatively simple aim in the way to maintain intensive agriculture with limited effects on the nitrate concentration in the underlying water resource. Our experience show that in some crops this threshold coincides with the end-of-rise of the N-yield curve (e.g. corn); in this case, it is relatively easy to convince farmers to fertilize below threshold. In other crops, although significant N is lost to leaching the crop can still use higher N concentration to increase yield (e.g. potato).

  11. IN SITU SOIL VAPOR EXTRACTION TREATMENT

    EPA Science Inventory

    Soil vapor extraction (SVE) is designed to physically remove volatile compounds, generally from the vadose or unsaturated zone. t is an in situ process employing vapor extraction wells alone or in combination with air injection wells. acuum blowers supply the motive force, induci...

  12. The transport and behaviour of isoproturon in unsaturated chalk cores

    NASA Astrophysics Data System (ADS)

    Besien, T. J.; Williams, R. J.; Johnson, A. C.

    2000-04-01

    A batch sorption study, a microcosm degradation study, and two separate column leaching studies were used to investigate the transport and fate of isoproturon in unsaturated chalk. The column leaching studies used undisturbed core material obtained from the field by dry percussion drilling. Each column leaching study used 25 cm long, 10 cm wide unsaturated chalk cores through which a pulse of isoproturon and bromide was eluted. The cores were set-up to simulate conditions in the unsaturated zone of the UK Chalk aquifer by applying a suction of 1 kPa (0.1 m H 2O) to the base of each column, and eluting at a rate corresponding to an average recharge rate through the unsaturated Chalk. A dye tracer indicated that the flow was through the matrix under these conditions. The results from the first column study showed high recovery rates for both isoproturon (73-92%) and bromide (93-96%), and that isoproturon was retarded by a factor of about 1.23 relative to bromide. In the second column study, two of the four columns were eluted with non-sterile groundwater in place of the sterile groundwater used on all other columns, and this study showed high recovery rates for bromide (85-92%) and lower recovery rates for isoproturon (66-79% — sterile groundwater, 48-61% — non-sterile groundwater). The enhanced degradation in the columns eluted with non-sterile groundwater indicated that groundwater microorganisms had increased the degradation rate within these columns. Overall, the reduced isoproturon recovery in the second column study was attributed to increased microbial degradation as a result of the longer study duration (162 vs. 105 days). The breakthrough curves (BTCs) for bromide had a characteristic convection-dispersion shape and were accurately simulated with the minimum of calibration using a simple convection-dispersion model (LEACHP). However, the isoproturon BTCs had an unusual shape and could not be accurately simulated.

  13. Impact of Scale-Dependent Coupled Processes on Solute Fate and Transport in the Critical Zone: Case Studies Involving Inorganic and Radioactive Contaminants

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Gentry, R. W.

    2011-12-01

    Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.

  14. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments.

    PubMed

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton; Serne, R Jeff; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I; Chorover, Jon

    2011-10-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (Washington) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10(-5) and 10(-3) molal representative of LO- and HI-sediment, respectively) as surrogates for (90)Sr and (137)Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.

  15. Seasonal variations and cycling of nitrous oxide using nitrogen isotopes and concentrations from an unsaturated zone of a floodplain

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Kolding, S.; Williams, K. H.; Tokunaga, T. K.

    2014-12-01

    Nitrous oxide (N2O) concentrations and isotope ratios of 15N to 14N of N2O in the vadose zone mainly depend on atmospheric deposition, symbiotic or non-symbiotic N2 fixation, and nitrification/denitrification processes in underlying groundwater. In an effort to quantify N2O seasonal variations, cycling and N budgets in an alluvial aquifer in western Colorado (Rifle, CO), the concentrations and nitrogen stable isotopes of N2O within the pore space of partially saturated sediments have been monitored over the 2013-2014 years. Vertically resolved profiles spanning from 0m to 3m depth were sampled at 0.5m increments at a periodicity of one month. At each of the profile locations, N2O concentrations decreased from 3m depth to the surface. The maximum concentrations were observed at the interface between the unsaturated zone and groundwater, with minimum values observed in the near surface samples. The d15N values tend to increase from the unsaturated zone/groundwater interface to the surface. Both variation of N2O concentrations and d15N values suggest that denitrification is the main contribution to N2O production and both parameters exhibited a strong seasonal variation. The maximum concentrations (~10ppmv) were observed at the beginning of summer, during the annual maximum in water table elevation. The minimum N2O concentrations were observed in the period from January to May and coincided with low water table elevations. Additionally, nitrogen concentrations and d15N values of the shallowest sediments within the vertical profiles do not show variation, suggesting that the main source of N2O is associated with groundwater denitrification, with the shallower, partially saturated sediments acting as a sink for N2O.

  16. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fracturedmore » rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.« less

  17. Highlights from the SoilCAM project: Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring

    NASA Astrophysics Data System (ADS)

    French, H. K.; van der Zee, S. E. A. T. M.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Toscano, G.

    2012-04-01

    The SoilCAM project (Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring 2008-2012, EU-FP7-212663) is aimed at improving current methods for monitoring contaminant distribution and biodegradation in the subsurface. At two test sites, Oslo airport Gardermoen in Norway and the Trecate site in Italy, a number of geophysical techniques, lysimeter and other soil and water sampling techniques as well as numerical flow and transport modelling have been combined at different scales in order to characterise flow transport processes in the unsaturated and saturated zones. Laboratory experiments have provided data on physical and bio-geo-chemical parameters for use in models and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and also conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. The geophysical surveys showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport show infiltration patterns during snowmelt and are used to validate 2D unsaturated flow and transport simulations using SUTRA. The Orchestra model is used to describe the complex interaction between bio-geo-chemical processes in a 1D profile along the runway. The presence of installations such as a membrane along the runway highly affects the flow pattern and challenges the capacity of the numerical code. Smaller scale field site measurements have revealed the increase of iron and manganese during degradation of de-icing chemicals. The use of Nitrate to increase red-ox potential was tested, but results have not been analysed yet. So far it cannot be concluded that degradation process can be quantified indirectly by geophysical monitoring. At the Trecate site a combination of georadar, electrical resistivity and radio magneto telluric provided a broad outline of the geology down to 50 m, there is a good consistency in the data in the overlapping part, and more deep samples would be required to validate the geological interpretation of the data. Anomalies in the Induced polarisation and electrical resistivity data from the cross borehole measurements indicate where the remaining crude oil can be found. Water samples from multilevel samplers reveal crude oil present in emulsion in the zone of groundwater fluctuations, highlighting the importance of colloidal transport. Geochemistry of the groundwater clearly indicates degradation of hydrocarbons under iron- and sulphate reducing conditions. Modflow has been used to simulate the regional groundwater flow and transport in the area. An overview of the work that has been conducted and main highlights of the results so far will be presented.

  18. Development of Groundwater Management Model for Sustainable Groundwater Use in the Agricultural Region

    NASA Astrophysics Data System (ADS)

    Park, D.; Bae, G.; Lee, K.

    2010-12-01

    In many agricultural regions, high dependence of irrigation on groundwater has brought about serious concerns about unplanned groundwater developments and over-pumping. Various agricultural activities including fertilization and livestock husbandry usually result in groundwater contamination in those regions. Field works in Icheon, Korea showed that in this region the rice farming still requires a significant amount of water and continuous construction of greenhouse can make the contamination from the fertilization more serious. In this study, a groundwater management model based on the simulation-optimization methodology is developed to achieve sufficient groundwater supply and groundwater quality conservation together on regional-scale. This model can obtain the on-ground contaminant loading mass by integrating an analytical model for 1-D solute transport in unsaturated zone with 3-D groundwater flow and solute transport model, HydroGeosphere. The outputs of the 1-D unsaturated transport model, concentrations of the contaminant leaching on water table, work as contaminant sources in the 3-D solute transport model in saturated zone. This integrated simulation model is linked to genetic algorithm that searches the global optimum for the sustainable groundwater use. And, in order for the design on the contaminant sources to be more effective, it also links the backward transport model useful for evaluating the contamination from contaminant sources to each pumping well. The first objective of the management in this study is to obtain the optimal pumping rates that not only can supply sufficient amount of the groundwater but protect the groundwater from the excessive drawdown and contamination. The second objective is to control the periodic loading of the contaminant by suggesting the allowable contaminant loading mass. For this multi-objective groundwater management, the objective function to maximize both pumping rates and allowable contaminant loading mass and at the same time to satisfy the constraints for contaminant concentration and drawdown are assigned in the optimization model. The proposed methodology can be useful to provide the groundwater management options for sustainable groundwater use in the agricultural regions.

  19. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  20. MICROBIAL ECOLOGY OF THE SUBSURFACE AT AN ABANDONED CREOSOTE WASTE SITE

    EPA Science Inventory

    The microbial ecology of pristine, slightly contaminated, and heavily contaminated subsurface materials, and four subsurface materials on the periphery of the plume at an abandoned creosote waste site was investigated. Except for the unsaturated zone of the heavily contaminated m...

  1. 40 CFR 264.98 - Detection monitoring program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conductance, total organic carbon, or total organic halogen), waste constituents, or reaction products that... reaction products in the unsaturated zone beneath the waste management area; (3) The detectability of indicator parameters, waste constituents, and reaction products in ground water; and (4) The concentrations...

  2. Electromagnetic induction of foam-based nanoscale zerovalent iron (NZVI) particles to thermally enhance non-aqueous phase liquid (NAPL) volatilization in unsaturated porous media: Proof of concept.

    PubMed

    Srirattana, Supawan; Piaowan, Kitsanateen; Lowry, Gregory V; Phenrat, Tanapon

    2017-09-01

    Nanoscale zerovalent iron (NZVI) is a promising remediation agent for volatile organic compound (VOC) contamination in saturated sub-surfaces, but is rarely applied to the vadose zone as there are not enough water molecules in the unsaturated zone to participate in reductive dechlorination. In this study, we evaluated the possibility of using foam as a carrying vehicle to emplace NZVI in unsaturated porous media followed by the application of low frequency-electromagnetic field (LF-EMF) to enhance VOC volatilization in laboratory batch reactors. We found that the optimal condition for generating foam-based NZVI (F-NZVI) was using sodium lauryl ether sulfate (SLES) at a concentration of 3% (w/w) and a N 2 flow rate of 500 mL/min. Also, F-NZVI could carry as much as 41.31 g/L of NZVI in the liquid phase of the foam and generate heat to raise ΔT to 77 °C in 15 min under an applied LF-EMF (150 kHz and 13 A). Under these conditions, F-NZVI together with LF-EMF enhanced trichloroethylene (TCE) volatilization from TCE-dense non-aqueous phase liquid (DNAPL) in unsaturated sand by 39.51 ± 6.59-fold compared to reactors without LF-EMF application. This suggested that using F-NZVI together with LF-EMF could theoretically be an alternative to radio frequency heating (RFH) as it requires a much lower irradiation frequency (336-fold lower), which should result in significantly lower capital and operational costs compared to RFH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The formation of unsaturated zones within cemented paste backfill mixtures-effects on the release of copper, nickel, and zinc.

    PubMed

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2018-05-13

    Flooding of cemented paste backfill (CPB) filled mine workings is, commonly, a slow process and could lead to the formation of unsaturated zones within the CPB fillings. This facilitates the oxidation of sulfide minerals and thereby increases the risk of trace metal leaching. Pyrrhotitic tailings from a gold mine (cyanidation tailing (CT)), containing elevated concentrations of nickel (Ni), copper (Cu), and zinc (Zn), were mixed with cement and/or fly ash (1-3 wt%) to form CT-CPB mixtures. Pyrrhotite oxidation progressed more extensively during unsaturated conditions, where acidity resulted in dissolution of the Ni, Cu, and Zn associated with amorphous Fe precipitates and/or cementitious phases. The establishment of acidic, unsaturated conditions in CT-CBP:s with low fractions (1 wt%) of binders increased the Cu release (to be higher than that from CT), owing to the dissolution of Cu-associated amorphous Fe precipitates. In CT-CPB:s with relatively high proportions of binder, acidity from pyrrhotite oxidation was buffered to a greater extent. At this stage, Zn leaching increased due the occurrence of fly ash-specific Zn species soluble in alkaline conditions. Irrespective of binder proportion and water saturation level, the Ni and Zn release were lower, compared to that in CT. Fractions of Ni, Zn, and Cu associated with acid-soluble phases or amorphous Fe precipitates, susceptible to remobilization under acidic conditions, increased in tandem with binder fractions. Pyrrhotite oxidation occurred irrespective of the water saturation level in the CPB mixtures. That, in turn, poses an environmental risk, whereas a substantial proportion of Ni, Cu, and Zn was associated with acid-soluble phases.

  4. Numerical model for thermodynamical behaviors of unsaturated soil

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuji; Yamada, Mitsuhide; Sako, Kazunari; Araki, Kohei; Kitamura, Ryosuke

    Kitamura et al. have proposed the numerical models to establish the unsaturated soil mechanics aided by probability theory and statistics, and to apply the unsaturated soil mechanics to the geo-simulator, where the numerical model for the thermodynamical behaviors of unsaturated soil are essential. In this paper the thermodynamics is introduced to investigate the heat transfer through unsaturated soil and the evaporation of pore water in soil based on the first and second laws of thermodynamics, i.e., the conservation of energy, and increasing entropy. On the other hand the lysimeter equipment is used to obtain the data for the evaporation of pore water during fine days and seepage of rain water during rainy days. The numerical simulation is carried out by using the proposed numerical model and the results are compared with those obtained from the lysimeter test.

  5. The Farm Process Version 2 (FMP2) for MODFLOW-2005 - Modifications and Upgrades to FMP1

    USGS Publications Warehouse

    Schmid, Wolfgang; Hanson, R.T.

    2009-01-01

    The ability to dynamically simulate the integrated supply-and-demand components of irrigated agricultural is needed to thoroughly understand the interrelation between surface water and groundwater flow in areas where the water-use by vegetation is an important component of the water budget. To meet this need, the computer program Farm Process (FMP1) was updated and refined for use with the U.S. Geological Survey's MODFLOW-2005 groundwater-flow model, and is referred to as MF2005-FMP2. The updated program allows the simulation, analysis, and management of nearly all components of human and natural water use. MF2005-FMP2 represents a complete hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for water consumption of irrigated agriculture, but also of urban use, and of natural vegetation. Supply and demand components of water use are analyzed under demand-driven and supply-constrained conditions. From large- to small-scale settings, the MF2005-FMP2 has the unique set of capabilities to simulate and analyze historical, present, and future conditions. MF2005-FMP2 facilitates the analysis of agricultural water use where little data is available for pumpage, land use, or agricultural information. The features presented in this new version of FMP2 along with the linkages to the Streamflow Routing (SFR), Multi-Node Well (MNW), and Unsaturated Zone Flow (UZF) Packages prevents mass loss to an open system and helps to account for 'all of the water everywhere and all of the time'. The first version, FMP1 for MODFLOW-2000, is limited to (a) transpiration uptake from unsaturated root zones, (b) on-farm efficiency defined solely by farm and not by crop type, (c) a simulation of water use and returnflows related only to irrigated agriculture and not also to non-irrigated vegetation, (d) a definition of consumptive use as potential crop evapotranspiration, (e) percolation being instantly recharged to the uppermost active aquifer, (f) automatic routing of returnflow from runoff either to reaches of tributary stream segments adjacent to a farm or to one reach nearest to the farm's lowest elevation, (g) farm-well pumping from cell locations regardless of whether an irrigation requirement from these cells exists or not, and (h) specified non-routed water transfers from an undefined source outside the model domain. All of these limitations are overcome in MF2005-FMP2. The new features include (a) simulation of transpiration uptake from variably saturated, fully saturated, or ponded root zones (for example, for crops like rice or riparian vegetation), (b) definition of on-farm efficiency not only by farm but also by crop, (c) simulation of water use and returnflow from non-irrigated vegetation (for example, rain-fed agriculture or native vegetation), (d) use of crop coefficients and reference evapotranspiration, (e) simulation of the delay between percolation from farms through the unsaturated zone and recharge into the uppermost active aquifer by linking FMP2 to the UZF Package, (f) an option to manually control the routing of returnflow from farm runoff to streams, (g) an option to limit pumping to wells located only in cells where an irrigation requirement exists, and (h) simulation of water transfers to farms from a series of well fields (for example, recovery well field of an aquifer-storage-and-recovery system, ASR). In addition to the output of an economic budget for each farm between irrigation demand and supply ('Farm Demand and Supply Budget' in FMP1), a new output option called 'Farm Budget' was created for FMP2, which allows the user to track all physical flows into and out of a water accounting unit at all times. Such a unit can represent individual farms, farming districts, natural areas, or urban areas. The example model demonstrates the application of MF2005-FMP2 with delayed recharge through an unsaturated zone, rejected infiltration in a riparian area, changes in de

  6. Soil Moisture Processes in the Near Surface Unsaturated Zone: Experimental Investigations in Multi-scale Test Systems

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Sakaki, T.; Smits, K. M.; Limsuwat, A.; Terrés-Nícoli, J. M.

    2008-12-01

    Understanding the dynamics of soil moisture distribution near the ground surface is of interest in various applications involving land-atmospheric interaction, evaporation from soils, CO2 leakage from carbon sequestration, vapor intrusion into buildings, and land mine detection. Natural soil heterogeneity in combination with water and energy fluxes at the soil surface creates complex spatial and temporal distributions of soil moisture. Even though considerable knowledge exists on how soil moisture conditions change in response to flux and energy boundary conditions, emerging problems involving land atmospheric interactions require the quantification of soil moisture variability both at high spatial and temporal resolutions. The issue of up-scaling becomes critical in all applications, as in general, field measurements are taken at sparsely distributed spatial locations that require assimilation with measurements taken using remote sensing technologies. It is our contention that the knowledge that will contribute to both improving our understanding of the fundamental processes and practical problem solution cannot be obtained easily in the field due to a number of constraints. One of these basic constraints is the inability to make measurements at very fine spatial scales at high temporal resolutions in naturally heterogeneous field systems. Also, as the natural boundary conditions at the land/atmospheric interface are not controllable in the field, even in pilot scale studies, the developed theories and tools cannot be validated for the diversity of conditions that could be expected in the field. Intermediate scale testing using soil tanks packed to represent different heterogeneous test configurations provides an attractive and cost effective alternative to investigate a class of problems involving the shallow unsaturated zone. In this presentation, we will discuss the advantages and limitations of studies conducted in both two and three dimensional intermediate scale test systems together with instrumentation and measuring techniques. The features and capabilities of a new coupled porous media/climate wind tunnel test system that allows for the study of near surface unsaturated soil moisture conditions under climate boundary conditions will also be presented with the goal of exploring opportunities to use such a facility to study some of the multi-scale problems in the near surface unsaturated zone.

  7. GIS embedded hydrological modeling: the SID&GRID project

    NASA Astrophysics Data System (ADS)

    Borsi, I.; Rossetto, R.; Schifani, C.

    2012-04-01

    The SID&GRID research project, started April 2010 and funded by Regione Toscana (Italy) under the POR FSE 2007-2013, aims to develop a Decision Support System (DSS) for water resource management and planning based on open source and public domain solutions. In order to quantitatively assess water availability in space and time and to support the planning decision processes, the SID&GRID solution consists of hydrological models (coupling 3D existing and newly developed surface- and ground-water and unsaturated zone modeling codes) embedded in a GIS interface, applications and library, where all the input and output data are managed by means of DataBase Management System (DBMS). A graphical user interface (GUI) to manage, analyze and run the SID&GRID hydrological models based on open source gvSIG GIS framework (Asociación gvSIG, 2011) and a Spatial Data Infrastructure to share and interoperate with distributed geographical data is being developed. Such a GUI is thought as a "master control panel" able to guide the user from pre-processing spatial and temporal data, running the hydrological models, and analyzing the outputs. To achieve the above-mentioned goals, the following codes have been selected and are being integrated: 1. Postgresql/PostGIS (PostGIS, 2011) for the Geo Data base Management System; 2. gvSIG with Sextante (Olaya, 2011) geo-algorithm library capabilities and Grass tools (GRASS Development Team, 2011) for the desktop GIS; 3. Geoserver and Geonetwork to share and discover spatial data on the web according to Open Geospatial Consortium; 4. new tools based on the Sextante GeoAlgorithm framework; 5. MODFLOW-2005 (Harbaugh, 2005) groundwater modeling code; 6. MODFLOW-LGR (Mehl and Hill 2005) for local grid refinement; 7. VSF (Thoms et al., 2006) for the variable saturated flow component; 8. new developed routines for overland flow; 9. new algorithms in Jython integrated in gvSIG to compute the net rainfall rate reaching the soil surface, as input for the unsaturated/saturated flow model. At this stage of the research (which will end April 2013), two primary components of the master control panel are being developed: i. a SID&GRID toolbar integrated into gvSIG map context; ii. a new Sextante set of geo-algorithm to pre- and post-process the spatial data to run the hydrological models. The groundwater part of the code has been fully integrated and tested and 3D visualization tools are being developed. The LGR capability has been extended to the 3D solution of the Richards' equation in order to solve in detail the unsaturated zone where required. To be updated about the project, please follow us at the website: http://ut11.isti.cnr.it/SIDGRID/

  8. Three-dimensional modelling of leachate recirculation using vertical wells in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Chen, Zheng-Wei; Cao, Ben-Yi

    2016-12-01

    Bioreactor landfills use leachate recirculation to enhance the biodegradation of municipal solid waste and accelerate landfill stabilisation, which can provide significant environmental and economic benefits. Vertical wells are operated as a major method for leachate recirculation systems. The objectives of this article are to analyse the leachate migration in bioreactor landfills using vertical wells and to offer theoretical basis for the design of leachate recirculation systems. A three-dimensional numerical model was built using FLAC-3D, and this model can consider the saturated and unsaturated flow of leachate within anisotropic waste to reflect the actual conditions. First, main influence factors of leachate migration were analysed, including the vertical well height, hydraulic conductivity, and anisotropic coefficient, in a single-well recirculation system. Then, the effects of different configurations of a group-well system were studied and the optimal well spacing was obtained. Some key design parameters (e.g. the recirculation flow rate, volume of impact zone, radius of impact zone and time to reach steady state) were also evaluated. The results show that the hydraulic conductivity has a great impact on the optimal height of vertical wells and uniform configuration is the best option in terms of both volume of impact zone and time to reach steady state. © The Author(s) 2016.

  9. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  10. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.

    PubMed

    French, Helen K; van der Zee, Sjoerd E A T M

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.

  11. [The remove characteristics of dissolved organic matter in landfill leachate during the treatment process].

    PubMed

    He, Xiao-Song; Yu, Jing; Xi, Bei-Dou; Jiang, Yong-Hai; Zhang, Jin-Bao; Li, Dan; Pan, Hong-Wei; Liu, Hong-Liang

    2012-09-01

    In order to investigate remove characteristics of dissolved organic matter in landfill leachate, leachates were sampled during the process (i. e. , adjusting tank, anaerobic zone, oxidation ditch and MBR processing). Dissolved organic matter was extracted and its content and structure were characterized by fluorescence excitation-emission matrix spectra, UV-Vis specrtra and FTIR spectra. The results showed that an amount of 377.6 mg x L(-1) dissolved organic carbon (DOC) was removed during the whole treatment process, and the total removal rate was up to 78.34%. The 25.56% of DOC in the adjusting tank was removed during the anaerobic zone, 41.58% of DOC in anaerobic effluent was removed during the oxidation ditch, while 50.19% of DOC in the oxidation ditch effluent decreased in the MBR process. The anaerobic process increased the content of unsaturated compound and polysaccharides in leachate DOM, which improved the leachate biochemical characteristics. The unsaturated compound and polysaccharides were removed effectively during being in oxidation ditch. Protein-like and humic-like fluorescence peaks were observed in the adjusting tank and anaerobic zone, while humic-like fluorescence peaks were just presented in the oxidation ditch and MBR processing. Protein-like and fulvic-like substances were biodegraded in the adjusting tank and anaerobic zone, while humic-like materials were removed in the MBR process.

  12. Assessment of correlation between geophysical and hydrogeological parameters of volcanic deposits at Bandama Caldera (Gran Canaria, Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Casas, Albert; Himi, Mahjoub; Estévez, Esmeralda; Lovera, Raúl; Sendrós, Alexandre; Palacios-Díaz, M. Pino; Tapias, Josefina C.; Cabrera, M. Carmen

    2015-04-01

    The characterization of the preferential areas of water infiltration through the vadose zone is of paramount importance to assess the pollution vulnerability of the underlying aquifers. Nevertheless, geometry and the hydraulic conductivity of each geological unit which constitute the unsaturated zone are difficult to study from traditional techniques (samples from trenches) and normally do not go beyond a meter depth from of the surface. On the other hand, boreholes are expensive and provide only local information not always representative of the whole unsaturated zone. For this reason, geophysical techniques and among them the electrical resistivity tomography method can be applicable in volcanic areas, where basaltic rocks, pyroclastic and volcanic ash-fall deposits have a wide range of values. In order to characterize the subsurface geology below the golf course of Bandama (Gran Canaria Island), irrigated with reclaimed wastewater, a detailed electrical resistivity tomography survey has been carried out. This technique has allowed to define the geometry of the existing geological formations by their high electrical resistivity contrast. Subsequently, in representative outcrops the value of resistivity of each of these lithologies has been measured and simultaneously undisturbed samples have been taken measuring the hydraulic conductivity in the laboratory. Finally a statistical correlation between both variables has been established for evaluating the vulnerability to groundwater pollution at different zones of the golf course.

  13. Pesticides in the groundwater of a spring draining a sandy aquifer: Temporal variability of concentrations and fluxes

    NASA Astrophysics Data System (ADS)

    Morvan, X.; Mouvet, C.; Baran, N.; Gutierrez, A.

    2006-10-01

    A 250 ha agricultural catchment has been characterized with respect to its hydrogeology and groundwater contamination by pesticides from October 1999 to August 2004. Five years after the ending of atrazine (At) application, used since the sixties, At and deethylatrazine (DEA) are still systematically quantified at the outlet of the watershed with concentrations from 0.07 to 0.43 μg l - 1 for At, and between 0.14 and 1.16 μg l - 1 for DEA. Isoproturon and chlortoluron are detected in only one (0.3 μg l - 1 ) and two (0.7 and 2.0 μg l - 1 ) of the 124 semi-monthly samples, respectively. DEA concentrations can be very different between two samples with a 15-day time step. The annual mean exported fluxes of cumulated At and DEA are stable, which indicates a long time transfer in the unsaturated or saturated zone with a progressive leaching of the stock of At and DEA probably accumulated in the soil and the vadose zone. These fluxes, between 0.90% and 2.82% of the annual mean dose of At applied before 1999, similar to those calculated in several studies at the bottom of the root zone, could be explained by low adsorption and degradation properties of At and DEA in the unsaturated and saturated zone.

  14. Flow-path textures and mineralogy in tuffs of the unsaturated zone

    USGS Publications Warehouse

    Levy, Schön; Chipera, Steve; WoldeGabriel, Giday; Fabryka-Martin, June; Roach, Jeffrey; Sweetkind, Donald S.; Haneberg, William C.; Mozley, Peter S.; Moore, J. Casey; Goodwin, Laurel B.

    1999-01-01

    The high concentration of chlorine-36 (36Cl) produced by above-ground nuclear tests (bomb-pulse) provides a fortuitous tracer for infiltration during the last 50 years, and is used to detect fast flow in the unsaturated zone at Yucca Mountain, Nevada, a thick deposit of welded and nonwelded tuffs. Evidence of fast flow as much as 300 m into the mountain has been found in several zones in a 7.7-km tunnel. Many zones are associated with faults that provide continuous fracture flow paths from the surface. In the Sundance fault zone, water with the bomb-pulse signature has moved into subsidiary fractures and breccia zones. We found no highly distinctive mineralogic associations of fault and fracture samples containing bomb-pulse 36Cl. Bomb-pulse sites are slightly more likely to have calcite deposits than are non-bomb-pulse sites. Most other mineralogic and textural associations of fast-flow paths reflect the structural processes leading to locally enhanced permeability rather than the effects of ground-water percolation. Water movement through the rock was investigated by isotopic analysis of paired samples representing breccia zones and fractured wall rock bounding the breccia zones. Where bomb-pulse 36Cl is present, the waters in bounding fractures and intergranular pores of the fast pathways are not in equilibrium with respect to the isotopic signal. In structural domains that have experienced extensional deformation, fluid flow within a breccia is equivalent to matrix flow in a particulate rock, whereas true fracture flow occurs along the boundaries of a breccia zone. Where shearing predominated over extension, the boundary between wall rock and breccia is rough and irregular with a tight wallrock/breccia contact. The absence of a gap between the breccia and the wall rock helps maintain fluid flow within the breccia instead of along the wallrock/breccia boundary, leading to higher 36Cl/Cl values in the breccia than in the wall rock.

  15. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA

    USGS Publications Warehouse

    Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas

    2017-01-01

    Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.

  16. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... reaction products in the unsaturated zone beneath the MSWLF unit; (iii) The detectability of indicator parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  17. WTAQ - A computer program for aquifer-test analysis of confined and unconfined aquifers

    USGS Publications Warehouse

    Barlow, P.M.; Moench, A.F.

    2004-01-01

    Computer program WTAQ was developed to implement a Laplace-transform analytical solution for axial-symmetric flow to a partially penetrating, finite-diameter well in a homogeneous and anisotropic unconfined (water-table) aquifer. The solution accounts for wellbore storage and skin effects at the pumped well, delayed response at an observation well, and delayed or instantaneous drainage from the unsaturated zone. For the particular case of zero drainage from the unsaturated zone, the solution simplifies to that of axial-symmetric flow in a confined aquifer. WTAQ calculates theoretical time-drawdown curves for the pumped well and observation wells and piezometers. The theoretical curves are used with measured time-drawdown data to estimate hydraulic parameters of confined or unconfined aquifers by graphical type-curve methods or by automatic parameter-estimation methods. Parameters that can be estimated are horizontal and vertical hydraulic conductivity, specific storage, and specific yield. A sample application illustrates use of WTAQ for estimating hydraulic parameters of a hypothetical, unconfined aquifer by type-curve methods. Copyright ASCE 2004.

  18. Geochemical Results of Lysimeter Sampling at the Manning Canyon Repository in the Mercur Mining District, Utah

    USGS Publications Warehouse

    Earle, John; Choate, LaDonna

    2010-01-01

    This report presents chemical characteristics of transient unsaturated-zone water collected by lysimeter from the Manning Canyon repository site in Utah. Data collected by U.S. Geological Survey and U.S. Department of the Interior, Bureau of Land Management scientists under an intragovernmental order comprise the existing body of hydrochemical information on unsaturated-zone conditions at the site and represent the first effort to characterize the chemistry of the soil pore water surrounding the repository. Analyzed samples showed elevated levels of arsenic, barium, chromium, and strontium, which are typical of acidic mine drainage. The range of major-ion concentrations generally showed expected soil values. Although subsequent sampling is necessary to determine long-term effects of the repository, current results provide initial data concerning reactive processes of precipitation on the mine tailings and waste rock stored at the site and provide information on the effectiveness of reclamation operations at the Manning Canyon repository.

  19. Local recharge processes in glacial and alluvial deposits of a temperate catchment

    NASA Astrophysics Data System (ADS)

    Fragalà, Federico A.; Parkin, Geoff

    2010-07-01

    SummaryThis study demonstrates that the composition and structure of Quaternary deposits and topography significantly influence rates of recharge and distribution of diffuse agricultural pollution at the hillslope scale. Analyses were made of vertical profiles of naturally-occurring chloride and nitrate, and artificially introduced bromide, in unsaturated and saturated sections of borehole cores of glacial till and alluvium under different land uses in the Upper Eden valley (UK). Estimates of local potential recharge were made based on chloride mass balance and nitrate peak methods. Persistent chloride bulges below the root zone were observed, and are interpreted to result from filtration processes at lithological boundaries. Changes in the shape of chloride profiles downslope, corroborated by nitrate profiles, indicate the roles of surface or near-surface runoff and runon, and the existence of lateral subsurface flows at depth. These findings have implications for estimation of recharge rates through unsaturated zones in Quaternary deposits, and the interpretation of potential 'hot-spots' of diffuse agrochemicals, particularly nitrates, moving through Quaternary deposits into groundwater.

  20. Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.

    2009-12-01

    Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.

  1. Selected techniques for monitoring water movement through unsaturated alluvium during managed aquifer recharge

    USGS Publications Warehouse

    Nawikas, Joseph M.; O'Leary, David R.; Izbicki, John A.; Burgess, Matthew K.

    2016-10-21

    Managed aquifer recharge is used to augment natural recharge to aquifers. It can be used to replenish aquifers depleted by pumping or to store water during wetter years for withdrawal during drier years. Infiltration from ponds is a commonly used, inexpensive approach for managed aquifer recharge.At some managed aquifer-recharge sites, the time when infiltrated water arrives at the water table is not always clearly shown by water-level data. As part of site characterization and operation, it can be desirable to track downward movement of infiltrated water through the unsaturated zone to identify when it arrives at the water table.

  2. Effects of selective handling of pyritic, acid-forming materials on the chemistry of pore gas and ground water at a reclaimed surface coal mine in Clarion County, PA, USA

    USGS Publications Warehouse

    Cravotta,, Charles A.; Dugas, Diana L.; Brady, Keith; Kovalchuck, Thomas E.

    1994-01-01

    A change from dragline to “selective handling” mining methods at a reclaimed surface coal mine in western Pennsylvania did not significantly affect concentrations of metals in ground water because oxidation of pyrite and dissolution of siderite were not abated. Throughout the mine, placement of pyritic material near the land surface facilitated the oxidation of pyrite, causing the consumption of oxygen (O2) and release of acid, iron, and sulfate ions. Locally in the unsaturated zone, water sampled within or near pyritic zones was acidic, with concentrations of sulfate exceeding 3,000 milligrams per liter (mg/L). However, acidic conditions generally did not persist below the water table because of neutralization by carbonate minerals. Dissolution of calcite, dolomite, and siderite in unsaturated and saturated zones produced elevated concentrations of carbon dioxide (CO2), alkalinity, calcium, magnesium, iron, and manganese. Alkalinity concentrations of 600 to 800 mg/L as CaCO3 were common in water samples from the unsaturated zone in spoil, and alkalinities of 100 to 400 mg/L as CaCO3 were common in ground-water samples from the underlying saturated zone in spoil and bedrock. Saturation indices indicated that siderite could dissolve in water throughout the spoil, but that calcite dissolution or precipitation could occur locally. Calcite dissolution could be promoted as a result of pyrite oxidation, gypsum precipitation, and calcium ion exchange for sodium. Calcite precipitation could be promoted by evapotranspiration and siderite dissolution, and corresponding increases in concentrations of alkalinity and other solutes. Partial pressures of O2 (Po2) and CO2 (Pco2) in spoil pore gas indicated that oxidation of pyrite and precipitation of ferric hydroxide, coupled with dissolution of calcite, dolomite, and siderite were the primary reactions affecting water quality. Highest vertical gradients in Po2, particularly in the near-surface zone (0-1 m), did not correlate with concentrations of total sulfur in spoil. This lack of correlation could indicate that total sulfur concentrations in spoil do not reflect the amount of reactive pyrite or that oxidation rates can be controlled more by rates of O2 diffusion than the amount of pyrite. Hence, if placed in O2-rich zones near the land surface, even small amounts of disseminated pyritic material can be relatively significant sources of acid and mineralized water.

  3. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    PubMed Central

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θ s - θ r), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process. PMID:24672332

  4. Analysis of rainfall infiltration law in unsaturated soil slope.

    PubMed

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  5. Nitrate and Moisture Content of Broad Permafrost Landscape Features in the Barrow Peninsula: Predicting Evolving NO3 Concentrations in a Changing Arctic

    NASA Astrophysics Data System (ADS)

    Arendt, C. A.; Heikoop, J. M.; Newman, B. D.; Wales, N. A.; McCaully, R. E.; Wilson, C. J.; Wullschleger, S.

    2017-12-01

    The geochemical evolution of Arctic regions as permafrost degrades, significantly impacts nutrient availability. The release of nitrogen compounds from permafrost degradation fertilizes both microbial decomposition and plant productivity. Arctic warming promotes permafrost degradation, causing geomorphic and hydrologic transitions that have the potential to convert saturated zones to unsaturated zones and subsequently alter the nitrate production capacity of permafrost regions. Changes in Nitrate (NO3-) content associated with shifting moisture regimes are a primary factor determining Arctic fertilization and subsequent primary productivity, and have direct feedbacks to carbon cycling. We have documented a broad survey of co-located soil moisture and nitrate concentration measurements in shallow active layer regions across a variety of topographic features in the expansive continuous permafrost region encompassing the Barrow Peninsula of Alaska. Topographic features of interest are slightly higher relative to surrounding landscapes with drier soils and elevated nitrate, including the rims of low centered polygons, the centers of flat and high centered polygons, the rims of young, old and ancient drain thaw lake basins and drainage slopes that exist across the landscape. With this information, we model the nitrate inventory of the Barrow Peninsula using multiple geospatial approaches to estimate total area cover by unsaturated features of interest and further predict how various drying scenarios increase the magnitude of nitrate produced in degrading permafrost regions across the Arctic. This work is supported by the US Department of Energy Next Generation Ecosystem Experiment, NGEE-Arctic.

  6. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    USGS Publications Warehouse

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  7. Using Simple Field Instruments to Monitor for Biological Production of Methane at Gasoline Spill Sites

    EPA Science Inventory

    When gasoline containing ethanol is spilled to ground water, natural anaerobic biodegradation of the ethanol can produce copious quantities of methane gas, which bubbles out of the ground water and enters the unsaturated zone. Depending on local circumstances, the concentration...

  8. Monitoring Production of Methane from Spills of Gasoline at UST Release Sites (Boston, MA)

    EPA Science Inventory

    Anaerobic biodegradation of the BTEX compounds can produce substantial concentrations of methane in ground water at gasoline spill sites. This methane can escape the ground water, move through the unsaturated zone and potentially produce explosive concentrations of methane in c...

  9. ASSESSING UST CORRECTIVE ACTION TECHNOLOGIES: DIAGNOSTIC EVALUATION OF IN SITU SVE-BASED SYSTEM PERFORMANCE

    EPA Science Inventory

    In situ corrective action technologies are being proposed and installed at an increasing number of underground storage tank (LIST) sites contaminated with petroleum products in saturated and unsaturated zones. It is often difficult to accurately assess the performance of these sy...

  10. Mapping global vulnerability index in mining sectors: A case study Moulares-Redayef aquifer system, southwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Khelif, Nadia; Jmal, Ikram; Bouri, Salem

    2016-09-01

    Contrary to the DRASTIC model grouping together the saturated and unsaturated zones to compute a global intrinsic vulnerability index, the global vulnerability index method incorporates both hydrogeological and hydrochemical data for a comprehensive index mapping for the saturated zones. This concept depends on the behavior and the uses of the groundwater. The main aim of this study is to propose a scientific basis for sustainable land use planning and groundwater management of the Moulares-Reayef aquifer, located in Southwestern Tunisia. The overexploitation of this aquifer causes the threat of groundwater quality by various sources of pollution. The global vulnerability index was applied in the Moulares-Reayef aquifer. The results show that the most favorable zones to pollutant percolation are situated along the wadis (Tabaddit, Zallaz, Berka, …) which are drained by continuous discharges. The global vulnerability values were correlated with nitrates values for validation. It revealed a significant correlation showing that high values of nitrates occurred in highly vulnerable zones with a value of 0.69 for the Pearson coefficient. The global vulnerability evaluation shows that the aquifer is characterized by high vertical vulnerability and high susceptibility.

  11. Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Li, Z.; Zhang, Y.-K.

    2006-01-01

    Riparian zones of many incised channels in agricultural regions are cropped to the channel edge leaving them unvegetated for large portions of the year. In this study we evaluated surface and groundwater interaction in the riparian zone of an incised stream during a spring high flow period using detailed stream stage and hydraulic head data from six wells, and water quality sampling to determine whether the riparian zone can be a source of nitrate pollution to streams. Study results indicated that bank storage of stream water from Walnut Creek during a large storm water runoff event was limited to a narrow 1.6 m zone immediately adjacent to the channel. Nitrate concentrations in riparian groundwater were highest near the incised stream where the unsaturated zone was thickest. Nitrate and dissolved oxygen concentrations and nitrate-chloride ratios increased during a spring recharge period then decreased in the latter portion of the study. We used MODFLOW and MT3DMS to evaluate dilution and denitrification processes that would contribute to decreasing nitrate concentrations in riparian groundwater over time. MT3DMS model simulations were improved with a denitrification rate of 0.02 1/d assigned to the floodplain sediments implying that denitrification plays an important role in reducing nitrate concentrations in groundwater. We conclude that riparian zones of incised channels can potentially be a source of nitrate to streams during spring recharge periods when the near-stream riparian zone is largely unvegetated. ?? 2005 Elsevier B.V. All rights reserved.

  12. A nitrogen-rich septage-effluent plume in a glacial aquifer, Cape Cod, Massachusetts, February 1990 through December 1992

    USGS Publications Warehouse

    Desimone, Leslie A.; Barlow, Paul M.; Howes, Brian L.

    1996-01-01

    Physical, chemical, and microbial processes controlled transport of a nitrogen-rich ground-water plume through a glacial aquifer. Lithologic heterogeneity and vertical head gradients influenced plume movement and geometry. Nitrate was the predominant nitrogen form and oxygen was depleted in the ground-water plume. However, denitrification transformed only 2 percent of plume nitrogen because of limited organic-carbon availability. Aerobic respiration, nitrification and cation exchange (unsaturated zone) and ammonium sorption (saturated zone) had larger effects.

  13. Testing a full‐range soil‐water retention function in modeling water potential and temperature

    USGS Publications Warehouse

    Andraski, Brian J.; Jacobson, Elizabeth A.

    2000-01-01

    Recent work has emphasized development of full‐range water‐retention functions that are applicable under both wet and dry soil conditions, but evaluation of such functions in numerical modeling has been limited. Here we show that simulations using the Rossi‐Nimmo (RN) full‐range function compared favorably with those using the common Brooks‐Corey function and that the RN function can improve prediction of water potentials in near‐surface soil, particularly under dry conditions. Simulations using the RN function also improved prediction of temperatures throughout the soil profile. Such improvements could be important for calculations of liquid and vapor flow in near‐surface soils and in deep unsaturated zones of arid and semiarid regions.

  14. Preliminary development of the LBL/USGS three-dimensional site-scale model of Yucca Mountain, Nevada

    USGS Publications Warehouse

    1995-01-01

    A three-dimensional model of moisture flow within the unsaturated zone at Yucca Mountain is being developed at Lawrence Berkeley Laboratory (LBL) in cooperation with the U.S. Geological Survey (USGS). This site-scale model covers and area of about 34 km2 and is bounded by major faults to the north, east and west. The model geometry is defined (1) to represent the variations of hydrogeological units between the ground surface and the water table; (2) to be able to reproduce the effect of abrupt changes in hydrogeological parameters at the boundaries between hyrdogeological units; and (3) to include the influence of major faults. A detailed numerical grid has been developed based on the locations of boreholes, different infiltration zones, hydrogeological units and their outcrops, major faults, and water level data. Contour maps and isopatch maps are presented defining different types of infiltration zones, and the spatial distribution of Tiva Canyon, Paintbrush, and Topopah Spring hydrogeological units. The grid geometry consists of seventeen non-uniform layers which represent the lithological variations within the four main welded and non-welded hydrogeological units. Matrix flow is approximated using the van Genuchten model, and the equivalent continuum approximation is used to account for fracture flow in the welded units. The fault zones are explicitly modeled as porous medium using various assumptions regarding their permeabilities and characteristic curves. One-, two-, and three-dimensional simulations are conducted using the TOUGH2 computer program. Steady-state simulations are performed with various uniform and non-uniform infiltration rates. The results are interpreted in terms of the effect of fault characteristics on the moisture flow distribution, and on location and formation of preferential pathways.

  15. Wildfire effects on vadose zone hydrology in forested boreal peatland microforms

    NASA Astrophysics Data System (ADS)

    Thompson, Dan K.; Waddington, James M.

    2013-04-01

    SummaryPeatland vulnerability to wildfire disturbance has been shown to vary as a function of hummock and hollow microforms and vadose zone hydrology, with low-lying hollow microforms most susceptible to deep combustion of peat. To better understand how this microform induced pattern of burning alters vadose water storage, pore-water pressure, and water table relationships, we examined a paired burned and unburned peatland in the boreal plain region of north central Alberta. Water table response to rain events increased significantly after wildfire, resulting in a more variable unsaturated zone thickness that was more responsive to smaller rain events. Water storage losses in the vadose zone occurred primarily at depths greater than 15 cm. Large peat surface water loss occurred in hummock microforms in the early spring due to the presence of unsaturated frozen peat at depth, likely a result of a vapour gradient from the unfrozen peat into the frozen peat underneath. During this period, the loss of water storage in the vadose zone satisfied up to 25% of daily evaporative demand, compared to only 3-5% during ice-free periods. A similar but less severe drying was observed late in summer, with burned hummocks the most vulnerable with high pore-water pressures. The enhanced surface drying observed is a precursor to high pore-water pressure conditions that inhibit Sphagnum regeneration. Our observations point to a paradox where the hummocks, being most resistant to combustion, are themselves most prone to high pore-water pressures following wildfire. The harsher hummock environment may contribute to the observed delay in post-fire Sphagnum regeneration in hummocks compared to hollows.

  16. A Unified Multi-scale Model for Cross-Scale Evaluation and Integration of Hydrological and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.

    2013-12-01

    Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller scale simulations were then used to simulate coupled flow and moisture migration in soils in saturated and unsaturated zones, surface and groundwater exchange, and surface water flow in streams and lakes at the DWP site under dynamic precipitation conditions. Laboratory measurements of soil hydrological and biogeochemical properties are used to parameterize the UMSM at the small scales, and field measurements are used to evaluate the UMSM.

  17. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    USGS Publications Warehouse

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between freshwater and saltwater. SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. Mesh construction, which is quite flexible for arbitrary geometries, employs quadrilateral finite elements in 2D Cartesian or radial-cylindrical coordinate systems, and hexahedral finite elements in 3D systems. 3D meshes are currently restricted to be logically rectangular; in other words, they are similar to deformable finite-difference-style grids. Permeabilities may be anisotropic and may vary in both direction and magnitude throughout the system, as may most other aquifer and fluid properties. Boundary conditions, sources and sinks may be time dependent. A number of input data checks are made to verify the input data set. An option is available for storing intermediate results and restarting a simulation at the intermediate time. Output options include fluid velocities, fluid mass and solute mass or energy budgets, and time-varying observations at points in the system. Both the mathematical basis for SUTRA and the program structure are highly general, and are modularized to allow for straightforward addition of new methods or processes to the simulation. The FORTRAN-90 coding stresses clarity and modularity rather than efficiency, providing easy access for later modifications.

  18. Integrated environmental monitoring and simulation system for use as a management decision support tool in urban areas.

    PubMed

    Fatta, D; Naoum, D; Loizidou, M

    2002-04-01

    Leachates are generated as a result of water or other liquid passing through waste at a landfill site. These contaminated liquids originate from a number of sources, including the water produced during the decomposition of the waste as well as rain-fall which penetrates the waste and dissolves the material with which it comes into contact. The penetration of the rain-water depends on the nature of the landfill (e.g. surface characteristics, type and quantity of vegetation, gradient of layers, etc). The uncontrolled infiltration of leachate into the vadose (unsaturated) zone and finally into the saturated zone (groundwater) is considered to be the most serious environmental impact of a landfill. In the present paper the water flow and the pollutant transport characteristics of the Ano Liosia Landfill site in Athens (Greece) were simulated by creating a model of groundwater flows and contaminant transport. A methodology for the model is presented. The model was then integrated into the Ecosim system which is a prototype funded by the EU, (Directorate General XIII: Telematics and Environment). This is an integrated environmental monitoring and modeling system, which supports the management of environmental planning in urban areas.

  19. Application of Vadose Zone Monitoring Technology for Characterization of Leachate Generation in Landfills

    NASA Astrophysics Data System (ADS)

    aharoni, imri; dahan, ofer

    2016-04-01

    Ground water contamination due to landfill leachate percolation is considered the most severe environmental threat related to municipal solid waste landfills. Natural waste degradation processes in landfills normally produce contaminated leachates up to decades after the waste has been buried. Studies have shown that understanding the mechanisms which govern attenuation processes and the fate of pollutants in the waste and in the underlying unsaturated zone is crucial for evaluation of environmental risks and selection of a restoration strategy. This work focuses on a closed landfill in the coastal plain of Israel that was active until 2002 without any lining infrastructure. A vadose zone monitoring system (VMS) that was implemented at the site enables continuous measurements across the waste body (15 m thick) and underlying sandy vadose zone (16 m thick). Data collected by the VMS included continuous measurements of water content as well as chemical composition of the leachates across the entire waste and vadose zone cross section. Results indicated that winter rain percolated through the waste, generating wetting waves which were observed across the waste and unsaturated sediment from land surface until groundwater at 31 m bls. Quick percolation and high fluxes were observed in spite of the clay cover that was implemented at the site as part of the rehabilitation scheme. The results show that the flow pattern is controlled by a preferential mechanism within the waste body. Specific sections showed rapid fluxes in response to rain events, while other sections remained unaffected. In the underlying sandy vadose zone the flow pattern exhibited characteristics of matrix flow. Yet, some sections received higher fluxes due to the uneven discharge of leachates from the overlying waste body. Water samples collected from the waste layer indicate production of highly polluted leachates over 14 years after the landfill was closed. The chemical composition within the waste body shows extreme variability between sampling ports with respect to DOC (407-31,464 mg/L), BOD/COD ratios (0.07-0.55), Fe2+ (6.8-1154 mg/L), NH4+ (68-2924 mg/L) and heavy metal concentrations. The results show for the first time the magnitude of heterogeneity inside a single landfill unit. Waste degradation hot-spots creating concentrated aggressive 'acid phase' leachates exist only 2m away from a 'stable methanogenic' environment which create basic and less polluted leachates. In the underlying vadose zone, contaminant concentrations decrease significantly especially with respect to organic matter and metals. The results suggest that biogeochemical attenuation processes are taking place in the deep unsaturated zone, changing the chemical characteristics of the solute before reaching the groundwater. On the other hand, the chemical composition is highly affected by the distribution of fluxes coming from the above waste layer.

  20. Theory for source-responsive and free-surface film modeling of unsaturated flow

    USGS Publications Warehouse

    Nimmo, J.R.

    2010-01-01

    A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.

  1. Development of an Unsaturated Region Below a Perennial River

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Zhou, Q.; Constantz, J.; Hatch, C.

    2004-12-01

    Field observations at the Russian River Bank Filtration Facility in Sonoma County, California indicate that an unsaturated region exists below the streambed near two adjacent groundwater pumping wells located along the riverbank. Understanding the conditions that give rise to unsaturated flow below the streambed is critical for improving and optimizing riverbank well pumping operations. To investigate the development of an unsaturated region below a perennial river near pumping wells, a three-dimensional model was developed using the multi-phase subsurface flow model, TOUGH2. The model is based on the region around the two pumping wells in the Russian River Bank Filtration Facility. The pumping wells consist of 9 perforated pipes that are projected horizontally into the aquifer at a depth of approximately 20 m below the land surface. A grid was developed for the TOUGH2 model with finer resolution near the wells to represent individual pipes. The effect of varying the pumping operation and the streambed permeability on the extent of the unsaturated region was investigated with the TOUGH2 model. The formation remained saturated below the streambed when only one of the wells was pumped at a rate of 1600 m3/hr, but an unsaturated region developed below the streambed when the two wells each pumped at a rate of 1600 m3/hr. This unsaturated region was deeper when the permeability of the streambed was lower than the aquifer material compared to when the streambed and aquifer permeabilities were the same.

  2. FATE AND TRANSPORT OF MTBE AND OTHER GASOLINE COMPONENTS

    EPA Science Inventory

    This book chapter reviews the processes and interactions that control the transport and fate of MTBE and TBA in the subsurface. It describes the transport and fate of vapors of MTBE in the unsaturated zone, the partitioning of MTBE from gasoline spills directly into water, and t...

  3. Monitoring Production of Methane from Spills of Gasoline at UST Release Sites.

    EPA Science Inventory

    ORD-362 (Rev 06/10/05) (Webforms v2.4) Abstract: Anaerobic biodegradation of the BTEX compounds can produce substantial concentrations of methane in ground water at gasoline spill sites. This methane can escape the ground water, move through the unsaturated zone and potentiall...

  4. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    USDA-ARS?s Scientific Manuscript database

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  5. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    PubMed

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  6. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.

    2011-10-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the majormore » byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.« less

  7. Estimating the effect of shallow groundwater on diurnal heat transport in a vadose zone

    NASA Astrophysics Data System (ADS)

    Jiang, Jianmei; Zhao, Lin; Zhai, Zhe

    2016-09-01

    The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continuously measures temperature and water content of soil profiles to simulate heat transport based on the Philip and de Vries (PDV) model. Three experiments were conducted to measure soil properties at depths of 5 cm, 10 cm, 20 cm, and 30 cm when groundwater tables reached 10 cm, 30 cm, and 60 cm (Experiments I, II, and III). Results show that both the soil temperature near shallow groundwater and the soil water content were effectively simulated by the PDV model. The root mean square errors of the temperature at depths of 5 cm, 10 cm, and 20 cm were 1.018°C, 0.909°C, and 0.255°C, respectively. The total heat flux generated the convergent and divergent planes in space-time fields with valley values of-161.5W•m-2 at 7:30 and-234.6W•m-2 at 11:10 in Experiments II and III, respectively. The diurnal heat transport of the saturated soil occurred in five stages, while that of saturated-unsaturated and unsaturated soil profiles occurred in four stages because high moisture content led to high thermal conductivity, which hastened the heat transport.

  8. Ground-water flow and effects of agricultural application of sewage sludge and other fertilizers on the chemical quality of sediments in the unsaturated zone and ground water near Platteville, Colorado, 1985-89

    USGS Publications Warehouse

    Gaggiani, N.G.

    1995-01-01

    From fall 1985 through 1989, 6,431 dry tons of anaerobic, digested, sewage sludge were applied as a fertilizer on about 1 square mile of sandy farm- land near Platteville, Colorado. Mean nitrite plus nitrate as nitrogen concentrations in the surficial aquifer increased during the period of sewage- sludge application. However, the effects of municipal sewage sludge applied to the soil in section 16 are difficult to ascertain because anhydrous ammonia and cattle and chicken manure were applied to section 16 prior to sewage-sludge application and anhydrous ammonia was applied during the period of sewage-sludge application. Mostly ammonia plus organic nitrogen was detected in the unsaturated zone while nitrite plus nitrate as nitrogen predominated in the surficial aquifer. The areas of largest concentrations of nitrite plus nitrate as nitrogen were in the northeastern and southwestern quarter sections os section 16. Changes in nitrite plus nitrate as nitrogen concentrations with depth and time were detected in water samples from the multilevel ground-water sampling devices in the surficial aquifer. Nitrogen probably entered the saturated zone in the irrigated areas and low temporarily ponded areas and moved to the northeast with water in the surficial aquifer.

  9. Streambeds Merit Recognition as a Scientific Discipline

    NASA Astrophysics Data System (ADS)

    Constantz, J. E.

    2016-12-01

    Streambeds are generally viewed as simply sediments beneath streams, sediments topping alluvial aquifers, or sediments housing aquatic life, rather than as distinct geographic features comparable to soils and surficial geologic formations within watersheds. Streambeds should be viewed as distinct elements within watersheds, e.g., as akin to soils. In this presentation, streambeds are described as central features in watersheds, cycling water between the surface and underlying portions of the watershed. Regarding their kinship to soils, soils are often described as surficial sediments largely created by atmospheric weathering of underlying geologic parent material, and similarly, streambeds should be described as submerged sediments largely created by streamflow modification of underlying geologic parent material. Thus, streambeds are clearly overdue for recognition as their own scientific discipline along side other well-recognized disciplines within watersheds; however, slowing progress in this direction, the point is often made that hyporheic zones should be considered comparable to streambeds, but this is as misguided as equating unsaturated zones to soils. Streambeds and soils are physical geographic features of relatively constant volume, while hyporheic and unsaturated zones are hydrologic features of varying volume. Expanded upon in this presentation, 'Streambed Science' is proposed for this discipline, which will require both a well-designed protocol to physically characterize streambeds as well as development of streambed taxonomy, for suitable recognition as an independent discipline within watersheds.

  10. User's guide to the Variably Saturated Flow (VSF) process to MODFLOW

    USGS Publications Warehouse

    Thoms, R. Brad; Johnson, Richard L.; Healy, Richard W.

    2006-01-01

    A new process for simulating three-dimensional (3-D) variably saturated flow (VSF) using Richards' equation has been added to the 3-D modular finite-difference ground-water model MODFLOW. Five new packages are presented here as part of the VSF Process--the Richards' Equation Flow (REF1) Package, the Seepage Face (SPF1) Package, the Surface Ponding (PND1) Package, the Surface Evaporation (SEV1) Package, and the Root Zone Evapotranspiration (RZE1) Package. Additionally, a new Adaptive Time-Stepping (ATS1) Package is presented for use by both the Ground-Water Flow (GWF) Process and VSF. The VSF Process allows simulation of flow in unsaturated media above the ground-water zone and facilitates modeling of ground-water/surface-water interactions. Model performance is evaluated by comparison to an analytical solution for one-dimensional (1-D) constant-head infiltration (Dirichlet boundary condition), field experimental data for a 1-D constant-head infiltration, laboratory experimental data for two-dimensional (2-D) constant-flux infiltration (Neumann boundary condition), laboratory experimental data for 2-D transient drainage through a seepage face, and numerical model results (VS2DT) of a 2-D flow-path simulation using realistic surface boundary conditions. A hypothetical 3-D example case also is presented to demonstrate the new capability using periodic boundary conditions (for example, daily precipitation) and varied surface topography over a larger spatial scale (0.133 square kilometer). The new model capabilities retain the modular structure of the MODFLOW code and preserve MODFLOW's existing capabilities as well as compatibility with commercial pre-/post-processors. The overall success of the VSF Process in simulating mixed boundary conditions and variable soil types demonstrates its utility for future hydrologic investigations. This report presents a new flow package implementing the governing equations for variably saturated ground-water flow, four new boundary condition packages unique to unsaturated flow, the Adaptive Time-Stepping Package for use with both the GWF Process and the new VSF Process, detailed descriptions of the input and output files for each package, and six simulation examples verifying model performance.

  11. In-situ arsenic removal during groundwater recharge through unsaturated alluvium

    USGS Publications Warehouse

    O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen

    2015-01-01

    OBJECTIVES The purpose of this study was to determine the feasibility and sustainability of in-situ removal of arsenic from water infiltrated through unsaturated alluvium. BACKGROUND Arsenic is naturally present in aquifers throughout the southwestern United States and elsewhere. In January 2006, the U.S. Environmental Protection Agency (EPA) lowered the Maximum Contaminant Level (MCL) for arsenic from 50 to 10 micrograms per liter (g/L). This raised concerns about naturally-occurring arsenic in groundwater. Although commercially available systems using sorbent iron or aluminum oxide resins are available to treat high-arsenic water, these systems are expensive to build and operate, and may generate hazardous waste. Iron and aluminum oxides occur naturally on the surfaces of mineral grains that compose alluvial aquifers. In areas where alluvial deposits are unsaturated, these oxides may sorb arsenic in the same manner as commercial resins, potentially providing an effective low-cost alternative to commercially engineered treatment systems. APPROACH The Antelope Valley within the Mojave Desert of southern California contains a shallow water-table aquifer with arsenic concentrations of 5 g/L, and a deeper aquifer with arsenic concentrations of 30 g/L. Water was pumped from the deep aquifer into a pond and infiltrated through an 80 m-thick unsaturated zone as part of field-scale and laboratory experiments to treat high-arsenic groundwater and recharge the shallow water table aquifer at the site. The field-scale recharge experiment included the following steps: 1) construction of a recharge pond 2) test drilling for sample collection and instrument installation adjacent to the pond 3) monitoring downward migration of water infiltrated from the pond 4) monitoring changes in selected trace-element concentrations as water infiltrated through the unsaturated zone Data from instruments within the borehole adjacent to the pond were supplemented with borehole and surface geophysical data to evaluate the lateral spreading of water as it moved downward through the unsaturated zone. Three laboratory studies were undertaken. Sequential extraction was used to evaluate the abundance of iron, aluminum, and manganese oxides and selected trace elements on operationally defined sites on the surfaces of mineral grains collected before and after infiltration from the pond. Secondly, radio-labeled arsenic-73 microcosm experiments evaluated the potential for incorporation of arsenic sorbed to exchange sites on mineral grains into less reactive crystalline mineral structures with time. Finally, column studies evaluated arsenic sorption and the pH dependence of sorption for selected unsaturated zone materials.RESULTS/CONCLUSIONS Between December 2010 and July 2012, more than 120,000 cubic meters (m3 ) (about 97 acre-feet) of high-arsenic groundwater was pumped from the deep aquifer into a 0.11 hectare (about 0.27 acres) pond and infiltrated though an 80-meter (about 260 feet) thick unsaturated zone to recharge a water-table aquifer. Arsenic concentrations were lowered from 30 to 2 g/L as water infiltrated though the unsaturated zone at the site. Some uranium, possibly associated with past agricultural land use at the site, was mobilized to concentrations as high as 66 g/L within the unsaturated zone during the experiment. Uranium was resorbed and the high uranium concentrations did not reach the water table at the site. Concentrations of other trace elements, including antimony, chromium, vanadium, and selenium were low throughout the study. Infiltration rates from the pond were as high as 0.4 meters per day (1.1 feet per day, ft/d), and the wetting front moved downward about 25 centimeters per day (cm/d) (0.8 ft/d) to a depth of about 50 m (about 165 feet). Clay layers at that depth slowed the downward movement of the wetting front to about 5 cm/d (0.16 ft/d). Lateral movement of the wetting front was monitored using sequential direct-current (DC) surface and sequential electromagnetic (EM) and DC borehole resistivity. Most lateral movement occurred on a clay layer about 50 m (about 165 feet) below land surface. Infiltrated water reached the water table in January 2013. At the water table, the “wetted footprint” of water infiltrated from the pond, indicated by surface resistivity data, was about 13 hectares (about 32 acres). On the basis of data collected at the site, there is enough sorbent material to operate this pond and treat groundwater having an arsenic concentration of 30 g/L to 2 g/L for about 500 years. Toxicity Characteristic Leaching Procedure (TCLP) data showed arsenic concentrations to be below hazardous levels beneath the pond after the experiment. Pond maintenance may be required to keep infiltration rates high, and prevent accumulation of organic material on the pond bottom, although organic material on the pond bottom may increase removal of other trace elements in infiltrated water including chromium, selenium, and vanadium. Laboratory results are consistent with the field data and show sorption of arsenic in 10 cm (0.3 feet) columns to about 2 g/L over a pH range of 6 to 8, and at influent arsenic concentrations as high as 300 g/L, without breakthrough in 50 pore volumes. Column results suggest that the insitu treatment may remove arsenic in a range of hydrogeologic settings, and would not necessarily be restricted to alkaline alluvial aquifers common throughout the southwestern United States. Radiolabeled arsenic-73 experiments show that although arsenic is initially weakly sorbed (and potentially mobile), with time arsenic is incorporated into amorphous materials. One year after sorption onto surface exchange sites, most sorbed arsenic is incorporated into crystalline oxide minerals on the surfaces of primary mineral grains and is less mobile. Results of the study suggest that long-term land use restrictions on sites used for in-situ treatment of arsenic may not be needed to control water applied to surface materials. This minimizes some regulatory concerns about future land use at sites used for in-situ arsenic treatment. However, future land uses that may alter reduction-oxidation conditions in the subsurface should be avoided, such as infiltration of stormwater recharge or recharge with other water having high organic carbon concentrations (including unsewered residential land use, dairy or other confined animal operations).

  12. Topic III - Infiltration and Drainage: A section in Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings (WRI 95-4015)

    USGS Publications Warehouse

    Prudic, David E.; Gee, Glendon; Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    Infiltration into and drainage from facilities for the disposal of low-level radioactive wastes is considered the major process by which non-volatile contaminants are transported away from the facilities. The session included 10 papers related to the processes of infiltration and drainage, and to the simulation of flow and transport through the unsaturated zone. The first paper, presented by David Stonestrom, was an overview regarding the application of unsaturated flow theory to infiltration and drainage. Stonestrom posed three basic questions, which are:How well do we know the relevant processes affecting flow and transport?How well can we measure the parametric functions used to quantify flow and transport?How do we treat complexities inherent in field settings?The other nine papers presented during the session gave some insight to these questions. Topics included: laboratory measurement of unsaturated hydraulic conductivities at low water contents, by John Nimmo; use of environmental tracers to identify preferential flow through fractured media and to quantify drainage, by Edmund Prych and Edwin Weeks; field experiments to evaluate relevant processes affecting infiltration and drainage, by Brian Andraski, Glendon Gee, and Peter Wierenga; and the use of determinist'c and stochastic models for simulating flow and transport through heterogeneous sediments, by Richard Hills, Lynn Gelhar, and Shlomo Neuman.

  13. Subsurface flow and vegetation patterns in tidal environments

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Silvestri, Sonia; Marani, Marco

    2004-05-01

    Tidal environments are characterized by a complex interplay of hydrological, geomorphic, and biological processes, and their understanding and modeling thus require the explicit description of both their biotic and abiotic components. In particular, the presence and spatial distribution of salt marsh vegetation (a key factor in the stabilization of the surface soil) have been suggested to be related to topographic factors and to soil moisture patterns, but a general, process-based comprehension of this relationship has not yet been achieved. The present paper describes a finite element model of saturated-unsaturated subsurface flow in a schematic salt marsh, driven by tidal fluctuations and evapotranspiration. The conditions leading to the establishment of preferentially aerated subsurface zones are studied, and inferences regarding the development and spatial distribution of salt marsh vegetation are drawn, with important implications for the overall ecogeomorphological dynamics of tidal environments. Our results show that subsurface water flow in the marsh induces complex water table dynamics, even when the tidal forcing has a simple sinusoidal form. The definition of a space-dependent aeration time is then proposed to characterize root aeration. The model shows that salt marsh subsurface flow depends on the distance from the nearest creek or channel and that the subsurface water movement near tidal creeks is both vertical and horizontal, while farther from creeks, it is primarily vertical. Moreover, the study shows that if the soil saturated conductivity is relatively low (10-6 m s-1, values quite common in salt marsh areas), a persistently unsaturated zone is present below the soil surface even after the tide has flooded the marsh; this provides evidence of the presence of an aerated layer allowing a prolonged presence of oxygen for aerobic root respiration. The results further show that plant transpiration increases the extent and persistence of the aerated layer, thereby introducing a strong positive feedback: Pioneer plants on marsh edges have the effect of increasing soil oxygen availability, thus creating the conditions for the further development of other plant communities.

  14. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NASA Astrophysics Data System (ADS)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  15. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system.

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Alexandros; Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Schmidt, Felix; Athanasiou, Georgios; Uzunoglou, Nikolaos; Amditis, Angelos; Dietrich, Peter

    2016-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential flow effects of the TDR/FDR sensors and (ii) monitoring of the water table within the shallow karst aquifer layer. The above technique will offer continuous monitoring of infiltration rates and identify possible mechanical or biological clogging effects. The monitoring system will be connected to an ad-hoc wireless network for continuous data transfer within the SAT facilities. It is envisaged that the development and combined application of all the above technologies will provide an integrated monitoring platform for the evaluation of SAT system performance.

  16. Distribution of Minor Elements in Calcite From the Unsaturated Zone at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Whelan, J. F.

    2001-12-01

    Calcite is sporadically distributed in fractures and cavities in the volcanic rocks that form the 500- to 700-m-thick unsaturated zone at Yucca Mountain. Previous work has shown that the calcite precipitated from water moving downward through the unsaturated zone since the volcanic rocks were emplaced approximately 13 Ma. Calcite thus serves as a proxy for the chemistry and amounts of past percolation, two parameters that are important in predictions of the future behavior of the potential radioactive waste repository at Yucca Mountain. Latest calcite, which began forming between approximately 5 and 2 Ma, typically displays fine-scale growth zoning defined by distributions of Mn (inferred from cathodoluminescence), Mg, and Sr. Electron microprobe (EPMA) mapping of outermost calcite reveals Mg growth zoning1 and higher overall concentrations of Mg in late calcite than in older calcite. Micro X-ray fluorescence (micro-XRF) maps were obtained by slow rastering of the samples over a 100-watt X-ray source collimated through a final aperture of 100 μ m. Although the spatial resolution of the micro-XRF mapping is much less than that of EPMA, this technique reveals distributions of some elements to which EPMA is less sensitive. Micro-XRF maps show that Sr is spatially correlated with Mg; Sr concentrations range to 500 μ g/g at the resolution of the 100-μ m collimator. Because both Mg and Sr have similar calcite-water distribution coefficients much less than one, the Mg/Sr in calcite reflects the Mg/Sr of the water that precipitated the calcite. The distribution coefficient for Mn is greater than one and variations in Mn are not correlated with Mg and Sr. Covariation of Mg and Sr in the percolating water may be explained by reactions that affect the rate of uptake of chemical constituents from the overlying rock and soil, and/or evaporation. Late calcite has lower δ 13C values, probably due to a regional change from wetter to drier climate conditions. The higher Mg and Sr concentrations in the late calcite may record lower deposition rates and decreased percolation fluxes due to the drier climate. 1 Wilson, N.S.F., Cline, J.S., and Lundberg, S.A.W., 2000, Paragenesis and chemical composition of secondary mineralization at Yucca Mountain, Nevada, Geol. Soc. Am. Abs. Prog., v. 32, p. A260.

  17. BOREAS TF-4 CO2 and CH4 Soil Profile Data from the SSA

    NASA Technical Reports Server (NTRS)

    Striegl, Robert; Wickland, Kimberly; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-4) team measured distributions of carbon dioxide (CO2) and methane (CH4) concentrations for the upper 5 m of soil and unsaturated zone at the mature stand, upper 6 m at the 20-year-old stand, and the upper 1 m at the 8-year-old stand and clear cut area at the BOREAS Southern Study Area (SSA) during August 1993 to March 1995. Particle size and carbon content of the unsaturated deposits, precipitation, soil temperature and moisture, carbon and oxygen isotopes of soil CO2, and soil water chemistry are also presented. The data are stored in tabular ASCII files.

  18. Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes

    USGS Publications Warehouse

    Yechieli, Y.; Wood, W.W.

    2002-01-01

    Pans, playas, sabkhas, salinas, saline lakes, and salt flats are hydrologically similar, varying only in their boundary conditions. Thus, in evaluating geochemical processes in these systems, a generic water and solute mass-balance approach can be utilized. A conceptual model of a coastal sabkha near the Arabian Gulf is used as an example to illustrate the various water and solute fluxes. Analysis of this model suggests that upward flux of ground water from underlying formations could be a major source of solutes in the sabkha, but contribute only a small volume of the water. Local rainfall is the main source of water in the modeled sabkha system with a surprisingly large recharge-to-rainfall ratio of more than 50%. The contribution of seawater to the solute budget depends on the ratio of the width of the supratidal zone to the total width and is generally confined to a narrow zone near the shoreline of a typical coastal sabkha. Because of a short residence time of water, steady-state flow is expected within a short time (50,000 years). The solute composition of the brine in a closed saline system depends largely on the original composition of the input water. The high total ion content in the brine limits the efficiency of water-rock interaction and absorption. Because most natural systems are hydrologically open, the chemistry of the brines and the associated evaporite deposits may be significantly different than that predicted for hydrologically closed systems. Seasonal changes in temperature of the unsaturated zone cause precipitation of minerals in saline systems undergoing evaporation. Thus, during the hot dry season months, minerals exhibit retrograde solubility so that gypsum, anhydrite and calcite precipitate. Evaporation near the surface is also a major process that causes mineral precipitation in the upper portion of the unsaturated zone (e.g. halite and carnallite), provided that the relative humidity of the atmosphere is less than the activity of water. The slope of the fresh/brine-water interface in saline lake systems is shallower than in fresh/seawater interface because of the greater density difference between the fresh/brine-water bodies. The interface between sabkha brines and seawater slopes seaward, unlike normal marine-fresh water systems that slope landward. Moreover, the brine/seawater interface does not achieve steady state because it is pushed toward the sea by the sabkha's brine. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Reactive transport modelling of groundwater chemistry in a chalk aquifer at the watershed scale

    NASA Astrophysics Data System (ADS)

    Mangeret, A.; De Windt, L.; Crançon, P.

    2012-09-01

    This study investigates thermodynamics and kinetics of water-rock interactions in a carbonate aquifer at the watershed scale. A reactive transport model is applied to the unconfined chalk aquifer of the Champagne Mounts (France), by considering both the chalk matrix and the interconnected fracture network. Major element concentrations and main chemical parameters calculated in groundwater and their evolution along flow lines are in fair agreement with field data. A relative homogeneity of the aquifer baseline chemistry is rapidly reached in terms of pH, alkalinity and Ca concentration since calcite equilibrium is achieved over the first metres of the vadose zone. However, incongruent chalk dissolution slowly releases Ba, Mg and Sr in groundwater. Introducing dilution effect by rainwater infiltration and a local occurrence of dolomite improves the agreement between modelling and field data. The dissolution of illite and opal-CT, controlling K and SiO2 concentrations in the model, can be approximately tackled by classical kinetic rate laws, but not the incongruent chalk dissolution. An apparent kinetic rate has therefore been fitted on field data by inverse modelling: 1.5 × 10- 5 molchalk L - 1water year - 1. Sensitivity analysis indicates that the CO2 partial pressure of the unsaturated zone is a critical parameter for modelling the baseline chemistry over the whole chalk aquifer.

  20. Foam-assisted delivery of nanoscale zero valent iron in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yuanzhao; Liu, Bo; Shen, Xin

    2013-09-01

    Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through themore » unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.« less

Top