Unsteady Aerodynamic Validation Experiences From the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chawlowski, Pawel
2014-01-01
The AIAA Aeroelastic Prediction Workshop (AePW) was held in April 2012, bringing together communities of aeroelasticians, computational fluid dynamicists and experimentalists. The extended objective was to assess the state of the art in computational aeroelastic methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. As a step in this process, workshop participants analyzed unsteady aerodynamic and weakly-coupled aeroelastic cases. Forced oscillation and unforced system experiments and computations have been compared for three configurations. This paper emphasizes interpretation of the experimental data, computational results and their comparisons from the perspective of validation of unsteady system predictions. The issues examined in detail are variability introduced by input choices for the computations, post-processing, and static aeroelastic modeling. The final issue addressed is interpreting unsteady information that is present in experimental data that is assumed to be steady, and the resulting consequences on the comparison data sets.
Experience with transonic unsteady aerodynamic calculations
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Bland, S. R.; Seidel, D. A.
1984-01-01
Comparisons of calculated and experimental transonic unsteady pressures and airloads for four of the AGARD Two Dimensional Aeroelastic Configurations and for a rectangular supercritical wing are presented. The two dimensional computer code, XTRAN2L, implementing the transonic small perturbation equation was used to obtain results for: (1) pitching oscillations of the NACA 64A010A; NLR 7301 and NACA 0012 airfoils; (2) flap oscillations for the NACA 64A006 and NRL 7301 airfoils; and (3) transient ramping motions for the NACA 0012 airfoils. Results from the three dimensional code XTRAN3S are compared with data from a rectangular supercritical wing oscillating in pitch. These cases illustrate the conditions under which the transonic inviscid small perturbation equation provides reasonable predictions.
Unsteady transonic aerodynamics
Nixon, D.
1989-01-01
Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows.
Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory
NASA Technical Reports Server (NTRS)
Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.
2015-01-01
An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.
Unsteady aerodynamics of blade rows
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.
1989-01-01
The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.
Unsteady transonic aerodynamics - An aeronautics challenge
NASA Technical Reports Server (NTRS)
Spreiter, J. R.; Stahara, S. S.
1975-01-01
The paper presents a review of the historical development in unsteady transonic aerodynamics, along with the foundations and accomplishments of several approaches to solve the equations of unsteady transonic flow. The discussion covers the linearized unsteady flow theory, numerical solution of the exact equations for an inviscid compressible gas, nonlinear small disturbance theory of transonic flow and linearization of the unsteady component about the nonlinear solution for the steady state, local linearization solution for unsteady transonic flow, unsteady transonic flow theory for slender wings and bodies, and three-dimensional unsteady transonic flows. The relation between the calculated results and experiment is examined. It is shown that the newly emerging numerical methods are capable of solving the nonlinear equations for two-dimensional flow and can be extended to three-dimensional flows.
NASA Technical Reports Server (NTRS)
Schuster, David M.; Scott, Robert C.; Bartels, Robert E.; Edwards, John W.; Bennett, Robert M.
2000-01-01
As computational fluid dynamics methods mature, code development is rapidly transitioning from prediction of steady flowfields to unsteady flows. This change in emphasis offers a number of new challenges to the research community, not the least of which is obtaining detailed, accurate unsteady experimental data with which to evaluate new methods. Researchers at NASA Langley Research Center (LaRC) have been actively measuring unsteady pressure distributions for nearly 40 years. Over the last 20 years, these measurements have focused on developing high-quality datasets for use in code evaluation. This paper provides a sample of unsteady pressure measurements obtained by LaRC and available for government, university, and industry researchers to evaluate new and existing unsteady aerodynamic analysis methods. A number of cases are highlighted and discussed with attention focused on the unique character of the individual datasets and their perceived usefulness for code evaluation. Ongoing LaRC research in this area is also presented.
Aerodynamics of Unsteady Sailing Kinetics
NASA Astrophysics Data System (ADS)
Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk
2015-11-01
In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.
Unsteady Aerodynamic Force Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2016-01-01
A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection
Identification of Experimental Unsteady Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Piatak, David J.; Scott, Robert C.
2003-01-01
The identification of experimental unsteady aerodynamic impulse responses using the Oscillating Turntable (OTT) at NASA Langley's Transonic Dynamics Tunnel (TDT) is described. Results are presented for two configurations: a Rigid Semispan Model (RSM) and a rectangular wing with a supercritical airfoil section. Both models were used to acquire unsteady pressure data due to pitching oscillations on the OTT. A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the pressure impulse responses. The identified impulse responses are then used to predict the pressure response due to pitching oscillations at several frequencies. Comparisons with the experimental data are presented.
Unsteady Aerodynamics - Subsonic Compressible Inviscid Case
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1999-01-01
This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.
Unsteady Aerodynamic Phenomena in Turbomachines
1990-02-01
The first part of a systematic variation of important parameters shows their influence on the aerodynamic forces and moments coefficients . 2-2...real physical phenomena. Besides, for reasons of stability it in necessary to introduce an additional damping coefficient , which depends on the... coefficients for the "Fourth Standard Configu- ration No. 4" /10/, using a mesh with 51 x 17 points (Fig. I). This grid represents a typical section of
Unsteady aerodynamic modeling for arbitrary motions
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Ashley, H.; Breakwell, J. V.
1977-01-01
A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.
Unsteady aerodynamics and gust response in compressors and turbines
Manwaring, S.R.; Wisler, D.C. . GE Aircraft Engines)
1993-10-01
A comprehensive series of experiments and analyses was performed on compressor and turbine blading to evaluate the ability of current, practical, engineering/analysis models to predict unsteady aerodynamic loading of modern gas turbine blading. This is part of an ongoing effort to improve methods for preventing blading failure. The experiments were conducted in low-speed research facilities capable of simulating the relevant aerodynamic features of turbomachinery. Unsteady loading on compressor and turbine blading was generated by upstream wakes and, additionally for compressors, by a rotating inlet distortion. Fast-response hot-wire anemometry and pressure transducers embedded in the airfoil surfaces were used to determine the aerodynamic gusts and resulting unsteady pressure responses acting on the airfoils. This is the first time that gust response measurements for turbines have been reported in the literature. Several different analyses were used to predict the unsteady component of the blade loading: (1) a classical flat-plate analysis, (2) a two-dimensional linearized flow analysis with a frozen gust model, (3) a two-dimensional linearized flow analysis with a distorted gust model, (4) a two-dimensional linearized Euler analysis, and (5) a two-dimensional nonlinear Euler analysis. Also for the first time, a detailed comparison of these analyses methods is made and the importance of properly accounting for both vortical and potential disturbances is demonstrated. The predictions are compared with experiment and their abilities assessed to help guide designers in using these prediction schemes.
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
Nonlinear, unsteady aerodynamic loads on rectangular and delta wings
NASA Technical Reports Server (NTRS)
Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.
1977-01-01
Nonlinear unsteady aerodynamic loads on rectangular and delta wings in an incompressible flow are calculated by using an unsteady vortex-lattice model. Examples include flows past fixed wings in unsteady uniform streams and flows past wings undergoing unsteady motions. The unsteadiness may be due to gusty winds or pitching oscillations. The present technique establishes a reliable approach which can be utilized in the analysis of problems associated with the dynamics and aeroelasticity of wings within a wide range of angles of attack.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2011-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.
Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1977-01-01
Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.
Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1994-01-01
A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.
A linear aerodynamic analysis for unsteady transonic cascades
NASA Technical Reports Server (NTRS)
Verdon, J. M.; Caspar, J. R.
1984-01-01
A potential flow analysis to predict unsteady airloads produced by the vibrations of turbomachinery blades operating at transonic Mach numbers is presented. The unsteady aerodynamic model includes the effects of blade geometry, finite mean pressure variation across the blade row, high frequency blade motion, and shock motion within the framework of a linearized, frequency domain formulation. The unsteady equations are solved implicit, least squares, finite difference approximation which is applicable on arbitrary grids. A numerical solution for the entire unsteady field is determined by matching a solution determined on a rectilinear type cascade mesh, which covers an extended blade passage region, to a solution determined on a detailed polar type local mesh, which covers and extends well beyond the supersonic region(s) adjacent to a blade surface. Cascades of double circular arc and flat plate blades demonstrate the unsteady analysis, and partially illustrate the effects of blade geometry, inlet Mach number, blade vibration frequency and shock motion on unsteady response.
Influence of unsteady aerodynamics on driving dynamics of passenger cars
NASA Astrophysics Data System (ADS)
Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.
2014-11-01
Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.
Algorithmic Enhancements for Unsteady Aerodynamics and Combustion Applications
NASA Technical Reports Server (NTRS)
Venkateswaran, Sankaran; Olsen, Michael (Technical Monitor)
2001-01-01
Research in the FY01 focused on the analysis and development of enhanced algorithms for unsteady aerodynamics and chemically reacting flowfields. The research was performed in support of NASA Ames' efforts to improve the capabilities of the in-house computational fluid dynamics code, OVERFLOW. Specifically, the research was focused on the four areas: (1) investigation of stagnation region effects; (2) unsteady preconditioning dual-time procedures; (3) dissipation formulation for combustion; and (4) time-stepping methods for combustion.
Unsteady aerodynamic models for agile flight at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Brunton, Steven L.
This work develops low-order models for the unsteady aerodynamic forces on a wing in response to agile maneuvers at low Reynolds number. Model performance is assessed on the basis of accuracy across a range of parameters and frequencies as well as of computational efficiency and compatibility with existing control techniques and flight dynamic models. The result is a flexible modeling procedure that yields accurate, low-dimensional, state-space models. The modeling procedures are developed and tested on direct numerical simulations of a two-dimensional flat plate airfoil in motion at low Reynolds number, Re=100, and in a wind tunnel experiment at the Illinois Institute of Technology involving a NACA 0006 airfoil pitching and plunging at Reynolds number Re=65,000. In both instances, low-order models are obtained that accurately capture the unsteady aerodynamic forces at all frequencies. These cases demonstrate the utility of the modeling procedure developed in this thesis for obtaining accurate models for different geometries and Reynolds numbers. Linear reduced-order models are constructed from either the indicial response (step response) or realistic input/output maneuvers using a flexible modeling procedure. The method is based on identifying stability derivatives and modeling the remaining dynamics with the eigensystem realization algorithm. A hierarchy of models is developed, based on linearizing the flow at various operating conditions. These models are shown to be accurate and efficient for plunging, pitching about various points, and combined pitch and plunge maneuvers, at various angle of attack and Reynolds number. Models are compared against the classical unsteady aerodynamic models of Wagner and Theodorsen over a large range of Strouhal number and reduced frequency for a baseline comparison. Additionally, state-space representations are developed for Wagner's and Theodorsen's models, making them compatible with modern control-system analysis. A number of
Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2011-01-01
A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %.
Application of Approximate Unsteady Aerodynamics for Flutter Analysis
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley W.
2010-01-01
A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.
Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code
NASA Technical Reports Server (NTRS)
Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.
2000-01-01
The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.
Unsteady aerodynamics of fluttering and tumbling plates
NASA Astrophysics Data System (ADS)
Andersen, A.; Pesavento, U.; Wang, Z. Jane
2005-10-01
We investigate the aerodynamics of freely falling plates in a quasi-two-dimensional flow at Reynolds number of 10(3) , which is typical for a leaf or business card falling in air. We quantify the trajectories experimentally using high-speed digital video at sufficient resolution to determine the instantaneous plate accelerations and thus to deduce the instantaneous fluid forces. We compare the measurements with direct numerical solutions of the two-dimensional Navier Stokes equation. Using inviscid theory as a guide, we decompose the fluid forces into contributions due to acceleration, translation, and rotation of the plate. For both fluttering and tumbling we find that the fluid circulation is dominated by a rotational term proportional to the angular velocity of the plate, as opposed to the translational velocity for a glider with fixed angle of attack. We find that the torque on a freely falling plate is small, i.e. the torque is one to two orders of magnitude smaller than the torque on a glider with fixed angle of attack. Based on these results we revise the existing ODE models of freely falling plates. We get access to different kinds of dynamics by exploring the phase diagram spanned by the Reynolds number, the dimensionless moment of inertia, and the thickness-to-width ratio. In agreement with previous experiments, we find fluttering, tumbling, and apparently chaotic motion. We further investigate the dependence on initial conditions and find brief transients followed by periodic fluttering described by simple harmonics and tumbling with a pronounced period-two structure. Near the cusp-like turning points, the plates elevate, a feature which would be absent if the lift depended on the translational velocity alone.
Linear unsteady aerodynamic forces on vibrating annular cascade blades
NASA Astrophysics Data System (ADS)
Nagasaki, Taketo; Yamasaki, Nobuhiko
2003-05-01
The paper presents the formulation to compute numerically the unsteady aerodynamic forces on the vibrating annular cascade blades. The formulation is based on the finite volume method. By applying the TVD scheme to the linear unsteady calculations, the precise calculation of the peak of unsteady aerodynamic forces at the shock wave location like the delta function singularity becomes possible without empirical constants. As a further feature of the present paper, results of the present numerical calculation are compared with those of the double linearization theory (DLT), which assumes small unsteady and steady disturbances but the unsteady disturbances are much smaller than the steady disturbances. Since DLT requires far less computational resources than the present numerical calculation, the validation of DLT is quite important from the engineering point of view. Under the conditions of small steady disturbances, a good agreement between these two results is observed, so that the two codes are cross-validated. The comparison also reveals the limitation on the applicability of DLT.
High performance parallelized implicit Euler solver for the analysis of unsteady aerodynamic flows
NASA Astrophysics Data System (ADS)
Borel, C.; Bredif, M.
Simulation of transient flows is more and more useful for industrial applications in aeronautics. For instance, the unsteady aerodynamic coefficients can be of great importance in order to predict the behavior of flying bodies: this is in particular the case for missiles which are spun around their longitudinal axis. It is also well known that the experimental tools used to evaluate the unsteady aerodynamic characteristics present a certain number of limitations: complexity of the experiments, limited degree of accuracy, high costs and delays. In this context, the Computational Aerodynamics Department of Matra Defense has been developing a software library called AEROLOG for the prediction of the steady and unsteady aerodynamics of tactical missiles using Computational Fluid Dynamics (CFD) techniques. The aim of this paper is as follows: (1) Detailed presentation of the numerical method, with particular emphasis on the high performances in terms of computational time achieved thanks to the use of an implicit scheme combined with a domain decomposition of structured mesh well suited for vector and parallel implementation, and (2) Analysis of 2-D and 3-D unsteady numerical simulations corresponding to academic and industrial cases, showing the accuracy of the method together with its range of applications.
Nonlinear programming extensions to rational function approximations of unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1987-01-01
This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.
Numerical and experimental investigations on unsteady aerodynamics of flapping wings
NASA Astrophysics Data System (ADS)
Yu, Meilin
The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating
System Identification and POD Method Applied to Unsteady Aerodynamics
NASA Technical Reports Server (NTRS)
Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.
2001-01-01
The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.
Prediction of Unsteady Aerodynamic Coefficients at High Angles of Attack
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Murphy, Patrick C.; Klein, Vladislav; Brandon, Jay M.
2001-01-01
The nonlinear indicial response method is used to model the unsteady aerodynamic coefficients in the low speed longitudinal oscillatory wind tunnel test data of the 0.1 scale model of the F-16XL aircraft. Exponential functions are used to approximate the deficiency function in the indicial response. Using one set of oscillatory wind tunnel data and parameter identification method, the unknown parameters in the exponential functions are estimated. The genetic algorithm is used as a least square minimizing algorithm. The assumed model structures and parameter estimates are validated by comparing the predictions with other sets of available oscillatory wind tunnel test data.
Some applications of the quasi vortex-lattice method in steady and unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Lan, C. E.
1976-01-01
The quasi vortex-lattice method is reviewed and applied to the evaluation of backwash, with applications to ground effect analysis. It is also extended to unsteady aerodynamics, with particular interest in the calculation of unsteady leading-edge suction. Some applications in ornithopter aerodynamics are given.
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1976-01-01
An analysis of the steady and unsteady aerodynamics of the space shuttle orbiter has been performed. It is shown that slender wing theory can be modified to account for the effect of Mach number and leading edge roundness on both attached and separated flow loads. The orbiter unsteady aerodynamics can be computed by defining two equivalent slender wings, one for attached flow loads and another for the vortex-induced loads. It is found that the orbiter is in the transonic speed region subject to vortex-shock-boundary layer interactions that cause highly nonlinear or discontinuous load changes which can endanger the structural integrity of the orbiter wing and possibly cause snap roll problems. It is presently impossible to simulate these interactions in a wind tunnel test even in the static case. Thus, a well planned combined analytic and experimental approach is needed to solve the problem.
The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers
NASA Astrophysics Data System (ADS)
Nelson, Robert C.; Pelletier, Alain
2003-04-01
Aircraft that maneuver through large angles of attack will experience large regions of flow separation over the wing and fuselage. The separated flow field is characterized by unsteadiness and strong vortical flow structures that can interact with various components of the aircraft. These complicated flow interactions are the primary cause of most flight dynamic instabilities, airload nonlinearities and flow field time lags. The aerodynamic and the vortical flow structure over simple delta wings undergoing either a pitching or rolling motion is presented. This article reviews experimental information on the flow structure over delta wings and complete aircraft configurations. First, the flow structure of leading-edge vortices and their influence on delta wing aerodynamics for stationary models is presented. This is followed by a discussion of the effect of large amplitude motion on the vortex structure and aerodynamic characteristic of pitching and rolling delta wings. The relationship between the flow structure and the unsteady airloads is reviewed. The unsteady motion of the delta wing results in a modification of the flow field. Delays in flow separation, vortex formation, vortex position and the onset of vortex breakdown are all affected by the model motion. These flow changes cause a corresponding modification in the aerodynamic loads. Data is presented which shows the importance of flow field hysteresis in either vortex position or breakdown and the influence on the aerodynamic characteristics of a maneuvering delta wing. The free-to-roll motion of a double-delta wing is also presented. The complicated flow structure over a double-delta wing gives rise to damped, chaotic and wing rock motions as the angle of attack is increased. The concept of a critical state is discussed and it is shown that crossing a critical state produces large transients in the dynamic airloads. Next, several aircraft configurations are examined to show the importance of unsteady
NASA Technical Reports Server (NTRS)
Schuster, David M.
2008-01-01
Over the past three years, the National Aeronautics and Space Administration (NASA) has initiated design, development, and testing of a new human-rated space exploration system under the Constellation Program. Initial designs within the Constellation Program are scheduled to replace the present Space Shuttle, which is slated for retirement within the next three years. The development of vehicles for the Constellation system has encountered several unsteady aerodynamics challenges that have bearing on more traditional unsteady aerodynamic and aeroelastic analysis. This paper focuses on the synergy between the present NASA challenges and the ongoing challenges that have historically been the subject of research and method development. There are specific similarities in the flows required to be analyzed for the space exploration problems and those required for some of the more nonlinear unsteady aerodynamic and aeroelastic problems encountered on aircraft. The aggressive schedule, significant technical challenge, and high-priority status of the exploration system development is forcing engineers to implement existing tools and techniques in a design and application environment that is significantly stretching the capability of their methods. While these methods afford the users with the ability to rapidly turn around designs and analyses, their aggressive implementation comes at a price. The relative immaturity of the techniques for specific flow problems and the inexperience with their broad application to them, particularly on manned spacecraft flight system, has resulted in the implementation of an extensive wind tunnel and flight test program to reduce uncertainty and improve the experience base in the application of these methods. This provides a unique opportunity for unsteady aerodynamics and aeroelastic method developers to test and evaluate new analysis techniques on problems with high potential for acquisition of test and even flight data against which they
Aerodynamic coefficients in generalized unsteady thin airfoil theory
NASA Technical Reports Server (NTRS)
Williams, M. H.
1980-01-01
Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2008-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1976-01-01
An analysis of the unsteady aerodynamics of bodies with concave nose geometries was performed. The results show that the experimentally observed pulsating flow on spiked bodies and in forward facing cavities can be described by the developed simple mathematical model of the phenomenon. Static experimental data is used as a basis for determination of the oscillatory frequency of spike-induced flow pulsations. The agreement between predicted and measured reduced frequencies is generally very good. The spiked-body mathematical model is extended to describe the pulsations observed in forward facing cavities and it is shown that not only the frequency but also the pressure time history can be described with the accuracy needed to predict the experimentally observed time average effects. This implies that it should be possible to determine analytically the impact of the flow pulsation on the structural integrity of the nozzles for the jettisoned empty SRM-shells.
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Yoo, Y. S.
1976-01-01
Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.
Forcing function effects on unsteady aerodynamic gust response. I - Forcing functions
NASA Technical Reports Server (NTRS)
Henderson, Gregory H.; Fleeter, Sanford
1992-01-01
The paper investigates the fundamental gust modeling assumption on the basis of a series of experiments performed in the Purdue Annular Cascade Research Facility. The measured unsteady flow fields are compared to linear-theory gust requirements. The perforated plate forcing functions closely resemble linear-theory forcing functions, with the static pressure fluctuations small and the periodic velocity vectors parallel to the downstream mean-relative flow angle over the entire periodic cycle. The airfoil forcing functions exhibit characteristics far from linear-theory gusts, with the alignment of the velocity vectors and the static pressure fluctuation amplitudes dependent on the rotor-loading condition, rotor solidity, and the inlet mean-relative flow angle. It is shown that airfoil wakes, both compressor and turbine, cannot be modeled with the boundary conditions of current state-of-the-art linear unsteady aerodynamic theory.
NASA Astrophysics Data System (ADS)
Sun, Min; Yang, Bo; Peng, Tianxiang; Lei, Mingkai
2016-06-01
Unsteady dielectric barrier discharge (DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil. The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0. It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5 as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles, indicating a better flow control performance. By comparing the lift coefficients and the threshold voltages, an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle. The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle. supported by National Natural Science Foundation of China (No. 21276036), Liaoning Provincial Natural Science Foundation of China (No. 2015020123) and the Fundamental Research Funds for the Central Universities of China (No. 3132015154)
Forcing function effects on unsteady aerodynamic gust response: Part 1--Forcing functions
Henderson, G.H.; Fleeter, S. . School of Mechanical Engineering)
1993-10-01
The fundamental gust modeling assumption is investigated by means of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady periodic flow field is generated by rotating rows of perforated plates and airfoil cascades. In this paper, the measured unsteady flow fields are compared to linear-theory vortical gust requirements, with the resulting unsteady gust response of a downstream stator cascade correlated with linear theory predictions in an accompanying paper. The perforated-plate forcing functions closely resemble linear-theory forcing functions, with the static pressure fluctuations small and the periodic velocity vectors parallel to the downstream mean-relative flow angle over the entire periodic cycle. In contrast, the airfoil forcing functions exhibit characteristics far from linear-theory vortical gusts, with the alignment of the velocity vectors and the static pressure fluctuation amplitudes dependent on the rotor-loading conditions, rotor solidity, and the inlet mean-relative flow angle. Thus, these unique data clearly show that airfoil wakes, both compressor and turbine, are not able to be modeled with the boundary conditions of current state-of-the-art linear unsteady aerodynamic theory.
Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.
2003-01-01
The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and
NASA Technical Reports Server (NTRS)
Gangwani, S. T.
1985-01-01
A reliable rotor aeroelastic analysis operational that correctly predicts the vibration levels for a helicopter is utilized to test various unsteady aerodynamics models with the objective of improving the correlation between test and theory. This analysis called Rotor Aeroelastic Vibration (RAVIB) computer program is based on a frequency domain forced response analysis which utilizes the transfer matrix techniques to model helicopter/rotor dynamic systems of varying degrees of complexity. The results for the AH-1G helicopter rotor were compared with the flight test data during high speed operation and they indicated a reasonably good correlation for the beamwise and chordwise blade bending moments, but for torsional moments the correlation was poor. As a result, a new aerodynamics model based on unstalled synthesized data derived from the large amplitude oscillating airfoil experiments was developed and tested.
Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2009-01-01
Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.
Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick; Klein, Vladislav
2011-01-01
Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.
NASA Technical Reports Server (NTRS)
Henderson, Gregory H.; Fleeter, Sanford
1992-01-01
The paper investigates the fundamental gust modeling assumption on the basis of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady period flow field is generated by rotating flows of perforated plates and airfoil cascades, with the resulting unsteady periodic chordwise pressure response of a downstream low solidity stator row determined by miniature pressure transducers embedded within selected airfoils. When the forcing function exhibited the characteristics of a linear-theory gust, the resulting response on the downstream stator airfoils was in excellent agreement with the linear-theory models. When the forcing function did not exhibit linear-theory gust characteristics, the resulting unsteady aerodynamic response of the downstream stators was much more complex and correlated poorly with the linear-theory gust predictions. It is shown that the forcing function generator significantly affects the resulting gust response, with the complexity of the response characteristics increasing from the perforated-plate to the airfoil-cascade forcing functions.
Henderson, G.H.; Fleeter, S. . School of Mechanical Engineering)
1993-10-01
The fundamental gust modeling assumption is investigated by means of series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady periodic flow field is generated by rotating rows of perforated plates and airfoil cascades, with the resulting unsteady periodic chord wise pressure response of a downstream low-solidity stator row determined by miniature pressure transducers embedded within selected airfoils. When the forcing function exhibited the characteristic of a linear-theory vortical gust, as was the case for the perforated-plate wake generators, the resulting response on the downstream stator airfoils was in excellent agreement with the linear-theory models. In contrast, when the forcing function did not exhibit linear-theory vortical gust characteristics, i.e., for the airfoil wake generators, the resulting unsteady aerodynamic responses of the downstream stators were much more complex and correlated poorly with the linear-theory gust predictions. Thus, this investigation has quantitatively shown that the forcing function generator significantly affects the resulting gust response, with the complexity of the response characteristics increasing from the perforated-plate to the airfoil-cascade forcing functions.
Unsteady Aerodynamics of Static Airfoils in Reverse Flow
NASA Astrophysics Data System (ADS)
Lind, Andrew; Jones, Anya
2013-11-01
Wind tunnel experiments have been conducted on two-dimensional blunt and sharp trailing edge airfoils held at static angles of attack in reverse flow for three Reynolds numbers. The current work is aimed at advancing the understanding of fully developed reverse flow for high-speed helicopter applications, and evaluates the potential for blunt trailing edge airfoils to mitigate unsteady rotor blade airloads in this flow regime. Time-resolved particle image velocimetry measurements at post-stall angles of attack have revealed the evolution of a trailing edge vortex formed by the roll-up of vorticity generated in a separated shear layer. Proper orthogonal decomposition (POD) was applied to the flow field measurements to improve the identification and tracking of dominant flow structures. Unsteady force balance measurements have captured non-structural vibrations with frequency content which correlates well with that of the temporal coefficients for the first two POD spatial modes. These vibrations vary in frequency with angle of attack and are shown to be linked with trailing edge vortex shedding. The findings presented here give fundamental insight towards the development of efficient rotor blades for high-speed helicopters.
Unsteady Aerodynamic Effects on the Flight Characteristics of an F-16XL Configuration
NASA Technical Reports Server (NTRS)
Wang, Zhongjun; Lan, C. Edward; Brandon, Jay M.
2000-01-01
Unsteady aerodynamic models based on windtunnel forced oscillation test data and analyzed with a fuzzy logic algorithm arc incorporated into an F-16XL flight simulation code. The reduced frequency needed in the unsteady models is numerically calculated by using a limited prior time history of state variables in a least-square sense. Numerical examples arc presented to show the accuracy of the calculated reduced frequency. Oscillatory control inputs are employed to demonstrate the differences in the flight characteristics based on unsteady and quasi-steady aerodynamic models. Application of the unsteady aerodynamic models is also presented and the results are compared with one set of F16XIL longitudinal maneuver flight data. It is shown that the main differences in dynamic response are in the lateral-directional characteristics, with the quasi-steady model being more stable than the flight vehicle, while the unsteady model being more unstable. Similar conclusions can also be made in a simulated rapid sideslipping roll. To improve unsteady aerodynamic modeling, it is recommended to acquire test data with coupled motions in pitch, roll and yaw.
Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.
1995-01-01
Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1993-01-01
A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.
Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations
Sandhu, Rimple; Poirel, Dominique; Pettit, Chris; Khalil, Mohammad; Sarkar, Abhijit
2016-07-01
A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.
Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations
NASA Astrophysics Data System (ADS)
Sandhu, Rimple; Poirel, Dominique; Pettit, Chris; Khalil, Mohammad; Sarkar, Abhijit
2016-07-01
A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid-structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib-Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.
Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions
Xu, B. F.; Wang, T. G.; Yuan, Y.; Cao, J. F.
2015-01-01
A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859
Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.
Xu, B F; Wang, T G; Yuan, Y; Cao, J F
2015-02-28
A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip.
Unsteady aerodynamic analysis of space shuttle vehicles. Part 1: Summary report
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1973-01-01
An analysis of the unsteady aerodynamics of space shuttle vehicles was performed. The results show that slender wing theory can be modified to give the potential flow static and dynamic characteristics over a large Mach number range from M = 0 to M 1. A semi-empirical analytic approximation is derived for the loads induced by the leading edge vortex; and it is shown that the developed analytic technique gives good prediction of experimentally determined steady and unsteady delta wing aerodynamics, including the effects of leading edge roundness. At supersonic speeds, attached leading edge flow is established and shock-induced flow separation effects become of concern. Analysis of experimental results for a variety of boost configurations led to a definition of the main features of the flow interference effects between orbiter (delta wing) and booster. The effects of control deflection on the unsteady aerodynamics of the delta-wing orbiter were also evaluated.
NASA Astrophysics Data System (ADS)
Suzuki, Kensuke
A new analysis tool, an unsteady Hybrid Navier-Stokes/Vortex Model, for a horizontal axis wind turbine (HAWT) in yawed flow is presented, and its convergence and low cost computational performance are demonstrated. In earlier work, a steady Hybrid Navier-Stokes/Vortex Model was developed with a view to improving simulation results obtained by participants of the NASA Ames blind comparison workshop, following the NREL Unsteady Aerodynamics Experiment. The hybrid method was shown to better predict rotor torque and power over the range of wind speeds, from fully attached to separated flows. A decade has passed since the workshop was held and three dimensional unsteady Navier-Stokes analyses have become available using super computers. In the first chapter, recent results of unsteady Euler and Navier-Stokes computations are reviewed as standard references of what is currently possible and are contrasted with results of the Hybrid Navier-Stokes/Vortex Model in steady flow. In Chapter 2, the computational method for the unsteady Hybrid model is detailed. The grid generation procedure, using ICEM CFD, is presented in Chapter 3. Steady and unsteady analysis results for the NREL Phase IV rotor and for a modified "swept NREL rotor" are presented in Chapter 4-Chapter 7.
NASA Technical Reports Server (NTRS)
Petot, D.; Loiseau, H.
1982-01-01
Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.
Unsteady Aerodynamic and Dynamic Analysis of the Meridian UAS in a Rolling-Yawing Motion
NASA Astrophysics Data System (ADS)
Lykins, Ryan
The nonlinear and unsteady aerodynamic effects of operating the Meridian unmanned aerial system (UAS) in crosswinds and at high angular rates is investigated in this work. The Meridian UAS is a large autonomous aircraft, with a V-tail configuration, operated in Polar Regions for the purpose of remotely measuring ice sheet thickness. The inherent nonlinear coupling produced by the V-tail, along with the strong atmospheric disturbances, has made classical model identification methods inadequate for proper model development. As such, a powerful tool known as Fuzzy Logic Modeling (FLM) was implemented to generate time-dependent, nonlinear, and unsteady aerodynamic models using flight test data collected in Greenland in 2011. Prior to performing FLM, compatibility analysis is performed on the data, for the purpose of systematic bias removal and airflow angle estimation. As one of the advantages of FLM is the ability to model unsteady aerodynamics, the reduced frequency for both longitudinal and lateral-directional motions is determined from the unbiased data, using Theodorsen's theory of unsteadiness, which serves as an input parameter in modeling. These models have been used in this work to identify pilot induced oscillations, unsteady coupling motions, unsteady motion due to the slipstream and cross wind interaction, and destabilizing motions and orientations. This work also assesses the accuracy of preliminary aircraft dynamic models developed using engineering level software, and addresses the autopilot Extended Kalman Filter state estimations.
Development of a linearized unsteady aerodynamic analysis for cascade gust response predictions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Hall, Kenneth C.
1990-01-01
A method for predicting the unsteady aerodynamic response of a cascade of airfoils to entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady background flow. A splitting technique is used to decompose the linearized unsteady velocity into rotational and irrotational parts leading to equations for the complex amplitudes of the linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only sequentially. The entropic and rotational velocity fluctuations are described by transport equations for which closed-form solutions in terms of the mean-flow drift and stream functions can be determined. The potential fluctuation is described by an inhomogeneous convected wave equation in which the source term depends on the rotational velocity field, and is determined using finite-difference procedures. The analytical and numerical techniques used to determine the linearized unsteady flow are outlined. Results are presented to indicate the status of the solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described herein leads to very efficient predictions of cascade unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.
NASA Astrophysics Data System (ADS)
Nishino, Ryohei; Namba, Masanobu
The unsteady aerodynamic force and work for contra-rotating annular cascades of oscillating blades are numerically investigated. A comparison among frequency components of unsteady blade loadings on oscillating blades and stationary blades in relative rotational motion is conducted. It is proved that the state of generated acoustic duct mode of the lowest order is a key factor governing the aeroacoustic interaction between the blade rows. The effect of the neighboring blade row on the aerodynamic force and work is never small and will make substantial modifications to the flutter boundaries of an isolated blade row.
Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics
NASA Technical Reports Server (NTRS)
Eugene, L. Tu
1996-01-01
The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic of continued interest and research. In addition to providing maneuver control and trim, the influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards, the unsteady aerodynamic performance associated with the canard-wing interaction is of particular interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield are further increased. The development and integration of advanced computational technologies provide for the time-accurate Navier-Stokes simulations of the steady and unsteady canard-wing-body flox,fields. Simulation, are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of angles of attack. For the static configurations, the effects of canard positioning and fixed deflection angles on aerodynamic performance and canard-wing vortex interaction are considered. For non-static configurations, the analyses of the canard-wing body flowfield includes the unsteady aerodynamics associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady flowfield associated with moving canards which are typically used as primary control surfaces are considered as well. The steady and unsteady effects of the canard on surface pressure integrated forces and moments, and canard-wing vortex interaction are presented in detail
Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor
NASA Astrophysics Data System (ADS)
Papalia, John J.
Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA
Estimation of Aircraft Unsteady Aerodynamic Parameters from Dynamic Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav
2001-01-01
Improved aerodynamic mathematical models, for use in aircraft simulation or flight control design, are required when representing nonlinear unsteady aerodynamics. A key limitation of conventional aerodynamic models is the inability to map frequency and amplitude dependent data into the equations of motion directly. In an effort to obtain a more general formulation of the aerodynamic model, researchers have been led to a parallel requirement for more general testing methods. Testing for a more comprehensive model can lead to a very time consuming number of tests especially if traditional single frequency harmonic testing is attempted. This paper presents an alternative to traditional single frequency forced-oscillation testing by utilizing Schroeder sweeps to efficiently obtain the frequency response of the unsteady aerodynamic model. Schroeder inputs provide signals with a flat power spectrum over a specified frequency band. For comparison, experimental results using the traditional single-frequency inputs are also considered. A method for data analysis to determine an adequate unsteady aerodynamic model is presented. Discussion of associated issues that arise during this type of analysis and comparison of results using traditional single frequency analysis are provided.
NASA Technical Reports Server (NTRS)
Kandil, O. A.
1981-01-01
Progress is reported in the development of reliable nonlinear vortex methods for predicting the steady and unsteady aerodynamic loads of highly sweptback wings at large angles of attack. Abstracts of the papers, talks, and theses produced through this research are included. The modified nonlinear discrete vortex method and the nonlinear hybrid vortex method are highlighted.
Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi
2013-01-01
Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.
Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J.; Bezner-Kerr, Wayne; Guglielmo, Christopher G.; Kopp, Gregory A.; Gurka, Roi
2013-01-01
Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243
Unsteady aerodynamic interaction effects on turbomachinery blade life and performance
NASA Technical Reports Server (NTRS)
Adamczyk, John J.
1992-01-01
This paper is an attempt to address the impact of a class of unsteady flows on the life and performance of turbomachinery blading. These class of flows to be investigated are those whose characteristic frequency is an integral multiple of rotor shaft speed. Analysis of data recorded downstream of a compressor and turbine rotor will reveal that this class of flows can be highly three-dimensional and may lead to the generation of secondary flows within downstream blading. By explicitly accounting for these unsteady flows in the design of turbomachinery blading for multistage applications, it may be possible to bring about gains in performance and blade life.
NASA Technical Reports Server (NTRS)
Capece, Vincent R.; Platzer, Max F.
2003-01-01
A major challenge in the design and development of turbomachine airfoils for gas turbine engines is high cycle fatigue failures due to flutter and aerodynamically induced forced vibrations. In order to predict the aeroelastic response of gas turbine airfoils early in the design phase, accurate unsteady aerodynamic models are required. However, accurate predictions of flutter and forced vibration stress at all operating conditions have remained elusive. The overall objectives of this research program are to develop a transition model suitable for unsteady separated flow and quantify the effects of transition on airfoil steady and unsteady aerodynamics for attached and separated flow using this model. Furthermore, the capability of current state-of-the-art unsteady aerodynamic models to predict the oscillating airfoil response of compressor airfoils over a range of realistic reduced frequencies, Mach numbers, and loading levels will be evaluated through correlation with benchmark data. This comprehensive evaluation will assess the assumptions used in unsteady aerodynamic models. The results of this evaluation can be used to direct improvement of current models and the development of future models. The transition modeling effort will also make strides in improving predictions of steady flow performance of fan and compressor blades at off-design conditions. This report summarizes the progress and results obtained in the first year of this program. These include: installation and verification of the operation of the parallel version of TURBO; the grid generation and initiation of steady flow simulations of the NASA/Pratt&Whitney airfoil at a Mach number of 0.5 and chordal incidence angles of 0 and 10 deg.; and the investigation of the prediction of laminar separation bubbles on a NACA 0012 airfoil.
Active aerodynamic control of wake-airfoil interaction noise - Experiment
NASA Astrophysics Data System (ADS)
Simonich, J. C.; Lavrich, P. L.; Sofrin, T. G.; Topol, D. A.
A proof of concept experiment is conducted that shows the potential for active aerodynamic control of rotor wake/stator interaction noise in a simplified manner. A single airfoil model representing the stator was fitted with a moveable trailing edge flap controlled by a servo motor. The control system moves the motor driven flap in the correct angular displacement phase and rate to reduce the unsteady load on the airfoil during the wake interaction.
A vortex-lattice method for general, unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Konstadinopoulos, P.; Thrasher, D. F.; Mook, D. T.; Nayfeh, A. H.; Watson, L.
1985-01-01
A general method of calculating unsteady, incompressible, inviscid, three-dimensional flows around arbitrary planforms has been developed. The method is an extension of the vortex-lattice technique. It is not limited by aspect ratio, camber, or angle of attack, as long as vortex breakdown does not occur above the surface of the wing and separation occurs only along sharp edges. As the wing performs arbitrary maneuvers, the position of the wake and the distribution of circulation on the wing and in the wake are obtained as functions of time. One desirable feature of the present method is its ability to treat steady lifting flows very efficiently. Several examples of steady and unsteady flows are presented. These include rectangular wings, with and without flaps, delta, and cropped delta wings.
Identification of unsteady aerodynamics and aeroelastic integro-differential systems
NASA Technical Reports Server (NTRS)
Gupta, N. K.; Iliff, K. W.
1985-01-01
The problem of estimating integro-differential models based on test or simulation data is dealt with. The identification techniques proposed for estimating parameters in models described by differential equations need to be considerably extended to deal with the integral terms. Conditions under which the integral terms may be approximated by algebraic values are discussed. The integro-differential models discussed are related to indicial models proposed by aerodynamicists to describe unsteady flow.
Characteristic boundary conditions for three-dimensional transonic unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Whitlow, W., Jr.
1984-01-01
Characteristic far-field boundary conditions for the three-dimensional unsteady transonic small disturbance potential equation have been developed. The boundary conditions were implemented in the XTRAN3S finite difference code and tested for a flat plate rectangular wing with a pulse in angle of attack; the freestream Mach number was 0.85. The calculated force response shows that the characteristic boundary conditions reduce disturbances that are reflected from the computational boundaries.
Unsteady subsonic and supersonic potential aerodynamics for complex configurations
NASA Technical Reports Server (NTRS)
Morino, L.; Tseng, K.
1977-01-01
A recently developed general theory for unsteady compressible potential fluid dynamics for complex-configuration aircraft is reviewed. The method is based on a combination of the following techniques: Green's function method (to transform the differential equation into an integral differential-delay equation), finite element method (to transform the equation into a set of differential-delay equations in time), and the Laplace transform method (to transform the differential-delay equations into algebraic equations).
Future Research on Transonic Unsteady Aerodynamics and its Aeroelastic Applications
1987-08-01
Fig. 20 shows the instantaneous pressures on an NACA 0012 airfoil oscillating in pitch about its quarter chord. In this case, M = 0.755, a(t...Unsteady Transonic Small Disturbance Equation. NASA TM 85723, 1983. Landon, R. H.: NACA 0012. Oscillatory and Transient Pitching. Compendium of...of aspect-ratio 6 rectangular wing with NACA 0012 airfoil at Mach lumber 0.82, 0=0 1-14 0 o Integral equation 0 Experinnent r Sonic
NASA Technical Reports Server (NTRS)
Seidel, D. A.; Sandford, M. C.; Eckstrom, C. V.
1985-01-01
Transonic steady and unsteady aerodynamic data were measured on a large elastic wing in the NASA Langley Transonic Dynamics Tunnel. The wing had a supercritical airfoil shape and a leading-edge sweepback of 28.8 deg. The wing was heavily instrumented to measure both static and dynamic pressures and deflections. A hydraulically driven outboard control surface was oscillated to generate unsteady airloads on the wing. Representative results from the wind tunnel tests are presented and discussed, and the unexpected occurrence of an unusual dynamic wing instability, which was sensitive to angle of attack, is reported.
An exploratory study of finite difference grids for transonic unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Seidel, D. A.; Bennett, R. M.; Whitlow, W., Jr.
1983-01-01
A pulse-transfer function technique for calculating unsteady aerodynamic forces for a wide range of reduced frequencies is implemented in a finite difference program solving the complete unsteady transonic small perturbation equation. Forces are calculated for a two-dimensional linear flat plate case utilizing the default grids from several currently used finite difference programs. The forces are compared to exact theoretical values and grid generated boundary and internal reflections are demonstrated. Grids designed to alleviate the reflections are presented and forces for a 6% thick parabolic arc airfoil are calculated to investigate non-linear transonic effects.
Unsteady Aerodynamic Flow Control of a Suspended Axisymmetric Moving Platform
NASA Astrophysics Data System (ADS)
Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari
2011-11-01
The aerodynamic forces on an axisymmetric wind tunnel model are altered by fluidic interaction of an azimuthal array of integrated synthetic jet actuators with the cross flow. Four-quadrant actuators are integrated into a Coanda surface on the aft section of the body, and the jets emanate from narrow, azimuthally segmented slots equally distributed around the model's perimeter. The model is suspended in the tunnel using eight wires each comprising miniature in-line force sensors and shape-memory-alloy (SMA) strands that are used to control the instantaneous forces and moments on the model and its orientation. The interaction of the actuation jets with the flow over the moving model is investigated using PIV and time-resolved force measurements to assess the transitory aerodynamic loading effected by coupling between the induced motion of the aerodynamic surface and the fluid dynamics that is driven by the actuation. It is shown that these interactions can lead to effective control of the aerodynamic forces and moments, and thereby of the model's motion. Supported by ARO.
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.
1990-01-01
Progress in the development of computational methods for steady and unsteady aerodynamics has perennially paced advancements in aeroelastic analysis and design capabilities. Since these capabilities are of growing importance in the analysis and design of high-performance aircraft, considerable effort has been directed toward the development of appropriate aerodynamic methodology. The contributions to those efforts from the integral-equations research program at the NASA Langley Research Center is reviewed. Specifically, the current scope, progress, and plans for research and development for inviscid and viscous flows are discussed, and example applications are shown in order to highlight the generality, versatility, and attractive features of this methodology.
Development of Unsteady Aerodynamic State-Space Models from CFD-Based Pulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Raveh, Daniella E.
2001-01-01
A method for computing discrete-time state-space models of linearized unsteady aerodynamic behavior directly from aeroelastic CFD codes is presented. The method involves the treatment of CFD-based pulse responses as Markov parameters for use in a system identification /realization algorithm. Results are presented for the AGARD 445.6 Aeroelastic Wing with four aeroelastic modes at a Mach number of 0.96 using the EZNSS Euler/Navier-Stokes flow solver with aeroelastic capability. The System/Observer/Controller Identification Toolbox (SOCIT) algorithm, based on the Ho-Kalman realization algorithm, is used to generate 15th- and 32nd-order discrete-time state-space models of the unsteady aerodynamic response of the wing over the entire frequency range of interest.
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1995-01-01
Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.
Application of the ASP3D Computer Program to Unsteady Aerodynamic and Aeroelastic Analyses
NASA Technical Reports Server (NTRS)
Batina, John T.
2006-01-01
A new computer program has been developed called ASP3D (Advanced Small Perturbation - 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The paper presents unsteady aerodynamic and aeroelastic applications of ASP3D to assess the time dependent capability and demonstrate various features of the code.
NASA Technical Reports Server (NTRS)
Edwards, John W.; Malone, John B.
1992-01-01
The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.
Wing flutter boundary prediction using unsteady Euler aerodynamic method
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Batina, John T.
1993-01-01
Modifications to an existing 3D implicit upwind Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. These modifications include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the governing flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 deg swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.
Wing flutter boundary prediction using an unsteady Euler aerodynamic method
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Batina, John T.
1993-01-01
Modifications to an existing three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1) for the aeroelastic analysis of wings are described. These modifications, which were previously added to CFL3D Version 1.0, include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the government flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 degree swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.
Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.
1987-01-01
The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral equations and finite difference methods for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite difference solution of the transonic small perturbation equation, the integral equation program is given primary emphasis here because it is less well known.
Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.
1987-01-01
The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral-equations and finite-difference method for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite-difference solution of the transonic small-perturbation equation, the integral-equation program is given primary emphasis here because it is less well known.
Unsteady aerodynamic simulation of multiple bodies in relative motion: A prototype method
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1989-01-01
A prototype method for time-accurate simulation of multiple aerodynamic bodies in relative motion is presented. The method is general and features unsteady chimera domain decomposition techniques and an implicit approximately factored finite-difference procedure to solve the time-dependent thin-layer Navier-Stokes equations. The method is applied to a set of two- and three- dimensional test problems to establish spatial and temporal accuracy, quantify computational efficiency, and begin to test overall code robustness.
NASA Technical Reports Server (NTRS)
Peele, E. L.; Adams, W. M., Jr.
1979-01-01
A computer program, ISAC, is described which calculates the stability and response of a flexible airplane equipped with active controls. The equations of motion relative to a fixed inertial coordinate system are formulated in terms of the airplane's rigid body motion and its unrestrained normal vibration modes. Unsteady aerodynamic forces are derived from a doublet lattice lifting surface theory. The theoretical basis for the program is briefly explained together with a description of input data and output results.
Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.
1998-01-01
A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.
Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.
1999-01-01
A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.
Unsteady aerodynamics of membrane wings with adaptive compliance
NASA Astrophysics Data System (ADS)
Kiser, Jillian; Breuer, Kenneth
2016-11-01
Membrane wings are known to provide superior aerodynamic performance at low Reynolds numbers (Re =104 -105), primarily due to passive shape adaptation to flow conditions. In addition to this passive deformation, active control of the fluid-structure interaction and resultant aerodynamic properties can be achieved through the use of dielectric elastomer actuators as the wing membrane material. When actuated, membrane pretension is decreased and wing camber increases. Additionally, actuation at resonance frequencies allows additional control over wing camber. We present results using synchronized (i) time-resolved particle image velocimetry (PIV) to resolve the flow field, (ii) 3D direct linear transformation (DLT) to recover membrane shape, (iii) lift/drag/torque measurements and (iv) near-wake hot wire anemometry measurements to characterize the fluid-structure interactions. Particular attention is paid to cases in which the vortex shedding frequency, the membrane resonance, and the actuation frequency coincide. In quantitatively examining both flow field and membrane shape at a range of actuation frequencies and vortex shedding frequencies, this work seeks to find actuation parameters that allow for active control of boundary layer separation over a range of flow conditions. Also at Naval Undersea Warfare Center, Division Newport.
2007-11-02
Technology Task Group AVT-010 on Test Cases for Computational Unsteady Aerodynamics Chairman: Luis P. Ruiz-Calavera INTA Aerodynamics Division Carretera ...VTÚL a PVO Praha Director of Aviation Carretera de Torrejón a Ajalvir, Pk.4Mladoboleslavská ul. c/o Flugrad 28850 Torrejón de Ardoz - Madrid197 06
NASA Technical Reports Server (NTRS)
Batina, John T.
1990-01-01
Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.
An analytical technique for approximating unsteady aerodynamics in the time domain
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1980-01-01
An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.
Unsteady Aerodynamic Modeling in Roll for the NASA Generic Transport Model
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.
2012-01-01
Reducing the impact of loss-of-control conditions on commercial transport aircraft is a primary goal of the NASA Aviation Safety Program. One aspect in developing the supporting technologies is to improve the aerodynamic models that represent these adverse conditions. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. In this paper, a more general mathematical model is proposed for the subscale NASA Generic Transport Model (GTM) that covers both low and high angles of attack. Particular attention is devoted to the stall region where full-scale transports have demonstrated a tendency for roll instability. The complete aerodynamic model was estimated from dynamic wind-tunnel data. Advanced computational methods are used to improve understanding and visualize the flow physics within the region where roll instability is a factor.
Physically weighted approximations of unsteady aerodynamic forces using the minimum-state method
NASA Technical Reports Server (NTRS)
Karpel, Mordechay; Hoadley, Sherwood Tiffany
1991-01-01
The Minimum-State Method for rational approximation of unsteady aerodynamic force coefficient matrices, modified to allow physical weighting of the tabulated aerodynamic data, is presented. The approximation formula and the associated time-domain, state-space, open-loop equations of motion are given, and the numerical procedure for calculating the approximation matrices, with weighted data and with various equality constraints are described. Two data weighting options are presented. The first weighting is for normalizing the aerodynamic data to maximum unit value of each aerodynamic coefficient. The second weighting is one in which each tabulated coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. This weighting yields a better fit of the more important terms, at the expense of less important ones. The resulting approximate yields a relatively low number of aerodynamic lag states in the subsequent state-space model. The formulation forms the basis of the MIST computer program which is written in FORTRAN for use on the MicroVAX computer and interfaces with NASA's Interaction of Structures, Aerodynamics and Controls (ISAC) computer program. The program structure, capabilities and interfaces are outlined in the appendices, and a numerical example which utilizes Rockwell's Active Flexible Wing (AFW) model is given and discussed.
Large Angle Unsteady Aerodynamic Theory of a Flat Plate
NASA Astrophysics Data System (ADS)
Manar, Field; Jones, Anya
2016-11-01
A purely analytical approach is taken for the evaluation of the unsteady loads on a flat plate. This allows for an extremely low cost theoretical prediction of the plate loads in the style of Wagner and Theodorsen, without making the assumption of small angle of attack or small disturbance flow. The forces and moments are evaluated using the time rate of change of fluid momentum, expressed as an integral of the vorticity field. The flow is taken as inviscid and incompressible with isolated vorticity bound to the plate and in the shed wake. The bound vorticity distribution on the plate is solved exactly using conformal mapping of the plate to a cylinder. In keeping with the original assumption of Wagner, the wake vorticity is assumed to remain stationary in an inertial reference frame and convection is disregarded. Formulation in this manner allows for a closed form solution of Wagner's problem valid at all angles of attack. Separation from the leading edge of the plate can also be included to further increase the fidelity of the model at high angles.
NASA Astrophysics Data System (ADS)
Lin, Guofeng
Large-amplitude forced oscillation data for an F-18 configuration are analyzed with two modeling methods: Fourier functional analysis to form the indicial integrals, and a generalized dynamic aerodynamic model for stability and control analysis. The indicial integral is first applied to calculate the pitch damping parameter for comparison with the conventional forced oscillation test. It is shown that the reduced frequency affects the damping much more strongly than the test amplitude. Using the indicial integral models in a flight simulation code for an F-18 configuration, it is found that the configuration with unsteady aerodynamics becomes unstable in pitch if the pitch rate is high, in contrast to the quasi-steady configuration which depends mainly on the instantaneous angle of attack. In a pitch-up maneuver in the post-stall regime the configuration with unsteady aerodynamics can stay at a high pitch attitude and angle of attack without losing altitude for a much longer duration than the quasi-steady model. However, the speed will decrease faster because of higher drag. The newly developed generalized dynamic aerodynamic model is of the nonlinear algebraic form with the coefficients being determined from a set of large amplitude oscillatory experimental data by using least-square fitting. The resulting model coefficients are functions of the reduced frequency and amplitude. The new aerodynamic models have been verified with data in harmonic oscillation with a smaller amplitude and in constant pitch-rate motions. The new algebraic models are especially useful in stability and control analysis, and are used in bifurcation analysis and control studies for the same F-18 HARV configuration. The results show significant differences in the equilibrium surfaces and dynamic stability. It is also shown that control gains developed with the conventional quasi-steady aerodynamic data may not be adequate when the effect of unsteady aerodynamics is significant. A numerical
A General Theory of Unsteady Compressible Potential Aerodynamics
NASA Technical Reports Server (NTRS)
Morino, L.
1974-01-01
The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the potential is obtained for both supersonic and subsonic flow. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface, sigma, of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface sigma. For the important practical case of small harmonic oscillation around a rest position, the equation reduces to a two-dimensional Fredholm integral equation of second-type. It is shown that this equation reduces properly to the lifting surface theories as well as other classical mathematical formulas. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings.
A New Compendium of Unsteady Aerodynamic Test Cases for CFD: Summary of AVT WG-003 Activities
NASA Technical Reports Server (NTRS)
Ruiz-Calavera, Luis P.; Bennett, Robert; Fox, John H.; Galbraith, Robert W.; Geurts, Evert; Henshaw, Micahel J. deC.; Huang, XingZhong; Kaynes, Ian W.; Loeser, Thomas; Naudin, Pierre; Tamayama, Masato
1999-01-01
With the continuous progress in hardware and numerical schemes, Computational Unsteady Aerodynamics (CUA), that is, the application of Computational Fluid Dynamics (CFD) to unsteady flowfields, is slowly finding its way as a useful and reliable tool (turbulence and transition modeling permitting) in the aircraft, helicopter, engine and missile design and development process. Before a specific code may be used with confidence it is essential to validate its capability to describe the physics of the flow correctly, or at least to the level of approximation required, for which purpose a comparison with accurate experimental data is needed. Unsteady wind tunnel testing is difficult and expensive; two factors which dramatically limit the number of organizations with the capability and/or resources to perform it. Thus, unsteady experimental data is scarce, often classified and scattered in diverse documents. Additionally, access to the reports does not necessarily assure access to the data itself. The collaborative effort described in this paper was conceived with the aim of collecting into a single easily accessible document as much quality data as possible. The idea is not new. In the early 80's NATO's AGARD (Advisory Group for Aerospace Research & Development) Structures and Material Panel (SMP) produced AGARD Report No. 702 "Compendium of Unsteady Aerodynamic Measurements", which has found and continues to find extensive use within the CUA Community. In 1995 AGARD's Fluid Dynamics Panel (FDP) decided to update and expand the former database with new geometries and physical phenomena, and launched Working Group WG-22 on "Validation Data for Computational Unsteady Aerodynamic Codes". Shortly afterwards AGARD was reorganized as the RTO (Research and Technology Organization) and the WG was renamed as AVT (Applied Vehicle Technolology) WG-003. Contributions were received from AEDC, BAe, DLR, DERA, Glasgow University, IAR, NAL, NASA, NLR, and ONERA. The final publication
NASA Astrophysics Data System (ADS)
Ekici, Kivanc; Hall, Kenneth C.; Dowell, Earl H.
2008-06-01
A harmonic balance technique for the analysis of unsteady flows about helicopter rotors in forward flight and hover is presented in this paper. The aerodynamics of forward flight are highly nonlinear, with transonic flow on the advancing blade, subsonic flow on the retreating blade, and stalled flow over the inner portion of the rotor. Nevertheless, the unsteady flow is essentially periodic in time making it well suited for frequency domain analysis. The present method uses periodic boundary conditions that allows one to model the flow field on a computational grid around a single helicopter blade, no matter the actual blade count. Using this approach, we compute several solutions, each one corresponding to one of several instants in time over one period. These time levels are coupled to each other through a spectral time derivative operator in the interior of the computational domain and through the far-field and periodic boundary conditions around the boundary of the domain. In this paper, we apply the method to the three-dimensional Euler equations (although the method can also be applied to three-dimensional viscous flows), and examine the steady and unsteady aerodynamics about wings and rotors.
Bird Flight as a Model for a Course in Unsteady Aerodynamics
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Mitchell, Jonathan; Puopolo, Michael
2014-11-01
Traditional unsteady aerodynamics courses at the graduate level focus on theoretical formulations of oscillating airfoil behavior. Aerodynamics students with a vision for understanding bird-flight and small unmanned aircraft dynamics desire to move beyond traditional flow models towards new and creative ways of appreciating the motion of agile flight systems. High-speed videos are used to record kinematics of bird flight, particularly barred owls and red-shouldered hawks during perching maneuvers, and compared with model aircraft performing similar maneuvers. Development of a perching glider and associated control laws to model the dynamics are used as a class project. Observations are used to determine what different species and sizes of birds share in their methods to approach a perch under similar conditions. Using fundamental flight dynamics, simplified models capable of predicting position, attitude, and velocity of the flier are developed and compared with the observations. By comparing the measured data from the videos and predicted and measured motions from the glider models, it is hoped that the students gain a better understanding of the complexity of unsteady aerodynamics and aeronautics and an appreciation for the beauty of avian flight.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2008-01-01
A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.
Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)
2001-01-01
The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.
Development of an unsteady aerodynamic analysis for finite-deflection subsonic cascades
NASA Technical Reports Server (NTRS)
Verdon, J. M.; Caspar, J. R.
1981-01-01
An unsteady potential flow analysis, which accounts for the effects of blade geometry and steady turning, was developed to predict aerodynamic forces and moments associated with free vibration or flutter phenomena in the fan, compressor, or turbine stages of modern jet engines. Based on the assumption of small amplitude blade motions, the unsteady flow is governed by linear equations with variable coefficients which depend on the underlying steady low. These equations were approximated using difference expressions determined from an implicit least squares development and applicable on arbitrary grids. The resulting linear system of algebraic equations is block tridiagonal, which permits an efficient, direct (i.e., noniterative) solution. The solution procedure was extended to treat blades with rounded or blunt edges at incidence relative to the inlet flow.
NASA Technical Reports Server (NTRS)
Gupta, N. K.; Iliff, K. W.
1985-01-01
Integrodifferential equations for unsteady aerodynamic and aeroelastic phenomena are identified by means of several approaches. When the product of the frequency of motion and maximum time delay is much smaller than unity, the integral term can be approximated by a constant; when greater than unity, however, approximation of the integral is not possible. Approximations of integrodifferential models are needed to obtain identifiability. While the least-squares method may be used for model determination, the maximum likelihood technique is needed for accurate parameter estimation. High angle of attack and post stall/spin regions appear to have characteristics that can be satisfied by indicial models.
Integration of a supersonic unsteady aerodynamic code into the NASA FASTEX system
NASA Technical Reports Server (NTRS)
Appa, Kari; Smith, Michael J. C.
1987-01-01
A supersonic unsteady aerodynamic loads prediction method based on the constant pressure method was integrated into the NASA FASTEX system. The updated FASTEX code can be employed for aeroelastic analyses in subsonic and supersonic flow regimes. A brief description of the supersonic constant pressure panel method, as applied to lifting surfaces and body configurations, is followed by a documentation of updates required to incorporate this method in the FASTEX code. Test cases showing correlations of predicted pressure distributions, flutter solutions, and stability derivatives with available data are reported.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Karpel, Mordechay
1989-01-01
Various control analysis, design, and simulation techniques for aeroelastic applications require the equations of motion to be cast in a linear time-invariant state-space form. Unsteady aerodynamics forces have to be approximated as rational functions of the Laplace variable in order to put them in this framework. For the minimum-state method, the number of denominator roots in the rational approximation. Results are shown of applying various approximation enhancements (including optimization, frequency dependent weighting of the tabular data, and constraint selection) with the minimum-state formulation to the active flexible wing wind-tunnel model. The results demonstrate that good models can be developed which have an order of magnitude fewer augmenting aerodynamic equations more than traditional approaches. This reduction facilitates the design of lower order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena.
NASA Astrophysics Data System (ADS)
Barlas, Thanasis; Jost, Eva; Pirrung, Georg; Tsiantas, Theofanis; Riziotis, Vasilis; Navalkar, Sachin T.; Lutz, Thorsten; van Wingerden, Jan-Willem
2016-09-01
Simulations of a stiff rotor configuration of the DTU 10MW Reference Wind Turbine are performed in order to assess the impact of prescribed flap motion on the aerodynamic loads on a blade sectional and rotor integral level. Results of the engineering models used by DTU (HAWC2), TUDelft (Bladed) and NTUA (hGAST) are compared to the CFD predictions of USTUTT-IAG (FLOWer). Results show fairly good comparison in terms of axial loading, while alignment of tangential and drag-related forces across the numerical codes needs to be improved, together with unsteady corrections associated with rotor wake dynamics. The use of a new wake model in HAWC2 shows considerable accuracy improvements.
NASA Astrophysics Data System (ADS)
Shimada, Kenji; Ishihara, Takeshi
2012-01-01
It is well known that a bluff body cross-section exhibits various kinds of aerodynamic instabilities such as vortex-induced vibration, galloping and torsional flutter. Since these cross-sections are used in long-span bridges and tall buildings, it is important to predict their occurrence in wind resistant structural design. In this paper, the authors make a series of comparisons of unsteady wind forces, unsteady pressure distributions and free vibration responses between previously conducted studies and an unsteady two-dimensional k-ɛ model for rectangular cross-sections with cross-sectional ratios of 2 and 4 in a smooth uniform flow in order to verify computational predictability of aerodynamic instabilities. As a result, the computation successfully predicted the onset velocities and responses of these aerodynamic instabilities for these cross-sectional ratios, which are common to tall buildings and long bridges.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
Ramamurti, Ravi; Sandberg, William C
2007-03-01
Three-dimensional unsteady computations of the flow past a fruit fly Drosophila under hovering and free flight conditions are computed. The kinematics of the wings and the body of the fruit fly are prescribed from experimental observations. The computed unsteady lift and thrust forces are validated with experimental results and are in excellent agreement. The unsteady aerodynamic origin of the time-varying yaw moment is identified. The differences in the kinematics between the right and the left wings show that subtle change in the stroke angle and deviation angle can result in the yaw moment for the turning maneuver. The computed yaw moment reaches a peak value at the beginning of the maneuver and remains positive throughout the remainder of the maneuver. The origin of the yaw moment is investigated by computing the center of pressures on each wing and the individual moment arms. This investigation leads to the conclusion that it is the forward force and a component of the lift force that combine to produce the turning moment while the side force alone produces the restoring torque during the maneuver. The vorticity shed from the wing's leading edge and the tips show a loop like structure that during stroke reversals pinches off into Lambda-like structures that have not been previously observed in the wakes of flapping fliers.
Effect of Trailing Edge Shape on the Unsteady Aerodynamics of Reverse Flow Dynamic Stall
NASA Astrophysics Data System (ADS)
Lind, Andrew; Jones, Anya
2015-11-01
This work considers dynamic stall in reverse flow, where flow travels over an oscillating airfoil from the geometric trailing edge towards the leading edge. An airfoil with a sharp geometric trailing edge causes early formation of a primary dynamic stall vortex since the sharp edge acts as the aerodynamic leading edge in reverse flow. The present work experimentally examines the potential merits of using an airfoil with a blunt geometric trailing edge to delay flow separation and dynamic stall vortex formation while undergoing oscillations in reverse flow. Time-resolved and phase-averaged flow fields and pressure distributions are compared for airfoils with different trailing edge shapes. Specifically, the evolution of unsteady flow features such as primary, secondary, and trailing edge vortices is examined. The influence of these flow features on the unsteady pressure distributions and integrated unsteady airloads provide insight on the torsional loading of rotor blades as they oscillate in reverse flow. The airfoil with a blunt trailing edge delays reverse flow dynamic stall, but this leads to greater downward-acting lift and pitching moment. These results are fundamental to alleviating vibrations of high-speed helicopters, where much of the rotor operates in reverse flow.
Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.
Sun, Mao; Tang, Jian
2002-01-01
A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in normal hovering flight. The Navier-Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow-structure information. Considerable lift can be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value. Three mechanisms are responsible for the large lift: the rapid acceleration of the wing at the beginning of a stroke, the absence of stall during the stroke and the fast pitching-up rotation of the wing near the end of the stroke. When half the wing rotation is conducted near the end of a stroke and half at the beginning of the next stroke (symmetrical rotation), the lift at the beginning and near the end of a stroke becomes smaller because the effects of the first and third mechanisms above are reduced. The mean lift coefficient is smaller than that of the rotation-advanced case, but is still 80 % larger than the quasi-steady value. When the majority of the rotation is delayed until the beginning of the next stroke (rotation delayed), the lift at the beginning and near the end of a stroke becomes very small or even negative because the effect of the first mechanism above is cancelled and the third mechanism does not apply in this case. The mean lift coefficient is much smaller than in the other two cases.
NASA Technical Reports Server (NTRS)
Bennett, R. M.
1972-01-01
The method of integral relations is applied in a one-strip approximation to the perturbation equations governing small motions of an inclined, sharp-edged, flat surface about the mean supersonic steady flow. Algebraic expressions for low reduced-frequency aerodynamics are obtained and a set of ordinary differential equations are obtained for general oscillatory motion. Results are presented for low reduced-frequency aerodynamics and for the variation of the unsteady forces with frequency. The method gives accurate results for the aerodynamic forces at low reduced frequency which are in good agreement with available experimental data. However, for cases in which the aerodynamic forces vary rapidly with frequency, the results are qualitatively correct, but of limited accuracy. Calculations indicate that for a range of inclination angles near shock detachment such that the flow in the shock layer is low supersonic, the aerodynamic forces vary rapidly both with inclination angle and with reduced frequency.
Feasibility investigation of general time-domain unsteady aerodynamics of rotors
NASA Technical Reports Server (NTRS)
Johnson, Wayne
1990-01-01
The feasibility of a general theory for the time-domain unsteady aerodynamics of helicopter rotors is investigated. The wake theory gives a linearized relation between the downwash and the wing bound circulation, in terms of the impulse response obtained directly in the time domain. This approach makes it possible to treat general wake configurations, including discrete wake vorticity with rolled-up and distorted geometry. The investigation establishes the approach for model order reduction; determines when a constrained identification method is needed; verifies the formulation of the theory for rolled-up, distorted trim wake geometry; and verifies the formulation of the theory for wake geometry perturbations. The basic soundness of the approach is demonstrated by the results presented. A research program to complete the development of the method is outlined. The result of this activity will be an approach for analyzing the aeroelastic stability and response of helicopter rotors, while retaining the important influence of the complicated rotor wake configuration.
UNAERO: A package of FORTRAN subroutines for approximating unsteady aerodynamics in the time domain
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1985-01-01
This report serves as an instruction and maintenance manual for a collection of CDC CYBER FORTRAN IV subroutines for approximating the unsteady aerodynamic forces in the time domain. The result is a set of constant-coefficient first-order differential equations that approximate the dynamics of the vehicle. Provisions are included for adjusting the number of modes used for calculating the approximations so that an accurate approximation is generated. The number of data points at different values of reduced frequency can also be varied to adjust the accuracy of the approximation over the reduced-frequency range. The denominator coefficients of the approximation may be calculated by means of a gradient method or a least-squares approximation technique. Both the approximation methods use weights on the residual error. A new set of system equations, at a different dynamic pressure, can be generated without the approximations being recalculated.
NASA Technical Reports Server (NTRS)
Schuster, David M.; Edwards, John W.
2004-01-01
The motivation behind the inclusion of unsteady aerodynamics and aeroelastic effects in the computation of stability and control (S&C) derivatives will be discussed as they pertain to aeroelastic and aeroservoelastic analysis. This topic will be addressed in the context of two applications, the first being the estimation of S&C derivatives for a cable-mounted aeroservoelastic wind tunnel model tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT). The second application will be the prediction of the nonlinear aeroservoelastic phenomenon known as Residual Pitch Oscillation (RPO) on the B-2 Bomber. Techniques and strategies used in these applications to compute S&C derivatives and perform flight simulations will be reviewed, and computational results will be presented.
NASA Technical Reports Server (NTRS)
Crill, W.; Dale, B.
1977-01-01
The input data required to execute the computer program ISCON are described. The program generates a numerical procedure for the determination of unsteady aerodynamic forces on arbitrarily interacting wings and tails in supersonic flow. A velocity potential gradient method is used. Constant Mach number is assumed throughout the flow field. Lifting surfaces are represented by trapezoidal elements which can be generated automatically by the program. The wake field is represented by rectangular strip elements. The formulation is reviewed as well as input overview and input format. Instruction on how to use ISCON, a sample problem, and the restart feature are discussed. Program size limitations, computer program flow, and error messages are also included along with a description of the SS31 program used to compute the coefficients of surface spline.
Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm
NASA Technical Reports Server (NTRS)
Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama
2001-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.
NASA Technical Reports Server (NTRS)
Ramsey, John K.; Erwin, Dan
2004-01-01
An experimental influence coefficient technique was used to obtain unsteady aerodynamic influence coefficients and, consequently, unsteady pressures for a cascade of symmetric airfoils oscillating in pitch about mid-chord. Stagger angles of 0 deg and 10 deg were investigated for a cascade with a gap-to-chord ratio of 0.417 operating at an axial Mach number of 1.9, resulting in a supersonic leading-edge locus. Reduced frequencies ranged from 0.056 to 0.2. The influence coefficients obtained determine the unsteady pressures for any interblade phase angle. The unsteady pressures were compared with those predicted by several algorithms for interblade phase angles of 0 deg and 180 deg.
Recent Experiments at the Gottingen Aerodynamic Institute
NASA Technical Reports Server (NTRS)
Ackeret, J
1925-01-01
This report presents the results of various experiments carried out at the Gottingen Aerodynamic Institute. These include: experiments with Joukowski wing profiles; experiments on an airplane model with a built-in motor and functioning propeller; and the rotating cylinder (Magnus Effect).
NASA Technical Reports Server (NTRS)
Ward, J. F.; Young, W. H., Jr.
1973-01-01
The basic unsteady aerodynamic environment of the rotary wing is summarized. Some of the observed trends in the state of the art are discussed. Some of the research needs that will require attention are reported. A review of a number of research investigations as a part of a joint NASA/Army rotorcraft project is presented. The research is directed toward achieving a better understanding of rotor unsteady airfoils. The investigations include: (1) rotor maneuver loads; (2) level flight and maneuver wake prediction; (3) tip-vortex flow; (4) blade-vortex interactions; (5) dynamic stall; (6) transient Mach number air loads; and (7) development of variable geometry rotors.
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1973-01-01
A study was conducted to investigate the feasibility of using combined subsonic and supersonic linear theory as a means for solving unsteady transonic flow problems in an economical and yet realistic manner. With some modification, existing linear theory methods are combined into a single program and a simple algorithm is derived for determining interference between lifting surface elements of different Mach number. The method is applied to a wide variety of problems for which measured unsteady pressure distributions and Mach number distributions are available. By comparing theory and experiment, the transonic method solutions show a significant improvement over uniform flow solutions. It is concluded that with these refinements the method will provide a means for performing realistic transonic flutter and dynamic response analyses at costs which are compatible with current linear theory based solutions.
Time-accurate unsteady aerodynamic and aeroelastic calculations for wings using Euler equations
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
1988-01-01
A time-accurate approach to simultaneously solve the Euler flow equations and modal structural equations of motion is presented for computing aeroelastic responses of wings. The Euler flow eauations are solved by a time-accurate finite difference scheme with dynamic grids. The coupled aeroelastic equations of motion are solved using the linear acceleration method. The aeroelastic configuration adaptive dynamic grids are time accurately generated using the aeroelastically deformed shape of the wing. The unsteady flow calculations are validated wih experiment, both for a semi-infinite wing and a wall-mounted cantilever rectangular wings. Aeroelastic responses are computed for a rectangular wing using the modal data generated by the finite-element method. The robustness of the present approach in computing unsteady flows and aeroelastic responses that are beyond the capability of earlier approaches using the potential equations are demonstrated.
NASA Astrophysics Data System (ADS)
Schneider, C. P.
1980-05-01
A theoretical method for the determination of unsteady aerodynamic coefficients associated with the longitudinal stability of slender wings in supersonic flight is presented. It is based on the indicial functional theory of Tobak. Extension to higher incidences is effected by combining the indicial functions with steady nonlinear coefficients derived from a semiempiricial procedure. The unsteady nonlinear aerodynamic coefficients are determined for delta wings with subsonic and supersonic leading edges, respectively.
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Wells, W. R.; Keskar, D. A.
1979-01-01
A simple vortex system, used to model unsteady aerodynamic effects into the rigid body longitudinal equations of motion of an aircraft, is described. The equations are used in the development of a parameter extraction algorithm. Use of the two parameter-estimation modes, one including and the other omitting unsteady aerodynamic modeling, is discussed as a means of estimating some acceleration derivatives. Computer generated data and flight data, used to demonstrate the use of the parameter-extraction algorithm are studied.
NASA Technical Reports Server (NTRS)
Mabey, D. G.; Chambers, J. R.
1986-01-01
From May 6 to 9, 1985, the Fluid Dynamics Panel and Flight Mechanics Panel of AGARD jointly arranged a Symposium on Unsteady Aerodynamics-Fundamentals and Applications to Aircraft Dynamics at the Stadthall, Goettingen, West Germany. This Symposium was organized by an international program committee chaired by Dr. K. J. Orlik-Ruckemann of the Fluid Dynamics Panel. The program consisted of five sessions grouped in two parts: (1) Fundamentals of Unsteady Aerodynamics; and (2) Applications to Aircraft Dynamics. The 35 papers presented at the 4 day meeting are published in AGARD CP 386 and listed in the Appendix. As the papers are already available and cover a very wide field, the evaluators have offered brief comments on every paper, followed by an overall evaluation of the meeting, together with some general conclusions and recommendations.
Computationally efficient simulation of unsteady aerodynamics using POD on the fly
NASA Astrophysics Data System (ADS)
Moreno-Ramos, Ruben; Vega, José M.; Varas, Fernando
2016-12-01
Modern industrial aircraft design requires a large amount of sufficiently accurate aerodynamic and aeroelastic simulations. Current computational fluid dynamics (CFD) solvers with aeroelastic capabilities, such as the NASA URANS unstructured solver FUN3D, require very large computational resources. Since a very large amount of simulation is necessary, the CFD cost is just unaffordable in an industrial production environment and must be significantly reduced. Thus, a more inexpensive, yet sufficiently precise solver is strongly needed. An opportunity to approach this goal could follow some recent results (Terragni and Vega 2014 SIAM J. Appl. Dyn. Syst. 13 330-65 Rapun et al 2015 Int. J. Numer. Meth. Eng. 104 844-68) on an adaptive reduced order model that combines ‘on the fly’ a standard numerical solver (to compute some representative snapshots), proper orthogonal decomposition (POD) (to extract modes from the snapshots), Galerkin projection (onto the set of POD modes), and several additional ingredients such as projecting the equations using a limited amount of points and fairly generic mode libraries. When applied to the complex Ginzburg-Landau equation, the method produces acceleration factors (comparing with standard numerical solvers) of the order of 20 and 300 in one and two space dimensions, respectively. Unfortunately, the extension of the method to unsteady, compressible flows around deformable geometries requires new approaches to deal with deformable meshes, high-Reynolds numbers, and compressibility. A first step in this direction is presented considering the unsteady compressible, two-dimensional flow around an oscillating airfoil using a CFD solver in a rigidly moving mesh. POD on the Fly gives results whose accuracy is comparable to that of the CFD solver used to compute the snapshots.
Transonic Unsteady Aerodynamics of the F/A-18E at Conditions Promoting Abrupt Wing Stall
NASA Technical Reports Server (NTRS)
Schuster, David M.; Byrd, James E.
2003-01-01
A transonic wind tunnel test of an 8% F/A-18E model was conducted in the NASA Langley Research Center (LaRC) 16-Foot Transonic Tunnel (16-Ft TT) to investigate the Abrupt Wing Stall (AWS) characteristics of this aircraft. During this test, both steady and unsteady measurements of balance loads, wing surface pressures, wing root bending moments, and outer wing accelerations were performed. The test was conducted with a wide range of model configurations and test conditions in an attempt to reproduce behavior indicative of the AWS phenomenon experienced on full-scale aircraft during flight tests. This paper focuses on the analysis of the unsteady data acquired during this test. Though the test apparatus was designed to be effectively rigid. model motions due to sting and balance flexibility were observed during the testing, particularly when the model was operating in the AWS flight regime. Correlation between observed aerodynamic frequencies and model structural frequencies are analyzed and presented. Significant shock motion and separated flow is observed as the aircraft pitches through the AWS region. A shock tracking strategy has been formulated to observe this phenomenon. Using this technique, the range of shock motion is readily determined as the aircraft encounters AWS conditions. Spectral analysis of the shock motion shows the frequencies at which the shock oscillates in the AWS region, and probability density function analysis of the shock location shows the propensity of the shock to take on a bi-stable and even tri-stable character in the AWS flight regime.
Application of unstructured grid methods to steady and unsteady aerodynamic problems
NASA Technical Reports Server (NTRS)
Batina, John T.
1989-01-01
The purpose is to describe the development of unstructured grid methods which have several advantages when compared to methods which make use of structured grids. Unstructured grids, for example, easily allow the treatment of complex geometries, allow for general mesh movement for realistic motions and structural deformations of complete aircraft configurations which is important for aeroelastic analysis, and enable adaptive mesh refinement to more accurately resolve the physics of the flow. Steady Euler calculations for a supersonic fighter configuration to demonstrate the complex geometry capability; unsteady Euler calculations for the supersonic fighter undergoing harmonic oscillations in a complete-vehicle bending mode to demonstrate the general mesh movement capability; and vortex-dominated conical-flow calculations for highly-swept delta wings to demonstrate the adaptive mesh refinement capability are discussed. The basic solution algorithm is a multi-stage Runge-Kutta time-stepping scheme with a finite-volume spatial discretization based on an unstructured grid of triangles in 2D or tetrahedra in 3D. The moving mesh capability is a general procedure which models each edge of each triangle (2D) or tetrahedra (3D) with a spring. The resulting static equilibrium equations which result from a summation of forces are then used to move the mesh to allow it to continuously conform to the instantaneous position or shape of the aircraft. The adaptive mesh refinement procedure enriches the unstructured mesh locally to more accurately resolve the vortical flow features. These capabilities are described in detail along with representative results which demonstrate several advantages of unstructured grid methods. The applicability of the unstructured grid methodology to steady and unsteady aerodynamic problems and directions for future work are discussed.
NASA Technical Reports Server (NTRS)
Ramsey, John K.; Erwin, Dan
2005-01-01
Experimental data were obtained to help validate analytical and computational fluid dynamics (CFD) codes used to compute unsteady cascade aerodynamics in a supersonicaxial- flow regime. Results from two analytical codes and one CFD code were compared with experimental data. One analytical code did not account for airfoil thickness or camber; another, using piston theory (piston code), accounted for thickness and camber upstream of the first shockwave/airfoil impingement locations. The Euler CFD code accounted fully for airfoil shape.
NASA Technical Reports Server (NTRS)
Rowe, W. S.; Sebastian, J. D.; Petrarca, J. R.
1979-01-01
Results of theoretical and numerical investigations conducted to develop economical computing procedures were applied to an existing computer program that predicts unsteady aerodynamic loadings caused by leading and trailing edge control surface motions in subsonic compressible flow. Large reductions in computing costs were achieved by removing the spanwise singularity of the downwash integrand and evaluating its effect separately in closed form. Additional reductions were obtained by modifying the incremental pressure term that account for downwash singularities at control surface edges. Accuracy of theoretical predictions of unsteady loading at high reduced frequencies was increased by applying new pressure expressions that exactly satisified the high frequency boundary conditions of an oscillating control surface. Comparative computer result indicated that the revised procedures provide more accurate predictions of unsteady loadings as well as providing reduction of 50 to 80 percent in computer usage costs.
A review of unsteady turbulent boundary-layer experiments
NASA Technical Reports Server (NTRS)
Carr, L. W.
1981-01-01
The essential results of a comprehensive review of existing unsteady turbulent boundary-layer experiments are presented. Different types of unsteady flow facilities are described, and the related unsteady turbulent boundary-layer experiments are cataloged and discussed. The measurements that were obtained in the various experiments are described, and a complete list of experimental results is presented. All the experiments that measured instantaneous values of velocity, turbulence intensity, or turbulent shear stress are identified, and the availability of digital data is indicated. The results of the experiments are analyzed, and several significant trends are identified. An assessment of the available data is presented, delineating gaps in the existing data, and indicating where new or extended information is needed. Guidelines for future experiments are included.
Introduction of the ASP3D Computer Program for Unsteady Aerodynamic and Aeroelastic Analyses
NASA Technical Reports Server (NTRS)
Batina, John T.
2005-01-01
A new computer program has been developed called ASP3D (Advanced Small Perturbation 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP3D code is the result of a decade of developmental work on improvements to the small perturbation formulation, performed while the author was employed as a Senior Research Scientist in the Configuration Aerodynamics Branch at the NASA Langley Research Center. The ASP3D code is a significant improvement to the state-of-the-art for transonic aeroelastic analyses over the CAP-TSD code (Computational Aeroelasticity Program Transonic Small Disturbance), which was developed principally by the author in the mid-1980s. The author is in a unique position as the developer of both computer programs to compare, contrast, and ultimately make conclusions regarding the underlying formulations and utility of each code. The paper describes the salient features of the ASP3D code including the rationale for improvements in comparison with CAP-TSD. Numerous results are presented to demonstrate the ASP3D capability. The general conclusion is that the new ASP3D capability is superior to the older CAP-TSD code because of the myriad improvements developed and incorporated.
Identification of an unsteady aerodynamic model up to high angle of attack regime
NASA Astrophysics Data System (ADS)
Fan, Yigang
1997-12-01
those from references, a state-space model is developed to describe the unsteady aerodynamic characteristics up to the high angle of attack regime. A nondimensional coordinate is introduced as the state variable describing the flow separation or vortex burst. First-order differential equation is used to govern the dynamics of flow separation or vortex bursting through this state variable. To be valid for general configurations, Taylor series expansions in terms of the input variables are used in the determination of aerodynamic characteristics, resembling the current approach of the stability derivatives. However, these derivatives are longer constant. They are dependent on the state variable of flow separation or vortex burst. In this way, the changes in stability derivatives with the angle of attack are included dynamically. The performance of the model is then validated by the wind-tunnel measurements of an NACA 0015 airfoil, a 70sp° delta wing and, finally two F-18 aircraft configurations. The results obtained show that within the framework of the proposed model, it is possible to obtain good agreement with different unsteady wind tunnel data in high angle-of-attack regime.
NASA Technical Reports Server (NTRS)
Srivastava, R.; Reddy, T. S. R.
1997-01-01
The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.
NASA Technical Reports Server (NTRS)
Srivastava, R.; Reddy, T. S. R.
1996-01-01
This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.
NASA Technical Reports Server (NTRS)
Carta, F. O.
1982-01-01
Tests were conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and, particularly, the aerodynamic damping coefficient. Results from the unsteady Verdon/Caspar theory for cascaded blades with nonzero thickness and camber were compared with the experimental measurements. The three primary results are: (1) from the leading edge plane blade data, the cascade was judged to be periodic in unsteady flow over the range of parameters tested; (2) the interblade phase angle was found to be the single most important parameter affecting the stability of the oscillating cascade blades; and (3) the real blade theory and the experiment were in excellent agreement for the several cases chosen for comparison.
Advanced Small Perturbation Potential Flow Theory for Unsteady Aerodynamic and Aeroelastic Analyses
NASA Technical Reports Server (NTRS)
Batina, John T.
2005-01-01
An advanced small perturbation (ASP) potential flow theory has been developed to improve upon the classical transonic small perturbation (TSP) theories that have been used in various computer codes. These computer codes are typically used for unsteady aerodynamic and aeroelastic analyses in the nonlinear transonic flight regime. The codes exploit the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP theory was developed methodically by first determining the essential elements required to produce full-potential-like solutions with a small perturbation approach on the requisite Cartesian grid. This level of accuracy required a higher-order streamwise mass flux and a mass conserving surface boundary condition. The ASP theory was further developed by determining the essential elements required to produce results that agreed well with Euler solutions. This level of accuracy required mass conserving entropy and vorticity effects, and second-order terms in the trailing wake boundary condition. Finally, an integral boundary layer procedure, applicable to both attached and shock-induced separated flows, was incorporated for viscous effects. The resulting ASP potential flow theory, including entropy, vorticity, and viscous effects, is shown to be mathematically more appropriate and computationally more accurate than the classical TSP theories. The formulaic details of the ASP theory are described fully and the improvements are demonstrated through careful comparisons with accepted alternative results and experimental data. The new theory has been used as the basis for a new computer code called ASP3D (Advanced Small Perturbation - 3D), which also is briefly described with representative results.
NASA Technical Reports Server (NTRS)
Vepa, R.
1976-01-01
The general behavior of unsteady airloads in the frequency domain is explained. Based on this, a systematic procedure is described whereby the airloads, produced by completely arbitrary, small, time-dependent motions of a thin lifting surface in an airstream, can be predicted. This scheme employs as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. Although these approximations have many uses, they are proving especially valuable in the design of automatic control systems intended to modify aeroelastic behavior.
NASA Technical Reports Server (NTRS)
Petrarca, J. R.; Harrison, B. A.; Redman, M. C.; Rowe, W. S.
1979-01-01
A digital computer program was developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge and trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges were extracted analytically as a preliminary step to solving the integral equation of collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accomodated.
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali
2009-01-01
Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
NASA Technical Reports Server (NTRS)
Friedmann, P. P.; Venkatesan, C.
1985-01-01
The aeromechanical stability of a helicopter in ground resonance was analyzed, by incorporating five different aerodynamic models in the coupled rotor/fuselage analysis. The sensitivity of the results to changes in aerodynamic modelling was carefully examined. The theoretical results were compared with experimental data and useful conclusions are drawn regarding the role of aerodynamic modeling on this aeromechanical stability problem. The aerodynamic model which provided the best all around correlation with the experimental data was identified.
NASA Astrophysics Data System (ADS)
Hanada, T.; Namba, M.
1996-08-01
The double linearization concept is applied to a rotating annular cascade model operating at supersonic axial velocity. It is assumed that each blade vibrates with infinitesimal displacement amplitude under small but non-zero mean loading. Vibration modes normal and parallel to the blade chord are considered. Numerical results indicate that the mean loading effects play a crucial role on the aerodynamic instability of the blade motion. The bending motion can be unstable due to the presence of mean loading. Both the steady performance and the flutter boundary are highly sensitive to the blade camber. The bending motion instability is substantially influenced also by the chordwise component of the blade motion. Some numerical results compared with strip theory prediction demonstrate significant three-dimensional effects on the unsteady aerodynamic force under non-zero mean loading.
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, Mark; Hall, Kenneth C.; Ayer, Timothy C.
1991-01-01
Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of turbomachinery blading. Emphasis is being placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, flow driven by small-amplitude unsteady excitations in which viscous effects are concentrated in thin layers are being considered. The resulting analyses should apply in many practical situations, lead to a better understanding of the relevent physics, and they will be efficient computationally, and therefore, appropriate for aeroelastic and aeroacoustic design applications. Under the present phase (Task 3), the effort was focused on providing inviscid and viscid prediction capabilities for subsonic unsteady cascade flows.
Unsteady magnetic reconnection in laboratory experiments with current sheets
NASA Astrophysics Data System (ADS)
Frank, Anna
2009-11-01
According to present notion, unsteady magnetic reconnection in current sheets (CS) is basic to dramatic natural phenomena: solar and stellar flares, substorms in the Earth and other planetary magnetospheres, as well as to disruptive instabilities in tokamak plasmas. We present a review of laboratory experiments studying evolution of CS formed in 3D and 2D magnetic configurations with an X line, in the CS-3D device. Usually CS exists during an extended period in a metastable stage, without essential changes of its structure and parameters. Under certain conditions this stage may be suddenly interrupted by unsteady phase of magnetic reconnection, which manifests itself in a rapid change of the magnetic field topology, current redistribution, excitation of pulsed electric fields, and other dynamic effects. The unsteady phase results in effective conversion of magnetic energy into the energy of plasma and accelerated particles, and may finally bring about the CS disruption. In the context of the solar flares, a metastable CS is associated with a pre-flare situation, while CS disruption -- with the flare itself. The physical mechanisms triggering the unsteady magnetic reconnection in the laboratory produced current sheets are discussed. Supported by the Russian Foundation for Basic Research (project # 09-02-00971).
Unsteady Aerodynamic Response of a Linear Cascade of Airfoils in Separated Flow
NASA Technical Reports Server (NTRS)
Capece, Vincent R.; Ford, Christopher; Bone, Christopher; Li, Rui
2004-01-01
The overall objective of this research program was to investigate methods to modify the leading edge separation region, which could lead to an improvement in aeroelastic stability of advanced airfoil designs. The airfoil section used is representative of current low aspect ratio fan blade tip sections. The experimental potion of this study investigated separated zone boundary layer from removal through suction slots. Suction applied to a cavity in the vicinity of the separation onset point was found to be the most effective location. The computational study looked into the influence of front camber on flutter stability. To assess the influence of the change in airfoil shape on stability the work-per-cycle was evaluated for torsion mode oscillations. It was shown that the front camberline shape can be an important factor for stabilizing the predicted work-per-cycle and reducing the predicted extent of the separation zone. In addition, data analysis procedures are discussed for reducing data acquired in experiments that involve periodic unsteady data. This work was conducted in support of experiments being conducted in the NASA Glenn Research Center Transonic Flutter Cascade. The spectral block averaging method is presented. This method is shown to be able to account for variations in airfoil oscillation frequency that can occur in experiments that force oscillate the airfoils to simulate flutter.
NASA Astrophysics Data System (ADS)
Ferreira, C.; Gonzalez, A.; Baldacchino, D.; Aparicio, M.; Gómez, S.; Munduate, X.; Garcia, N. R.; Sørensen, J. N.; Jost, E.; Knecht, S.; Lutz, T.; Chassapogiannis, P.; Diakakis, K.; Papadakis, G.; Voutsinas, S.; Prospathopoulos, J.; Gillebaart, T.; van Zuijlen, A.
2016-09-01
The FP7 AdVanced Aerodynamic Tools for lArge Rotors - Avatar project aims to develop and validate advanced aerodynamic models, to be used in integral design codes for the next generation of large scale wind turbines (10-20MW). One of the approaches towards reaching rotors for 10-20MW size is the application of flow control devices, such as flaps. In Task 3.2: Development of aerodynamic codes for modelling of flow devices on aerofoils and, rotors of the Avatar project, aerodynamic codes are benchmarked and validated against the experimental data of a DU95W180 airfoil in steady and unsteady flow, for different angle of attack and flap settings, including unsteady oscillatory trailing-edge-flap motion, carried out within the framework of WP3: Models for Flow Devices and Flow Control, Task 3.1: CFD and Experimental Database. The aerodynamics codes are: AdaptFoil2D, Foil2W, FLOWer, MaPFlow, OpenFOAM, Q3UIC, ATEFlap. The codes include unsteady Eulerian CFD simulations with grid deformation, panel models and indicial engineering models. The validation cases correspond to 18 steady flow cases, and 42 unsteady flow cases, for varying angle of attack, flap deflection and reduced frequency, with free and forced transition. The validation of the models show varying degrees of agreement, varying between models and flow cases.
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1980-01-01
The characteristics and capabilities of the two tunnels, that relate to studies in the fields of aeroelasticity and unsteady aerodynamics are discussed. Scaling considerations for aeroelasticity and unsteady aerodynamics testing in the two facilities are reviewed, and some of the special features (or lack thereof) of the Langley Research Center Transonic Dynamics Tunnel (TDT) and the National Transonic Facility (NTF) that will weigh heavily in any decisions conducting a given study in the two tunnels are discussed. For illustrative purposes a fighter and a transport airplane are scaled for tests in the NTF and in the TDT, and the resulting model characteristics are compared. The NTF was designed specifically to meet the need for higher Reynolds number capability for flow simulation in aerodynamic performance testing of aircraft designs. However, the NTF can be a valuable tool for evaluating the severity of Reynolds number effects in the areas of dynamic aeroelasticity and unsteady aerodynamics. On the other hand, the TDT was constructed specifically for studies and tests in the field of aeroelasticity. Except for tests requiring the Reynolds number capability of NTF, the TDT will remain the primary facility for tests of dynamic aeroelasticity and unsteady aerodynamics.
Estimation of Longitudinal Unsteady Aerodynamics of a Wing-Tail Combination From Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav
2006-01-01
This paper presents an initial step toward model identification from wind tunnel data for an airliner configuration. Two approaches to modeling a transport configuration are considered and applied to both steady and large-amplitude forced-oscillation wind tunnel data taken over a wide range of angles of attack. Only limited conclusions could be drawn from this initial data set. Although model estimated time histories of normal force and pitching moment agree reasonably well with the corresponding measured values, model damping parameters did not, for some cases, have values consistent with small amplitude oscillatory data. In addition, large parameter standard errors implied poor information content for model structure determination and parameter estimation. Further investigation of the modeling problem for more general aerodynamic models is recommended with close attention to experiment design for obtaining parameters with high accuracy.
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Park, C.; Deiwert, G. S.; Feiereisen, W.; Arnold, J. O.; Davy, W. C.; Craig, R. A.; Venkatapathy, E.
1990-01-01
The High Frequency Radiometer (HFR) is the only instrument on the Aeroassist Flight Experiment (AFE) with sufficient temporal resolution to discern the frequency of unsteady wake oscillations. Determining both the frequency and amplitude of wake unsteadiness during AFE atmospheric entry is essential for reliably predicting the geometry and motion of the wake of future Aeroassisted Space Transfer Vehicles (ASTV). These parameters directly affect the location and size of the pay- load and the weight of the required afterbody heat protection. The purpose of the AFE is to validate the technologies required for the design of ASTVs, which will be used to exploit Earth-lunar space. This validation will be conducted at a combination of vehicle size, altitude, and velocity not obtainable in ground-based facilities. The AFE will provide the experimental flight data needed to improve our understanding of hypersonic-wake physics and to validate computational predictions of the aerodynamic and heating loads, including afterbody radiative heating loads, on an ASTV. Reliable prediction of ASTV wake flows will ensure that payloads are located within the shear-layer envelope and will determine the amount of thermal protection the payloads require. Specifically, understanding the temporal nature of the wake unsteadiness is important for two reasons. Most importantly, analysis of ground-based experiments suggests that wake unsteadiness results in a variation of as much as +/- 5 deg in the shear-flow turning angle. This angle must be reliably predicted to avoid shear-layer impingement on the vehicle afterbody, which would result in heating rates of about 10 W/sq cm, of the same order as on the forebody stagnation point. Secondly, the energy associated with wake unsteadiness will reduce the static enthalpy of the wake fluid and cause an error of as much as 30% in the amount of predicted wake radiative heating. Therefore, the HFR flight data, which will quantify the frequency and
Application of two-dimensional unsteady aerodynamic to a free-tip rotor response analysis
NASA Technical Reports Server (NTRS)
Yates, L.; Kumagai, H.
1985-01-01
The free-tip rotor utilizes a rotor blade tip which is structurally decoupled from the blade inboard section. The tip is free to pitch about its own pitch axis to respond to the local flow angularity changes. The tip also experiences the heaving motion due to the flapping of the rotor blade. For an airfoil in any pitching and heaving motion which can be expanded into a Fourier series, the lift and moment calculated by Theodoren's theory is simply the linear combination of the lift and moment calculated for each harmonic. These lift and moment are then used to determine the response of the free-tip rotor. A parametric study is performed to determine the effect of mechanical damping, mechanical spring, sweep, friction, and a constant control moment on the free-tip rotor response characteristics and the resulting azimuthal lift distributions. The results showed that the free-tip has the capability to suppress the oscillatory lift distribution around the azimuth and to eliminate a significant negative life peak on the advancing tip. This result agrees with the result of the previous analysis based on the steady aerodynamics.
Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua
2014-01-01
This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411
Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua
2014-08-13
This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed.
NASA Astrophysics Data System (ADS)
Namba, Masanobu; Nishino, Ryohei
The purpose of this paper is to study the effect of neighboring blade rows on the unsteady aerodynamic response of oscillating cascade blades on the basis of a genuine three-dimensional model. To this end, mathematical formulations based on the lifting surface theory are developed for a pair of contra-rotating annular cascades of oscillating blades. The mechanism of frequency scattering of blade loadings and mode scattering of acoustic waves resulting from interaction between the blade rows in relative rotational motions is mathematically explained. Simultaneous integral equations for all frequency components of blade loadings are derived from the flow tangency condition on the blade surfaces of both blade rows. The validity of the computation codes is verified.
NASA Technical Reports Server (NTRS)
Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.
2008-01-01
At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.
Unsteady Aerodynamic Simulations of a Finned Projectile at a Supersonic Speed With Jet Interaction
2014-06-01
The conical nose is 2.84 cal. long and is followed by a 7.16-cal cylindrical section. Four rectangular planform fins are located on the back end of...Turbulence Modeling for Unsteady Flow With Acoustic Resonance ; AIAA Paper 00-0473. Presented at 38th AIAA Aerospace Sciences Conference, Reno, NV
Reduced-Order Modeling of Unsteady Aerodynamics Across Multiple Mach Regimes
2013-01-01
Report (SAR) 18. NUMBER OF PAGES 185 19a. NAME OF RESPONSIBLE PERSON a . REPORT unclassified b . ABSTRACT unclassified c. THIS PAGE...120 A .1 Block diagram of overall ROM steps . . . . . . . . . . . . . . . . . . 135 B .1 Example residual plot for unsteady AGARD 445.6 step solution...APPENDICES A . Steps for ROM Construction . . . . . . . . . . . . . . . . . . . . . . . . 133 B . CFD Highlights
NASA Astrophysics Data System (ADS)
Varshney, Kapil; Chang, Song; Wang, Z. Jane
2013-05-01
Falling parallelograms exhibit coupled motion of autogyration and tumbling, similar to the motion of falling tulip seeds, unlike maple seeds which autogyrate but do not tumble, or rectangular cards which tumble but do not gyrate. This coupled tumbling and autogyrating motion are robust, when card parameters, such as aspect ratio, internal angle, and mass density, are varied. We measure the three-dimensional (3D) falling kinematics of the parallelograms and quantify their descending speed, azimuthal rotation, tumbling rotation, and cone angle in each falling. The cone angle is insensitive to the variation of the card parameters, and the card tumbling axis does not overlap with but is close to the diagonal axis. In addition to this connection to the dynamics of falling seeds, these trajectories provide an ideal set of data to analyze 3D aerodynamic force and torque at an intermediate range of Reynolds numbers, and the results will be useful for constructing 3D aerodynamic force and torque models. Tracking these free falling trajectories gives us a nonintrusive method for deducing instantaneous aerodynamic forces. We determine the 3D aerodynamic forces and torques based on Newton-Euler equations. The dynamical analysis reveals that, although the angle of attack changes dramatically during tumbling, the aerodynamic forces have a weak dependence on the angle of attack. The aerodynamic lift is dominated by the coupling of translational and rotational velocities. The aerodynamic torque has an unexpectedly large component perpendicular to the card. The analysis of the Euler equation suggests that this large torque is related to the deviation of the tumbling axis from the principle axis of the card.
A flight experiment to measure rarefied-flow aerodynamics
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.
1990-01-01
A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.
NASA Technical Reports Server (NTRS)
Liu, D. D.; Kao, Y. F.; Fung, K. Y.
1989-01-01
A transonic equivalent strip (TES) method was further developed for unsteady flow computations of arbitrary wing planforms. The TES method consists of two consecutive correction steps to a given nonlinear code such as LTRAN2; namely, the chordwise mean flow correction and the spanwise phase correction. The computation procedure requires direct pressure input from other computed or measured data. Otherwise, it does not require airfoil shape or grid generation for given planforms. To validate the computed results, four swept wings of various aspect ratios, including those with control surfaces, are selected as computational examples. Overall trends in unsteady pressures are established with those obtained by XTRAN3S codes, Isogai's full potential code and measured data by NLR and RAE. In comparison with these methods, the TES has achieved considerable saving in computer time and reasonable accuracy which suggests immediate industrial applications.
Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings
NASA Astrophysics Data System (ADS)
Dhruv, Akash V.
Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed
Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines
Miller, M.S.; Shipley, D.E.
1994-08-01
Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.
NASA Technical Reports Server (NTRS)
Riffel, R. E.; Rothrock, M. D.
1980-01-01
A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1995-01-01
This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.
1987-01-01
The technique of implicit differentiation has been used in combination with linearized lifting-surface theory to derive analytical expressions for aerodynamic sensitivities (i.e., rates of change of lifting pressures with respect to general changes in aircraft geometry, including planform variations) for steady or oscillating planar or nonplanar lifting surfaces in subsonic, sonic, or supersonic flow. The geometric perturbation is defined in terms of a single variable, and the user need only provide simple expressions or similar means for defining the continuous or discontinuous global or local perturbation of interest. Example expressions are given for perturbations of the sweep, taper, and aspect ratio of a wing with trapezoidal semispan planform. In addition to direct computational use, the analytical method presented here should provide benchmark criteria for assessing the accuracy of aerodynamic sensitivities obtained by approximate methods such as finite geometry perturbation and differencing. The present process appears to be readily adaptable to more general surface-panel methods.
NASA Technical Reports Server (NTRS)
Hui, W. H.
1985-01-01
Bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single-degree-of-freedom. The requisite moment of the aerodynamic forces in the equations of motion is shown to be representable in a form equivalent to the response to finite amplitude oscillations. It is shown how this information can be deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the bifurcation parameter is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable or unstable. For the pitching motion of flat-plate airfoils flying at supersonic/hypersonic speed and for oscillation of flaps at transonic speed, the bifurcation is subcritical, implying either the exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1996-01-01
A nonlinear least squares algorithm for aircraft parameter estimation from flight data was developed. The postulated model for the analysis represented longitudinal, short period motion of an aircraft. The corresponding aerodynamic model equations included indicial functions (unsteady terms) and conventional stability and control derivatives. The indicial functions were modeled as simple exponential functions. The estimation procedure was applied in five examples. Four of the examples used simulated and flight data from small amplitude maneuvers to the F-18 HARV and X-31A aircraft. In the fifth example a rapid, large amplitude maneuver of the X-31 drop model was analyzed. From data analysis of small amplitude maneuvers ft was found that the model with conventional stability and control derivatives was adequate. Also, parameter estimation from a rapid, large amplitude maneuver did not reveal any noticeable presence of unsteady aerodynamics.
NASA Technical Reports Server (NTRS)
Morino, L.
1980-01-01
Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.
Gurka, Roi; Krishnan, Krishnamoorthy; Ben-Gida, Hadar; Kirchhefer, Adam J; Kopp, Gregory A; Guglielmo, Christopher G
2017-02-06
Analysis of the aerodynamics of flapping wings has yielded a general understanding of how birds generate lift and thrust during flight. However, the role of unsteady aerodynamics in avian flight due to the flapping motion still holds open questions in respect to performance and efficiency. We studied the flight of three distinctive bird species: western sandpiper (Calidris mauri), European starling (Sturnus vulgaris) and American robin (Turdus migratorius) using long-duration, time-resolved particle image velocimetry, to better characterize and advance our understanding of how birds use unsteady flow features to enhance their aerodynamic performances during flapping flight. We show that during transitions between downstroke and upstroke phases of the wing cycle, the near wake-flow structures vary and generate unique sets of vortices. These structures appear as quadruple layers of concentrated vorticity aligned at an angle with respect to the horizon (named 'double branch'). They occur where the circulation gradient changes sign, which implies that the forces exerted by the flapping wings of birds are modified during the transition phases. The flow patterns are similar in (non-dimensional) size and magnitude for the different birds suggesting that there are common mechanisms operating during flapping flight across species. These flow patterns occur at the same phase where drag reduction of about 5% per cycle and lift enhancement were observed in our prior studies. We propose that these flow structures should be considered in wake flow models that seek to account for the contribution of unsteady flow to lift and drag.
Validation and comparison of aerodynamic modelling approaches for wind turbines
NASA Astrophysics Data System (ADS)
Blondel, F.; Boisard, R.; Milekovic, M.; Ferrer, G.; Lienard, C.; Teixeira, D.
2016-09-01
The development of large capacity Floating Offshore Wind Turbines (FOWT) is an interdisciplinary challenge for the design solvers, requiring accurate modelling of both hydrodynamics, elasticity, servodynamics and aerodynamics all together. Floating platforms will induce low-frequency unsteadiness, and for large capacity turbines, the blade induced vibrations will lead to high-frequency unsteadiness. While yawed inflow conditions are still a challenge for commonly used aerodynamic methods such as the Blade Element Momentum method (BEM), the new sources of unsteadiness involved by large turbine scales and floater motions have to be tackled accurately, keeping the computational cost small enough to be compatible with design and certification purposes. In the light of this, this paper will focus on the comparison of three aerodynamic solvers based on BEM and vortex methods, on standard, yawed and unsteady inflow conditions. We will focus here on up-to-date wind tunnel experiments, such as the Unsteady Aerodynamics Experiment (UAE) database and the MexNext international project.
NASA Technical Reports Server (NTRS)
Riffel, R. E.; Rothrock, M. D.
1980-01-01
A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.
A stochastic aerodynamic model for stationary blades in unsteady 3D wind fields
NASA Astrophysics Data System (ADS)
Fluck, Manuel; Crawford, Curran
2016-09-01
Dynamic loads play an important roll in the design of wind turbines, but establishing the life-time aerodynamic loads (e.g. extreme and fatigue loads) is a computationally expensive task. Conventional (deterministic) methods to analyze long term loads, which rely on the repeated analysis of multiple different wind samples, are usually too expensive to be included in optimization routines. We present a new stochastic approach, which solves the aerodynamic system equations (Lagrangian vortex model) in the stochastic space, and thus arrive directly at a stochastic description of the coupled loads along a turbine blade. This new approach removes the requirement of analyzing multiple different realizations. Instead, long term loads can be extracted from a single stochastic solution, a procedure that is obviously significantly faster. Despite the reduced analysis time, results obtained from the stochastic approach match deterministic result well for a simple test-case (a stationary blade). In future work, the stochastic method will be extended to rotating blades, thus opening up new avenues to include long term loads into turbine optimization.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.
1996-01-01
This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.
Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.
NASA Technical Reports Server (NTRS)
Reding, J. P.; Ericsson, L. E.
1976-01-01
A quasi-steady analysis of the aeroelastic stability of the lateral (antisymmetric) modes of the 747/orbiter vehicle was accomplished. The interference effect of the orbiter wake on the 747 tail furnishes an aerodynamic undamping contribution to the elastic modes. Likewise, the upstream influence of the 747 tail and aft fuselage on the orbiter beaver-tail rail fairing also is undamping. Fortunately these undamping effects cannot overpower the large damping contribution of the 747 tail and the modes are damped for the configurations analyzed. However, significant interference effects of the orbiter on the 747 tail have been observed in the pitch plane. The high response of the 747 vertical tail in the orbiter wave was also considered. Wind tunnel data points to flapping of the OMS pod wakes as the source of the wake resonance phenomenon.
A Cartesian grid method for simulation of the unsteady aerodynamics of microscale flapping flight
NASA Astrophysics Data System (ADS)
Emblemsvag, Jo-Einar
Recent improvements in MEMS technology is making it possible to develop microscale mechanical devices capable of operating in gases and liquids at low Reynolds number. In the current work a method has been developed to be able to simulate the operation of such devices computationally. The method imposes arbitrary solid/fluid boundaries on Cartesian grids, thus avoiding complexities with body-fitted grid methods. This thesis explains the numerical approximations used for solving the governing equations, the discretization of the equations, and the implementation of the immersed fluid/solid boundary conditions. The method is validated by comparing computed results of flows over an infinitely thin plate, a cylinder, and a sphere, and it is found that the method predicts both steady and unsteady flows with sufficient accuracy. The method performs similarly whether the solid objects translates through the grid or remains fixed in the grid with an imposed flow field. The method was then used to compute the fluid dynamics and force generation of a microscale flapping cantilever beam propulsion device. Both two-dimensional and three-dimensional flow features were explored, and the investigation showed that the cantilever produces thrust and can therefore potentially be used as a simple propulsion mechanism. Finally, the method was used to simulate an idealized model of fruit fly wing in hovering flight. The computed flow fields and force dynamics compared well with an equivalent experimental model, although some discrepancies were found due to a thicker wing being used in the computations for numerical reasons.
NASA Technical Reports Server (NTRS)
Lawless, Patrick B.; Fleeter, Sanford
1991-01-01
A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.
Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta
Willmott, A. P.; Ellington, C. P.; Thomas, A. L. R.
1997-01-01
The aerodynamic mechanisms employed durng the flight of the hawkmoth, Manduca sexta, have been investigated through smoke visualization studies with tethered moths. Details of the flow around the wings and of the overall wake structure were recorded as stereophotographs and high-speed video sequences. The changes in flow which accompanied increases in flight speed from 0.4 to 5.7 m s-1 were analysed. The wake consists of an alternating series of horizontal and vertical vortex rings which are generated by successive down- and upstrokes, respectively. The downstroke produces significantly more lift than the upstroke due to a leading-edge vortex which is stabilized by a radia flow moving out towards the wingtip. The leading-edge vortex grew in size with increasing forward flight velocity. Such a phenomenon is proposed as a likely mechanism for lift enhancement in many insect groups. During supination, vorticity is shed from the leading edge as postulated in the 'flex' mechanism. This vorticity would enhance upstroke lift if it was recaptured diring subsequent translation, but it is not. Instead, the vorticity is left behind and the upstroke circulation builds up slowly. A small jet provides additional thrust as the trailing edges approach at the end of the upstroke. The stereophotographs also suggest that the bound circulation may not be reversed between half strokes at the fastest flight speeds.
A versatile low-dimensional vortex model for investigating unsteady aerodynamics
NASA Astrophysics Data System (ADS)
Darakananda, Darwin; Eldredge, Jeff D.
2016-11-01
In previous work, we demonstrated a hybrid vortex sheet/point vortex model that captures the non-linear aerodynamics of a plate translating at a high angle of attack. We used vortex sheets to model the shear layers emerging from the plate, and point vortices to capture the effect of the coherent vortex structures. In this work, we introduce modifications that allow the model to work for a larger range of plate kinematics over longer periods of time. First, following the example of Ramesh et al., we relax the Kutta condition at the leading edge and determine vorticity flux based on a suction parameter instead. To prevent the vortex sheet from becoming unstable near the resulting singular edge, we explicitly filter out short-wave disturbances along the sheet while redistributing the sheet's control points. Second, by looking for intersections between the vortex sheets and any repelling Lagrangian coherent structures, the model can detect the formation of new coherent vortices. Trailing portions of the sheets that become dynamically distinct from the shear layers are rolled up into point vortices. We test these modifications on a variety of problems, including pitch-up, impulsive translation at low angles of attack, as well as flow response to pulse actuation near the leading edge. This work has been supported by AFOSR, under award FA9550-14-1-0328.
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.
2003-01-01
The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.
Unsteady Aerodynamic Testing Using the Dynamic Plunge Pitch and Roll Model Mount
NASA Technical Reports Server (NTRS)
Lutze, Frederick H.; Fan, Yigang
1999-01-01
A final report on the DyPPiR tests that were run are presented. Essentially it consists of two parts, a description of the data reduction techniques and the results. The data reduction techniques include three methods that were considered: 1) signal processing of wind on - wind off data; 2) using wind on data in conjunction with accelerometer measurements; and 3) using a dynamic model of the sting to predict the sting oscillations and determining the aerodynamic inputs using an optimization process. After trying all three, we ended up using method 1, mainly because of its simplicity and our confidence in its accuracy. The results section consists of time history plots of the input variables (angle of attack, roll angle, and/or plunge position) and the corresponding time histories of the output variables, C(sub L), C(sub D), C(sub m), C(sub l), C(sub m), C(sub n). Also included are some phase plots of one or more of the output variable vs. an input variable. Typically of interest are pitch moment coefficient vs. angle of attack for an oscillatory motion where the hysteresis loops can be observed. These plots are useful to determine the "more interesting" cases. Samples of the data as it appears on the disk are presented at the end of the report. The last maneuver, a rolling pull up, is indicative of the unique capabilities of the DyPPiR, allowing combinations of motions to be exercised at the same time.
Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies
NASA Technical Reports Server (NTRS)
Johnston, Patrick J.
1959-01-01
A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.
NASA Technical Reports Server (NTRS)
Redman, M. C.; Rowe, W. S.
1975-01-01
A digital computer program has been developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge or trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges have been extracted analytically as a preliminary step to solving the integral equation by collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accommodated.
2014-12-31
significant hysteresis at pre-stall angles, and substantial unsteadiness (periodic pressure fluctuations) in the post-stall regime. Coupled pitch and...significant hysteresis at pre-stall angles, and substantial unsteadiness (periodic pressure fluctuations) in the post-stall regime. Coupled pitch and Mach...36 3.1.5 A Note Regarding Attached Flow Hysteresis .................................................. 41 3.2
Ultrafast Time Response Pressure-Sensitive Paint for Unsteady Shock-Wave Research
NASA Astrophysics Data System (ADS)
Numata, Daiju; Asai, Keisuke
Pressure-Sensitive Paint (PSP) is an optical pressure measurement technique widely used in aerodynamic experiments, and has been applied to unsteady shock-wave phenomena [1, 2]. However, one of the largest problems to apply PSP to high-speed and unsteady phenomena is the response time of PSP.
Predicting Unsteady Aeroelastic Behavior
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Mook, Dean T.
1990-01-01
New method for predicting subsonic flutter, static deflections, and aeroelastic divergence developed. Unsteady aerodynamic loads determined by unsteady-vortex-lattice method. Accounts for aspect ratio and angle of attack. Equations for motion of wing and flow field solved iteratively and simultaneously. Used to predict transient responses to initial disturbances, and to predict steady-state static and oscillatory responses. Potential application for research in such unsteady structural/flow interactions as those in windmills, turbines, and compressors.
Aerodynamics of ski jumping: experiments and CFD simulations
NASA Astrophysics Data System (ADS)
Meile, W.; Reisenberger, E.; Mayer, M.; Schmölzer, B.; Müller, W.; Brenn, G.
2006-12-01
The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required.
NASA Technical Reports Server (NTRS)
Rowe, W. S.; Petrarca, J. R.
1980-01-01
Changes to be made that provide increased accuracy and increased user flexibility in prediction of unsteady loadings caused by control surface motions are described. Analysis flexibility is increased by reducing the restrictions on the location of the downwash stations relative to the leading edge and the edges of the control surface boundaries. Analysis accuracy is increased in predicting unsteady loading for high Mach number analysis conditions through use of additional chordwise downwash stations. User guideline are presented to enlarge analysis capabilities of unusual wing control surface configurations. Comparative results indicate that the revised procedures provide accurate predictions of unsteady loadings as well as providing reductions of 40 to 75 percent in computer usage cost required by previous versions of this program.
NASA Technical Reports Server (NTRS)
Carta, F. O.
1981-01-01
Tests were conducted a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blade along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge. The tests were conducted for all 96 combinations 2 mean camberline incidence angles 2 pitching amplitudes 3 reduced frequencies and 8 interblade phase angles. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and particularly, the aerodynamic damping coefficient. Data obtained during the test program, reproduced from the printout of the data reduction program are complied. A further description of the contents of this report is found in the text that follows.
Standardization of computational experiments in unsteady turbulent boundary-layer flow
NASA Technical Reports Server (NTRS)
Carr, L. W.
1977-01-01
Numerical experiments are proposed as standard cases to be computed by all who plan to analyze unsteady turbulent boundary layer behavior. In this way, differences between the results obtained by various methods can be compared in a completely defined environment. The test cases range in difficulty from time relaxation study of the steady flow on a flat plate to the analysis of unsteady reversed flow. Initial and boundary conditions are fully defined for each case and representative outputs are presented. It is recommended that tabulated samples of computations of these test cases be published in a compendium of results.
Aerodynamic and Aerothermodynamic Layout of the Hypersonic Flight Experiment Shefex
NASA Astrophysics Data System (ADS)
Eggers, Th.
2005-02-01
The purpose of the SHarp Edge Flight EXperiment SHEFEX is the investigation of possible new shapes for future launcher or reentry vehicles [1]. The main focus is the improvement of common space vehicle shapes by application of facetted surfaces and sharp edges. The experiment will enable the time accurate investigation of the flow effects and their structural answer during the hypersonic flight from 90 km down to an altitude of 20 km. The project, being performed under responsibility of the German Aerospace Center (DLR) is scheduled to fly on top of a two-stage solid propellant sounding rocket for the first half of 2005. The paper contains a survey of the aerodynamic and aerothermodynamic layout of the experimental vehicle. The results are inputs for the definition of the structural layout, the TPS and the flight instrumentation as well as for the preparation of the flight test performed by the Mobile Rocket Base of DLR.
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2012-01-01
The design-point and off-design performance of an embedded 1.5-stage portion of a variable-speed power turbine (VSPT) was assessed using Reynolds-Averaged Navier-Stokes (RANS) analyses with mixing-planes and sector-periodic, unsteady RANS analyses. The VSPT provides one means by which to effect the nearly 50 percent main-rotor speed change required for the NASA Large Civil Tilt-Rotor (LCTR) application. The change in VSPT shaft-speed during the LCTR mission results in blade-row incidence angle changes of as high as 55 . Negative incidence levels of this magnitude at takeoff operation give rise to a vortical flow structure in the pressure-side cove of a high-turn rotor that transports low-momentum flow toward the casing endwall. The intent of the effort was to assess the impact of unsteadiness of blade-row interaction on the time-mean flow and, specifically, to identify potential departure from the predicted trend of efficiency with shaft-speed change of meanline and 3-D RANS/mixing-plane analyses used for design.
NASA Technical Reports Server (NTRS)
Richard, M.; Harrison, B. A.
1979-01-01
The program input presented consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic file (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.
Unsteady separation experiments on 2-D airfoils, 3-D wings, and model helicopter rotors
NASA Technical Reports Server (NTRS)
Lorber, Peter F.; Carta, Franklin O.
1992-01-01
Information on unsteady separation and dynamic stall is being obtained from two experimental programs that have been underway at United Technologies Research Center since 1984. The first program is designed to obtain detailed surface pressure and boundary layer condition information during high amplitude pitching oscillations of a large (17.3 in. chord) model wing in a wind tunnel. The second program involves the construction and testing of a pressure-instrumented model helicopter rotor. This presentation describes some of the results of these experiments, and in particular compares the detailed dynamic stall inception information obtained from the oscillating wing with the unsteady separation and reverse flow results measured on the retreating blade side of the model rotor during wind tunnel testing.
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Shah, Gautam H.
1990-01-01
The effects of harmonic or constant-rate-ramp pitching motions (giving angles of attack from 0 to 75 deg) on the aerodynamic performance of a fighter-aircraft model with highly swept leading-edge extensions are investigated experimentally in the NASA Langley 12-ft low-speed wind tunnel. The model configuration and experimental setup are described, and the results of force and moment measurements and flow visualizations are presented graphically and discussed in detail. Large force overshoots and hysteresis are observed and attributed to lags in vortical-flow development and breakup. The motion variables have a strong influence on the persistence of dynamic effects, which are found to affect pitch-rate capability more than flight-path turning performance.
NASA Astrophysics Data System (ADS)
Rasani, M. R.; Shamsudeen, A.; Sulaiman, M. N.
2016-11-01
Flights of dragonflies, various insects and birds have been a subject of active research that may offer insight towards enhanced aerodynamic performance at low Reynolds numbers. To that end, we mimick the flapping biomechanics of a dragonfly by two thin flat airfoils plunging in tandem with each other. In the present study, we aim to investigate the effect of difference in flapping phase between fore and hind wings towards their aerodynamic performances. We computationally simulate incompressible, viscous, laminar flow around two thin flat airfoils that are purely plunging, at a Strouhal number of 0.25 and Reynolds number of 6500, using a flow solver in an Arbitrary Lagrangian-Eulerian framework. Kinematics of both fore and hind wing flapping followed a similar sinusoidal function but with relative phase angle difference to each other, that were varied between -50° to +50° including two cases were phase difference is 0° (i.e. in-phase fore-hind wing flapping) and +90° (i.e. fore wing lags hind wing by 90°). Numerical results indicate that maximum lift and drag forces for each fore and hind wings occur at phase angle of -40° and that power efficiency of tandem wings are better at phase angles when hind wing leads the fore wing, with maximum power efficiency occurring at a fore-hind wing phase difference of +30°. The complex fore-hind wing vortex interaction indicate likely benefit on the hind wing as it interacts with the fore wing at different phase angles.
Modeling of Unsteady Three-dimensional Flows in Multistage Machines
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)
2003-01-01
Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.
Unsteady separation process and vorticity balance on unsteady airfoils
NASA Technical Reports Server (NTRS)
Ho, Chih-Ming; Gursul, Ismet; Shih, Chiang; Lin, Hank
1992-01-01
Low momentum fluid erupts at the unsteady separation region and forms a local shear layer at the viscous-inviscid interface. At the shear layer, the vorticity lumps into a vortex and protrudes into the inviscid region. This process initiates the separation process. The response of airfoils in unsteady free stream was investigated based on this vortex generation and convection concept. This approach enabled us to understand the complicated unsteady aerodynamics from a fundamental point of view.
Incipient torsional stall flutter aerodynamic experiments on a swept three-dimensional wing
NASA Technical Reports Server (NTRS)
Lorber, Peter F.; Carta, Franklin O.
1991-01-01
The aerodynamics of small amplitude pitching motions near stall have been studied experimentally in order to improve understanding of the torsional stall flutter problem for propeller blades. A model wing was oscillated in pitch at several small amplitudes over a wide and representative range of conditions. Unsteady surface pressures were measured and integrated to determine the aerodynamic damping at five spanwise stations. Strong negative damping was found for motions centered near static stall for all studied reduced frequencies, Mach numbers, and sweep angles. The 30-deg sweptback configuration was found to become negatively damped over the entire span nearly simultaneously, while the unswept model exhibited local regions of negative damping that moved toward the wing tip as the mean angle of attack was increased.
NASA Astrophysics Data System (ADS)
Su, Xiaohui; Cao, Yuanwei; Zhao, Yong
2016-06-01
In this paper, an unstructured mesh Arbitrary Lagrangian-Eulerian (ALE) incompressible flow solver is developed to investigate the aerodynamics of insect hovering flight. The proposed finite-volume ALE Navier-Stokes solver is based on the artificial compressibility method (ACM) with a high-resolution method of characteristics-based scheme on unstructured grids. The present ALE model is validated and assessed through flow passing over an oscillating cylinder. Good agreements with experimental results and other numerical solutions are obtained, which demonstrates the accuracy and the capability of the present model. The lift generation mechanisms of 2D wing in hovering motion, including wake capture, delayed stall, rapid pitch, as well as clap and fling are then studied and illustrated using the current ALE model. Moreover, the optimized angular amplitude in symmetry model, 45°, is firstly reported in details using averaged lift and the energy power method. Besides, the lift generation of complete cyclic clap and fling motion, which is simulated by few researchers using the ALE method due to large deformation, is studied and clarified for the first time. The present ALE model is found to be a useful tool to investigate lift force generation mechanism for insect wing flight.
Collins, Dannie L.; Flynn, Kathleen M.
1978-01-01
The measured hydraulic data collected in the Flood Plain Simulation Facility located at the Gulf Coast Hydroscience Center, near Bay St. Louis, Miss., are summarized for a series of experiments designed to study steady and unsteady flow over uniform grass roughness. All experiments were conducted during the 1973 and 1974 test seasons. Tables of measured ground-surface elevations, water-surface elevations, and point velocities are included for all experiments. A total of 19 steady flow experiments and 7 unsteady flow experiments for varying grass heights are included. The tabulated point velocities and water-surface elevations for the unsteady flow experiments were selected to represent the general changes in the flow variables as the flood wave passed through the facility but do not include all collected data. However, all data that were collected have been stored on computer disk storage and may be retrieved using the listing programs and memory locations. (Woodard-USGS)
Inverse problems and optimal experiment design in unsteady heat transfer processes identification
NASA Technical Reports Server (NTRS)
Artyukhin, Eugene A.
1991-01-01
Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.
Aerodynamic calculations related to tethered sub-satellite experiments
NASA Technical Reports Server (NTRS)
Potter, J. Leith; Rockaway, J. Kent
1991-01-01
The results are presented of four aerodynamic studies that were in support of a broader, preliminary inquiry concerning the potential use of downward-deployed tethered sub-satellites for in-flight aerothermodynamic research. There are a multitude of questions regarding the general tethered satellite concept and the present report addresses only a few of these. A method for estimating drag and local surface pressure and shear on orbiting or re-entereing bodies is described, and examples based on the planned TSS-2 (Tethered Satellite System) are given. The problem of pressure measurement are explored, taking into account thermal transpiration, lag time, and the disturbed flow field created by the satellite body. The performance of an aerodynamic stabilizer, a ring-tail design, is calculated and its influence on satellite motion is illustrated. A method for optimizing future satellite shapes for desired aerodynamic properties is transitional rarefied flow with given geometric constraints is proposed and examples are shown.
NASA Technical Reports Server (NTRS)
Harrison, B. A.; Richard, M.
1979-01-01
The information necessary for execution of the digital computer program L216 on the CDC 6600 is described. L216 characteristics are based on the doublet lattice method. Arbitrary aerodynamic configurations may be represented with combinations of nonplanar lifting surfaces composed of finite constant pressure panel elements, and axially summetric slender bodies composed of constant pressure line elements. Program input consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic field (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.
1985-06-01
used for turbulent flows. Thin layer Navier-Stokes calculations are made for the NACA 64A010 airfoil at small incidences where weak shock-boundary layer...agreement with theory. Calculations for pitch oscillations of the NACA 64A010 were also made about a higher mean angle (4 degrees) where strong shock...has been observed in experiments with separation. Figure 3-2 shows the comparisons of the first harmonic components of the NACA 64A010 chordwise
Interaction of unsteady separated flow over multi-bodies moving relatively in the same flow field
NASA Astrophysics Data System (ADS)
Zhou, Sheng; Zheng, Xin-qian; Hou, An-ping; Lu, Ya-jun
2005-12-01
Unsteady separated flow is one of research frontiers in current aerodynamic. Great accomplishments have been acquired; however, most studies are on single body in a stream, such as studies on unsteady separated flows over airfoils. There are typical cases in the nature and engineering applications, in which several interacting bodies with relative motions are within the same flow field. These interacting unsteady separated flow fields not only are closely related to the phenomena of noise and flutter induced by flows, but also have strong influences on aerodynamic performances. With axial flow compressors as background, the present paper carried out studies on 'interaction of unsteady separated flow over multi-bodies moving relatively in the same flow field'. Experiment investigations carried out in the stationary annular cascade wind tunnel and the single-stage low-speed axial flow compressor experimental facility as well as relevant CFD simulations demonstrate that under properly organized interactions between all unsteady components, the time-space structure of unsteady separated flow field can be remarkably improved and the time-averaged aerodynamic performances be significantly enhanced accordingly. The maximum reduction of the loss coefficient reached 27.4% and 76.5% in the stationary annular cascade wind tunnel and the CFD simulation for single-stage axial flow compressor, respectively.
Compendium of Unsteady Aerodynamic Measurements
1982-08-01
Configurations 1 NACA 64A006. Oscillating flap 1-1 by R.J. Zwaan, NLR 2 NACA 64A010 (NASA Amos model). Oscillatory pitching 2-1 by Sanford S. Nivis, NASA...Nexrint NACA 64A006 Flap oscillation NLR Data Set 1.CT Cases 1,2,3,5,6,7,.8*,l0*,ll NACA 64A010 Data Set 2. NASA Ames model CT Cases 1,2,3,4,5,6...1.9 Oiloek diagra of ma.iuuring equipbent 2-1 DATA SET 2 NACA 64A010 (NASA AMES MODEL) OSCILLATORY PITCHING by Sanford S. Davis, NASA Ames
1992-03-01
correlations. The discussion of these effects would benefit if shock-generated entropy/ vorticity mod- Unsteady linear and FPE codes are used in this paper...Brenneis and A. Eberle: "Evaluation of is the neglect of vorticity modeling in the FPE code (Figures an Unsteady Implicit Euler Code Against Two- and 25 and...26 of Paper 12 show the effect of modeling vorticity Three-Dimensional Standard Configurations" with a FPE code to cause a shift in shock location of
Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories
NASA Technical Reports Server (NTRS)
Klimas, P. C.
1981-01-01
Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.
Collins, Dannie L.; Flynn, Kathleen M.
1979-01-01
This report summarizes and makes available to other investigators the measured hydraulic data collected during a series of experiments designed to study the effect of patterned bed roughness on steady and unsteady open-channel flow. The patterned effect of the roughness was obtained by clear-cut mowing of designated areas of an otherwise fairly dense coverage of coastal Bermuda grass approximately 250 mm high. All experiments were conducted in the Flood Plain Simulation Facility during the period of October 7 through December 12, 1974. Data from 18 steady flow experiments and 10 unsteady flow experiments are summarized. Measured data included are ground-surface elevations, grass heights and densities, water-surface elevations and point velocities for all experiments. Additional tables of water-surface elevations and measured point velocities are included for the clear-cut areas for most experiments. One complete set of average water-surface elevations and one complete set of measured point velocities are tabulated for each steady flow experiment. Time series data, on a 2-minute time interval, are tabulated for both water-surface elevations and point velocities for each unsteady flow experiment. All data collected, including individual records of water-surface elevations for the steady flow experiments, have been stored on computer disk storage and can be retrieved using the computer programs listed in the attachment to this report. (Kosco-USGS)
Design Strategies to Mitigate Unsteady Forcing (Preprint)
2008-04-01
the aerodynamic and mechanical damping Kielb and Abhari [31]. In addition, design- optimization systems have been used effectively in conjunction...increasing levels of damping (aerodynamic and/or mechanical) or by decreasing levels of unsteady pressures. Aerodynamically, an attractive option is to...and Abhari, R. S., 2001, “Experimental Study of Aerodynamic and Structural Damping in a Full-Scale Rotating Turbine,” ASME Paper No. 2001-GT- 0263
NASA Technical Reports Server (NTRS)
Carta, F. O.
1981-01-01
Computer data are provided for tests conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge.
NASA Technical Reports Server (NTRS)
Radwan, S. F.; Rockwell, D. O.; Johnson, S. H.
1982-01-01
Existing interpretations of the trailing edge condition, addressing both theoretical and experimental works in steady, as well as unsteady flows are critically reviewed. The work of Kutta and Joukowski on the trailing edge condition in steady flow is reviewed. It is shown that for most practical airfoils and blades (as in the case of most turbomachine blades), this condition is violated due to rounded trailing edges and high frequency effects, the flow dynamics in the trailing edge region being dominated by viscous forces; therefore, any meaningful modelling must include viscous effects. The question of to what extent the trailing edge condition affects acoustic radiation from the edge is raised; it is found that violation of the trailing edge condition leads to significant sound diffraction at the tailing edge, which is related to the problem of noise generation. Finally, various trailing edge conditions in unsteady flow are discussed, with emphasis on high reduced frequencies.
Aerodynamics of ski jumping flight and its control: I. Experiments
NASA Astrophysics Data System (ADS)
Jung, Daehan; Bang, Kyeongtae; Kim, Heesu; Ahn, Eunhye; Choi, Haecheon
2015-11-01
In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we construct a model of a ski jumper by using three-dimensional surface data obtained by scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). An experiment on this model is conducted in a wind tunnel. We consider four posture parameters (forward leaning angle, ski opening angle, ski rolling angle, and ski spacing) and measure the drag and lift forces for various flight postures at various angles of attack (α = 0° - 40°) and Reynolds numbers (Re = 5.4 × 105 - 1.6 × 106) based on the length of the jump ski. Then, we derive optimum values of posture parameters for maximum lift-to-drag ratio using a response surface method. We also conduct a full-scale wind tunnel experiment with members of the Korean national team and confirm the results obtained from the experiment on the model. Supported by the NRF program (2014M3C1B1033848).
McCallen, R; Salari, K; Ortega, J; DeChant, L; Hassan, B; Roy, C; Pointer, W; Browand, F; Hammache, M; Hsu, T; Leonard, A; Rubel, M; Chatalain, P; Englar, R; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Storms, B
2004-06-17
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the 'smart' design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.
Yaste, David M; Salari, Kambiz; Hammache, Mustapha; Browand, Fred; Pointer, W. David; Ortega, Jason M.; McCallen, Rose; Walker, Stephen M; Heineck, James T; Hassan, Basil; Roy, Christopher John; Storms, B.; Satran, D.; Ross, James; Englar, Robert; Chatalain, Philippe; Rubel, Mike; Leonard, Anthony; Hsu, Tsu-Ya; DeChant, Lawrence Justin.
2004-06-01
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the smart design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.
NASA Technical Reports Server (NTRS)
Wells, William L.
1989-01-01
Two scaled models of the Aeroassist Flight Experiment (AFE) vehicle were tested in two air wind tunnels and one CF4 tunnel. The tests were to determine the static longitudinal aerodynamic characteristics, and shock shapes for the configuration in hypersonic continuum flow. The tests were conducted with a range of angle of attack to evaluate the effects of Mach number, Reynolds numbers, and normal shock density ratio.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1994-01-01
A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.
The Modern Design of Experiments for Configuration Aerodynamics: A Case Study
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2006-01-01
The effects of slowly varying and persisting covariate effects on the accuracy and precision of experimental result is reviewed, as is the rationale for run-order randomization as a quality assurance tactic employed in the Modern Design of Experiments (MDOE) to defend against such effects. Considerable analytical complexity is introduced by restrictions on randomization in configuration aerodynamics tests because they involve hard-to-change configuration variables that cannot be randomized conveniently. Tradeoffs are examined between quality and productivity associated with varying degrees of rigor in accounting for such randomization restrictions. Certain characteristics of a configuration aerodynamics test are considered that may justify a relaxed accounting for randomization restrictions to achieve a significant reduction in analytical complexity with a comparably negligible adverse impact on the validity of the experimental results.
In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.
Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers
2015-03-06
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.
In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds
Lentink, David; Haselsteiner, Andreas F.; Ingersoll, Rivers
2015-01-01
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier–Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565
Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex
NASA Technical Reports Server (NTRS)
Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)
2002-01-01
The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.
A fully unsteady prescribed wake model for HAWT performance prediction in yawed flow
Coton, F.N.; Tongguang, Wang; Galbraith, R.A.M.; Lee, D.
1997-12-31
This paper describes the development of a fast, accurate, aerodynamic prediction scheme for yawed flow on horizontal axis wind turbines (HAWTs). The method is a fully unsteady three-dimensional model which has been developed over several years and is still being enhanced in a number of key areas. The paper illustrates the current ability of the method by comparison with field data from the NREL combined experiment and also describes the developmental work in progress. In particular, an experimental test programme designed to yield quantitative wake convection information is summarised together with modifications to the numerical model which are necessary for meaningful comparison with the experiments. Finally, current and future work on aspects such as tower-shadow and improved unsteady aerodynamic modelling are discussed.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1994-01-01
Typical analytical models for interaction between rotor and stator in a turbofan analyze the effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby generating noise. Reflection/transmission characteristics of the rotor are sometimes added in a separate calculation. In those models, there is a one-to-one relationship between wake harmonics and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the BPF noise harmonic, etc. This report presents a more complete model in which flow tangency boundary conditions are satisfied on two cascades in relative motion for several harmonics simultaneously. By an extension of S.N. Smith's code for two dimensional flat plate cascades, the noise generation/frequency scattering/blade row reflection problem is solved in a single matrix inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy in the higher BPF harmonics due to relative motion between the blade rows. Furthermore, when swirl between the rotor and stator is modeled, a 'mode trapping' effect occurs which explains observations on fans operating at rotational speeds below BFP cuton: the BPF mode amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. However, energy scattered into higher harmonics does propagate and dominates the spectrum at two and three times BPF. This report presents the complete derivation of the theory, comparison with a previous (more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and rotor/stator interaction. For generality, the analysis applies to stages where the rotor is either upstream or downstream of the stator and to counter rotation stages. The theory has been coded in a FORTRAN program called CUP2D, documented in Volume 2 of this report. It is
SHEFEX II - Aerodynamic Re-Entry Controlled Sharp Edge Flight Experiment
NASA Astrophysics Data System (ADS)
Longo, J. M. A.; Turner, J.; Weihs, H.
2009-01-01
In this paper the basic goals and architecture of the SHEFEX II mission is presented. Also launched by a two staged sounding rocket system SHEFEX II is a consequent next step in technology test and demonstration. Considering all experience and collected flight data obtained during the SHEFEX I Mission, the test vehicle has been re-designed and extended by an active control system, which allows active aerodynamic control during the re-entry phase. Thus, ceramic based aerodynamic control elements like rudders, ailerons and flaps, mechanical actuators and an automatic electronic control unit has been implemented. Special focus is taken on improved GNC Elements. In addition, some other experiments including an actively cooled thermal protection element, advanced sensor equipment, high temperature antenna inserts etc. are part of the SHEFEX II experimental payload. A final 2 stage configuration has been selected considering Brazilian solid rocket boosters derived from the S 40 family. During the experiment phase a maximum entry velocity of Mach around 10 is expected for 50 seconds. Considering these flight conditions, the heat loads are not representative for a RLV re-entry, however, it allows to investigate the principal behaviour of such a facetted ceramic TPS, a sharp leading edge at the canards and fins and all associated gas flow effects and their structural response.
DOE's effort to reduce truck aerodynamic drag through joint experiments and computations.
Salari, Kambiz; Browand, Fred; Sreenivas, Kidambi; Pointer, W. David; Taylor, Lafayette; Pankajakshan, Ramesh; Whitfield, David; Plocher, Dennis; Ortega, Jason M.; Merzel, Tai; McCallen, Rose; Walker, Stephen M; Heineck, James T; Hassan, Basil; Roy, Christopher John; Storms, B.; Ross, James; Englar, Robert; Rubel, Mike; Leonard, Anthony; Radovich, Charles; Eastwood, Craig; Paschkewitz, John; Castellucci, Paul; DeChant, Lawrence Justin.
2005-08-01
Class 8 tractor-trailers are responsible for 11-12% of the total US consumption of petroleum. Overcoming aero drag represents 65% of energy expenditure at highway speeds. Most of the drag results from pressure differences and reducing highway speeds is very effective. The goal is to reduce aerodynamic drag by 25% which would translate to 12% improved fuel economy or 4,200 million gal/year. Objectives are: (1) In support of DOE's mission, provide guidance to industry in the reduction of aerodynamic drag; (2) To shorten and improve design process, establish a database of experimental, computational, and conceptual design information; (3) Demonstrate new drag-reduction techniques; and (4) Get devices on the road. Some accomplishments are: (1) Concepts developed/tested that exceeded 25% drag reduction goal; (2) Insight and guidelines for drag reduction provided to industry through computations and experiments; (3) Joined with industry in getting devices on the road and providing design concepts through virtual modeling and testing; and (4) International recognition achieved through open documentation and database.
Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer
Fleeter, S.; Lawless, P.B.
1995-10-01
The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.
2013-11-13
forces remain because there is a slight difference in moment-arm from the wing’s AC to each motor and propeller. inertialaero FFF ...calculated according to Equation 1. See Table 3 and its preceding discussion for details. aerootheraerootherpropaeroprop FFF ...definitions follow from Equation 2 discussion. aerootherpropaerootherpropwingaerowing FFF (3) Generally speaking, static
Dissipation in unsteady turbulence
NASA Astrophysics Data System (ADS)
Bos, Wouter J. T.; Rubinstein, Robert
2017-02-01
Recent experiments and simulations have shown that unsteady turbulent flows display a universal behavior at short and intermediate times, different from classical scaling relations. The origin of these observations is explained using a nonequilibrium correction to Kolmogorov's energy spectrum, and the exact form of the observed universal scaling is derived.
Unsteady transonic flow in cascades
NASA Technical Reports Server (NTRS)
Surampudi, S. P.; Adamczyk, J. J.
1984-01-01
There is a need for methods to predict the unsteady air loads associated with flutter of turbomachinery blading at transonic speeds. The results of such an analysis in which the steady relative flow approaching a cascade of thin airfoils is assumed to be transonic, irrotational, and isentropic is presented. The blades in the cascade are allowed to undergo a small amplitude harmonic oscillation which generates a small unsteady flow superimposed on the existing steady flow. The blades are assumed to oscillate with a prescribed motion of constant amplitude and interblade phase angle. The equations of motion are obtained by linearizing about a uniform flow the inviscid nonheat conducting continuity and momentum equations. The resulting equations are solved by employing the Weiner Hopf technique. The solution yields the unsteady aerodynamic forces acting on the cascade at Mach number equal to 1. Making use of an unsteady transonic similarity law, these results are compared with the results obtained from linear unsteady subsonic and supersonic cascade theories. A parametric study is conducted to find the effects of reduced frequency, solidity, stagger angle, and position of pitching axis on the flutter.
ERIC Educational Resources Information Center
Jernigan, S. R.; Fahmy, Y.; Buckner, G. D.
2009-01-01
This paper details a successful and inexpensive implementation of a remote laboratory into a distance control systems course using readily available hardware and software. The physical experiment consists of a beach ball and a dc blower; the control objective is to make the height of the aerodynamically levitated beach ball track a reference…
Theory and Low-Order Modeling of Unsteady Airfoil Flows
NASA Astrophysics Data System (ADS)
Ramesh, Kiran
Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It
NASA Technical Reports Server (NTRS)
Oeztuerk, B; Schobeiri, M. T.; Ashpis, David E.
2005-01-01
The paper experimentally and theoretically studies the effects of periodic unsteady wake flow and aerodynamic characteristics on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experiments were carried out at Reynolds number of 110,000 (based on suction surface length and exit velocity). For one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, intermittency behaviors were experimentally and theoretically investigated. The current investigation attempts to extend the intermittency unsteady boundary layer transition model developed in previously to the LPT cases, where separation occurs on the suction surface at a low Reynolds number. The results of the unsteady boundary layer measurements and the intermittency analysis were presented in the ensemble-averaged and contour plot forms. The analysis of the boundary layer experimental data with the flow separation, confirms the universal character of the relative intermittency function which is described by a Gausssian function.
Dynamic control of aerodynamic forces on a moving platform using active flow control
NASA Astrophysics Data System (ADS)
Brzozowski, Daniel P.
The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2--3 convective time scales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.
Numerical solutions for unsteady subsonic vortical flows around loaded cascades
NASA Technical Reports Server (NTRS)
Fang, J.; Atassi, H. M.
1992-01-01
A frequency domain linearized unsteady aerodynamic analysis is presented for three-dimensional unsteady vortical flows around a cascade of loaded airfoils. The analysis fully accounts for the distortion of the impinging vortical disturbances by the mean flow. The entire unsteady flow field is calculated in response to upstream three-dimensional harmonic disturbances. Numerical results are presented for two standard cascade configurations representing turbine and compressor bladings for a reduced frequency range from 0.1 to 5. Results show that the upstream gust conditions and blade sweep strongly affect the unsteady blade response.
Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage
NASA Technical Reports Server (NTRS)
Boyd, David D., Jr.
1999-01-01
A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.
NASA Technical Reports Server (NTRS)
Cassell, Alan M.
2013-01-01
The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.
Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade
NASA Technical Reports Server (NTRS)
Hoyniak, D.; Fleeter, S.
1985-01-01
An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus is analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.
Algorithm and code development for unsteady three-dimensional Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1994-01-01
Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.
Computational unsteady aerodynamics for lifting surfaces
NASA Technical Reports Server (NTRS)
Edwards, John W.
1988-01-01
Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.
Unsteady Aerodynamic Flow Control of Moving Platforms
2014-05-29
gyroscopically stable to axisymmetric moment instability, they are susceptible to roll resonance (Price, 1967), and spin-yaw lock in (Murphy, 1987... resonance peaks are observed, which combined with a decrease of the resonance frequency with increasing power indicates weakly nonlinear behavior. III...experimental setup. The actuation signal is first set to a frequency near the resonance of the synthetic jets based on the prior characterization (fA
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Development of the Unsteady Coanda Effect in Human Phonation
NASA Astrophysics Data System (ADS)
Erath, Byron D.; Plesniak, Michael W.
2003-11-01
Human speech is initiated as air passing through the glottis triggers self-sustained oscillations of the vocal folds. These oscillations, caused by aerodynamic air pressures, glottal geometry and tissue properties, result in the glottis cyclically forming into a converging, straight, then diverging passage and finally closing. The varying shape of the glottis throughout the cycle causes different coherent structures to form. One such phenomenon evident in quasi-steady flow experiments is the skewing of the glottal jet towards one wall and attachment, i.e. the Coanda effect. It is not understood if the high frequency oscillations inherent in human phonation allow sufficient time for this oscillating jet to attach to the glottal wall, and thereby influence sound production. Unsteady flow through a high aspect ratio slot with an adjacent plate angled at 30 degrees to the streamwise direction was investigated. The driven, unsteady flow oscillation through the slot was chosen to represent known in-vivo velocity wave forms. Particle Image Velocimetry (PIV) was used to measure the phase-averaged development of the Coanda effect. The evolution of the unsteady Coanda effect over a range of frequencies typical of human phonation will be discussed.
An aerodynamic model for one and two degree of freedom wing rock of slender delta wings
NASA Technical Reports Server (NTRS)
Hong, John
1993-01-01
The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.
Vanyó, József; Vincze, Miklós; Jánosi, Imre M; Tél, Tamás
2014-07-01
We study the chaotic motion of a small rigid sphere, lighter than the fluid in a three-dimensional vortex of finite height. Based on the results of Eulerian and Lagrangian measurements, a sequence of models is set up. The time-independent model is a generalization of the Burgers vortex. In this case, there are two types of attractors for the particle: a fixed point on the vortex axis and a limit cycle around the vortex axis. Time dependence might combine these regular attractors into a single chaotic attractor, however its robustness is much weaker than what the experiments suggest. To construct an aperiodically time-dependent advection dynamics in a simple way, Gaussian noise is added to the particle velocity in the numerical simulation. With an appropriate choice of the noise properties, mimicking the effect of local turbulence, a reasonable agreement with the experimentally observed particle statistics is found.
Prediction of Aerodynamic Loading
1977-02-01
predictable even with knowledge of the motion and the quasi- steady aerodynamic coefficients . It sems likely that the unsteady boundary-layer...build up, which are explainable 41 terams of the stability coefficients . More research is needed on the former type of undemanded manoeuvre. In some...drag 81, 82... B5 body sections I. kg lift St strdke 1M kg m pitching moment N kg normal force T kg axial force a 0 angle of attack Coefficie its: CD, cD
Special opportunities in helicopter aerodynamics
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1983-01-01
Aerodynamic research relating to modern helicopters includes the study of three dimensional, unsteady, nonlinear flow fields. A selective review is made of some of the phenomenon that hamper the development of satisfactory engineering prediction techniques, but which provides a rich source of research opportunities: flow separations, compressibility effects, complex vortical wakes, and aerodynamic interference between components. Several examples of work in progress are given, including dynamic stall alleviation, the development of computational methods for transonic flow, rotor-wake predictions, and blade-vortex interactions.
Unsteady transonic flow past airfoils in rigid-body motion. [UFLO5
Chang, I C
1981-03-01
With the aim of developing a fast and accurate computer code for predicting the aerodynamic forces needed for a flutter analysis, some basic concepts in computational transonics are reviewed. The unsteady transonic flow past airfoils in rigid body motion is adequately described by the potential flow equation as long as the boundary layer remains attached. The two dimensional unsteady transonic potential flow equation in quasilinear form with first order radiation boundary conditions is solved by an alternating direction implicit scheme in an airfoil attached sheared parabolic coordinate system. Numerical experiments show that the scheme is very stable and is able to resolve the higher nonlinear transonic effects for filter analysis within the context of an inviscid theory.
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Gilyard, Glenn B.
1989-01-01
A flight experiment was conducted to evaluate a pressure measurement system which uses pneumatic tubing and remotely located electronically scanned pressure transducer modules for in-flight unsteady aerodynamic studies. A parametric study of tubing length and diameter on the attenuation and lag of the measured signals was conducted. The hardware was found to operate satisfactorily at rates of up to 500 samples/sec per port in flight. The signal attenuation and lag due to tubing were shown to increase with tubing length, decrease with tubing diameter, and increase with altitude over the ranges tested. Measurable signal levels were obtained for even the longest tubing length tested, 4 ft, at frequencies up to 100 Hz. This instrumentation system approach provides a practical means of conducting detailed unsteady pressure surveys in flight.
Research on unsteady transonic flow theory
NASA Technical Reports Server (NTRS)
Revell, J. D.
1973-01-01
A two-dimensional theory is considered for the unsteady flow disturbances caused by aeroelastic deformations of a thick wing at high subsonic freestream Mach numbers, having a single, internally embedded supercritical (locally supersonic) steady flow region adjacent to the low pressure side of the wing. The theory develops a matrix of unsteady aerodynamic influence coefficients (AICs) suitable as a strip theory for aeroelastic analysis of large aspect ratio thick wings of moderate sweep, typical of a wide class of current and future aircraft. The theory derives the linearized unsteady flow solutions separately for both the subcritical and supercritical regions. These solutions are coupled together to give the requisite (wing pressure-downwash) AICs by the intermediate step of defining flow disturbances on the sonic line, and at the shock wave; these intermediate quantities are then algebraically eliminated by expressing them in terms of the wing surface downwash.
Numerical calculations of two dimensional, unsteady transonic flows with circulation
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.
1974-01-01
The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.
Development of a nonlinear unsteady transonic flow theory
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Spreiter, J. R.
1973-01-01
A nonlinear, unsteady, small-disturbance theory capable of predicting inviscid transonic flows about aerodynamic configurations undergoing both rigid body and elastic oscillations was developed. The theory is based on the concept of dividing the flow into steady and unsteady components and then solving, by method of local linearization, the coupled differential equation for unsteady surface pressure distribution. The equations, valid at all frequencies, were derived for two-dimensional flows, numerical results, were obtained for two classses of airfoils and two types of oscillatory motions.
Extension and validation of an unsteady wake model for rotors
NASA Technical Reports Server (NTRS)
Su, AY; Yoo, Kyung M.; Peters, David A.
1992-01-01
A new three-dimensional, finite-state induced-flow model is extended to treat nonlinearities associated with the mass flow induced through the rotor plane. This new theory is then applied to the correlation of a recent set of unsteady, hover laser Doppler velocimetry inflow measurements conducted in the Aeroelastic Rotor Test Chamber at Georgia Institute of Technology. Although the model is intended primarily as a representation of unsteady aerodynamics for aeroelasticity applications, the results show that it has an excellent capability in predicting the inflow distribution in hover except near the root and tip. In addition, the computed unsteady spanwise lift distribution of a rotor is compared with that from an unsteady vortex lattice method for pitch oscillations at various frequencies. The new model is shown to be capable of prediction of unsteady loads typical of aeroelastic response.
Development of a linearized unsteady Euler analysis for turbomachinery blade rows
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.
1995-01-01
A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.
ERIC Educational Resources Information Center
Weltner, Klaus
1990-01-01
Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)
NASA Astrophysics Data System (ADS)
Mettler, B. F.
2010-09-01
This paper describes a methodology to extract aerial vehicles’ aerodynamic characteristics from visually tracked trajectory data. The technique is being developed to study the aerodynamics of centimeter-scale aircraft and develop flight simulation models. Centimeter-scale aircraft remains a largely unstudied domain of aerodynamics, for which traditional techniques like wind tunnels and computational fluid dynamics have not yet been fully adapted and validated. The methodology takes advantage of recent progress in commercial, vision-based, motion-tracking systems. This system dispenses from on-board navigation sensors and enables indoor flight testing under controlled atmospheric conditions. Given the configuration of retro-reflective markers affixed onto the aerial vehicle, the vehicle’s six degrees-of-freedom motion can be determined in real time. Under disturbance-free conditions, the aerodynamic forces and moments can be determined from the vehicle’s inertial acceleration, and furthermore, for a fixed-wing vehicle, the aerodynamic angles can be plotted from the vehicle’s kinematics. By combining this information, we can determine the temporal evolution of the aerodynamic coefficients, as they change throughout a trajectory. An attractive feature of this technique is that trajectories are not limited to equilibrium conditions but can include non-equilibrium, maneuvering flight. Whereas in traditional wind-tunnel experiments, the operating conditions are set by the experimenter, here, the aerodynamic conditions are driven by the vehicle’s own dynamics. As a result, this methodology could be useful for characterizing the unsteady aerodynamics effects and their coupling with the aircraft flight dynamics, providing insight into aerodynamic phenomena taking place at centimeter scale flight.
NASA Astrophysics Data System (ADS)
Lokotko, A. V.
2016-10-01
Modeling massflow-traction characteristics of the power unit (PU) may be of interest in the study of aerodynamic characteristics (ADC) aircraft models with full dynamic likeness, and in the study of the effect of interference PU. These studies require the use of a number of processing methods. These include: 1) The method of delivery of the high-pressure body of jets model engines on the sensitive part of the aerodynamic balance. 2) The method of estimate accuracy and reliability of measurement thrust generated by the jet device. 3) The method of implementation of the simulator SU in modeling the external contours of the nacelle, and the conditions at the inlet and outlet. 4) The method of determining the traction simulator PU. 5) The method of determining the interference effect from the work of power unit on the ADC of model. 6) The method of producing hot jets of jet engines. The paper examines implemented in ITAM methodology applied to testing in a supersonic wind tunnel T-313.
Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Unsteady heat transfer and direct comparison to steady-state measurements in a rotor-wake experiment
NASA Technical Reports Server (NTRS)
Obrien, J. E.; Simoneau, R. J.; Lagraff, J. E.; Morehouse, K. A.
1986-01-01
Circumferentially local and time-resolved heat transfer measurements were obtained for a circular cylinder in crossflow located downstream of a rotating spoked wheel wake generator in a steady flow tunnel. The unsteady heat transfer effects were obtained by developing an extension of a thin film gauge technique employed to date exclusively in short-duration facilities. The time-average thin film results and conventional steady-state heat transfer measurements were compared. Time-averaged wake-induced stagnation heat transfer enhancement levels above the nowake case were about 10% for the four cylinder Reynolds numbers. This enhancement level was nearly independent of bar passing frequency and was related directly to the time integral of the heat transfer spikes observed at the bar passing frequency. It is observed that the wake-induced heat transfer spikes have peak magnitudes averaging 30 to 40% above the interwake heat transfer level.
NASA Technical Reports Server (NTRS)
1999-01-01
This document describes the aerodynamic design of an experimental hybrid laminar flow control (HLFC) wing panel intended for use on a Boeing 757 airplane to provide a facility for flight research on high Reynolds number HLFC and to demonstrate practical HLFC operation on a full-scale commercial transport airplane. The design consists of revised wing leading edge contour designed to produce a pressure distribution favorable to laminar flow, definition of suction flow requirements to laminarize the boundary layer, provisions at the inboard end of the test panel to prevent attachment-line boundary layer transition, and a Krueger leading edge flap that serves both as a high lift device and as a shield to prevent insect accretion on the leading edge when the airplane is taking off or landing.
Aerodynamic Experiments of Small Scale Combined Cycle Engine in Various Mach Numbers
NASA Astrophysics Data System (ADS)
Tani, Kouichiro; Kouchi, Toshinori; Kato, Kanenori; Sakuranaka, Noboru; Watanabe, Syuuichi
A small model aerodynamic tests of the combined cycle engine were carried out to evaluate its performance in subsonic and supersonic conditions. In this regime of the flow speed, the combined cycle engine operates as an ejector-jet or ramjet. The nitrogen gas was exhausted as the substitution for the actual rocket gas. In a subsonic condition, there appeared local pressure rise at the kink point of the ramp, increasing the pressure drag. Both wall pressure and the pitot pressure distribution at the exit of the model suggested that the flow structure is “two-layered” ; one is subsonic induced air flow, and the other is the supersonic rocket exhaust. A slit was carved on the topwall inside the isolator section, expecting a better suction performance in the ejector-jet mode. The modification actually had an effect to enhance the lower limit of the rocket pressure at which the choking of the induced air is achieved.
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen
1999-01-01
Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.; Fink, M. R.; Jepson, W. D.
1979-01-01
Aerodynamic experiments were performed on an oscillating NACA 0012 airfoil utilizing a tunnel-spanning wing in both unswept and 30 degree swept configurations. The airfoil was tested in steady state and in oscillatory pitch about the quarter chord. The unsteady aerodynamic loading was measured using pressure transducers along the chord. Numerical integrations of the unsteady pressure transducer responses were used to compute the normal force, chord force, and moment components of the induced loading. The effects of sweep on the induced aerodynamic load response was examined. For the range of parameters tested, it was found that sweeping the airfoil tends to delay the onset of dynamic stall. Sweeping was also found to reduce the magnitude of the unsteady load variation about the mean response. It was determined that at mean incidence angles greater than 9 degrees, sweep tends to reduce the stability margin of the NACA 0012 airfoil; however, for all cases tested, the airfoil was found to be stable in pure pitch. Turbulent eddies were found to convect downstream above the upper surface and generate forward-moving acoustic waves at the trailing edge which move upstream along the lower surface.
Fluid mechanics of dynamic stall. I - Unsteady flow concepts
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1988-01-01
Advanced military aircraft 'supermaneuverability' requirements entail the sustained operation of airfoils at stalled flow conditions. The present work addresses the effects of separated flow on vehicle dynamics; an analytic method is presented which employs static experimental data to predict the separated flow effect on incompressible unsteady aerodynamics. The key parameters in the analytic relationship between steady and nonsteady aerodynamics are the time-lag before a change of flow conditions can affect the separation-induced aerodynamic loads, the accelerated flow effect, and the moving wall effect.
Simulation and experiment research of aerodynamic performance of small axial fans with struts
NASA Astrophysics Data System (ADS)
Chu, Wei; Lin, Peifeng; Zhang, Li; Jin, Yingzi; Wang, Yanping; Kim, Heuy Dong; Setoguchi, Toshiaki
2016-06-01
Interaction between rotor and struts has great effect on the performance of small axial fan systems. The small axial fan systems are selected as the studied objects in this paper, and four square struts are downstream of the rotor. The cross section of the struts is changed to the cylindrical shapes for the investigation: one is in the same hydraulic diameter as the square struts and another one is in the same cross section as the square struts. Influence of the shape of the struts on the static pressure characteristics, the internal flow and the sound emission of the small axial fans are studied. Standard K-ɛ turbulence model and SIMPLE algorithm are applied in the calculation of the steady fluid field, and the curves of the pressure rising against the flow rate are obtained, which demonstrates that the simulation results are in nice consistence with the experimental data. The steady calculation results are set as the initial field in the unsteady calculation. Large eddy simulation and PISO algorithm are used in the transient calculation, and the Ffowcs Williams-Hawkings model is introduced to predict the sound level at the eight monitoring points. The research results show that: the static pressure coefficients of the fan with cylindrical struts increase by about 25% compared to the fan with square struts, and the efficiencies increase by about 28.6%. The research provides a theoretical guide for shape optimization and noise reduction of small axial fan with struts.
Three-dimensional unsteady Euler equations solutions on dynamic grids
NASA Technical Reports Server (NTRS)
Belk, D. M.; Janus, J. M.; Whitfield, D. L.
1985-01-01
A method is presented for solving the three-dimensional unsteady Euler equations on dynamic grids based on flux vector splitting. The equations are cast in curvilinear coordinates and a finite volume discretization is used for handling arbitrary geometries. The discretized equations are solved using an explicit upwind second-order predictor corrector scheme that is stable for a CFL of 2. Characteristic variable boundary conditions are developed and used for unsteady impermeable surfaces and for the far-field boundary. Dynamic-grid results are presented for an oscillating air-foil and for a store separating from a reflection plate. For the cases considered of stores separating from a reflection plate, the unsteady aerodynamic forces on the store are significantly different from forces obtained by steady-state aerodynamics with the body inclination angle changed to account for plunge velocity.
Unsteady transonic flow calculations for realistic aircraft configurations
NASA Technical Reports Server (NTRS)
Batina, John T.; Seidel, David A.; Bland, Samuel R.; Bennett, Robert M.
1987-01-01
A transonic unsteady aerodynamic and aeroelasticity code has been developed for application to realistic aircraft configurations. The new code is called CAP-TSD which is an acronym for Computational Aeroelasticity Program - Transonic Small Disturbance. The CAP-TSD code uses a time-accurate approximate factorization (AF) algorithm for solution of the unsteady transonic small-disturbance equation. The AF algorithm is very efficient for solution of steady and unsteady transonic flow problems. It can provide accurate solutions in only several hundred time steps yielding a significant computational cost savings when compared to alternative methods. The new code can treat complete aircraft geometries with multiple lifting surfaces and bodies including canard, wing, tail, control surfaces, launchers, pylons, fuselage, stores, and nacelles. Applications are presented for a series of five configurations of increasing complexity to demonstrate the wide range of geometrical applicability of CAP-TSD. These results are in good agreement with available experimental steady and unsteady pressure data. Calculations for the General Dynamics one-ninth scale F-16C aircraft model are presented to demonstrate application to a realistic configuration. Unsteady results for the entire F-16C aircraft undergoing a rigid pitching motion illustrated the capability required to perform transonic unsteady aerodynamic and aeroelastic analyses for such configurations.
NASA Technical Reports Server (NTRS)
Miserentino, R.; Dixon, S. C.
1972-01-01
The vibration and buckling characteristics of a series of 140 deg ring-supported conical shells have been investigated experimentally and analytically. Experimental results were obtained from 14 conical shells, each attached to a solid nose cap at the small end. The large (base) end was either free or attached to a solid ring of rectangular cross section. The size of the solid base rings of rectangular cross section was systematically varied to provide a wide range of edge restraint. Shell buckling was induced by aerodynamic loading at a Mach number of 3; the vibration data were obtained prior to the wind tunnel tests. The experimental vibration data indicated that the size of the base rings had a pronounced effect on the magnitude of the frequencies and on the frequency spectrum. For vibration modes having less than two circumferential waves, the frequencies descreased with increasing ring size; whereas, for modes with several circumferential waves, the frequencies initially increased rapidly with ring size and then became relatively insensitive to further increases in ring size. This latter behavior was similar to the trend exhibited by the variation of buckling pressure with ring size. The experimental results were in excellent qualitative agreement with theoretical results and indicated that current shell-of-revolution analyses are adequate for predicting the vibration and buckling behavior of ring-supported shells, at least for the simple isotropic shells considered in this investigation.
Becker, B.G.; Lane, D.A.; Max, N.L.
1995-03-01
Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John
2013-01-01
On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.
NASA Astrophysics Data System (ADS)
Babakov, A. V.; Novikov, P. A.
2011-02-01
On the basis of the conservative difference method, spatially unsteady flows near complexly shaped objects are studied. The mathematical model is based on the inviscid gas model. For subsonic, transonic, and supersonic regimes, the nonstationary aerodynamics of various aerospace objects is examined. The three-dimensional structure of the unsteady vortex near wake and its influence on the basic aerodynamic characteristics of aerial vehicles are visualized. The numerical simulation is performed using parallel algorithms on supercomputers of cluster architecture.
An unsteady rotor/fuselage interaction method
NASA Technical Reports Server (NTRS)
Egolf, T. Alan; Lorber, Peter F.
1987-01-01
An analytical method has been developed to treat unsteady helicopter rotor, wake, and fuselage interaction aerodynamics. An existing lifting line/prescribed wake rotor analysis and a source panel fuselage analysis were modified to predict vibratory fuselage airloads. The analyses were coupled through the induced flow velocities of the rotor and wake on the fuselage and the fuselage on the rotor. A prescribed displacement technique was used to distort the rotor wake about the fuselage. Sensitivity studies were performed to determine the influence of wake and body geometry on the computed airloads. Predicted and measured mean and unsteady pressures on a cylindrical body in the wake of a two-bladed rotor were compared. Initial results show good qualitative agreement.
Unsteady Pressures on a Generic Capsule Shape
NASA Technical Reports Server (NTRS)
Burnside, Nathan; Ross, James C.
2015-01-01
While developing the aerodynamic database for the Orion spacecraft, the low-speed flight regime (transonic and below) proved to be the most difficult to predict and measure accurately. The flow over the capsule heat shield in descent flight was particularly troublesome for both computational and experimental efforts due to its unsteady nature and uncertainty about the boundary layer state. The data described here were acquired as part of a study to improve the understanding of the overall flow around a generic capsule. The unsteady pressure measurements acquired on a generic capsule shape are presented along with a discussion about the effects of various flight conditions and heat-shield surface roughness on the resulting pressure fluctuations.
Impact of Periodic Unsteadiness on Performance and Heat Load in Axial Flow Turbomachines
NASA Technical Reports Server (NTRS)
Sharma, Om P.; Stetson, Gary M.; Daniels, William A,; Greitzer, Edward M.; Blair, Michael F.; Dring, Robert P.
1997-01-01
Results of an analytical and experimental investigation, directed at the understanding of the impact of periodic unsteadiness on the time-averaged flows in axial flow turbomachines, are presented. Analysis of available experimental data, from a large-scale rotating rig (LSRR) (low speed rig), shows that in the time-averaged axisymmetric equations the magnitude of the terms representing the effect of periodic unsteadiness (deterministic stresses) are as large or larger than those due to random unsteadiness (turbulence). Numerical experiments, conducted to highlight physical mechanisms associated with the migration of combustor generated hot-streaks in turbine rotors, indicated that the effect can be simulated by accounting for deterministic stress like terms in the time-averaged mass and energy conservation equations. The experimental portion of this program shows that the aerodynamic loss for the second stator in a 1-1/2 stage turbine are influenced by the axial spacing between the second stator leading edge and the rotor trailing edge. However, the axial spacing has little impact on the heat transfer coefficient. These performance changes are believed to be associated with the change in deterministic stress at the inlet to the second stator. Data were also acquired to quantify the impact of indexing the first stator relative to the second stator. For the range of parameters examined, this effect was found to be of the same order as the effect of axial spacing.
Goto, Susumu; Vassilicos, J C
2016-11-01
We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5/3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935)1364-502110.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.
NASA Astrophysics Data System (ADS)
Goto, Susumu; Vassilicos, J. C.
2016-11-01
We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5 /3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935), 10.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.
New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Jutte, Christine V.
2009-01-01
This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
Shock unsteadiness creation and propagation: experimental analysis
NASA Astrophysics Data System (ADS)
Benay, R.; Alaphilippe, M.; Severac, N.
2012-09-01
The possibility of creating unsteady distortions of the tip shock by waves emitted from an aircraft is assessed experimentally. The model chosen is a cylindrical fore body equipped with a spike. This configuration is known for generating an important level of unsteadiness around the spike in supersonic regime. The wind tunnel Mach number is equal to 2. The experiments show that waves emitted from this source propagate along the tip shock and interact with it. It is then assessed that this interaction produces a periodic distortion of the shock that propagates to the external flow. Unsteady pressure sensors, high speed schlieren films, hot wire probing and laser Doppler velocimetry are used as complementary experimental means. The final result is a coherent representation of the complex mechanism of wave propagation that has been evidenced. The principle of creating unsteady shock deformation by onboard equipments could be examined as a possibly promising method of sonic boom control.
NASA Astrophysics Data System (ADS)
Schobeiri, M. T.; Pappu, K.
The results from an experimental investigation of unsteady boundary layer behavior on a linear turbine cascade are presented in this paper. To perform a detailed study on unsteady cascade aerodynamics and heat transfer, a new large-scale, high-subsonic research facility for simulating the periodic unsteady flow has been developed. It is capable of sequentially generating up to four different unsteady inlet flow conditions that lead to four different passing frequencies, wake structures, and freestream turbulence intensities. For a given Reynolds number, two different unsteady wake formations are utilized. Detailed unsteady boundary layer velocity. turbulence intensity, and pressure measurements are performed along the suction and pressure surfaces of one blade. The results display the transition and development of the boundary layer, ensemble-averaged velocity, and turbulence intensity.
Numerical and experimental study of unsteady flow field and vibration in radial inflow turbines
Kreuz-Ihli, T.; Filsinger, D.; Schulz, A.; Wittig, S.
2000-04-01
The blades of turbocharger impellers are exposed to unsteady aerodynamic forces, which cause blade vibrations and may lead to failures. An indispensable requirement for a safe design of radial inflow turbines is a detailed knowledge of the exciting forces. Up to now, only a few investigations relating to unsteady aerodynamic forces in radial turbines have been presented. To give a detailed insight into the complex phenomena, a comprehensive research project was initiated at the Institut fuer Thermische Stroemungsmaschinen, at the University of Karlsruhe. A turbocharger test rig was installed in the high-pressure, high-temperature laboratory of the institute. The present paper gives a description of the test rig design and the measuring techniques. The flow field in a vaneless radial inflow turbine was analyzed using laser-Doppler anemometry. First results of unsteady flow field investigations in the turbine scroll and unsteady phase-resolved measurements of the flow field in the turbine rotor will be discussed. Moreover, results from finite element calculations analyzing frequencies and mode shapes are presented. As vibrations in turbines of turbochargers are assumed to be predominantly excited by unsteady aerodynamic forces, a method to predict the actual transient flow in a radial turbine utilizing the commercial Navier-Stokes solver TASCflow3d was developed. Results of the unsteady calculations are presented and comparisons with the measured unsteady flow field are made. As a major result, the excitation effect of the tongue region in a vaneless radial inflow turbine can be demonstrated.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1996-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.
Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew
1999-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.
NASA Astrophysics Data System (ADS)
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
Design and Predictions for a High-Altitude (Low-Reynolds-Number) Aerodynamic Flight Experiment
NASA Technical Reports Server (NTRS)
Greer, Donald; Hamory, Phil; Krake, Keith; Drela, Mark
1999-01-01
A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.
Design and Predictions for High-Altitude (Low Reynolds Number) Aerodynamic Flight Experiment
NASA Technical Reports Server (NTRS)
Greer, Donald; Harmory, Phil; Krake, Keith; Drela, Mark
2000-01-01
A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters or an airfoil at high altitudes (70,000 - 100,000 ft), low Reynolds numbers (2 x 10(exp 5) - 7 x 10(exp 5)), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pilot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary-layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented as well as several predictions of the airfoil performance.
2011-04-01
in table 1. Figure 3. The 155-mm airframe. 5 Table 1. Physical properties of projectiles. Projectile (mm) Mass (kg) Axial Inertia...VAPP-8 Aerodynamic Coefficients The aerodynamic coefficients derived for the 10-5mm airframe are shown in figures 14 and 15. Zero-yaw axial force...coefficients ( 0xC ) for VAPP-8 and VAPP-7 agree well. The zero-yaw axial force coefficient increases slightly as Mach number increases. The pitching
NASA Technical Reports Server (NTRS)
Yates, E. C., Jr.; Cunningham, H. J.; Desmarais, R. N.; Silva, W. A.; Drobenko, B.
1982-01-01
The SOUSSA (steady, oscillatory, and unsteady subsonic and supersonic aerodynamics) program is the computational implementation of a general potential flow analysis (by the Green's function method) that can generate pressure distributions on complete aircraft having arbitrary shapes, motions and deformations. Some applications of the initial release version of this program to several wings in steady and oscillatory motion, including flutter are presented. The results are validated by comparisons with other calculations and experiments. Experiences in using the program as well as some recent improvements are described.
Development of a system for aerodynamic fast-response probe measurements
NASA Astrophysics Data System (ADS)
Gossweiler, C.; Humm, H.; Kupferschmied, P.
This paper describes the development of a fast-response probe measurement system. Small pressure probes have been equipped with up to 4 miniature pressure sensors. The high frequency response of such sensors allied to minimized cavities between the flow and the sensing diaphragm enables the probe system to take measurements up to 40 kHz bandwidth (typical blade passing frequency: 2-10 kHz). First results of investigations on the aerodynamic of high frequency response measurement probes are presented including experiments in a water towing channel with unsteady flows around different probe geometries. The packaging of the sensor chip into the probe, the properties of the sensors and the measurement errors are examined. Probe calibration methods and aerodynamic evaluation procedures are discussed, followed by a presentation of the data acquisition system and of the data evaluation software. Measurements in a radial compressor test rig and in a fully developed pipe flow are shown as applications.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-gi
2011-01-01
A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.
Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.
2014-01-01
Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.
The aerodynamics of insect flight.
Sane, Sanjay P
2003-12-01
The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well
NASA Astrophysics Data System (ADS)
Falk, Eric Andrew
Aerodynamic forcing experiments were performed within the single-stage axial compressor of an AlliedSignal F109 turbofan engine. Unsteady velocity was measured both forward and aft of the F109 fan at several locations, with unsteady surface pressure also measured along sixteen, transducer-instrumented stator vanes. Three fan RPM were considered, with time-resolution of the unsteady data obtained through a photoelectric sensor coupled to the fan rotation. The velocity data collected forward of the fan exhibited evidence of upstream-propagating disturbances in the engine inlet flow, where these disturbances were potential in nature, emanating from the fan, and traveling acoustically in a helical pattern. The disturbance peak-to-peak unsteady amplitudes, in the swirl direction, reached nearly 50% of the mean-axial velocity at the fan face, dropping to 2--5% at one blade chord upstream. Such large velocity fluctuations may be important in terms of component high-cycle-fatigue, particularly in closely spaced, axial compressor stages. Aft of the fan, the average unsteady velocity waveforms measured across five azimuthal locations demonstrated characteristics indicative of a strong vortical and potential disturbance interaction, where the interacting disturbances had the same forcing frequency, but different amplitudes and propagation speeds. Further reduction of the fan-aft velocity data also produced evidence of upstream-propagating disturbances. These disturbances were found to be potential in nature and emanating from the F109 stator vanes; thus creating a cumulative, unsteady aerodynamic field upstream of the stators comprised of multiple interacting disturbances. The amplitudes of the stator-induced disturbances were on the order of 20--40% of the measured, downstream-propagating vortical wake amplitudes. Finally, results from stator-vane surface-pressure measurements compared favorably in both magnitude and phase to similar results collected in previous cascade
Analysis and control of low-speed forced unsteady flow
NASA Technical Reports Server (NTRS)
Ghia, U.; Ghia, K. N.
1990-01-01
A capability for numerically simulating 2-D flows in temporally deforming geometries is described, with emphasis on flow with forced unsteadiness, particularly on the simulation and analysis of these flows. The simulation of forced unsteady flows makes the examination of fundamental unsteady flow mechanisms, such as dynamic stall and unsteady separation, possible. A turbulence model is being incorporated into the analysis so as to obtain solutions for the higher Reynolds numbers used in the experiments. The analysis is also of utility in studying fluid-structure interactions, free surfaces, metal-forming, and bio-fluid mechanics involving flow through passages with flexible walls.
Evolution of the shear layer during unsteady separation over an experimental wind turbine blade
NASA Astrophysics Data System (ADS)
Melius, Matthew; Cal, Raul; Mulleners, Karen
2016-11-01
Unsteady flow separation in rotationally augmented flow fields plays a significant role in the aerodynamic performance of industrial wind turbines. Current computational models underestimate the aerodynamic loads due to the inaccurate prediction of the emergence and severity of unsteady flow separation in the presence of rotational augmentation. Through the use of time-resolved particle image velocimetry (PIV), the unsteady separation over an experimental wind turbine blade is examined. By applying Empirical Mode Decomposition (EMD), perturbation amplitudes and frequencies within the shear-layer are identified. The time dependent EMD results during the dynamic pitching cycle give insight into the spatio-temporal scales that influence the transition from attached to separated flow. The EMD modes are represented as two-dimensional fields and are analyzed together with the spatial distribution of vortices, the location of the separation point, and velocity contours focusing on the role of vortex shedding and shear layer perturbation in unsteady separation and reattachment.
NASA Technical Reports Server (NTRS)
Penland, J. A.; Pittman, J. L.
1985-01-01
An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients.
Aerodynamic and flowfield hysteresis of slender wing aircraft undergoing large-amplitude motions
NASA Technical Reports Server (NTRS)
Nelson, Robert C.; Arena, Andrew S., Jr.; Thompson, Scott A.
1991-01-01
The implication of maneuvers through large angles of incidence is discussed by examining the unsteady aerodynamic loads, surface pressures, vortical position, and breakdown on slender, flat plate delta wings. Two examples of large amplitude unsteady motions are presented. First, the unsteady characteristics of a 70 degree swept delta wing undergoing pitch oscillation from 0 to 60 degrees is examined. Data is presented that shows the relationship between vortex breakdown and the overshoot and undershoot of the aerodynamic loads and surface pressure distribution. The second example examines the leading edge vortical flow over an 80 degree swept wing undergoing a limit cycle roll oscillation commonly called wing rock.
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.
1993-01-01
Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.
Progressive Aerodynamic Model Identification From Dynamic Water Tunnel Test of the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Szyba, Nathan M.
2004-01-01
Development of a general aerodynamic model that is adequate for predicting the forces and moments in the nonlinear and unsteady portions of the flight envelope has not been accomplished to a satisfactory degree. Predicting aerodynamic response during arbitrary motion of an aircraft over the complete flight envelope requires further development of the mathematical model and the associated methods for ground-based testing in order to allow identification of the model. In this study, a general nonlinear unsteady aerodynamic model is presented, followed by a summary of a linear modeling methodology that includes test and identification methods, and then a progressive series of steps suggesting a roadmap to develop a general nonlinear methodology that defines modeling, testing, and identification methods. Initial steps of the general methodology were applied to static and oscillatory test data to identify rolling-moment coefficient. Static measurements uncovered complicated dependencies of the aerodynamic coefficient on angle of attack and sideslip in the stall region making it difficult to find a simple analytical expression for the measurement data. In order to assess the effect of sideslip on the damping and unsteady terms, oscillatory tests in roll were conducted at different values of an initial offset in sideslip. Candidate runs for analyses were selected where higher order harmonics were required for the model and where in-phase and out-of-phase components varied with frequency. From these results it was found that only data in the angle-of-attack range of 35 degrees to 37.5 degrees met these requirements. From the limited results it was observed that the identified models fit the data well and both the damping-in-roll and the unsteady term gain are decreasing with increasing sideslip and motion amplitude. Limited similarity between parameter values in the nonlinear model and the linear model suggest that identifiability of parameters in both terms may be a
Estimation of Aircraft Nonlinear Unsteady Parameters From Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Murphy, Patrick C.
1998-01-01
Aerodynamic equations were formulated for an aircraft in one-degree-of-freedom large amplitude motion about each of its body axes. The model formulation based on indicial functions separated the resulting aerodynamic forces and moments into static terms, purely rotary terms and unsteady terms. Model identification from experimental data combined stepwise regression and maximum likelihood estimation in a two-stage optimization algorithm that can identify the unsteady term and rotary term if necessary. The identification scheme was applied to oscillatory data in two examples. The model identified from experimental data fit the data well, however, some parameters were estimated with limited accuracy. The resulting model was a good predictor for oscillatory and ramp input data.
Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics
NASA Technical Reports Server (NTRS)
Buffum, D. H.; Fleeter, S.
1994-01-01
The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes, which have detrimental effects on the experimental results. Acoustic treatment is proposed to rectify this problem.
Effect of wind tunnel acoustic modes on linear oscillating cascade aerodynamics
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1993-01-01
The aerodynamics of a biconvex airfoil cascade oscillating in torsion is investigated using the unsteady aerodynamic influence coefficient technique. For subsonic flow and reduced frequencies as large as 0.9, airfoil surface unsteady pressures resulting from oscillation of one of the airfoils are measured using flush-mounted high-frequency-response pressure transducers. The influence coefficient data are examined in detail and then used to predict the unsteady aerodynamics of a cascade oscillating at various interblade phase angles. These results are correlated with experimental data obtained in the traveling-wave mode of oscillation and linearized analysis predictions. It is found that the unsteady pressure disturbances created by an oscillating airfoil excite wind tunnel acoustic modes which have detrimental effects on the experimental data. Acoustic treatment is proposed to rectify this problem.
Unsteady transition measurements on a pitching three-dimensional wing
NASA Technical Reports Server (NTRS)
Lorber, Peter F.; Carta, Franklin O.
1992-01-01
Boundary layer transition measurements were made during an experimental study of the aerodynamics of a rectangular wing undergoing unsteady pitching motions. The wing was tested at chordwise Mach numbers between 0.2 and 0.6, at sweep angles of 0, 15, and 30 deg, and for steady state, sinusoidal, and constant pitch rate motions. The model was scaled to represent a full size helicopter rotor blade, with chord Reynolds numbers between 2 and 6 x 10(exp 6). Sixteen surface hot-film gages were located along three spanwise stations: 0.08, 0.27, and 0.70 chords from the wing tip. Qualitative heat transfer information was obtained to identify the unsteady motion of the point of transition to turbulence. In combination with simultaneous measurements of the unsteady surface pressure distributions, the results illustrate the effects of compressibility, sweep, pitch rate, and proximity to the wing tip on the transition and relaminarization locations.
Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil
NASA Technical Reports Server (NTRS)
Ghia, K. N.; Osswald, G. A.; Ghia, U.
1986-01-01
The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.
A New Procedure for Simulating Unsteady Flows Through Turbomachinery Blade Passages
NASA Technical Reports Server (NTRS)
Chen, Jen Ping; Celestina, M. L.; Adamczyk, John J.
1996-01-01
The development of two new unsteady wake-blade row aerodynamic interaction models and of a rotor-stator unsteady aerodynamic interaction model are outlined. The solutions of Adamczyk's average-passage flow model were used. The responses to the potential disturbances through a blade row were calculated using the MSUTC code. This code can run with and without the use of wall functions. The solver is an implicit finite volume method with flux Jacobians which are evaluated by the flux-vector splitting and the residual fluxes by the Roe's flux-difference splitting.
NASA Astrophysics Data System (ADS)
Meyer, M.; Breitsamter, Ch.
2013-12-01
The influence of an oscillating aileron and trailing edge device on the unsteady aerodynamics of a blended wing body (BWB) aircraft configuration with high-fidelity time-accurate Euler simulations has been investigated. Steady results show an unequally-distributed lift distribution in spanwise direction with a particularly severe shock at cruise conditions on the outboard wing. Unsteady oscillations of the outboardlocated aileron are able to influence the local and global aerodynamics. The oscillation of the trailing edge device designed to be at trailing edge of the aileron does not show any great effect on neither local nor global aerodynamics.
The unsteady flow over a bat wing in mid-downstroke.
NASA Astrophysics Data System (ADS)
Muijres, Florian; Johansson, Christoffer; Barfield, Ryan; Wolf, Marta; Spedding, Geoffrey; Hedenstrom, Anders
2008-03-01
Birds, bats and insects have provided inspiration for human-designed small-scale flying machines, and while insects have long been known to rely on unsteady separated flows for their above-average aerodynamic performance at small-scale, the details of air flows over bird and bat wings have been harder to elucidate, mainly because of the extra complexity and precautions required in live experiments. Here we report on the first experiments of the airflow around a bat wing in free (but trained) flight in a low-turbulence wind tunnel. The aerodynamics of fixed wings at these Reynolds numbers are notoriously sensitive to small disturbances of the initially laminar, attached boundary layer, but these flight experiments show that the instantaneous flow fields around the flapping wing bear almost no resemblance to an equivalent fixed-wing experiment. The circulation increment due to the presence of a strong leading-edge vortex is estimated to provide a significant fraction of the total lift. Implications for the design and control of micro-air vehicles are considered.
NASA Astrophysics Data System (ADS)
Rege, Alok Ashok
Insect flight comes with a lot of intricacies that cannot be explained by conventional aerodynamics. Even with their small-size, insects have the ability to generate the required aerodynamic forces using high frequency flapping motion of their wings to perform different maneuvers. The maneuverability obtained by these flyers using flapping motion belies the classical aerodynamics theory and calls for a new approach to study this highly unsteady aerodynamics. Research is on to find new ways to realize the flight capabilities of these insects and engineer a micro-flyer which would have various applications, ranging from autonomous pollination of crop fields and oil & gas exploration to area surveillance and detection & rescue missions. In this research, a parametric study of flapping trajectories is performed using a two-dimensional wing to identify the factors that affect the force production. These factors are then non-dimensionalized and used in a design of experiments set-up to conduct sensitivity analysis. A procedure to determine an aerodynamic model comprising cycle-averaged force coefficients is described. This aerodynamic model is then used in a nonlinear dynamics framework to perform flight dynamics analysis using a micro-flyer with model properties based on Drosophila. Stability analysis is conducted to determine different steady state flight conditions that could achieved by the micro-flyer with the given model properties. The effect of scaling the mass properties is discussed. An LQR design is used for closed-loop control. Open and closed-loop simulations are performed. The results show that nonlinear dynamics framework can be used to determine values for model properties of a micro-flyer that would enable it to perform different flight maneuvers.
Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix
NASA Technical Reports Server (NTRS)
Li, Wesley Waisang; Pak, Chan-Gi
2010-01-01
A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle
Prediction of Hyper-X Stage Separation Aerodynamics Using CFD
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Wong, Tin-Chee; Dilley, Arthur D.; Pao, Jenn L.
2000-01-01
The NASA X-43 "Hyper-X" hypersonic research vehicle will be boosted to a Mach 7 flight test condition mounted on the nose of an Orbital Sciences Pegasus launch vehicle. The separation of the research vehicle from the Pegasus presents some unique aerodynamic problems, for which computational fluid dynamics has played a role in the analysis. This paper describes the use of several CFD methods for investigating the aerodynamics of the research and launch vehicles in close proximity. Specifically addressed are unsteady effects, aerodynamic database extrapolation, and differences between wind tunnel and flight environments.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1997-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.
NASA Technical Reports Server (NTRS)
Muffoletto, A. J.
1982-01-01
An aerodynamic computer code, capable of predicting unsteady and C sub m values for an airfoil undergoing dynamic stall, is used to predict the amplitudes and frequencies of a wing undergoing torsional stall flutter. The code, developed at United Technologies Research Corporation (UTRC), is an empirical prediction method designed to yield unsteady values of normal force and moment, given the airfoil's static coefficient characteristics and the unsteady aerodynamic values, alpha, A and B. In this experiment, conducted in the PSU 4' x 5' subsonic wind tunnel, the wing's elastic axis, torsional spring constant and initial angle of attack are varied, and the oscillation amplitudes and frequencies of the wing, while undergoing torsional stall flutter, are recorded. These experimental values show only fair comparisons with the predicted responses. Predictions tend to be good at low velocities and rather poor at higher velocities.
Bat flight generates complex aerodynamic tracks.
Hedenström, A; Johansson, L C; Wolf, M; von Busse, R; Winter, Y; Spedding, G R
2007-05-11
The flapping flight of animals generates an aerodynamic footprint as a time-varying vortex wake in which the rate of momentum change represents the aerodynamic force. We showed that the wakes of a small bat species differ from those of birds in some important respects. In our bats, each wing generated its own vortex loop. Also, at moderate and high flight speeds, the circulation on the outer (hand) wing and the arm wing differed in sign during the upstroke, resulting in negative lift on the hand wing and positive lift on the arm wing. Our interpretations of the unsteady aerodynamic performance and function of membranous-winged, flapping flight should change modeling strategies for the study of equivalent natural and engineered flying devices.
1975-11-01
further improve the contrast all of the interior surfaces of the test chamber are painted flat black and the bac!-,ground walls in view of the cameras...to be adequate to eliminate wall effects on the chaff aerodynamics. Secondly, the chamber air mass had to be sufficiently small that it would damp out...independently- supported special rotating-shutter system to "strobe" the dipole images. The integral shutter in each lens assembly is also retained for
Measurements of Unsteady Wake Interference Between Tandem Cylinders
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Neuhart, Dan H.; McGinley, Cahterine B.; Choudhari, Meelan M.; Khorrami, Mehdi R.
2006-01-01
A multi-phase, experimental study in the Basic Aerodynamics Research Tunnel at the NASA Langley Research Center has provided new insight into the unsteady flow interaction around cylinders in tandem arrangement. Phase 1 of the study characterized the mean and unsteady near-field flow around two cylinders of equal diameter using 2-D Particle Image Velocimetry (PIV) and hot-wire anemometry. These measurements were performed at a Reynolds number of 1.66 x 10(exp 5), based on cylinder diameter, and spacing-to-diameter ratios, L/D, of 1.435 and 3.7. The current phase, Phase 2, augments this dataset by characterizing the surface flow on the same configurations using steady and unsteady pressure measurements and surface flow visualization. Transition strips were applied to the front cylinder during both phases to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the front and rear cylinders show the effects of L/D on flow symmetry, pressure recovery, and the location of flow separation and attachment. Mean streamlines and instantaneous vorticity obtained from the PIV data are used to explain the flow structure in the gap and near-wake regions and its relationship to the unsteady surface pressures. The combination of off-body and surface measurements provides a comprehensive dataset to develop and validate computational techniques for predicting the unsteady flow field at higher Reynolds numbers.
Introduction. Computational aerodynamics.
Tucker, Paul G
2007-10-15
The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.
PREFACE: Aerodynamic sound Aerodynamic sound
NASA Astrophysics Data System (ADS)
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
A Numerical Model of Unsteady, Subsonic Aeroelastic Behavior. Ph.D Thesis
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.
1987-01-01
A method for predicting unsteady, subsonic aeroelastic responses was developed. The technique accounts for aerodynamic nonlinearities associated with angles of attack, vortex-dominated flow, static deformations, and unsteady behavior. The fluid and the wing together are treated as a single dynamical system, and the equations of motion for the structure and flow field are integrated simultaneously and interactively in the time domain. The method employs an iterative scheme based on a predictor-corrector technique. The aerodynamic loads are computed by the general unsteady vortex-lattice method and are determined simultaneously with the motion of the wing. Because the unsteady vortex-lattice method predicts the wake as part of the solution, the history of the motion is taken into account; hysteresis is predicted. Two models are used to demonstrate the technique: a rigid wing on an elastic support experiencing plunge and pitch about the elastic axis, and an elastic wing rigidly supported at the root chord experiencing spanwise bending and twisting. The method can be readily extended to account for structural nonlinearities and/or substitute aerodynamic load models. The time domain solution coupled with the unsteady vortex-lattice method provides the capability of graphically depicting wing and wake motion.
NASA Astrophysics Data System (ADS)
Zhu, Lifu; Jin, Yingzi; Li, Yi; Jin, Yuzhen; Wang, Yanping; Zhang, Li
2013-08-01
To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-ɛ turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.
Aerodynamic Design Using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.
2003-01-01
The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.
Algorithm and code development for unsteady three-dimensional Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1993-01-01
In the last two decades, there have been extensive developments in computational aerodynamics, which constitutes a major part of the general area of computational fluid dynamics. Such developments are essential to advance the understanding of the physics of complex flows, to complement expensive wind-tunnel tests, and to reduce the overall design cost of an aircraft, particularly in the area of aeroelasticity. Aeroelasticity plays an important role in the design and development of aircraft, particularly modern aircraft, which tend to be more flexible. Several phenomena that can be dangerous and limit the performance of an aircraft occur because of the interaction of the flow with flexible components. For example, an aircraft with highly swept wings may experience vortex-induced aeroelastic oscillations. Also, undesirable aeroelastic phenomena due to the presence and movement of shock waves occur in the transonic range. Aeroelastically critical phenomena, such as a low transonic flutter speed, have been known to occur through limited wind-tunnel tests and flight tests. Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At Ames a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft and it solves the Euler/Navier-Stokes equations. The purpose of this contract is to continue the algorithm enhancements of ENSAERO and to apply the code to complicated geometries. During the last year
NASA Astrophysics Data System (ADS)
Kang, Chen; Hua, Liang
2016-02-01
Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).
Flow unsteadiness effects on boundary layers
NASA Technical Reports Server (NTRS)
Murthy, Sreedhara V.
1989-01-01
The development of boundary layers at high subsonic speeds in the presence of either mass flux fluctuations or acoustic disturbances (the two most important parameters in the unsteadiness environment affecting the aerodynamics of a flight vehicle) was investigated. A high quality database for generating detailed information concerning free-stream flow unsteadiness effects on boundary layer growth and transition in high subsonic and transonic speeds is described. The database will be generated with a two-pronged approach: (1) from a detailed review of existing literature on research and wind tunnel calibration database, and (2) from detailed tests in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). Special instrumentation, including hot wire anemometry, the buried wire gage technique, and laser velocimetry were used to obtain skin friction and turbulent shear stress data along the entire boundary layer for various free stream noise levels, turbulence content, and pressure gradients. This database will be useful for improving the correction methodology of applying wind tunnel test data to flight predictions and will be helpful for making improvements in turbulence modeling laws.
An unsteady helicopter rotor: Fuselage interaction analysis
NASA Technical Reports Server (NTRS)
Lorber, Peter F.; Egolf, T. Alan
1988-01-01
A computational method was developed to treat unsteady aerodynamic interactions between a helicopter rotor, wake, and fuselage and between the main and tail rotors. An existing lifting line prescribed wake rotor analysis and a source panel fuselage analysis were coupled and modified to predict unsteady fuselage surface pressures and airloads. A prescribed displacement technique is used to position the rotor wake about the fuselage. Either a rigid blade or an aeroelastic blade analysis may be used to establish rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake fuselage geometry on the computation. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and on the rotor. The ability to treat arbitrary geometries is demonstrated using a simulated helicopter fuselage. The computational results are compared with fuselage surface pressure measurements at several locations. No experimental data was available to validate the primary product of the analysis: the vibratory airloads on the entire fuselage. A main rotor-tail rotor interaction analysis is also described, along with some hover and forward flight.
Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics
NASA Astrophysics Data System (ADS)
Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.
2012-11-01
The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.
Comparisons of several aerodynamic methods for application to dynamic loads analyses
NASA Technical Reports Server (NTRS)
Kroll, R. I.; Miller, R. D.
1976-01-01
The results of a study are presented in which the applicability at subsonic speeds of several aerodynamic methods for predicting dynamic gust loads on aircraft, including active control systems, was examined and compared. These aerodynamic methods varied from steady state to an advanced unsteady aerodynamic formulation. Brief descriptions of the structural and aerodynamic representations and of the motion and load equations are presented. Comparisons of numerical results achieved using the various aerodynamic methods are shown in detail. From these results, aerodynamic representations for dynamic gust analyses are identified. It was concluded that several aerodynamic methods are satisfactory for dynamic gust analyses of configurations having either controls fixed or active control systems that primarily affect the low frequency rigid body aircraft response.
Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 2
NASA Technical Reports Server (NTRS)
Bland, Samuel R. (Compiler)
1989-01-01
This two part document contains copies of the text and figures for the papers presented at the symposium held at NASA Langley on 20 to 22 May, 1987. The papers are grouped in five subject areas. The areas covered by this part includes the following: Methods for vortex and viscous flows; Aeroelastic applications, and Experimental results and cascade flows.
Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 1
NASA Technical Reports Server (NTRS)
Bland, Samuel R. (Compiler)
1989-01-01
Computational fluid dynamics methods have been widely accepted for transonic aeroelastic analysis. Previously, calculations with the TSD methods were used for 2-D airfoils, but now the TSD methods are applied to the aeroelastic analysis of the complete aircraft. The Symposium papers are grouped into five subject areas, two of which are covered in this part: (1) Transonic Small Disturbance (TSD) theory for complete aircraft configurations; and (2) Full potential and Euler equation methods.
A numerical method for unsteady aerodynamics via acoustics
NASA Technical Reports Server (NTRS)
Hodge, Steve
1991-01-01
Formal solutions to the wave equation may be conveniently described within the framework of generalized function theory. A generalized function theory is used to yield a formulation and formal solution of a wave equation describing oscillation of a flat plate from which a numerical method may be derived.
Unsteady Low Reynolds Number Aerodynamics for Micro Air Vehicles (MAVs)
2010-05-01
of LEVs a t the model apex or wing /body “ juncture”? The hypothesis is that the wingtips stall, losing loading, resulting in a nose- up pitching ... flapping - wing vehicles, where the fast frequency models t he wing f lapping, while the s low frequency models t he gust. S ometimes pitch and plunge i...Study of a Canonical Pitch - Up , Pitch -Down Wing Maneuver". AIAA-2009-3687 30. Alam, M., Suzen, Y.D., and OL, M.V. "Numerical Simulations of
Into Turbulent Air: Hummingbird Aerodynamic Control in Unsteady Circumstances
2016-06-24
costs of flight. We have also completed studies of hummingbird hovering flight within a vertical wind tunnel to enable study of the vortex ring state...vertical wind tunnel to enable study of the vortex ring state, a well-known problem in helicopter descent. This work evaluated both ascending and...wakes. DISTRIBUTION A: Distribution approved for public release. Our work with hummingbirds hovering in a vertical wind tunnel has enabled
Unsteady aerodynamic characterization of a military aircraft in vertical gusts
NASA Technical Reports Server (NTRS)
Lebozec, A.; Cocquerez, J. L.
1985-01-01
The effects of 2.5-m/sec vertical gusts on the flight characteristics of a 1:8.6 scale model of a Mirage 2000 aircraft in free flight at 35 m/sec over a distance of 30 m are investigated. The wind-tunnel setup and instrumentation are described; the impulse-response and local-coefficient-identification analysis methods applied are discussed in detail; and the modification and calibration of the gust-detection probes are reviewed. The results are presented in graphs, and good general agreement is obtained between model calculations using the two analysis methods and the experimental measurements.
Subsonic steady and unsteady aerodynamic loads on missiles and aircraft
NASA Technical Reports Server (NTRS)
1983-01-01
Steady lifting flows over highly swept delta wings at large incidence were studied. After an exhaustive literature review, development of a vortex-lattice method was attempted. To demonstrate the feasibility of using such a method, an existing code was modified. A system of vortex lines to simulate the leading-edge wake was added. The coefficients predicted by the modified code were in good agreement with experimental data.
Unsteady Velocity Measurements Taken Behind a Model Helicopter Rotor Hub in Forward Flight
NASA Technical Reports Server (NTRS)
Berry, John D.
1997-01-01
Drag caused by separated flow behind the hub of a helicopter has an adverse effect on aerodynamic performance of the aircraft. To determine the effect of separated flow on a configuration used extensively for helicopter aerodynamic investigations, an experiment was conducted using a laser velocimeter to measure velocities in the wake of a model helicopter hub operating at Mach-scaled conditions in forward flight. Velocity measurements were taken using a laser velocimeter with components in the vertical and downstream directions. Measurements were taken at 13 stations downstream from the rotor hub. At each station, measurements were taken in both a horizontal and vertical row of locations. These measurements were analyzed for harmonic content based on the rotor period of revolution. After accounting for these periodic velocities, the remaining unsteady velocities were treated as turbulence. Turbulence intensity distributions are presented. Average turbulent intensities ranged from approximately 2 percent of free stream to over 15 percent of free stream at specific locations and azimuths. The maximum average value of turbulence was located near the rear-facing region of the fuselage.
Unsteady Airloads on Airfoils in Reverse Flow
NASA Astrophysics Data System (ADS)
Lind, Andrew; Jones, Anya
2014-11-01
This work gives insight into the influence of airfoil characteristics on unsteady airloads for rotor applications where local airfoil sections may operate at high and/or reverse flow angles of attack. Two-dimensional wind tunnel experiments have been performed on four airfoil sections to investigate the effects of thickness, camber, and trailing edge shape on unsteady airloads (lift, pressure drag, and pitching moment). These model rotor blades were tested through 360 deg of incidence for 104 <=Re <=106 . Unsteady pressure transducers were mounted on the airfoil surface to measure the high frequency, dynamic pressure variations. The temporal evolution of chordwise pressure distributions and resulting airloads is quantified for each airfoil in each of the three unsteady wake regimes present in reverse flow. Specifically, the influence of the formation, growth, and shedding of vortices on the surface pressure distribution is quantified and compared between airfoils with a sharp geometric trailing edge and those with a blunt geometric trailing edge. These findings are integral to mitigation of rotor blade vibrations for applications where airfoil sections are subjected to reverse flow, such as high-speed helicopters and tidal turbines.
Development of an engineering code for the implementation of aerodynamic control devices in BEM
NASA Astrophysics Data System (ADS)
Aparicio, M.; González, A.; Gomez-Iradi, S.; Munduate, X.
2016-09-01
Aeroelastic codes based on Blade Element Momentum theory are the standard used by many wind turbine designers. These codes usually include models and corrections for unsteady aerodynamics, tip and root effect, tower shadow and other effects. In general, this kind of codes does not include models to correctly simulate aerodynamic control devices. This paper presents some modifications including the unsteady contributions due to the flap motion (based on indicial models) and the spanwise (3D) effects (based on circulation theory), in order to simulate flaps in the blades. This method can be included in BEM codes in general and it could also be applied to another kind of control devices. The validation and verification show the accuracy of this method using experimental data for two-dimensional unsteady cases, and CFD for three-dimensional steady and unsteady cases.
NASA Astrophysics Data System (ADS)
Hu, Hui; Ning, Zhe
2016-11-01
Due to the auto-rotating trait of maple seeds during falling down process, flow characteristics of rotating maple seeds have been studied by many researchers in recent years. In the present study, an experimental investigation was performed to explore maple-seed-inspired UAV propellers for improved aerodynamic and aeroacoustic performances. Inspired by the auto-rotating trait of maple seeds, the shape of a maple seed is leveraged for the planform design of UAV propellers. The aerodynamic and aeroacoustic performances of the maple-seed-inspired propellers are examined in great details, in comparison with a commercially available UAV propeller purchased on the market (i.e., a baseline propeller). During the experiments, in addition to measuring the aerodynamic forces generated by the maple-seed-inspired propellers and the baseline propeller, a high-resolution Particle Image Velocimetry (PIV) system was used to quantify the unsteady flow structures in the wakes of the propellers. The aeroacoustic characteristics of the propellers are also evaluated by leveraging an anechoic chamber available at the Aerospace Engineering Department of Iowa State University. The research work is supported by National Science Foundation under Award Numbers of OSIE-1064235.
Flutter and forced response of turbomachinery with frequency mistuning and aerodynamic asymmetry
NASA Astrophysics Data System (ADS)
Miyakozawa, Tomokazu
This dissertation provides numerical studies to improve bladed disk assembly design for preventing blade high cycle fatigue failures. The analyses are divided into two major subjects. For the first subject presented in Chapter 2, the mechanisms of transonic fan flutter for tuned systems are studied to improve the shortcoming of traditional method for modern fans using a 3D time-linearized Navier-Stokes solver. Steady and unsteady flow parameters including local work on the blade surfaces are investigated. It was found that global local work monotonically became more unstable on the pressure side due to the flow rollback effect. The local work on the suction side significantly varied due to nodal diameter and flow rollback effect. Thus, the total local work for the least stable mode is dominant by the suction side. Local work on the pressure side appears to be affected by the shock on the suction side. For the second subject presented in Chapter 3, sensitivity studies are conducted on flutter and forced response due to frequency mistuning and aerodynamic asymmetry using the single family of modes approach by assuming manufacturing tolerance. The unsteady aerodynamic forces are computed using CFD methods assuming aerodynamic symmetry. The aerodynamic asymmetry is applied by perturbing the influence coefficient matrix. These aerodynamic perturbations influence both stiffness and damping while traditional frequency mistuning analysis only perturbs the stiffness. Flutter results from random aerodynamic perturbations of all blades showed that manufacturing variations that effect blade unsteady aerodynamics may cause a stable, perfectly symmetric engine to flutter. For forced response, maximum blade amplitudes are significantly influenced by the aerodynamic perturbation of the imaginary part (damping) of unsteady aerodynamic modal forces. This is contrary to blade frequency mistuning where the stiffness perturbation dominates.
Lift generation on a flat plate with unsteady motions
NASA Astrophysics Data System (ADS)
Xia, Xi; Mohseni, Kamran
2013-11-01
The leading edge vortex (LEV) on an airfoil or wing has been considered to be one of the most important sources of lift enhancement according to several previous experimental and theoretical studies. In this work, the unsteady 2D potential flow theory is employed to model the flow field of a flat plate wing undergoing unsteady motions. A multi-vortices model is developed to model both the leading edge and trailing edge vortices (TEVs), which offers improved accuracy compared with using only single vortex at each separation location. The lift prediction is obtained by integrating the unsteady Blasius equation. It is found that the motion of vortices contributes significantly to the overall aerodynamic force on the flat plate. The results of the simulation are then compared with classical numerical, theoretical and experimental data for canonical unsteady flat plat problems. Good agreement with these data is observed. Moreover, these results suggests that the leading edge vortex shedding for small angles of attack should be modeled differently than that for large angles of attack. Finally, the results of vortex motion vs. lift indicate that the lift enhancement during the LEV ``stabilization'' above the wing is a combined effect of both the LEV and TEV motion.
Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.
Nguyen, Anh Tuan; Han, Jong-Seob; Han, Jae-Hung
2016-12-14
This study explores the effects of the body aerodynamics on the dynamic flight stability of an insect at various different forward flight speeds. The insect model, whose morphological parameters are based on measurement data from the hawkmoth Manduca sexta, is treated as an open-loop six-degree-of-freedom dynamic system. The aerodynamic forces and moments acting on the insect are computed by an aerodynamic model that combines the unsteady panel method and the extended unsteady vortex-lattice method. The aerodynamic model is then coupled to a multi-body dynamic code to solve the system of motion equations. First, the trimmed flight conditions of insect models with and without consideration of the body aerodynamics are obtained using a trim search algorithm. Subsequently, the effects of the body aerodynamics on the dynamic flight stability are analysed through modal structures, i.e., eigenvalues and eigenvectors in this case, which are based on linearized equations of motion. The solutions from the nonlinear and linearized equations of motion due to gust disturbances are obtained, and the effects of the body aerodynamics are also investigated through these solutions. The results showed the important effect of the body aerodynamics at high-speed forward flight (in this paper at 4.0 and 5.0 m s(-1)) and the movement trends of eigenvalues when the body aerodynamics is included.
Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines
Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah
2014-01-01
Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less
Unsteady flow phenomena in industrial centrifugal compressor stage
NASA Technical Reports Server (NTRS)
Bonciani, L.; Terrinoni, L.; Tesei, A.
1982-01-01
The results of an experimental investigation on a typical centrifugal compressor stage running on an atmospheric pressure test rig are shown. Unsteady flow was invariably observed at low flow well before surge. In order to determine the influence of the statoric components, the same impeller was repeatedly tested with the same vaneless diffuser, but varying return channel geometry. Experimental results show the strong effect exerted by the return channel, both on onset and on the behavior of unsteady flow. Observed phenomena have been found to confirm well the observed dynamic behavior of full load tested machines when gas density is high enough to cause appreciable mechanical vibrations. Therefore, testing of single stages at atmospheric pressure may provide a fairly accurate prediction of this kind of aerodynamic excitation.
Unsteady Turbopump Flow Simulations
NASA Technical Reports Server (NTRS)
Centin, Kiris C.; Kwak, Dochan
2001-01-01
The objective of the current effort is two-fold: 1) to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine; and 2) to provide high-fidelity unsteady turbopump flow analysis capability to support the design of pump sub-systems for advanced space transportation vehicle. Since the space launch systems in the near future are likely to involve liquid propulsion system, increasing the efficiency and reliability of the turbopump components is an important task. To date, computational tools for design/analysis of turbopump flow are based on relatively lower fidelity methods. Unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available, at least, for real-world engineering applications. Present effort is an attempt to provide this capability so that developers of the vehicle will be able to extract such information as transient flow phenomena for start up, impact of non-uniform inflow, system vibration and impact on the structure. Those quantities are not readily available from simplified design tools. In this presentation, the progress being made toward complete turbo-pump simulation capability for a liquid rocket engine is reported. Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for the performance evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbopump, which contains 106 zones with 34.5 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability and the performance of the parallel versions of the code will be presented.
Micro air vehicle motion tracking and aerodynamic modeling
NASA Astrophysics Data System (ADS)
Uhlig, Daniel V.
exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Carpenter, Mark H.; Lockard, David P.
2009-01-01
Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) temporal scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest. The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the computational results with other numerical schemes and experimental data.
Aeroacoustics. [analysis of properties of sound generated by aerodynamic forces
NASA Technical Reports Server (NTRS)
Goldstein, M., E.
1974-01-01
An analysis was conducted to determine the properties of sound generated by aerodynamic forces or motions originating in a flow, such as the unsteady aerodynamic forces on propellers or by turbulent flows around an aircraft. The acoustics of moving media are reviewed and mathematical models are developed. Lighthill's acoustic analogy and the application to turbulent flows are analyzed. The effects of solid boundaries are calculated. Theories based on the solution of linearized vorticity and acoustic field equations are explained. The effects of nonuniform mean flow on the generation of sound are reported.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Chin, Suei; Lan, C. Edward
1990-01-01
Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.
Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral
2002-01-01
Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.
Borazjani, Iman
2015-10-01
Unsteady aquatic locomotion is not an exception, but rather how animals often swim. It includes fast-starts (C-start or S-start), escape maneuvers, turns, acceleration/deceleration, and even during steady locomotion the swimming speed fluctuates, i.e., there is unsteadiness. Here, a review of the recent work on unsteady aquatic locomotion with emphasis on numerical simulations is presented. The review is started by an overview of different theoretical and numerical methods that have been used for unsteady swimming, and then the insights provided by these methods on (1) unsteadiness in straight-line swimming and (2) unsteady fast-starts and turns are discussed. The swimming speed's unsteady fluctuations during straight-line swimming are typically less than 3% of the average swimming speed, but recent simulations show that body shape affects fluctuations more than does body kinematics, i.e., changing the shape of the body generates larger fluctuations than does changing its kinematics. For fast-starts, recent simulations show that the best motion to maximize the distance traveled from rest are similar to the experimentally observed C-start maneuvers. Furthermore, another set of simulations, which are validated against measurements of flow in experiments with live fish, investigate the role of fins during the C-start. The simulations showed that most of the force is generated by the body of the fish (not by fins) during the first stage of the C-start when the fish bends itself into the C-shape. However, in the second stage, when it rapidly bends out of the C-shape, more than 70% of the instantaneous hydrodynamic force is produced by the tail. The effect of dorsal and anal fins was less than 5% of the instantaneous force in both stages, except for a short period of time (2 ms) just before the second stage. Therefore, the active control and the erection of the anal/dorsal fins might be related to retaining the stability of the sunfish against roll and pitch during the C
Aerodynamic laboratory at Cuatro Vientos
NASA Technical Reports Server (NTRS)
JUBERA
1922-01-01
This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.
Aerodynamic drag on intermodal railcars
NASA Astrophysics Data System (ADS)
Kinghorn, Philip; Maynes, Daniel
2014-11-01
The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.
NASA Technical Reports Server (NTRS)
Jones, R. T. (Compiler)
1979-01-01
A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.
NASA Technical Reports Server (NTRS)
Vicker, Darby
2006-01-01
A viewgraph presentation describing aerodynamics at NASA Johnson Space Center is shown. The topics include: 1) Personal Background; 2) Aerodynamic Tools; 3) The Overset Computational Fluid Dynamics (CFD) Process; and 4) Recent Applicatoins.
Methodology for matching experimental and computational aerodynamic data
NASA Technical Reports Server (NTRS)
Wieseman, Carol D.
1988-01-01
Correction factor methodologies have been developed which use steady experimental or analytical pressure or force data to correct steady and unsteady aerodynamic calculations. Three methods of calculating correction factors have been developed to match steady surface pressure distributions, to match airfoil section forces and moments. Data for a rectangular supercritical wing that was previously tested in the NASA Langley Research Center Transonic Dynamics Tunnel have been used to determine correction factors to match surface pressure distributions for a range of Mach numbers.
Incremental Aerodynamic Coefficient Database for the USA2
NASA Technical Reports Server (NTRS)
Richardson, Annie Catherine
2016-01-01
In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.
Examination of forced unsteady separated flow fields on a rotating wind turbine blade
Huyer, S
1993-04-01
The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.
Unsteady Simulation of the Viscous Flow About a V-22 Rotor and Wing in Hover
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1996-01-01
Results of an unsteady thin-layer Navier-Stokes simulation of a 0.658-scale V-22 rotor and wing configuration in hover are presented. All geometric components of the flapped-wing and rotor test rig, including rotor blades, are accurately modeled. Rotor motion and rotor/airframe interference effects are simulated directly using moving body overset grid methods. Tiltrotor hover aerodynamics are visualized via unsteady particle trace images. Wing download predictive ability is demonstrated. Simulation results are compared with experimental data.
NASA Technical Reports Server (NTRS)
Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim
1992-01-01
The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.
The interference aerodynamics caused by the wing elasticity during store separation
NASA Astrophysics Data System (ADS)
Lei, Yang; Zheng-yin, Ye
2016-04-01
Air-launch-to-orbit is the technology that has stores carried aloft and launched the store from the plane to the orbit. The separation between the aircraft and store is one of the most important and difficult phases in air-launch-to-orbit technology. There exists strong aerodynamic interference between the aircraft and the store in store separation. When the aspect ratio of the aircraft is large, the elastic deformations of the wing must be considered. The main purpose of this article is to study the influence of the interference aerodynamics caused by the elastic deformations of the wing to the unsteady aerodynamics of the store. By solving the coupled functions of unsteady Navier-Stokes equations, six degrees of freedom dynamic equations and structural dynamic equations simultaneously, the store separation with the elastic deformation of the aircraft considered is simulated numerically. And the interactive aerodynamic forces are analyzed. The study shows that the interference aerodynamics is obvious at earlier time during the separation, and the dominant frequency of the elastic wing determines the aerodynamic forces frequencies of the store. Because of the effect of the interference aerodynamics, the roll angle response and pitch angle response increase. When the store is mounted under the wingtip, the additional aerodynamics caused by the wingtip vortex is obvious, which accelerate the divergence of the lateral force and the lateral-directional attitude angle of the store. This study supports some beneficial conclusions to the engineering application of the air-launch-to-orbit.
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George
1990-01-01
Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.
NASA Technical Reports Server (NTRS)
Ozturk, Burak; Schobeiri, Meinhard T.
2009-01-01
The present study, which is the first of a series of investigations of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary layer flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed on a large-scale, high-subsonic unsteady turbine cascade research facility with an integrated wake generator and test section unit. Blade Pak B geometry was used in the cascade. The wakes were generated by continuously moving cylindrical bars device. Boundary layer investigations were performed using hot wire anemometry at Reynolds number of 110,000, based on the blade suction surface length and the exit velocity, for one steady and two unsteady inlet flow conditions, with the corresponding passing frequencies, wake velocities, and turbulence intensities. The reduced frequencies cover the entire operation range of LP-turbines. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re = 50,000, 75,000, 100,000, 110,000, and 125,000. For each Reynolds number, surface pressure measurements are carried out at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extension of the separation zone as well as its behavior under unsteady wake flow. The results, presented in ensemble-averaged and contour plot forms, help to understand the physics of the separation phenomenon under periodic unsteady wake flow.
NASA Astrophysics Data System (ADS)
Pak, On Shun; Lauga, Eric
2009-11-01
In this talk, we focus on unsteady effects relevant to the fluid-based locomotion of micro-organisms. First, we consider transient effects in locomotion arising from the inertia of both the swimmer and the surrounding fluid. We discuss and derive the relevant time scales governing transient effects in low Reynolds number swimming, and illustrate them using the prototypical problem of a 2D swimmer starting from rest. Second, we address geometrical unsteadiness resulting from the finite-size of the swimmer. We solve numerically for the swimming kinematics of active (internally-forced) filaments, as models for eukaryotic flagella, and discuss the resulting unsteadiness of the cell body.
Aerodynamic Control of a Pitching Airfoil using Distributed Active Bleed
NASA Astrophysics Data System (ADS)
Kearney, John; Glezer, Ari
2012-11-01
Aero-effected flight control using distributed active bleed driven by pressure differences across lifting surface and regulated by integrated louver actuators is investigated in wind tunnel experiments. The interaction between unsteady bleed and the cross flows alters the apparent aerodynamic shape of the lifting surface by regulating the accumulation and shedding of vorticity concentrations, and consequently the distributions of forces and moments. The present experiments are conducted using a 2-D dynamically-pitching VR-7 airfoil model from pre- to post-stall angles of attack. The effects of leading edge bleed at high angles of attack on the formation and evolution of the dynamic stall vorticity concentrations are investigated at high reduced frequencies (k > 0.1) using PIV phase-locked to the airfoil's motion. The time-dependent bleed enables broad-range variation in lift and pitching moment with significant extension of the stall margin. In particular, bleed actuation reduces the extent of ``negative damping'' or pitching moment instability with minimal lift penalty. Supported by NTRC-VLRCOE, monitored by Dr. Mike Rutkowski.
Unsteady Force Calculations in Turbomachinery
1991-07-01
Engineering for Gas Turbines and Power, Vol. 107, pp. 945-952, October 1985. Lefcort, M. P., "An Investigation into Unsteady Blade Forces in...generated unsteady flow around a rotating turbine blade row .. ..... 43 7 The rotating coordinate system with skew, 0, and rake, zr, defined at midchord...while Kerrebrock and Mikolajczak [19701 5 proved it experimentally. For a turbine blade passage, the wake fluid moves from the pressure 3 surface to the
Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests
NASA Astrophysics Data System (ADS)
Stewart, Gordon; Muskulus, Michael
2016-09-01
Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.
Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter
NASA Technical Reports Server (NTRS)
Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.
1993-01-01
A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.
Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Kaza, Krishna Rao V.
1992-01-01
A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.
NASA Astrophysics Data System (ADS)
Berrino, Marco; Bigoni, Fabio; Simoni, Daniele; Giovannini, Matteo; Marconcini, Michele; Pacciani, Roberto; Bertini, Francesco
2016-02-01
The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels (Ra) for steady and unsteady inflows. Results from CFD simulations and experiments are presented for two different Reynolds numbers (300000 and 70000 representative of take-off and cruise conditions, respectively) in order to evaluate the roughness effects for two typical operating conditions. Computational fluid dynamics has been used to support and interpret experimental results, analyzing in detail the flow field on the blade surface and evaluating the non-dimensional local roughness parameters, further contributing to understand how and where roughness have some influence on the aerodynamic performance of the blade. The total pressure distributions in the wake region have been measured by means of a five-hole miniaturized pressure probe for the different flow conditions, allowing the evaluation of profile losses and of their dependence on the surface finish, as well as a direct comparison with the simulations. Results reported in the paper clearly highlight that only at the highest Reynolds number tested (Re=300000) surface roughness have some influence on the blade performance, both for steady and unsteady incoming flows. In this flow condition profile losses grow as the surface roughness increases, while no appreciable variations have been found at the lowest Reynolds number. The boundary layer evolution and the wake structure have shown that this trend is due to a thickening of the suction side boundary layer associated to an anticipation of transition process. On the other side, no effects have been observed on the pressure side boundary layer.
2007-11-02
STRUCTURED GRID) The governing equations employed for the numerical simulation of unsteady flow past an airfoil utilizing a structured grid are...numerical simulation of aerodynamic flows . The physical boundaries of the flow are mapped into constant trans- formed coordinate lines, and this...damping term. 3.3 Geometric Conservation Law The numerical simulation of unsteady flow past a moving airfoil involves the move- ment of the computational
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
The Aerodynamics of Deforming Wings at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Medina, Albert
Flapping flight has gained much attention in the past decade driven by the desire to understand capabilities observed in nature and the desire to develop agile small-scale aerial vehicles. Advancing our current understanding of unsteady aerodynamics is an essential component in the development of micro-air vehicles (MAV) intended to utilize flight mechanics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities of insect wing motion are dissected and simplified to more tractable problems to elucidate the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV's fruition would satisfy long established needs in both the military and civilian sectors. Although recent studies have provided great insight into the lift generating mechanisms of flapping wings the deflection response of such wings remains poorly understood. This dissertation numerically and experimentally investigates the aerodynamic performance of passively and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete lines of flexion which acknowledging major flexion lines in insect wings to be the primary avenue for deformation. Of primary concern is the development of the leading-edge vortex (LEV), a high circulation region of low pressure above the wing to which much of the wing's lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibility in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated from rest revealed the formation time of the initial LEV was very weakly dependent on the flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vortices that develops after the initial vortex shedding was shown to be
Unsteady Newton-Busemann flow theory. III - Frequency dependence and indicial response
NASA Technical Reports Server (NTRS)
Hui, W. H.
1982-01-01
Hui and Tobak applied the complete unsteady Newton-Busemann flow theory to the study of dynamic stability of oscillating aerofoils and bodies in revolution. The present article extends the results to general frequencies that may be applicable to flutter analysis. The results are likewise applied to the indicial response fluctuations in unsteady flow at very high Mach numbers. The study shows that for a group of body shapes in Newtonian flow (including the cone and wedge), the aerodynamic response to a step change in angle of attack or pitching velocity contains an initial-instant impulse followed by a rapid adjustment to the new steady-flow conditions. The impulse component is in effect an apparent mass term analogous to that which occurs initially in the aerodynamic indicial response at the zero Mach number limit.
Status and prospects of computational fluid dynamics for unsteady transonic viscous flows
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.; Kutler, P.; Bridgeman, J. O.
1984-01-01
Applications of computational aerodynamics to aeronautical research, design, and analysis have increased rapidly over the past decade, and these applications offer significant benefits to aeroelasticians. The past developments are traced by means of a number of specific examples, and the trends are projected over the next several years. The crucial factors that limit the present capabilities for unsteady analyses are identified; they include computer speed and memory, algorithm and solution methods, grid generation, turbulence modeling, vortex modeling, data processing, and coupling of the aerodynamic and structural dynamic analyses. The prospects for overcoming these limitations are presented, and many improvements appear to be readily attainable. If so, a complete and reliable numerical simulation of the unsteady, transonic viscous flow around a realistic fighter aircraft configuration could become possible within the next decade. The possibilities of using artificial intelligence concepts to hasten the achievement of this goal are also discussed.
Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
Park, Hyungmin; Choi, Haecheon
2012-03-01
In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α(md)) and mid-upstroke (α(mu)), and the duration (Δτ) and time of initiation (τ(p)) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α(md) and low α(mu) produces larger vertical force with less aerodynamic power, and low α(md) and high α(mu) is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α(md) and high α(mu) is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The
Aerodynamic effects of flexibility in flapping wings.
Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P
2010-03-06
Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small
Aerodynamic Characteristics of an Aerospace Vehicle During a Subsonic Pitch-Over Maneuver
NASA Technical Reports Server (NTRS)
Kleb, William L.
1996-01-01
Time-dependent CFD has been used to predict aerospace vehicle aerodynamics during a subsonic rotation maneuver. The inviscid 3D3U code is employed to solve the 3-D unsteady flow field using an unstructured grid of tetrahedra. As this application represents a challenge to time-dependent CFD, observations concerning spatial and temporal resolution are included. It is shown that even for a benign rotation rate, unsteady aerodynamic effects are significant during the maneuver. Possibly more significant, however, the rotation maneuver creates ow asymmetries leading to yawing moment, rolling moment, and side force which are not present in the quasi-steady case. A series of steady solutions at discrete points in the maneuver are also computed for comparison with wind tunnel measurements and as a means of quantifying unsteady effects.
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
Nakata, Toshiyuki; Liu, Hao
2012-02-22
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.
Aerodynamic Characteristics of Water Rocket and Stabilization of Flight Trajectory
NASA Astrophysics Data System (ADS)
Watanabe, Rikio; Tomita, Nobuyuki; Takemae, Toshiaki
The aerodynamic characteristics of water rockets are analyzed experimentally by wind tunnel testing. Aerodynamic devices such as vortex generators and dimples are tested and their effectiveness to the flight performance of water rocket is discussed. Attaching vortex generators suppresses the unsteady body fluttering. Dimpling the nose reduces the drag coefficient in high angles of attack. Robust design approach is applied to water rocket design for flight stability and optimum water rocket configuration is determined. Semi-sphere nose is found to be effective for flight stability and it is desirable for the safety of landing point. Stiffed fin attachment is required for fins to work properly as aerodynamic device and it enhances the flight stability of water rockets.
Accurate measurement of streamwise vortices in low speed aerodynamic flows
NASA Astrophysics Data System (ADS)
Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.
2010-11-01
Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.
Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor
NASA Technical Reports Server (NTRS)
Hoyniak, D.; Fleeter, S.
1985-01-01
High performance aircraft-engine fan and compressor blades are vulnerable to aerodynamically forced vibrations generated by inlet flow distortions due to wakes from upstream blade and vane rows, atmospheric gusts, and maldistributions in inlet ducts. In this report, an analysis is developed to predict the flow-induced forced response of an aerodynamically detuned rotor operating in a supersonic flow with a subsonic axial component. The aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading acting on the blading, as a result of the convection of the transverse gust past the airfoil cascade and the resulting motion of the cascade, is developed in terms of influence coefficients. This analysis is used to investigate the effect of aerodynamic detuning on the forced response of a 12-blade rotor, with Verdon's Cascade B flow geometry as a uniformly spaced baseline configuration. The results of this study indicate that, for forward traveling wave gust excitations, aerodynamic detuning is very beneficial, resulting in significantly decreased maximum-amplitude blade responses for many interblade phase angles.
Unsteady fluid-structure interactions with a heaving compliant membrane wing
NASA Astrophysics Data System (ADS)
Alon Tzezana, Gali; Breuer, Kenneth
2016-11-01
Membrane wings have been shown to provide some benefits over rigid wings at the low Reynolds number regime (Re 103 to 105), specifically improved thrust in flapping flight. Here we present results from a theoretical framework used to characterize the unsteady aeroelastic behavior of compliant membrane wings executing a heaving motion. An analytical model is developed using 2D unsteady thin airfoil theory, coupled with an unsteady membrane equation. Chebyshev collocation methods are used to solve the coupled system efficiently. The model is used to explore the effects of wing compliance, inertia (including added mass effect) and flapping kinematics on the aerodynamic performance, identifying optimal conditions for maximum thrust and propulsive efficiency. A resonant frequency of the coupled system is identified and characterized for different fluid-structure interaction regimes. Extensions to pitching kinematics are also discussed.
Asymmetric Uncertainty Expression for High Gradient Aerodynamics
NASA Technical Reports Server (NTRS)
Pinier, Jeremy T
2012-01-01
When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.
Future Challenges and Opportunities in Aerodynamics
NASA Technical Reports Server (NTRS)
Kumar, Ajay; Hefner, Jerry N.
2000-01-01
Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.
A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.
2015-01-01
A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.
Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
Nakata, T; Liu, H; Tanaka, Y; Nishihashi, N; Wang, X; Sato, A
2011-12-01
MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s⁻¹, operate in a Reynolds number regime of 10⁵ or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.
Investigation on the forced response of a radial turbine under aerodynamic excitations
NASA Astrophysics Data System (ADS)
Ma, Chaochen; Huang, Zhi; Qi, Mingxu
2016-04-01
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue (HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction (FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics (CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element (FE) model to conduct the computational structural dynamics (CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation (SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.
NASA Astrophysics Data System (ADS)
Bozinoski, Radoslav
Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions
Unsteady swimming of small organisms
NASA Astrophysics Data System (ADS)
Wang, Shiyan; Ardekani, Arezoo
2012-11-01
Small planktonic organisms ubiquitously display unsteady or impulsive motion to attack a prey or escape a predator in natural environments. Despite this, the role of unsteady hydrodynamic forces such as history and added mass forces on the low Reynolds number propulsion of small organisms is poorly understood. In this paper, we derive the fundamental equation of motion for an organism swimming by the means of surface distortion in a nonuniform flow at a low Reynolds number regime. We show that the history and added mass forces, that where traditionally neglected in the literature for small swimming organisms, cannot be neglected as the Stokes number increases above unity. For example, these unsteady inertial forces are of the same order as quasi-steady Stokes forces for Paramecium. Finally, we quantify the effects of convective inertial forces in the limit of small, but nonzero, Reynolds number regime. This work is supported by NSF grant CBET-1066545.
Unsteady Lift Generation for MAVs
2010-10-22
canonical pitch - up , pitch -down wing maneuver, in 39th AIAA Fluid Dynamics Conference, AIAA 2009-3687, San Antonio, TX, 22-25 June 2009. [7] C. P. Ellington...unsteady lift generation on three-dimensional flapping wings in the MAV flight regime and, if a leading edge vortex develops at MAV-like Reynolds numbers... wing rotates in a propeller-like motion through a wing stroke angle up to 90 degrees. Unsteady lift and drag force data was acquired throughout the
Unsteady stator/rotor interaction
NASA Astrophysics Data System (ADS)
Jorgenson, Philip C. E.; Chima, Rodrick V.
The major thrust of the computational analysis of turbomachinery to date has been the steady-state solution of isolated blades using mass-averaged inlet and exit conditions. Unsteady flows differ from the steady solution due to interaction of pressure waves and wakes between blade rows. To predict the actual complex flow conditions one must look at the time accurate solution of the entire turbomachine. Three quasi-three-dimensional Euler and thin layer Navier-Stokes equations are solved for unsteady turbomachinery flows.
Numerical and Experimental Study on Unsteady Shedding of Partial Cavitation
NASA Astrophysics Data System (ADS)
Ji, Bin; Luo, Xianwu; Wu, Yulin; Peng, Xiaoxing; Xu, Hongyuan
Periodically unsteady shedding of partial cavity and forming of cavitation cloud have a great influence on hydraulic performances and cavitation erosion for ship propellers and hydro machines. In the present study, the unsteady cavitating flow around a hydrofoil has been calculated by using the single fluid approach with a developed cavitation mass transfer expression based on the vaporization and condensation of the fluid. The numerical simulation depicted the unsteady shedding of partial cavity, such as the process of cavity developing, breaking off and collapsing in the downstream under the steady incoming flow condition. It is noted that good agreement between the numerical results and that of experiment conducted at a cavitation tunnel is achieved. The cavitating flow field indicates that the cavity shedding was mainly caused by the re-entrant jet near cavity trailing edge, which was also clearly recorded by high-speed photographing.
Uncertainty in Computational Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.
2003-01-01
An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.
The aerodynamics of hovering flight in Drosophila.
Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H
2005-06-01
Using 3D infrared high-speed video, we captured the continuous wing and body kinematics of free-flying fruit flies, Drosophila melanogaster, during hovering and slow forward flight. We then 'replayed' the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. Hovering animals generate a U-shaped wing trajectory, in which large drag forces during a downward plunge at the start of each stroke create peak vertical forces. Quasi-steady mechanisms could account for nearly all of the mean measured force required to hover, although temporal discrepancies between instantaneous measured forces and model predictions indicate that unsteady mechanisms also play a significant role. We analyzed the requirements for hovering from an analysis of the time history of forces and moments in all six degrees of freedom. The wing kinematics necessary to generate sufficient lift are highly constrained by the requirement to balance thrust and pitch torque over the stroke cycle. We also compare the wing motion and aerodynamic forces of free and tethered flies. Tethering causes a strong distortion of the stroke pattern that results in a reduction of translational forces and a prominent nose-down pitch moment. The stereotyped distortion under tethered conditions is most likely due to a disruption of sensory feedback. Finally, we calculated flight power based directly on the measurements of wing motion and aerodynamic forces, which yielded a higher estimate of muscle power during free hovering flight than prior estimates based on time-averaged parameters. This discrepancy is mostly due to a two- to threefold underestimate of the mean profile drag coefficient in prior studies. We also compared our values with the predictions of the same time-averaged models using more accurate kinematic and aerodynamic input parameters based on our high-speed videography measurements. In this case, the time-averaged models tended to overestimate flight
Dynamic-overlapped-grid simulation of aerodynamically determined relative motion
NASA Technical Reports Server (NTRS)
Yen, Guan-Wei; Baysal, Oktay
1993-01-01
Currently, there is a need to develop a means of analyzing and studying unsteady flowfields which involve multiple component configurations with at least one of the components in relative motion with respect to the others. Two of the important phenomena that such analyses can help to understand are the unsteady aerodynamic interference and the boundary-induced component of the flowfield. With this motivation, a computational method is developed which couples the governing equations of the unsteady flowfield and the rigid-body dynamics in six degrees-of-freedom. These equations are solved on composite meshes of overlapped subdomain grids which can move with respect to each other. Initially, several measures that reduce the numerical error are studied and compared with the exact solution of a moving normal shock in a tube. It is concluded that a second-order accurate method, for spatial and temporal discretizations as well as for the moving subdomain interpolations, is needed as a minimum measure. Furthermore, the CFL numbers should be restricted to unity. Then, the method is used to simulate the flowfield history and predict the aerodynamically determined trajectory of a store dropped from its initial position under a wing.
NASA Astrophysics Data System (ADS)
Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A.
2005-07-01
Past research on airfoil aerodynamics in icing are reviewed. This review emphasizes the time period after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This article identifies four classes of ice accretions: roughness, horn ice, streamwise ice, and spanwise-ridge ice. For each class, the key flowfield features such as flowfield separation and reattachment are discussed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are summarized.
Not Available
1992-01-01
Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows.
The acoustics and unsteady wall pressure of a circulation control airfoil
NASA Astrophysics Data System (ADS)
Silver, Jonathan C.
A Circulation Control (CC) airfoil uses a wall jet exiting onto a rounded trailing edge to generate lift via the Coanda effect. The aerodynamics of the CC airfoil have been studied extensively. The acoustics of the airfoil are, however, much less understood. The primary goal of the present work was to study the radiated sound and unsteady surface pressures of a CC airfoil. The focus of this work can be divided up into three main categories: characterizing the unsteady surface pressures, characterizing the radiated sound, and understanding the acoustics from surface pressures. The present work is the first to present the unsteady surface pressures from the trailing edge cylinder of a circulation control airfoil. The auto-spectral density of the unsteady surface pressures at various locations around the trailing edge are presented over a wide range of the jets momentum coefficient. Coherence of pressure and length scales were computed and presented. Single microphone measurements were made at a range of angles for a fixed observer distance in the far field. Spectra are presented for select angles to show the directivity of the airfoil's radiated sound. Predictions of the acoustics were made from unsteady surface pressures via Howe's curvature noise model and a modified Curle's analogy. A summary of the current understanding of the acoustics from a CC airfoil is given along with suggestions for future work.
Spatial Characteristics of the Unsteady Differential Pressures on 16 percent F/A-18 Vertical Tails
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Ashley, Holt
1998-01-01
Buffeting is an aeroelastic phenomenon which plagues high performance aircraft at high angles of attack. For the F/A-18 at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their turbulent wake. The resulting buffeting of the vertical tails is a concern from fatigue and inspection points of view. Previous flight and wind-tunnel investigations to determine the buffet loads on the tail did not provide a complete description of the spatial characteristics of the unsteady differential pressures. Consequently, the unsteady differential pressures were considered to be fully correlated in the analyses of buffet and buffeting. The use of fully correlated pressures in estimating the generalized aerodynamic forces for the analysis of buffeting yielded responses that exceeded those measured in flight and in the wind tunnel. To learn more about the spatial characteristics of the unsteady differential pressures, an available 16%, sting-mounted, F-18 wind-tunnel model was modified and tested in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center as part of the ACROBAT (Actively Controlled Response Of Buffet-Affected Tails) program. Surface pressures were measured at high angles of attack on flexible and rigid tails. Cross-correlation and cross-spectral analyses of the pressure time histories indicate that the unsteady differential pressures are not fully correlated. In fact, the unsteady differential pressure resemble a wave that travels along the tail. At constant angle of attack, the pressure correlation varies with flight speed.
Unsteady Sail Dynamics in Olympic Class Sailboats
NASA Astrophysics Data System (ADS)
Williamson, Charles; Schutt, Riley
2016-11-01
Unsteady sailing techniques have evolved in competitive sailboat fleets, in cases where the relative weight of the sailor is sufficient to impart unsteady motions to the boat and sails. We will discuss three types of motion that are used by athletes to propel their boats on an Olympic race course faster than using the wind alone. In all of our cases, body weight movements induce unsteady sail motion, increasing driving force and speed through the water. In this research, we explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and a 6-GoPro camera array. We shall briefly discuss "sail flicking", whereby the helmsman periodically rolls the sail into the apparent wind, at an angle which is distinct from classical heave (in our case, the oscillations are not normal to the apparent flow). We also demonstrate "roll tacking", where there are considerable advantages to rolling the boat during such a maneuver, especially in light wind. In both of the above examples from on-the-water studies, corresponding experiments using a towing tank exhibit increases in the driving force, associated with the formation of strong vortex pairs into the flow. Finally, we focus on a technique known as "S-curving" in the case where the boat sails downwind. In contrast to the previous cases, it is drag force rather than lift force that the sailor is trying to maximise as the boat follows a zig-zag trajectory. The augmented apparent wind strength due to the oscillatory sail motion, and the growth of strong synchronised low-pressure wake vortices on the low-pressure side of the sail, contribute to the increase in driving force, and velocity-made-good downwind.
System Identification of a Vortex Lattice Aerodynamic Model
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.
2001-01-01
The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.
Aerodynamics of advanced axial-flow turbomachinery
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.
1980-01-01
A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.
Finite element concepts in computational aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.
NASA Technical Reports Server (NTRS)
Batina, John T.
1992-01-01
A time-accurate approximate-factorization (AF) algorithm is described for solution of the three-dimensional unsteady transonic small-disturbance equation. The AF algorithm consists of a time-linearization procedure coupled with a subiteration technique. The algorithm is the basis for the Computational Aeroelasticity Program-Transonic Small Disturbance (CAP-TSD) computer code, which was developed for the analysis of unsteady aerodynamics and aeroelasticity of realistic aircraft configurations. The paper describes details on the governing flow equations and boundary conditions, with an emphasis on documenting the finite-difference formulas of the AF algorithm.
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley W.
2009-01-01
Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed
Inviscid analysis of unsteady blade tip flow correlation studies
NASA Technical Reports Server (NTRS)
Rao, B. M.; Maskew, B.
1985-01-01
Two computer programs, VSAERO-TS and VSAERO-H, were used for computing the unsteady subsonic aerodynamic characteristics of arbitrarily shaped wings oscillating in pitch. Program VSAERO-TS is a time-stepping analysis capable of treating large amplitude motions while program VSAERO-H uses harmonic wake and small amplitude assumptions. A comparison between the computed (VSAERO-TS and VSAERO-H) and DFVLR test results for chordwise pressure distributions for rectangular, swept, taper and ogee blade tips is presented in this report. A wide range of angles of attack (mean) from 0 to 12 deg and reduced frequencies of 0.1, 0.2 and 0.3 are covered in this report. Also, the comparison includes several spanwise stations.
Viscous effect on airfoils for unsteady transonic flows
NASA Technical Reports Server (NTRS)
Lee, S. C.
1982-01-01
The viscous effect on aerodynamic performance of an arbitrary airfoil executing low frequency maneuvers during transonic flight was investigated. The small disturbance code, LTRAN2, was modified by using a conventional integral method, BLAYER, for the boundary layer and an empirical relation, viscous wedge, for simulating the suddenly thickened boundary layer behind the shock. Before the shock, only the boundary layer displacement thickness was evaluated. After the shock, the empirical wedge thickness was superimposed on the boundary layer thickness along the surface as well as in the wake region. The pressure coefficients were calculated for both steady and unsteady states. The viscous solution takes fewer iterations to obtain the converged steady state solution. Comparisons made with experimental data and the inviscid solution show that the viscous solution agrees better with the experimental data with about the same (or slightly less) amount of computational time.
Unsteady flow and dynamic response analyses for helicopter rotor blades
NASA Technical Reports Server (NTRS)
Bratanow, T.
1979-01-01
Research is presented on helicopter rotor blade vibration and on two and three dimensional analyses of unsteady incompressible viscous flow past oscillating helicopter rotor blades. A summary is presented of the two international research collaborations which resulted from the NASA project: the collaboration under the auspices of NATO between the University of Wisconsin-Milwaukee, University of Brussels, Belgium and the Aerodynamics Research Establishment in Goettingen, West Germany, and the collaboration under the auspices of the National Science Foundation between UWM and the University of Hamburg and the Ship Research Establishment in Hamburg, West Germany. A summary is given of the benefits from the NASA project to UWM, the College of Engineering and Applied Science, and the participants on the project.
Numerical modeling of wind turbine aerodynamic noise in the time domain.
Lee, Seunghoon; Lee, Seungmin; Lee, Soogab
2013-02-01
Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.
NASA Astrophysics Data System (ADS)
Dvořák, Rudolf
2016-03-01
Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.
NASA Technical Reports Server (NTRS)
Horstman, Raymond H.
1992-01-01
Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.
NASA Technical Reports Server (NTRS)
Mugler, John P., Jr.
1960-01-01
An iteration method is presented by which the detailed aerodynamic loading and twist characteristics of a flexible wing with known elastic properties may be calculated. The method is applicable at Mach numbers approaching 1.0 as well as at subsonic Mach numbers. Calculations were made for a wing-body combination; the wing was swept back 45 deg and had an aspect ratio of 4. Comparisons were made with experimental results at Mach numbers from.0.80 to 0.98.
Mechanics and aerodynamics of insect flight control.
Taylor, G K
2001-11-01
Insects have evolved sophisticated fight control mechanisms permitting a remarkable range of manoeuvres. Here, I present a qualitative analysis of insect flight control from the perspective of flight mechanics, drawing upon both the neurophysiology and biomechanics literatures. The current literature does not permit a formal, quantitative analysis of flight control, because the aerodynamic force systems that biologists have measured have rarely been complete and the position of the centre of gravity has only been recorded in a few studies. Treating the two best-known insect orders (Diptera and Orthoptera) separately from other insects, I discuss the control mechanisms of different insects in detail. Recent experimental studies suggest that the helicopter model of flight control proposed for Drosophila spp. may be better thought of as a facultative strategy for flight control, rather than the fixed (albeit selected) constraint that it is usually interpreted to be. On the other hand, the so-called 'constant-lift reaction' of locusts appears not to be a reflex for maintaining constant lift at varying angles of attack, as is usually assumed, but rather a mechanism to restore the insect to pitch equilibrium following a disturbance. Differences in the kinematic control mechanisms used by the various insect orders are related to differences in the arrangement of the wings, the construction of the flight motor and the unsteady mechanisms of lift production that are used. Since the evolution of insect flight control is likely to have paralleled the evolutionary refinement of these unsteady aerodynamic mechanisms, taxonomic differences in the kinematics of control could provide an assay of the relative importance of different unsteady mechanisms. Although the control kinematics vary widely between orders, the number of degrees of freedom that different insects can control will always be limited by the number of independent control inputs that they use. Control of the moments
Reconstruction of unsteady viscous flows using data assimilation schemes
NASA Astrophysics Data System (ADS)
Mons, V.; Chassaing, J.-C.; Gomez, T.; Sagaut, P.
2016-07-01
This paper investigates the use of various data assimilation (DA) approaches for the reconstruction of the unsteady flow past a cylinder in the presence of incident coherent gusts. Variational, ensemble Kalman filter-based and ensemble-based variational DA techniques are deployed along with a 2D compressible Navier-Stokes flow solver, which is also used to generate synthetic observations of a reference flow. The performance of these DA schemes is thoroughly analyzed for various types of observations ranging from the global aerodynamic coefficients of the cylinder to the full 2D flow field. Moreover, different reconstruction scenarios are investigated in order to assess the robustness of these methods for large scale DA problems with up to 105 control variables. In particular, we show how an iterative procedure can be used within the framework of ensemble-based methods to deal with both non-uniform unsteady boundary conditions and initial field reconstruction. The different methodologies developed and assessed in this work give a review of what can be done with DA schemes in computational fluid dynamics (CFD) paradigm. In the same time, this work also provides useful information which can also turn out to be rational arguments in the DA scheme choice dedicated to a specific CFD application.
Physics of Forced Unsteady Separation
NASA Technical Reports Server (NTRS)
Carr, Lawrence W. (Editor)
1992-01-01
This report contains the proceedings of a workshop held at NASA Ames Research Center in April 1990. This workshop was jointly organized by NASA, the Air Force Office of Scientific Research (AFOSR), and the Army Research Office (ARO), and was directed toward improved understanding of the physical processes that cause unsteady separation to occur. The proceedings contain the written contributions for the workshop, and include selected viewgraphs used in the various presentations.
Turbine disk cavity aerodynamics and heat transfer
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Daniels, W. A.
1992-01-01
Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.
NASA Astrophysics Data System (ADS)
Yang, Lei; Ye, Zheng-Yin; Wu, Jie
2016-11-01
The separation between the carrier and store is one of the most important and difficult phases in Air-launch-to-orbit technology. Based on the previous researches, the interference aerodynamic forces of the store caused by the carrier are obvious in the earlier time during the separation. And the interference aerodynamics will be more complex when considering the elastic deformation of the carrier. Focusing on the conditions that in the earlier time during the separation, the steady and unsteady interference aerodynamic forces of the store are calculated at different angle of attacks and relative distances between the carrier and store. During the calculation, the elastic vibrations of the carrier are considered. According to the cause of formations of the interference aerodynamics, the interference aerodynamic forces of the store are divided into several components. The relative magnitude, change rule, sphere of influence and mechanism of interference aerodynamic forces components of the store are analyzed quantitatively. When the relative distance between the carrier and store is small, the interference aerodynamic forces caused by the elastic vibration of the carrier is about half of the total aerodynamic forces of the store. And as the relative distance increases, the value of interference aerodynamic forces decrease. When the relative distance is larger than twice the mean aerodynamic chord of the carrier, the values of interference aerodynamic forces of the store can be ignored. Besides, under the influence of the steady interference aerodynamic forces, the lift characteristics of the store are worse and the static stability margin is poorer.
Unsteady features of the flow on a bump in transonic environment
NASA Astrophysics Data System (ADS)
Budovsky, A. D.; Sidorenko, A. A.; Polivanov, P. A.; Vishnyakov, O. I.; Maslov, A. A.
2016-10-01
The study deals with experimental investigation of unsteady features of separated flow on a profiled bump in transonic environment. The experiments were conducted in T-325 wind tunnel of ITAM for the following flow conditions: P0 = 1 bar, T0 = 291 K. The base flow around the model was studied by schlieren visualization, steady and unsteady wall pressure measurements and PIV. The experimentally data obtained using PIV are analyzed by Proper Orthogonal Decomposition (POD) technique to investigate the underlying unsteady flow organization, as revealed by the POD eigenmodes. The data obtained show that flow pulsations revealed upstream and downstream of shock wave are correlated and interconnected.
MODELING STRATEGIES FOR UNSTEADY TURBULENT FLOWS IN THE LOWER PLENUM OF THE VHTR
Richard W. Johnson
2006-09-01
Validation simulations are presented for turbulent flow in a staggered tube bank, geometry similar to that in the lower plenum of a block very high temperature reactor. Steady 2D RANS predictions are compared to unsteady 2D RANS results and experiment. The unsteady calculations account for the fact that nonturbulent fluctuations (due to vortex-shedding) are present in the flow. The unsteady computations are shown to predict the mean variables and the total shear stress quite well. Previous workers have presented results that indicated that 3D simulations were necessary to obtain reasonable results. Best practices are based on requirements for the ASME Journal of Fluids Engineering.
Unsteady Pressure Distributions on Airfoils in Cascade.
1980-04-01
of thin airfoil theory has been used by Henderson (-ftj’ and Bruce (1-7-)’to derive expressions for the unsteady response which includes the cascade...model in conjunction with the assumptions of thin airfoil theory has been used by Henderson (16) and Bruce (17) to derive expressions for the unsteady...effect, that is, a sharp change in the unsteady lift when the disturbance wavelength equals the blade spacing. Bruce (19) further extends this theory to
On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
NASA Technical Reports Server (NTRS)
Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.
2005-01-01
The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the
On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
NASA Technical Reports Server (NTRS)
Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.
2003-01-01
The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the
An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing
NASA Astrophysics Data System (ADS)
Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi
2011-08-01
An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 < Str < 0.4 used by flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.
The predicted effect of aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter
NASA Technical Reports Server (NTRS)
Hoyniak, D.; Fleeter, S.
1986-01-01
A mathematical model is developed to predict the enhanced coupled bending-torsion unstalled supersonic flutter stability due to alternate circumferential spacing aerodynamic detuning of a turbomachine rotor. The translational and torsional unsteady aerodynamic coefficients are developed in terms of influence coefficients, with the coupled bending-torsion stability analysis developed by considering the coupled equations of motion together with the unsteady aerodynamic loading. The effect of this aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter as well as the verification of the modeling are then demonstrated by considering an unstable 12 bladed rotor, with Verdon's uniformly spaced Cascade B flow geometry as a baseline. However, with the elastic axis and center of gravity at 60 percent of the chord, this type of aerodynamic detuning has a minimal effect on stability. For both uniform and nonuniform circumferentially space rotors, a single degree of freedom torsion mode analysis was shown to be appropriate for values of the bending-torsion natural frequency ratio lower than 0.6 and higher 1.2. When the elastic axis and center of gravity are not coincident, the effect of detuning on cascade stability was found to be very sensitive to the location of the center of gravity with respect to the elastic axis. In addition, it was determined that when the center of gravity was forward of an elastic axis located at midchord, a single degree of freedom torsion model did not accurately predict cascade stability.
NASA Technical Reports Server (NTRS)
Marshall, F. J.; Deffenbaugh, F. D.
1974-01-01
A method is developed to determine the flow field of a body of revolution in separated flow. The technique employed is the use of the computer to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the required two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separation regions and wake vortex patterns are determined.
NASA Technical Reports Server (NTRS)
Marshall, F. J.; Deffenbaugh, F. D.
1974-01-01
A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described.
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Bland, Samuel R.; Batina, John T.; Gibbons, Michael D.; Mabey, Dennis G.
1987-01-01
A transonic unsteady aerodynamic and aeroelasticity code has been developed for application to realistic aircraft configurations. The new code is called CAP-TSD which is an acronym for Computational Aeroelasticity Program - Transonic Small Disturbance. The CAP-TSD code uses a time-accurate approximate factorization algorithm for solution of the unsteady transonic small-disturbance equation that is efficient for solution of steady and unsteady transonic flow problems including supersonic freestream flows. The new code can treat complete aircraft geometries with multiple lifting surfaces and bodies. Applications to wings in supersonic freestream flow are presented. Comparisons with selected exact solutions from linear theory are presented showing generally favorable results. Calculations for both steady and oscillatory cases for the F-5 and RAE tailplane models are compared with experimental data and also show good overall agreement. Selected steady calculations are further compared with a steady flow Euler code.
Computational analysis of high resolution unsteady airloads for rotor aeroacoustics
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.
1994-01-01
The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.
Wind Tunnel Measurements and Calculations of Aerodynamic Interactions Between Tiltrotor Aircraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yamauchi, Gloria K.; Derby, Michael R.; Wadcock, Alan J.
2002-01-01
Wind tunnel measurements and calculations of the aerodynamic interactions between two tiltrotor aircraft in helicopter mode are presented. The measured results include the roll moment and thrust change on the downwind aircraft, as a function of the upwind aircraft position (longitudinal, lateral, and vertical). Magnitudes and locations of the largest interactions are identified. The calculated interactions generally match the measurements, with discrepancies attributed to the unsteadiness of the wake and aerodynamic forces on the airframe. To interpret the interactions in terms of control and power changes on the aircraft, additional calculations are presented for trimmed aircraft with gimballed rotors.
Application of CFD techniques toward the validation of nonlinear aerodynamic models
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Katz, J.
1985-01-01
Applications of Computational fluid dynamics (CFD) methods to determine the regimes of applicability of nonlinear models describing the unsteady aerodynamic responses to aircraft flight motions are described. The potential advantages of computational methods over experimental methods are discussed and the concepts underlying mathematical modeling are reviewed. The economic and conceptual advantages of the modeling procedure over coupled, simultaneous solutions of the gasdynamic equations and the vehicle's kinematic equations of motion are discussed. The modeling approach, when valid, eliminates the need for costly repetitive computation of flow field solutions. For the test cases considered, the aerodynamic modeling approach is shown to be valid.
Powered-Lift Aerodynamics and Acoustics. [conferences
NASA Technical Reports Server (NTRS)
1976-01-01
Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.
Methodology of Blade Unsteady Pressure Measurement in the NASA Transonic Flutter Cascade
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Jett, T. A.; Senyitko, R. G.
2002-01-01
In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.
Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Neuhart, Danny H.
2012-01-01
In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.
NASA Technical Reports Server (NTRS)
Prasanth, Ravi K.; Klein, Vladislav; Murphy, Patrick C.; Mehra, Raman K.
2005-01-01
This paper describes model structures and parameter estimation algorithms suitable for the identification of unsteady aerodynamic models from input-output data. The model structures presented are state space models and include linear time-invariant (LTI) models and linear parameter-varying (LPV) models. They cover a wide range of local and parameter dependent identification problems arising in unsteady aerodynamics and nonlinear flight dynamics. We present a residue algorithm for estimating model parameters from data. The algorithm can incorporate apriori information and is described in detail. The algorithms are evaluated on the F-16XL wind-tunnel test data from NAS Langley Research Center. Results of numerical evaluation are presented. The paper concludes with a discussion major issues and directions for future work.
NASA Technical Reports Server (NTRS)
Dawson, Kenneth S.; Fortin, Paul E.
1987-01-01
The results of an integrated study of structures, aerodynamics, and controls using the STARS program on two advanced airplane configurations are presented. Results for the X-29A include finite element modeling, free vibration analyses, unsteady aerodynamic calculations, flutter/divergence analyses, and an aeroservoelastic controls analysis. Good correlation is shown between STARS results and various other verified results. The tasks performed on the Oblique Wing Research Aircraft include finite element modeling and free vibration analyses.
Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004
Leonard, A; Chatelain, P; Heineck, J; Browand, F; Mehta, R; Ortega, J; Salari, K; Storms, B; Brown, J; DeChant, L; Rubel, M; Ross, J; Hammache, M; Pointer, D; Roy, C; Hassan, B; Arcas, D; Hsu, T; Payne, J; Walker, S; Castellucci, P; McCallen, R
2004-04-13
Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive need to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.
Transpiration effects in perforated plate aerodynamics
NASA Astrophysics Data System (ADS)
Szwaba, R.; Ochrymiuk, T.
2016-10-01
Perforated walls find a wide use as a method of flow control and effusive cooling. Experimental investigations of the gas flow past perforated plate with microholes (110μm) were carried out. The wide range of pressure at the inlet were investigated. Two distinguishable flow regimes were obtained: laminar and turbulent regime.The results are in good agreement with theory, simulations and experiments on large scale perforated plates and compressible flows in microtubules. Formulation of the transpiration law was associated with the porous plate aerodynamics properties. Using a model of transpiration flow the “aerodynamic porosity” could be determined for microholes.
Unsteady Katabatic Winds on Mountain Slopes
NASA Astrophysics Data System (ADS)
Fernando, H. J. S.; Princevac, M.; Hunt, J. C. R.
2003-04-01
UNSTEADY KATABATIC WINDS ON MOUNTAIN SLOPES H.J.S. Fernando (1), M. Princevac (1) and J.C.R. Hunt (2) (1) Arizona State University, Tempe, (2) University College, London j.fernando@asu.edu Theoretical and field studies were carried out on velocity and temperature fields of an unsteady nighttime atmospheric boundary layer on sloping surfaces. Field data were collected during the Vertical Transport and Mixing Experiment (VTMX) conducted in the Salt Lake basin, Utah. Nighttime data from two slope sites, with measurements taken using six tethersonde systems and three sonic anemometers placed at a various representative locations along the slope, were used in the analysis. This analysis concerned simple katabatic flows as well as the interaction between (evening) down-slope flows on lower (elevation) gentle slopes and those originating at adjoining higher (elevation) steep mountain slopes. Katabatic winds that form on the steep slope overrun those on the lower slope, thus dominating the micrometeorology at the bottom of the valley. Yet, the flow and temperature on higher slopes are independent of those in the lower valley, given that katabatic flows on steeper slopes are generally supercritical and do not transmit flow information upstream. By employing assumptions on the flow structure and using parameterizations for pertinent processes, an expression was derived for the layer-averaged katabatic flow velocity. Using energy arguments to calculate the growth rate of the katabatic-layer thickness, a new expression for the flow depth was derived. Extensive comparisons between theoretical results and field observations were made, allowing cross-fertilization between theoretical developments, eduction of flow physics and interpretation of field data. Unsteady effects pertinent to katabatic flows were also considered, following Fleagle’s approach, and it is shown theoretically and using observations that the down-slope flow pulsates with a period inversely proportional to
Applied computational aerodynamics
Henne, P.A.
1990-01-01
The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.
Evaluation of the constant pressure panel method (CPM) for unsteady air loads prediction
NASA Technical Reports Server (NTRS)
Appa, Kari; Smith, Michael J. C.
1988-01-01
This paper evaluates the capability of the constant pressure panel method (CPM) code to predict unsteady aerodynamic pressures, lift and moment distributions, and generalized forces for general wing-body configurations in supersonic flow. Stability derivatives are computed and correlated for the X-29 and an Oblique Wing Research Aircraft, and a flutter analysis is carried out for a wing wind tunnel test example. Most results are shown to correlate well with test or published data. Although the emphasis of this paper is on evaluation, an improvement in the CPM code's handling of intersecting lifting surfaces is briefly discussed. An attractive feature of the CPM code is that it shares the basic data requirements and computational arrangements of the doublet lattice method. A unified code to predict unsteady subsonic or supersonic airloads is therefore possible.
Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions
NASA Astrophysics Data System (ADS)
Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.
2016-09-01
The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.
Status of Nozzle Aerodynamic Technology at MSFC
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; McDaniels, David M.; Smith, Bud; Owens, Zachary
2002-01-01
This viewgraph presentation provides information on the status of nozzle aerodynamic technology at MSFC (Marshall Space Flight Center). The objectives of this presentation were to provide insight into MSFC in-house nozzle aerodynamic technology, design, analysis, and testing. Under CDDF (Center Director's Discretionary Fund), 'Altitude Compensating Nozzle Technology', are the following tasks: Development of in-house ACN (Altitude Compensating Nozzle) aerodynamic design capability; Building in-house experience for all aspects of ACN via End-to-End Nozzle Test Program; Obtaining Experimental Data for Annular Aerospike: Thrust eta, TVC (thrust vector control) capability and surface pressures. To support selection/optimization of future Launch Vehicle propulsion we needed a parametric design and performance tool for ACN. We chose to start with the ACN Aerospike Nozzles.
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
NASA Technical Reports Server (NTRS)
Adamczyk, John J.
1999-01-01
This paper summarizes the state of 3D CFD based models of the time average flow field within axial flow multistage turbomachines. Emphasis is placed on models which are compatible with the industrial design environment and those models which offer the potential of providing credible results at both design and off-design operating conditions. The need to develop models which are free of aerodynamic input from semi-empirical design systems is stressed. The accuracy of such models is shown to be dependent upon their ability to account for the unsteady flow environment in multistage turbomachinery. The relevant flow physics associated with some of the unsteady flow processes present in axial flow multistage machinery are presented along with procedures which can be used to account for them in 3D CFD simulations. Sample results are presented for both axial flow compressors and axial flow turbines which help to illustrate the enhanced predictive capabilities afforded by including these procedures in 3D CFD simulations. Finally, suggestions are given for future work on the development of time average flow models.
The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows
NASA Technical Reports Server (NTRS)
1992-01-01
This volume contains the papers presented at the Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, held at the California State University, Long Beach, from 13 to 15 January 1992. The symposium, like its immediate predecessors, considers the calculation of flows of relevance to aircraft, ships, and missiles with emphasis on the solution of two-dimensional unsteady and three-dimensional equations.
A collection of flow visualization techniques used in the Aerodynamic Research Branch
NASA Technical Reports Server (NTRS)
1984-01-01
Theoretical and experimental research on unsteady aerodynamic flows is discussed. Complex flow fields that involve separations, vortex interactions, and transonic flow effects were investigated. Flow visualization techniques are used to obtain a global picture of the flow phenomena before detailed quantitative studies are undertaken. A wide variety of methods are used to visualize fluid flow and a sampling of these methods is presented. It is emphasized that the visualization technique is a thorough quantitative analysis and subsequent physical understanding of these flow fields.
Computational aerodynamics and design
NASA Technical Reports Server (NTRS)
Ballhaus, W. F., Jr.
1982-01-01
The role of computational aerodynamics in design is reviewed with attention given to the design process; the proper role of computations; the importance of calibration, interpretation, and verification; the usefulness of a given computational capability; and the marketing of new codes. Examples of computational aerodynamics in design are given with particular emphasis on the Highly Maneuverable Aircraft Technology. Finally, future prospects are noted, with consideration given to the role of advanced computers, advances in numerical solution techniques, turbulence models, complex geometries, and computational design procedures. Previously announced in STAR as N82-33348
Nonlinear aerodynamic wing design
NASA Technical Reports Server (NTRS)
Bonner, Ellwood
1985-01-01
The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.
Computer graphics in aerodynamic analysis
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.
1984-01-01
The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.
Control of flow separation and mixing by aerodynamic excitation
NASA Technical Reports Server (NTRS)
Rice, Edward J.; Abbott, John M.
1990-01-01
The recent research progress in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of fundamental nature concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research reported in this paper include influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications of this research include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made here that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.
Control of flow separation and mixing by aerodynamic excitation
NASA Technical Reports Server (NTRS)
Rice, Edward J.; Abbott, John M.
1990-01-01
The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.
NASA Astrophysics Data System (ADS)
Yen, Guan-Wei
1994-01-01
A computational method is developed to solve the coupled governing equations of an unsteady flowfield and those of rigid-body dynamics in six degrees-of-freedom (6-DOF). This method is capable of simulating the unsteady flowfields around multiple component configurations with at least one of the components in relative motion with respect to the others. Two of the important phenomena that such analyses can help us to understand are the unsteady aerodynamic interference and the boundary-induced component of such a flowfield. By hybridizing two dynamic domain decomposition techniques, the grid generation task is simplified, the computer memory requirement is reduced, and the governing equations of the rigid-body dynamics are simplified with certain assumptions. Three dimensional, unsteady Navier -Stokes equations are solved on each of the subdomains by a fully-vectorized, finite-volume, upwind-biased, and approximately -factored method. These equations are solved on the composite meshes of hybrid subdomain grids that can move with respect to each other. Hence, the present method combines the advantages of an efficient, geometrically conservative, minimally and automatically dissipative algorithm with the advantages and flexibility of the domain decomposition techniques. Several measures that reduce the numerical error are studied and compared with the exact solution of a moving normal shock in a tube. This solution compares very well with the analytic solution of the isentropic equations. It is concluded, that as a minimum measure, the connectivity of nonconservative overlapped scheme needs to be second-order accurate for spatial and temporal discretizations, as well as for the moving subdomain interpolations. Furthermore, the CFL numbers should be restricted to below unity, if affordable, for flows with high flow gradients. The method is further scrutinized by simulating the flow past a sinusoidally pitching airfoil, and the flow past a sinusoidally pitching and
NASA Astrophysics Data System (ADS)
Zhang, L. P.; Chang, X. H.; Duan, X. P.; Zhang, H. X.
For very insect such as tiny wasp Encarsaria Formosa, Weis-Fogh found that the ‘clap-fling’ mechanism of their wings is the main cause for their large lift. In this paper, we simulate the motion numerically and analyze the generation of large lift by the wings with an unsteady incompressible flow solver based on dynamic hybrid mesh. Both one wing flapping and two wings ‘clap and fling’ are considered in the Reynolds number range of 8-128, the difference on flow structures and aerodynamic forces are compared with each other, and then high lift mechanism is analyzed.
The Benchmark Active Controls Technology Model Aerodynamic Data
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Hoadley, Sherwood T.; Wieseman, Carol D.; Durham, Michael H.
1997-01-01
The Benchmark Active Controls Technology (BACT) model is a part of the Benchmark Models Program (BMP). The BMP is a NASA Langley Research Center program that includes a series of models which were used to study different aeroelastic phenomena and to validate computational fluid dynamics codes. The primary objective of BACT testing was to obtain steady and unsteady loads, accelerations, and aerodynamic pressures due to control surface activity in order to calibrate unsteady CFD codes and active control design tools. Three wind-tunnel tests in the Transonic Dynamics Tunnel (TDT) have been completed. The first and parts of the second and third tests focused on collecting open-loop data to define the model's aeroservoelastic characteristics, including the flutter boundary across the Mach range. It is this data that is being presented in this paper. An extensive database of over 3000 data sets was obtained. This database includes steady and unsteady control surface effectiveness data, including pressure distributions, control surface hinge moments, and overall model loads due to deflections of a trailing edge control surface and upper and lower surface
An analysis of blade vortex interaction aerodynamics and acoustics
NASA Technical Reports Server (NTRS)
Lee, D. J.
1985-01-01
The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.
Evaluation of Turbulence Models for Unsteady Flows of an Oscillating Airfoil
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Ekaterinaris, J. A.; McCroskey, W. J.
1995-01-01
Unsteady flowfields of a two-dimensional oscillating airfoil are calculated using an implicit, finite-difference, Navier Stokes numerical scheme. Five widely used turbulence models are used with the numerical scheme to assess the accuracy and suitability of the models for simulating the retreating blade stall of helicopter rotor in forward flight. Three unsteady flow conditions corresponding to an essentially attached flow, light-stall, and deep-stall cases of an oscillating NACA 0015 wing experiment were chosen as test cases for computations. Results of unsteady airloads hysteresis curves, harmonics of unsteady pressures, and instantaneous flowfield patterns are presented. Some effects of grid density, time-step size, and numerical dissipation on the unsteady solutions relevant to the evaluation of turbulence models are examined. Comparison of unsteady airloads with experimental data show that all models tested are deficient in some sense and no single model predicts airloads consistently and in agreement with experiment for the three flow regimes. The chief findings are that the simple algebraic model based on the renormalization group theory (RNG) offers some improvement over the Baldwin Lomax model in all flow regimes with nearly same computational cost. The one-equation models provide significant improvement over the algebraic and the half-equation models but have their own limitations. The Baldwin-Barth model overpredicts separation and underpredicts reattachment. In contrast, the Spalart-Allmaras model underpredicts separation and overpredicts reattachment.
Airfoil Ice-Accretion Aerodynamics Simulation
NASA Technical Reports Server (NTRS)
Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.
2007-01-01
NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.
Robustness of de Saint Venant equations for simulating unsteady flows
Baltzer, Robert A.; Schaffranek, Raymond W.; Lai, Chintu; ,
1995-01-01
Long-wave motion in open channels can be expressed mathematically by the one-dimensional de Saint Venant equations describing conservation of fluid mass and momentum. Numerical simulation models, based on either depth/velocity or water-level/discharge dependent-variable formulations of these equations, are typically used to simulate unsteady open-channel flow. However, the implications and significance of selecting either dependent-variable form - on model development, discretization and numerical solution processes, and ultimately on the range-of-application and simulation utility of resulting models - are not well known. Results obtained from a set of numerical experiments employing two models - one based on depth/velocity and the other on water-level/discharge equation formulations - reveal the sensitivity of the two equation sets to various channel properties and dynamic flow conditions. In particular, the effects of channel gradient, channel width-to-depth ratio, flow-resistance coefficient, and flow unsteadiness are analyzed and discussed.
Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping
2009-01-01
Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.
Conservation-form equations of unsteady open-channel flow
Lai, C.; Baltzer, R.A.; Schaffranek, R.W.
2002-01-01
The unsteady open-channel flow equations are typically expressed in a variety of forms due to the imposition of differing assumptions, use of varied dependent variables, and inclusion of different source/sink terms. Questions often arise as to whether a particular equation set is expressed in a form consistent with the conservation-law definition. The concept of conservation form is developed to clarify the meaning mathematically. Six sets of unsteady-flow equations typically used in engineering practice are presented and their conservation properties are identified and discussed. Results of the theoretical development and analysis of the equations are substantiated in a set of numerical experiments conducted using alternate equation forms. Findings of these analytical and numerical efforts demonstrate that the choice of dependent variable is the fundamental factor determining the nature of the conservation properties of any particular equation form.
Unsteady transonic potential flow over a flexible fuselage
NASA Technical Reports Server (NTRS)
Gibbons, Michael D.
1993-01-01
A flexible fuselage capability has been developed and implemented within version 1.2 of the CAP-TSD code. The capability required adding time dependent terms to the fuselage surface boundary conditions and the fuselage surface pressure coefficient. The new capability will allow modeling the effect of a flexible fuselage on the aeroelastic stability of complex configurations. To assess the flexible fuselage capability several steady and unsteady calculations have been performed for slender fuselages with circular cross-sections. Steady surface pressures are compared with experiment at transonic flight conditions. Unsteady cross-sectional lift is compared with other analytical results at a low subsonic speed and a transonic case has been computed. The comparisons demonstrate the accuracy of the flexible fuselage modifications.
Rarefield-Flow Shuttle Aerodynamics Flight Model
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.
1994-01-01
A model of the Shuttle Orbiter rarefied-flow aerodynamic force coefficients has been derived from the ratio of flight acceleration measurements. The in-situ, low-frequency (less than 1Hz), low-level (approximately 1 x 10(exp -6) g) acceleration measurements are made during atmospheric re-entry. The experiment equipment designed and used for this task is the High Resolution Accelerometer Package (HiRAP), one of the sensor packages in the Orbiter Experiments Program. To date, 12 HiRAP re-entry mission data sets spanning a period of about 10 years have been processed. The HiRAP-derived aerodynamics model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as function of angle of attack, body-flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle of attack are also presented, along with flight-derived rarefied-flow transition bridging formulae. Comparisons are made between the aerodynamics model, data from the latest Orbiter Operational Aerodynamic Design Data Book, applicable computer simulations, and wind-tunnel data.
NASA Technical Reports Server (NTRS)
Hah, Chunill
2011-01-01
The current paper reports on an investigation of steady and unsteady flow effects of circumferential grooves casing treatment in a transonic compressor rotor. Circumferential grooves casing treatment is used mainly to increase stall margin in axial compressors with a relatively small decrease in aerodynamic efficiency. It is widely believed that flow mechanisms of circumferential grooves casing treatment near stall conditions are not yet well understood even though this treatment has been used widely in real engines. Numerical analysis based on steady Reynolds-averaged Navier-Stokes (RANS) has been the primary tool used to understand flow mechanism for circumferential grooves casing treatment. Although steady RANS explains some flow effects of circumferential grooves casing treatment, it does not calculate all the measured changes in the compressor characteristics. Therefore, design optimization of circumferential grooves with steady RANS has not been very successful. As a compressor operates toward the stall condition, the flow field becomes transient. Major sources of self-generated flow unsteadiness are shock oscillation and interaction between the passage shock and the tip leakage vortex. In the present paper, an unsteady Reynolds-averaged Navier-Stokes (URANS) approach is applied to study the effects of circumferential grooves in a transonic compressor. The results from URANS are compared with the results from RANS and measured data. The current investigation shows that there are significant unsteady flow effects on the performance of the circumferential grooves casing treatment. For the currently investigated rotor, the unsteady effects are of the same magnitude as the steady effects in terms of extending the compressor stall margin.
Nonstandard Gaits in Unsteady Hydrodynamics
NASA Astrophysics Data System (ADS)
Fairchild, Michael; Rowley, Clarence
2016-11-01
Marine biology has long inspired the design and engineering of underwater vehicles. The literature examining the kinematics and dynamics of fishes, ranging from undulatory anguilliform swimmers to oscillatory ostraciiform ones, is vast. Past numerical studies of these organisms have principally focused on gaits characterized by sinusoidal pitching and heaving motions. It is conceivable that more sophisticated gaits could perform better in some respects, for example as measured by thrust generation or by cost of transport. This work uses an unsteady boundary-element method to numerically investigate the hydrodynamics and propulsive efficiency of high-Reynolds-number swimmers whose gaits are encoded by Fourier series or by Jacobi elliptic functions. Numerical results are presented with an emphasis on identifying particular wake structures and modes of motion that are associated with optimal swimming. This work was supported by the Office of Naval Research through MURI Grant N00014-14-1-0533.
Unsteady Flows in Axial Turbomachines
NASA Technical Reports Server (NTRS)
Marble, F. E.; Rannie, W. D.
1957-01-01
Of the various unsteady flows that occur in axial turbomachines certain asymmetric disturbances, of wave length large in comparison with blade spacing, have become understood to a certain extent. These disturbances divide themselves into two categories: self-induced oscillations and force disturbances. A special type of propagating stall appears as a self-induced disturbance; an asymmetric velocity profile introduced at the compressor inlet constitutes a forced disturbance. Both phenomena have been treated from a unified theoretical point of view in which the asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady. Experimental results are in essential agreement with this theory wherever the limitations of the theory are satisfied. For the self-induced disturbances and the more interesting examples of the forced disturbances, the dominant blade characteristic is the dependence of total pressure loss, rather than the turning angle, upon the local blade inlet angle.
Aerodynamics and vortical structures in hovering fruitflies
NASA Astrophysics Data System (ADS)
Meng, Xue Guang; Sun, Mao
2015-03-01
We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.
NASA Technical Reports Server (NTRS)
Potter, J. Leith
1992-01-01
Means for relatively simple and quick procedures are examined for estimating aerodynamic coefficients of lifting reentry vehicles. The methods developed allow aerospace designers not only to evaluate the aerodynamics of specific shapes but also to optimize shapes under given constraints. The analysis was also studied of the effect of thermomolecular flow on pressures measured by an orifice near the nose of a Space Shuttle Orbiter at altitudes above 75 km. It was shown that pressures corrected for thermomolecular flow effect are in good agreement with values predicted by independent theoretical methods. An incidental product was the insight gained about the free molecular thermal accommodation coefficient applicable under 'real' conditions of high speed flow in the Earth's atmosphere. The results are presented as abstracts of referenced papers. One reference paper is presented in its entirety.
NASA Astrophysics Data System (ADS)
Cain, T.; Owen, R.; Walton, C.
2005-02-01
The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.
Advanced Aerodynamic Control Effectors
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.
1999-01-01
A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.
Aerodynamic Leidenfrost effect
NASA Astrophysics Data System (ADS)
Gauthier, Anaïs; Bird, James C.; Clanet, Christophe; Quéré, David
2016-12-01
When deposited on a plate moving quickly enough, any liquid can levitate as it does when it is volatile on a very hot solid (Leidenfrost effect). In the aerodynamic Leidenfrost situation, air gets inserted between the liquid and the moving solid, a situation that we analyze. We observe two types of entrainment. (i) The thickness of the air gap is found to increase with the plate speed, which is interpreted in the Landau-Levich-Derjaguin frame: Air is dynamically dragged along the surface and its thickness results from a balance between capillary and viscous effects. (ii) Air set in motion by the plate exerts a force on the levitating liquid. We discuss the magnitude of this aerodynamic force and show that it can be exploited to control the liquid and even to drive it against gravity.
Gomes, Lara Elena; Loss, Jefferson Fagundes
2015-01-01
The understanding of swimming propulsion is a key factor in the improvement of performance in this sport. Propulsive forces have been quantified under steady conditions since the 1970s, but actual swimming involves unsteady conditions. Thus, the purpose of the present article was to review the effects of unsteady conditions on swimming propulsion based on studies that have compared steady and unsteady conditions while exploring their methods, their limitations and their results, as well as encouraging new studies based on the findings of this systematic review. A multiple database search was performed, and only those studies that met all eligibility criteria were included. Six studies that compared steady and unsteady conditions using physical experiments or numerical simulations were selected. The selected studies verified the effects of one or more factors that characterise a condition as unsteady on the propulsive forces. Consequently, much research is necessary to understand the effect of each individual variable that characterises a condition as unsteady on swimming propulsion, as well as the effects of these variables as a whole on swimming propulsion.
NASA Technical Reports Server (NTRS)
Cole, Jennifer Hansen
2010-01-01
This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.
Three-dimensional flow structure and aerodynamic loading on a revolving wing
NASA Astrophysics Data System (ADS)
Garmann, Daniel J.; Visbal, Miguel R.; Orkwis, Paul D.
2013-03-01
A numerical study is conducted to examine the vortex structure and aerodynamic loading on a revolving wing in quiescent flow. A high-fidelity, implicit large eddy simulation technique is employed to simulate a revolving wing configuration consisting of a single, aspect-ratio-one rectangular plate extended out a distance of half a chord from the rotational axis at a fixed angle relative to the axis. Shortly after the onset of the motion, the rotating wing generates a coherent vortex system along the leading-edge. This vortex system remains attached throughout the motion for the range of Reynolds numbers explored, despite the unsteadiness and vortex breakdown observed at higher Reynolds numbers. The average and instantaneous wing loading also increases with Reynolds number. At a fixed Reynolds number, the attachment of the leading-edge vortex is also shown to be insensitive to the geometric angle of the wing. Additionally, the flow structure and forcing generated by a purely translating wing is investigated and compared with that of the revolving wing. Similar features are present at the inception of the motion, however, the two flows evolve very differently for the remainder of the maneuver. Comparisons of the revolving wing simulations with recent experimental particle image velocimetry (PIV) measurements using a new PIV-like data reduction technique applied to the computational solution show very favorable agreement. The success of the data reduction technique demonstrates the need to compare computations and experiments of differing resolutions using similar data-analysis techniques.
Compendium of NASA Langley reports on hypersonic aerodynamics
NASA Technical Reports Server (NTRS)
Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.
1987-01-01
Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.
Unsteady lifting-line theory with applications
NASA Technical Reports Server (NTRS)
Ahmadi, A. R.; Widnall, S. E.
1982-01-01
Unsteady lifting-line theory is developed for a flexible unswept wing of large aspect ratio oscillating at low frequency in inviscid incompressible flow. The theory is formulated in terms of the acceleration potential and treated by the method of matched asymptotic expansions. The wing displacements are prescribed and the pressure field, airloads, and unsteady induced downwash are obtained in closed form. Sample numerical calculations are presented. The present work identifies and resolves errors in the unsteady lifting-line theory of James and points out a limitation in that of Van Holten. Comparison of the results of Reissner's approximate unsteady lifting-surface theory with those of the present work shows favorable agreement. The present work thus provides some formal justification for Reissner's ad hoc theory. For engineering purposes, the region of applicability of the theory in the reduced frequency-aspect ratio domain is identified approximately and found to cover most cases of practical interest.
Aerodynamics of high frequency flapping wings
NASA Astrophysics Data System (ADS)
Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan
2010-11-01
We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.
Efficient Global Aerodynamic Modeling from Flight Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2012-01-01
A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.
Size effects on insect hovering aerodynamics: an integrated computational study.
Liu, H; Aono, H
2009-03-01
Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.
Aerodynamics and interaction noise of streamlined bodies in nonuniform flows
NASA Astrophysics Data System (ADS)
Atassi, H. M.; Logue, M. M.
2011-08-01
The unsteady aerodynamics and interaction noise of streamlined bodies are modeled in terms of the Euler equations linearized about a nonuniform flow. The validity of the inviscid approach is supported by recent LES simulations of an airfoil in a gust indicating that for not-too-small impinging excitations, the interaction process is dominated by inertia forces. Results in the present paper are focused on the aerodynamics and interaction noise of a turbofan modeled as an annular cascade. The model accounts for the inflow-fan-duct coupling and the high frequency of the interaction process. Two high-order numerical algorithms are developed with body-fitted coordinate system. One algorithm uses a primitive variable formulation, the other uses an efficient velocity splitting algorithm and is suitable for broadband computations. Analytical and numerical analysis of disturbances in rotational flows is developed and exact inflow/outflow boundary conditions are derived, yielding directly the radiated acoustics. The upstream disturbances evolve in rotational flows and as a result the aerodynamic-aeroacoustic response of the annular cascade depends on the initial conditions location. Computational results show that the three-dimensional geometry of the annular cascade, the mean flow swirl, and the blade geometry have strong influence on the blade sectional lift and the radiated sound. These results also show the inadequacy of using the popular linear cascade model particularly for realistic fan geometry and inflow conditions.
Analysis of aerodynamic noise generated from inclined circular cylinder
NASA Astrophysics Data System (ADS)
Haramoto, Yasutake; Yasuda, Shouji; Matsuzaki, Kazuyoshi; Munekata, Mizue; Ohba, Hideki
2000-06-01
Making clear the generation mechanism of fluid dynamic noise is essential to reduce noise deriving from turbomachinery. The analysis of the aerodynamic noise generated from circular cylinder is carried out numerically and experimentally in a low noise wind tunnel. In this study, aerodynamic sound radiated from a circular cylinder in uniform flow is predicted numerically by the following two step method. First, the three-dimensional unsteady incompressible Navier-Stokes equation is solved using the high order accurate upwind scheme. Next, the sound pressure level at the observed point is calculated from the fluctuating surface pressure on the cylinder, based on modified Lighthill-Curl’s equation. It is worth to note that the noise generated from the model is reduced rapidly when it is inclined against the mean flow. In other words, the peak level of the radiated noise decreases rapidly with inclination of the circular cylinder. The simulated SPL for the inclined circular cylinder is compared with the measured value, and good agreement is obtained for the peak spectrum frequency of the sound pressure level and tendency of noise reduction. So we expect that the change of flow structures makes reduction of the aerodynamic noise from the inclined models.
Unsteady thrust measurement techniques for pulse detonation engines
NASA Astrophysics Data System (ADS)
Joshi, Dibesh Dhoj
unsteady thrust generated by the PDE at higher operating frequencies of 50 and 100 Hz. The actual thrust estimated experimentally, semi-empirically and numerically were expressed in the form of specific impulse for comparison. The results obtained via semi-empirical method and finite element analysis were found to be in good agreement with each other. However, the results obtained experimentally were slightly lower than the other two. Finally, the results obtained in this research work were also compared against the findings reported in literature. The comparison gave satisfying results. The developed general approach used to recover actual thrust generated by a PDE was also used to recover actual aerodynamic drag experienced by a blunt nose cone model in a nominal Mach 8-9 flow. The limited validation against modified Newtonian theory was provided as the results obtained after applying the developed approach matched the predicted values.
Experimental Verification of Buffet Calculation Procedure Using Unsteady PSP
NASA Technical Reports Server (NTRS)
Panda, Jayanta
2016-01-01
Typically a limited number of dynamic pressure sensors are employed to determine the unsteady aerodynamic forces on large, slender aerospace structures. The estimated forces are known to be very sensitive to the number of the dynamic pressure sensors and the details of the integration scheme. This report describes a robust calculation procedure, based on frequency-specific correlation lengths, that is found to produce good estimation of fluctuating forces from a few dynamic pressure sensors. The validation test was conducted on a flat panel, placed on the floor of a wind tunnel, and was subjected to vortex shedding from a rectangular bluff-body. The panel was coated with fast response Pressure Sensitive Paint (PSP), which allowed time-resolved measurements of unsteady pressure fluctuations on a dense grid of spatial points. The first part of the report describes the detail procedure used to analyze the high-speed, PSP camera images. The procedure includes steps to reduce contamination by electronic shot noise, correction for spatial non-uniformities, and lamp brightness variation, and finally conversion of fluctuating light intensity to fluctuating pressure. The latter involved applying calibration constants from a few dynamic pressure sensors placed at selective points on the plate. Excellent comparison in the spectra, coherence and phase, calculated via PSP and dynamic pressure sensors validated the PSP processing steps. The second part of the report describes the buffet validation process, for which the first step was to use pressure histories from all PSP points to determine the "true" force fluctuations. In the next step only a selected number of pixels were chosen as "virtual sensors" and a correlation-length based buffet calculation procedure was applied to determine "modeled" force fluctuations. By progressively decreasing the number of virtual sensors it was observed that the present calculation procedure was able to make a close estimate of the "true
Unsteady Flow Over Aerofoils with Separation.
1982-10-01
7~-Ai22 978 UNSTEADY FLOWd OVER AEROFOILS WI1TH SEPARATION(U) / IMPERIAL COLL OF SCIENCE AND TECHNOLOGY LONDON (ENGLAND) DEPT OF AERONAUTICS J N...NATIOWAL "AUJ OF STAN~DSI- 163 -A (Grant Number AFOSR 81-0050) SUNSTEADY FLOW OVER AEROFOILS WITH SEPARATION J.M.R. Graham Department of Aeronautics ...distribution unlimited. 18. Supplementary Notes To be submitted in similar form to the Aeronautical Quarterly (Journal). 19. Key Words AEROFOIL UNSTEADY
NASA Technical Reports Server (NTRS)
Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian
2015-01-01
NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.
Oscillating cascade aerodynamics at large mean incidence
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; King, Aaron J.; El-Aini, Yehia M.; Capece, Vincent R.
1996-01-01
The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 deg and 10 deg; the Reynolds number was 0.9 x l0(exp 6). For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.
NASA Technical Reports Server (NTRS)
Hanson, D. B.
1991-01-01
A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.
Aerodynamic control with passively pitching wings
NASA Astrophysics Data System (ADS)
Gravish, Nick; Wood, Robert
Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.
NASA Astrophysics Data System (ADS)
Zhou, Di; Lu, Zhiliang; Guo, Tongqing; Shen, Ennan
2016-06-01
In this paper, the research on two types of unsteady flow problems in turbomachinery including blade flutter and rotor-stator interaction is made by means of numerical simulation. For the former, the energy method is often used to predict the aeroelastic stability by calculating the aerodynamic work per vibration cycle. The inter-blade phase angle (IBPA) is an important parameter in computation and may have significant effects on aeroelastic behavior. For the latter, the numbers of blades in each row are usually not equal and the unsteady rotor-stator interactions could be strong. An effective way to perform multi-row calculations is the domain scaling method (DSM). These two cases share a common point that the computational domain has to be extended to multi passages (MP) considering their respective features. The present work is aimed at modeling these two issues with the developed MP model. Computational fluid dynamics (CFD) technique is applied to resolve the unsteady Reynolds-averaged Navier-Stokes (RANS) equations and simulate the flow fields. With the parallel technique, the additional time cost due to modeling more passages can be largely decreased. Results are presented on two test cases including a vibrating rotor blade and a turbine stage.
Steady and unsteady transonic small disturbance analysis of realistic aircraft configurations
NASA Technical Reports Server (NTRS)
Batina, John T.; Seidel, David A.; Bennett, Robert M.; Cunningham, Herbert J.; Bland, Samuel R.
1989-01-01
A transonic unsteady aerodynamic and aeroelastic code called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) was developed for application to realistic aircraft configurations. It permits the calculation of steady and unsteady flows about complete aircraft configurations for aeroelastic analysis of the flutter critical transonic speed range. The CAP-TSD code uses a time accurate approximate factorization algorithm for solution of the unsteady transonic small disturbance potential equation. An overview is given of the CAP-TSD code development effort along with recent algorithm modifications which are listed and discussed. Calculations are presented for several configurations including the General Dynamics 1/9th scale F-16C aircraft model to evaluate the algorithm and hence the reliability of the CAP-TSD code in general. Calculations are also presented for a flutter analysis of a 45 deg sweptback wing which agree well with the experimental data. Descriptions are presented of the CAP-TSD code and algorithm details along with results and comparisons which demonstrate the stability, accuracy, efficiency, and utility of CAP-TSD.
Forced unsteady deceleration of a turbulent boundary layer from a temporal perspective
NASA Technical Reports Server (NTRS)
Brereton, G. J.
1992-01-01
The behavior of a turbulent boundary layer which has been subjected to a local ramp-like deceleration in the external velocity field, which leads to forced separation, has been studied experimentally. The data of this study are re-interpreted in light of more recent findings concerning the temporal nature of boundary layer turbulence in the presence of forced unsteady shear. In particular, the robustness of the near-wall turbulent motions to organized deformation is recognized. Their resilence during unsteady shearing action promotes continued efficient turbulent mixing and rapid redistribution of turbulent kinetic energy during forced transients. In aerodynamic problems, the rapid nature of the adjustment of the turbulence field to a new temporal boundary condition necessitates equally rapid remedial measures to be taken if means of control/prevention of forced unsteady separation are to be deployed to maximum effect. This requirement suggests exploration of the use of simple, real-time statistical forecasting techniques, based upon time-series analysis of easily-measurable features of the flow, to help assure timely deployment of mechanisms of boundary-layer control. This paper focuses upon the nature of turbulence in boundary layers undergoing forced deceleration which would lead to separation. A preliminary form of a forecasting model is presented and evaluated. Using observations of the previous two large eddies passing a detector, it forecasts the behavior of the future large eddy rather well.
Forced unsteady deceleration of a turbulent boundary layer from a temporal perspective
NASA Astrophysics Data System (ADS)
Brereton, G. J.
1992-03-01
The behavior of a turbulent boundary layer which has been subjected to a local ramp-like deceleration in the external velocity field, which leads to forced separation, has been studied experimentally. The data of this study are re-interpreted in light of more recent findings concerning the temporal nature of boundary layer turbulence in the presence of forced unsteady shear. In particular, the robustness of the near-wall turbulent motions to organized deformation is recognized. Their resilence during unsteady shearing action promotes continued efficient turbulent mixing and rapid redistribution of turbulent kinetic energy during forced transients. In aerodynamic problems, the rapid nature of the adjustment of the turbulence field to a new temporal boundary condition necessitates equally rapid remedial measures to be taken if means of control/prevention of forced unsteady separation are to be deployed to maximum effect. This requirement suggests exploration of the use of simple, real-time statistical forecasting techniques, based upon time-series analysis of easily-measurable features of the flow, to help assure timely deployment of mechanisms of boundary-layer control. This paper focuses upon the nature of turbulence in boundary layers undergoing forced deceleration which would lead to separation. A preliminary form of a forecasting model is presented and evaluated. Using observations of the previous two large eddies passing a detector, it forecasts the behavior of the future large eddy rather well.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.
2002-01-01
The rapid increase in available computational power over the last decade has enabled higher resolution flow simulations and more widespread use of unstructured grid methods for complex geometries. While much of this effort has been focused on steady-state calculations in the aerodynamics community, the need to accurately predict off-design conditions, which may involve substantial amounts of flow separation, points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily require several orders of magnitude more computational effort than a corresponding steady-state simulation. For this reason, techniques for improving the efficiency of unsteady flow simulations are required in order to make such calculations feasible in the foreseeable future. The purpose of this work is to investigate possible reductions in computer time due to the choice of an efficient time-integration scheme from a series of schemes differing in the order of time-accuracy, and by the use of more efficient techniques to solve the nonlinear equations which arise while using implicit time-integration schemes. This investigation is carried out in the context of a two-dimensional unstructured mesh laminar Navier-Stokes solver.
Investigation into the aerodynamics of swashplateless rotors using CFD-CSD analysis
NASA Astrophysics Data System (ADS)
Jose, Arun Isaac
This study obtains a better understanding of the aerodynamics of integrated trailing edge flap (TEF) based swashplateless rotors. Both two dimensional (2D) and three dimensional (3D) analysis/simulations are performed to understand the behavior of TEF airfoils and integrated TEF based swashplateless rotors. The 2D aerodynamics of TEF airfoils is explored in detail. A semi-empirical approach is developed for modeling drag for TEF airfoils in steady flows based on baseline airfoil drag data alone. Extensive 2D CFD simulations are performed for a wide range of flow conditions in order to better understand various aspects of the aerodynamics of TEF airfoils. The trends in the airloads (lift, drag, pitching moment, hinge moment) for TEF airfoils are obtained. Nonlinear phenomena such as flow separation, shocks and unsteady vortex shedding are investigated, and the flow conditions and trends associated with them are studied. The effect of airfoil properties such as thickness and overhang are studied. Various approaches are used to model the effect of gaps at the leading edge of the flap. An approximate "gap averaging" technique is developed, which provides good predictions of steady airloads at almost the same computational cost as a simulation where the gap is not modeled. Direct modeling of the gap is done by using a patched mesh in the gap region. To solve problems (such as poor grid quality/control and poor convergence) that are associated with the patched mesh simulations, an alternate approach using overlapping meshes is used. It is seen that for TEF airfoils, the presence of gaps adversely affects the effectiveness of the flap. The change in airloads is not negligible, especially at the relatively higher flap deflections associated with swashplateless TEF rotors. Finally, uncoupled and coupled computational fluid/structural dynamics (CFD-CSD) simulations of conventional (baseline) and swashplateless TEF rotors is performed in hovering flight. The CFD-CSD code is