Sample records for unsupervised morpheme segmentation

  1. Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes

    PubMed Central

    Nakamura, Tomoaki; Nagai, Takayuki; Mochihashi, Daichi; Kobayashi, Ichiro; Asoh, Hideki; Kaneko, Masahide

    2017-01-01

    Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM) that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM), the emission distributions of which are Gaussian processes (GPs). Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods. PMID:29311889

  2. Orthographic Transparency Enhances Morphological Segmentation in Children Reading Hebrew Words.

    PubMed

    Haddad, Laurice; Weiss, Yael; Katzir, Tami; Bitan, Tali

    2017-01-01

    Morphological processing of derived words develops simultaneously with reading acquisition. However, the reader's engagement in morphological segmentation may depend on the language morphological richness and orthographic transparency, and the readers' reading skills. The current study tested the common idea that morphological segmentation is enhanced in non-transparent orthographies to compensate for the absence of phonological information. Hebrew's rich morphology and the dual version of the Hebrew script (with and without diacritic marks) provides an opportunity to study the interaction of orthographic transparency and morphological segmentation on the development of reading skills in a within-language design. Hebrew speaking 2nd ( N = 27) and 5th ( N = 29) grade children read aloud 96 noun words. Half of the words were simple mono-morphemic words and half were bi-morphemic derivations composed of a productive root and a morphemic pattern. In each list half of the words were presented in the transparent version of the script (with diacritic marks), and half in the non-transparent version (without diacritic marks). Our results show that in both groups, derived bi-morphemic words were identified more accurately than mono-morphemic words, but only for the transparent, pointed, script. For the un-pointed script the reverse was found, namely, that bi-morphemic words were read less accurately than mono-morphemic words, especially in second grade. Second grade children also read mono-morphemic words faster than bi-morphemic words. Finally, correlations with a standardized measure of morphological awareness were found only for second grade children, and only in bi-morphemic words. These results, showing greater morphological effects in second grade compared to fifth grade children suggest that for children raised in a language with a rich morphology, common and easily segmented morphemic units may be more beneficial for younger compared to older readers. Moreover, in contrast to the common hypothesis, our results show that morphemic segmentation does not compensate for the missing phonological information in a non-transparent orthography, but rather that morphological segmentation is most beneficial in the highly transparent script. These results are consistent with the idea that morphological and phonological segmentation processes occur simultaneously and do not constitute alternative pathways to visual word recognition.

  3. Orthographic Transparency Enhances Morphological Segmentation in Children Reading Hebrew Words

    PubMed Central

    Haddad, Laurice; Weiss, Yael; Katzir, Tami; Bitan, Tali

    2018-01-01

    Morphological processing of derived words develops simultaneously with reading acquisition. However, the reader’s engagement in morphological segmentation may depend on the language morphological richness and orthographic transparency, and the readers’ reading skills. The current study tested the common idea that morphological segmentation is enhanced in non-transparent orthographies to compensate for the absence of phonological information. Hebrew’s rich morphology and the dual version of the Hebrew script (with and without diacritic marks) provides an opportunity to study the interaction of orthographic transparency and morphological segmentation on the development of reading skills in a within-language design. Hebrew speaking 2nd (N = 27) and 5th (N = 29) grade children read aloud 96 noun words. Half of the words were simple mono-morphemic words and half were bi-morphemic derivations composed of a productive root and a morphemic pattern. In each list half of the words were presented in the transparent version of the script (with diacritic marks), and half in the non-transparent version (without diacritic marks). Our results show that in both groups, derived bi-morphemic words were identified more accurately than mono-morphemic words, but only for the transparent, pointed, script. For the un-pointed script the reverse was found, namely, that bi-morphemic words were read less accurately than mono-morphemic words, especially in second grade. Second grade children also read mono-morphemic words faster than bi-morphemic words. Finally, correlations with a standardized measure of morphological awareness were found only for second grade children, and only in bi-morphemic words. These results, showing greater morphological effects in second grade compared to fifth grade children suggest that for children raised in a language with a rich morphology, common and easily segmented morphemic units may be more beneficial for younger compared to older readers. Moreover, in contrast to the common hypothesis, our results show that morphemic segmentation does not compensate for the missing phonological information in a non-transparent orthography, but rather that morphological segmentation is most beneficial in the highly transparent script. These results are consistent with the idea that morphological and phonological segmentation processes occur simultaneously and do not constitute alternative pathways to visual word recognition. PMID:29403413

  4. Why segmentation matters: experience-driven segmentation errors impair “morpheme” learning

    PubMed Central

    Finn, Amy S.; Hudson Kam, Carla L.

    2015-01-01

    We ask whether an adult learner’s knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners’ ability to segment words into their component morphemes and learn phonologically triggered variation of morphemes. We find that learning is impaired when words and component morphemes are structured to conflict with a learner’s native-language phonotactic system, but not when native-language phonotactics do not conflict with morpheme boundaries in the artificial language. A learner’s native-language knowledge can therefore have a cascading impact affecting word segmentation and the morphological variation that relies upon proper segmentation. These results show that getting word segmentation right early in learning is deeply important for learning other aspects of language, even those (morphology) that are known to pose a great difficulty for adult language learners. PMID:25730305

  5. Why Segmentation Matters: Experience-Driven Segmentation Errors Impair "Morpheme" Learning

    ERIC Educational Resources Information Center

    Finn, Amy S.; Hudson Kam, Carla L.

    2015-01-01

    We ask whether an adult learner's knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners' ability to segment words into their component morphemes and learn phonologically…

  6. Modeling the Control of Phonological Encoding in Bilingual Speakers

    ERIC Educational Resources Information Center

    Roelofs, Ardi; Verhoef, Kim

    2006-01-01

    Phonological encoding is the process by which speakers retrieve phonemic segments for morphemes from memory and use the segments to assemble phonological representations of words to be spoken. When conversing in one language, bilingual speakers have to resist the temptation of encoding word forms using the phonological rules and representations of…

  7. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain.

    PubMed

    Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.

  8. Why do children pay more attention to grammatical morphemes at the ends of sentences?

    PubMed

    Sundara, Megha

    2018-05-01

    Children pay more attention to the beginnings and ends of sentences rather than the middle. In natural speech, ends of sentences are prosodically and segmentally enhanced; they are also privileged by sensory and recall advantages. We contrasted whether acoustic enhancement or sensory and recall-related advantages are necessary and sufficient for the salience of grammatical morphemes at the ends of sentences. We measured 22-month-olds' listening times to grammatical and ungrammatical sentences with third person singular -s. Crucially, by cross-splicing the speech stimuli, acoustic enhancement and sensory and recall advantages were fully crossed. Only children presented with the verb in sentence-final position, a position with sensory and recall advantages, distinguished between the grammatical and ungrammatical sentences. Thus, sensory and recall advantages alone were necessary and sufficient to make grammatical morphemes at ends of sentences salient. These general processing constraints privilege ends of sentences over middles, regardless of the acoustic enhancement.

  9. Segmentation of fluorescence microscopy cell images using unsupervised mining.

    PubMed

    Du, Xian; Dua, Sumeet

    2010-05-28

    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

  10. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    PubMed Central

    Tang, Yunwei; Jing, Linhai; Ding, Haifeng

    2017-01-01

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods. PMID:29064416

  11. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification.

    PubMed

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V; Robles, Montserrat; Aparici, F; Martí-Bonmatí, L; García-Gómez, Juan M

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation.

  12. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.

  13. War and peace: morphemes and full forms in a noninteractive activation parallel dual-route model.

    PubMed

    Baayen, H; Schreuder, R

    This article introduces a computational tool for modeling the process of morphological segmentation in visual and auditory word recognition in the framework of a parallel dual-route model. Copyright 1999 Academic Press.

  14. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery.

    PubMed

    Belgiu, Mariana; Dr Guţ, Lucian

    2014-10-01

    Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing 'optimal segmentation'. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.

  15. Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

    PubMed Central

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V.; Robles, Montserrat; Aparici, F.; Martí-Bonmatí, L.; García-Gómez, Juan M.

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. PMID:25978453

  16. An Improved Unsupervised Image Segmentation Evaluation Approach Based on - and Over-Segmentation Aware

    NASA Astrophysics Data System (ADS)

    Su, Tengfei

    2018-04-01

    In this paper, an unsupervised evaluation scheme for remote sensing image segmentation is developed. Based on a method called under- and over-segmentation aware (UOA), the new approach is improved by overcoming the defect in the part of estimating over-segmentation error. Two cases of such error-prone defect are listed, and edge strength is employed to devise a solution to this issue. Two subsets of high resolution remote sensing images were used to test the proposed algorithm, and the experimental results indicate its superior performance, which is attributed to its improved OSE detection model.

  17. What a Nonnative Speaker of English Needs to Learn through Listening.

    ERIC Educational Resources Information Center

    Bohlken, Robert; Macias, Lori

    Teaching nonnative speakers of English to listen for the discriminating nuances of the language is an important but neglected aspect of American English language training. A discriminating listening process follows a sequence of distinguishing phonemes, supra segmental phonemes, morphemes, and syntax. Certain phonetic differences can be noted…

  18. Metric Learning for Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  19. SAR image segmentation using skeleton-based fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Cao, Yun Yi; Chen, Yan Qiu

    2003-06-01

    SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.

  20. Metric Learning to Enhance Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Castano, Rebecca; Bue, Brian; Gilmore, Martha S.

    2013-01-01

    Unsupervised hyperspectral image segmentation can reveal spatial trends that show the physical structure of the scene to an analyst. They highlight borders and reveal areas of homogeneity and change. Segmentations are independently helpful for object recognition, and assist with automated production of symbolic maps. Additionally, a good segmentation can dramatically reduce the number of effective spectra in an image, enabling analyses that would otherwise be computationally prohibitive. Specifically, using an over-segmentation of the image instead of individual pixels can reduce noise and potentially improve the results of statistical post-analysis. In this innovation, a metric learning approach is presented to improve the performance of unsupervised hyperspectral image segmentation. The prototype demonstrations attempt a superpixel segmentation in which the image is conservatively over-segmented; that is, the single surface features may be split into multiple segments, but each individual segment, or superpixel, is ensured to have homogenous mineralogy.

  1. Discrimination in lexical decision

    PubMed Central

    Feldman, Laurie Beth; Ramscar, Michael; Hendrix, Peter; Baayen, R. Harald

    2017-01-01

    In this study we present a novel set of discrimination-based indicators of language processing derived from Naive Discriminative Learning (ndl) theory. We compare the effectiveness of these new measures with classical lexical-distributional measures—in particular, frequency counts and form similarity measures—to predict lexical decision latencies when a complete morphological segmentation of masked primes is or is not possible. Data derive from a re-analysis of a large subset of decision latencies from the English Lexicon Project, as well as from the results of two new masked priming studies. Results demonstrate the superiority of discrimination-based predictors over lexical-distributional predictors alone, across both the simple and primed lexical decision tasks. Comparable priming after masked corner and cornea type primes, across two experiments, fails to support early obligatory segmentation into morphemes as predicted by the morpho-orthographic account of reading. Results fit well with ndl theory, which, in conformity with Word and Paradigm theory, rejects the morpheme as a relevant unit of analysis. Furthermore, results indicate that readers with greater spelling proficiency and larger vocabularies make better use of orthographic priors and handle lexical competition more efficiently. PMID:28235015

  2. Discrimination in lexical decision.

    PubMed

    Milin, Petar; Feldman, Laurie Beth; Ramscar, Michael; Hendrix, Peter; Baayen, R Harald

    2017-01-01

    In this study we present a novel set of discrimination-based indicators of language processing derived from Naive Discriminative Learning (ndl) theory. We compare the effectiveness of these new measures with classical lexical-distributional measures-in particular, frequency counts and form similarity measures-to predict lexical decision latencies when a complete morphological segmentation of masked primes is or is not possible. Data derive from a re-analysis of a large subset of decision latencies from the English Lexicon Project, as well as from the results of two new masked priming studies. Results demonstrate the superiority of discrimination-based predictors over lexical-distributional predictors alone, across both the simple and primed lexical decision tasks. Comparable priming after masked corner and cornea type primes, across two experiments, fails to support early obligatory segmentation into morphemes as predicted by the morpho-orthographic account of reading. Results fit well with ndl theory, which, in conformity with Word and Paradigm theory, rejects the morpheme as a relevant unit of analysis. Furthermore, results indicate that readers with greater spelling proficiency and larger vocabularies make better use of orthographic priors and handle lexical competition more efficiently.

  3. Why Do Children Pay More Attention to Grammatical Morphemes at the Ends of Sentences?

    ERIC Educational Resources Information Center

    Sundara, Megha

    2018-01-01

    Children pay more attention to the beginnings and ends of sentences rather than the middle. In natural speech, ends of sentences are prosodically and segmentally enhanced; they are also privileged by sensory and recall advantages. We contrasted whether acoustic enhancement or sensory and recall-related advantages are necessary and sufficient for…

  4. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  5. Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation.

    PubMed

    Blessy, S A Praylin Selva; Sulochana, C Helen

    2015-01-01

    Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.

  6. Unsupervised fuzzy segmentation of 3D magnetic resonance brain images

    NASA Astrophysics Data System (ADS)

    Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.

    1993-07-01

    Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.

  7. An unsupervised video foreground co-localization and segmentation process by incorporating motion cues and frame features

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    Video foreground segmentation is one of the key problems in video processing. In this paper, we proposed a novel and fully unsupervised approach for foreground object co-localization and segmentation of unconstrained videos. We firstly compute both the actual edges and motion boundaries of the video frames, and then align them by their HOG feature maps. Then, by filling the occlusions generated by the aligned edges, we obtained more precise masks about the foreground object. Such motion-based masks could be derived as the motion-based likelihood. Moreover, the color-base likelihood is adopted for the segmentation process. Experimental Results show that our approach outperforms most of the State-of-the-art algorithms.

  8. Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle

    PubMed Central

    Valentinitsch, Alexander; Karampinos, Dimitrios C.; Alizai, Hamza; Subburaj, Karupppasamy; Kumar, Deepak; Link, Thomas M.; Majumdar, Sharmila

    2012-01-01

    Purpose To introduce and validate an automated unsupervised multi-parametric method for segmentation of the subcutaneous fat and muscle regions in order to determine subcutaneous adipose tissue (SAT) and intermuscular adipose tissue (IMAT) areas based on data from a quantitative chemical shift-based water-fat separation approach. Materials and Methods Unsupervised standard k-means clustering was employed to define sets of similar features (k = 2) within the whole multi-modal image after the water-fat separation. The automated image processing chain was composed of three primary stages including tissue, muscle and bone region segmentation. The algorithm was applied on calf and thigh datasets to compute SAT and IMAT areas and was compared to a manual segmentation. Results The IMAT area using the automatic segmentation had excellent agreement with the IMAT area using the manual segmentation for all the cases in the thigh (R2: 0.96) and for cases with up to moderate IMAT area in the calf (R2: 0.92). The group with the highest grade of muscle fat infiltration in the calf had the highest error in the inner SAT contour calculation. Conclusion The proposed multi-parametric segmentation approach combined with quantitative water-fat imaging provides an accurate and reliable method for an automated calculation of the SAT and IMAT areas reducing considerably the total post-processing time. PMID:23097409

  9. Unsupervised segmentation of lungs from chest radiographs

    NASA Astrophysics Data System (ADS)

    Ghosh, Payel; Antani, Sameer K.; Long, L. Rodney; Thoma, George R.

    2012-03-01

    This paper describes our preliminary investigations for deriving and characterizing coarse-level textural regions present in the lung field on chest radiographs using unsupervised grow-cut (UGC), a cellular automaton based unsupervised segmentation technique. The segmentation has been performed on a publicly available data set of chest radiographs. The algorithm is useful for this application because it automatically converges to a natural segmentation of the image from random seed points using low-level image features such as pixel intensity values and texture features. Our goal is to develop a portable screening system for early detection of lung diseases for use in remote areas in developing countries. This involves developing automated algorithms for screening x-rays as normal/abnormal with a high degree of sensitivity, and identifying lung disease patterns on chest x-rays. Automatically deriving and quantitatively characterizing abnormal regions present in the lung field is the first step toward this goal. Therefore, region-based features such as geometrical and pixel-value measurements were derived from the segmented lung fields. In the future, feature selection and classification will be performed to identify pathological conditions such as pulmonary tuberculosis on chest radiographs. Shape-based features will also be incorporated to account for occlusions of the lung field and by other anatomical structures such as the heart and diaphragm.

  10. The cascaded moving k-means and fuzzy c-means clustering algorithms for unsupervised segmentation of malaria images

    NASA Astrophysics Data System (ADS)

    Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida

    2015-05-01

    Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.

  11. Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging.

    PubMed

    Lebenberg, Jessica; Lalande, Alain; Clarysse, Patrick; Buvat, Irene; Casta, Christopher; Cochet, Alexandre; Constantinidès, Constantin; Cousty, Jean; de Cesare, Alain; Jehan-Besson, Stephanie; Lefort, Muriel; Najman, Laurent; Roullot, Elodie; Sarry, Laurent; Tilmant, Christophe; Frouin, Frederique; Garreau, Mireille

    2015-01-01

    This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert.

  12. Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging

    PubMed Central

    Lebenberg, Jessica; Lalande, Alain; Clarysse, Patrick; Buvat, Irene; Casta, Christopher; Cochet, Alexandre; Constantinidès, Constantin; Cousty, Jean; de Cesare, Alain; Jehan-Besson, Stephanie; Lefort, Muriel; Najman, Laurent; Roullot, Elodie; Sarry, Laurent; Tilmant, Christophe

    2015-01-01

    This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert. PMID:26287691

  13. Supervised segmentation of microelectrode recording artifacts using power spectral density.

    PubMed

    Bakstein, Eduard; Schneider, Jakub; Sieger, Tomas; Novak, Daniel; Wild, Jiri; Jech, Robert

    2015-08-01

    Appropriate detection of clean signal segments in extracellular microelectrode recordings (MER) is vital for maintaining high signal-to-noise ratio in MER studies. Existing alternatives to manual signal inspection are based on unsupervised change-point detection. We present a method of supervised MER artifact classification, based on power spectral density (PSD) and evaluate its performance on a database of 95 labelled MER signals. The proposed method yielded test-set accuracy of 90%, which was close to the accuracy of annotation (94%). The unsupervised methods achieved accuracy of about 77% on both training and testing data.

  14. Evaluating unsupervised methods to size and classify suspended particles using digital in-line holography

    USGS Publications Warehouse

    Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.

    2015-01-01

    Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.

  15. An Explanation for the Morpheme Acquisition Order of Second Language Learners

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane E.

    1976-01-01

    Reports on a study designed to yield data that would suggest a reason for the reported morpheme sequence. A significant correlation was found between the common morpheme difficulty order of the learners and the frequency of occurrence of these morphemes in adult native-speaker speech. (Author/RM)

  16. Unsupervised segmentation with dynamical units.

    PubMed

    Rao, A Ravishankar; Cecchi, Guillermo A; Peck, Charles C; Kozloski, James R

    2008-01-01

    In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the components of each input object that most contribute to its classification. The network consists of amplitude-phase units that can synchronize their dynamics, so that separation is determined by the amplitude of units in an output layer, and segmentation by phase similarity between input and output layer units. Learning is unsupervised and based on a Hebbian update, and the architecture is very simple. Moreover, efficient segmentation can be achieved even when there is considerable superposition of the inputs. The network dynamics are derived from an objective function that rewards sparse coding in the generalized amplitude-phase variables. We argue that this objective function can provide a possible formal interpretation of the binding problem and that the implementation of the network architecture and dynamics is biologically plausible.

  17. Latent morpho-semantic analysis : multilingual information retrieval with character n-grams and mutual information.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, Brett William; Chew, Peter A.; Abdelali, Ahmed

    We describe an entirely statistics-based, unsupervised, and language-independent approach to multilingual information retrieval, which we call Latent Morpho-Semantic Analysis (LMSA). LMSA overcomes some of the shortcomings of related previous approaches such as Latent Semantic Analysis (LSA). LMSA has an important theoretical advantage over LSA: it combines well-known techniques in a novel way to break the terms of LSA down into units which correspond more closely to morphemes. Thus, it has a particular appeal for use with morphologically complex languages such as Arabic. We show through empirical results that the theoretical advantages of LMSA can translate into significant gains in precisionmore » in multilingual information retrieval tests. These gains are not matched either when a standard stemmer is used with LSA, or when terms are indiscriminately broken down into n-grams.« less

  18. Validation of a free software for unsupervised assessment of abdominal fat in MRI.

    PubMed

    Maddalo, Michele; Zorza, Ivan; Zubani, Stefano; Nocivelli, Giorgio; Calandra, Giulio; Soldini, Pierantonio; Mascaro, Lorella; Maroldi, Roberto

    2017-05-01

    To demonstrate the accuracy of an unsupervised (fully automated) software for fat segmentation in magnetic resonance imaging. The proposed software is a freeware solution developed in ImageJ that enables the quantification of metabolically different adipose tissues in large cohort studies. The lumbar part of the abdomen (19cm in craniocaudal direction, centered in L3) of eleven healthy volunteers (age range: 21-46years, BMI range: 21.7-31.6kg/m 2 ) was examined in a breath hold on expiration with a GE T1 Dixon sequence. Single-slice and volumetric data were considered for each subject. The results of the visceral and subcutaneous adipose tissue assessments obtained by the unsupervised software were compared to supervised segmentations of reference. The associated statistical analysis included Pearson correlations, Bland-Altman plots and volumetric differences (VD % ). Values calculated by the unsupervised software significantly correlated with corresponding supervised segmentations of reference for both subcutaneous adipose tissue - SAT (R=0.9996, p<0.001) and visceral adipose tissue - VAT (R=0.995, p<0.001). Bland-Altman plots showed the absence of systematic errors and a limited spread of the differences. In the single-slice analysis, VD % were (1.6±2.9)% for SAT and (4.9±6.9)% for VAT. In the volumetric analysis, VD % were (1.3±0.9)% for SAT and (2.9±2.7)% for VAT. The developed software is capable of segmenting the metabolically different adipose tissues with a high degree of accuracy. This free add-on software for ImageJ can easily have a widespread and enable large-scale population studies regarding the adipose tissue and its related diseases. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Morpho-Semantic Processing in Word Recognition: Evidence from Balanced and Biased Ambiguous Morphemes

    ERIC Educational Resources Information Center

    Tsang, Yiu-Kei; Chen, Hsuan-Chih

    2013-01-01

    The role of morphemic meaning in Chinese word recognition was examined with the masked and unmasked priming paradigms. Target words contained ambiguous morphemes biased toward the dominant or the subordinate meanings. Prime words either contained the same ambiguous morphemes in the subordinate interpretations or were unrelated to the targets. In…

  20. Colour image segmentation using unsupervised clustering technique for acute leukemia images

    NASA Astrophysics Data System (ADS)

    Halim, N. H. Abd; Mashor, M. Y.; Nasir, A. S. Abdul; Mustafa, N.; Hassan, R.

    2015-05-01

    Colour image segmentation has becoming more popular for computer vision due to its important process in most medical analysis tasks. This paper proposes comparison between different colour components of RGB(red, green, blue) and HSI (hue, saturation, intensity) colour models that will be used in order to segment the acute leukemia images. First, partial contrast stretching is applied on leukemia images to increase the visual aspect of the blast cells. Then, an unsupervised moving k-means clustering algorithm is applied on the various colour components of RGB and HSI colour models for the purpose of segmentation of blast cells from the red blood cells and background regions in leukemia image. Different colour components of RGB and HSI colour models have been analyzed in order to identify the colour component that can give the good segmentation performance. The segmented images are then processed using median filter and region growing technique to reduce noise and smooth the images. The results show that segmentation using saturation component of HSI colour model has proven to be the best in segmenting nucleus of the blast cells in acute leukemia image as compared to the other colour components of RGB and HSI colour models.

  1. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    PubMed

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  2. Unsupervised object segmentation with a hybrid graph model (HGM).

    PubMed

    Liu, Guangcan; Lin, Zhouchen; Yu, Yong; Tang, Xiaoou

    2010-05-01

    In this work, we address the problem of performing class-specific unsupervised object segmentation, i.e., automatic segmentation without annotated training images. Object segmentation can be regarded as a special data clustering problem where both class-specific information and local texture/color similarities have to be considered. To this end, we propose a hybrid graph model (HGM) that can make effective use of both symmetric and asymmetric relationship among samples. The vertices of a hybrid graph represent the samples and are connected by directed edges and/or undirected ones, which represent the asymmetric and/or symmetric relationship between them, respectively. When applied to object segmentation, vertices are superpixels, the asymmetric relationship is the conditional dependence of occurrence, and the symmetric relationship is the color/texture similarity. By combining the Markov chain formed by the directed subgraph and the minimal cut of the undirected subgraph, the object boundaries can be determined for each image. Using the HGM, we can conveniently achieve simultaneous segmentation and recognition by integrating both top-down and bottom-up information into a unified process. Experiments on 42 object classes (9,415 images in total) show promising results.

  3. Clustering approach for unsupervised segmentation of malarial Plasmodium vivax parasite

    NASA Astrophysics Data System (ADS)

    Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Mohamed, Zeehaida

    2017-10-01

    Malaria is a global health problem, particularly in Africa and south Asia where it causes countless deaths and morbidity cases. Efficient control and prompt of this disease require early detection and accurate diagnosis due to the large number of cases reported yearly. To achieve this aim, this paper proposes an image segmentation approach via unsupervised pixel segmentation of malaria parasite to automate the diagnosis of malaria. In this study, a modified clustering algorithm namely enhanced k-means (EKM) clustering, is proposed for malaria image segmentation. In the proposed EKM clustering, the concept of variance and a new version of transferring process for clustered members are used to assist the assignation of data to the proper centre during the process of clustering, so that good segmented malaria image can be generated. The effectiveness of the proposed EKM clustering has been analyzed qualitatively and quantitatively by comparing this algorithm with two popular image segmentation techniques namely Otsu's thresholding and k-means clustering. The experimental results show that the proposed EKM clustering has successfully segmented 100 malaria images of P. vivax species with segmentation accuracy, sensitivity and specificity of 99.20%, 87.53% and 99.58%, respectively. Hence, the proposed EKM clustering can be considered as an image segmentation tool for segmenting the malaria images.

  4. Do morphemes matter when reading compound words with transposed letters? Evidence from eye-tracking and event-related potentials

    DOE PAGES

    Stites, Mallory C.; Federmeier, Kara D.; Christianson, Kiel

    2016-08-06

    We investigate the online processing consequences of encountering compound words with transposed letters (TLs), in order to determine if cross-morpheme TLs are more disruptive to reading than those within a single morpheme, as would be predicted by accounts of obligatory morpho-orthopgrahic decomposition. Two measures of online processing, eye movements and event-related potentials (ERPs), were collected in separate experiments. Participants read sentences containing correctly spelled compound words (cupcake), or compounds with TLs occurring either across morphemes (cucpake) or within one morpheme (cupacke). Results showed that between- and within-morpheme transpositions produced equal processing costs in both measures, in the form of longermore » reading times (Experiment 1) and a late posterior positivity (Experiment 2) that did not differ between conditions. Our findings converge to suggest that within- and between-morpheme TLs are equally disruptive to recognition, providing evidence against obligatory morpho-orthographic processing and in favour of whole-word access of English compound words during sentence reading.« less

  5. Do Morphemes Matter when Reading Compound Words with Transposed Letters? Evidence from Eye-Tracking and Event-Related Potentials

    PubMed Central

    Stites, Mallory C.; Federmeier, Kara D.; Christianson, Kiel

    2017-01-01

    The current study investigates the online processing consequences of encountering compound words with transposed letters (TLs), to determine if TLs that cross morpheme boundaries are more disruptive to reading than those within a single morpheme, as would be predicted by accounts of obligatory morpho-orthopgrahic decomposition. Two measures of online processing, eye movements and event-related potentials (ERPs), were collected in separate experiments. Participants read sentences containing correctly spelled compound words (cupcake), or compounds with TLs occurring either across morpheme boundaries (cucpake) or within one morpheme (cupacke). Results showed that between- and within-morpheme transpositions produced equal processing costs in both measures, in the form of longer reading times (Experiment 1) and a late posterior positivity (Experiment 2) that did not differ between conditions. Findings converge to suggest that within- and between-morpheme TLs are equally disruptive to recognition, providing evidence against obligatory morpho-orthographic processing and in favor of whole-word access of English compound words during sentence reading. PMID:28791313

  6. Do morphemes matter when reading compound words with transposed letters? Evidence from eye-tracking and event-related potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stites, Mallory C.; Federmeier, Kara D.; Christianson, Kiel

    We investigate the online processing consequences of encountering compound words with transposed letters (TLs), in order to determine if cross-morpheme TLs are more disruptive to reading than those within a single morpheme, as would be predicted by accounts of obligatory morpho-orthopgrahic decomposition. Two measures of online processing, eye movements and event-related potentials (ERPs), were collected in separate experiments. Participants read sentences containing correctly spelled compound words (cupcake), or compounds with TLs occurring either across morphemes (cucpake) or within one morpheme (cupacke). Results showed that between- and within-morpheme transpositions produced equal processing costs in both measures, in the form of longermore » reading times (Experiment 1) and a late posterior positivity (Experiment 2) that did not differ between conditions. Our findings converge to suggest that within- and between-morpheme TLs are equally disruptive to recognition, providing evidence against obligatory morpho-orthographic processing and in favour of whole-word access of English compound words during sentence reading.« less

  7. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.

    PubMed

    Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S

    2016-01-01

    Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  8. BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana

    2006-01-01

    Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.

  9. The Role of Sentence Position, Allomorph, and Morpheme Type on Accurate Use of s-Related Morphemes by Children Who Are Hard of Hearing

    ERIC Educational Resources Information Center

    Koehlinger, Keegan; Van Horne, Amanda Owen; Oleson, Jacob; McCreery, Ryan; Moeller, Mary Pat

    2015-01-01

    Purpose: Production accuracy of s-related morphemes was examined in 3-year-olds with mild-to-severe hearing loss, focusing on perceptibility, articulation, and input frequency. Method: Morphemes with /s/, /z/, and /?z/ as allomorphs (plural, possessive, third-person singular -s, and auxiliary and copula "is") were analyzed from language…

  10. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    PubMed

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Rough Set Based Splitting Criterion for Binary Decision Tree Classifiers

    DTIC Science & Technology

    2006-09-26

    Alata O. Fernandez-Maloigne C., and Ferrie J.C. (2001). Unsupervised Algorithm for the Segmentation of Three-Dimensional Magnetic Resonance Brain ...instinctual and learned responses in the brain , causing it to make decisions based on patterns in the stimuli. Using this deceptively simple process...2001. [2] Bohn C. (1997). An Incremental Unsupervised Learning Scheme for Function Approximation. In: Proceedings of the 1997 IEEE International

  12. Automatic segmentation of triaxial accelerometry signals for falls risk estimation.

    PubMed

    Redmond, Stephen J; Scalzi, Maria Elena; Narayanan, Michael R; Lord, Stephen R; Cerutti, Sergio; Lovell, Nigel H

    2010-01-01

    Falls-related injuries in the elderly population represent one of the most significant contributors to rising health care expense in developed countries. In recent years, falls detection technologies have become more common. However, very few have adopted a preferable falls prevention strategy through unsupervised monitoring in the free-living environment. The basis of the monitoring described herein was a self-administered directed-routine (DR) comprising three separate tests measured by way of a waist-mounted triaxial accelerometer. Using features extracted from the manually segmented signals, a reasonable estimate of falls risk can be achieved. We describe here a series of algorithms for automatically segmenting these recordings, enabling the use of the DR assessment in the unsupervised and home environments. The accelerometry signals, from 68 subjects performing the DR, were manually annotated by an observer. Using the proposed signal segmentation routines, an good agreement was observed between the manually annotated markers and the automatically estimated values. However, a decrease in the correlation with falls risk to 0.73 was observed using the automatic segmentation, compared to 0.81 when using markers manually placed by an observer.

  13. Unsupervised segmentation of low-contrast multichannel images: discrimination of tissue components in microscopic images of unstained specimens

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica; Popović Hadžija, Marijana; Hadžija, Mirko; Aralica, Gorana

    2015-06-01

    Low-contrast images, such as color microscopic images of unstained histological specimens, are composed of objects with highly correlated spectral profiles. Such images are very hard to segment. Here, we present a method that nonlinearly maps low-contrast color image into an image with an increased number of non-physical channels and a decreased correlation between spectral profiles. The method is a proof-of-concept validated on the unsupervised segmentation of color images of unstained specimens, in which case the tissue components appear colorless when viewed under the light microscope. Specimens of human hepatocellular carcinoma, human liver with metastasis from colon and gastric cancer and mouse fatty liver were used for validation. The average correlation between the spectral profiles of the tissue components was greater than 0.9985, and the worst case correlation was greater than 0.9997. The proposed method can potentially be applied to the segmentation of low-contrast multichannel images with high spatial resolution that arise in other imaging modalities.

  14. Inflectional and derivational morphological spelling abilities of children with Specific Language Impairment

    PubMed Central

    Critten, Sarah; Connelly, Vincent; Dockrell, Julie E.; Walter, Kirsty

    2014-01-01

    Children with Specific Language Impairment (SLI) are known to have difficulties with spelling but the factors that underpin these difficulties, are a matter of debate. The present study investigated the impact of oral language and literacy on the bound morpheme spelling abilities of children with SLI. Thirty-three children with SLI (9–10 years) and two control groups, one matched for chronological age (CA) and one for language and spelling age (LA) (aged 6–8 years) were given dictated spelling tasks of 24 words containing inflectional morphemes and 18 words containing derivational morphemes. There were no significant differences between the SLI group and their LA matches in accuracy or error patterns for inflectional morphemes. By contrast when spelling derivational morphemes the SLI group was less accurate and made proportionately more omissions and phonologically implausible errors than both control groups. Spelling accuracy was associated with phonological awareness and reading; reading performance significantly predicted the ability to spell both inflectional and derivational morphemes. The particular difficulties experienced by the children with SLI for derivational morphemes are considered in relation to reading and oral language. PMID:25221533

  15. Inflectional and derivational morphological spelling abilities of children with Specific Language Impairment.

    PubMed

    Critten, Sarah; Connelly, Vincent; Dockrell, Julie E; Walter, Kirsty

    2014-01-01

    Children with Specific Language Impairment (SLI) are known to have difficulties with spelling but the factors that underpin these difficulties, are a matter of debate. The present study investigated the impact of oral language and literacy on the bound morpheme spelling abilities of children with SLI. Thirty-three children with SLI (9-10 years) and two control groups, one matched for chronological age (CA) and one for language and spelling age (LA) (aged 6-8 years) were given dictated spelling tasks of 24 words containing inflectional morphemes and 18 words containing derivational morphemes. There were no significant differences between the SLI group and their LA matches in accuracy or error patterns for inflectional morphemes. By contrast when spelling derivational morphemes the SLI group was less accurate and made proportionately more omissions and phonologically implausible errors than both control groups. Spelling accuracy was associated with phonological awareness and reading; reading performance significantly predicted the ability to spell both inflectional and derivational morphemes. The particular difficulties experienced by the children with SLI for derivational morphemes are considered in relation to reading and oral language.

  16. Unsupervised color image segmentation using a lattice algebra clustering technique

    NASA Astrophysics Data System (ADS)

    Urcid, Gonzalo; Ritter, Gerhard X.

    2011-08-01

    In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.

  17. Rational Variety Mapping for Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images of Unstained Specimen

    PubMed Central

    Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej

    2011-01-01

    A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. PMID:21708116

  18. Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation

    PubMed Central

    Maji, Pradipta; Roy, Shaswati

    2015-01-01

    Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961

  19. Variation in the pattern of omissions and substitutions of grammatical morphemes in the spontaneous speech of so-called agrammatic patients.

    PubMed

    Miceli, G; Silveri, M C; Romani, C; Caramazza, A

    1989-04-01

    We describe the patterns of omissions (and substitutions) of freestanding grammatical morphemes and the patterns of substitutions of bound grammatical morphemes in 20 so-called agrammatic patients. Extreme variation was observed in the patterns of omissions and substitutions of grammatical morphemes, both in terms of the distribution of errors for different grammatical morphemes as well as in terms of the distribution of omissions versus substitutions. Results are discussed in the context of current debates concerning the possibility of a theoretically motivated distinction between the clinical categories of agrammatism and paragrammatism and, more generally, concerning the theoretical usefulness of any clinical category. The conclusion is reached that the observed heterogeneity in the production of grammatical morphemes among putatively agrammatic patients renders the clinical category of agrammatism, and by extension all other clinical categories from the classical classification scheme (e.g., Broca's aphasia, Wernicke's aphasia, and so forth) to more recent classificatory attempts (e.g., surface dyslexia, deep dysgraphia, and so forth), theoretically useless.

  20. Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation.

    PubMed

    Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira

    2013-04-01

    Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers.

  1. Seeing Stems Everywhere: Position-Independent Identification of Stem Morphemes

    ERIC Educational Resources Information Center

    Crepaldi, Davide; Rastle, Kathleen; Davis, Colin J.; Lupker, Stephen J.

    2013-01-01

    There is broad consensus that printed complex words are identified on the basis of their constituent morphemes. This fact raises the issue of how the word identification system codes for morpheme position, hence allowing it to distinguish between words like "overhang" and "hangover", and to recognize that "preheat" is…

  2. A single-layer network unsupervised feature learning method for white matter hyperintensity segmentation

    NASA Astrophysics Data System (ADS)

    Vijverberg, Koen; Ghafoorian, Mohsen; van Uden, Inge W. M.; de Leeuw, Frank-Erik; Platel, Bram; Heskes, Tom

    2016-03-01

    Cerebral small vessel disease (SVD) is a disorder frequently found among the old people and is associated with deterioration in cognitive performance, parkinsonism, motor and mood impairments. White matter hyperintensities (WMH) as well as lacunes, microbleeds and subcortical brain atrophy are part of the spectrum of image findings, related to SVD. Accurate segmentation of WMHs is important for prognosis and diagnosis of multiple neurological disorders such as MS and SVD. Almost all of the published (semi-)automated WMH detection models employ multiple complex hand-crafted features, which require in-depth domain knowledge. In this paper we propose to apply a single-layer network unsupervised feature learning (USFL) method to avoid hand-crafted features, but rather to automatically learn a more efficient set of features. Experimental results show that a computer aided detection system with a USFL system outperforms a hand-crafted approach. Moreover, since the two feature sets have complementary properties, a hybrid system that makes use of both hand-crafted and unsupervised learned features, shows a significant performance boost compared to each system separately, getting close to the performance of an independent human expert.

  3. Unsupervised background-constrained tank segmentation of infrared images in complex background based on the Otsu method.

    PubMed

    Zhou, Yulong; Gao, Min; Fang, Dan; Zhang, Baoquan

    2016-01-01

    In an effort to implement fast and effective tank segmentation from infrared images in complex background, the threshold of the maximum between-class variance method (i.e., the Otsu method) is analyzed and the working mechanism of the Otsu method is discussed. Subsequently, a fast and effective method for tank segmentation from infrared images in complex background is proposed based on the Otsu method via constraining the complex background of the image. Considering the complexity of background, the original image is firstly divided into three classes of target region, middle background and lower background via maximizing the sum of their between-class variances. Then, the unsupervised background constraint is implemented based on the within-class variance of target region and hence the original image can be simplified. Finally, the Otsu method is applied to simplified image for threshold selection. Experimental results on a variety of tank infrared images (880 × 480 pixels) in complex background demonstrate that the proposed method enjoys better segmentation performance and even could be comparative with the manual segmentation in segmented results. In addition, its average running time is only 9.22 ms, implying the new method with good performance in real time processing.

  4. Image segmentation using fuzzy LVQ clustering networks

    NASA Technical Reports Server (NTRS)

    Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.

    1992-01-01

    In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.

  5. Rational variety mapping for contrast-enhanced nonlinear unsupervised segmentation of multispectral images of unstained specimen.

    PubMed

    Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej

    2011-08-01

    A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. The Use of Grammatical Morphemes by Mandarin-Speaking Children with High Functioning Autism

    ERIC Educational Resources Information Center

    Zhou, Peng; Crain, Stephen; Gao, Liqun; Tang, Ye; Jia, Meixiang

    2015-01-01

    The present study investigated the production of grammatical morphemes by Mandarin-speaking children with high functioning autism. Previous research found that a subgroup of English-speaking children with autism exhibit deficits in the use of grammatical morphemes that mark tense. In order to see whether this impairment in grammatical morphology…

  7. Derivational Morphology and Base Morpheme Frequency

    ERIC Educational Resources Information Center

    Ford, M. A.; Davis, M. H.; Marslen-Wilson, W. D.

    2010-01-01

    Morpheme frequency effects for derived words (e.g. an influence of the frequency of the base "dark" on responses to "darkness") have been interpreted as evidence of morphemic representation. However, it has been suggested that most derived words would not show these effects if family size (a type frequency count claimed to reflect semantic…

  8. The Awareness of Morphemic Knowledge for Young Adults' Vocabulary Learning

    ERIC Educational Resources Information Center

    Varatharajoo, Chandrakala; Asmawi, Adelina Binti; Abdallah, Nabeel; Abedalaziz, Mohammad

    2015-01-01

    The study explored the awareness of morphemic knowledge among young adult learners in the ESL context. Morphological Relatedness Test and Morphological Structure Test (adapted from Curinga, 2014) were two important tools used to assess the students' morphemic knowledge in this study. The tests measured the students' ability to reflect and…

  9. Automatic identification of the number of food items in a meal using clustering techniques based on the monitoring of swallowing and chewing.

    PubMed

    Lopez-Meyer, Paulo; Schuckers, Stephanie; Makeyev, Oleksandr; Fontana, Juan M; Sazonov, Edward

    2012-09-01

    The number of distinct foods consumed in a meal is of significant clinical concern in the study of obesity and other eating disorders. This paper proposes the use of information contained in chewing and swallowing sequences for meal segmentation by food types. Data collected from experiments of 17 volunteers were analyzed using two different clustering techniques. First, an unsupervised clustering technique, Affinity Propagation (AP), was used to automatically identify the number of segments within a meal. Second, performance of the unsupervised AP method was compared to a supervised learning approach based on Agglomerative Hierarchical Clustering (AHC). While the AP method was able to obtain 90% accuracy in predicting the number of food items, the AHC achieved an accuracy >95%. Experimental results suggest that the proposed models of automatic meal segmentation may be utilized as part of an integral application for objective Monitoring of Ingestive Behavior in free living conditions.

  10. Sequence and System in the Acquisition of Tense and Agreement

    ERIC Educational Resources Information Center

    Rispoli, Matthew; Hadley, Pamela A.; Holt, Janet K.

    2012-01-01

    Purpose: The relatedness of tense morphemes in the language of children younger than 3 years of age is a matter of controversy. Generativist accounts predict that the morphemes will be related, whereas usage-based accounts predict the absence of relationships. This study focused on the increasing productivity of the 5 morphemes in the tense…

  11. Effects of GO FASTER on Morpheme Definition Fluency for High School Students with High-Incidence Disabilities

    ERIC Educational Resources Information Center

    Fishley, Katelyn M.; Konrad, Moira; Hessler, Terri; Keesey, Susan

    2012-01-01

    Although vocabulary plays an important role in literacy and content instruction, there is a paucity of research identifying effective methods for teaching vocabulary. One promising strategy is morphemic analysis, which involves breaking words into morphemes, the smallest meaningful parts of words, and teaching students the meanings of those parts.…

  12. Arabic Language Modeling with Stem-Derived Morphemes for Automatic Speech Recognition

    ERIC Educational Resources Information Center

    Heintz, Ilana

    2010-01-01

    The goal of this dissertation is to introduce a method for deriving morphemes from Arabic words using stem patterns, a feature of Arabic morphology. The motivations are three-fold: modeling with morphemes rather than words should help address the out-of-vocabulary problem; working with stem patterns should prove to be a cross-dialectally valid…

  13. Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation

    PubMed Central

    Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira

    2013-01-01

    Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers. PMID:24098863

  14. Towards an unsupervised device for the diagnosis of childhood pneumonia in low resource settings: automatic segmentation of respiratory sounds.

    PubMed

    Sola, J; Braun, F; Muntane, E; Verjus, C; Bertschi, M; Hugon, F; Manzano, S; Benissa, M; Gervaix, A

    2016-08-01

    Pneumonia remains the worldwide leading cause of children mortality under the age of five, with every year 1.4 million deaths. Unfortunately, in low resource settings, very limited diagnostic support aids are provided to point-of-care practitioners. Current UNICEF/WHO case management algorithm relies on the use of a chronometer to manually count breath rates on pediatric patients: there is thus a major need for more sophisticated tools to diagnose pneumonia that increase sensitivity and specificity of breath-rate-based algorithms. These tools should be low cost, and adapted to practitioners with limited training. In this work, a novel concept of unsupervised tool for the diagnosis of childhood pneumonia is presented. The concept relies on the automated analysis of respiratory sounds as recorded by a point-of-care electronic stethoscope. By identifying the presence of auscultation sounds at different chest locations, this diagnostic tool is intended to estimate a pneumonia likelihood score. After presenting the overall architecture of an algorithm to estimate pneumonia scores, the importance of a robust unsupervised method to identify inspiratory and expiratory phases of a respiratory cycle is highlighted. Based on data from an on-going study involving pediatric pneumonia patients, a first algorithm to segment respiratory sounds is suggested. The unsupervised algorithm relies on a Mel-frequency filter bank, a two-step Gaussian Mixture Model (GMM) description of data, and a final Hidden Markov Model (HMM) interpretation of inspiratory-expiratory sequences. Finally, illustrative results on first recruited patients are provided. The presented algorithm opens the doors to a new family of unsupervised respiratory sound analyzers that could improve future versions of case management algorithms for the diagnosis of pneumonia in low-resources settings.

  15. Grammatical morphology in school-age children with and without language impairment: a discriminant function analysis.

    PubMed

    Moyle, Maura Jones; Karasinski, Courtney; Ellis Weismer, Susan; Gorman, Brenda K

    2011-10-01

    The purpose of this study was to test Bedore and Leonard's (1998) proposal that a verb morpheme composite may hold promise as a clinical marker for specific language impairment (SLI) in English speakers and serve as an accurate basis for the classification of children with and without SLI beyond the preschool level. The language transcripts of 50 school-age children with SLI (M(age) = 7;9 [years;months]) and 50 age-matched typically developing peers (M(age) = 7;9) were analyzed. Following the Bedore and Leonard (1998) procedure, 3 variables were measured: a finite verb morpheme composite, a noun morpheme composite, and mean length of utterance in morphemes (MLU(m)). Overall findings indicated that neither grammatical morpheme composite alone adequately discriminated the groups at this developmental level. However, combining the verb and noun grammatical morpheme composite measures with MLU(m) resulted in good discriminant accuracy in classifying subgroups of the youngest children with and without SLI in the school-age sample. Verb morphology alone is not a useful clinical marker of SLI in school-age children. Potential explanations for these findings and ideas for future research are discussed.

  16. The Role of Sentence Position, Allomorph, and Morpheme Type on Accurate Use of s-Related Morphemes by Children Who Are Hard of Hearing

    PubMed Central

    Koehlinger, Keegan; Oleson, Jacob; McCreery, Ryan; Moeller, Mary Pat

    2015-01-01

    Purpose Production accuracy of s-related morphemes was examined in 3-year-olds with mild-to-severe hearing loss, focusing on perceptibility, articulation, and input frequency. Method Morphemes with /s/, /z/, and /ɪz/ as allomorphs (plural, possessive, third-person singular –s, and auxiliary and copula “is”) were analyzed from language samples gathered from 51 children (ages: 2;10 [years;months] to 3;8) who are hard of hearing (HH), all of whom used amplification. Articulation was assessed via the Goldman-Fristoe Test of Articulation–Second Edition, and monomorphemic word final /s/ and /z/ production. Hearing was measured via better ear pure tone average, unaided Speech Intelligibility Index, and aided sensation level of speech at 4 kHz. Results Unlike results reported for children with normal hearing, the group of children who are HH correctly produced the /ɪz/ allomorph more than /s/ and /z/ allomorphs. Relative accuracy levels for morphemes and sentence positions paralleled those of children with normal hearing. The 4-kHz sensation level scores (but not the better ear pure tone average or Speech Intelligibility Index), the Goldman-Fristoe Test of Articulation–Second Edition, and word final s/z use all predicted accuracy. Conclusions Both better hearing and higher articulation scores are associated with improved morpheme production, and better aided audibility in the high frequencies and word final production of s/z are particularly critical for morpheme acquisition in children who are HH. PMID:25650750

  17. Morpheme-based Reading and Spelling in Italian Children with Developmental Dyslexia and Dysorthography.

    PubMed

    Angelelli, Paola; Marinelli, Chiara Valeria; De Salvatore, Marinella; Burani, Cristina

    2017-11-01

    Italian sixth graders, with and without dyslexia, read pseudowords and low-frequency words that include high-frequency morphemes better than stimuli not including any morpheme. The present study assessed whether morphemes affect (1) younger children, with and without dyslexia; (2) spelling as well as reading; and (3) words with low-frequency morphemes. Two groups of third graders (16 children with dyslexia and dysorthography and 16 age-matched typically developing children) read aloud and spelt to dictation pseudowords and words. Pseudowords included (1) root + suffix in not existing combinations (e.g. lampadista, formed by lampad-, 'lamp', and -ista, '-ist') and (2) orthographic sequences not corresponding to any Italian root or suffix (e.g. livonosto). Words had low frequency and included: (1) root + suffix, both of high frequency (e.g. bestiale, 'beastly'); (2) root + suffix, both of low frequency (e.g. asprigno, 'rather sour'); and (3) simple words (e.g. insulso, 'vapid'). Children with dyslexia and dysorthography were less accurate than typically developing children. Root + suffix pseudowords were read and spelt more accurately than non-morphological pseudowords by both groups. Morphologically complex (root + suffix) words were read and spelt better than simple words. However, task interacted with morphology: reading was not facilitated by low-frequency morphemes. We conclude that children acquiring a transparent orthography exploit morpheme-based reading and spelling to face difficulties in processing long unfamiliar stimuli. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Automated tissue segmentation of MR brain images in the presence of white matter lesions.

    PubMed

    Valverde, Sergi; Oliver, Arnau; Roura, Eloy; González-Villà, Sandra; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Rovira, Àlex; Lladó, Xavier

    2017-01-01

    Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings has led to the development of a wide number of automated tissue segmentation methods. However, white matter lesions are known to reduce the performance of automated tissue segmentation methods, which requires manual annotation of the lesions and refilling them before segmentation, which is tedious and time-consuming. Here, we propose a new, fully automated T1-w/FLAIR tissue segmentation approach designed to deal with images in the presence of WM lesions. This approach integrates a robust partial volume tissue segmentation with WM outlier rejection and filling, combining intensity and probabilistic and morphological prior maps. We evaluate the performance of this method on the MRBrainS13 tissue segmentation challenge database, which contains images with vascular WM lesions, and also on a set of Multiple Sclerosis (MS) patient images. On both databases, we validate the performance of our method with other state-of-the-art techniques. On the MRBrainS13 data, the presented approach was at the time of submission the best ranked unsupervised intensity model method of the challenge (7th position) and clearly outperformed the other unsupervised pipelines such as FAST and SPM12. On MS data, the differences in tissue segmentation between the images segmented with our method and the same images where manual expert annotations were used to refill lesions on T1-w images before segmentation were lower or similar to the best state-of-the-art pipeline incorporating automated lesion segmentation and filling. Our results show that the proposed pipeline achieved very competitive results on both vascular and MS lesions. A public version of this approach is available to download for the neuro-imaging community. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    NASA Astrophysics Data System (ADS)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  20. Bayesian Fusion of Color and Texture Segmentations

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto

    2000-01-01

    In many applications one would like to use information from both color and texture features in order to segment an image. We propose a novel technique to combine "soft" segmentations computed for two or more features independently. Our algorithm merges models according to a mean entropy criterion, and allows to choose the appropriate number of classes for the final grouping. This technique also allows to improve the quality of supervised classification based on one feature (e.g. color) by merging information from unsupervised segmentation based on another feature (e.g., texture.)

  1. The Importance of Morphemic Awareness to Reading Achievement and the Potential of Signing Morphemes to Supporting Reading Development

    ERIC Educational Resources Information Center

    Nielsen, Diane Corcoran; Luetke, Barbara; Stryker, Deborah S.

    2011-01-01

    The ability to access and understand the meaning of multi-morphemic words is essential for age-appropriate literacy growth as well as for achievement in other participants, such as science and social studies, which are so print-dependent. This paper provides a theoretical basis for focusing on the morphology of English when teaching students who…

  2. Unsupervised tattoo segmentation combining bottom-up and top-down cues

    NASA Astrophysics Data System (ADS)

    Allen, Josef D.; Zhao, Nan; Yuan, Jiangbo; Liu, Xiuwen

    2011-06-01

    Tattoo segmentation is challenging due to the complexity and large variance in tattoo structures. We have developed a segmentation algorithm for finding tattoos in an image. Our basic idea is split-merge: split each tattoo image into clusters through a bottom-up process, learn to merge the clusters containing skin and then distinguish tattoo from the other skin via top-down prior in the image itself. Tattoo segmentation with unknown number of clusters is transferred to a figureground segmentation. We have applied our segmentation algorithm on a tattoo dataset and the results have shown that our tattoo segmentation system is efficient and suitable for further tattoo classification and retrieval purpose.

  3. La perception des morphemes grammaticaux chez les aphasiques (The Perception of Grammatical Morphemes in Aphasics). Montreal Working Papers in Linguistics, Vol. 2.

    ERIC Educational Resources Information Center

    Goodenough, Cheryl; And Others

    Studies have indicated that agrammatical aphasics tend to better realize morphemes with a high level of semantic value. A study sought to examine the effect of the variation of the information content of the article on its comprehension by the aphasic. The appropriate and the significant nature of the function words "the" and "a" were varied with…

  4. On the unsupervised analysis of domain-specific Chinese texts

    PubMed Central

    Deng, Ke; Bol, Peter K.; Li, Kate J.; Liu, Jun S.

    2016-01-01

    With the growing availability of digitized text data both publicly and privately, there is a great need for effective computational tools to automatically extract information from texts. Because the Chinese language differs most significantly from alphabet-based languages in not specifying word boundaries, most existing Chinese text-mining methods require a prespecified vocabulary and/or a large relevant training corpus, which may not be available in some applications. We introduce an unsupervised method, top-down word discovery and segmentation (TopWORDS), for simultaneously discovering and segmenting words and phrases from large volumes of unstructured Chinese texts, and propose ways to order discovered words and conduct higher-level context analyses. TopWORDS is particularly useful for mining online and domain-specific texts where the underlying vocabulary is unknown or the texts of interest differ significantly from available training corpora. When outputs from TopWORDS are fed into context analysis tools such as topic modeling, word embedding, and association pattern finding, the results are as good as or better than that from using outputs of a supervised segmentation method. PMID:27185919

  5. Graph-based unsupervised segmentation algorithm for cultured neuronal networks' structure characterization and modeling.

    PubMed

    de Santos-Sierra, Daniel; Sendiña-Nadal, Irene; Leyva, Inmaculada; Almendral, Juan A; Ayali, Amir; Anava, Sarit; Sánchez-Ávila, Carmen; Boccaletti, Stefano

    2015-06-01

    Large scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our non invasive measures entitle us to perform a longitudinal analysis during the maturation of a single culture. Such an analysis furnishes the way of individuating the main physical processes underlying the self-organization of the neurons' ensemble into a complex network, and drives the formulation of a phenomenological model yet able to describe qualitatively the overall scenario observed during the culture growth. © 2014 International Society for Advancement of Cytometry.

  6. Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization.

    PubMed

    Mahmood, Qaiser; Chodorowski, Artur; Mehnert, Andrew; Gellermann, Johanna; Persson, Mikael

    2015-08-01

    In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmentation approach (HSA)-Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)-FMRIB's automated segmentation tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20% bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3% noise and synthetic EEG (generated for a prescribed source). The source localization accuracy was determined in terms of localization error and relative error of potential. The experimental results demonstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and suggest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem.

  7. An Unsupervised Approach for Extraction of Blood Vessels from Fundus Images.

    PubMed

    Dash, Jyotiprava; Bhoi, Nilamani

    2018-04-26

    Pathological disorders may happen due to small changes in retinal blood vessels which may later turn into blindness. Hence, the accurate segmentation of blood vessels is becoming a challenging task for pathological analysis. This paper offers an unsupervised recursive method for extraction of blood vessels from ophthalmoscope images. First, a vessel-enhanced image is generated with the help of gamma correction and contrast-limited adaptive histogram equalization (CLAHE). Next, the vessels are extracted iteratively by applying an adaptive thresholding technique. At last, a final vessel segmented image is produced by applying a morphological cleaning operation. Evaluations are accompanied on the publicly available digital retinal images for vessel extraction (DRIVE) and Child Heart And Health Study in England (CHASE_DB1) databases using nine different measurements. The proposed method achieves average accuracies of 0.957 and 0.952 on DRIVE and CHASE_DB1 databases respectively.

  8. The Training of Morphological Decomposition in Word Processing and Its Effects on Literacy Skills.

    PubMed

    Bar-Kochva, Irit; Hasselhorn, Marcus

    2017-01-01

    This study set out to examine the effects of a morpheme-based training on reading and spelling in fifth and sixth graders ( N = 47), who present poor literacy skills and speak German as a second language. A computerized training, consisting of a visual lexical decision task (comprising 2,880 items, presented in 12 sessions), was designed to encourage fast morphological analysis in word processing. The children were divided between two groups: the one underwent a morpheme-based training, in which word-stems of inflections and derivations were presented for a limited duration, while their pre- and suffixes remained on screen until response. Another group received a control training consisting of the same task, except that the duration of presentation of a non-morphological unit was restricted. In a Word Disruption Task, participants read words under three conditions: morphological separation (with symbols separating between the words' morphemes), non-morphological separation (with symbols separating between non-morphological units of words), and no-separation (with symbols presented at the beginning and end of each word). The group receiving the morpheme-based program improved more than the control group in terms of word reading fluency in the morphological condition. The former group also presented similar word reading fluency after training in the morphological condition and in the no-separation condition, thereby suggesting that the morpheme-based training contributed to the integration of morphological decomposition into the process of word recognition. At the same time, both groups similarly improved in other measures of word reading fluency. With regard to spelling, the morpheme-based training group showed a larger improvement than the control group in spelling of trained items, and a unique improvement in spelling of untrained items (untrained word-stems integrated into trained pre- and suffixes). The results further suggest some contribution of the morpheme-based training to performance in a standardized spelling task. The morpheme-based training did not, however, show any unique effect on comprehension. These results suggest that the morpheme-based training is effective in enhancing some basic literacy skill in the population examined, i.e., morphological analysis in word processing and the access to orthographic representations in spelling, with no specific effects on reading fluency and comprehension.

  9. The Training of Morphological Decomposition in Word Processing and Its Effects on Literacy Skills

    PubMed Central

    Bar-Kochva, Irit; Hasselhorn, Marcus

    2017-01-01

    This study set out to examine the effects of a morpheme-based training on reading and spelling in fifth and sixth graders (N = 47), who present poor literacy skills and speak German as a second language. A computerized training, consisting of a visual lexical decision task (comprising 2,880 items, presented in 12 sessions), was designed to encourage fast morphological analysis in word processing. The children were divided between two groups: the one underwent a morpheme-based training, in which word-stems of inflections and derivations were presented for a limited duration, while their pre- and suffixes remained on screen until response. Another group received a control training consisting of the same task, except that the duration of presentation of a non-morphological unit was restricted. In a Word Disruption Task, participants read words under three conditions: morphological separation (with symbols separating between the words’ morphemes), non-morphological separation (with symbols separating between non-morphological units of words), and no-separation (with symbols presented at the beginning and end of each word). The group receiving the morpheme-based program improved more than the control group in terms of word reading fluency in the morphological condition. The former group also presented similar word reading fluency after training in the morphological condition and in the no-separation condition, thereby suggesting that the morpheme-based training contributed to the integration of morphological decomposition into the process of word recognition. At the same time, both groups similarly improved in other measures of word reading fluency. With regard to spelling, the morpheme-based training group showed a larger improvement than the control group in spelling of trained items, and a unique improvement in spelling of untrained items (untrained word-stems integrated into trained pre- and suffixes). The results further suggest some contribution of the morpheme-based training to performance in a standardized spelling task. The morpheme-based training did not, however, show any unique effect on comprehension. These results suggest that the morpheme-based training is effective in enhancing some basic literacy skill in the population examined, i.e., morphological analysis in word processing and the access to orthographic representations in spelling, with no specific effects on reading fluency and comprehension. PMID:29163245

  10. Unsupervised segmentation of H and E breast images

    NASA Astrophysics Data System (ADS)

    Hope, Tyna A.; Yaffe, Martin J.

    2017-03-01

    Heterogeneity of ductal carcinoma in situ (DCIS) continues to be an important topic. Combining biomarker and hematoxylin and eosin (HE) morphology information may provide more insights than either alone. We are working towards a computer-based identification and description system for DCIS. As part of the system we are developing a region of interest finder for further processing, such as identifying DCIS and other HE based measures. The segmentation algorithm is designed to be tolerant of variability in staining and require no user interaction. To achieve stain variation tolerance we use unsupervised learning and iteratively interrogate the image for information. Using simple rules (e.g., "hematoxylin stains nuclei") and iteratively assessing the resultant objects (small hematoxylin stained objects are lymphocytes), the system builds up a knowledge base so that it is not dependent upon manual annotations. The system starts with image resolution-based assumptions but these are replaced by knowledge gained. The algorithm pipeline is designed to find the simplest items first (segment stains), then interesting subclasses and objects (stroma, lymphocytes), and builds information until it is possible to segment blobs that are normal, DCIS, and the range of benign glands. Once the blobs are found, features can be obtained and DCIS detected. In this work we present the early segmentation results with stains where hematoxylin ranges from blue dominant to red dominant in RGB space.

  11. Novel Morpheme Learning in Monolingual and Bilingual Children

    PubMed Central

    Gross, Megan; Sheena, Enanna; Roman, Rachel

    2017-01-01

    Purpose The purpose of the present study was to examine the utility of a novel morpheme learning task for indexing typical language abilities in children characterized by diverse language backgrounds. Method Three groups of 5- to 6-year-old children were tested: monolingual speakers of English, native speakers of Spanish who also spoke English (Spanish-L1 bilinguals), and native speakers of English who also spoke Spanish (English-L1 bilinguals). All children were taught a new derivational morpheme /ku/ marking part–whole distinction in conjunction with English nouns. Retention was measured via a receptive task, and sensitivity and reaction time (RT) data were collected. Results All three groups of children learned the novel morpheme successfully and were able to generalize its use to untaught nouns. Furthermore, language characteristics (degree of exposure and levels of performance on standardized measures) did not contribute to bilingual children's learning outcomes. Conclusion Together, the findings indicate that this particular version of the novel morpheme learning task may be resistant to influences associated with language background and suggest potential usefulness of the task to clinical practice. PMID:28399578

  12. ERPs While Judging Meaningfulness of Sentences with and without Homonym or Morpheme Spelling Foils: Comparing 4th to 9th Graders with and without Spelling Disabilities

    PubMed Central

    Richards, Todd; Pettet, Mark; Askren, Katie; Grabowski, Tom; Yagle, Kevin; Wallis, Peter; Northey, Mary; Abbott, Robert; Berninger, Virginia

    2016-01-01

    Thirteen students with and twelve students without spelling disabilities judged whether sentences (1/3 all correct spellings, 1/3 with homonym foil, 1/3 with morpheme foil) were meaningful while event-related potentials (ERPs) were measured with EGI Geodesic EEG System 300 (128-channel hydro-cell nets). For N400, Rapid Automatic Switching (RAS) correlated with comprehending sentences with homonym foils in control group but with morpheme foils in SLD group. For P600, dictated spelling correlated with comprehending sentences with morpheme foils in the control group but solving anagrams with homonym foils in the SLD group. Educational significance and neuropsychological significance of these contrasting results are discussed. PMID:28657362

  13. Technique for information retrieval using enhanced latent semantic analysis generating rank approximation matrix by factorizing the weighted morpheme-by-document matrix

    DOEpatents

    Chew, Peter A; Bader, Brett W

    2012-10-16

    A technique for information retrieval includes parsing a corpus to identify a number of wordform instances within each document of the corpus. A weighted morpheme-by-document matrix is generated based at least in part on the number of wordform instances within each document of the corpus and based at least in part on a weighting function. The weighted morpheme-by-document matrix separately enumerates instances of stems and affixes. Additionally or alternatively, a term-by-term alignment matrix may be generated based at least in part on the number of wordform instances within each document of the corpus. At least one lower rank approximation matrix is generated by factorizing the weighted morpheme-by-document matrix and/or the term-by-term alignment matrix.

  14. Electrophysiological evidence for the morpheme-based combinatoric processing of English compounds

    PubMed Central

    Fiorentino, Robert; Naito-Billen, Yuka; Bost, Jamie; Fund-Reznicek, Ella

    2014-01-01

    The extent to which the processing of compounds (e.g., “catfish”) makes recourse to morphological-level representations remains a matter of debate. Moreover, positing a morpheme-level route to complex word recognition entails not only access to morphological constituents, but also combinatoric processes operating on the constituent representations; however, the neurophysiological mechanisms subserving decomposition, and in particular morpheme combination, have yet to be fully elucidated. The current study presents electrophysiological evidence for the morpheme-based processing of both lexicalized (e.g., “teacup”) and novel (e.g., “tombnote”) visually-presented English compounds; these brain responses appear prior to and are dissociable from the eventual overt lexical decision response. The electrophysiological results reveal increased negativities for conditions with compound structure, including effects shared by lexicalized and novel compounds, as well as effects unique to each compound type, which may be related to aspects of morpheme combination. These findings support models positing across-the-board morphological decomposition, counter to models proposing that putatively complex words are primarily or solely processed as undecomposed representations, and motivate further electrophysiological research toward a more precise characterization of the nature and neurophysiological instantiation of complex word recognition. PMID:24279696

  15. Influences of Phonological Context on Tense Marking in Spanish–English Dual Language Learners

    PubMed Central

    Barlow, Jessica A.; Potapova, Irina; Pruitt-Lord, Sonja

    2017-01-01

    Purpose The emergence of tense-morpheme marking during language acquisition is highly variable, which confounds the use of tense marking as a diagnostic indicator of language impairment in linguistically diverse populations. In this study, we seek to better understand tense-marking patterns in young bilingual children by comparing phonological influences on marking of 2 word-final tense morphemes. Method In spontaneous connected speech samples from 10 Spanish–English dual language learners aged 56–66 months (M = 61.7, SD = 3.4), we examined marking rates of past tense -ed and third person singular -s morphemes in different environments, using multiple measures of phonological context. Results Both morphemes were found to exhibit notably contrastive marking patterns in some contexts. Each was most sensitive to a different combination of phonological influences in the verb stem and the following word. Conclusions These findings extend existing evidence from monolingual speakers for the influence of word-final phonological context on morpheme production to a bilingual population. Further, novel findings not yet attested in previous research support an expanded consideration of phonological context in clinical decision making and future research related to word-final morphology. PMID:28750415

  16. Hyperspectral image segmentation using a cooperative nonparametric approach

    NASA Astrophysics Data System (ADS)

    Taher, Akar; Chehdi, Kacem; Cariou, Claude

    2013-10-01

    In this paper a new unsupervised nonparametric cooperative and adaptive hyperspectral image segmentation approach is presented. The hyperspectral images are partitioned band by band in parallel and intermediate classification results are evaluated and fused, to get the final segmentation result. Two unsupervised nonparametric segmentation methods are used in parallel cooperation, namely the Fuzzy C-means (FCM) method, and the Linde-Buzo-Gray (LBG) algorithm, to segment each band of the image. The originality of the approach relies firstly on its local adaptation to the type of regions in an image (textured, non-textured), and secondly on the introduction of several levels of evaluation and validation of intermediate segmentation results before obtaining the final partitioning of the image. For the management of similar or conflicting results issued from the two classification methods, we gradually introduced various assessment steps that exploit the information of each spectral band and its adjacent bands, and finally the information of all the spectral bands. In our approach, the detected textured and non-textured regions are treated separately from feature extraction step, up to the final classification results. This approach was first evaluated on a large number of monocomponent images constructed from the Brodatz album. Then it was evaluated on two real applications using a respectively multispectral image for Cedar trees detection in the region of Baabdat (Lebanon) and a hyperspectral image for identification of invasive and non invasive vegetation in the region of Cieza (Spain). A correct classification rate (CCR) for the first application is over 97% and for the second application the average correct classification rate (ACCR) is over 99%.

  17. Unsupervised segmentation of MRI knees using image partition forests

    NASA Astrophysics Data System (ADS)

    Marčan, Marija; Voiculescu, Irina

    2016-03-01

    Nowadays many people are affected by arthritis, a condition of the joints with limited prevention measures, but with various options of treatment the most radical of which is surgical. In order for surgery to be successful, it can make use of careful analysis of patient-based models generated from medical images, usually by manual segmentation. In this work we show how to automate the segmentation of a crucial and complex joint -- the knee. To achieve this goal we rely on our novel way of representing a 3D voxel volume as a hierarchical structure of partitions which we have named Image Partition Forest (IPF). The IPF contains several partition layers of increasing coarseness, with partitions nested across layers in the form of adjacency graphs. On the basis of a set of properties (size, mean intensity, coordinates) of each node in the IPF we classify nodes into different features. Values indicating whether or not any particular node belongs to the femur or tibia are assigned through node filtering and node-based region growing. So far we have evaluated our method on 15 MRI knee images. Our unsupervised segmentation compared against a hand-segmented gold standard has achieved an average Dice similarity coefficient of 0.95 for femur and 0.93 for tibia, and an average symmetric surface distance of 0.98 mm for femur and 0.73 mm for tibia. The paper also discusses ways to introduce stricter morphological and spatial conditioning in the bone labelling process.

  18. Parallel functional category deficits in clauses and nominal phrases: The case of English agrammatism

    PubMed Central

    Wang, Honglei; Yoshida, Masaya; Thompson, Cynthia K.

    2015-01-01

    Individuals with agrammatic aphasia exhibit restricted patterns of impairment of functional morphemes, however, syntactic characterization of the impairment is controversial. Previous studies have focused on functional morphology in clauses only. This study extends the empirical domain by testing functional morphemes in English nominal phrases in aphasia and comparing patients’ impairment to their impairment of functional morphemes in English clauses. In the linguistics literature, it is assumed that clauses and nominal phrases are structurally parallel but exhibit inflectional differences. The results of the present study indicated that aphasic speakers evinced similar impairment patterns in clauses and nominal phrases. These findings are consistent with the Distributed Morphology Hypothesis (DMH), suggesting that the source of functional morphology deficits among agrammatics relates to difficulty implementing rules that convert inflectional features into morphemes. Our findings, however, are inconsistent with the Tree Pruning Hypothesis (TPH), which suggests that patients have difficulty building complex hierarchical structures. PMID:26379370

  19. Automated age-related macular degeneration classification in OCT using unsupervised feature learning

    NASA Astrophysics Data System (ADS)

    Venhuizen, Freerk G.; van Ginneken, Bram; Bloemen, Bart; van Grinsven, Mark J. J. P.; Philipsen, Rick; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I.

    2015-03-01

    Age-related Macular Degeneration (AMD) is a common eye disorder with high prevalence in elderly people. The disease mainly affects the central part of the retina, and could ultimately lead to permanent vision loss. Optical Coherence Tomography (OCT) is becoming the standard imaging modality in diagnosis of AMD and the assessment of its progression. However, the evaluation of the obtained volumetric scan is time consuming, expensive and the signs of early AMD are easy to miss. In this paper we propose a classification method to automatically distinguish AMD patients from healthy subjects with high accuracy. The method is based on an unsupervised feature learning approach, and processes the complete image without the need for an accurate pre-segmentation of the retina. The method can be divided in two steps: an unsupervised clustering stage that extracts a set of small descriptive image patches from the training data, and a supervised training stage that uses these patches to create a patch occurrence histogram for every image on which a random forest classifier is trained. Experiments using 384 volume scans show that the proposed method is capable of identifying AMD patients with high accuracy, obtaining an area under the Receiver Operating Curve of 0:984. Our method allows for a quick and reliable assessment of the presence of AMD pathology in OCT volume scans without the need for accurate layer segmentation algorithms.

  20. The interface between morphology and phonology: Exploring a morpho-phonological deficit in spoken production

    PubMed Central

    Cohen-Goldberg, Ariel M.; Cholin, Joana; Miozzo, Michele; Rapp, Brenda

    2013-01-01

    Morphological and phonological processes are tightly interrelated in spoken production. During processing, morphological processes must combine the phonological content of individual morphemes to produce a phonological representation that is suitable for driving phonological processing. Further, morpheme assembly frequently causes changes in a word's phonological well-formedness that must be addressed by the phonology. We report the case of an aphasic individual (WRG) who exhibits an impairment at the morpho-phonological interface. WRG was tested on his ability to produce phonologically complex sequences (specifically, coda clusters of varying sonority) in heteromorphemic and tautomorphemic environments. WRG made phonological errors that reduced coda sonority complexity in multimorphemic words (e.g., passed→[pæstɪd]) but not in monomorphemic words (e.g., past). WRG also made similar insertion errors to repair stress clash in multimorphemic environments, confirming his sensitivity to cross-morpheme well-formedness. We propose that this pattern of performance is the result of an intact phonological grammar acting over the phonological content of morphemic representations that were weakly joined because of brain damage. WRG may constitute the first case of a morpho-phonological impairment—these results suggest that the processes that combine morphemes constitute a crucial component of morpho-phonological processing. PMID:23466641

  1. A validation framework for brain tumor segmentation.

    PubMed

    Archip, Neculai; Jolesz, Ferenc A; Warfield, Simon K

    2007-10-01

    We introduce a validation framework for the segmentation of brain tumors from magnetic resonance (MR) images. A novel unsupervised semiautomatic brain tumor segmentation algorithm is also presented. The proposed framework consists of 1) T1-weighted MR images of patients with brain tumors, 2) segmentation of brain tumors performed by four independent experts, 3) segmentation of brain tumors generated by a semiautomatic algorithm, and 4) a software tool that estimates the performance of segmentation algorithms. We demonstrate the validation of the novel segmentation algorithm within the proposed framework. We show its performance and compare it with existent segmentation. The image datasets and software are available at http://www.brain-tumor-repository.org/. We present an Internet resource that provides access to MR brain tumor image data and segmentation that can be openly used by the research community. Its purpose is to encourage the development and evaluation of segmentation methods by providing raw test and image data, human expert segmentation results, and methods for comparing segmentation results.

  2. White Matter Tract Segmentation as Multiple Linear Assignment Problems

    PubMed Central

    Sharmin, Nusrat; Olivetti, Emanuele; Avesani, Paolo

    2018-01-01

    Diffusion magnetic resonance imaging (dMRI) allows to reconstruct the main pathways of axons within the white matter of the brain as a set of polylines, called streamlines. The set of streamlines of the whole brain is called the tractogram. Organizing tractograms into anatomically meaningful structures, called tracts, is known as the tract segmentation problem, with important applications to neurosurgical planning and tractometry. Automatic tract segmentation techniques can be unsupervised or supervised. A common criticism of unsupervised methods, like clustering, is that there is no guarantee to obtain anatomically meaningful tracts. In this work, we focus on supervised tract segmentation, which is driven by prior knowledge from anatomical atlases or from examples, i.e., segmented tracts from different subjects. We present a supervised tract segmentation method that segments a given tract of interest in the tractogram of a new subject using multiple examples as prior information. Our proposed tract segmentation method is based on the idea of streamline correspondence i.e., on finding corresponding streamlines across different tractograms. In the literature, streamline correspondence has been addressed with the nearest neighbor (NN) strategy. Differently, here we formulate the problem of streamline correspondence as a linear assignment problem (LAP), which is a cornerstone of combinatorial optimization. With respect to the NN, the LAP introduces a constraint of one-to-one correspondence between streamlines, that forces the correspondences to follow the local anatomical differences between the example and the target tract, neglected by the NN. In the proposed solution, we combined the Jonker-Volgenant algorithm (LAPJV) for solving the LAP together with an efficient way of computing the nearest neighbors of a streamline, which massively reduces the total amount of computations needed to segment a tract. Moreover, we propose a ranking strategy to merge correspondences coming from different examples. We validate the proposed method on tractograms generated from the human connectome project (HCP) dataset and compare the segmentations with the NN method and the ROI-based method. The results show that LAP-based segmentation is vastly more accurate than ROI-based segmentation and substantially more accurate than the NN strategy. We provide a Free/OpenSource implementation of the proposed method. PMID:29467600

  3. White Matter Tract Segmentation as Multiple Linear Assignment Problems.

    PubMed

    Sharmin, Nusrat; Olivetti, Emanuele; Avesani, Paolo

    2017-01-01

    Diffusion magnetic resonance imaging (dMRI) allows to reconstruct the main pathways of axons within the white matter of the brain as a set of polylines, called streamlines. The set of streamlines of the whole brain is called the tractogram. Organizing tractograms into anatomically meaningful structures, called tracts, is known as the tract segmentation problem, with important applications to neurosurgical planning and tractometry. Automatic tract segmentation techniques can be unsupervised or supervised. A common criticism of unsupervised methods, like clustering, is that there is no guarantee to obtain anatomically meaningful tracts. In this work, we focus on supervised tract segmentation, which is driven by prior knowledge from anatomical atlases or from examples, i.e., segmented tracts from different subjects. We present a supervised tract segmentation method that segments a given tract of interest in the tractogram of a new subject using multiple examples as prior information. Our proposed tract segmentation method is based on the idea of streamline correspondence i.e., on finding corresponding streamlines across different tractograms. In the literature, streamline correspondence has been addressed with the nearest neighbor (NN) strategy. Differently, here we formulate the problem of streamline correspondence as a linear assignment problem (LAP), which is a cornerstone of combinatorial optimization. With respect to the NN, the LAP introduces a constraint of one-to-one correspondence between streamlines, that forces the correspondences to follow the local anatomical differences between the example and the target tract, neglected by the NN. In the proposed solution, we combined the Jonker-Volgenant algorithm (LAPJV) for solving the LAP together with an efficient way of computing the nearest neighbors of a streamline, which massively reduces the total amount of computations needed to segment a tract. Moreover, we propose a ranking strategy to merge correspondences coming from different examples. We validate the proposed method on tractograms generated from the human connectome project (HCP) dataset and compare the segmentations with the NN method and the ROI-based method. The results show that LAP-based segmentation is vastly more accurate than ROI-based segmentation and substantially more accurate than the NN strategy. We provide a Free/OpenSource implementation of the proposed method.

  4. Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering.

    PubMed

    Yang, Guang; Raschke, Felix; Barrick, Thomas R; Howe, Franklyn A

    2015-09-01

    To investigate whether nonlinear dimensionality reduction improves unsupervised classification of (1) H MRS brain tumor data compared with a linear method. In vivo single-voxel (1) H magnetic resonance spectroscopy (55 patients) and (1) H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With (1) H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. The LE method is promising for unsupervised clustering to separate brain and tumor tissue with automated color-coding for visualization of (1) H MRSI data after cluster analysis. © 2014 Wiley Periodicals, Inc.

  5. Evidence for morphological composition in compound words using MEG.

    PubMed

    Brooks, Teon L; Cid de Garcia, Daniela

    2015-01-01

    Psycholinguistic and electrophysiological studies of lexical processing show convergent evidence for morpheme-based lexical access for morphologically complex words that involves early decomposition into their constituent morphemes followed by some combinatorial operation. Considering that both semantically transparent (e.g., sailboat) and semantically opaque (e.g., bootleg) compounds undergo morphological decomposition during the earlier stages of lexical processing, subsequent combinatorial operations should account for the difference in the contribution of the constituent morphemes to the meaning of these different word types. In this study we use magnetoencephalography (MEG) to pinpoint the neural bases of this combinatorial stage in English compound word recognition. MEG data were acquired while participants performed a word naming task in which three word types, transparent compounds (e.g., roadside), opaque compounds (e.g., butterfly), and morphologically simple words (e.g., brothel) were contrasted in a partial-repetition priming paradigm where the word of interest was primed by one of its constituent morphemes. Analysis of onset latency revealed shorter latencies to name compound words than simplex words when primed, further supporting a stage of morphological decomposition in lexical access. An analysis of the associated MEG activity uncovered a region of interest implicated in morphological composition, the Left Anterior Temporal Lobe (LATL). Only transparent compounds showed increased activity in this area from 250 to 470 ms. Previous studies using sentences and phrases have highlighted the role of LATL in performing computations for basic combinatorial operations. Results are in tune with decomposition models for morpheme accessibility early in processing and suggest that semantics play a role in combining the meanings of morphemes when their composition is transparent to the overall word meaning.

  6. Leveraging unsupervised training sets for multi-scale compartmentalization in renal pathology

    NASA Astrophysics Data System (ADS)

    Lutnick, Brendon; Tomaszewski, John E.; Sarder, Pinaki

    2017-03-01

    Clinical pathology relies on manual compartmentalization and quantification of biological structures, which is time consuming and often error-prone. Application of computer vision segmentation algorithms to histopathological image analysis, in contrast, can offer fast, reproducible, and accurate quantitative analysis to aid pathologists. Algorithms tunable to different biologically relevant structures can allow accurate, precise, and reproducible estimates of disease states. In this direction, we have developed a fast, unsupervised computational method for simultaneously separating all biologically relevant structures from histopathological images in multi-scale. Segmentation is achieved by solving an energy optimization problem. Representing the image as a graph, nodes (pixels) are grouped by minimizing a Potts model Hamiltonian, adopted from theoretical physics, modeling interacting electron spins. Pixel relationships (modeled as edges) are used to update the energy of the partitioned graph. By iteratively improving the clustering, the optimal number of segments is revealed. To reduce computational time, the graph is simplified using a Cantor pairing function to intelligently reduce the number of included nodes. The classified nodes are then used to train a multiclass support vector machine to apply the segmentation over the full image. Accurate segmentations of images with as many as 106 pixels can be completed only in 5 sec, allowing for attainable multi-scale visualization. To establish clinical potential, we employed our method in renal biopsies to quantitatively visualize for the first time scale variant compartments of heterogeneous intra- and extraglomerular structures simultaneously. Implications of the utility of our method extend to fields such as oncology, genomics, and non-biological problems.

  7. Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.

    PubMed

    Bricq, S; Collet, Ch; Armspach, J P

    2008-12-01

    In the frame of 3D medical imaging, accurate segmentation of multimodal brain MR images is of interest for many brain disorders. However, due to several factors such as noise, imaging artifacts, intrinsic tissue variation and partial volume effects, tissue classification remains a challenging task. In this paper, we present a unifying framework for unsupervised segmentation of multimodal brain MR images including partial volume effect, bias field correction, and information given by a probabilistic atlas. Here-proposed method takes into account neighborhood information using a Hidden Markov Chain (HMC) model. Due to the limited resolution of imaging devices, voxels may be composed of a mixture of different tissue types, this partial volume effect is included to achieve an accurate segmentation of brain tissues. Instead of assigning each voxel to a single tissue class (i.e., hard classification), we compute the relative amount of each pure tissue class in each voxel (mixture estimation). Further, a bias field estimation step is added to the proposed algorithm to correct intensity inhomogeneities. Furthermore, atlas priors were incorporated using probabilistic brain atlas containing prior expectations about the spatial localization of different tissue classes. This atlas is considered as a complementary sensor and the proposed method is extended to multimodal brain MRI without any user-tunable parameter (unsupervised algorithm). To validate this new unifying framework, we present experimental results on both synthetic and real brain images, for which the ground truth is available. Comparison with other often used techniques demonstrates the accuracy and the robustness of this new Markovian segmentation scheme.

  8. UrQt: an efficient software for the Unsupervised Quality trimming of NGS data.

    PubMed

    Modolo, Laurent; Lerat, Emmanuelle

    2015-04-29

    Quality control is a necessary step of any Next Generation Sequencing analysis. Although customary, this step still requires manual interventions to empirically choose tuning parameters according to various quality statistics. Moreover, current quality control procedures that provide a "good quality" data set, are not optimal and discard many informative nucleotides. To address these drawbacks, we present a new quality control method, implemented in UrQt software, for Unsupervised Quality trimming of Next Generation Sequencing reads. Our trimming procedure relies on a well-defined probabilistic framework to detect the best segmentation between two segments of unreliable nucleotides, framing a segment of informative nucleotides. Our software only requires one user-friendly parameter to define the minimal quality threshold (phred score) to consider a nucleotide to be informative, which is independent of both the experiment and the quality of the data. This procedure is implemented in C++ in an efficient and parallelized software with a low memory footprint. We tested the performances of UrQt compared to the best-known trimming programs, on seven RNA and DNA sequencing experiments and demonstrated its optimality in the resulting tradeoff between the number of trimmed nucleotides and the quality objective. By finding the best segmentation to delimit a segment of good quality nucleotides, UrQt greatly increases the number of reads and of nucleotides that can be retained for a given quality objective. UrQt source files, binary executables for different operating systems and documentation are freely available (under the GPLv3) at the following address: https://lbbe.univ-lyon1.fr/-UrQt-.html .

  9. Morpheme matching based text tokenization for a scarce resourced language.

    PubMed

    Rehman, Zobia; Anwar, Waqas; Bajwa, Usama Ijaz; Xuan, Wang; Chaoying, Zhou

    2013-01-01

    Text tokenization is a fundamental pre-processing step for almost all the information processing applications. This task is nontrivial for the scarce resourced languages such as Urdu, as there is inconsistent use of space between words. In this paper a morpheme matching based approach has been proposed for Urdu text tokenization, along with some other algorithms to solve the additional issues of boundary detection of compound words, affixation, reduplication, names and abbreviations. This study resulted into 97.28% precision, 93.71% recall, and 95.46% F1-measure; while tokenizing a corpus of 57000 words by using a morpheme list with 6400 entries.

  10. Morpheme Matching Based Text Tokenization for a Scarce Resourced Language

    PubMed Central

    Rehman, Zobia; Anwar, Waqas; Bajwa, Usama Ijaz; Xuan, Wang; Chaoying, Zhou

    2013-01-01

    Text tokenization is a fundamental pre-processing step for almost all the information processing applications. This task is nontrivial for the scarce resourced languages such as Urdu, as there is inconsistent use of space between words. In this paper a morpheme matching based approach has been proposed for Urdu text tokenization, along with some other algorithms to solve the additional issues of boundary detection of compound words, affixation, reduplication, names and abbreviations. This study resulted into 97.28% precision, 93.71% recall, and 95.46% F1-measure; while tokenizing a corpus of 57000 words by using a morpheme list with 6400 entries. PMID:23990871

  11. Gradient Well-Formedness across the Morpheme Boundary

    ERIC Educational Resources Information Center

    Goldberg, Ariel M.

    2010-01-01

    Recent theories of phonology hold that phonotactic well-formedness may be gradient, with some legal structures being more well-formed than others. Linguistic and psycholinguistic research has demonstrated that "within" morphemes, speakers encode both categorical (*n/Onset) and gradient (st/Onset greater than sin/Onset) phonotactic restrictions.…

  12. Agrammatism in Jordanian-Arabic Speakers

    ERIC Educational Resources Information Center

    Albustanji, Yusuf Mohammed

    2009-01-01

    Agrammatism is a frequent sequela of Broca's aphasia that manifests itself in omission and/or substitution of the grammatical morphemes in spontaneous and constrained speech. The hierarchical structure of syntactic trees has been proposed as an account for difficulty across grammatical morphemes (e.g., tense, agreement, and negation). Supporting…

  13. GO FASTER: Building Morpheme Fluency

    ERIC Educational Resources Information Center

    Fishley, Katelyn M.; Konrad, Moira; Hessler, Terri

    2017-01-01

    Vocabulary knowledge is an important foundation skill for reading across all subject areas. Because students with disabilities lag behind their peers in reading skills, there is a need for efficient and effective vocabulary interventions. Focusing on morpheme knowledge is one efficient approach to building vocabulary. This article describes an…

  14. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture.

    PubMed

    Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S

    2003-01-01

    In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).

  15. The activation of segmental and tonal information in visual word recognition.

    PubMed

    Li, Chuchu; Lin, Candise Y; Wang, Min; Jiang, Nan

    2013-08-01

    Mandarin Chinese has a logographic script in which graphemes map onto syllables and morphemes. It is not clear whether Chinese readers activate phonological information during lexical access, although phonological information is not explicitly represented in Chinese orthography. In the present study, we examined the activation of phonological information, including segmental and tonal information in Chinese visual word recognition, using the Stroop paradigm. Native Mandarin speakers named the presentation color of Chinese characters in Mandarin. The visual stimuli were divided into five types: color characters (e.g., , hong2, "red"), homophones of the color characters (S+T+; e.g., , hong2, "flood"), different-tone homophones (S+T-; e.g., , hong1, "boom"), characters that shared the same tone but differed in segments with the color characters (S-T+; e.g., , ping2, "bottle"), and neutral characters (S-T-; e.g., , qian1, "leading through"). Classic Stroop facilitation was shown in all color-congruent trials, and interference was shown in the incongruent trials. Furthermore, the Stroop effect was stronger for S+T- than for S-T+ trials, and was similar between S+T+ and S+T- trials. These findings suggested that both tonal and segmental forms of information play roles in lexical constraints; however, segmental information has more weight than tonal information. We proposed a revised visual word recognition model in which the functions of both segmental and suprasegmental types of information and their relative weights are taken into account.

  16. Phonological Constraints on Children's Production of English Third Person Singular -S

    ERIC Educational Resources Information Center

    Song, Jae Yung; Sundara, Megha; Demuth, Katherine

    2009-01-01

    Purpose: Children variably produce grammatical morphemes at early stages of development, often omitting inflectional morphemes in obligatory contexts. This has typically been attributed to immature syntactic or semantic representations. In this study, the authors investigated the hypothesis that children's variable production of the 3rd person…

  17. Morphophonemic Transfer in English Second Language Learners

    ERIC Educational Resources Information Center

    Ping, Sze Wei; Rickard Liow, Susan J.

    2011-01-01

    Malay (Rumi) is alphabetic and has a transparent, agglutinative system of affixation. We manipulated language-specific junctural phonetics in Malay and English to investigate whether morphophonemic L1-knowledge influences L2-processing. A morpheme decision task, "Does this "nonword" sound like a mono- or bi-morphemic English word?", was developed…

  18. The Grammatical Morpheme Deficit in Moderate Hearing Impairment

    ERIC Educational Resources Information Center

    McGuckian, Maria; Henry, Alison

    2007-01-01

    Background: Much remains unknown about grammatical morpheme (GM) acquisition by children with moderate hearing impairment (HI) acquiring spoken English. Aims: To investigate how moderate HI impacts on the use of GMs in speech and to provide an explanation for the pattern of findings. Methods & Procedures: Elicited and spontaneous speech data were…

  19. Initial Morphological Learning in Preverbal Infants

    ERIC Educational Resources Information Center

    Marquis, Alexandra; Shi, Rushen

    2012-01-01

    How do children learn the internal structure of inflected words? We hypothesized that bound functional morphemes begin to be encoded at the preverbal stage, driven by their frequent occurrence with highly variable roots, and that infants in turn use these morphemes to interpret other words with the same inflections. Using a preferential looking…

  20. Negative Particles and Morphemes in Jordanian Arabic Dialects

    ERIC Educational Resources Information Center

    Mrayat, Ahmad

    2015-01-01

    This paper aims at investigating the negative particles and morphemes in three main Jordanian dialects (Urban, Rural and Bedouin). This quantitative and qualitative study includes 30 teachers from different disciplines who use these dialects. The sample of the study was selected randomly. The research used two research instruments, a checklist and…

  1. Bilingual Performance on Nonword Repetition in Spanish and English

    ERIC Educational Resources Information Center

    Summers, Connie; Bohman, Thomas M.; Gillam, Ronald B.; Pena, Elizabeth D.; Bedore, Lisa M.

    2010-01-01

    Background: Nonword repetition (NWR) involves the ability to perceive, store, recall and reproduce phonological sequences. These same abilities play a role in word and morpheme learning. Cross-linguistic studies of performance on NWR tasks, word learning, and morpheme learning yield patterns of increased performance on all three tasks as a…

  2. Analyzing Distributional Learning of Phonemic Categories in Unsupervised Deep Neural Networks

    PubMed Central

    Räsänen, Okko; Nagamine, Tasha; Mesgarani, Nima

    2017-01-01

    Infants’ speech perception adapts to the phonemic categories of their native language, a process assumed to be driven by the distributional properties of speech. This study investigates whether deep neural networks (DNNs), the current state-of-the-art in distributional feature learning, are capable of learning phoneme-like representations of speech in an unsupervised manner. We trained DNNs with unlabeled and labeled speech and analyzed the activations of each layer with respect to the phones in the input segments. The analyses reveal that the emergence of phonemic invariance in DNNs is dependent on the availability of phonemic labeling of the input during the training. No increased phonemic selectivity of the hidden layers was observed in the purely unsupervised networks despite successful learning of low-dimensional representations for speech. This suggests that additional learning constraints or more sophisticated models are needed to account for the emergence of phone-like categories in distributional learning operating on natural speech. PMID:29359204

  3. An unsupervised approach for measuring myocardial perfusion in MR image sequences

    NASA Astrophysics Data System (ADS)

    Discher, Antoine; Rougon, Nicolas; Preteux, Francoise

    2005-08-01

    Quantitatively assessing myocardial perfusion is a key issue for the diagnosis, therapeutic planning and patient follow-up of cardio-vascular diseases. To this end, perfusion MRI (p-MRI) has emerged as a valuable clinical investigation tool thanks to its ability of dynamically imaging the first pass of a contrast bolus in the framework of stress/rest exams. However, reliable techniques for automatically computing regional first pass curves from 2D short-axis cardiac p-MRI sequences remain to be elaborated. We address this problem and develop an unsupervised four-step approach comprising: (i) a coarse spatio-temporal segmentation step, allowing to automatically detect a region of interest for the heart over the whole sequence, and to select a reference frame with maximal myocardium contrast; (ii) a model-based variational segmentation step of the reference frame, yielding a bi-ventricular partition of the heart into left ventricle, right ventricle and myocardium components; (iii) a respiratory/cardiac motion artifacts compensation step using a novel region-driven intensity-based non rigid registration technique, allowing to elastically propagate the reference bi-ventricular segmentation over the whole sequence; (iv) a measurement step, delivering first-pass curves over each region of a segmental model of the myocardium. The performance of this approach is assessed over a database of 15 normal and pathological subjects, and compared with perfusion measurements delivered by a MRI manufacturer software package based on manual delineations by a medical expert.

  4. Detection of molecular signatures of oral squamous cell carcinoma and normal epithelium - application of a novel methodology for unsupervised segmentation of imaging mass spectrometry data.

    PubMed

    Widlak, Piotr; Mrukwa, Grzegorz; Kalinowska, Magdalena; Pietrowska, Monika; Chekan, Mykola; Wierzgon, Janusz; Gawin, Marta; Drazek, Grzegorz; Polanska, Joanna

    2016-06-01

    Intra-tumor heterogeneity is a vivid problem of molecular oncology that could be addressed by imaging mass spectrometry. Here we aimed to assess molecular heterogeneity of oral squamous cell carcinoma and to detect signatures discriminating normal and cancerous epithelium. Tryptic peptides were analyzed by MALDI-IMS in tissue specimens from five patients with oral cancer. Novel algorithm of IMS data analysis was developed and implemented, which included Gaussian mixture modeling for detection of spectral components and iterative k-means algorithm for unsupervised spectra clustering performed in domain reduced to a subset of the most dispersed components. About 4% of the detected peptides showed significantly different abundances between normal epithelium and tumor, and could be considered as a molecular signature of oral cancer. Moreover, unsupervised clustering revealed two major sub-regions within expert-defined tumor areas. One of them showed molecular similarity with histologically normal epithelium. The other one showed similarity with connective tissue, yet was markedly different from normal epithelium. Pathologist's re-inspection of tissue specimens confirmed distinct features in both tumor sub-regions: foci of actual cancer cells or cancer microenvironment-related cells prevailed in corresponding areas. Hence, molecular differences detected during automated segmentation of IMS data had an apparent reflection in real structures present in tumor. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Automatic Cell Segmentation Using a Shape-Classification Model in Immunohistochemically Stained Cytological Images

    NASA Astrophysics Data System (ADS)

    Shah, Shishir

    This paper presents a segmentation method for detecting cells in immunohistochemically stained cytological images. A two-phase approach to segmentation is used where an unsupervised clustering approach coupled with cluster merging based on a fitness function is used as the first phase to obtain a first approximation of the cell locations. A joint segmentation-classification approach incorporating ellipse as a shape model is used as the second phase to detect the final cell contour. The segmentation model estimates a multivariate density function of low-level image features from training samples and uses it as a measure of how likely each image pixel is to be a cell. This estimate is constrained by the zero level set, which is obtained as a solution to an implicit representation of an ellipse. Results of segmentation are presented and compared to ground truth measurements.

  6. Morphemic Analysis as Imagined by Developmental Reading Textbooks: A Content Analysis of a Textbook Corpus

    ERIC Educational Resources Information Center

    Roth, Daniel

    2017-01-01

    Although vocabulary instruction is a pressing need for postsecondary reading instructors, a minimal amount of current postsecondary scholarship addresses this need, and almost no current scholarship addresses the textbook tradition of morphemic analysis (MA). The present article reviews the literature on MA instruction and argues for teaching MA…

  7. Variability and Variation in Second Language Acquisition Orders: A Dynamic Reevaluation

    ERIC Educational Resources Information Center

    Lowie, Wander; Verspoor, Marjolijn

    2015-01-01

    The traditional morpheme order studies in second language acquisition have tried to demonstrate the existence of a fixed order of acquisition of English morphemes, regardless of the second language learner's background. Such orders have been taken as evidence of the preprogrammed nature of language acquisition. This article argues for a…

  8. A New Phenomenon in Saudi Females' Code-Switching: A Morphemic Analysis

    ERIC Educational Resources Information Center

    Turjoman, Mona O.

    2016-01-01

    This sociolinguistics study investigates a new phenomenon that has recently surfaced in the field of code-switching among Saudi females residing in the Western region of Saudi Arabia. This phenomenon basically combines bound Arabic pronouns, tense markers or definite article to English free morphemes or the combination of bound English affixes to…

  9. Feasibility of a Recasting and Auditory Bombardment Treatment with Young Cochlear Implant Users

    ERIC Educational Resources Information Center

    Encinas, Danielle; Plante, Elena

    2016-01-01

    Purpose: There is little to guide clinicians in terms of evidence-based interventions for children with cochlear implants who demonstrate morpheme errors. This feasibility study tested the utility of a treatment targeting grammatical morpheme errors. Method: Three children (ages 4-5 years) received Enhanced Conversational Recast treatment, a…

  10. Neural substrates of Hanja (Logogram) and Hangul (Phonogram) character readings by functional magnetic resonance imaging.

    PubMed

    Cho, Zang-Hee; Kim, Nambeom; Bae, Sungbong; Chi, Je-Geun; Park, Chan-Woong; Ogawa, Seiji; Kim, Young-Bo

    2014-10-01

    The two basic scripts of the Korean writing system, Hanja (the logography of the traditional Korean character) and Hangul (the more newer Korean alphabet), have been used together since the 14th century. While Hanja character has its own morphemic base, Hangul being purely phonemic without morphemic base. These two, therefore, have substantially different outcomes as a language as well as different neural responses. Based on these linguistic differences between Hanja and Hangul, we have launched two studies; first was to find differences in cortical activation when it is stimulated by Hanja and Hangul reading to support the much discussed dual-route hypothesis of logographic and phonological routes in the brain by fMRI (Experiment 1). The second objective was to evaluate how Hanja and Hangul affect comprehension, therefore, recognition memory, specifically the effects of semantic transparency and morphemic clarity on memory consolidation and then related cortical activations, using functional magnetic resonance imaging (fMRI) (Experiment 2). The first fMRI experiment indicated relatively large areas of the brain are activated by Hanja reading compared to Hangul reading. The second experiment, the recognition memory study, revealed two findings, that is there is only a small difference in recognition memory for semantic transparency, while for the morphemic clarity was much larger between Hanja and Hangul. That is the morphemic clarity has significantly more effect than semantic transparency on recognition memory when studies by fMRI in correlation with behavioral study.

  11. Automated measurements of metabolic tumor volume and metabolic parameters in lung PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Orologas, F.; Saitis, P.; Kallergi, M.

    2017-11-01

    Patients with lung tumors or inflammatory lung disease could greatly benefit in terms of treatment and follow-up by PET/CT quantitative imaging, namely measurements of metabolic tumor volume (MTV), standardized uptake values (SUVs) and total lesion glycolysis (TLG). The purpose of this study was the development of an unsupervised or partially supervised algorithm using standard image processing tools for measuring MTV, SUV, and TLG from lung PET/CT scans. Automated metabolic lesion volume and metabolic parameter measurements were achieved through a 5 step algorithm: (i) The segmentation of the lung areas on the CT slices, (ii) the registration of the CT segmented lung regions on the PET images to define the anatomical boundaries of the lungs on the functional data, (iii) the segmentation of the regions of interest (ROIs) on the PET images based on adaptive thresholding and clinical criteria, (iv) the estimation of the number of pixels and pixel intensities in the PET slices of the segmented ROIs, (v) the estimation of MTV, SUVs, and TLG from the previous step and DICOM header data. Whole body PET/CT scans of patients with sarcoidosis were used for training and testing the algorithm. Lung area segmentation on the CT slices was better achieved with semi-supervised techniques that reduced false positive detections significantly. Lung segmentation results agreed with the lung volumes published in the literature while the agreement between experts and algorithm in the segmentation of the lesions was around 88%. Segmentation results depended on the image resolution selected for processing. The clinical parameters, SUV (either mean or max or peak) and TLG estimated by the segmented ROIs and DICOM header data provided a way to correlate imaging data to clinical and demographic data. In conclusion, automated MTV, SUV, and TLG measurements offer powerful analysis tools in PET/CT imaging of the lungs. Custom-made algorithms are often a better approach than the manufacturer’s general analysis software at much lower cost. Relatively simple processing techniques could lead to customized, unsupervised or partially supervised methods that can successfully perform the desirable analysis and adapt to the specific disease requirements.

  12. Region Segmentation in the Frequency Domain Applied to Upper Airway Real-Time Magnetic Resonance Images

    PubMed Central

    Narayanan, Shrikanth

    2009-01-01

    We describe a method for unsupervised region segmentation of an image using its spatial frequency domain representation. The algorithm was designed to process large sequences of real-time magnetic resonance (MR) images containing the 2-D midsagittal view of a human vocal tract airway. The segmentation algorithm uses an anatomically informed object model, whose fit to the observed image data is hierarchically optimized using a gradient descent procedure. The goal of the algorithm is to automatically extract the time-varying vocal tract outline and the position of the articulators to facilitate the study of the shaping of the vocal tract during speech production. PMID:19244005

  13. ROOTing Out Meaning: More Morphemic Analysis for Primary Pupils

    ERIC Educational Resources Information Center

    Mountain, Lee

    2005-01-01

    In an elementary-school professional development program, a group of primary teachers and a university consultant reviewed the research on morphemic analysis and then explored ways to give pupils in grades 1, 2, and 3 an early start on using prefixes, suffixes, and roots to construct word meaning. The teachers examined some middle-grade strategies…

  14. Remembering Plurals: Unit of Coding and Form of Coding during Serial Recall.

    ERIC Educational Resources Information Center

    Van Der Molen, Hugo; Morton, John

    1979-01-01

    Adult females recalled lists of six words, including some plural nouns, presented visually in sequence. A frequent error was to detach the plural from its root. This supports a morpheme-based as opposed to a unitary word code. Evidence for a primarily phonological coding of the plural morpheme was obtained. (Author/RD)

  15. Recurrent Prefixes, Roots, and Suffixes: A Morphemic Approach to Disciplinary Literacy

    ERIC Educational Resources Information Center

    Mountain, Lee

    2015-01-01

    Students in a content-area reading course examined the vocabulary of each of their disciplines, focusing on recurrent roots and affixes. They wanted to become teachers of math, science, English, music, and history; therefore, they needed to learn discipline-specific morphemes so they could help their future students figure out new words in their…

  16. Investigating Developmental Trajectories of Morphemes as Reading Units in German

    ERIC Educational Resources Information Center

    Hasenäcker, Jana; Schröter, Pauline; Schroeder, Sascha

    2017-01-01

    The developmental trajectory of the use of morphemes is still unclear. We investigated the emergence of morphological effects on visual word recognition in German in a large sample across the complete course of reading acquisition in elementary school. To this end, we analyzed lexical decision data on a total of 1,152 words and pseudowords from a…

  17. The Contribution of Morphological Awareness to the Spelling of Morphemes and Morphologically Complex Words in French

    ERIC Educational Resources Information Center

    Fejzo, Anila

    2016-01-01

    The goal of this study was to explore the relationship between morphological awareness and the spelling of morphemes and morphologically complex words among 75 third- and fourth-grade Francophone students of low socio-economic status. To reach this objective, we administered a dictation comprised of morphologically complex words with prefixes,…

  18. On Selected Morphemes in Saudi Arabian Sign Language

    ERIC Educational Resources Information Center

    Morris, Carla; Schneider, Erin

    2012-01-01

    Following a year of study of Saudi Arabian Sign Language (SASL), we are documenting our findings to provide a grammatical sketch of the language. This paper represents one part of that endeavor and focuses on a description of selected morphemes, both manual and non-manual, that have appeared in the course of data collection. While some of the…

  19. Toward Tense as a Clinical Marker of Specific Language Impairment in English-Speaking Children.

    ERIC Educational Resources Information Center

    Rice, Mabel L.; Wexler, Kenneth

    1996-01-01

    Comparison of the speech of 37 preschool children with speech-language impairment (SLI), 40 language-matched children, and 45 age-matched children found that errors in a set of morphemes marking tense characterized the SLI children. Evidence supporting the use of these morphemes as clinical markers for SLI is offered. (DB)

  20. Morphological Awareness Intervention: Improving Spelling, Vocabulary, and Reading Comprehension for Adult Learners.

    PubMed

    Bangs, Kathryn E; Binder, Katherine S

    2016-01-01

    Adult Basic Education programs are under pressure to develop and deliver instruction that promotes rapid and sustained literacy development. We describe a novel approach to a literacy intervention that focuses on morphemes, which are the smallest meaningful units contained in words. We argue that if you teach learners that big words are comprised of smaller components (i.e., morphemes), you will provide those students with the skills to figure out the meanings of new words. Research with children has demonstrated that teaching them about morphemes improves word recognition, spelling, vocabulary, and comprehension (Bowers & Kirby, 2009; Kirk & Gillon, 2009; Nunes, Bryant, & Olsson, 2003). Our hope is that this type of intervention will be successful with adult learners, too.

  1. Unsupervised quantification of abdominal fat from CT images using Greedy Snakes

    NASA Astrophysics Data System (ADS)

    Agarwal, Chirag; Dallal, Ahmed H.; Arbabshirani, Mohammad R.; Patel, Aalpen; Moore, Gregory

    2017-02-01

    Adipose tissue has been associated with adverse consequences of obesity. Total adipose tissue (TAT) is divided into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). Intra-abdominal fat (VAT), located inside the abdominal cavity, is a major factor for the classic obesity related pathologies. Since direct measurement of visceral and subcutaneous fat is not trivial, substitute metrics like waist circumference (WC) and body mass index (BMI) are used in clinical settings to quantify obesity. Abdominal fat can be assessed effectively using CT or MRI, but manual fat segmentation is rather subjective and time-consuming. Hence, an automatic and accurate quantification tool for abdominal fat is needed. The goal of this study is to extract TAT, VAT and SAT fat from abdominal CT in a fully automated unsupervised fashion using energy minimization techniques. We applied a four step framework consisting of 1) initial body contour estimation, 2) approximation of the body contour, 3) estimation of inner abdominal contour using Greedy Snakes algorithm, and 4) voting, to segment the subcutaneous and visceral fat. We validated our algorithm on 952 clinical abdominal CT images (from 476 patients with a very wide BMI range) collected from various radiology departments of Geisinger Health System. To our knowledge, this is the first study of its kind on such a large and diverse clinical dataset. Our algorithm obtained a 3.4% error for VAT segmentation compared to manual segmentation. These personalized and accurate measurements of fat can complement traditional population health driven obesity metrics such as BMI and WC.

  2. ECG signal analysis through hidden Markov models.

    PubMed

    Andreão, Rodrigo V; Dorizzi, Bernadette; Boudy, Jérôme

    2006-08-01

    This paper presents an original hidden Markov model (HMM) approach for online beat segmentation and classification of electrocardiograms. The HMM framework has been visited because of its ability of beat detection, segmentation and classification, highly suitable to the electrocardiogram (ECG) problem. Our approach addresses a large panel of topics some of them never studied before in other HMM related works: waveforms modeling, multichannel beat segmentation and classification, and unsupervised adaptation to the patient's ECG. The performance was evaluated on the two-channel QT database in terms of waveform segmentation precision, beat detection and classification. Our waveform segmentation results compare favorably to other systems in the literature. We also obtained high beat detection performance with sensitivity of 99.79% and a positive predictivity of 99.96%, using a test set of 59 recordings. Moreover, premature ventricular contraction beats were detected using an original classification strategy. The results obtained validate our approach for real world application.

  3. Multiple sclerosis lesion segmentation using dictionary learning and sparse coding.

    PubMed

    Weiss, Nick; Rueckert, Daniel; Rao, Anil

    2013-01-01

    The segmentation of lesions in the brain during the development of Multiple Sclerosis is part of the diagnostic assessment for this disease and gives information on its current severity. This laborious process is still carried out in a manual or semiautomatic fashion by clinicians because published automatic approaches have not been universal enough to be widely employed in clinical practice. Thus Multiple Sclerosis lesion segmentation remains an open problem. In this paper we present a new unsupervised approach addressing this problem with dictionary learning and sparse coding methods. We show its general applicability to the problem of lesion segmentation by evaluating our approach on synthetic and clinical image data and comparing it to state-of-the-art methods. Furthermore the potential of using dictionary learning and sparse coding for such segmentation tasks is investigated and various possibilities for further experiments are discussed.

  4. The Effect of Morphemic Homophony on the Processing of Japanese Two-kanji Compound Words

    ERIC Educational Resources Information Center

    Tamaoka, Katsuo

    2005-01-01

    Two experiments investigated the effect of kanji morphemic homophony on lexical decision and naming. Effects were examined from both the left-hand and right-hand positions of Japanese two-kanji compound words. The number of homophones affected the processing of compound words in the same way for both tasks. For left-hand kanji, fewer morphemic…

  5. Effects of Word and Morpheme Familiarity on Reading of Derived Words

    ERIC Educational Resources Information Center

    Carlisle, Joanne F.; Katz, Lauren A.

    2006-01-01

    The purpose of this study is to examine factors that influence students' reading of derived words. Recent research suggests that the lexical quality of a derived word depends on the familiarity of the word, its morphemic constituents (i.e., base word and affixes), and the frequency with which the base word appears in other words (i.e., members of…

  6. The Lexical Status of Basic Arabic Verb Morphemes among Dyslexic Children

    ERIC Educational Resources Information Center

    Abu-Rabia, Salim; Saliba, Fadi

    2008-01-01

    The masked priming paradigm was used to examine the role of the root and verb pattern morphemes in lexical access within the verb system of Arabic. Three groups participated in the study: grade 6 dyslexics, a reading-level-matched group and grade 6 normal readers. The first group consisted of: 28 grade 6 reading disabled (RD) students, 8 girls and…

  7. The Separability of Morphological Processes from Semantic Meaning and Syntactic Class in Production of Single Words: Evidence from the Hebrew Root Morpheme

    ERIC Educational Resources Information Center

    Deutsch, Avital

    2016-01-01

    In the present study we investigated to what extent the morphological facilitation effect induced by the derivational root morpheme in Hebrew is independent of semantic meaning and grammatical information of the part of speech involved. Using the picture-word interference paradigm with auditorily presented distractors, Experiment 1 compared the…

  8. The Effects of Morphemic Vocabulary Instruction on Prefix Vocabulary and Sentence Comprehension for Middle School Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Brown, Shannon Harris; Lignugaris-Kraft, Benjamin; Forbush, David E.

    2016-01-01

    A limited vocabulary is a substantial obstacle to success in reading comprehension (Graves, 2004). A morphemic approach to vocabulary instruction may be an effective method for increasing student outcomes in both word knowledge and reading comprehension (Kuo & Anderson, 2006; Reed, 2008). The purpose of this research was to examine the effects…

  9. Sensitivity to the Positional Information of Morphemes inside Chinese Compound Words and Its Relationship with Word Reading

    ERIC Educational Resources Information Center

    Liu, Duo; Chung, Kevin Kien Hoa; Zhang, Yimin; Lu, Zheng

    2014-01-01

    The purpose of the present study was to investigate developmental differences in lexical processing and sensitivity to the positional information of constituent morphemes with reference to Chinese word-reading ability. One hundred mainland Chinese children (50 second graders and 50 third graders) and 22 high school students were tested with a…

  10. An Examination of the Morpheme BE in Children with Specific Language Impairment: The Role of Contractibility and Grammatical Form Class.

    ERIC Educational Resources Information Center

    Cleave, Patricia L.; Rice, Mabel L.

    1997-01-01

    Production of the morpheme BE was studied among 22 children (ages 4-5) with and without specific language impairment (SLI). Contractible contexts were produced more accurately than uncontractible contexts by both groups, and there were no significant interactions between language status and contractibility. Copula forms were produced more…

  11. Pulmonary Lobe Segmentation with Probabilistic Segmentation of the Fissures and a Groupwise Fissure Prior

    PubMed Central

    Bragman, Felix J.S.; McClelland, Jamie R.; Jacob, Joseph; Hurst, John R.; Hawkes, David J.

    2017-01-01

    A fully automated, unsupervised lobe segmentation algorithm is presented based on a probabilistic segmentation of the fissures and the simultaneous construction of a population model of the fissures. A two-class probabilistic segmentation segments the lung into candidate fissure voxels and the surrounding parenchyma. This was combined with anatomical information and a groupwise fissure prior to drive non-parametric surface fitting to obtain the final segmentation. The performance of our fissure segmentation was validated on 30 patients from the COPDGene cohort, achieving a high median F1-score of 0.90 and showed general insensitivity to filter parameters. We evaluated our lobe segmentation algorithm on the LOLA11 dataset, which contains 55 cases at varying levels of pathology. We achieved the highest score of 0.884 of the automated algorithms. Our method was further tested quantitatively and qualitatively on 80 patients from the COPDGene study at varying levels of functional impairment. Accurate segmentation of the lobes is shown at various degrees of fissure incompleteness for 96% of all cases. We also show the utility of including a groupwise prior in segmenting the lobes in regions of grossly incomplete fissures. PMID:28436850

  12. Unsupervised segmentation of brain regions with similar microstructural properties: application to alcoholism.

    PubMed

    Cosa, Alejandro; Canals, Santiago; Valles-Lluch, Ana; Moratal, David

    2013-01-01

    In this work, a novel brain MRI segmentation approach evaluates microstructural differences between groups. Going further from the traditional segmentation of brain tissues (white matter -WM-, gray matter -GM- and cerebrospinal fluid -CSF- or a mixture of them), a new way to classify brain areas is proposed using their microstructural MR properties. Eight rats were studied using the proposed methodology identifying regions which present microstructural differences as a consequence on one month of hard alcohol consumption. Differences in relaxation times of the tissues have been found in different brain regions (p<0.05). Furthermore, these changes allowed the automatic classification of the animals based on their drinking history (hit rate of 93.75 % of the cases).

  13. Mathematical morphology for automated analysis of remotely sensed objects in radar images

    NASA Technical Reports Server (NTRS)

    Daida, Jason M.; Vesecky, John F.

    1991-01-01

    A symbiosis of pyramidal segmentation and morphological transmission is described. The pyramidal segmentation portion of the symbiosis has resulted in low (2.6 percent) misclassification error rate for a one-look simulation. Other simulations indicate lower error rates (1.8 percent for a four-look image). The morphological transformation portion has resulted in meaningful partitions with a minimal loss of fractal boundary information. An unpublished version of Thicken, suitable for watersheds transformations of fractal objects, is also presented. It is demonstrated that the proposed symbiosis works with SAR (synthetic aperture radar) images: in this case, a four-look Seasat image of sea ice. It is concluded that the symbiotic forms of both segmentation and morphological transformation seem well suited for unsupervised geophysical analysis.

  14. Variations among Adults in Their Use of Morphemic Spelling Rules and Word-Specific Knowledge when Spelling

    ERIC Educational Resources Information Center

    Mitchell, Paul; Kemp, Nenagh; Bryant, Peter

    2011-01-01

    The purpose of this research was to examine whether adults rely on morphemic spelling rules or word-specific knowledge when spelling simple words. We examined adults' knowledge of two of the simplest and most reliable rules in English spelling concerning the morphological word ending -s. This spelling is required for regular plural nouns (e.g.,…

  15. Explaining the "Natural Order of L2 Morpheme Acquisition" in English: A Meta-Analysis of Multiple Determinants

    ERIC Educational Resources Information Center

    Goldschneider, Jennifer M.; DeKeyser, Robert M.

    2005-01-01

    This meta-analysis pools data from 25 years of research on the order of acquisition of English grammatical morphemes by students of English as a second language (ESL). Some researchers have posited a "natural" order of acquisition common to all ESL learners, but no single cause has been shown for this phenomenon. Our study investigated…

  16. Hard exudates segmentation based on learned initial seeds and iterative graph cut.

    PubMed

    Kusakunniran, Worapan; Wu, Qiang; Ritthipravat, Panrasee; Zhang, Jian

    2018-05-01

    (Background and Objective): The occurrence of hard exudates is one of the early signs of diabetic retinopathy which is one of the leading causes of the blindness. Many patients with diabetic retinopathy lose their vision because of the late detection of the disease. Thus, this paper is to propose a novel method of hard exudates segmentation in retinal images in an automatic way. (Methods): The existing methods are based on either supervised or unsupervised learning techniques. In addition, the learned segmentation models may often cause miss-detection and/or fault-detection of hard exudates, due to the lack of rich characteristics, the intra-variations, and the similarity with other components in the retinal image. Thus, in this paper, the supervised learning based on the multilayer perceptron (MLP) is only used to identify initial seeds with high confidences to be hard exudates. Then, the segmentation is finalized by unsupervised learning based on the iterative graph cut (GC) using clusters of initial seeds. Also, in order to reduce color intra-variations of hard exudates in different retinal images, the color transfer (CT) is applied to normalize their color information, in the pre-processing step. (Results): The experiments and comparisons with the other existing methods are based on the two well-known datasets, e_ophtha EX and DIARETDB1. It can be seen that the proposed method outperforms the other existing methods in the literature, with the sensitivity in the pixel-level of 0.891 for the DIARETDB1 dataset and 0.564 for the e_ophtha EX dataset. The cross datasets validation where the training process is performed on one dataset and the testing process is performed on another dataset is also evaluated in this paper, in order to illustrate the robustness of the proposed method. (Conclusions): This newly proposed method integrates the supervised learning and unsupervised learning based techniques. It achieves the improved performance, when compared with the existing methods in the literature. The robustness of the proposed method for the scenario of cross datasets could enhance its practical usage. That is, the trained model could be more practical for unseen data in the real-world situation, especially when the capturing environments of training and testing images are not the same. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Automatic segmentation of amyloid plaques in MR images using unsupervised SVM

    PubMed Central

    Iordanescu, Gheorghe; Venkatasubramanian, Palamadai N.; Wyrwicz, Alice M.

    2011-01-01

    Deposition of the β-amyloid peptide (Aβ) is an important pathological hallmark of Alzheimer’s disease (AD). However, reliable quantification of amyloid plaques in both human and animal brains remains a challenge. We present here a novel automatic plaque segmentation algorithm based on the intrinsic MR signal characteristics of plaques. This algorithm identifies plaque candidates in MR data by using watershed transform, which extracts regions with low intensities completely surrounded by higher intensity neighbors. These candidates are classified as plaque or non-plaque by an unsupervised learning method using features derived from the MR data intensity. The algorithm performance is validated by comparison with histology. We also demonstrate the algorithm’s ability to detect age-related changes in plaque load ex vivo in 5×FAD APP transgenic mice. To our knowledge, this work represents the first quantitative method for characterizing amyloid plaques in MRI data. The proposed method can be used to describe the spatio-temporal progression of amyloid deposition, which is necessary for understanding the evolution of plaque pathology in mouse models of AD and to evaluate the efficacy of emergent amyloid-targeting therapies in preclinical trials. PMID:22189675

  18. From image captioning to video summary using deep recurrent networks and unsupervised segmentation

    NASA Astrophysics Data System (ADS)

    Morosanu, Bogdan-Andrei; Lemnaru, Camelia

    2018-04-01

    Automatic captioning systems based on recurrent neural networks have been tremendously successful at providing realistic natural language captions for complex and varied image data. We explore methods for adapting existing models trained on large image caption data sets to a similar problem, that of summarising videos using natural language descriptions and frame selection. These architectures create internal high level representations of the input image that can be used to define probability distributions and distance metrics on these distributions. Specifically, we interpret each hidden unit inside a layer of the caption model as representing the un-normalised log probability of some unknown image feature of interest for the caption generation process. We can then apply well understood statistical divergence measures to express the difference between images and create an unsupervised segmentation of video frames, classifying consecutive images of low divergence as belonging to the same context, and those of high divergence as belonging to different contexts. To provide a final summary of the video, we provide a group of selected frames and a text description accompanying them, allowing a user to perform a quick exploration of large unlabeled video databases.

  19. Data Mining for Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Mack, Daniel; Mylaraswamy, Dinkar; Bharadwaj, Raj

    2013-01-01

    The Vehicle Integrated Prognostics Reasoner (VIPR) program describes methods for enhanced diagnostics as well as a prognostic extension to current state of art Aircraft Diagnostic and Maintenance System (ADMS). VIPR introduced a new anomaly detection function for discovering previously undetected and undocumented situations, where there are clear deviations from nominal behavior. Once a baseline (nominal model of operations) is established, the detection and analysis is split between on-aircraft outlier generation and off-aircraft expert analysis to characterize and classify events that may not have been anticipated by individual system providers. Offline expert analysis is supported by data curation and data mining algorithms that can be applied in the contexts of supervised learning methods and unsupervised learning. In this report, we discuss efficient methods to implement the Kolmogorov complexity measure using compression algorithms, and run a systematic empirical analysis to determine the best compression measure. Our experiments established that the combination of the DZIP compression algorithm and CiDM distance measure provides the best results for capturing relevant properties of time series data encountered in aircraft operations. This combination was used as the basis for developing an unsupervised learning algorithm to define "nominal" flight segments using historical flight segments.

  20. Accommodation of end-state comfort reveals subphonemic planning in speech

    PubMed Central

    Gick, Bryan

    2015-01-01

    Applying Rosenbaum’s “end-state comfort” hypothesis (Rosenbaum et al., 1992, 1996) to tongue motion provides evidence of long-distance subphonemic planning in speech. Speakers’ tongue postures may anticipate upcoming speech up to three segments, two syllables, and a morpheme or word boundary later. We used m-mode ultrasound imaging to measure the direction of tongue tip/blade movements for known variants of flap/tap allophones of North American English /t/ and /d/. Results show that speakers produce different flap variants early in words or word sequences so as to facilitate the kinematic needs of flap/tap or other /r/ variants that appear later in the word or word sequence. Similar results were also observed across word boundaries, indicating that this is not a lexical effect. PMID:25790787

  1. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin.

    PubMed

    Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G

    2017-01-01

    Segmenting objects of interest from 3D data sets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution, and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, the shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance, and unknown locations. The driving application that inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear, and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease, and cancer usually start. Detecting the DEJ is challenging, because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys." In addition, RCM imaging resolution, contrast, and intensity vary with depth. Thus, a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10- 20 μm .

  2. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin

    PubMed Central

    Ghanta, Sindhu; Jordan, Michael I.; Kose, Kivanc; Brooks, Dana H.; Rajadhyaksha, Milind; Dy, Jennifer G.

    2016-01-01

    Segmenting objects of interest from 3D datasets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance and unknown locations. The driving application which inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped “peaks and valleys”. In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10 – 20µm. PMID:27723590

  3. The Anatomy of the Role of Morphological Awareness in Chinese Character Learning: The Mediation of Vocabulary and Semantic Radical Knowledge and the Moderation of Morpheme Family Size

    ERIC Educational Resources Information Center

    Liu, Duo; Li, Hong; Wong, Kwok Shing Richard

    2017-01-01

    In the present study, the mediating roles of syllable awareness, orthographic knowledge, and vocabulary skills and the moderating role of morpheme family size in the association between morphological awareness and Chinese character reading were investigated with 176 second-grade Hong Kong Chinese children. In the path analyses, the results…

  4. Examination of the Locus of Positional Effects on Children's Production of Plural -s: Considerations From Local and Global Speech Planning.

    PubMed

    Theodore, Rachel M; Demuth, Katherine; Shattuck-Hufnagel, Stefanie

    2015-06-01

    Prosodic and articulatory factors influence children's production of inflectional morphemes. For example, plural -s is produced more reliably in utterance-final compared to utterance-medial position (i.e., the positional effect), which has been attributed to the increased planning time in utterance-final position. In previous investigations of plural -s, utterance-medial plurals were followed by a stop consonant (e.g., dogsbark), inducing high articulatory complexity. We examined whether the positional effect would be observed if the utterance-medial context were simplified to a following vowel. An elicited imitation task was used to collect productions of plural nouns from 2-year-old children. Nouns were elicited utterance-medially and utterance-finally, with the medial plural followed by either a stressed or an unstressed vowel. Acoustic analysis was used to identify evidence of morpheme production. The positional effect was absent when the morpheme was followed by a vowel (e.g., dogseat). However, it returned when the vowel-initial word contained 2 syllables (e.g., dogsarrive), suggesting that the increased processing load in the latter condition negated the facilitative effect of the easy articulatory context. Children's productions of grammatical morphemes reflect a rich interaction between emerging levels of linguistic competence, raising considerations for diagnosis and rehabilitation of language disorders.

  5. Alternative tense and agreement morpheme measures for assessing grammatical deficits during the preschool period.

    PubMed

    Gladfelter, Allison; Leonard, Laurence B

    2013-04-01

    P. A. Hadley and H. Short (2005) developed a set of measures designed to assess the emerging diversity and productivity of tense and agreement (T/A) morpheme use by 2-year-olds. The authors extended 2 of these measures to the preschool years to evaluate their utility in distinguishing children with specific language impairment (SLI) from their typically developing (TD) peers. Spontaneous speech samples from 55 children (25 with SLI, 30 TD) at 2 different age levels (4;0-4;6 [years;months] and 5;0-5;6) were analyzed, using a traditional T/A morphology composite that assessed accuracy, and the Hadley and Short measures of Tense Marker Total (assessing diversity of T/A morpheme use) and Productivity Score (assessing productivity of major T/A categories). All 3 measures showed acceptable levels of sensitivity and specificity. In addition, similar differences in levels of productivity across T/A categories were seen in the TD and SLI groups. The Tense Marker Total and Productivity Score measures seem to have considerable utility for preschool-age children, in that they provide information about specific T/A morphemes and major T/A categories that are not distinguished using the traditional composite measure. The findings are discussed within the framework of the gradual morphosyntactic learning account.

  6. Surface mapping via unsupervised classification of remote sensing: application to MESSENGER/MASCS and DAWN/VIRS data.

    NASA Astrophysics Data System (ADS)

    D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.

    2017-12-01

    Machine-learning achieved unprecedented results in high-dimensional data processing tasks with wide applications in various fields. Due to the growing number of complex nonlinear systems that have to be investigated in science and the bare raw size of data nowadays available, ML offers the unique ability to extract knowledge, regardless the specific application field. Examples are image segmentation, supervised/unsupervised/ semi-supervised classification, feature extraction, data dimensionality analysis/reduction.The MASCS instrument has mapped Mercury surface in the 400-1145 nm wavelength range during orbital observations by the MESSENGER spacecraft. We have conducted k-means unsupervised hierarchical clustering to identify and characterize spectral units from MASCS observations. The results display a dichotomy: a polar and equatorial units, possibly linked to compositional differences or weathering due to irradiation. To explore possible relations between composition and spectral behavior, we have compared the spectral provinces with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS).For the Vesta application on DAWN Visible and infrared spectrometer (VIR) data, we explored several Machine Learning techniques: image segmentation method, stream algorithm and hierarchical clustering.The algorithm successfully separates the Olivine outcrops around two craters on Vesta's surface [1]. New maps summarizing the spectral and chemical signature of the surface could be automatically produced.We conclude that instead of hand digging in data, scientist could choose a subset of algorithms with well known feature (i.e. efficacy on the particular problem, speed, accuracy) and focus their effort in understanding what important characteristic of the groups found in the data mean. [1] E Ammannito et al. "Olivine in an unexpected location on Vesta's surface". In: Nature 504.7478 (2013), pp. 122-125.

  7. Optimal reinforcement of training datasets in semi-supervised landmark-based segmentation

    NASA Astrophysics Data System (ADS)

    Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2015-03-01

    During the last couple of decades, the development of computerized image segmentation shifted from unsupervised to supervised methods, which made segmentation results more accurate and robust. However, the main disadvantage of supervised segmentation is a need for manual image annotation that is time-consuming and subjected to human error. To reduce the need for manual annotation, we propose a novel learning approach for training dataset reinforcement in the area of landmark-based segmentation, where newly detected landmarks are optimally combined with reference landmarks from the training dataset and therefore enriches the training process. The approach is formulated as a nonlinear optimization problem, where the solution is a vector of weighting factors that measures how reliable are the detected landmarks. The detected landmarks that are found to be more reliable are included into the training procedure with higher weighting factors, whereas the detected landmarks that are found to be less reliable are included with lower weighting factors. The approach is integrated into the landmark-based game-theoretic segmentation framework and validated against the problem of lung field segmentation from chest radiographs.

  8. Quantification and Segmentation of Brain Tissues from MR Images: A Probabilistic Neural Network Approach

    PubMed Central

    Wang, Yue; Adalý, Tülay; Kung, Sun-Yuan; Szabo, Zsolt

    2007-01-01

    This paper presents a probabilistic neural network based technique for unsupervised quantification and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can be solved by distribution learning and relaxation labeling, resulting in an efficient method that may be particularly useful in quantifying and segmenting abnormal brain tissues where the number of tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses suitable statistical models for both the pixel and context images and formulates the problem in terms of model-histogram fitting and global consistency labeling. The quantification is achieved by probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation network. The experimental results show the efficient and robust performance of the new algorithm and that it outperforms the conventional classification based approaches. PMID:18172510

  9. Surgical wound segmentation based on adaptive threshold edge detection and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shih, Hsueh-Fu; Ho, Te-Wei; Hsu, Jui-Tse; Chang, Chun-Che; Lai, Feipei; Wu, Jin-Ming

    2017-02-01

    Postsurgical wound care has a great impact on patients' prognosis. It often takes few days, even few weeks, for the wound to stabilize, which incurs a great cost of health care and nursing resources. To assess the wound condition and diagnosis, it is important to segment out the wound region for further analysis. However, the scenario of this strategy often consists of complicated background and noise. In this study, we propose a wound segmentation algorithm based on Canny edge detector and genetic algorithm with an unsupervised evaluation function. The results were evaluated by the 112 clinical images, and 94.3% of images were correctly segmented. The judgment was based on the evaluation of experimented medical doctors. This capability to extract complete wound regions, makes it possible to conduct further image analysis such as intelligent recovery evaluation and automatic infection requirements.

  10. Structure, form, and meaning in the mental lexicon: evidence from Arabic

    PubMed Central

    Boudelaa, Sami; Marslen-Wilson, William D.

    2015-01-01

    Does the organization of the mental lexicon reflect the combination of abstract underlying morphemic units or the concatenation of word-level phonological units? We address these fundamental issues in Arabic, a Semitic language where every surface form is potentially analyzable into abstract morphemic units – the word pattern and the root – and where this view contrasts with stem-based approaches, chiefly driven by linguistic considerations, in which neither roots nor word patterns play independent roles in word formation and lexical representation. Five cross-modal priming experiments examine the processing of morphologically complex forms in the three major subdivisions of the Arabic lexicon – deverbal nouns, verbs, and primitive nouns. The results demonstrate that root and word pattern morphemes function as abstract cognitive entities, operating independently of semantic factors and dissociable from possible phonological confounds, while stem-based approaches consistently fail to accommodate the basic psycholinguistic properties of the Arabic mental lexicon. PMID:26682237

  11. Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation.

    PubMed

    Khalilzadeh, Mohammad Mahdi; Fatemizadeh, Emad; Behnam, Hamid

    2013-06-01

    Automatic extraction of the varying regions of magnetic resonance images is required as a prior step in a diagnostic intelligent system. The sparsest representation and high-dimensional feature are provided based on learned dictionary. The classification is done by employing the technique that computes the reconstruction error locally and non-locally of each pixel. The acquired results from the real and simulated images are superior to the best MRI segmentation method with regard to the stability advantages. In addition, it is segmented exactly through a formula taken from the distance and sparse factors. Also, it is done automatically taking sparse factor in unsupervised clustering methods whose results have been improved. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Unsupervised Word Spotting in Historical Handwritten Document Images using Document-oriented Local Features.

    PubMed

    Zagoris, Konstantinos; Pratikakis, Ioannis; Gatos, Basilis

    2017-05-03

    Word spotting strategies employed in historical handwritten documents face many challenges due to variation in the writing style and intense degradation. In this paper, a new method that permits effective word spotting in handwritten documents is presented that it relies upon document-oriented local features which take into account information around representative keypoints as well a matching process that incorporates spatial context in a local proximity search without using any training data. Experimental results on four historical handwritten datasets for two different scenarios (segmentation-based and segmentation-free) using standard evaluation measures show the improved performance achieved by the proposed methodology.

  13. Can segmentation evaluation metric be used as an indicator of land cover classification accuracy?

    NASA Astrophysics Data System (ADS)

    Švab Lenarčič, Andreja; Đurić, Nataša; Čotar, Klemen; Ritlop, Klemen; Oštir, Krištof

    2016-10-01

    It is a broadly established belief that the segmentation result significantly affects subsequent image classification accuracy. However, the actual correlation between the two has never been evaluated. Such an evaluation would be of considerable importance for any attempts to automate the object-based classification process, as it would reduce the amount of user intervention required to fine-tune the segmentation parameters. We conducted an assessment of segmentation and classification by analyzing 100 different segmentation parameter combinations, 3 classifiers, 5 land cover classes, 20 segmentation evaluation metrics, and 7 classification accuracy measures. The reliability definition of segmentation evaluation metrics as indicators of land cover classification accuracy was based on the linear correlation between the two. All unsupervised metrics that are not based on number of segments have a very strong correlation with all classification measures and are therefore reliable as indicators of land cover classification accuracy. On the other hand, correlation at supervised metrics is dependent on so many factors that it cannot be trusted as a reliable classification quality indicator. Algorithms for land cover classification studied in this paper are widely used; therefore, presented results are applicable to a wider area.

  14. Using deep learning in image hyper spectral segmentation, classification, and detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Su, Zhenyu

    2018-02-01

    Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.

  15. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    NASA Astrophysics Data System (ADS)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  16. Unsupervised sputum color image segmentation for lung cancer diagnosis based on a Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sammouda, Rachid; Niki, Noboru; Nishitani, Hiroshi; Nakamura, S.; Mori, Shinichiro

    1997-04-01

    The paper presents a method for automatic segmentation of sputum cells with color images, to develop an efficient algorithm for lung cancer diagnosis based on a Hopfield neural network. We formulate the segmentation problem as a minimization of an energy function constructed with two terms, the cost-term as a sum of squared errors, and the second term a temporary noise added to the network as an excitation to escape certain local minima with the result of being closer to the global minimum. To increase the accuracy in segmenting the regions of interest, a preclassification technique is used to extract the sputum cell regions within the color image and remove those of the debris cells. The former is then given with the raw image to the input of Hopfield neural network to make a crisp segmentation by assigning each pixel to label such as background, cytoplasm, and nucleus. The proposed technique has yielded correct segmentation of complex scene of sputum prepared by ordinary manual staining method in most of the tested images selected from our database containing thousands of sputum color images.

  17. Residential roof condition assessment system using deep learning

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Kerekes, John P.; Xu, Zhuoyi; Wang, Yandong

    2018-01-01

    The emergence of high resolution (HR) and ultra high resolution (UHR) airborne remote sensing imagery is enabling humans to move beyond traditional land cover analysis applications to the detailed characterization of surface objects. A residential roof condition assessment method using techniques from deep learning is presented. The proposed method operates on individual roofs and divides the task into two stages: (1) roof segmentation, followed by (2) condition classification of the segmented roof regions. As the first step in this process, a self-tuning method is proposed to segment the images into small homogeneous areas. The segmentation is initialized with simple linear iterative clustering followed by deep learned feature extraction and region merging, with the optimal result selected by an unsupervised index, Q. After the segmentation, a pretrained residual network is fine-tuned on the augmented roof segments using a proposed k-pixel extension technique for classification. The effectiveness of the proposed algorithm was demonstrated on both HR and UHR imagery collected by EagleView over different study sites. The proposed algorithm has yielded promising results and has outperformed traditional machine learning methods using hand-crafted features.

  18. Information properties of morphologically complex words modulate brain activity during word reading

    PubMed Central

    Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-01-01

    Abstract Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well‐defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito‐temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole‐word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. PMID:29524274

  19. Information properties of morphologically complex words modulate brain activity during word reading.

    PubMed

    Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-06-01

    Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. Report: Unsupervised identification of malaria parasites using computer vision.

    PubMed

    Khan, Najeed Ahmed; Pervaz, Hassan; Latif, Arsalan; Musharaff, Ayesha

    2017-01-01

    Malaria in human is a serious and fatal tropical disease. This disease results from Anopheles mosquitoes that are infected by Plasmodium species. The clinical diagnosis of malaria based on the history, symptoms and clinical findings must always be confirmed by laboratory diagnosis. Laboratory diagnosis of malaria involves identification of malaria parasite or its antigen / products in the blood of the patient. Manual diagnosis of malaria parasite by the pathologists has proven to become cumbersome. Therefore, there is a need of automatic, efficient and accurate identification of malaria parasite. In this paper, we proposed a computer vision based approach to identify the malaria parasite from light microscopy images. This research deals with the challenges involved in the automatic detection of malaria parasite tissues. Our proposed method is based on the pixel-based approach. We used K-means clustering (unsupervised approach) for the segmentation to identify malaria parasite tissues.

  1. Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability.

    PubMed

    Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2015-12-01

    This paper presents an unsupervised Bayesian algorithm for hyperspectral image unmixing, accounting for endmember variability. The pixels are modeled by a linear combination of endmembers weighted by their corresponding abundances. However, the endmembers are assumed random to consider their variability in the image. An additive noise is also considered in the proposed model, generalizing the normal compositional model. The proposed algorithm exploits the whole image to benefit from both spectral and spatial information. It estimates both the mean and the covariance matrix of each endmember in the image. This allows the behavior of each material to be analyzed and its variability to be quantified in the scene. A spatial segmentation is also obtained based on the estimated abundances. In order to estimate the parameters associated with the proposed Bayesian model, we propose to use a Hamiltonian Monte Carlo algorithm. The performance of the resulting unmixing strategy is evaluated through simulations conducted on both synthetic and real data.

  2. Morphological awareness as a function of semantics, phonology, and orthography and as a predictor of reading comprehension in Chinese.

    PubMed

    Li, Hong; Dronjic, Vedran; Chen, X I; Li, Yixun; Cheng, Yahua; Wu, Xinchun

    2017-09-01

    This study investigates the contributions of semantic, phonological, and orthographic factors to morphological awareness of 413 Chinese-speaking students in Grades 2, 4, and 6, and its relationship with reading comprehension. Participants were orally presented with pairs of bimorphemic compounds and asked to judge whether the first morphemes of the words shared a meaning. Morpheme identity (same or different), whole-word semantic relatedness (high or low), orthography (same or different), and phonology (same or different) were manipulated. By Grade 6, children were able to focus on meaning similarities across morphemes while ignoring the distraction of form, but they remained influenced by whole-word semantic relatedness. Children's ability to overcome the distraction of phonology consistently improved with age, but did not reach ceiling, whereas the parallel ability for orthography reached ceiling at Grade 6. Morphological judgment performance was a significant unique predictor of reading comprehension when character naming and vocabulary knowledge were accounted for.

  3. Character order processing in Chinese reading.

    PubMed

    Gu, Junjuan; Li, Xingshan; Liversedge, Simon P

    2015-02-01

    We explored how character order information is encoded in isolated word processing or Chinese sentence reading in 2 experiments using a masked priming paradigm and a gaze-contingent display-change paradigm. The results showed that response latencies in the lexical decision task and reading times on the target word region were longer in the unrelated condition (the prime or the preview was unrelated with the target word) than the transposed-character condition (the prime or the preview was a transposition of the 2 characters of the target word), which were respectively longer than in the identity condition (the prime or preview was identical to the target word). These results show that character order is encoded at an early stage of processing in Chinese reading, but character position encoding was not strict. We also found that character order encoding was similar for single-morpheme and multiple-morpheme words, suggesting that morphemic status does not affect character order encoding. The current results represent an early contribution to our understanding of character order encoding during Chinese reading.

  4. Radio Model-free Noise Reduction of Radio Transmissions with Convolutional Autoencoders

    DTIC Science & Technology

    2016-09-01

    Encoder-Decoder Architecture for Image Segmentation .” Cornell University Library. Computing Research Repository (CoRR). abs/1511.00561. 2. Anthony J. Bell...Aaron C Courville, and Pascal Vincent. 2012. “Unsupervised Feature Learning and Deep Learning : A Review and New Perspectives.” Cornell University...Linux Journal 122(June):1–4. 5. Francois Chollet. 2015.“Keras: Deep Learning Library for TensorFlow and Theano.” Available online at https://github.com

  5. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images.

    PubMed

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2016-01-01

    Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN) model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods.

  6. Unsupervised detection and removal of muscle artifacts from scalp EEG recordings using canonical correlation analysis, wavelets and random forests.

    PubMed

    Anastasiadou, Maria N; Christodoulakis, Manolis; Papathanasiou, Eleftherios S; Papacostas, Savvas S; Mitsis, Georgios D

    2017-09-01

    This paper proposes supervised and unsupervised algorithms for automatic muscle artifact detection and removal from long-term EEG recordings, which combine canonical correlation analysis (CCA) and wavelets with random forests (RF). The proposed algorithms first perform CCA and continuous wavelet transform of the canonical components to generate a number of features which include component autocorrelation values and wavelet coefficient magnitude values. A subset of the most important features is subsequently selected using RF and labelled observations (supervised case) or synthetic data constructed from the original observations (unsupervised case). The proposed algorithms are evaluated using realistic simulation data as well as 30min epochs of non-invasive EEG recordings obtained from ten patients with epilepsy. We assessed the performance of the proposed algorithms using classification performance and goodness-of-fit values for noisy and noise-free signal windows. In the simulation study, where the ground truth was known, the proposed algorithms yielded almost perfect performance. In the case of experimental data, where expert marking was performed, the results suggest that both the supervised and unsupervised algorithm versions were able to remove artifacts without affecting noise-free channels considerably, outperforming standard CCA, independent component analysis (ICA) and Lagged Auto-Mutual Information Clustering (LAMIC). The proposed algorithms achieved excellent performance for both simulation and experimental data. Importantly, for the first time to our knowledge, we were able to perform entirely unsupervised artifact removal, i.e. without using already marked noisy data segments, achieving performance that is comparable to the supervised case. Overall, the results suggest that the proposed algorithms yield significant future potential for improving EEG signal quality in research or clinical settings without the need for marking by expert neurophysiologists, EMG signal recording and user visual inspection. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. Retinal blood vessel segmentation using fully convolutional network with transfer learning.

    PubMed

    Jiang, Zhexin; Zhang, Hao; Wang, Yi; Ko, Seok-Bum

    2018-04-26

    Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automated or computer-aided diagnosis systems. In this paper, a supervised method is presented based on a pre-trained fully convolutional network through transfer learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition and result merging. Meanwhile, additional unsupervised image post-processing techniques are applied to this proposed method so as to refine the final result. Extensive experiments have been conducted on DRIVE, STARE, CHASE_DB1 and HRF databases, and the accuracy of the cross-database test on these four databases is state-of-the-art, which also presents the high robustness of the proposed approach. This successful result has not only contributed to the area of automated retinal blood vessel segmentation but also supports the effectiveness of transfer learning when applying deep learning technique to medical imaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    NASA Astrophysics Data System (ADS)

    Korfiatis, P.; Kalogeropoulou, C.; Daoussis, D.; Petsas, T.; Adonopoulos, A.; Costaridou, L.

    2009-07-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  9. Cognitive and linguistic biases in morphology learning.

    PubMed

    Finley, Sara

    2018-05-30

    Morphology is the study of the relationship between form and meaning. The study of morphology involves understanding the rules and processes that underlie word formation, including the use and productivity of affixes, and the systems that create novel word forms. The present review explores these processes by examining the cognitive components that contribute to typological regularities among morphological systems across the world's language. The review will focus on research in morpheme segmentation, the suffixing preference, acquisition of morphophonology, and acquiring morphological categories and inflectional paradigms. The review will highlight research in a range of areas of linguistics, from child language acquisition, to computational modeling, to adult language learning experiments. In order to best understand the cognitive biases that shape morphological learning, a broad, interdisciplinary approach must be taken. This article is categorized under: Linguistics > Linguistic Theory Linguistics > Language Acquisition Psychology > Language. © 2018 Wiley Periodicals, Inc.

  10. Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks.

    PubMed

    Demirhan, Ayşe; Toru, Mustafa; Guler, Inan

    2015-07-01

    Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.

  11. Automatic segmentation of the left ventricle cavity and myocardium in MRI data.

    PubMed

    Lynch, M; Ghita, O; Whelan, P F

    2006-04-01

    A novel approach for the automatic segmentation has been developed to extract the epi-cardium and endo-cardium boundaries of the left ventricle (lv) of the heart. The developed segmentation scheme takes multi-slice and multi-phase magnetic resonance (MR) images of the heart, transversing the short-axis length from the base to the apex. Each image is taken at one instance in the heart's phase. The images are segmented using a diffusion-based filter followed by an unsupervised clustering technique and the resulting labels are checked to locate the (lv) cavity. From cardiac anatomy, the closest pool of blood to the lv cavity is the right ventricle cavity. The wall between these two blood-pools (interventricular septum) is measured to give an approximate thickness for the myocardium. This value is used when a radial search is performed on a gradient image to find appropriate robust segments of the epi-cardium boundary. The robust edge segments are then joined using a normal spline curve. Experimental results are presented with very encouraging qualitative and quantitative results and a comparison is made against the state-of-the art level-sets method.

  12. Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring.

    PubMed

    Kallenberg, Michiel; Petersen, Kersten; Nielsen, Mads; Ng, Andrew Y; Pengfei Diao; Igel, Christian; Vachon, Celine M; Holland, Katharina; Winkel, Rikke Rass; Karssemeijer, Nico; Lillholm, Martin

    2016-05-01

    Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.

  13. A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images.

    PubMed

    Calapez, Alexandre; Rosa, Agostinho

    2010-09-01

    Confocal laser scanning microscopy (CLSM) has been widely used in the life sciences for the characterization of cell processes because it allows the recording of the distribution of fluorescence-tagged macromolecules on a section of the living cell. It is in fact the cornerstone of many molecular transport and interaction quantification techniques where the identification of regions of interest through image segmentation is usually a required step. In many situations, because of the complexity of the recorded cellular structures or because of the amounts of data involved, image segmentation either is too difficult or inefficient to be done by hand and automated segmentation procedures have to be considered. Given the nature of CLSM images, statistical segmentation methodologies appear as natural candidates. In this work we propose a model to be used for statistical unsupervised CLSM image segmentation. The model is derived from the CLSM image formation mechanics and its performance is compared to the existing alternatives. Results show that it provides a much better description of the data on classes characterized by their mean intensity, making it suitable not only for segmentation methodologies with known number of classes but also for use with schemes aiming at the estimation of the number of classes through the application of cluster selection criteria.

  14. The time course of morphological processing during spoken word recognition in Chinese.

    PubMed

    Shen, Wei; Qu, Qingqing; Ni, Aiping; Zhou, Junyi; Li, Xingshan

    2017-12-01

    We investigated the time course of morphological processing during spoken word recognition using the printed-word paradigm. Chinese participants were asked to listen to a spoken disyllabic compound word while simultaneously viewing a printed-word display. Each visual display consisted of three printed words: a semantic associate of the first constituent of the compound word (morphemic competitor), a semantic associate of the whole compound word (whole-word competitor), and an unrelated word (distractor). Participants were directed to detect whether the spoken target word was on the visual display. Results indicated that both the morphemic and whole-word competitors attracted more fixations than the distractor. More importantly, the morphemic competitor began to diverge from the distractor immediately at the acoustic offset of the first constituent, which was earlier than the whole-word competitor. These results suggest that lexical access to the auditory word is incremental and morphological processing (i.e., semantic access to the first constituent) that occurs at an early processing stage before access to the representation of the whole word in Chinese.

  15. The Involvement of Morphological Information in the Memorization of Chinese Compound Words: Evidence from Memory Errors.

    PubMed

    Liu, Duo

    2016-02-01

    The processing of morphological information during Chinese word memorization was investigated in the present study. Participants were asked to study words presented to them on a computer screen in the studying phase and then judge whether presented words were old or new in the test phase. In addition to parent words (i.e. the words studied in the study phase), the test phase also included conjunction lures (constructed out of morphemes in the parent words) and new words (constructed out of entirely new morphemes). Three kinds of words (i.e. subordinate compounds, coordinative compounds, and single-morpheme words) were involved. In both two experiments, performance on lures worsened when both parent words and lures were coordinative compounds, compared to the condition when both were subordinate compounds. The different performance between compounds with different compounding structures in the test phase suggests the involvement of morphological information in the memorization of Chinese compound words. The spreading activation theory for memory and the interactive activation model for the processing of morphologically complex words were referred to for interpreting the results.

  16. An automatic taxonomy of galaxy morphology using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil

    2018-01-01

    We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.

  17. Unsupervised MRI segmentation of brain tissues using a local linear model and level set.

    PubMed

    Rivest-Hénault, David; Cheriet, Mohamed

    2011-02-01

    Real-world magnetic resonance imaging of the brain is affected by intensity nonuniformity (INU) phenomena which makes it difficult to fully automate the segmentation process. This difficult task is accomplished in this work by using a new method with two original features: (1) each brain tissue class is locally modeled using a local linear region representative, which allows us to account for the INU in an implicit way and to more accurately position the region's boundaries; and (2) the region models are embedded in the level set framework, so that the spatial coherence of the segmentation can be controlled in a natural way. Our new method has been tested on the ground-truthed Internet Brain Segmentation Repository (IBSR) database and gave promising results, with Tanimoto indexes ranging from 0.61 to 0.79 for the classification of the white matter and from 0.72 to 0.84 for the gray matter. To our knowledge, this is the first time a region-based level set model has been used to perform the segmentation of real-world MRI brain scans with convincing results. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    PubMed

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  19. A local segmentation parameter optimization approach for mapping heterogeneous urban environments using VHR imagery

    NASA Astrophysics Data System (ADS)

    Grippa, Tais; Georganos, Stefanos; Lennert, Moritz; Vanhuysse, Sabine; Wolff, Eléonore

    2017-10-01

    Mapping large heterogeneous urban areas using object-based image analysis (OBIA) remains challenging, especially with respect to the segmentation process. This could be explained both by the complex arrangement of heterogeneous land-cover classes and by the high diversity of urban patterns which can be encountered throughout the scene. In this context, using a single segmentation parameter to obtain satisfying segmentation results for the whole scene can be impossible. Nonetheless, it is possible to subdivide the whole city into smaller local zones, rather homogeneous according to their urban pattern. These zones can then be used to optimize the segmentation parameter locally, instead of using the whole image or a single representative spatial subset. This paper assesses the contribution of a local approach for the optimization of segmentation parameter compared to a global approach. Ouagadougou, located in sub-Saharan Africa, is used as case studies. First, the whole scene is segmented using a single globally optimized segmentation parameter. Second, the city is subdivided into 283 local zones, homogeneous in terms of building size and building density. Each local zone is then segmented using a locally optimized segmentation parameter. Unsupervised segmentation parameter optimization (USPO), relying on an optimization function which tends to maximize both intra-object homogeneity and inter-object heterogeneity, is used to select the segmentation parameter automatically for both approaches. Finally, a land-use/land-cover classification is performed using the Random Forest (RF) classifier. The results reveal that the local approach outperforms the global one, especially by limiting confusions between buildings and their bare-soil neighbors.

  20. Building damage assessment using airborne lidar

    NASA Astrophysics Data System (ADS)

    Axel, Colin; van Aardt, Jan

    2017-10-01

    The assessment of building damage following a natural disaster is a crucial step in determining the impact of the event itself and gauging reconstruction needs. Automatic methods for deriving damage maps from remotely sensed data are preferred, since they are regarded as being rapid and objective. We propose an algorithm for performing unsupervised building segmentation and damage assessment using airborne light detection and ranging (lidar) data. Local surface properties, including normal vectors and curvature, were used along with region growing to segment individual buildings in lidar point clouds. Damaged building candidates were identified based on rooftop inclination angle, and then damage was assessed using planarity and point height metrics. Validation of the building segmentation and damage assessment techniques were performed using airborne lidar data collected after the Haiti earthquake of 2010. Building segmentation and damage assessment accuracies of 93.8% and 78.9%, respectively, were obtained using lidar point clouds and expert damage assessments of 1953 buildings in heavily damaged regions. We believe this research presents an indication of the utility of airborne lidar remote sensing for increasing the efficiency and speed at which emergency response operations are performed.

  1. Fuzzy Markov random fields versus chains for multispectral image segmentation.

    PubMed

    Salzenstein, Fabien; Collet, Christophe

    2006-11-01

    This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data.

  2. Nucleus segmentation in histology images with hierarchical multilevel thresholding

    NASA Astrophysics Data System (ADS)

    Ahmady Phoulady, Hady; Goldgof, Dmitry B.; Hall, Lawrence O.; Mouton, Peter R.

    2016-03-01

    Automatic segmentation of histological images is an important step for increasing throughput while maintaining high accuracy, avoiding variation from subjective bias, and reducing the costs for diagnosing human illnesses such as cancer and Alzheimer's disease. In this paper, we present a novel method for unsupervised segmentation of cell nuclei in stained histology tissue. Following an initial preprocessing step involving color deconvolution and image reconstruction, the segmentation step consists of multilevel thresholding and a series of morphological operations. The only parameter required for the method is the minimum region size, which is set according to the resolution of the image. Hence, the proposed method requires no training sets or parameter learning. Because the algorithm requires no assumptions or a priori information with regard to cell morphology, the automatic approach is generalizable across a wide range of tissues. Evaluation across a dataset consisting of diverse tissues, including breast, liver, gastric mucosa and bone marrow, shows superior performance over four other recent methods on the same dataset in terms of F-measure with precision and recall of 0.929 and 0.886, respectively.

  3. Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Zamora, G.; Bauman, W.; Soliz, P.

    2012-03-01

    Retinal vasculature is one of the most important anatomical structures in digital retinal photographs. Accurate segmentation of retinal blood vessels is an essential task in automated analysis of retinopathy. This paper presents a new and effective vessel segmentation algorithm that features computational simplicity and fast implementation. This method uses morphological pre-processing to decrease the disturbance of bright structures and lesions before vessel extraction. Next, a vessel probability map is generated by computing the eigenvalues of the second derivatives of Gaussian filtered image at multiple scales. Then, the second order local entropy thresholding is applied to segment the vessel map. Lastly, a rule-based decision step, which measures the geometric shape difference between vessels and lesions is applied to reduce false positives. The algorithm is evaluated on the low-resolution DRIVE and STARE databases and the publicly available high-resolution image database from Friedrich-Alexander University Erlangen-Nuremberg, Germany). The proposed method achieved comparable performance to state of the art unsupervised vessel segmentation methods with a competitive faster speed on the DRIVE and STARE databases. For the high resolution fundus image database, the proposed algorithm outperforms an existing approach both on performance and speed. The efficiency and robustness make the blood vessel segmentation method described here suitable for broad application in automated analysis of retinal images.

  4. Unsupervised definition of the tibia-femoral joint regions of the human knee and its applications to cartilage analysis

    NASA Astrophysics Data System (ADS)

    Tamez-Peña, José G.; Barbu-McInnis, Monica; Totterman, Saara

    2006-03-01

    Abnormal MR findings including cartilage defects, cartilage denuded areas, osteophytes, and bone marrow edema (BME) are used in staging and evaluating the degree of osteoarthritis (OA) in the knee. The locations of the abnormal findings have been correlated to the degree of pain and stiffness of the joint in the same location. The definition of the anatomic region in MR images is not always an objective task, due to the lack of clear anatomical features. This uncertainty causes variance in the location of the abnormality between readers and time points. Therefore, it is important to have a reproducible system to define the anatomic regions. This works present a computerized approach to define the different anatomic knee regions. The approach is based on an algorithm that uses unique features of the femur and its spatial relation in the extended knee. The femur features are found from three dimensional segmentation maps of the knee. From the segmentation maps, the algorithm automatically divides the femur cartilage into five anatomic regions: trochlea, medial weight bearing area, lateral weight bearing area, posterior medial femoral condyle, and posterior lateral femoral condyle. Furthermore, the algorithm automatically labels the medial and lateral tibia cartilage. The unsupervised definition of the knee regions allows a reproducible way to evaluate regional OA changes. This works will present the application of this automated algorithm for the regional analysis of the cartilage tissue.

  5. Use of Binary Partition Tree and energy minimization for object-based classification of urban land cover

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Bijker, Wietske; Stein, Alfred

    2015-04-01

    Two main challenges are faced when classifying urban land cover from very high resolution satellite images: obtaining an optimal image segmentation and distinguishing buildings from other man-made objects. For optimal segmentation, this work proposes a hierarchical representation of an image by means of a Binary Partition Tree (BPT) and an unsupervised evaluation of image segmentations by energy minimization. For building extraction, we apply fuzzy sets to create a fuzzy landscape of shadows which in turn involves a two-step procedure. The first step is a preliminarily image classification at a fine segmentation level to generate vegetation and shadow information. The second step models the directional relationship between building and shadow objects to extract building information at the optimal segmentation level. We conducted the experiments on two datasets of Pléiades images from Wuhan City, China. To demonstrate its performance, the proposed classification is compared at the optimal segmentation level with Maximum Likelihood Classification and Support Vector Machine classification. The results show that the proposed classification produced the highest overall accuracies and kappa coefficients, and the smallest over-classification and under-classification geometric errors. We conclude first that integrating BPT with energy minimization offers an effective means for image segmentation. Second, we conclude that the directional relationship between building and shadow objects represented by a fuzzy landscape is important for building extraction.

  6. Fast and robust segmentation of white blood cell images by self-supervised learning.

    PubMed

    Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo

    2018-04-01

    A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Hybrid region merging method for segmentation of high-resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi; Wang, Jiangeng; Wang, Zuo

    2014-12-01

    Image segmentation remains a challenging problem for object-based image analysis. In this paper, a hybrid region merging (HRM) method is proposed to segment high-resolution remote sensing images. HRM integrates the advantages of global-oriented and local-oriented region merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region, which provides an elegant way to avoid the problem of starting point assignment and to enhance the optimization ability for local-oriented region merging. During the region growing procedure, the merging iterations are constrained within the local vicinity, so that the segmentation is accelerated and can reflect the local context, as compared with the global-oriented method. A set of high-resolution remote sensing images is used to test the effectiveness of the HRM method, and three region-based remote sensing image segmentation methods are adopted for comparison, including the hierarchical stepwise optimization (HSWO) method, the local-mutual best region merging (LMM) method, and the multiresolution segmentation (MRS) method embedded in eCognition Developer software. Both the supervised evaluation and visual assessment show that HRM performs better than HSWO and LMM by combining both their advantages. The segmentation results of HRM and MRS are visually comparable, but HRM can describe objects as single regions better than MRS, and the supervised and unsupervised evaluation results further prove the superiority of HRM.

  8. Tree leaves extraction in natural images: comparative study of preprocessing tools and segmentation methods.

    PubMed

    Grand-Brochier, Manuel; Vacavant, Antoine; Cerutti, Guillaume; Kurtz, Camille; Weber, Jonathan; Tougne, Laure

    2015-05-01

    In this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti et al. (published in ReVeS Participation--Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, using preprocessing tools, such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti et al. (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally, we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones.

  9. A segmentation and classification scheme for single tooth in MicroCT images based on 3D level set and k-means+.

    PubMed

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2017-04-01

    Accurate classification of different anatomical structures of teeth from medical images provides crucial information for the stress analysis in dentistry. Usually, the anatomical structures of teeth are manually labeled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing 3 dimensional (3D) information, and classify the tooth by employing unsupervised learning i.e., k-means++ method. In order to evaluate the proposed method, the experiments are conducted on the sufficient and extensive datasets of mandibular molars. The experimental results show that our method can achieve higher accuracy and robustness compared to other three clustering methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Unsupervised texture image segmentation by improved neural network ART2

    NASA Technical Reports Server (NTRS)

    Wang, Zhiling; Labini, G. Sylos; Mugnuolo, R.; Desario, Marco

    1994-01-01

    We here propose a segmentation algorithm of texture image for a computer vision system on a space robot. An improved adaptive resonance theory (ART2) for analog input patterns is adapted to classify the image based on a set of texture image features extracted by a fast spatial gray level dependence method (SGLDM). The nonlinear thresholding functions in input layer of the neural network have been constructed by two parts: firstly, to reduce the effects of image noises on the features, a set of sigmoid functions is chosen depending on the types of the feature; secondly, to enhance the contrast of the features, we adopt fuzzy mapping functions. The cluster number in output layer can be increased by an autogrowing mechanism constantly when a new pattern happens. Experimental results and original or segmented pictures are shown, including the comparison between this approach and K-means algorithm. The system written in C language is performed on a SUN-4/330 sparc-station with an image board IT-150 and a CCD camera.

  11. Community detection for fluorescent lifetime microscopy image segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  12. Segmentation methodology for automated classification and differentiation of soft tissues in multiband images of high-resolution ultrasonic transmission tomography.

    PubMed

    Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z

    2006-08-01

    This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.

  13. Change Detection of Remote Sensing Images by Dt-Cwt and Mrf

    NASA Astrophysics Data System (ADS)

    Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.

    2017-05-01

    Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.

  14. Localized Segment Based Processing for Automatic Building Extraction from LiDAR Data

    NASA Astrophysics Data System (ADS)

    Parida, G.; Rajan, K. S.

    2017-05-01

    The current methods of object segmentation and extraction and classification of aerial LiDAR data is manual and tedious task. This work proposes a technique for object segmentation out of LiDAR data. A bottom-up geometric rule based approach was used initially to devise a way to segment buildings out of the LiDAR datasets. For curved wall surfaces, comparison of localized surface normals was done to segment buildings. The algorithm has been applied to both synthetic datasets as well as real world dataset of Vaihingen, Germany. Preliminary results show successful segmentation of the buildings objects from a given scene in case of synthetic datasets and promissory results in case of real world data. The advantages of the proposed work is non-dependence on any other form of data required except LiDAR. It is an unsupervised method of building segmentation, thus requires no model training as seen in supervised techniques. It focuses on extracting the walls of the buildings to construct the footprint, rather than focussing on roof. The focus on extracting the wall to reconstruct the buildings from a LiDAR scene is crux of the method proposed. The current segmentation approach can be used to get 2D footprints of the buildings, with further scope to generate 3D models. Thus, the proposed method can be used as a tool to get footprints of buildings in urban landscapes, helping in urban planning and the smart cities endeavour.

  15. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  16. Methods for automatic detection of artifacts in microelectrode recordings.

    PubMed

    Bakštein, Eduard; Sieger, Tomáš; Wild, Jiří; Novák, Daniel; Schneider, Jakub; Vostatek, Pavel; Urgošík, Dušan; Jech, Robert

    2017-10-01

    Extracellular microelectrode recording (MER) is a prominent technique for studies of extracellular single-unit neuronal activity. In order to achieve robust results in more complex analysis pipelines, it is necessary to have high quality input data with a low amount of artifacts. We show that noise (mainly electromagnetic interference and motion artifacts) may affect more than 25% of the recording length in a clinical MER database. We present several methods for automatic detection of noise in MER signals, based on (i) unsupervised detection of stationary segments, (ii) large peaks in the power spectral density, and (iii) a classifier based on multiple time- and frequency-domain features. We evaluate the proposed methods on a manually annotated database of 5735 ten-second MER signals from 58 Parkinson's disease patients. The existing methods for artifact detection in single-channel MER that have been rigorously tested, are based on unsupervised change-point detection. We show on an extensive real MER database that the presented techniques are better suited for the task of artifact identification and achieve much better results. The best-performing classifiers (bagging and decision tree) achieved artifact classification accuracy of up to 89% on an unseen test set and outperformed the unsupervised techniques by 5-10%. This was close to the level of agreement among raters using manual annotation (93.5%). We conclude that the proposed methods are suitable for automatic MER denoising and may help in the efficient elimination of undesirable signal artifacts. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Novel multiresolution mammographic density segmentation using pseudo 3D features and adaptive cluster merging

    NASA Astrophysics Data System (ADS)

    He, Wenda; Juette, Arne; Denton, Erica R. E.; Zwiggelaar, Reyer

    2015-03-01

    Breast cancer is the most frequently diagnosed cancer in women. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective ways to overcome the disease. Successful mammographic density segmentation is a key aspect in deriving correct tissue composition, ensuring an accurate mammographic risk assessment. However, mammographic densities have not yet been fully incorporated with non-image based risk prediction models, (e.g. the Gail and the Tyrer-Cuzick model), because of unreliable segmentation consistency and accuracy. This paper presents a novel multiresolution mammographic density segmentation, a concept of stack representation is proposed, and 3D texture features were extracted by adapting techniques based on classic 2D first-order statistics. An unsupervised clustering technique was employed to achieve mammographic segmentation, in which two improvements were made; 1) consistent segmentation by incorporating an optimal centroids initialisation step, and 2) significantly reduced the number of missegmentation by using an adaptive cluster merging technique. A set of full field digital mammograms was used in the evaluation. Visual assessment indicated substantial improvement on segmented anatomical structures and tissue specific areas, especially in low mammographic density categories. The developed method demonstrated an ability to improve the quality of mammographic segmentation via clustering, and results indicated an improvement of 26% in segmented image with good quality when compared with the standard clustering approach. This in turn can be found useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to surgery and/or treatment.

  18. A Comprehensive Texture Segmentation Framework for Segmentation of Capillary Non-Perfusion Regions in Fundus Fluorescein Angiograms

    PubMed Central

    Zheng, Yalin; Kwong, Man Ting; MacCormick, Ian J. C.; Beare, Nicholas A. V.; Harding, Simon P.

    2014-01-01

    Capillary non-perfusion (CNP) in the retina is a characteristic feature used in the management of a wide range of retinal diseases. There is no well-established computation tool for assessing the extent of CNP. We propose a novel texture segmentation framework to address this problem. This framework comprises three major steps: pre-processing, unsupervised total variation texture segmentation, and supervised segmentation. It employs a state-of-the-art multiphase total variation texture segmentation model which is enhanced by new kernel based region terms. The model can be applied to texture and intensity-based multiphase problems. A supervised segmentation step allows the framework to take expert knowledge into account, an AdaBoost classifier with weighted cost coefficient is chosen to tackle imbalanced data classification problems. To demonstrate its effectiveness, we applied this framework to 48 images from malarial retinopathy and 10 images from ischemic diabetic maculopathy. The performance of segmentation is satisfactory when compared to a reference standard of manual delineations: accuracy, sensitivity and specificity are 89.0%, 73.0%, and 90.8% respectively for the malarial retinopathy dataset and 80.8%, 70.6%, and 82.1% respectively for the diabetic maculopathy dataset. In terms of region-wise analysis, this method achieved an accuracy of 76.3% (45 out of 59 regions) for the malarial retinopathy dataset and 73.9% (17 out of 26 regions) for the diabetic maculopathy dataset. This comprehensive segmentation framework can quantify capillary non-perfusion in retinopathy from two distinct etiologies, and has the potential to be adopted for wider applications. PMID:24747681

  19. High Throughput Multispectral Image Processing with Applications in Food Science.

    PubMed

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  20. The production and phonetic representation of fake geminates in English

    PubMed Central

    Oh, Grace E.; Redford, Melissa A.

    2011-01-01

    The current study focused on the production of non-contrastive geminates across different boundary types in English to investigate the hypothesis that word-internal heteromorphemic geminates may differ from those that arise across a word boundary. In this study, word-internal geminates arising from affixation, and described as either assimilated or concatenated, were matched to heteromorphemic geminates arising from sequences of identical consonants that spanned a word boundary and to word-internal singletons. Word-internal geminates were found to be longer than matched singletons in absolute and relative terms. By contrast, heteromorphemic geminates that occurred at word boundaries were only longer than matched singletons in absolute terms. In addition, heteromorphemic geminates in two word phrases were typically “pulled apart” in careful speech; that is, speakers marked the boundaries between free morphemes with pitch changes and pauses. Morpheme boundaries in words with bound affixes were very rarely highlighted in this way. These results are taken to indicate that most word-internal heteromorphemic geminates are represented as a single long consonant in the speech plan rather than as a consonant sequence. Only those geminates that arise in two word phrases exhibit phonetic characteristics that are fully consistent with the representation of two identical consonants crossing a morpheme boundary. PMID:22611293

  1. An fMRI Study of Grammatical Morpheme Processing Associated with Nouns and Verbs in Chinese

    PubMed Central

    Yu, Xi; Bi, Yanchao; Han, Zaizhu; Law, Sam-Po

    2013-01-01

    This study examined whether the degree of complexity of a grammatical component in a language would impact on its representation in the brain through identifying the neural correlates of grammatical morpheme processing associated with nouns and verbs in Chinese. In particular, the processing of Chinese nominal classifiers and verbal aspect markers were investigated in a sentence completion task and a grammaticality judgment task to look for converging evidence. The Chinese language constitutes a special case because it has no inflectional morphology per se and a larger classifier than aspect marker inventory, contrary to the pattern of greater verbal than nominal paradigmatic complexity in most European languages. The functional imaging results showed BA47 and left supplementary motor area and superior medial frontal gyrus more strongly activated for classifier processing, and the left posterior middle temporal gyrus more responsive to aspect marker processing. We attributed the activation in the left prefrontal cortex to greater processing complexity during classifier selection, analogous to the accounts put forth for European languages, and the left posterior middle temporal gyrus to more demanding verb semantic processing. The overall findings significantly contribute to cross-linguistic observations of neural substrates underlying processing of grammatical morphemes from an analytic and a classifier language, and thereby deepen our understanding of neurobiology of human language. PMID:24146745

  2. A universal cue for grammatical categories in the input to children: Frequent frames.

    PubMed

    Moran, Steven; Blasi, Damián E; Schikowski, Robert; Küntay, Aylin C; Pfeiler, Barbara; Allen, Shanley; Stoll, Sabine

    2018-06-01

    How does a child map words to grammatical categories when words are not overtly marked either lexically or prosodically? Recent language acquisition theories have proposed that distributional information encoded in sequences of words or morphemes might play a central role in forming grammatical classes. To test this proposal, we analyze child-directed speech from seven typologically diverse languages to simulate maximum variation in the structures of the world's languages. We ask whether the input to children contains cues for assigning syntactic categories in frequent frames, which are frequently occurring nonadjacent sequences of words or morphemes. In accord with aggregated results from previous studies on individual languages, we find that frequent word frames do not provide a robust distributional pattern for accurately predicting grammatical categories. However, our results show that frames are extremely accurate cues cross-linguistically at the morpheme level. We theorize that the nonadjacent dependency pattern captured by frequent frames is a universal anchor point for learners on the morphological level to detect and categorize grammatical categories. Whether frames also play a role on higher linguistic levels such as words is determined by grammatical features of the individual language. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    PubMed

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  4. Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography.

    PubMed

    Lahiri, A; Roy, Abhijit Guha; Sheet, Debdoot; Biswas, Prabir Kumar

    2016-08-01

    Automated segmentation of retinal blood vessels in label-free fundus images entails a pivotal role in computed aided diagnosis of ophthalmic pathologies, viz., diabetic retinopathy, hypertensive disorders and cardiovascular diseases. The challenge remains active in medical image analysis research due to varied distribution of blood vessels, which manifest variations in their dimensions of physical appearance against a noisy background. In this paper we formulate the segmentation challenge as a classification task. Specifically, we employ unsupervised hierarchical feature learning using ensemble of two level of sparsely trained denoised stacked autoencoder. First level training with bootstrap samples ensures decoupling and second level ensemble formed by different network architectures ensures architectural revision. We show that ensemble training of auto-encoders fosters diversity in learning dictionary of visual kernels for vessel segmentation. SoftMax classifier is used for fine tuning each member autoencoder and multiple strategies are explored for 2-level fusion of ensemble members. On DRIVE dataset, we achieve maximum average accuracy of 95.33% with an impressively low standard deviation of 0.003 and Kappa agreement coefficient of 0.708. Comparison with other major algorithms substantiates the high efficacy of our model.

  5. A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks.

    PubMed

    Wang, Changhan; Yan, Xinchen; Smith, Max; Kochhar, Kanika; Rubin, Marcie; Warren, Stephen M; Wrobel, James; Lee, Honglak

    2015-01-01

    Wound surface area changes over multiple weeks are highly predictive of the wound healing process. Furthermore, the quality and quantity of the tissue in the wound bed also offer important prognostic information. Unfortunately, accurate measurements of wound surface area changes are out of reach in the busy wound practice setting. Currently, clinicians estimate wound size by estimating wound width and length using a scalpel after wound treatment, which is highly inaccurate. To address this problem, we propose an integrated system to automatically segment wound regions and analyze wound conditions in wound images. Different from previous segmentation techniques which rely on handcrafted features or unsupervised approaches, our proposed deep learning method jointly learns task-relevant visual features and performs wound segmentation. Moreover, learned features are applied to further analysis of wounds in two ways: infection detection and healing progress prediction. To the best of our knowledge, this is the first attempt to automate long-term predictions of general wound healing progress. Our method is computationally efficient and takes less than 5 seconds per wound image (480 by 640 pixels) on a typical laptop computer. Our evaluations on a large-scale wound database demonstrate the effectiveness and reliability of the proposed system.

  6. Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach.

    PubMed

    Clayden, Jonathan D; Storkey, Amos J; Muñoz Maniega, Susana; Bastin, Mark E

    2009-04-01

    This work describes a reproducibility analysis of scalar water diffusion parameters, measured within white matter tracts segmented using a probabilistic shape modelling method. In common with previously reported neighbourhood tractography (NT) work, the technique optimises seed point placement for fibre tracking by matching the tracts generated using a number of candidate points against a reference tract, which is derived from a white matter atlas in the present study. No direct constraints are applied to the fibre tracking results. An Expectation-Maximisation algorithm is used to fully automate the procedure, and make dramatically more efficient use of data than earlier NT methods. Within-subject and between-subject variances for fractional anisotropy and mean diffusivity within the tracts are then separated using a random effects model. We find test-retest coefficients of variation (CVs) similar to those reported in another study using landmark-guided single seed points; and subject to subject CVs similar to a constraint-based multiple ROI method. We conclude that our approach is at least as effective as other methods for tract segmentation using tractography, whilst also having some additional benefits, such as its provision of a goodness-of-match measure for each segmentation.

  7. Fluid Lensing based Machine Learning for Augmenting Earth Science Coral Datasets

    NASA Astrophysics Data System (ADS)

    Li, A.; Instrella, R.; Chirayath, V.

    2016-12-01

    Recently, there has been increased interest in monitoring the effects of climate change upon the world's marine ecosystems, particularly coral reefs. These delicate ecosystems are especially threatened due to their sensitivity to ocean warming and acidification, leading to unprecedented levels of coral bleaching and die-off in recent years. However, current global aquatic remote sensing datasets are unable to quantify changes in marine ecosystems at spatial and temporal scales relevant to their growth. In this project, we employ various supervised and unsupervised machine learning algorithms to augment existing datasets from NASA's Earth Observing System (EOS), using high resolution airborne imagery. This method utilizes NASA's ongoing airborne campaigns as well as its spaceborne assets to collect remote sensing data over these afflicted regions, and employs Fluid Lensing algorithms to resolve optical distortions caused by the fluid surface, producing cm-scale resolution imagery of these diverse ecosystems from airborne platforms. Support Vector Machines (SVMs) and K-mean clustering methods were applied to satellite imagery at 0.5m resolution, producing segmented maps classifying coral based on percent cover and morphology. Compared to a previous study using multidimensional maximum a posteriori (MAP) estimation to separate these features in high resolution airborne datasets, SVMs are able to achieve above 75% accuracy when augmented with existing MAP estimates, while unsupervised methods such as K-means achieve roughly 68% accuracy, verified by manually segmented reference data provided by a marine biologist. This effort thus has broad applications for coastal remote sensing, by helping marine biologists quantify behavioral trends spanning large areas and over longer timescales, and to assess the health of coral reefs worldwide.

  8. Abdominal multi-organ segmentation from CT images using conditional shape–location and unsupervised intensity priors

    PubMed Central

    Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki

    2015-01-01

    This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape–location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape–location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively. PMID:26277022

  9. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.

    PubMed

    Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu

    2015-12-01

    This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape-location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape-location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Vision Sensor-Based Road Detection for Field Robot Navigation

    PubMed Central

    Lu, Keyu; Li, Jian; An, Xiangjing; He, Hangen

    2015-01-01

    Road detection is an essential component of field robot navigation systems. Vision sensors play an important role in road detection for their great potential in environmental perception. In this paper, we propose a hierarchical vision sensor-based method for robust road detection in challenging road scenes. More specifically, for a given road image captured by an on-board vision sensor, we introduce a multiple population genetic algorithm (MPGA)-based approach for efficient road vanishing point detection. Superpixel-level seeds are then selected in an unsupervised way using a clustering strategy. Then, according to the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors. After convergence, the initial road segment is obtained. Finally, in order to achieve a globally-consistent road segment, the initial road segment is refined using the conditional random field (CRF) framework, which integrates high-level information into road detection. We perform several experiments to evaluate the common performance, scale sensitivity and noise sensitivity of the proposed method. The experimental results demonstrate that the proposed method exhibits high robustness compared to the state of the art. PMID:26610514

  11. Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images.

    PubMed

    Kopriva, Ivica; Persin, Antun; Puizina-Ivić, Neira; Mirić, Lina

    2010-07-02

    This study was designed to demonstrate robust performance of the novel dependent component analysis (DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red-green-blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the fluorescent image has been varied almost two orders of magnitude. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Impervious surface mapping with Quickbird imagery

    PubMed Central

    Lu, Dengsheng; Hetrick, Scott; Moran, Emilio

    2010-01-01

    This research selects two study areas with different urban developments, sizes, and spatial patterns to explore the suitable methods for mapping impervious surface distribution using Quickbird imagery. The selected methods include per-pixel based supervised classification, segmentation-based classification, and a hybrid method. A comparative analysis of the results indicates that per-pixel based supervised classification produces a large number of “salt-and-pepper” pixels, and segmentation based methods can significantly reduce this problem. However, neither method can effectively solve the spectral confusion of impervious surfaces with water/wetland and bare soils and the impacts of shadows. In order to accurately map impervious surface distribution from Quickbird images, manual editing is necessary and may be the only way to extract impervious surfaces from the confused land covers and the shadow problem. This research indicates that the hybrid method consisting of thresholding techniques, unsupervised classification and limited manual editing provides the best performance. PMID:21643434

  13. Improving Acoustic Models by Watching Television

    NASA Technical Reports Server (NTRS)

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Obtaining sufficient labelled training data is a persistent difficulty for speech recognition research. Although well transcribed data is expensive to produce, there is a constant stream of challenging speech data and poor transcription broadcast as closed-captioned television. We describe a reliable unsupervised method for identifying accurately transcribed sections of these broadcasts, and show how these segments can be used to train a recognition system. Starting from acoustic models trained on the Wall Street Journal database, a single iteration of our training method reduced the word error rate on an independent broadcast television news test set from 62.2% to 59.5%.

  14. The elastic ratio: introducing curvature into ratio-based image segmentation.

    PubMed

    Schoenemann, Thomas; Masnou, Simon; Cremers, Daniel

    2011-09-01

    We present the first ratio-based image segmentation method that allows imposing curvature regularity of the region boundary. Our approach is a generalization of the ratio framework pioneered by Jermyn and Ishikawa so as to allow penalty functions that take into account the local curvature of the curve. The key idea is to cast the segmentation problem as one of finding cyclic paths of minimal ratio in a graph where each graph node represents a line segment. Among ratios whose discrete counterparts can be globally minimized with our approach, we focus in particular on the elastic ratio [Formula: see text] that depends, given an image I, on the oriented boundary C of the segmented region candidate. Minimizing this ratio amounts to finding a curve, neither small nor too curvy, through which the brightness flux is maximal. We prove the existence of minimizers for this criterion among continuous curves with mild regularity assumptions. We also prove that the discrete minimizers provided by our graph-based algorithm converge, as the resolution increases, to continuous minimizers. In contrast to most existing segmentation methods with computable and meaningful, i.e., nondegenerate, global optima, the proposed approach is fully unsupervised in the sense that it does not require any kind of user input such as seed nodes. Numerical experiments demonstrate that curvature regularity allows substantial improvement of the quality of segmentations. Furthermore, our results allow drawing conclusions about global optima of a parameterization-independent version of the snakes functional: the proposed algorithm allows determining parameter values where the functional has a meaningful solution and simultaneously provides the corresponding global solution.

  15. Representation learning: a unified deep learning framework for automatic prostate MR segmentation.

    PubMed

    Liao, Shu; Gao, Yaozong; Oto, Aytekin; Shen, Dinggang

    2013-01-01

    Image representation plays an important role in medical image analysis. The key to the success of different medical image analysis algorithms is heavily dependent on how we represent the input data, namely features used to characterize the input image. In the literature, feature engineering remains as an active research topic, and many novel hand-crafted features are designed such as Haar wavelet, histogram of oriented gradient, and local binary patterns. However, such features are not designed with the guidance of the underlying dataset at hand. To this end, we argue that the most effective features should be designed in a learning based manner, namely representation learning, which can be adapted to different patient datasets at hand. In this paper, we introduce a deep learning framework to achieve this goal. Specifically, a stacked independent subspace analysis (ISA) network is adopted to learn the most effective features in a hierarchical and unsupervised manner. The learnt features are adapted to the dataset at hand and encode high level semantic anatomical information. The proposed method is evaluated on the application of automatic prostate MR segmentation. Experimental results show that significant segmentation accuracy improvement can be achieved by the proposed deep learning method compared to other state-of-the-art segmentation approaches.

  16. An unsupervised machine learning method for delineating stratum corneum in reflectance confocal microscopy stacks of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Bozkurt, Alican; Kose, Kivanc; Fox, Christi A.; Dy, Jennifer; Brooks, Dana H.; Rajadhyaksha, Milind

    2016-02-01

    Study of the stratum corneum (SC) in human skin is important for research in barrier structure and function, drug delivery, and water permeability of skin. The optical sectioning and high resolution of reflectance confocal microscopy (RCM) allows visual examination of SC non-invasively. Here, we present an unsupervised segmentation algorithm that can automatically delineate thickness of the SC in RCM images of human skin in-vivo. We mimic clinicians visual process by applying complex wavelet transform over non-overlapping local regions of size 16 x 16 μm called tiles, and analyze the textural changes in between consecutive tiles in axial (depth) direction. We use dual-tree complex wavelet transform to represent textural structures in each tile. This transform is almost shift-invariant, and directionally selective, which makes it highly efficient in texture representation. Using DT-CWT, we decompose each tile into 6 directional sub-bands with orientations in +/-15, 45, and 75 degrees and a low-pass band, which is the decimated version of the input. We apply 3 scales of decomposition by recursively transforming the low-pass bands and obtain 18 bands of different directionality at different scales. We then calculate mean and variance of each band resulting in a feature vector of 36 entries. Feature vectors obtained for each stack of tiles in axial direction are then clustered using spectral clustering in order to detect the textural changes in depth direction. Testing on a set of 15 RCM stacks produced a mean error of 5.45+/-1.32 μm, compared to the "ground truth" segmentation provided by a clinical expert reader.

  17. Decomposition of prefixed words in Russian.

    PubMed

    Kazanina, Nina

    2011-11-01

    I examined the nature of morphological decomposition in a series of masked-priming experiments with Russian prefixed nouns. In Experiments 1A and 1B, I tested 3 types of prime-target pairs in which the prime was a morphologically simple word, and a facilitation was found when the prime and the target were truly morphologically related (e.g., narost [outgrowth] and rost [growth] are morphologically related via the prefix na- [on]) or apparently morphologically related (e.g., priton [den] and ton [tone] seem to be morphologically related via the prefix pri- [toward], but this relation is false) but not when the relation was purely orthographic (e.g., kumir [idol] and mir [peace]; ku- is not an existing prefix of Russian). These results suggest that all orthographic forms that can be exhaustively parsed into a prefix and a stem are decomposed into (apparent) constituent morphemes during their retrieval from the lexicon. This early segmentation process is driven by morpho-orthographic but not by morphosemantic considerations and applies even for derived forms that are more frequent than their stem.

  18. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning.

    PubMed

    Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing

    2018-01-11

    By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.

  19. Word-to-text integration: ERP evidence for semantic and orthographic effects in Chinese.

    PubMed

    Chen, Lin; Fang, Xiaoping; Perfetti, Charles A

    2017-05-01

    Although writing systems affect reading at the level of word identification, one expects writing system to have minimal effects on comprehension processes. We tested this assumption by recording ERPs while native Chinese speakers read short texts for comprehension in the word-to-text integration (WTI) paradigm to compare with studies of English using this paradigm. Of interest was the ERP on a 2-character word that began the second sentence of the text, with the first sentence varied to manipulate co-reference with the critical word in the second sentence. A paraphrase condition in which the critical word meaning was coreferential with a word in the first sentence showed a reduced N400 reduction. Consistent with results in English, this N400 effect suggests immediate integration of a Chinese 2-character word with the meaning of the text. Chinese allows an additional test of a morpheme effect when one character of a two-character word is repeated across the sentence boundary, thus having both orthographic and meaning overlap. This shared morpheme condition showed no effect during the timeframe when orthographic effects are observed (e.g. N200), nor did it show an N400 effect. However, character repetition did produce an N400 reduction on parietal sites regardless it represented the same morpheme or a different one. The results indicate that the WTI integration effect is general across writing systems at the meaning level, but that the orthographic form nonetheless has an effect, and is specifically functional in Chinese reading.

  20. Affixation in semantic space: Modeling morpheme meanings with compositional distributional semantics.

    PubMed

    Marelli, Marco; Baroni, Marco

    2015-07-01

    The present work proposes a computational model of morpheme combination at the meaning level. The model moves from the tenets of distributional semantics, and assumes that word meanings can be effectively represented by vectors recording their co-occurrence with other words in a large text corpus. Given this assumption, affixes are modeled as functions (matrices) mapping stems onto derived forms. Derived-form meanings can be thought of as the result of a combinatorial procedure that transforms the stem vector on the basis of the affix matrix (e.g., the meaning of nameless is obtained by multiplying the vector of name with the matrix of -less). We show that this architecture accounts for the remarkable human capacity of generating new words that denote novel meanings, correctly predicting semantic intuitions about novel derived forms. Moreover, the proposed compositional approach, once paired with a whole-word route, provides a new interpretative framework for semantic transparency, which is here partially explained in terms of ease of the combinatorial procedure and strength of the transformation brought about by the affix. Model-based predictions are in line with the modulation of semantic transparency on explicit intuitions about existing words, response times in lexical decision, and morphological priming. In conclusion, we introduce a computational model to account for morpheme combination at the meaning level. The model is data-driven, theoretically sound, and empirically supported, and it makes predictions that open new research avenues in the domain of semantic processing. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  1. Ixpantepec Nieves Mixtec Word Prosody

    NASA Astrophysics Data System (ADS)

    Carroll, Lucien Serapio

    This dissertation presents a phonological description and acoustic analysis of the word prosody of Ixpantepec Nieves Mixtec, which involves both a complex tone system and a default stress system. The analysis of Nieves Mixtec word prosody is complicated by a close association between morphological structure and prosodic structure, and by the interactions between word prosody and phonation type, which has both contrastive and non-contrastive roles in the phonology. I contextualize these systems within the phonology of Nieves Mixtec as a whole, within the literature on other Mixtec varieties, and within the literature on cross-linguistic prosodic typology. The literature on prosodic typology indicates that stress is necessarily defined abstractly, as structured prominence realized differently in each language. Descriptions of stress in other Mixtec varieties widely report default stress on the initial syllable of the canonical bimoraic root, though some descriptions suggest final stress or mobile stress. I first present phonological evidence---from distributional restrictions, phonological processes, and loanword adaptation---that Nieves Mixtec word prosody does involve a stress system, based on trochaic feet aligned to the root. I then present an acoustic study comparing stressed syllables to unstressed syllables, for ten potential acoustic correlates of stress. The results indicate that the acoustic correlates of stress in Nieves Mixtec include segmental duration, intensity and periodicity. Building on analyses of other Mixtec tone systems, I show that the distribution of tone and the tone processes in Nieves Mixtec support an analysis in which morae may bear H, M or L tone, where M tone is underlyingly unspecified, and each morpheme may sponsor a final +H or +L floating tone. Bimoraic roots thus host up to two linked tones and one floating tone, while monomoraic clitics host just one linked tone and one floating tone, and tonal morphemes are limited to a single floating tone. I then present three studies describing the acoustic realization of tone and comparing the realization of tone in different prosodic types. The findings of these studies include a strong directional asymmetry in tonal coarticulation, increased duration at the word or phrase boundary, phonation differences among the tone categories, and F0 differences between the glottalization categories.

  2. Fully automated contour detection of the ascending aorta in cardiac 2D phase-contrast MRI.

    PubMed

    Codari, Marina; Scarabello, Marco; Secchi, Francesco; Sforza, Chiarella; Baselli, Giuseppe; Sardanelli, Francesco

    2018-04-01

    In this study we proposed a fully automated method for localizing and segmenting the ascending aortic lumen with phase-contrast magnetic resonance imaging (PC-MRI). Twenty-five phase-contrast series were randomly selected out of a large population dataset of patients whose cardiac MRI examination, performed from September 2008 to October 2013, was unremarkable. The local Ethical Committee approved this retrospective study. The ascending aorta was automatically identified on each phase of the cardiac cycle using a priori knowledge of aortic geometry. The frame that maximized the area, eccentricity, and solidity parameters was chosen for unsupervised initialization. Aortic segmentation was performed on each frame using active contouring without edges techniques. The entire algorithm was developed using Matlab R2016b. To validate the proposed method, the manual segmentation performed by a highly experienced operator was used. Dice similarity coefficient, Bland-Altman analysis, and Pearson's correlation coefficient were used as performance metrics. Comparing automated and manual segmentation of the aortic lumen on 714 images, Bland-Altman analysis showed a bias of -6.68mm 2 , a coefficient of repeatability of 91.22mm 2 , a mean area measurement of 581.40mm 2 , and a reproducibility of 85%. Automated and manual segmentation were highly correlated (R=0.98). The Dice similarity coefficient versus the manual reference standard was 94.6±2.1% (mean±standard deviation). A fully automated and robust method for identification and segmentation of ascending aorta on PC-MRI was developed. Its application on patients with a variety of pathologic conditions is advisable. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis

    PubMed Central

    Ţălu, Ştefan; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina

    2015-01-01

    AIM To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method. METHODS This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images) and pathological (148 images) states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software. RESULTS It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR) and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values of mild non-proliferative DR (NPDR) images (segmented and skeletonized versions). The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions). The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions). CONCLUSION The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with DR from healthy individuals. PMID:26309878

  4. Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis.

    PubMed

    Ţălu, Ştefan; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina

    2015-01-01

    To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method. This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images) and pathological (148 images) states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software. It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR) and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values of mild non-proliferative DR (NPDR) images (segmented and skeletonized versions). The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions). The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions). The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with DR from healthy individuals.

  5. A Morphological Hessian Based Approach for Retinal Blood Vessels Segmentation and Denoising Using Region Based Otsu Thresholding

    PubMed Central

    BahadarKhan, Khan; A Khaliq, Amir; Shahid, Muhammad

    2016-01-01

    Diabetic Retinopathy (DR) harm retinal blood vessels in the eye causing visual deficiency. The appearance and structure of blood vessels in retinal images play an essential part in the diagnoses of an eye sicknesses. We proposed a less computational unsupervised automated technique with promising results for detection of retinal vasculature by using morphological hessian based approach and region based Otsu thresholding. Contrast Limited Adaptive Histogram Equalization (CLAHE) and morphological filters have been used for enhancement and to remove low frequency noise or geometrical objects, respectively. The hessian matrix and eigenvalues approach used has been in a modified form at two different scales to extract wide and thin vessel enhanced images separately. Otsu thresholding has been further applied in a novel way to classify vessel and non-vessel pixels from both enhanced images. Finally, postprocessing steps has been used to eliminate the unwanted region/segment, non-vessel pixels, disease abnormalities and noise, to obtain a final segmented image. The proposed technique has been analyzed on the openly accessible DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (STructured Analysis of the REtina) databases along with the ground truth data that has been precisely marked by the experts. PMID:27441646

  6. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    PubMed

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  7. Ambient occlusion - A powerful algorithm to segment shell and skeletal intrapores in computed tomography data

    NASA Astrophysics Data System (ADS)

    Titschack, J.; Baum, D.; Matsuyama, K.; Boos, K.; Färber, C.; Kahl, W.-A.; Ehrig, K.; Meinel, D.; Soriano, C.; Stock, S. R.

    2018-06-01

    During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups. However, their quantitative analysis is often hampered by the difficulty to discriminate cavities and pores within the object from the surrounding region. Herein, we test the ambient occlusion (AO) algorithm and newly implemented optimisations for the segmentation of cavities (implemented in the software Amira). The segmentation accuracy is evaluated as a function of (i) changes in the ray length input variable, and (ii) the usage of AO (scalar) field and other AO-derived (scalar) fields. The results clearly indicate that the AO field itself outperforms all other AO-derived fields in terms of segmentation accuracy and robustness against variations in the ray length input variable. The newly implemented optimisations improved the AO field-based segmentation only slightly, while the segmentations based on the AO-derived fields improved considerably. Additionally, we evaluated the potential of the AO field and AO-derived fields for the separation and classification of cavities as well as skeletal structures by comparing them with commonly used distance-map-based segmentations. For this, we tested the zooid separation within a bryozoan colony, the stereom classification of an ophiuroid tooth, the separation of bioerosion traces within a marble block and the calice (central cavity)-pore separation within a dendrophyllid coral. The obtained results clearly indicate that the ideal input field depends on the three-dimensional morphology of the object of interest. The segmentations based on the AO-derived fields often provided cavity separations and skeleton classifications that were superior to or impossible to obtain with commonly used distance-map-based segmentations. The combined usage of various AO-derived fields by supervised or unsupervised segmentation algorithms might provide a promising target for future research to further improve the results for this kind of high-end data segmentation and classification. Furthermore, the application of the developed segmentation algorithm is not restricted to X-ray (micro-)computed tomographic data but may potentially be useful for the segmentation of 3D volume data from other sources.

  8. Automatic colonic lesion detection and tracking in endoscopic videos

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Gustafsson, Ulf; A-Rahim, Yoursif

    2011-03-01

    The biology of colorectal cancer offers an opportunity for both early detection and prevention. Compared with other imaging modalities, optical colonoscopy is the procedure of choice for simultaneous detection and removal of colonic polyps. Computer assisted screening makes it possible to assist physicians and potentially improve the accuracy of the diagnostic decision during the exam. This paper presents an unsupervised method to detect and track colonic lesions in endoscopic videos. The aim of the lesion screening and tracking is to facilitate detection of polyps and abnormal mucosa in real time as the physician is performing the procedure. For colonic lesion detection, the conventional marker controlled watershed based segmentation is used to segment the colonic lesions, followed by an adaptive ellipse fitting strategy to further validate the shape. For colonic lesion tracking, a mean shift tracker with background modeling is used to track the target region from the detection phase. The approach has been tested on colonoscopy videos acquired during regular colonoscopic procedures and demonstrated promising results.

  9. A method for examining productivity of grammatical morphology in children with and without specific language impairment.

    PubMed

    Miller, Carol A; Deevy, Patricia

    2003-10-01

    Children with specific language impairment (SLI) show inconsistent use of grammatical morphology. Children who are developing language typically also show a period during which they produce grammatical morphemes inconsistently. Various theories claim that both young typically developing children and children with SLI achieve correct production through memorization of some inflected forms (M. Gopnik, 1997; M. Tomasello, 2000a, 2000b). Adapting a method introduced by C. Miller and L. Leonard (1998), the authors investigated the use of present tense third singular -s by 24 typically developing preschoolers and 36 preschoolers with SLI. Each group was divided into 2 mean length of utterance (MLU) levels. Group and individual data provided little evidence that memorization could explain the correct productions of the third singular morpheme for either children with SLI or typically developing children, and there was no difference between children with higher and lower MLUs.

  10. Word-to-text integration: ERP evidence for semantic and orthographic effects in Chinese

    PubMed Central

    Chen, Lin; Fang, Xiaoping; Perfetti, Charles A.

    2016-01-01

    Although writing systems affect reading at the level of word identification, one expects writing system to have minimal effects on comprehension processes. We tested this assumption by recording ERPs while native Chinese speakers read short texts for comprehension in the word-to-text integration (WTI) paradigm to compare with studies of English using this paradigm. Of interest was the ERP on a 2-character word that began the second sentence of the text, with the first sentence varied to manipulate co-reference with the critical word in the second sentence. A paraphrase condition in which the critical word meaning was coreferential with a word in the first sentence showed a reduced N400 reduction. Consistent with results in English, this N400 effect suggests immediate integration of a Chinese 2-character word with the meaning of the text. Chinese allows an additional test of a morpheme effect when one character of a two-character word is repeated across the sentence boundary, thus having both orthographic and meaning overlap. This shared morpheme condition showed no effect during the timeframe when orthographic effects are observed (e.g. N200), nor did it show an N400 effect. However, character repetition did produce an N400 reduction on parietal sites regardless it represented the same morpheme or a different one. The results indicate that the WTI integration effect is general across writing systems at the meaning level, but that the orthographic form nonetheless has an effect, and is specifically functional in Chinese reading. PMID:28670097

  11. An Unsupervised Change Detection Method Using Time-Series of PolSAR Images from Radarsat-2 and GaoFen-3.

    PubMed

    Liu, Wensong; Yang, Jie; Zhao, Jinqi; Shi, Hongtao; Yang, Le

    2018-02-12

    The traditional unsupervised change detection methods based on the pixel level can only detect the changes between two different times with same sensor, and the results are easily affected by speckle noise. In this paper, a novel method is proposed to detect change based on time-series data from different sensors. Firstly, the overall difference image of the time-series PolSAR is calculated by omnibus test statistics, and difference images between any two images in different times are acquired by R j test statistics. Secondly, the difference images are segmented with a Generalized Statistical Region Merging (GSRM) algorithm which can suppress the effect of speckle noise. Generalized Gaussian Mixture Model (GGMM) is then used to obtain the time-series change detection maps in the final step of the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection using time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can not only detect the time-series change from different sensors, but it can also better suppress the influence of speckle noise and improve the overall accuracy and Kappa coefficient.

  12. Mapping Neglected Swimming Pools from Satellite Data for Urban Vector Control

    NASA Astrophysics Data System (ADS)

    Barker, C. M.; Melton, F. S.; Reisen, W. K.

    2010-12-01

    Neglected swimming pools provide suitable breeding habit for mosquitoes, can contain thousands of mosquito larvae, and present both a significant nuisance and public health risk due to their inherent proximity to urban and suburban populations. The rapid increase and sustained rate of foreclosures in California associated with the recent recession presents a challenge for vector control districts seeking to identify, treat, and monitor neglected pools. Commercial high resolution satellite imagery offers some promise for mapping potential neglected pools, and for mapping pools for which routine maintenance has been reestablished. We present progress on unsupervised classification techniques for mapping both neglected pools and clean pools using high resolution commercial satellite data and discuss the potential uses and limitations of this data source in support of vector control efforts. An unsupervised classification scheme that utilizes image segmentation, band thresholds, and a change detection approach was implemented for sample regions in Coachella Valley, CA and the greater Los Angeles area. Comparison with field data collected by vector control personal was used to assess the accuracy of the estimates. The results suggest that the current system may provide some utility for early detection, or cost effective and time efficient annual monitoring, but additional work is required to address spectral and spatial limitations of current commercial satellite sensors for this purpose.

  13. Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation.

    PubMed

    Na, Tong; Xie, Jianyang; Zhao, Yitian; Zhao, Yifan; Liu, Yue; Wang, Yongtian; Liu, Jiang

    2018-05-09

    Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries/veins classification are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A nonlocal total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel-based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. The proposed segmentation method yields competitive results on three public data sets (STARE, DRIVE, and IOSTAR), and it has superior performance when compared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to five public databases (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries/veins classification based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. The experimental results show that the proposed framework has effectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology reconstruction. The vascular topology information significantly improves the accuracy on arteries/veins classification. © 2018 American Association of Physicists in Medicine.

  14. Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities

    PubMed Central

    Glatz, Andreas; Bastin, Mark E.; Kiker, Alexander J.; Deary, Ian J.; Wardlaw, Joanna M.; Valdés Hernández, Maria C.

    2015-01-01

    Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. PMID:25451469

  15. Accuracy of un-supervised versus provider-supervised self-administered HIV testing in Uganda: A randomized implementation trial.

    PubMed

    Asiimwe, Stephen; Oloya, James; Song, Xiao; Whalen, Christopher C

    2014-12-01

    Unsupervised HIV self-testing (HST) has potential to increase knowledge of HIV status; however, its accuracy is unknown. To estimate the accuracy of unsupervised HST in field settings in Uganda, we performed a non-blinded, randomized controlled, non-inferiority trial of unsupervised compared with supervised HST among selected high HIV risk fisherfolk (22.1 % HIV Prevalence) in three fishing villages in Uganda between July and September 2013. The study enrolled 246 participants and randomized them in a 1:1 ratio to unsupervised HST or provider-supervised HST. In an intent-to-treat analysis, the HST sensitivity was 90 % in the unsupervised arm and 100 % among the provider-supervised, yielding a difference 0f -10 % (90 % CI -21, 1 %); non-inferiority was not shown. In a per protocol analysis, the difference in sensitivity was -5.6 % (90 % CI -14.4, 3.3 %) and did show non-inferiority. We conclude that unsupervised HST is feasible in rural Africa and may be non-inferior to provider-supervised HST.

  16. Survey of contemporary trends in color image segmentation

    NASA Astrophysics Data System (ADS)

    Vantaram, Sreenath Rao; Saber, Eli

    2012-10-01

    In recent years, the acquisition of image and video information for processing, analysis, understanding, and exploitation of the underlying content in various applications, ranging from remote sensing to biomedical imaging, has grown at an unprecedented rate. Analysis by human observers is quite laborious, tiresome, and time consuming, if not infeasible, given the large and continuously rising volume of data. Hence the need for systems capable of automatically and effectively analyzing the aforementioned imagery for a variety of uses that span the spectrum from homeland security to elderly care. In order to achieve the above, tools such as image segmentation provide the appropriate foundation for expediting and improving the effectiveness of subsequent high-level tasks by providing a condensed and pertinent representation of image information. We provide a comprehensive survey of color image segmentation strategies adopted over the last decade, though notable contributions in the gray scale domain will also be discussed. Our taxonomy of segmentation techniques is sampled from a wide spectrum of spatially blind (or feature-based) approaches such as clustering and histogram thresholding as well as spatially guided (or spatial domain-based) methods such as region growing/splitting/merging, energy-driven parametric/geometric active contours, supervised/unsupervised graph cuts, and watersheds, to name a few. In addition, qualitative and quantitative results of prominent algorithms on several images from the Berkeley segmentation dataset are shown in order to furnish a fair indication of the current quality of the state of the art. Finally, we provide a brief discussion on our current perspective of the field as well as its associated future trends.

  17. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-02-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy.

  18. Improving Numeracy and Literacy: Evaluation Report and Executive Summary

    ERIC Educational Resources Information Center

    Worth, Jack; Sizmur, Juliet; Ager, Rob; Styles, Ben

    2015-01-01

    The project, "Oxford Improving Numeracy and Literacy Programme," was delivered by Oxford University Department of Education. This evaluation tested two different initiatives with Year 2 children: "Mathematics and Reasoning" and "Literacy and Morphemes." The "Mathematics and Reasoning" programme aimed to…

  19. Acquisition of Nominal Morphophonological Alternations in Russian

    ERIC Educational Resources Information Center

    Tomas, Ekaterina; van de Vijver, Ruben; Demuth, Katherine; Petocz, Peter

    2017-01-01

    Morphophonological alternations can make target-like production of grammatical morphemes challenging due to changes in form depending on the phonological environment. This article explores the acquisition of morphophonological alternations involving the interacting patterns of vowel deletion and stress shift in Russian-speaking children (aged…

  20. Memory for Negation in Coordinate and Complex Sentences

    ERIC Educational Resources Information Center

    Harris, Richard J.

    1976-01-01

    Two experiments were run to test memory for the negation morpheme "not" in coordinate sentences (e.g., The ballerina had twins and the policewoman did not have triplets) and complex sentences (e.g., The ghost scared Hamlet into not murdering Shakespeare). (Editor)

  1. A consensus embedding approach for segmentation of high resolution in vivo prostate magnetic resonance imagery

    NASA Astrophysics Data System (ADS)

    Viswanath, Satish; Rosen, Mark; Madabhushi, Anant

    2008-03-01

    Current techniques for localization of prostatic adenocarcinoma (CaP) via blinded trans-rectal ultrasound biopsy are associated with a high false negative detection rate. While high resolution endorectal in vivo Magnetic Resonance (MR) prostate imaging has been shown to have improved contrast and resolution for CaP detection over ultrasound, similarity in intensity characteristics between benign and cancerous regions on MR images contribute to a high false positive detection rate. In this paper, we present a novel unsupervised segmentation method that employs manifold learning via consensus schemes for detection of cancerous regions from high resolution 1.5 Tesla (T) endorectal in vivo prostate MRI. A significant contribution of this paper is a method to combine multiple weak, lower-dimensional representations of high dimensional feature data in a way analogous to classifier ensemble schemes, and hence create a stable and accurate reduced dimensional representation. After correcting for MR image intensity artifacts, such as bias field inhomogeneity and intensity non-standardness, our algorithm extracts over 350 3D texture features at every spatial location in the MR scene at multiple scales and orientations. Non-linear dimensionality reduction schemes such as Locally Linear Embedding (LLE) and Graph Embedding (GE) are employed to create multiple low dimensional data representations of this high dimensional texture feature space. Our novel consensus embedding method is used to average object adjacencies from within the multiple low dimensional projections so that class relationships are preserved. Unsupervised consensus clustering is then used to partition the objects in this consensus embedding space into distinct classes. Quantitative evaluation on 18 1.5 T prostate MR data against corresponding histology obtained from the multi-site ACRIN trials show a sensitivity of 92.65% and a specificity of 82.06%, which suggests that our method is successfully able to detect suspicious regions in the prostate.

  2. Segmentation, Splitting, and Classification of Overlapping Bacteria in Microscope Images for Automatic Bacterial Vaginosis Diagnosis.

    PubMed

    Song, Youyi; He, Liang; Zhou, Feng; Chen, Siping; Ni, Dong; Lei, Baiying; Wang, Tianfu

    2017-07-01

    Quantitative analysis of bacterial morphotypes in the microscope images plays a vital role in diagnosis of bacterial vaginosis (BV) based on the Nugent score criterion. However, there are two main challenges for this task: 1) It is quite difficult to identify the bacterial regions due to various appearance, faint boundaries, heterogeneous shapes, low contrast with the background, and small bacteria sizes with regards to the image. 2) There are numerous bacteria overlapping each other, which hinder us to conduct accurate analysis on individual bacterium. To overcome these challenges, we propose an automatic method in this paper to diagnose BV by quantitative analysis of bacterial morphotypes, which consists of a three-step approach, i.e., bacteria regions segmentation, overlapping bacteria splitting, and bacterial morphotypes classification. Specifically, we first segment the bacteria regions via saliency cut, which simultaneously evaluates the global contrast and spatial weighted coherence. And then Markov random field model is applied for high-quality unsupervised segmentation of small object. We then decompose overlapping bacteria clumps into markers, and associate a pixel with markers to identify evidence for eventual individual bacterium splitting. Next, we extract morphotype features from each bacterium to learn the descriptors and to characterize the types of bacteria using an Adaptive Boosting machine learning framework. Finally, BV diagnosis is implemented based on the Nugent score criterion. Experiments demonstrate that our proposed method achieves high accuracy and efficiency in computation for BV diagnosis.

  3. The Effects of Phonological Skills and Vocabulary on Morphophonological Processing

    ERIC Educational Resources Information Center

    Boersma, Tiffany; Baker, Anne; Rispens, Judith; Weerman, Fred

    2018-01-01

    Morphophonological processing involves the phonological analysis of morphemes. Item-specific phonological characteristics have been shown to influence morphophonological skills in children. This study investigates the relative contributions of broad phonological skills and vocabulary to production and judgement accuracies of the Dutch past tense…

  4. Grammaticality Judgements in Adolescents with and without Language Impairment

    ERIC Educational Resources Information Center

    Miller, Carol; Leonard, Laurence; Finneran, Denise

    2008-01-01

    Background: Existing evidence suggests that young children with specific language impairment have unusual difficulty in detecting omissions of obligatory tense-marking morphemes, but little is known about adolescents' sensitivity to such violations. Aims: The study investigated whether limitations in receptive morphosyntax (as measured by…

  5. ERP Responses to Violations in the Hierarchical Structure of Functional Categories in Japanese Verb Conjugation.

    PubMed

    Kobayashi, Yuki; Sugioka, Yoko; Ito, Takane

    2018-02-01

    An event-related potential experiment was conducted in order to investigate readers' response to violations in the hierarchical structure of functional categories in Japanese, an agglutinative language where functional heads like Negation (Neg) as well as Tense (Tns) are realized as suffixes. A left-lateralized negativity followed by a P600 was elicited for the anomaly of attaching a Neg morpheme outside a Tns-marking suffix (i.e., syntactic violation of the form *[[V - Tns] - Neg]), while only P600 was observed for the anomalous form with a purely morphological/morpho-phonological violation, i.e., a Neg morpheme attached to ren'yo form instead of Neg-selecting form. The findings suggest that the syntactic structure involving Tns and Neg in Japanese, realized within a word as a sequence of suffixes, is processed in a similar manner to the syntactic structures that are phrasally realized in well-studied European languages like English.

  6. Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification

    PubMed Central

    2017-01-01

    Retinal blood vessels have a significant role in the diagnosis and treatment of various retinal diseases such as diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. For this reason, retinal vasculature extraction is important in order to help specialists for the diagnosis and treatment of systematic diseases. In this paper, a novel approach is developed to extract retinal blood vessel network. Our method comprises four stages: (1) preprocessing stage in order to prepare dataset for segmentation; (2) an enhancement procedure including Gabor, Frangi, and Gauss filters obtained separately before a top-hat transform; (3) a hard and soft clustering stage which includes K-means and Fuzzy C-means (FCM) in order to get binary vessel map; and (4) a postprocessing step which removes falsely segmented isolated regions. The method is tested on color retinal images obtained from STARE and DRIVE databases which are available online. As a result, Gabor filter followed by K-means clustering method achieves 95.94% and 95.71% of accuracy for STARE and DRIVE databases, respectively, which are acceptable for diagnosis systems. PMID:29065611

  7. Multi-temporal MRI carpal bone volumes analysis by principal axes registration

    NASA Astrophysics Data System (ADS)

    Ferretti, Roberta; Dellepiane, Silvana

    2016-03-01

    In this paper, a principal axes registration technique is presented, with the relevant application to segmented volumes. The purpose of the proposed registration is to compare multi-temporal volumes of carpal bones from Magnetic Resonance Imaging (MRI) acquisitions. Starting from the study of the second-order moment matrix, the eigenvectors are calculated to allow the rotation of volumes with respect to reference axes. Then the volumes are spatially translated to become perfectly overlapped. A quantitative evaluation of the results obtained is carried out by computing classical indices from the confusion matrix, which depict similarity measures between the volumes of the same organ as extracted from MRI acquisitions executed at different moments. Within the medical field, the way a registration can be used to compare multi-temporal images is of great interest, since it provides the physician with a tool which allows a visual monitoring of a disease evolution. The segmentation method used herein is based on the graph theory and is a robust, unsupervised and parameters independent method. Patients affected by rheumatic diseases have been considered.

  8. Robust generative asymmetric GMM for brain MR image segmentation.

    PubMed

    Ji, Zexuan; Xia, Yong; Zheng, Yuhui

    2017-11-01

    Accurate segmentation of brain tissues from magnetic resonance (MR) images based on the unsupervised statistical models such as Gaussian mixture model (GMM) has been widely studied during last decades. However, most GMM based segmentation methods suffer from limited accuracy due to the influences of noise and intensity inhomogeneity in brain MR images. To further improve the accuracy for brain MR image segmentation, this paper presents a Robust Generative Asymmetric GMM (RGAGMM) for simultaneous brain MR image segmentation and intensity inhomogeneity correction. First, we develop an asymmetric distribution to fit the data shapes, and thus construct a spatial constrained asymmetric model. Then, we incorporate two pseudo-likelihood quantities and bias field estimation into the model's log-likelihood, aiming to exploit the neighboring priors of within-cluster and between-cluster and to alleviate the impact of intensity inhomogeneity, respectively. Finally, an expectation maximization algorithm is derived to iteratively maximize the approximation of the data log-likelihood function to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. To demonstrate the performances of the proposed algorithm, we first applied the proposed algorithm to a synthetic brain MR image to show the intermediate illustrations and the estimated distribution of the proposed algorithm. The next group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Dice coefficient (DC) on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results on various brain MR images demonstrate the superior performances of the proposed algorithm in dealing with the noise and intensity inhomogeneity. In this paper, the RGAGMM algorithm is proposed which can simply and efficiently incorporate spatial constraints into an EM framework to simultaneously segment brain MR images and estimate the intensity inhomogeneity. The proposed algorithm is flexible to fit the data shapes, and can simultaneously overcome the influence of noise and intensity inhomogeneity, and hence is capable of improving over 5% segmentation accuracy comparing with several state-of-the-art algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Unsupervised laparoscopic appendicectomy by surgical trainees is safe and time-effective.

    PubMed

    Wong, Kenneth; Duncan, Tristram; Pearson, Andrew

    2007-07-01

    Open appendicectomy is the traditional standard treatment for appendicitis. Laparoscopic appendicectomy is perceived as a procedure with greater potential for complications and longer operative times. This paper examines the hypothesis that unsupervised laparoscopic appendicectomy by surgical trainees is a safe and time-effective valid alternative. Medical records, operating theatre records and histopathology reports of all patients undergoing laparoscopic and open appendicectomy over a 15-month period in two hospitals within an area health service were retrospectively reviewed. Data were analysed to compare patient features, pathology findings, operative times, complications, readmissions and mortality between laparoscopic and open groups and between unsupervised surgical trainee operators versus consultant surgeon operators. A total of 143 laparoscopic and 222 open appendicectomies were reviewed. Unsupervised trainees performed 64% of the laparoscopic appendicectomies and 55% of the open appendicectomies. There were no significant differences in complication rates, readmissions, mortality and length of stay between laparoscopic and open appendicectomy groups or between trainee and consultant surgeon operators. Conversion rates (laparoscopic to open approach) were similar for trainees and consultants. Unsupervised senior surgical trainees did not take significantly longer to perform laparoscopic appendicectomy when compared to unsupervised trainee-performed open appendicectomy. Unsupervised laparoscopic appendicectomy by surgical trainees is safe and time-effective.

  10. Automatic extraction of road features in urban environments using dense ALS data

    NASA Astrophysics Data System (ADS)

    Soilán, Mario; Truong-Hong, Linh; Riveiro, Belén; Laefer, Debra

    2018-02-01

    This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.

  11. Cytoplasm enhancement operator of peripheral blood smear images that are instable-stained and overexposed

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Wang, Guoyou; Liu, Jianguo

    2015-12-01

    Nucleus and cytoplasm are both essential for white blood cell recognition but the edges of cytoplasm are too blurry to be detected because of instable staining and overexposure. This paper aims at proposing a cytoplasm enhancement operator (CEO) to achieve accurate convergence of the active contour model. The CEO contains two parts. First, a nonlinear over-exposure enhancer map is yielded to correct over-exposure, which suppresses background noise while preserving details and improving contrast. Second, the over-exposed regions of cytoplasm in particular is further enhanced by a tri- modal histogram specification based on the scale-space filtering. The experimental results show that the proposed CEO and its corresponding GVF snake is superior to other unsupervised segmentation approaches.

  12. Argument Structure Use in Monolingual and Bilingual Children

    ERIC Educational Resources Information Center

    Souto, Sofia M.

    2013-01-01

    The data on language acquisition in children with specific language impairment (SLI) primarily come from studies in English reporting particular morphemes that differentiate them from their typically developing (TYP) peers, but markers of impairment vary cross-linguistically. There is some cross-linguistic evidence that SLI disrupts language…

  13. Ahtna Athabaskan Dictionary.

    ERIC Educational Resources Information Center

    Kari, James, Ed.

    This dictionary of Ahtna, a dialect of the Athabaskan language family, is the first to integrate all morphemes into a single alphabetically arranged section of main entries, with verbs arranged according to a theory of Ahtna (and Athabascan) verb theme categories. An introductory section details dictionary format conventions used, presents a brief…

  14. Spelling Mastery. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    "Spelling Mastery" is designed to explicitly teach spelling skills to students in grades 1 through 6. One of several Direct Instruction curricula from McGraw-Hill that precisely specify how to teach incremental content, "Spelling Mastery" includes phonemic, morphemic, and whole-word strategies. The What Works Clearinghouse…

  15. L2 Semantics from a Formal Linguistic Perspective

    ERIC Educational Resources Information Center

    Slabakova, Roumyana

    2018-01-01

    Ever since Aristotle and Plato ("The Categories"; "Cratylus"), linguists have considered language to be the pairing of form (sounds or gestures or written strings) and meaning. This is true for all meaningful linguistic units from morphemes, through words, phrases and sentences, to discourse. Generally speaking, semantics is…

  16. Transposed-Letter Priming across Inflectional Morpheme Boundaries

    ERIC Educational Resources Information Center

    Zargar, Ehsan Shafiee; Witzel, Naoko

    2017-01-01

    This study reports findings from two experiments testing whether a transposed-letter (TL) priming effect can be obtained when the transposition occurs across morphological boundaries. Previous studies have primarily tested derivationally complex words or compound words, but have not examined a more rule-based and productive morphological…

  17. An Introduction to Descriptive Linguistics. Revised Edition.

    ERIC Educational Resources Information Center

    Gleason, H.A., Jr.

    Beginning chapters of this volume define language and describe the sound, stress, and intonation systems of English. The body of the text explores extensively morphology, phonetics, phonemics, and the process of communication. Individual chapters detail such topics as morphemes, syntactic devices, grammatical systems, phonemic problems in language…

  18. Grammatical morphology is not a sensitive marker of language impairment in Icelandic in children aged 4-14 years.

    PubMed

    Thordardottir, Elin

    2016-01-01

    Grammatical morphology continues to be widely regarded as an area of extraordinary difficulty in children with Specific Language Impairment (SLI). A main argument for this view is the purported high diagnostic accuracy of morphological errors for the identification of SLI. However, findings are inconsistent across age groups and across languages. Studies show morphological difficulty to be far less pronounced in more highly inflected languages and the diagnostic accuracy of morphology in such languages is largely unknown. This study examines the morphological use of Icelandic children with and without SLI in a cross-sectional sample of children ranging from preschool age to adolescence and assesses the usefulness of morphology as a clinical marker to identify SLI. Participants were 57 monolingual Icelandic-speaking children age 4-14 years; 31 with SLI and 26 with typical language development (TD). Spontaneous language samples were coded for correct and incorrect use of grammatical morphology. The diversity of use of grammatical morphemes was documented for each group at different age and MLU levels. Individual accuracy scores were plotted against age as well as MLU and diagnostic accuracy was calculated. MLU and morphological accuracy increased with age for both children with SLI and TD, with the two groups gradually approaching each other. Morphological diversity and sequence of acquisition was similar across TD and SLI groups compared based on age or MLU. Morphological accuracy was overall high, but was somewhat lower in the SLI group, in particular at ages below 12 years and MLU levels below 6.0. However, overlap between the groups was important in all age groups, involving a greater tendency for errors in both groups at young ages and scores close to or at ceiling at older ages. Sensitivity rates as well as likelihood ratios for each morpheme were all below the range considered acceptable for clinical application, whereas better specificity rates in some age groups for some morphemes indicated that very low scores are indicative of SLI whereas high scores are uninformative. Age effects were evident in that the morphemes varied in the age at which they separate the groups most accurately. The findings of this study show that Icelandic children with SLI are somewhat more prone to making morphological errors than their TD counterparts. However, great overlap exists between the groups. The findings call into question the view that grammatical morphology is a central area of deficit in SLI. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Novel Histogram Based Unsupervised Classification Technique to Determine Natural Classes From Biophysically Relevant Fit Parameters to Hyperspectral Data

    DOE PAGES

    McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra; ...

    2017-05-23

    Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less

  20. Novel Histogram Based Unsupervised Classification Technique to Determine Natural Classes From Biophysically Relevant Fit Parameters to Hyperspectral Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra

    Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less

  1. Vertebra identification using template matching modelmp and K-means clustering.

    PubMed

    Larhmam, Mohamed Amine; Benjelloun, Mohammed; Mahmoudi, Saïd

    2014-03-01

    Accurate vertebra detection and segmentation are essential steps for automating the diagnosis of spinal disorders. This study is dedicated to vertebra alignment measurement, the first step in a computer-aided diagnosis tool for cervical spine trauma. Automated vertebral segment alignment determination is a challenging task due to low contrast imaging and noise. A software tool for segmenting vertebrae and detecting subluxations has clinical significance. A robust method was developed and tested for cervical vertebra identification and segmentation that extracts parameters used for vertebra alignment measurement. Our contribution involves a novel combination of a template matching method and an unsupervised clustering algorithm. In this method, we build a geometric vertebra mean model. To achieve vertebra detection, manual selection of the region of interest is performed initially on the input image. Subsequent preprocessing is done to enhance image contrast and detect edges. Candidate vertebra localization is then carried out by using a modified generalized Hough transform (GHT). Next, an adapted cost function is used to compute local voted centers and filter boundary data. Thereafter, a K-means clustering algorithm is applied to obtain clusters distribution corresponding to the targeted vertebrae. These clusters are combined with the vote parameters to detect vertebra centers. Rigid segmentation is then carried out by using GHT parameters. Finally, cervical spine curves are extracted to measure vertebra alignment. The proposed approach was successfully applied to a set of 66 high-resolution X-ray images. Robust detection was achieved in 97.5 % of the 330 tested cervical vertebrae. An automated vertebral identification method was developed and demonstrated to be robust to noise and occlusion. This work presents a first step toward an automated computer-aided diagnosis system for cervical spine trauma detection.

  2. Unsupervised Categorization in a Sample of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Edwards, Darren J.; Perlman, Amotz; Reed, Phil

    2012-01-01

    Studies of supervised Categorization have demonstrated limited Categorization performance in participants with autism spectrum disorders (ASD), however little research has been conducted regarding unsupervised Categorization in this population. This study explored unsupervised Categorization using two stimulus sets that differed in their…

  3. Unsupervised Deep Hashing With Pseudo Labels for Scalable Image Retrieval.

    PubMed

    Zhang, Haofeng; Liu, Li; Long, Yang; Shao, Ling

    2018-04-01

    In order to achieve efficient similarity searching, hash functions are designed to encode images into low-dimensional binary codes with the constraint that similar features will have a short distance in the projected Hamming space. Recently, deep learning-based methods have become more popular, and outperform traditional non-deep methods. However, without label information, most state-of-the-art unsupervised deep hashing (DH) algorithms suffer from severe performance degradation for unsupervised scenarios. One of the main reasons is that the ad-hoc encoding process cannot properly capture the visual feature distribution. In this paper, we propose a novel unsupervised framework that has two main contributions: 1) we convert the unsupervised DH model into supervised by discovering pseudo labels; 2) the framework unifies likelihood maximization, mutual information maximization, and quantization error minimization so that the pseudo labels can maximumly preserve the distribution of visual features. Extensive experiments on three popular data sets demonstrate the advantages of the proposed method, which leads to significant performance improvement over the state-of-the-art unsupervised hashing algorithms.

  4. Spatiotemporal information during unsupervised learning enhances viewpoint invariant object recognition

    PubMed Central

    Tian, Moqian; Grill-Spector, Kalanit

    2015-01-01

    Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning is used to link among object views. Specifically, researchers argue whether temporal proximity, motion, or spatiotemporal continuity among object views during unsupervised learning is beneficial. Here, we untangled the role of each of these factors in unsupervised learning of novel three-dimensional (3-D) objects. We found that after unsupervised training with 24 object views spanning a 180° view space, participants showed significant improvement in their ability to recognize 3-D objects across rotation. Surprisingly, there was no advantage to unsupervised learning with spatiotemporal continuity or motion information than training with temporal proximity. However, we discovered that when participants were trained with just a third of the views spanning the same view space, unsupervised learning via spatiotemporal continuity yielded significantly better recognition performance on novel views than learning via temporal proximity. These results suggest that while it is possible to obtain view-invariant recognition just from observing many views of an object presented in temporal proximity, spatiotemporal information enhances performance by producing representations with broader view tuning than learning via temporal association. Our findings have important implications for theories of object recognition and for the development of computational algorithms that learn from examples. PMID:26024454

  5. The Acquisition of Evidentiality and Source Monitoring

    ERIC Educational Resources Information Center

    Ozturk, Ozge; Papafragou, Anna

    2016-01-01

    Evidentiality in language marks how information contained in a sentence was acquired. For instance, Turkish has two past-tense morphemes that mark whether access to information was direct (typically, perception) or indirect (hearsay/inference). Full acquisition of evidential systems appears to be a late achievement cross-linguistically. Currently,…

  6. Colorado Research in Linguistics, Number One.

    ERIC Educational Resources Information Center

    Colorado Univ., Boulder.

    The three papers contained in this document cover particular issues in diverse languages. The first concerns the distribution and function of postpositions in Awutu, an African language; the main function of such morphemes is marking case. The second paper discusses the unusual phonology system of Wichita; this American Indian language is…

  7. From Grapheme to Word in Reading Acquisition in Spanish

    ERIC Educational Resources Information Center

    Cuetos, Fernando; Suarez-Coalla, Paz

    2009-01-01

    The relationship between written words and their pronunciation varies considerably among different orthographic systems, and these variations have repercussions on learning to read. Children whose languages have deep orthographies must learn to pronounce larger units, such as rhymes, morphemes, or whole words, to achieve the correct pronunciation…

  8. Derivational Suffixes as Cues to Stress Position in Reading Greek

    ERIC Educational Resources Information Center

    Grimani, Aikaterini; Protopapas, Athanassios

    2017-01-01

    Background: In languages with lexical stress, reading aloud must include stress assignment. Stress information sources across languages include word-final letter sequences. Here, we examine whether such sequences account for stress assignment in Greek and whether this is attributable to absolute rules involving accenting morphemes or to…

  9. The Morpho-Syntax and Pragmatics of Levantine Arabic Negation: A Synchronic and Diachronic Analysis

    ERIC Educational Resources Information Center

    Alqassas, Ahmad

    2012-01-01

    This dissertation investigates the morphosyntax and pragmatics of Levantine Arabic negation from both a synchronic and a diachronic perspective. It is shown that the complex distribution of the negation morphemes "ma," "la" and "-sh" is subject to morphosyntactic and pragmatic constraints. The morphosyntactic…

  10. Recycled Morphemes and Grammaticalization: The Hebrew Copula and Pronoun.

    ERIC Educational Resources Information Center

    Katz, Aya

    1998-01-01

    Presents an example of a grammaticalization type not conforming to normal expectations of unidirectionality. The Biblical Hebrew third person singular pronouns are grammaticalizations from the verb root "to be." In Modern Hebrew, the zero copula in equative clauses has been replaced by these pronouns, producing the progression: copula to pronoun…

  11. The Morphosyntax of Discontinuous Exponence

    ERIC Educational Resources Information Center

    Campbell, Amy Melissa

    2012-01-01

    This thesis offers a systematic treatment of discontinuous exponence, a pattern of inflection in which a single feature or a set of features bundled in syntax is expressed by multiple, distinct morphemes. This pattern is interesting and theoretically relevant because it represents a deviation from the expected one-to-one relationship between…

  12. Finding the Joy of Language in Authentic Wordplay

    ERIC Educational Resources Information Center

    Whitaker, Sandra

    2008-01-01

    Within the walls of their classroom, high school teacher Sandra Whitaker and students take on the challenge of language acquisition. They play with morphemes and etymologies and examine how authors craft meaning. Whitaker observes that it is possible for students to "learn more words than teachers can teach directly."

  13. Frequency Effects in Second Language Acquisition: An Annotated Survey

    ERIC Educational Resources Information Center

    Kartal, Galip; Sarigul, Ece

    2017-01-01

    The aim of this study is to investigate the relationship between frequency and language acquisition from many perspectives including implicit and explicit instruction, frequency effects on morpheme acquisition in L2, the relationship between frequency and multi-word constructions, frequency effects on phonetics, vocabulary, gerund and infinitive…

  14. n-Gram-Based Indexing for Korean Text Retrieval.

    ERIC Educational Resources Information Center

    Lee, Joon Ho; Cho, Hyun Yang; Park, Hyouk Ro

    1999-01-01

    Discusses indexing methods in Korean text retrieval and proposes a new indexing method based on n-grams which can handle compound nouns effectively without dictionaries and complex linguistic knowledge. Experimental results show that n-gram-based indexing is considerably faster than morpheme-based indexing, and also provides better retrieval…

  15. An Outline of English Spelling. Technical Report 55.

    ERIC Educational Resources Information Center

    Russell, Paula

    The purpose of this booklet is to provide a definition of phonological and morphological principles governing the English spelling system. Included in the discussion are an exhaustive list of sound-to-spelling correspondences, lists of common prefixes and suffixes, and rules for combining affixes with base morphemes. Charts provided outline…

  16. African Linguistics. Working Papers in Linguistics 19.

    ERIC Educational Resources Information Center

    University of Trondheim Working Papers in Linguistics, 1993

    1993-01-01

    Five papers on African linguistics are presented. "Observations on Some Derivational Affixes in Kiswahili Predicate Items" (Assibi Apatewon Amidu) examines the few morphemes recognized in the Swahili derivational affix system and suggests changes in the rules of vowel harmony and in presentation and representation of the affixes in use.…

  17. Phonological and Morphophonological Effects on Grammatical Development in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Tomas, Ekaterina; Demuth, Katherine; Smith-Lock, Karen M.; Petocz, Peter

    2015-01-01

    Background: Five-year-olds with specific language impairment (SLI) often struggle with mastering grammatical morphemes. It has been proposed that verbal morphology is particularly problematic in this respect. Previous research has also shown that in young typically developing children grammatical markers appear later in more phonologically…

  18. Knowledge of Some Derivational Processes in Two Samples of Bilingual Children

    ERIC Educational Resources Information Center

    Marckworth, M. Lois

    1978-01-01

    A report on a study concerning the bilingual child in a monolingual community. It investigates the acquisition of a set of English derivational morphemes by bilingual children and the effect of external factors, such as school, exposure time, age and home, in the children's language experience. (AMH)

  19. Modeling Systematicity and Individuality in Nonlinear Second Language Development: The Case of English Grammatical Morphemes

    ERIC Educational Resources Information Center

    Murakami, Akira

    2016-01-01

    This article introduces two sophisticated statistical modeling techniques that allow researchers to analyze systematicity, individual variation, and nonlinearity in second language (L2) development. Generalized linear mixed-effects models can be used to quantify individual variation and examine systematic effects simultaneously, and generalized…

  20. Figure, Ground, and Animacy in Slavic Declension.

    ERIC Educational Resources Information Center

    Janda, Laura A.

    1996-01-01

    Investigates the fate of "u"-stem endings in Slavic languages. Findings indicate that the collapse of a paradigm is gradual and that the morphemes involved do not lose their grammatical meanings, although they may develop additional ones at later stages. The development of additional grammatical meanings is carried out in concert with…

  1. Young L2 Learners' Performance on a Novel Morpheme Task

    ERIC Educational Resources Information Center

    Kohnert, Kathryn; Danahy, Kerry

    2007-01-01

    The teaching of an invented language rule has been proposed as a possible non-biased, language-independent assessment technique useful in differentiating young L2 learners with specific language impairment from their typically developing peers. The current study explores these notions by testing typically developing sequential bilingual children's…

  2. Numeral Incorporation in Japanese Sign Language

    ERIC Educational Resources Information Center

    Ktejik, Mish

    2013-01-01

    This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…

  3. More than Words: Frequency Effects for Multi-Word Phrases

    ERIC Educational Resources Information Center

    Arnon, Inbal; Snider, Neal

    2010-01-01

    There is mounting evidence that language users are sensitive to distributional information at many grain-sizes. Much of this research has focused on the distributional properties of words, the units they consist of (morphemes, phonemes), and the syntactic structures they appear in (verb-categorization frames, syntactic constructions). In a series…

  4. Obligatory Grammatical Categories and the Expression of Temporal Events

    ERIC Educational Resources Information Center

    Winskel, Heather; Luksaneeyanawin, Sudaporn

    2009-01-01

    Thai has imperfective aspectual morphemes that are not obligatory in usage, whereas English has obligatory grammaticized imperfective aspectual marking on the verb. Furthermore, Thai has verb final deictic-path verbs that form a closed class set. The current study investigated if obligatoriness of these grammatical categories in Thai and English…

  5. Predicting category intuitiveness with the rational model, the simplicity model, and the generalized context model.

    PubMed

    Pothos, Emmanuel M; Bailey, Todd M

    2009-07-01

    Naïve observers typically perceive some groupings for a set of stimuli as more intuitive than others. The problem of predicting category intuitiveness has been historically considered the remit of models of unsupervised categorization. In contrast, this article develops a measure of category intuitiveness from one of the most widely supported models of supervised categorization, the generalized context model (GCM). Considering different category assignments for a set of instances, the authors asked how well the GCM can predict the classification of each instance on the basis of all the other instances. The category assignment that results in the smallest prediction error is interpreted as the most intuitive for the GCM-the authors refer to this way of applying the GCM as "unsupervised GCM." The authors systematically compared predictions of category intuitiveness from the unsupervised GCM and two models of unsupervised categorization: the simplicity model and the rational model. The unsupervised GCM compared favorably with the simplicity model and the rational model. This success of the unsupervised GCM illustrates that the distinction between supervised and unsupervised categorization may need to be reconsidered. However, no model emerged as clearly superior, indicating that there is more work to be done in understanding and modeling category intuitiveness.

  6. Data Exploration using Unsupervised Feature Extraction for Mixed Micro-Seismic Signals

    NASA Astrophysics Data System (ADS)

    Meyer, Matthias; Weber, Samuel; Beutel, Jan

    2017-04-01

    We present a system for the analysis of data originating in a multi-sensor and multi-year experiment focusing on slope stability and its underlying processes in fractured permafrost rock walls undertaken at 3500m a.s.l. on the Matterhorn Hörnligrat, (Zermatt, Switzerland). This system incorporates facilities for the transmission, management and storage of large-scales of data ( 7 GB/day), preprocessing and aggregation of multiple sensor types, machine-learning based automatic feature extraction for micro-seismic and acoustic emission data and interactive web-based visualization of the data. Specifically, a combination of three types of sensors are used to profile the frequency spectrum from 1 Hz to 80 kHz with the goal to identify the relevant destructive processes (e.g. micro-cracking and fracture propagation) leading to the eventual destabilization of large rock masses. The sensors installed for this profiling experiment (2 geophones, 1 accelerometers and 2 piezo-electric sensors for detecting acoustic emission), are further augmented with sensors originating from a previous activity focusing on long-term monitoring of temperature evolution and rock kinematics with the help of wireless sensor networks (crackmeters, cameras, weather station, rock temperature profiles, differential GPS) [Hasler2012]. In raw format, the data generated by the different types of sensors, specifically the micro-seismic and acoustic emission sensors, is strongly heterogeneous, in part unsynchronized and the storage and processing demand is large. Therefore, a purpose-built signal preprocessing and event-detection system is used. While the analysis of data from each individual sensor follows established methods, the application of all these sensor types in combination within a field experiment is unique. Furthermore, experience and methods from using such sensors in laboratory settings cannot be readily transferred to the mountain field site setting with its scale and full exposure to the natural environment. Consequently, many state-of-the-art algorithms for big data analysis and event classification requiring a ground truth dataset cannot be applied. The above mentioned challenges require a tool for data exploration. In the presented system, data exploration is supported by unsupervised feature learning based on convolutional neural networks, which is used to automatically extract common features for preliminary clustering and outlier detection. With this information, an interactive web-tool allows for a fast identification of interesting time segments on which segment-selective algorithms for visualization, feature extraction and statistics can be applied. The combination of manual labeling based and unsupervised feature extraction provides an event catalog for classification of different characteristic events related to internal progression of micro-crack in steep fractured bedrock permafrost. References Hasler, A., S. Gruber, and J. Beutel (2012), Kinematics of steep bedrock permafrost, J. Geophys. Res., 117, F01016, doi:10.1029/2011JF001981.

  7. The influence of unsupervised time on elementary school children at high risk for inattention and problem behaviors.

    PubMed

    Na, Kyoung-Sae; Lee, Soyoung Irene; Hong, Hyun Ju; Oh, Myoung-Ja; Bahn, Geon Ho; Ha, Kyunghee; Shin, Yun Mi; Song, Jungeun; Park, Eun Jin; Yoo, Heejung; Kim, Hyunsoo; Kyung, Yun-Mi

    2014-06-01

    In the last few decades, changing socioeconomic and family structures have increasingly left children alone without adult supervision. Carefully prepared and limited periods of unsupervised time are not harmful for children. However, long unsupervised periods have harmful effects, particularly for those children at high risk for inattention and problem behaviors. In this study, we examined the influence of unsupervised time on behavior problems by studying a sample of elementary school children at high risk for inattention and problem behaviors. The study analyzed data from the Children's Mental Health Promotion Project, which was conducted in collaboration with education, government, and mental health professionals. The child behavior checklist (CBCL) was administered to assess problem behaviors among first- and fourth-grade children. Multivariate logistic regression analysis was used to evaluate the influence of unsupervised time on children's behavior. A total of 3,270 elementary school children (1,340 first-graders and 1,930 fourth-graders) were available for this study; 1,876 of the 3,270 children (57.4%) reportedly spent a significant amount of time unsupervised during the day. Unsupervised time that exceeded more than 2h per day increased the risk of delinquency, aggressive behaviors, and somatic complaints, as well as externalizing and internalizing problems. Carefully planned afterschool programming and care should be provided to children at high risk for inattention and problem behaviors. Also, a more comprehensive approach is needed to identify the possible mechanisms by which unsupervised time aggravates behavior problems in children predisposed for these behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Macula segmentation and fovea localization employing image processing and heuristic based clustering for automated retinal screening.

    PubMed

    R, GeethaRamani; Balasubramanian, Lakshmi

    2018-07-01

    Macula segmentation and fovea localization is one of the primary tasks in retinal analysis as they are responsible for detailed vision. Existing approaches required segmentation of retinal structures viz. optic disc and blood vessels for this purpose. This work avoids knowledge of other retinal structures and attempts data mining techniques to segment macula. Unsupervised clustering algorithm is exploited for this purpose. Selection of initial cluster centres has a great impact on performance of clustering algorithms. A heuristic based clustering in which initial centres are selected based on measures defining statistical distribution of data is incorporated in the proposed methodology. The initial phase of proposed framework includes image cropping, green channel extraction, contrast enhancement and application of mathematical closing. Then, the pre-processed image is subjected to heuristic based clustering yielding a binary map. The binary image is post-processed to eliminate unwanted components. Finally, the component which possessed the minimum intensity is finalized as macula and its centre constitutes the fovea. The proposed approach outperforms existing works by reporting that 100%,of HRF, 100% of DRIVE, 96.92% of DIARETDB0, 97.75% of DIARETDB1, 98.81% of HEI-MED, 90% of STARE and 99.33% of MESSIDOR images satisfy the 1R criterion, a standard adopted for evaluating performance of macula and fovea identification. The proposed system thus helps the ophthalmologists in identifying the macula thereby facilitating to identify if any abnormality is present within the macula region. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A Pilot Study Comparing Two Nonword Repetition Tasks for Use in a Formal Test Battery

    ERIC Educational Resources Information Center

    Tattersall, Patricia J.; Nelson, Nickola Wolf; Tyler, Ann A.

    2015-01-01

    Two sets of nonwords (with and without true morphemes) were compared for their ability to differentiate students in Grades 1 through 12 with and without language impairment (36 each; N = 72) on a nonword repetition task. Results indicated that either nonword type could contribute to differential diagnosis.

  10. Morphological Processing of Chinese Compounds from a Grammatical View

    ERIC Educational Resources Information Center

    Liu, Phil D.; McBride-Chang, Catherine

    2010-01-01

    In the present study, morphological structure processing of Chinese compounds was explored using a visual priming lexical decision task among 21 Hong Kong college students. Two compounding structures were compared. The first type was the subordinate, in which one morpheme modifies the other (e.g., [image omitted] ["laam4 kau4",…

  11. Morphological Effects in Children Word Reading: A Priming Study in Fourth Graders

    ERIC Educational Resources Information Center

    Casalis, Severine; Dusautoir, Marion; Cole, Pascale; Ducrot, Stephanie

    2009-01-01

    A growing corpus of evidence suggests that morphology could play a role in reading acquisition, and that young readers could be sensitive to the morphemic structure of written words. In the present experiment, we examined whether and when morphological information is activated in word recognition. French fourth graders made visual lexical…

  12. Reading Polymorphemic Dutch Compounds: Toward a Multiple Route Model of Lexical Processing

    ERIC Educational Resources Information Center

    Kuperman, Victor; Schreuder, Robert; Bertram, Raymond; Baayen, R. Harald

    2009-01-01

    This article reports an eye-tracking experiment with 2,500 polymorphemic Dutch compounds presented in isolation for visual lexical decision while readers' eye movements were registered. The authors found evidence that both full forms of compounds ("dishwasher") and their constituent morphemes (e.g., "dish," "washer," "er") and morphological…

  13. The Representation of Morphemes in the Russian Lexicon

    ERIC Educational Resources Information Center

    Antic, Eugenia

    2010-01-01

    Different morphological theories assign different status to parts of words, roots and affixes. Models range from accepting both bound roots and affixes to only assigning unit status to standalone words. Some questions that interest researchers are (1) What are the smallest morphological units, words or word parts? (2) How does frequency affect…

  14. Kick the Ball or Kicked the Ball? Perception of the Past Morpheme "-ed" by Second Language Learners

    ERIC Educational Resources Information Center

    Bell, Philippa; Trofimovich, Pavel; Collins, Laura

    2015-01-01

    Explanations for the well-documented second language (L2) learning challenge of the English regular past include verb semantics (Bardovi-Harlig, 2000), phonetic properties (Goad, White, & Steele, 2003), and frequency factors (Collins, Trofimovich, White, Cardoso, & Horst, 2009). Difficulty perceiving past-tense morphology (i.e., hearing…

  15. Do Transposed-Letter Similarity Effects Occur at a Morpheme Level? Evidence for Morpho-Orthographic Decomposition

    ERIC Educational Resources Information Center

    Dunabeitia, Jon Andoni; Peream, Manuel; Carreiras, Manuel

    2007-01-01

    When does morphological decomposition occur in visual word recognition? An increasing body of evidence suggests the presence of early morphological processing. The present work investigates this issue via an orthographic similarity manipulation. Three masked priming lexical decision experiments were conducted to examine the transposed-letter…

  16. The Argumentative Connective "Meme" in French: An Experimental Study in Eight- to Ten-Year-Old Children.

    ERIC Educational Resources Information Center

    Bassano, Dominique; Champaud, Christian

    1989-01-01

    Examines how children understand the argumentative function of the French connective meme (even). Two completion tasks, related to the argumentative properties of the morpheme, were used: 1) to infer the conclusion of an "even" sentence, and 2) to infer the argument position. (34 references) (Author/CB)

  17. A Method for Examining Productivity of Grammatical Morphology in Children with and without Specific Language Impairment

    ERIC Educational Resources Information Center

    Miller, Carol A.; Deevy, Patricia

    2003-01-01

    Children with specific language impairment (SLI) show inconsistent use of grammatical morphology. Children who are developing language typically also show a period during which they produce grammatical morphemes inconsistently. Various theories claim that both young typically developing children and children with SLI achieve correct production…

  18. Grammatical Aspect Is a Strength in the Language Comprehension of Young Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Tovar, Andrea T.; Fein, Deborah; Naigles, Letitia R.

    2015-01-01

    Purpose: The comprehension of tense/aspect morphology by children with autism spectrum disorder (ASD) was assessed via Intermodal Preferential Looking (IPL) to determine whether this population's difficulties with producing these morphemes extended to their comprehension. Method: Four-year-old participants were assessed twice, 4 months apart. They…

  19. Grammars Leak: Modeling How Phonotactic Generalizations Interact within the Grammar

    ERIC Educational Resources Information Center

    Martin, Andrew

    2011-01-01

    I present evidence from Navajo and English that weaker, gradient versions of morpheme-internal phonotactic constraints, such as the ban on geminate consonants in English, hold even across prosodic word boundaries. I argue that these lexical biases are the result of a MAXIMUM ENTROPY phonotactic learning algorithm that maximizes the probability of…

  20. The Role of Morphology in Word Recognition of Hebrew as a Templatic Language

    ERIC Educational Resources Information Center

    Oganyan, Marina

    2017-01-01

    Research on recognition of complex words has primarily focused on affixational complexity in concatenative languages. This dissertation investigates both templatic and affixational complexity in Hebrew, a templatic language, with particular focus on the role of the root and template morphemes in recognition. It also explores the role of morphology…

  1. Naming and Address in Afghan Society.

    ERIC Educational Resources Information Center

    Miran, M. Alam

    Forms of address in Afghan society reflect the relationships between the speakers as well as the society's structure. In Afghan Persian, or Dari, first, second, and last names have different semantic dimensions. Boys' first names usually consist of two parts or morphemes, of which one may be part of the father's name. Girls' names usually consist…

  2. DISTINCTIVE FEATURES IN THE PLURALIZATION RULES OF ENGLISH SPEAKERS.

    ERIC Educational Resources Information Center

    ANISFELD, MOSHE; AND OTHERS

    FIRST AND SECOND GRADERS, GIVEN "CVC" SINGULAR NONSENSE WORDS (E.G., NAR) ORALLY AND ASKED TO CHOOSE BETWEEN TWO PLURALS (NARF-NARK), PREFERRED FINAL SOUNDS SHARING WITH /Z/ (THE MOST COMMON SHAPE OF THE PLURAL MORPHEME IN ENGLISH) THE STRIDENCY OR CONTINUANCE FEATURES. THIS SUGGESTS THAT THEIR PLURALIZATION RULES ARE FORMULATED IN TERMS OF…

  3. Influences of Phonological Context on Tense Marking in Spanish-English Dual Language Learners

    ERIC Educational Resources Information Center

    Combiths, Philip N.; Barlow, Jessica A.; Potapova, Irina; Pruitt-Lord, Sonja

    2017-01-01

    Purpose: The emergence of tense-morpheme marking during language acquisition is highly variable, which confounds the use of tense marking as a diagnostic indicator of language impairment in linguistically diverse populations. In this study, we seek to better understand tense-marking patterns in young bilingual children by comparing phonological…

  4. Classical Sanskrit Preverb Ordering: A Diachronic Study

    ERIC Educational Resources Information Center

    Papke, Julia Kay Porter

    2010-01-01

    The Indo-European language family contains many "small words" with various adverbial meanings and functions, including preverbs. The term "preverb" is used to label any of a variety of modifying morphemes that form a close semantic unit with a verb, including both words and prefixes (Booij and Kemenade 2003). Some Indo-European languages not only…

  5. On Location: The Structure of Case and Adpositions

    ERIC Educational Resources Information Center

    Radkevich, Nina V.

    2010-01-01

    The general goal of this dissertation is two-fold: first, I provide a unified structure for spatial expressions (local cases and adpositions) and second, I propose a novel approach to vocabulary insertion and generation of portmanteau morphemes. I propose a novel structure for local case affixes, based on data from 114 languages and argue that…

  6. Corpus Study of Tense, Aspect, and Modality in Diglossic Speech in Cairene Arabic

    ERIC Educational Resources Information Center

    Moshref, Ola Ahmed

    2012-01-01

    Morpho-syntactic features of Modern Standard Arabic mix intricately with those of Egyptian Colloquial Arabic in ordinary speech. I study the lexical, phonological and syntactic features of verb phrase morphemes and constituents in different tenses, aspects, moods. A corpus of over 3000 phrases was collected from religious, political/economic and…

  7. Surviving Blind Decomposition: A Distributional Analysis of the Time-Course of Complex Word Recognition

    ERIC Educational Resources Information Center

    Schmidtke, Daniel; Matsuki, Kazunaga; Kuperman, Victor

    2017-01-01

    The current study addresses a discrepancy in the psycholinguistic literature about the chronology of information processing during the visual recognition of morphologically complex words. "Form-then-meaning" accounts of complex word recognition claim that morphemes are processed as units of form prior to any influence of their meanings,…

  8. Double Consonants in English: Graphemic, Morphological, Prosodic and Etymological Determinants

    ERIC Educational Resources Information Center

    Berg, Kristian

    2016-01-01

    What determines consonant doubling in English? This question is pursued by using a large lexical database to establish systematic correlations between spelling, phonology and morphology. The main insights are: Consonant doubling is most regular at morpheme boundaries. It can be described in graphemic terms alone, i.e. without reference to…

  9. Improving Science Vocabulary of High School English Language Learners with Reading Disabilities

    ERIC Educational Resources Information Center

    Helman, Amanda L.; Calhoon, Mary Beth; Kern, Lee

    2015-01-01

    This study investigated the effects of a combined contextual and morphemic analysis strategy to increase prediction and analysis of science vocabulary words by three high school (9th--10th grade) English language learners with reading disabilities. A multiple baseline across participants design was used. Students analyzed science words using the…

  10. Opaque for the Reader but Transparent for the Brain: Neural Signatures of Morphological Complexity

    ERIC Educational Resources Information Center

    Meinzer, Marcus; Lahiri, Aditi; Flaisch, Tobias; Hannemann, Ronny; Eulitz, Carsten

    2009-01-01

    Within linguistics, words with a complex internal structure are commonly assumed to be decomposed into their constituent morphemes (e.g., un-help-ful). Nevertheless, an ongoing debate concerns the brain structures that subserve this process. Using functional magnetic resonance imaging, the present study varied the internal complexity of derived…

  11. The Role of Utterance Length and Position in 3-Year-Olds' Production of Third Person Singular -s

    ERIC Educational Resources Information Center

    Mealings, Kiri T.; Demuth, Katherine

    2014-01-01

    Purpose: Evidence from children's spontaneous speech suggests that utterance length and utterance position may help explain why children omit grammatical morphemes in some contexts but not others. This study investigated whether increased utterance length (hence, increased grammatical complexity) adversely affects children's third person singular…

  12. The Fuzzy Set Called 'Imitations.'

    ERIC Educational Resources Information Center

    Moerk, Ernst L.

    This investigation addresses problems of defining verbal imitation, and suggests solutions by analyzing verbal interactions between two children and their mothers. Children were between 18 and 35 months old, with a mean length of utterance between 1.4 and 4.2 morphemes. Analyses focus upon the uses these children made of maternal models; 10…

  13. Stem Access in Regular and Irregular Inflection: Evidence from German Participles

    ERIC Educational Resources Information Center

    Smolka, Eva; Zwitserlood, Pienie; Rosler, Frank

    2007-01-01

    This study investigated whether German participles are retrieved as whole words from lexical storage or whether they are accessed via their morphemic constituents. German participle formation is of particular interest, since it is concatenative for both regular and irregular verbs and results from combinations of regular/irregular stems with…

  14. Evidentials and Interrogatives: A Case Study from Korean

    ERIC Educational Resources Information Center

    Lim, Dong Sik

    2010-01-01

    My aims in this thesis are to establish how evidentiality is grammatically encoded in Korean, and to investigate the semantic nature of evidential morphemes in Korean, which helps us to explain the semantic and pragmatic behavior of evidential markers in non-declarative sentences, such as interrogatives. By doing so, this thesis also shows the…

  15. Morphological Structures in Visual Word Recognition: The Case of Arabic

    ERIC Educational Resources Information Center

    Abu-Rabia, Salim; Awwad, Jasmin (Shalhoub)

    2004-01-01

    This research examined the function within lexical access of the main morphemic units from which most Arabic words are assembled, namely roots and word patterns. The present study focused on the derivation of nouns, in particular, whether the lexical representation of Arabic words reflects their morphological structure and whether recognition of a…

  16. Semantic activation by Japanese kanji: evidence from event-related potentials.

    PubMed

    Hayashi, M; Kayamoto, Y; Tanaka, H; Yamada, J

    1998-04-01

    In a character-judgment paradigm, the subject quickly pressed a key when a hiragana (Japanese syllabary) appeared on a display and did nothing when a kanji (Japanese logograph) appeared. The amplitude of the N400 component was compared when four types of visual stimuli were used: (Type 1) single kanji--Grade 1- to 3-level words, (Type 2) single kanji--Grade 1- to 3-level bound morphemes, (Type 3) single kanji--high school- and college-level bound morphemes, and (Type 4) obsolete kanji. Analysis showed that N400 was largest in the temporal-occipital areas for the Type 1 stimuli and larger in the right parietal area for Type 2 than Type 3 stimuli. The analyses of N400 to semantic stimulations have been conducted and discussed in terms of their meaningfulness, age when writing of these kanji was mastered, and linguistic status (kanji versus nonkanji). Most interestingly, the Types 3 and 4 kanji did not activate semantic responses, showing that they did not function as linguistic units, i.e., kanji, in the mental lexicon.

  17. Unsupervised self-care predicts conduct problems: The moderating roles of hostile aggression and gender.

    PubMed

    Atherton, Olivia E; Schofield, Thomas J; Sitka, Angela; Conger, Rand D; Robins, Richard W

    2016-04-01

    Despite widespread speculation about the detrimental effect of unsupervised self-care on adolescent outcomes, little is known about which children are particularly prone to problem behaviors when left at home without adult supervision. The present research used data from a longitudinal study of 674 Mexican-origin children residing in the United States to examine the prospective effect of unsupervised self-care on conduct problems, and the moderating roles of hostile aggression and gender. Results showed that unsupervised self-care was related to increases over time in conduct problems such as lying, stealing, and bullying. However, unsupervised self-care only led to conduct problems for boys and for children with an aggressive temperament. The main and interactive effects held for both mother-reported and observational-rated hostile aggression and after controlling for potential confounds. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. Unsupervised universal steganalyzer for high-dimensional steganalytic features

    NASA Astrophysics Data System (ADS)

    Hou, Xiaodan; Zhang, Tao

    2016-11-01

    The research in developing steganalytic features has been highly successful. These features are extremely powerful when applied to supervised binary classification problems. However, they are incompatible with unsupervised universal steganalysis because the unsupervised method cannot distinguish embedding distortion from varying levels of noises caused by cover variation. This study attempts to alleviate the problem by introducing similarity retrieval of image statistical properties (SRISP), with the specific aim of mitigating the effect of cover variation on the existing steganalytic features. First, cover images with some statistical properties similar to those of a given test image are searched from a retrieval cover database to establish an aided sample set. Then, unsupervised outlier detection is performed on a test set composed of the given test image and its aided sample set to determine the type (cover or stego) of the given test image. Our proposed framework, called SRISP-aided unsupervised outlier detection, requires no training. Thus, it does not suffer from model mismatch mess. Compared with prior unsupervised outlier detectors that do not consider SRISP, the proposed framework not only retains the universality but also exhibits superior performance when applied to high-dimensional steganalytic features.

  19. Video mining using combinations of unsupervised and supervised learning techniques

    NASA Astrophysics Data System (ADS)

    Divakaran, Ajay; Miyahara, Koji; Peker, Kadir A.; Radhakrishnan, Regunathan; Xiong, Ziyou

    2003-12-01

    We discuss the meaning and significance of the video mining problem, and present our work on some aspects of video mining. A simple definition of video mining is unsupervised discovery of patterns in audio-visual content. Such purely unsupervised discovery is readily applicable to video surveillance as well as to consumer video browsing applications. We interpret video mining as content-adaptive or "blind" content processing, in which the first stage is content characterization and the second stage is event discovery based on the characterization obtained in stage 1. We discuss the target applications and find that using a purely unsupervised approach are too computationally complex to be implemented on our product platform. We then describe various combinations of unsupervised and supervised learning techniques that help discover patterns that are useful to the end-user of the application. We target consumer video browsing applications such as commercial message detection, sports highlights extraction etc. We employ both audio and video features. We find that supervised audio classification combined with unsupervised unusual event discovery enables accurate supervised detection of desired events. Our techniques are computationally simple and robust to common variations in production styles etc.

  20. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  1. Detection of compensatory balance responses using wearable electromyography sensors for fall-risk assessment.

    PubMed

    Nouredanesh, Mina; Kukreja, Sunil L; Tung, James

    2016-08-01

    Loss of balance is prevalent in older adults and populations with gait and balance impairments. The present paper aims to develop a method to automatically distinguish compensatory balance responses (CBRs) from normal gait, based on activity patterns of muscles involved in maintaining balance. In this study, subjects were perturbed by lateral pushes while walking and surface electromyography (sEMG) signals were recorded from four muscles in their right leg. To extract sEMG time domain features, several filtering characteristics and segmentation approaches are examined. The performance of three classification methods, i.e., k-nearest neighbor, support vector machines, and random forests, were investigated for accurate detection of CBRs. Our results show that features extracted in the 50-200Hz band, segmented using peak sEMG amplitudes, and a random forest classifier detected CBRs with an accuracy of 92.35%. Moreover, our results support the important role of biceps femoris and rectus femoris muscles in stabilization and consequently discerning CBRs. This study contributes towards the development of wearable sensor systems to accurately and reliably monitor gait and balance control behavior in at-home settings (unsupervised conditions), over long periods of time, towards personalized fall risk assessment tools.

  2. pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis.

    PubMed

    Giannakopoulos, Theodoros

    2015-01-01

    Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library.

  3. pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis

    PubMed Central

    Giannakopoulos, Theodoros

    2015-01-01

    Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library. PMID:26656189

  4. Morphology and Syntax in Late Talkers at Age 5

    ERIC Educational Resources Information Center

    Rescorla, Leslie; Turner, Hannah L.

    2015-01-01

    Purpose: This study reports age 5 morphology and syntax skills in late talkers identified at age 2 (n = 34) and typically developing comparison children (n = 20). Results: The late talkers manifested significant morphological delays at ages 3 and 4 relative to comparison peers. Based on the 14 morphemes analyzed at age 5, the only significant…

  5. Error Analysis of Present Simple Tense in the Interlanguage of Adult Arab English Language Learners

    ERIC Educational Resources Information Center

    Muftah, Muneera; Rafik-Galea, Shameem

    2013-01-01

    The present study analyses errors on present simple tense among adult Arab English language learners. It focuses on the error on 3sg "-s" (the third person singular present tense agreement morpheme "-s"). The learners are undergraduate adult Arabic speakers learning English as a foreign language. The study gathered data from…

  6. Effects of Morphology and Semantic Transparency on Typing Latencies in English Compound and Pseudocompound Words

    ERIC Educational Resources Information Center

    Gagné, Christina L.; Spalding, Thomas L.

    2016-01-01

    We used a typing task to measure the written production of compounds, pseudocompounds, and monomorphemic words on a letter-by-letter basis to determine whether written production (as measured by interletter typing speed) was affected by morphemic structure and semantic transparency of the constituents. Semantic transparency was analyzed using a…

  7. Lexical Category Acquisition via Nonadjacent Dependencies in Context: Evidence of Developmental Change and Individual Differences

    ERIC Educational Resources Information Center

    Sandoval, Michelle

    2014-01-01

    Lexical categories like noun and verb are foundational to language acquisition, but these categories do not come neatly packaged for the infant language learner. Some have proposed that infants can begin to solve this problem by tracking the frequent nonadjacent word (or morpheme) contexts of these categories. However, nonadjacent relationships…

  8. Gleaning Structure from Sound: The Role of Prosodic Contrast in Learning Non-Adjacent Dependencies

    ERIC Educational Resources Information Center

    Grama, Ileana C.; Kerkhoff, Annemarie; Wijnen, Frank

    2016-01-01

    The ability to detect non-adjacent dependencies (i.e. between "a" and "b" in "aXb") in spoken input may support the acquisition of morpho-syntactic dependencies (e.g. "The princess 'is' kiss'ing' the frog"). Functional morphemes in morpho-syntactic dependencies are often marked by perceptual cues that render…

  9. On Plurality Category and Teaching in Turkish

    ERIC Educational Resources Information Center

    Alyilmaz, Semra

    2017-01-01

    When discussing about "plurality" of nouns in Turkish, it reminds /+lar/ affix after nouns (morpheme) and the subject is undervalued. Whereas, plurality and formation of plurality is not simple as it is thought as well as it is not made up of /+lar/ affix. It is because /+lar/ affix is only one of the linguistic elements in the…

  10. Processing English Compounds in the First and Second Language: The Influence of the Middle Morpheme

    ERIC Educational Resources Information Center

    Murphy, Victoria A.; Hayes, Jennifer

    2010-01-01

    Native English speakers tend to exclude regular plural inflection when producing English noun-noun compounds (e.g., "rat-eater" not "rats-eater") while allowing irregular plural inflection within compounds (e.g., "mice-eater") (Clahsen, 1995; Gordon, 1985; Hayes, Smith & Murphy, 2005; Lardiere, 1995; Murphy, 2000). Exposure to the input alone has…

  11. Teaching, Learning, and Developing L2 French Sociolinguistic Competence: A Sociocultural Perspective

    ERIC Educational Resources Information Center

    van Compernolle, Remi A.; Williams, Lawrence

    2012-01-01

    The study reported in this article investigates the development of sociolinguistic competence among second-year (US university-level) L2 learners of French who were given systematic instruction on sociolinguistic variation as part of their normal coursework. We focus on the variable use of the negative morpheme "ne" in verbal negation. Drawing…

  12. Enhancing L2 Students' Listening Transcription Ability through a Focus on Morphological Awareness

    ERIC Educational Resources Information Center

    Karimi, Mohammad Nabi

    2013-01-01

    Morphological awareness (MA), defined as the ability to understand the morphemic structure of the words, has been reported to affect various aspects of second language performance including reading comprehension ability, spelling performance, etc. But the concept has been far less treated with reference to l2 listening. Against this background,…

  13. Morphological Decomposition in Japanese De-Adjectival Nominals: Masked and Overt Priming Evidence

    ERIC Educational Resources Information Center

    Fiorentino, Robert; Naito-Billen, Yuka; Minai, Utako

    2016-01-01

    Whether morpheme-based processing extends to relatively unproductive derived words remains a matter of debate. Although whole-word storage and access has been proposed for some derived words, such as Japanese de-adjectival nominals with the unproductive ("-mi") suffix (e.g., Hagiwara et al. in "Language" 75:739-763, 1999),…

  14. Reflexions sur les marqueurs de structuration de la conversation (Considerations on the Structural Markers of Conversation).

    ERIC Educational Resources Information Center

    Auchlin, Antoine

    1981-01-01

    Examines morphemic markers that signal the opening and closing of discourse units, emphasizing their complexity and their central role for a descriptive model of conversation. Then proceeds to analyze their functions within the overall structure of conversation, classifying them according to their properties and uses. Societe Nouvelle Didier…

  15. Morphological Decomposition in the Recognition of Prefixed and Suffixed Words: Evidence from Korean

    ERIC Educational Resources Information Center

    Kim, Say Young; Wang, Min; Taft, Marcus

    2015-01-01

    Korean has visually salient syllable units that are often mapped onto either prefixes or suffixes in derived words. In addition, prefixed and suffixed words may be processed differently given a left-to-right parsing procedure and the need to resolve morphemic ambiguity in prefixes in Korean. To test this hypothesis, four experiments using the…

  16. Input Subject Diversity Accelerates the Growth of Tense and Agreement: Indirect Benefits from a Parent-Implemented Intervention

    ERIC Educational Resources Information Center

    Hadley, Pamela A.; Rispoli, Matthew; Holt, Janet K.

    2017-01-01

    Purpose: This follow-up study examined whether a parent intervention that increased the diversity of lexical noun phrase subjects in parent input and accelerated children's sentence diversity (Hadley et al., 2017) had indirect benefits on tense/agreement (T/A) morphemes in parent input and children's spontaneous speech. Method: Differences in…

  17. Early Verb Constructions in French: Adjacency on the Left Edge

    ERIC Educational Resources Information Center

    Veneziano, Edy; Clark, Eve V.

    2016-01-01

    Children acquiring French elaborate their early verb constructions by adding adjacent morphemes incrementally at the left edge of core verbs. This hypothesis was tested with 2657 verb uses from four children between 1;3 and 2;7. Consistent with the Adjacency Hypothesis, children added clitic subjects frst only to present tense forms (as in…

  18. The Relative Effects of Explicit Correction and Recasts on Two Target Structures via Two Communication Modes

    ERIC Educational Resources Information Center

    Yilmaz, Yucel

    2012-01-01

    This study investigated the effects of negative feedback type (i.e., explicit correction vs. recasts), communication mode (i.e., face-to-face communication vs. synchronous computer-mediated communication), and target structure salience (i.e., salient vs. nonsalient) on the acquisition of two Turkish morphemes. Forty-eight native speakers of…

  19. The Effects of Morpheme and Prosody Instruction on Middle School Spelling

    ERIC Educational Resources Information Center

    Dornay, Margaret A.

    2017-01-01

    A single case design was used to investigate the impact of two types of instruction on middle school students' spelling. Phase 1 emphasized morphology awareness instruction (MAI) and phase 2 employed the addition of prosody awareness instruction (PAI). In order to compare the effects of MAI and PAI, spelling scores were gathered from eight…

  20. Acquisition of English Morphosyntax: Evidence from a Chinese-Speaking Child

    ERIC Educational Resources Information Center

    Wei, Yuyan

    2011-01-01

    This thesis aims to examine the development of morphosyntax with longitudinal English production from Diany, a Mandarin-speaking child, starting from the second week Diany arrived in the U.S.A. (age 4;9). The study is particularly interested in whether Diany's acquisition of verbal morphemes and verb movement supports relevant hypotheses in the…

  1. The Role of Exposure Condition in the Effectiveness of Explicit Correction

    ERIC Educational Resources Information Center

    Yilmaz, Yucel

    2016-01-01

    This article reports on a study that investigated the effects of two feedback exposure conditions on the acquisition of two Turkish morphemes. The study followed a randomized experimental design with an immediate and a delayed posttest. Forty-two Chinese-speaking learners of Turkish were randomly assigned to one of three groups: receivers,…

  2. Effect of Subject Types on the Production of Auxiliary "Is" in Young English-Speaking Children

    ERIC Educational Resources Information Center

    Guo, Ling-Yu; Owen, Amanda J.; Tomblin, J. Bruce

    2010-01-01

    Purpose: In this study, the authors tested the unique checking constraint (UCC) hypothesis and the usage-based approach concerning why young children variably use tense and agreement morphemes in obligatory contexts by examining the effect of subject types on the production of auxiliary "is". Method: Twenty typically developing 3-year-olds were…

  3. Integrating Morphological Knowledge in Literacy Instruction: Framework and Principles to Guide Special Education Teachers

    ERIC Educational Resources Information Center

    Claravall, Eric Blancaflor

    2016-01-01

    Morphology is the study of word structure and its meaning. Knowledge and awareness of morphological structure provides a new light to help students with reading disabilities build skills in their word reading and spelling. When teaching morphology, teachers can focus on four literacy components (Claravall, 2013): morphemic analysis, vocabulary and…

  4. Morphological Awareness and Learning to Read: A Cross-Language Perspective

    ERIC Educational Resources Information Center

    Kuo, Li-jen; Anderson, Richard C.

    2006-01-01

    In the past decade, there has been a surge of interest in morphological awareness, which refers to the ability to reflect on and manipulate morphemes and word formation rules in a language. This review provides a critical synthesis of empirical studies on this topic from a broad cross-linguistic perspective. Research with children speaking several…

  5. Syntactic Development in Children with Hemispherectomy: The I-, D-, And C-Systems

    ERIC Educational Resources Information Center

    Curtiss, S.; Schaeffer, J.

    2005-01-01

    This study reports on functional morpheme (I, D, and C) production in the spontaneous speech of five pairs of children who have undergone hemispherectomy, matching each pair for etiology and age at symptom onset, surgery, and testing. Our results show that following left hemispherectomy (LH), children evidence a greater error rate in the use of…

  6. Decomposition into Multiple Morphemes during Lexical Access: A Masked Priming Study of Russian Nouns

    ERIC Educational Resources Information Center

    Kazanina, Nina; Dukova-Zheleva, Galina; Geber, Dana; Kharlamov, Viktor; Tonciulescu, Keren

    2008-01-01

    The study reports the results of a masked priming experiment with morphologically complex Russian nouns. Participants performed a lexical decision task to a visual target that differed from its prime in one consonant. Three conditions were included: (1) "transparent," in which the prime was morphologically related to the target and contained the…

  7. Tense over Time: The Longitudinal Course of Tense Acquisition in Children with Specific Language Impairment.

    ERIC Educational Resources Information Center

    Rice, Mabel L.; Wexler, Kenneth; Hershberger, Scott

    1998-01-01

    A longitudinal study of 43 typical children (ages 2 to 8) and 21 children with specific language impairments (SLI) found that a diverse set of morphemes share the property of tense marking, that acquisition shows linear and nonlinear components, and that mean length of utterance predicts rate of acquisition. (Author/CR)

  8. Computational Modeling of Morphological Effects in Bangla Visual Word Recognition

    ERIC Educational Resources Information Center

    Dasgupta, Tirthankar; Sinha, Manjira; Basu, Anupam

    2015-01-01

    In this paper we aim to model the organization and processing of Bangla polymorphemic words in the mental lexicon. Our objective is to determine whether the mental lexicon accesses a polymorphemic word as a whole or decomposes the word into its constituent morphemes and then recognize them accordingly. To address this issue, we adopted two…

  9. Examination of the Locus of Positional Effects on Children's Production of Plural -"s": Considerations from Local and Global Speech Planning

    ERIC Educational Resources Information Center

    Theodore, Rachel M.; Demuth, Katherine; Shattuck-Hufnagel, Stefanie

    2015-01-01

    Purpose: Prosodic and articulatory factors influence children's production of inflectional morphemes. For example, plural -"s" is produced more reliably in utterance-final compared to utterance-medial position (i.e., the positional effect), which has been attributed to the increased planning time in utterance-final position. In previous…

  10. Morphological Awareness Intervention: Improving Spelling, Vocabulary, and Reading Comprehension for Adult Learners

    ERIC Educational Resources Information Center

    Bangs, Kathryn E.; Binder, Katherine S.

    2016-01-01

    Adult Basic Education programs are under pressure to develop and deliver instruction that promotes rapid and sustained literacy development. We describe a novel approach to a literacy intervention that focuses on morphemes, which are the smallest meaningful units contained in words. We argue that if you teach learners that big words are comprised…

  11. Potential impacts of robust surface roughness indexes on DTM-based segmentation

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Rocca, Michele

    2017-04-01

    In this study, we explore the impact of robust surface texture indexes based on MAD (median absolute differences), implemented by Trevisani and Rocca (2015), in the unsupervised morphological segmentation of an alpine basin. The area was already object of a geomorphometric analysis, consisting in the roughness-based segmentation of the landscape (Trevisani et al. 2012); the roughness indexes were calculated on a high resolution DTM derived by means of airborne Lidar using the variogram as estimator. The calculated roughness indexes have been then used for the fuzzy clustering (Odeh et al., 1992; Burrough et al., 2000) of the basin, revealing the high informative geomorphometric content of the roughness-based indexes. However, the fuzzy clustering revealed a high fuzziness and a high degree of mixing between textural classes; this was ascribed both to the morphological complexity of the basin and to the high sensitivity of variogram to non-stationarity and signal-noise. Accordingly, we explore how the new implemented roughness indexes based on MAD affect the morphological segmentation of the studied basin. References Burrough, P.A., Van Gaans, P.F.M., MacMillan, R.A., 2000. High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems 113, 37-52. Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J., 1992. Soil pattern recognition with fuzzy-c-means: application to classification and soil-landform interrelationships. Soil Sciences Society of America Journal 56, 505-516. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani, S. & Rocca, M. 2015, "MAD: Robust image texture analysis for applications in high resolution geomorphometry", Computers and Geosciences, vol. 81, pp. 78-92.

  12. Principal component analysis-based unsupervised feature extraction applied to in silico drug discovery for posttraumatic stress disorder-mediated heart disease.

    PubMed

    Taguchi, Y-h; Iwadate, Mitsuo; Umeyama, Hideaki

    2015-04-30

    Feature extraction (FE) is difficult, particularly if there are more features than samples, as small sample numbers often result in biased outcomes or overfitting. Furthermore, multiple sample classes often complicate FE because evaluating performance, which is usual in supervised FE, is generally harder than the two-class problem. Developing sample classification independent unsupervised methods would solve many of these problems. Two principal component analysis (PCA)-based FE, specifically, variational Bayes PCA (VBPCA) was extended to perform unsupervised FE, and together with conventional PCA (CPCA)-based unsupervised FE, were tested as sample classification independent unsupervised FE methods. VBPCA- and CPCA-based unsupervised FE both performed well when applied to simulated data, and a posttraumatic stress disorder (PTSD)-mediated heart disease data set that had multiple categorical class observations in mRNA/microRNA expression of stressed mouse heart. A critical set of PTSD miRNAs/mRNAs were identified that show aberrant expression between treatment and control samples, and significant, negative correlation with one another. Moreover, greater stability and biological feasibility than conventional supervised FE was also demonstrated. Based on the results obtained, in silico drug discovery was performed as translational validation of the methods. Our two proposed unsupervised FE methods (CPCA- and VBPCA-based) worked well on simulated data, and outperformed two conventional supervised FE methods on a real data set. Thus, these two methods have suggested equivalence for FE on categorical multiclass data sets, with potential translational utility for in silico drug discovery.

  13. Texture analysis based on the Hermite transform for image classification and segmentation

    NASA Astrophysics Data System (ADS)

    Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus

    2012-06-01

    Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.

  14. Automated interpretation of 3D laserscanned point clouds for plant organ segmentation.

    PubMed

    Wahabzada, Mirwaes; Paulus, Stefan; Kersting, Kristian; Mahlein, Anne-Katrin

    2015-08-08

    Plant organ segmentation from 3D point clouds is a relevant task for plant phenotyping and plant growth observation. Automated solutions are required to increase the efficiency of recent high-throughput plant phenotyping pipelines. However, plant geometrical properties vary with time, among observation scales and different plant types. The main objective of the present research is to develop a fully automated, fast and reliable data driven approach for plant organ segmentation. The automated segmentation of plant organs using unsupervised, clustering methods is crucial in cases where the goal is to get fast insights into the data or no labeled data is available or costly to achieve. For this we propose and compare data driven approaches that are easy-to-realize and make the use of standard algorithms possible. Since normalized histograms, acquired from 3D point clouds, can be seen as samples from a probability simplex, we propose to map the data from the simplex space into Euclidean space using Aitchisons log ratio transformation, or into the positive quadrant of the unit sphere using square root transformation. This, in turn, paves the way to a wide range of commonly used analysis techniques that are based on measuring the similarities between data points using Euclidean distance. We investigate the performance of the resulting approaches in the practical context of grouping 3D point clouds and demonstrate empirically that they lead to clustering results with high accuracy for monocotyledonous and dicotyledonous plant species with diverse shoot architecture. An automated segmentation of 3D point clouds is demonstrated in the present work. Within seconds first insights into plant data can be deviated - even from non-labelled data. This approach is applicable to different plant species with high accuracy. The analysis cascade can be implemented in future high-throughput phenotyping scenarios and will support the evaluation of the performance of different plant genotypes exposed to stress or in different environmental scenarios.

  15. Hungarian Postpositions vs. English Prepositions: A Contrastive Study. The Hungarian-English Contrastive Linguistics Project, Working Papers No. 7.

    ERIC Educational Resources Information Center

    Keresztes, Kalman

    This study was conducted to find and collocate the semantically equivalent form patterns of the English and Hungarian relation-marking systems by contrasting the use of the individual relational morphemes. The ultimate aim of the study is to determine interlingual congruences and contrasts for possible use in language teaching. The investigation…

  16. Acoustic Correlates of Inflectional Morphology in the Speech of Children with Specific Language Impairment and Their Typically Developing Peers

    ERIC Educational Resources Information Center

    Owen, Amanda J.; Goffman, Lisa

    2007-01-01

    The development of the use of the third-person singular -s in open syllable verbs in children with specific language impairment (SLI) and their typically developing peers was examined. Verbs that included overt productions of the third-person singular -s morpheme (e.g. "Bobby plays ball everyday;" "Bear laughs when mommy buys…

  17. Morphological Awareness as a Function of Semantics, Phonology, and Orthography and as a Predictor of Reading Comprehension in Chinese

    ERIC Educational Resources Information Center

    Li, Hong; Dronjic, Vedran; Chen, Xi; Li, Yixun; Cheng, Yahua; Wu, Xinchun

    2017-01-01

    This study investigates the contributions of semantic, phonological, and orthographic factors to morphological awareness of 413 Chinese-speaking students in Grades 2, 4, and 6, and its relationship with reading comprehension. Participants were orally presented with pairs of bimorphemic compounds and asked to judge whether the first morphemes of…

  18. Production and Processing Asymmetries in the Acquisition of Tense Morphology by Sequential Bilingual Children

    ERIC Educational Resources Information Center

    Chondrogianni, Vasiliki; Marinis, Theodoros

    2012-01-01

    This study investigates the production and online processing of English tense morphemes by sequential bilingual (L2) Turkish-speaking children with more than three years of exposure to English. Thirty-nine six- to nine-year-old L2 children and twenty-eight typically developing age-matched monolingual (L1) children were administered the production…

  19. The Development of Morphology without a Conventional Language Model.

    ERIC Educational Resources Information Center

    Goldin-Meadow, Susan; Mylander, Carolyn

    The study examined whether deaf children's gesture systems are structured at the morpheme level of analysis. A 3-year-old deaf child from the authors' previous study was selected and all of his characterizing signs produced during a 2-hour naturalistic play session in his home were videotaped. Each sign was coded in terms of its handshape, motion,…

  20. Errors in Inflectional Morphemes as an Index of Linguistic Competence of Korean Heritage Language Learners and American Learners of Korean

    ERIC Educational Resources Information Center

    Kim, So-Young

    2013-01-01

    This study examined the linguistic competence in Korean of Korean heritage language learners (HLLs), compared to English-speaking non-heritage language learners (NHLLs) of Korean. It is unclear and controversial as to whether heritage languages learners are exposed to early but are interrupted manifest as L1 competence or share more…

  1. How Linearity and Structural Complexity Interact and Affect the Recognition of Italian Derived Words

    ERIC Educational Resources Information Center

    Bridgers, Franca Ferrari; Kacinik, Natalie

    2017-01-01

    The majority of words in most languages consist of derived poly-morphemic words but a cross-linguistic review of the literature (Amenta and Crepaldi in Front Psychol 3:232-243, 2012) shows a contradictory picture with respect to how such words are represented and processed. The current study examined the effects of linearity and structural…

  2. The Interpretation of Plural Morphology and (Non-)Obligatory Number Marking: An Argument from Artificial Language Learning

    ERIC Educational Resources Information Center

    Liter, Adam; Heffner, Christopher C.; Schmitt, Cristina

    2017-01-01

    We present an artificial language experiment investigating (i) how speakers of languages such as English with two-way obligatory distinctions between singular and plural learn a system where singular and plural are only optionally marked, and (ii) how learners extend their knowledge of the plural morpheme when under the scope of negation without…

  3. Early Morphological Productivity in Hungarian: Evidence from Sentence Repetition and Elicited Production

    ERIC Educational Resources Information Center

    Gabor, Balint; Lukacs, Agnes

    2012-01-01

    This paper investigates early productivity of morpheme use in Hungarian children aged between 2 ; 1 and 5 ; 3. Hungarian has a rich morphology which is the core marker of grammatical functions. A new method is introduced using the novel word paradigm in a sentence repetition task with masked inflections (i.e. a disguised elicited production task).…

  4. Lexical Diversity and Omission Errors as Predictors of Language Ability in the Narratives of Sequential Spanish-English Bilinguals: A Cross-Language Comparison

    ERIC Educational Resources Information Center

    Jacobson, Peggy F.; Walden, Patrick R.

    2013-01-01

    Purpose: This study explored the utility of language sample analysis for evaluating language ability in school-age Spanish-English sequential bilingual children. Specifically, the relative potential of lexical diversity and word/morpheme omission as predictors of typical or atypical language status was evaluated. Method: Narrative samples were…

  5. A Picture Database for Verbs and Nouns with Different Action Content in Turkish

    ERIC Educational Resources Information Center

    Bayram, Ece; Aydin, Özgür; Ergenc, Hacer Iclal; Akbostanci, Muhittin Cenk

    2017-01-01

    In this study we present a picture database of 160 nouns and 160 verbs. All verbs and nouns are divided into two groups as action and non-action words. Age of acquisition, familiarity, imageability, name agreement and complexity norms are reported alongside frequency, word length and morpheme count for each word. Data were collected from 600…

  6. Grammatical Morphology in School-Age Children with and without Language Impairment: A Discriminant Function Analysis

    ERIC Educational Resources Information Center

    Moyle, Maura Jones; Karasinski, Courtney; Weismer, Susan Ellis; Gorman, Brenda K.

    2011-01-01

    Purpose: The purpose of this study was to test Bedore and Leonard's (1998) proposal that a verb morpheme composite may hold promise as a clinical marker for specific language impairment (SLI) in English speakers and serve as an accurate basis for the classification of children with and without SLI beyond the preschool level. Method: The language…

  7. How Do Roots and Suffixes Influence Reading of Pseudowords: A Study of Young Italian Readers with and without Dyslexia

    ERIC Educational Resources Information Center

    Traficante, Daniela; Marcolini, Stefania; Luci, Alessandra; Zoccolotti, Pierluigi; Burani, Cristina

    2011-01-01

    The study explored the different influences of roots and suffixes in reading aloud morphemic pseudowords (e.g., vetr-ezza, "glass-ness"). Previous work on adults showed a facilitating effect of both roots and suffixes on naming times. In the present study, pseudoword stimuli including roots and suffixes in different combinations were…

  8. Acquisition of English Grammatical Morphology by Native Mandarin-Speaking Children and Adolescents: Age-Related Differences

    ERIC Educational Resources Information Center

    Jia, Gisela; Fuse, Akiko

    2007-01-01

    Purpose: This 5-year longitudinal study investigated the acquisition of 6 English grammatical morphemes (i.e., regular and irregular past tense, 3rd person singular, progressive aspect-"ing", copula BE, and auxiliary DO) by 10 native Mandarin-speaking children and adolescents in the United States (arrived in the United States between 5…

  9. Performance of African American Preschool Children from Low-Income Families on Expressive Language Measures

    ERIC Educational Resources Information Center

    Qi, Cathy H.; Kaiser, Ann P.; Marley, Scott C.; Milan, Stephanie

    2012-01-01

    The purposes of the study were to determine (a) the ability of two spontaneous language measures, mean length of utterance in morphemes (MLU-m) and number of different words (NDW), to identify African American preschool children at low and high levels of language ability; (b) whether child chronological age was related to the performance of either…

  10. Exploring the Role of Bases and Suffixes when Reading Familiar and Unfamiliar Words: Evidence from French Young Readers

    ERIC Educational Resources Information Center

    Quemart, Pauline; Casalis, Severine; Duncan, Lynne G.

    2012-01-01

    We examined whether French third- and fifth-grade children rely on morphemes when recognizing words and whether this reliance depends on word familiarity. We manipulated the presence of bases and suffixes in words and pseudowords to compare their contribution in a lexical decision task. Both bases and suffixes facilitated word reading accuracy and…

  11. The Role of Type and Token Frequency in Using Past Tense Morphemes Correctly

    ERIC Educational Resources Information Center

    Nicoladis, Elena; Palmer, Andrea; Marentette, Paula

    2007-01-01

    Type and token frequency have been thought to be important in the acquisition of past tense morphology, particularly in differentiating regular and irregular forms. In this study we tested the role of frequency in two ways: (1) in bilingual children, who typically use and hear either language less often than monolingual children and (2)…

  12. Acquiring Regular and Irregular Past Tense Morphemes in English and French: Evidence from Bilingual Children

    ERIC Educational Resources Information Center

    Nicoladis, Elena; Paradis, Johanne

    2012-01-01

    The aim of this study was to use crosslinguistic data from French-English bilinguals to test two models of past tense acquisition: (a) single route (all past tense forms rely on morphophonological schemas) and (b) dual route (irregular forms are learned as words, regulars through rules). These models make similar predictions about English…

  13. Understanding the Contributions of Prosodic Phonology to Morphological Development: Implications for Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Demuth, Katherine; Tomas, Ekaterina

    2016-01-01

    A growing body of research with typically developing children has begun to show that the acquisition of grammatical morphemes interacts not only with a developing knowledge of syntax, but also with developing abilities at the interface with prosodic phonology. In particular, a Prosodic Licensing approach to these issues provides a framework for…

  14. Label-indicator morpheme growth on LSTM for Chinese healthcare question department classification.

    PubMed

    Hu, Yang; Wen, Guihua; Ma, Jiajiong; Li, Danyang; Wang, Changjun; Li, Huihui; Huan, Eryang

    2018-04-26

    Current Chinese medicine has an urgent demand for convenient medical services. When facing a large number of patients, understanding patients' questions automatically and precisely is useful. Different from the high professional medical text, patients' questions contain only a small amount of descriptions regarding the symptoms, and the questions are slightly professional and colloquial. The aim of this paper is to implement a department classification system for patient questions. Patients' questions will be classified into 11 departments, such as surgery and others. This paper presents a morpheme growth model that enhances the memories of key elements in questions, and later extracts the "label-indicators" and germinates the expansion vectors around them. Finally, the model inputs the expansion vectors into a neural network to assign department labels for patients' questions. All compared methods are validated by experiments on three datasets that are composed of real patient questions. The proposed method has some ability to improve the performance of the classification. The proposed method is effective for the departments classification of patients questions and serves as a useful system for the automatic understanding of patient questions. Copyright © 2018. Published by Elsevier Inc.

  15. Best friends' interactions and substance use: The role of friend pressure and unsupervised co-deviancy.

    PubMed

    Tsakpinoglou, Florence; Poulin, François

    2017-10-01

    Best friends exert a substantial influence on rising alcohol and marijuana use during adolescence. Two mechanisms occurring within friendship - friend pressure and unsupervised co-deviancy - may partially capture the way friends influence one another. The current study aims to: (1) examine the psychometric properties of a new instrument designed to assess pressure from a youth's best friend and unsupervised co-deviancy; (2) investigate the relative contribution of these processes to alcohol and marijuana use; and (3) determine whether gender moderates these associations. Data were collected through self-report questionnaires completed by 294 Canadian youths (62% female) across two time points (ages 15-16). Principal component analysis yielded a two-factor solution corresponding to friend pressure and unsupervised co-deviancy. Logistic regressions subsequently showed that unsupervised co-deviancy was predictive of an increase in marijuana use one year later. Neither process predicted an increase in alcohol use. Results did not differ as a function of gender. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  16. An unsupervised classification approach for analysis of Landsat data to monitor land reclamation in Belmont county, Ohio

    NASA Technical Reports Server (NTRS)

    Brumfield, J. O.; Bloemer, H. H. L.; Campbell, W. J.

    1981-01-01

    Two unsupervised classification procedures for analyzing Landsat data used to monitor land reclamation in a surface mining area in east central Ohio are compared for agreement with data collected from the corresponding locations on the ground. One procedure is based on a traditional unsupervised-clustering/maximum-likelihood algorithm sequence that assumes spectral groupings in the Landsat data in n-dimensional space; the other is based on a nontraditional unsupervised-clustering/canonical-transformation/clustering algorithm sequence that not only assumes spectral groupings in n-dimensional space but also includes an additional feature-extraction technique. It is found that the nontraditional procedure provides an appreciable improvement in spectral groupings and apparently increases the level of accuracy in the classification of land cover categories.

  17. Spectral Clustering Predicts Tumor Tissue Heterogeneity Using Dynamic 18F-FDG PET: A Complement to the Standard Compartmental Modeling Approach.

    PubMed

    Katiyar, Prateek; Divine, Mathew R; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Schölkopf, Bernhard; Pichler, Bernd J; Disselhorst, Jonathan A

    2017-04-01

    In this study, we described and validated an unsupervised segmentation algorithm for the assessment of tumor heterogeneity using dynamic 18 F-FDG PET. The aim of our study was to objectively evaluate the proposed method and make comparisons with compartmental modeling parametric maps and SUV segmentations using simulations of clinically relevant tumor tissue types. Methods: An irreversible 2-tissue-compartmental model was implemented to simulate clinical and preclinical 18 F-FDG PET time-activity curves using population-based arterial input functions (80 clinical and 12 preclinical) and the kinetic parameter values of 3 tumor tissue types. The simulated time-activity curves were corrupted with different levels of noise and used to calculate the tissue-type misclassification errors of spectral clustering (SC), parametric maps, and SUV segmentation. The utility of the inverse noise variance- and Laplacian score-derived frame weighting schemes before SC was also investigated. Finally, the SC scheme with the best results was tested on a dynamic 18 F-FDG measurement of a mouse bearing subcutaneous colon cancer and validated using histology. Results: In the preclinical setup, the inverse noise variance-weighted SC exhibited the lowest misclassification errors (8.09%-28.53%) at all noise levels in contrast to the Laplacian score-weighted SC (16.12%-31.23%), unweighted SC (25.73%-40.03%), parametric maps (28.02%-61.45%), and SUV (45.49%-45.63%) segmentation. The classification efficacy of both weighted SC schemes in the clinical case was comparable to the unweighted SC. When applied to the dynamic 18 F-FDG measurement of colon cancer, the proposed algorithm accurately identified densely vascularized regions from the rest of the tumor. In addition, the segmented regions and clusterwise average time-activity curves showed excellent correlation with the tumor histology. Conclusion: The promising results of SC mark its position as a robust tool for quantification of tumor heterogeneity using dynamic PET studies. Because SC tumor segmentation is based on the intrinsic structure of the underlying data, it can be easily applied to other cancer types as well. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  18. Evaluating Unsupervised Methods to Size and Classify Suspended Particles Using Digital Holography

    NASA Astrophysics Data System (ADS)

    Davies, E. J.; Buscombe, D.; Graham, G.; Nimmo-Smith, A.

    2013-12-01

    The use of digital holography to image suspended particles in-situ using submersible systems is on the ascendancy. Such systems allow visualization of the in-focus particles without the depth-of-field issues associated with conventional imaging. The size and concentration of all particles, and each individual particle, can be rapidly and automatically assessed. The automated methods by which to extract these quantities can be readily evaluated using manual measurements. These methods are not possible using instruments based on optical and acoustic (back- or forward-) scattering, so-called 'sediment surrogate' methods, which are sensitive to the bulk quantities of all suspended particles in a sample volume, and rely on mathematically inverting a measured signal to derive the property of interest. Depending on the intended application, the number of holograms required to elucidate a process could range from tens to millions. Therefore manual particle extraction is not feasible for most data-sets. This has created a pressing need among the growing community of holography users, for accurate, automated processing which is comparable in output to more well-established in-situ sizing techniques such as laser diffraction. Here we discuss the computational considerations required to focus and segment individual particles from raw digital holograms, and then size and classify these particles by type; all using unsupervised (automated) image processing. To do so, we draw upon imagery from both controlled laboratory conditions to near-shore coastal environments, using different holographic system designs, and constituting a significant variety in particle types, sizes and shapes. We evaluate the success of these techniques, and suggest directions for future developments.

  19. Individualized Functional Parcellation of the Human Amygdala Using a Semi-supervised Clustering Method: A 7T Resting State fMRI Study.

    PubMed

    Zhang, Xianchang; Cheng, Hewei; Zuo, Zhentao; Zhou, Ke; Cong, Fei; Wang, Bo; Zhuo, Yan; Chen, Lin; Xue, Rong; Fan, Yong

    2018-01-01

    The amygdala plays an important role in emotional functions and its dysfunction is considered to be associated with multiple psychiatric disorders in humans. Cytoarchitectonic mapping has demonstrated that the human amygdala complex comprises several subregions. However, it's difficult to delineate boundaries of these subregions in vivo even if using state of the art high resolution structural MRI. Previous attempts to parcellate this small structure using unsupervised clustering methods based on resting state fMRI data suffered from the low spatial resolution of typical fMRI data, and it remains challenging for the unsupervised methods to define subregions of the amygdala in vivo . In this study, we developed a novel brain parcellation method to segment the human amygdala into spatially contiguous subregions based on 7T high resolution fMRI data. The parcellation was implemented using a semi-supervised spectral clustering (SSC) algorithm at an individual subject level. Under guidance of prior information derived from the Julich cytoarchitectonic atlas, our method clustered voxels of the amygdala into subregions according to similarity measures of their functional signals. As a result, three distinct amygdala subregions can be obtained in each hemisphere for every individual subject. Compared with the cytoarchitectonic atlas, our method achieved better performance in terms of subregional functional homogeneity. Validation experiments have also demonstrated that the amygdala subregions obtained by our method have distinctive, lateralized functional connectivity (FC) patterns. Our study has demonstrated that the semi-supervised brain parcellation method is a powerful tool for exploring amygdala subregional functions.

  20. Information processing of motion in facial expression and the geometry of dynamical systems

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Eghbalnia, Hamid; McMenamin, Brenton W.

    2005-01-01

    An interesting problem in analysis of video data concerns design of algorithms that detect perceptually significant features in an unsupervised manner, for instance methods of machine learning for automatic classification of human expression. A geometric formulation of this genre of problems could be modeled with help of perceptual psychology. In this article, we outline one approach for a special case where video segments are to be classified according to expression of emotion or other similar facial motions. The encoding of realistic facial motions that convey expression of emotions for a particular person P forms a parameter space XP whose study reveals the "objective geometry" for the problem of unsupervised feature detection from video. The geometric features and discrete representation of the space XP are independent of subjective evaluations by observers. While the "subjective geometry" of XP varies from observer to observer, levels of sensitivity and variation in perception of facial expressions appear to share a certain level of universality among members of similar cultures. Therefore, statistical geometry of invariants of XP for a sample of population could provide effective algorithms for extraction of such features. In cases where frequency of events is sufficiently large in the sample data, a suitable framework could be provided to facilitate the information-theoretic organization and study of statistical invariants of such features. This article provides a general approach to encode motion in terms of a particular genre of dynamical systems and the geometry of their flow. An example is provided to illustrate the general theory.

  1. Comprehension of Verb Number Morphemes in Czech Children: Singular and Plural Show Different Relations to Age and Vocabulary

    ERIC Educational Resources Information Center

    Smolík, Filip; Bláhová, Veronika

    2017-01-01

    Two experiments examined Czech children's comprehension of grammatical number marking in verbs. Children were presented with picture pairs involving one or multiple participants in the same action, and were asked to point to the picture described by a recorded sentence. Experiment 1 (N = 72, age 3;0-4;7) tested four types of sentences, some of…

  2. Assessment of Orthographical Processing in Spanish Children with Dyslexia: The Role of Lexical and Sublexical Units

    ERIC Educational Resources Information Center

    Rodrigo, Mercedes; Jimenez, Juan E.; Garcia, Eduardo; Diaz, Alicia; Ortiz, M. Rosario; Guzman, Remedios; Hernandez-Valle, Isabel; Estevez, Adelina; Hernandez, Sergio

    2004-01-01

    Introduction: The aim of this study was to examine the role of multiletter units, such as the morpheme and whole word, in accessing the lexicon, in Spanish children with dyslexia. Method: A sample of 60 participants were selected and organised i n three different groups: 1) an experimental group of 18 reading-disabled children, (2) a control group…

  3. The Role of Form and Meaning in the Processing of Written Morphology: A Priming Study in French Developing Readers

    ERIC Educational Resources Information Center

    Quemart, Pauline; Casalis, Severine; Cole, Pascale

    2011-01-01

    Three visual priming experiments using three different prime durations (60 ms in Experiment 1, 250 ms in Experiment 2, and 800 ms in Experiment 3) were conducted to examine which properties of morphemes (form and/or meaning) drive developing readers' processing of written morphology. French third, fifth, and seventh graders and adults (the latter…

  4. The Argument-Structure Complexity Effect in Children with Specific Language Impairment: Evidence from the Use of Grammatical Morphemes in French

    ERIC Educational Resources Information Center

    Pizzioli, Fabrizio; Schelstraete, Marie-Anne

    2008-01-01

    Purpose: The hypothesis that the linguistic deficit presented by children with specific language impairment (SLI) is caused by limited cognitive resources (e.g., S. Ellis Weismer & L. Hesketh, 1996) was tested against the hypothesis of a limitation in linguistic knowledge (e.g., M. L. Rice, K. Wexler, & P. Cleave, 1995). Method: The study examined…

  5. Variable Production of English Past Tense Morphology: A Case Study of a Thai-Speaking Learner of English

    ERIC Educational Resources Information Center

    Prapobaratanakul, Chariya; Pongpairoj, Nattama

    2016-01-01

    The study investigated variable production of English past tense morphology by an L1 Thai-speaking learner of English. Due to the absence of the past tense inflectional morphology in the Thai language, production of English past tense morphemes poses a persistent problem for L1 Thai-speaking learners of English. Hypotheses have been made in…

  6. Effects of acoustic manipulation on the real-time inflectional processing of children with specific language impairment.

    PubMed

    Montgomery, James W; Leonard, Laurence B

    2006-12-01

    This study reports the findings of an investigation designed to examine the effects of acoustic enhancement on the processing of low-phonetic-substance inflections (e.g., 3rd-person singular -s, possessive -s) versus a high-phonetic-substance inflection (e.g., present progressive -ing) by children with specific language impairment (SLI) in a word recognition, reaction time (RT) processing task. The effects of acoustic enhancement on the processing of the same morphemes as well as an additional morpheme (comparative -er) were examined in an offline grammaticality judgment task. The grammatical function of 1 of the higher-phonetic-substance inflections, -ing, was presumed to be hypothesized relatively early by children; the function of the other, -er, was presumed to be hypothesized relatively late. Sixteen children with SLI (age(M) = 9 years;0 months) and 16 chronological age (CA; age(M) = 8;11) children participated. For both tasks, children listened to sentences containing the target morphemes as they were produced naturally (natural condition) or with acoustic enhancement (enhanced condition). On the RT task, the children with SLI demonstrated RT sensitivity only to the presence of the high-substance inflection, irrespective of whether it was produced naturally or with enhancement. Acoustic enhancement had no effect on these children's processing of low-substance inflections. The CA children, by contrast, showed sensitivity to low-substance inflections when they were produced naturally and with acoustic enhancement. These children also showed sensitivity to the high-substance inflection in the natural condition, but in the enhanced condition they demonstrated significantly slower RT. On the grammaticality judgment task, the children with SLI performed worse than the CA children overall and showed especially poor performance on low-substance inflections. Acoustic enhancement had a beneficial effect on the inflectional processing of the children with SLI, but it had no effect on CA children. The findings are interpreted to suggest that the reduced language processing capacity of children with SLI constrains their ability to process low-substance grammatical material in real time. This factor should be considered along with any difficulty that might be attributable to the grammatical function of the inflection.

  7. Supervised versus unsupervised categorization: two sides of the same coin?

    PubMed

    Pothos, Emmanuel M; Edwards, Darren J; Perlman, Amotz

    2011-09-01

    Supervised and unsupervised categorization have been studied in separate research traditions. A handful of studies have attempted to explore a possible convergence between the two. The present research builds on these studies, by comparing the unsupervised categorization results of Pothos et al. ( 2011 ; Pothos et al., 2008 ) with the results from two procedures of supervised categorization. In two experiments, we tested 375 participants with nine different stimulus sets and examined the relation between ease of learning of a classification, memory for a classification, and spontaneous preference for a classification. After taking into account the role of the number of category labels (clusters) in supervised learning, we found the three variables to be closely associated with each other. Our results provide encouragement for researchers seeking unified theoretical explanations for supervised and unsupervised categorization, but raise a range of challenging theoretical questions.

  8. Identification of sea ice types in spaceborne synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Rignot, Eric; Holt, Benjamin; Onstott, R.

    1992-01-01

    This study presents an approach for identification of sea ice types in spaceborne SAR image data. The unsupervised classification approach involves cluster analysis for segmentation of the image data followed by cluster labeling based on previously defined look-up tables containing the expected backscatter signatures of different ice types measured by a land-based scatterometer. Extensive scatterometer observations and experience accumulated in field campaigns during the last 10 yr were used to construct these look-up tables. The classification approach, its expected performance, the dependence of this performance on radar system performance, and expected ice scattering characteristics are discussed. Results using both aircraft and simulated ERS-1 SAR data are presented and compared to limited field ice property measurements and coincident passive microwave imagery. The importance of an integrated postlaunch program for the validation and improvement of this approach is discussed.

  9. Multi person detection and tracking based on hierarchical level-set method

    NASA Astrophysics Data System (ADS)

    Khraief, Chadia; Benzarti, Faouzi; Amiri, Hamid

    2018-04-01

    In this paper, we propose an efficient unsupervised method for mutli-person tracking based on hierarchical level-set approach. The proposed method uses both edge and region information in order to effectively detect objects. The persons are tracked on each frame of the sequence by minimizing an energy functional that combines color, texture and shape information. These features are enrolled in covariance matrix as region descriptor. The present method is fully automated without the need to manually specify the initial contour of Level-set. It is based on combined person detection and background subtraction methods. The edge-based is employed to maintain a stable evolution, guide the segmentation towards apparent boundaries and inhibit regions fusion. The computational cost of level-set is reduced by using narrow band technique. Many experimental results are performed on challenging video sequences and show the effectiveness of the proposed method.

  10. Space-Based Identification of Archaeological Illegal Excavations and a New Automatic Method for Looting Feature Extraction in Desert Areas

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Masini, Nicola

    2018-06-01

    The identification and quantification of disturbance of archaeological sites has been generally approached by visual inspection of optical aerial or satellite pictures. In this paper, we briefly summarize the state of the art of the traditionally satellite-based approaches for looting identification and propose a new automatic method for archaeological looting feature extraction approach (ALFEA). It is based on three steps: the enhancement using spatial autocorrelation, unsupervised classification, and segmentation. ALFEA has been applied to Google Earth images of two test areas, selected in desert environs in Syria (Dura Europos), and in Peru (Cahuachi-Nasca). The reliability of ALFEA was assessed through field surveys in Peru and visual inspection for the Syrian case study. Results from the evaluation procedure showed satisfactory performance from both of the two analysed test cases with a rate of success higher than 90%.

  11. Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.

    PubMed

    Failmezger, Henrik; Fröhlich, Holger; Tresch, Achim

    2013-10-04

    Gene perturbation experiments in combination with fluorescence time-lapse cell imaging are a powerful tool in reverse genetics. High content applications require tools for the automated processing of the large amounts of data. These tools include in general several image processing steps, the extraction of morphological descriptors, and the grouping of cells into phenotype classes according to their descriptors. This phenotyping can be applied in a supervised or an unsupervised manner. Unsupervised methods are suitable for the discovery of formerly unknown phenotypes, which are expected to occur in high-throughput RNAi time-lapse screens. We developed an unsupervised phenotyping approach based on Hidden Markov Models (HMMs) with multivariate Gaussian emissions for the detection of knockdown-specific phenotypes in RNAi time-lapse movies. The automated detection of abnormal cell morphologies allows us to assign a phenotypic fingerprint to each gene knockdown. By applying our method to the Mitocheck database, we show that a phenotypic fingerprint is indicative of a gene's function. Our fully unsupervised HMM-based phenotyping is able to automatically identify cell morphologies that are specific for a certain knockdown. Beyond the identification of genes whose knockdown affects cell morphology, phenotypic fingerprints can be used to find modules of functionally related genes.

  12. Unsupervised learning on scientific ocean drilling datasets from the South China Sea

    NASA Astrophysics Data System (ADS)

    Tse, Kevin C.; Chiu, Hon-Chim; Tsang, Man-Yin; Li, Yiliang; Lam, Edmund Y.

    2018-06-01

    Unsupervised learning methods were applied to explore data patterns in multivariate geophysical datasets collected from ocean floor sediment core samples coming from scientific ocean drilling in the South China Sea. Compared to studies on similar datasets, but using supervised learning methods which are designed to make predictions based on sample training data, unsupervised learning methods require no a priori information and focus only on the input data. In this study, popular unsupervised learning methods including K-means, self-organizing maps, hierarchical clustering and random forest were coupled with different distance metrics to form exploratory data clusters. The resulting data clusters were externally validated with lithologic units and geologic time scales assigned to the datasets by conventional methods. Compact and connected data clusters displayed varying degrees of correspondence with existing classification by lithologic units and geologic time scales. K-means and self-organizing maps were observed to perform better with lithologic units while random forest corresponded best with geologic time scales. This study sets a pioneering example of how unsupervised machine learning methods can be used as an automatic processing tool for the increasingly high volume of scientific ocean drilling data.

  13. An Efficient Optimization Method for Solving Unsupervised Data Classification Problems.

    PubMed

    Shabanzadeh, Parvaneh; Yusof, Rubiyah

    2015-01-01

    Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.

  14. Semi-supervised and unsupervised extreme learning machines.

    PubMed

    Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng

    2014-12-01

    Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

  15. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction

    NASA Astrophysics Data System (ADS)

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-01

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets—consisting of 20 and 18 volumes, respectively—provided by the Internet Brain Segmentation Repository.

  16. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction.

    PubMed

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-07

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets-consisting of 20 and 18 volumes, respectively-provided by the Internet Brain Segmentation Repository.

  17. A novel Hessian based algorithm for rat kidney glomerulus detection in 3D MRI

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wu, Teresa; Bennett, Kevin M.

    2015-03-01

    The glomeruli of the kidney perform the key role of blood filtration and the number of glomeruli in a kidney is correlated with susceptibility to chronic kidney disease and chronic cardiovascular disease. This motivates the development of new technology using magnetic resonance imaging (MRI) to measure the number of glomeruli and nephrons in vivo. However, there is currently a lack of computationally efficient techniques to perform fast, reliable and accurate counts of glomeruli in MR images due to the issues inherent in MRI, such as acquisition noise, partial volume effects (the mixture of several tissue signals in a voxel) and bias field (spatial intensity inhomogeneity). Such challenges are particularly severe because the glomeruli are very small, (in our case, a MRI image is ~16 million voxels, each glomerulus is in the size of 8~20 voxels), and the number of glomeruli is very large. To address this, we have developed an efficient Hessian based Difference of Gaussians (HDoG) detector to identify the glomeruli on 3D rat MR images. The image is first smoothed via DoG followed by the Hessian process to pre-segment and delineate the boundary of the glomerulus candidates. This then provides a basis to extract regional features used in an unsupervised clustering algorithm, completing segmentation by removing the false identifications occurred in the pre-segmentation. The experimental results show that Hessian based DoG has the potential to automatically detect glomeruli,from MRI in 3D, enabling new measurements of renal microstructure and pathology in preclinical and clinical studies.

  18. A Framework for Land Cover Classification Using Discrete Return LiDAR Data: Adopting Pseudo-Waveform and Hierarchical Segmentation

    NASA Technical Reports Server (NTRS)

    Jung, Jinha; Pasolli, Edoardo; Prasad, Saurabh; Tilton, James C.; Crawford, Melba M.

    2014-01-01

    Acquiring current, accurate land-use information is critical for monitoring and understanding the impact of anthropogenic activities on natural environments.Remote sensing technologies are of increasing importance because of their capability to acquire information for large areas in a timely manner, enabling decision makers to be more effective in complex environments. Although optical imagery has demonstrated to be successful for land cover classification, active sensors, such as light detection and ranging (LiDAR), have distinct capabilities that can be exploited to improve classification results. However, utilization of LiDAR data for land cover classification has not been fully exploited. Moreover, spatial-spectral classification has recently gained significant attention since classification accuracy can be improved by extracting additional information from the neighboring pixels. Although spatial information has been widely used for spectral data, less attention has been given to LiDARdata. In this work, a new framework for land cover classification using discrete return LiDAR data is proposed. Pseudo-waveforms are generated from the LiDAR data and processed by hierarchical segmentation. Spatial featuresare extracted in a region-based way using a new unsupervised strategy for multiple pruning of the segmentation hierarchy. The proposed framework is validated experimentally on a real dataset acquired in an urban area. Better classification results are exhibited by the proposed framework compared to the cases in which basic LiDAR products such as digital surface model and intensity image are used. Moreover, the proposed region-based feature extraction strategy results in improved classification accuracies in comparison with a more traditional window-based approach.

  19. Unsupervised chunking based on graph propagation from bilingual corpus.

    PubMed

    Zhu, Ling; Wong, Derek F; Chao, Lidia S

    2014-01-01

    This paper presents a novel approach for unsupervised shallow parsing model trained on the unannotated Chinese text of parallel Chinese-English corpus. In this approach, no information of the Chinese side is applied. The exploitation of graph-based label propagation for bilingual knowledge transfer, along with an application of using the projected labels as features in unsupervised model, contributes to a better performance. The experimental comparisons with the state-of-the-art algorithms show that the proposed approach is able to achieve impressive higher accuracy in terms of F-score.

  20. An unsupervised classification technique for multispectral remote sensing data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Cummings, R. E.

    1973-01-01

    Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.

  1. Unsupervised classification of earth resources data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Jayroe, R. R., Jr.; Cummings, R. E.

    1972-01-01

    A new clustering technique is presented. It consists of two parts: (a) a sequential statistical clustering which is essentially a sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by existing supervised maximum liklihood classification technique.

  2. Compliance with 14-day primaquine therapy for radical cure of vivax malaria--a randomized placebo-controlled trial comparing unsupervised with supervised treatment.

    PubMed

    Leslie, Toby; Rab, Mohammad Abdur; Ahmadzai, Hayat; Durrani, Naeem; Fayaz, Mohammad; Kolaczinski, Jan; Rowland, Mark

    2004-03-01

    The only available treatment that can eliminate the latent hypnozoite reservoir of vivax malaria is a 14 d course of primaquine (PQ). A potential problem with long-course chemotherapy is the issue of compliance after clinical symptoms have subsided. The present study, carried out at an Afghan refugee camp in Pakistan, between June 2000 and August 2001, compared 14 d treatment in supervised and unsupervised groups in which compliance was monitored by comparison of relapse rates. Clinical cases recruited by passive case detection were randomised by family to placebo, supervised, or unsupervised groups, and treated with chloroquine (25 mg/kg) over 3 days to eliminate erythrocytic stages. Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency were excluded from the trial. Cases allocated to supervision were given directly observed treatment (0.25 mg PQ/kg body weight) once per day for 14 days. Cases allocated to the unsupervised group were provided with 14 PQ doses upon enrollment and strongly advised to complete the course. A total of 595 cases were enrolled. After 9 months of follow up PQ proved equally protective against further episodes of P. vivax in supervised (odds ratio 0.35, 95% CI 0.21-0.57) and unsupervised (odds ratio 0.37, 95% CI 0.23-0.59) groups as compared to placebo. All age groups on supervised or unsupervised treatment showed a similar degree of protection even though the risk of relapse decreased with age. The study showed that a presumed problem of poor compliance may be overcome with simple health messages even when the majority of individuals are illiterate and without formal education. Unsupervised treatment with 14-day PQ when combined with simple instruction can avert a significant amount of the morbidity associated with relapse in populations where G6PD deficiency is either absent or readily diagnosable.

  3. True Zero-Training Brain-Computer Interfacing – An Online Study

    PubMed Central

    Kindermans, Pieter-Jan; Schreuder, Martijn; Schrauwen, Benjamin; Müller, Klaus-Robert; Tangermann, Michael

    2014-01-01

    Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording, in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI's classifier can learn to decode the individual's brain signals. Unfortunately, this calibration recording consumes valuable time. Furthermore, it is unproductive with respect to the final BCI application, e.g. text entry. Therefore, the calibration period must be reduced to a minimum, which is especially important for patients with a limited concentration ability. The main contribution of this manuscript is an online study on unsupervised learning in an auditory event-related potential (ERP) paradigm. Our results demonstrate that the calibration recording can be bypassed by utilizing an unsupervised trained classifier, that is initialized randomly and updated during usage. Initially, the unsupervised classifier tends to make decoding mistakes, as the classifier might not have seen enough data to build a reliable model. Using a constant re-analysis of the previously spelled symbols, these initially misspelled symbols can be rectified posthoc when the classifier has learned to decode the signals. We compare the spelling performance of our unsupervised approach and of the unsupervised posthoc approach to the standard supervised calibration-based dogma for n = 10 healthy users. To assess the learning behavior of our approach, it is unsupervised trained from scratch three times per user. Even with the relatively low SNR of an auditory ERP paradigm, the results show that after a limited number of trials (30 trials), the unsupervised approach performs comparably to a classic supervised model. PMID:25068464

  4. Six weeks of unsupervised Nintendo Wii Fit gaming is effective at improving balance in independent older adults.

    PubMed

    Nicholson, Vaughan Patrick; McKean, Mark; Lowe, John; Fawcett, Christine; Burkett, Brendan

    2015-01-01

    To determine the effectiveness of unsupervised Nintendo Wii Fit balance training in older adults. Forty-one older adults were recruited from local retirement villages and educational settings to participate in a six-week two-group repeated measures study. The Wii group (n = 19, 75 ± 6 years) undertook 30 min of unsupervised Wii balance gaming three times per week in their retirement village while the comparison group (n = 22, 74 ± 5 years) continued with their usual exercise program. Participants' balance abilities were assessed pre- and postintervention. The Wii Fit group demonstrated significant improvements (P < .05) in timed up-and-go, left single-leg balance, lateral reach (left and right), and gait speed compared with the comparison group. Reported levels of enjoyment following game play increased during the study. Six weeks of unsupervised Wii balance training is an effective modality for improving balance in independent older adults.

  5. Assessing the Linguistic Productivity of Unsupervised Deep Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Lawrence A.; Hodas, Nathan O.

    Increasingly, cognitive scientists have demonstrated interest in applying tools from deep learning. One use for deep learning is in language acquisition where it is useful to know if a linguistic phenomenon can be learned through domain-general means. To assess whether unsupervised deep learning is appropriate, we first pose a smaller question: Can unsupervised neural networks apply linguistic rules productively, using them in novel situations. We draw from the literature on determiner/noun productivity by training an unsupervised, autoencoder network measuring its ability to combine nouns with determiners. Our simple autoencoder creates combinations it has not previously encountered, displaying a degree ofmore » overlap similar to actual children. While this preliminary work does not provide conclusive evidence for productivity, it warrants further investigation with more complex models. Further, this work helps lay the foundations for future collaboration between the deep learning and cognitive science communities.« less

  6. The Role of Input Frequency and Semantic Transparency in the Acquisition of Verb Meaning: Evidence from Placement Verbs in Tamil and Dutch

    ERIC Educational Resources Information Center

    Narasimhan, Bhuvana; Gullberg, Marianne

    2011-01-01

    We investigate how Tamil- and Dutch-speaking adults and four- to five-year-old children use caused posture verbs ("lay/stand a bottle on a table") to label placement events in which objects are oriented vertically or horizontally. Tamil caused posture verbs consist of morphemes that individually label the causal and result subevents ("nikka…

  7. Sample Length Affects the Reliability of Language Sample Measures in 3-Year-Olds: Evidence from Parent-Elicited Conversational Samples

    ERIC Educational Resources Information Center

    Guo, Ling-Yu; Eisenberg, Sarita

    2015-01-01

    Purpose: The goal of this study was to investigate the extent to which sample length affected the reliability of total number of words (TNW), number of different words (NDW), and mean length of C-units in morphemes (MLCUm) in parent-elicited conversational samples for 3-year-olds. Method: Participants were sixty 3-year-olds. A 22-min language…

  8. The Acquisition of Tense in English: Distinguishing Child Second Language from First Language and Specific Language Impairment

    ERIC Educational Resources Information Center

    Paradis, Johanne; Rice, Mabel L.; Crago, Martha; Marquis, Janet

    2008-01-01

    This study reports on a comparison of the use and knowledge of tense-marking morphemes in English by first language (L1), second language (L2), and specific language impairment (SLI) children. The objective of our research was to ascertain whether the L2 children's tense acquisition patterns were similar or dissimilar to those of the L1 and SLI…

  9. Arabic morphology in the neural language system.

    PubMed

    Boudelaa, Sami; Pulvermüller, Friedemann; Hauk, Olaf; Shtyrov, Yury; Marslen-Wilson, William

    2010-05-01

    There are two views about morphology, the aspect of language concerned with the internal structure of words. One view holds that morphology is a domain of knowledge with a specific type of neurocognitive representation supported by specific brain mechanisms lateralized to left fronto-temporal cortex. The alternate view characterizes morphological effects as being a by-product of the correlation between form and meaning and where no brain area is predicted to subserve morphological processing per se. Here we provided evidence from Arabic that morphemes do have specific memory traces, which differ as a function of their functional properties. In an MMN study, we showed that the abstract consonantal root, which conveys semantic meaning (similarly to monomorphemic content words in English), elicits an MMN starting from 160 msec after the deviation point, whereas the abstract vocalic word pattern, which plays a range of grammatical roles, elicits an MMN response starting from 250 msec after the deviation point. Topographically, the root MMN has a symmetric fronto-central distribution, whereas the word pattern MMN lateralizes significantly to the left, indicating stronger involvement of left peri-sylvian areas. In languages with rich morphologies, morphemic processing seems to be supported by distinct neural networks, thereby providing evidence for a specific neuronal basis for morphology as part of the cerebral language machinery.

  10. Differences in Brain Function and Changes with Intervention in Children with Poor Spelling and Reading Abilities

    PubMed Central

    Gebauer, Daniela; Fink, Andreas; Kargl, Reinhard; Reishofer, Gernot; Koschutnig, Karl; Purgstaller, Christian; Fazekas, Franz; Enzinger, Christian

    2012-01-01

    Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training. PMID:22693600

  11. Complex word reading in Dutch deaf children and adults.

    PubMed

    van Hoogmoed, Anne H; Knoors, Harry; Schreuder, Robert; Verhoeven, Ludo

    2013-03-01

    Children who are deaf are often delayed in reading comprehension. This delay could be due to problems in morphological processing during word reading. In this study, we investigated whether 6th grade deaf children and adults are delayed in comparison to their hearing peers in reading complex derivational words and compounds compared to monomorphemic words. The results show that deaf children are delayed in reading both derivational words and compounds as compared to hearing children, while both deaf and hearing adults performed equally well on a lexical decision task. However, deaf adults generally showed slower reaction times than hearing adults. For both deaf and hearing children, derivational words were more difficult than compounds, as reflected in hearing children's slower reaction times and in deaf children's lower accuracy scores. This finding likely reflects deaf children's lack of familiarity with the meaning of the bound morphemes attached to the stems in derivational words. Therefore, it might be beneficial to teach deaf children the meaning of bound morphemes and to train them to use morphology in word reading. Moreover, these findings imply that it is important to focus on both monomorphemic and polymorphemic words when assessing word reading ability in deaf children. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Lexical diversity and omission errors as predictors of language ability in the narratives of sequential Spanish-English bilinguals: a cross-language comparison.

    PubMed

    Jacobson, Peggy F; Walden, Patrick R

    2013-08-01

    This study explored the utility of language sample analysis for evaluating language ability in school-age Spanish-English sequential bilingual children. Specifically, the relative potential of lexical diversity and word/morpheme omission as predictors of typical or atypical language status was evaluated. Narrative samples were obtained from 48 bilingual children in both of their languages using the suggested narrative retell protocol and coding conventions as per Systematic Analysis of Language Transcripts (SALT; Miller & Iglesias, 2008) software. An additional lexical diversity measure, VocD, was also calculated. A series of logistical hierarchical regressions explored the utility of the number of different words, VocD statistic, and word and morpheme omissions in each language for predicting language status. Omission errors turned out to be the best predictors of bilingual language impairment at all ages, and this held true across languages. Although lexical diversity measures did not predict typical or atypical language status, the measures were significantly related to oral language proficiency in English and Spanish. The results underscore the significance of omission errors in bilingual language impairment while simultaneously revealing the limitations of lexical diversity measures as indicators of impairment. The relationship between lexical diversity and oral language proficiency highlights the importance of considering relative language proficiency in bilingual assessment.

  13. Input Subject Diversity Accelerates the Growth of Tense and Agreement: Indirect Benefits From a Parent-Implemented Intervention

    PubMed Central

    Rispoli, Matthew; Holt, Janet K.

    2017-01-01

    Purpose This follow-up study examined whether a parent intervention that increased the diversity of lexical noun phrase subjects in parent input and accelerated children's sentence diversity (Hadley et al., 2017) had indirect benefits on tense/agreement (T/A) morphemes in parent input and children's spontaneous speech. Method Differences in input variables related to T/A marking were compared for parents who received toy talk instruction and a quasi-control group: input informativeness and full is declaratives. Language growth on tense agreement productivity (TAP) was modeled for 38 children from language samples obtained at 21, 24, 27, and 30 months. Parent input properties following instruction and children's growth in lexical diversity and sentence diversity were examined as predictors of TAP growth. Results Instruction increased parent use of full is declaratives (ηp 2 ≥ .25) but not input informativeness. Children's sentence diversity was also a significant time-varying predictor of TAP growth. Two input variables, lexical noun phrase subject diversity and full is declaratives, were also significant predictors, even after controlling for children's sentence diversity. Conclusions These findings establish a link between children's sentence diversity and the development of T/A morphemes and provide evidence about characteristics of input that facilitate growth in this grammatical system. PMID:28892819

  14. A Clinical Evaluation of the Competing Sources of Input Hypothesis

    PubMed Central

    Leonard, Laurence B.; Bredin-Oja, Shelley L.; Deevy, Patricia

    2017-01-01

    Purpose Our purpose was to test the competing sources of input (CSI) hypothesis by evaluating an intervention based on its principles. This hypothesis proposes that children's use of main verbs without tense is the result of their treating certain sentence types in the input (e.g., Was she laughing ?) as models for declaratives (e.g., She laughing). Method Twenty preschoolers with specific language impairment were randomly assigned to receive either a CSI-based intervention or a more traditional intervention that lacked the novel CSI features. The auxiliary is and the third-person singular suffix –s were directly treated over a 16-week period. Past tense –ed was monitored as a control. Results The CSI-based group exhibited greater improvements in use of is than did the traditional group (d = 1.31), providing strong support for the CSI hypothesis. There were no significant between-groups differences in the production of the third-person singular suffix –s or the control (–ed), however. Conclusions The group differences in the effects on the 2 treated morphemes may be due to differences in their distribution in interrogatives and declaratives (e.g., Is he hiding/He is hiding vs. Does he hide/He hide s). Refinements in the intervention could address this issue and lead to more general effects across morphemes. PMID:28114610

  15. Sentence-position effects on children's perception and production of English third person singular -s.

    PubMed

    Sundara, Megha; Demuth, Katherine; Kuhl, Patricia K

    2011-02-01

    Two-year-olds produce third person singular -s more accurately on verbs in sentence-final position as compared with verbs in sentence-medial position. This study was designed to determine whether these sentence-position effects can be explained by perceptual factors. For this purpose, the authors compared 22- and 27-month-olds' perception and elicited production of third person singular -s in sentence-medial versus-final position. The authors assessed perception by measuring looking/listening times to a 1-screen display of a cartoon paired with a grammatical versus an ungrammatical sentence (e.g., She eats now vs. She eat now). Children at both ages demonstrated sensitivity to the presence/absence of this inflectional morpheme in sentence-final, but not sentence-medial, position. Children were also more accurate at producing third person singular -s sentence finally, and production accuracy was predicted by vocabulary measures as well as by performance on the perception task. These results indicate that children's more accurate production of third person singular -s in sentence-final position cannot be explained by articulatory factors alone but that perceptual factors play an important role in accounting for early patterns of production. The findings also indicate that perception and production of inflectional morphemes may be more closely related than previously thought.

  16. A simple and unsupervised semi-automatic workflow to detect shallow landslides in Alpine areas based on VHR remote sensing data

    NASA Astrophysics Data System (ADS)

    Amato, Gabriele; Eisank, Clemens; Albrecht, Florian

    2017-04-01

    Landslide detection from Earth observation imagery is an important preliminary work for landslide mapping, landslide inventories and landslide hazard assessment. In this context, the object-based image analysis (OBIA) concept has been increasingly used over the last decade. Within the framework of the Land@Slide project (Earth observation based landslide mapping: from methodological developments to automated web-based information delivery) a simple, unsupervised, semi-automatic and object-based approach for the detection of shallow landslides has been developed and implemented in the InterIMAGE open-source software. The method was applied to an Alpine case study in western Austria, exploiting spectral information from pansharpened 4-bands WorldView-2 satellite imagery (0.5 m spatial resolution) in combination with digital elevation models. First, we divided the image into sub-images, i.e. tiles, and then we applied the workflow to each of them without changing the parameters. The workflow was implemented as top-down approach: at the image tile level, an over-classification of the potential landslide area was produced; the over-estimated area was re-segmented and re-classified by several processing cycles until most false positive objects have been eliminated. In every step a Baatz algorithm based segmentation generates polygons "candidates" to be landslides. At the same time, the average values of normalized difference vegetation index (NDVI) and brightness are calculated for these polygons; after that, these values are used as thresholds to perform an objects selection in order to improve the quality of the classification results. In combination, also empirically determined values of slope and roughness are used in the selection process. Results for each tile were merged to obtain the landslide map for the test area. For final validation, the landslide map was compared to a geological map and a supervised landslide classification in order to estimate its accuracy. Results for the test area showed that the proposed method is capable of accurately distinguishing landslides from roofs and trees. Implementation of the workflow into InterIMAGE was straightforward. We conclude that the method is able to extract landslides in forested areas, but that there is still room for improvements concerning the extraction in non-forested high-alpine regions.

  17. Virtual reality bronchoscopy simulation: a revolution in procedural training.

    PubMed

    Colt, H G; Crawford, S W; Galbraith, O

    2001-10-01

    In the airline industry, training is costly and operator error must be avoided. Therefore, virtual reality (VR) is routinely used to learn manual and technical skills through simulation before pilots assume flight responsibilities. In the field of medicine, manual and technical skills must also be acquired to competently perform invasive procedures such as flexible fiberoptic bronchoscopy (FFB). Until recently, training in FFB and other endoscopic procedures has occurred on the job in real patients. We hypothesized that novice trainees using a VR skill center could rapidly acquire basic skills, and that results would compare favorably with those of senior trainees trained in the conventional manner. We prospectively studied five novice bronchoscopists entering a pulmonary and critical care medicine training program. They were taught to perform inspection flexible bronchoscopy using a VR bronchoscopy skill center; dexterity, speed, and accuracy were tested using the skill center and an inanimate airway model before and after 4 h of group instruction and 4 h of individual unsupervised practice. Results were compared to those of a control group of four skilled physicians who had performed at least 200 bronchoscopies during 2 years of training. Student's t tests were used to compare mean scores of study and control groups for the inanimate model and VR bronchoscopy simulator. Before-training and after-training test scores were compared using paired t tests. For comparisons between after-training novice and skilled physician scores, unpaired two-sample t tests were used. Novices significantly improved their dexterity and accuracy in both models. They missed fewer segments after training than before training, and had fewer contacts with the bronchial wall. There was no statistically significant improvement in speed or total time spent not visualizing airway anatomy. After training, novice performance equaled or surpassed that of the skilled physicians. Novices performed more thorough examinations and missed significantly fewer segments in both the inanimate and virtual simulation models. A short, focused course of instruction and unsupervised practice using a virtual bronchoscopy simulator enabled novice trainees to attain a level of manual and technical skill at performing diagnostic bronchoscopic inspection similar to those of colleagues with several years of experience. These skills were readily reproducible in a conventional inanimate airway-training model, suggesting they would also be translatable to direct patient care.

  18. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    NASA Technical Reports Server (NTRS)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  19. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning

    PubMed Central

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986

  20. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    PubMed

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  1. A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio

    2015-01-01

    Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.

  2. Dyslexic Participants Show Intact Spontaneous Categorization Processes

    ERIC Educational Resources Information Center

    Nikolopoulos, Dimitris S.; Pothos, Emmanuel M.

    2009-01-01

    We examine the performance of dyslexic participants on an unsupervised categorization task against that of matched non-dyslexic control participants. Unsupervised categorization is a cognitive process critical for conceptual development. Existing research in dyslexia has emphasized perceptual tasks and supervised categorization tasks (for which…

  3. Unsupervised classification of multivariate geostatistical data: Two algorithms

    NASA Astrophysics Data System (ADS)

    Romary, Thomas; Ors, Fabien; Rivoirard, Jacques; Deraisme, Jacques

    2015-12-01

    With the increasing development of remote sensing platforms and the evolution of sampling facilities in mining and oil industry, spatial datasets are becoming increasingly large, inform a growing number of variables and cover wider and wider areas. Therefore, it is often necessary to split the domain of study to account for radically different behaviors of the natural phenomenon over the domain and to simplify the subsequent modeling step. The definition of these areas can be seen as a problem of unsupervised classification, or clustering, where we try to divide the domain into homogeneous domains with respect to the values taken by the variables in hand. The application of classical clustering methods, designed for independent observations, does not ensure the spatial coherence of the resulting classes. Image segmentation methods, based on e.g. Markov random fields, are not adapted to irregularly sampled data. Other existing approaches, based on mixtures of Gaussian random functions estimated via the expectation-maximization algorithm, are limited to reasonable sample sizes and a small number of variables. In this work, we propose two algorithms based on adaptations of classical algorithms to multivariate geostatistical data. Both algorithms are model free and can handle large volumes of multivariate, irregularly spaced data. The first one proceeds by agglomerative hierarchical clustering. The spatial coherence is ensured by a proximity condition imposed for two clusters to merge. This proximity condition relies on a graph organizing the data in the coordinates space. The hierarchical algorithm can then be seen as a graph-partitioning algorithm. Following this interpretation, a spatial version of the spectral clustering algorithm is also proposed. The performances of both algorithms are assessed on toy examples and a mining dataset.

  4. Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations.

    PubMed

    Fabelo, Himar; Ortega, Samuel; Ravi, Daniele; Kiran, B Ravi; Sosa, Coralia; Bulters, Diederik; Callicó, Gustavo M; Bulstrode, Harry; Szolna, Adam; Piñeiro, Juan F; Kabwama, Silvester; Madroñal, Daniel; Lazcano, Raquel; J-O'Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Báez, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Salvador, Rubén; Juárez, Eduardo; Sarmiento, Roberto

    2018-01-01

    Surgery for brain cancer is a major problem in neurosurgery. The diffuse infiltration into the surrounding normal brain by these tumors makes their accurate identification by the naked eye difficult. Since surgery is the common treatment for brain cancer, an accurate radical resection of the tumor leads to improved survival rates for patients. However, the identification of the tumor boundaries during surgery is challenging. Hyperspectral imaging is a non-contact, non-ionizing and non-invasive technique suitable for medical diagnosis. This study presents the development of a novel classification method taking into account the spatial and spectral characteristics of the hyperspectral images to help neurosurgeons to accurately determine the tumor boundaries in surgical-time during the resection, avoiding excessive excision of normal tissue or unintentionally leaving residual tumor. The algorithm proposed in this study to approach an efficient solution consists of a hybrid framework that combines both supervised and unsupervised machine learning methods. Firstly, a supervised pixel-wise classification using a Support Vector Machine classifier is performed. The generated classification map is spatially homogenized using a one-band representation of the HS cube, employing the Fixed Reference t-Stochastic Neighbors Embedding dimensional reduction algorithm, and performing a K-Nearest Neighbors filtering. The information generated by the supervised stage is combined with a segmentation map obtained via unsupervised clustering employing a Hierarchical K-Means algorithm. The fusion is performed using a majority voting approach that associates each cluster with a certain class. To evaluate the proposed approach, five hyperspectral images of surface of the brain affected by glioblastoma tumor in vivo from five different patients have been used. The final classification maps obtained have been analyzed and validated by specialists. These preliminary results are promising, obtaining an accurate delineation of the tumor area.

  5. Differentiation of Uterine Leiomyosarcoma from Atypical Leiomyoma: Diagnostic Accuracy of Qualitative MR Imaging Features and Feasibility of Texture Analysis.

    PubMed

    Lakhman, Yulia; Veeraraghavan, Harini; Chaim, Joshua; Feier, Diana; Goldman, Debra A; Moskowitz, Chaya S; Nougaret, Stephanie; Sosa, Ramon E; Vargas, Hebert Alberto; Soslow, Robert A; Abu-Rustum, Nadeem R; Hricak, Hedvig; Sala, Evis

    2017-07-01

    To investigate whether qualitative magnetic resonance (MR) features can distinguish leiomyosarcoma (LMS) from atypical leiomyoma (ALM) and assess the feasibility of texture analysis (TA). This retrospective study included 41 women (ALM = 22, LMS = 19) imaged with MRI prior to surgery. Two readers (R1, R2) evaluated each lesion for qualitative MR features. Associations between MR features and LMS were evaluated with Fisher's exact test. Accuracy measures were calculated for the four most significant features. TA was performed for 24 patients (ALM = 14, LMS = 10) with uniform imaging following lesion segmentation on axial T2-weighted images. Texture features were pre-selected using Wilcoxon signed-rank test with Bonferroni correction and analyzed with unsupervised clustering to separate LMS from ALM. Four qualitative MR features most strongly associated with LMS were nodular borders, haemorrhage, "T2 dark" area(s), and central unenhanced area(s) (p ≤ 0.0001 each feature/reader). The highest sensitivity [1.00 (95%CI:0.82-1.00)/0.95 (95%CI: 0.74-1.00)] and specificity [0.95 (95%CI:0.77-1.00)/1.00 (95%CI:0.85-1.00)] were achieved for R1/R2, respectively, when a lesion had ≥3 of these four features. Sixteen texture features differed significantly between LMS and ALM (p-values: <0.001-0.036). Unsupervised clustering achieved accuracy of 0.75 (sensitivity: 0.70; specificity: 0.79). Combination of ≥3 qualitative MR features accurately distinguished LMS from ALM. TA was feasible. • Four qualitative MR features demonstrated the strongest statistical association with LMS. • Combination of ≥3 these features could accurately differentiate LMS from ALM. • Texture analysis was a feasible semi-automated approach for lesion categorization.

  6. Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations

    PubMed Central

    Kabwama, Silvester; Madroñal, Daniel; Lazcano, Raquel; J-O’Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Báez, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Salvador, Rubén; Juárez, Eduardo; Sarmiento, Roberto

    2018-01-01

    Surgery for brain cancer is a major problem in neurosurgery. The diffuse infiltration into the surrounding normal brain by these tumors makes their accurate identification by the naked eye difficult. Since surgery is the common treatment for brain cancer, an accurate radical resection of the tumor leads to improved survival rates for patients. However, the identification of the tumor boundaries during surgery is challenging. Hyperspectral imaging is a non-contact, non-ionizing and non-invasive technique suitable for medical diagnosis. This study presents the development of a novel classification method taking into account the spatial and spectral characteristics of the hyperspectral images to help neurosurgeons to accurately determine the tumor boundaries in surgical-time during the resection, avoiding excessive excision of normal tissue or unintentionally leaving residual tumor. The algorithm proposed in this study to approach an efficient solution consists of a hybrid framework that combines both supervised and unsupervised machine learning methods. Firstly, a supervised pixel-wise classification using a Support Vector Machine classifier is performed. The generated classification map is spatially homogenized using a one-band representation of the HS cube, employing the Fixed Reference t-Stochastic Neighbors Embedding dimensional reduction algorithm, and performing a K-Nearest Neighbors filtering. The information generated by the supervised stage is combined with a segmentation map obtained via unsupervised clustering employing a Hierarchical K-Means algorithm. The fusion is performed using a majority voting approach that associates each cluster with a certain class. To evaluate the proposed approach, five hyperspectral images of surface of the brain affected by glioblastoma tumor in vivo from five different patients have been used. The final classification maps obtained have been analyzed and validated by specialists. These preliminary results are promising, obtaining an accurate delineation of the tumor area. PMID:29554126

  7. Clustering consumers based on trust, confidence and giving behaviour: data-driven model building for charitable involvement in the Australian not-for-profit sector.

    PubMed

    de Vries, Natalie Jane; Reis, Rodrigo; Moscato, Pablo

    2015-01-01

    Organisations in the Not-for-Profit and charity sector face increasing competition to win time, money and efforts from a common donor base. Consequently, these organisations need to be more proactive than ever. The increased level of communications between individuals and organisations today, heightens the need for investigating the drivers of charitable giving and understanding the various consumer groups, or donor segments, within a population. It is contended that `trust' is the cornerstone of the not-for-profit sector's survival, making it an inevitable topic for research in this context. It has become imperative for charities and not-for-profit organisations to adopt for-profit's research, marketing and targeting strategies. This study provides the not-for-profit sector with an easily-interpretable segmentation method based on a novel unsupervised clustering technique (MST-kNN) followed by a feature saliency method (the CM1 score). A sample of 1,562 respondents from a survey conducted by the Australian Charities and Not-for-profits Commission is analysed to reveal donor segments. Each cluster's most salient features are identified using the CM1 score. Furthermore, symbolic regression modelling is employed to find cluster-specific models to predict `low' or `high' involvement in clusters. The MST-kNN method found seven clusters. Based on their salient features they were labelled as: the `non-institutionalist charities supporters', the `resource allocation critics', the `information-seeking financial sceptics', the `non-questioning charity supporters', the `non-trusting sceptics', the `charity management believers' and the `institutionalist charity believers'. Each cluster exhibits their own characteristics as well as different drivers of `involvement'. The method in this study provides the not-for-profit sector with a guideline for clustering, segmenting, understanding and potentially targeting their donor base better. If charities and not-for-profit organisations adopt these strategies, they will be more successful in today's competitive environment.

  8. Analysis of normal human retinal vascular network architecture using multifractal geometry

    PubMed Central

    Ţălu, Ştefan; Stach, Sebastian; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina; Nicoară, Simona Delia

    2017-01-01

    AIM To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina. METHODS Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images, corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms, applying the standard box-counting method. Statistical analyses were performed using the GraphPad InStat software. RESULTS The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions (Dq) for q=0, 1, 2, the width of the multifractal spectrum (Δα=αmax − αmin) and the spectrum arms' heights difference (|Δf|) of the normal images were expressed as mean±standard deviation (SD): for segmented versions, D0=1.7014±0.0057; D1=1.6507±0.0058; D2=1.5772±0.0059; Δα=0.92441±0.0085; |Δf|= 0.1453±0.0051; for skeletonised versions, D0=1.6303±0.0051; D1=1.6012±0.0059; D2=1.5531±0.0058; Δα=0.65032±0.0162; |Δf|= 0.0238±0.0161. The average of generalized dimensions (Dq) for q=0, 1, 2, the width of the multifractal spectrum (Δα) and the spectrum arms' heights difference (|Δf|) of the segmented versions was slightly greater than the skeletonised versions. CONCLUSION The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases. PMID:28393036

  9. Clustering Consumers Based on Trust, Confidence and Giving Behaviour: Data-Driven Model Building for Charitable Involvement in the Australian Not-For-Profit Sector

    PubMed Central

    de Vries, Natalie Jane; Reis, Rodrigo; Moscato, Pablo

    2015-01-01

    Organisations in the Not-for-Profit and charity sector face increasing competition to win time, money and efforts from a common donor base. Consequently, these organisations need to be more proactive than ever. The increased level of communications between individuals and organisations today, heightens the need for investigating the drivers of charitable giving and understanding the various consumer groups, or donor segments, within a population. It is contended that `trust' is the cornerstone of the not-for-profit sector's survival, making it an inevitable topic for research in this context. It has become imperative for charities and not-for-profit organisations to adopt for-profit's research, marketing and targeting strategies. This study provides the not-for-profit sector with an easily-interpretable segmentation method based on a novel unsupervised clustering technique (MST-kNN) followed by a feature saliency method (the CM1 score). A sample of 1,562 respondents from a survey conducted by the Australian Charities and Not-for-profits Commission is analysed to reveal donor segments. Each cluster's most salient features are identified using the CM1 score. Furthermore, symbolic regression modelling is employed to find cluster-specific models to predict `low' or `high' involvement in clusters. The MST-kNN method found seven clusters. Based on their salient features they were labelled as: the `non-institutionalist charities supporters', the `resource allocation critics', the `information-seeking financial sceptics', the `non-questioning charity supporters', the `non-trusting sceptics', the `charity management believers' and the `institutionalist charity believers'. Each cluster exhibits their own characteristics as well as different drivers of `involvement'. The method in this study provides the not-for-profit sector with a guideline for clustering, segmenting, understanding and potentially targeting their donor base better. If charities and not-for-profit organisations adopt these strategies, they will be more successful in today's competitive environment. PMID:25849547

  10. Housing and sexual health among street-involved youth.

    PubMed

    Kumar, Maya M; Nisenbaum, Rosane; Barozzino, Tony; Sgro, Michael; Bonifacio, Herbert J; Maguire, Jonathon L

    2015-10-01

    Street-involved youth (SIY) carry a disproportionate burden of sexually transmitted diseases (STD). Studies among adults suggest that improving housing stability may be an effective primary prevention strategy for improving sexual health. Housing options available to SIY offer varying degrees of stability and adult supervision. This study investigated whether housing options offering more stability and adult supervision are associated with fewer STD and related risk behaviors among SIY. A cross-sectional study was performed using public health survey and laboratory data collected from Toronto SIY in 2010. Three exposure categories were defined a priori based on housing situation: (1) stable and supervised housing, (2) stable and unsupervised housing, and (3) unstable and unsupervised housing. Multivariate logistic regression was used to test the association between housing category and current or recent STD. Secondary analyses were performed using the following secondary outcomes: blood-borne infection, recent binge-drinking, and recent high-risk sexual behavior. The final analysis included 184 SIY. Of these, 28.8 % had a current or recent STD. Housing situation was stable and supervised for 12.5 %, stable and unsupervised for 46.2 %, and unstable and unsupervised for 41.3 %. Compared to stable and supervised housing, there was no significant association between current or recent STD among stable and unsupervised housing or unstable and unsupervised housing. There was no significant association between housing category and risk of blood-borne infection, binge-drinking, or high-risk sexual behavior. Although we did not demonstrate a significant association between stable and supervised housing and lower STD risk, our incorporation of both housing stability and adult supervision into a priori defined exposure groups may inform future studies of housing-related prevention strategies among SIY. Multi-modal interventions beyond housing alone may also be required to prevent sexual morbidity among these vulnerable youth.

  11. Out-of-School Time and Adolescent Substance Use.

    PubMed

    Lee, Kenneth T H; Vandell, Deborah Lowe

    2015-11-01

    High levels of adolescent substance use are linked to lower academic achievement, reduced schooling, and delinquency. We assess four types of out-of-school time (OST) contexts--unsupervised time with peers, sports, organized activities, and paid employment--in relation to tobacco, alcohol, and marijuana use at the end of high school. Other research has examined these OST contexts in isolation, limiting efforts to disentangle potentially confounded relations. Longitudinal data from the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development (N = 766) examined associations between different OST contexts during high school and substance use at the end of high school. Unsupervised time with peers increased the odds of tobacco, alcohol, and marijuana use, whereas sports increased the odds of alcohol use and decreased the odds of marijuana use. Paid employment increased the odds of tobacco and alcohol use. Unsupervised time with peers predicted increased amounts of tobacco, alcohol, and marijuana use, whereas sports predicted decreased amounts of tobacco and marijuana use and increased amounts of alcohol use at the end of high school. Although unsupervised time with peers, sports, and paid employment were differentially linked to the odds of substance use, only unsupervised time with peers and sports were significantly associated with the amounts of tobacco, alcohol, and marijuana use at the end of high school. These findings underscore the value of considering OST contexts in relation to strategies to promote adolescent health. Reducing unsupervised time with peers and increasing sports participation may have positive impacts on reducing substance use. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  12. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees.

    PubMed

    Hübner, David; Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan

    2017-01-01

    Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP.

  13. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees

    PubMed Central

    Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan

    2017-01-01

    Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016

  14. Parental Monitoring, Negotiated Unsupervised Time, and Parental Trust: The Role of Perceived Parenting Practices in Adolescent Health Risk Behaviors

    PubMed Central

    BORAWSKI, ELAINE A.; IEVERS-LANDIS, CAROLYN E.; LOVEGREEN, LOREN D.; TRAPL, ERIKA S.

    2010-01-01

    Purpose To compare two different parenting practices (parental monitoring and negotiated unsupervised time) and perceived parental trust in the reporting of health risk behaviors among adolescents. Methods Data were derived from 692 adolescents in 9th and 10th grades (X̄ = 15.7 years) enrolled in health education classes in six urban high schools. Students completed a self-administered paper-based survey that assessed adolescents’ perceptions of the degree to which their parents monitor their whereabouts, are permitted to negotiate unsupervised time with their friends and trust them to make decisions. Using gender-specific multivariate logistic regression analyses, we examined the relative importance of parental monitoring, negotiated unsupervised time with peers, and parental trust in predicting reported sexual activity, sex-related protective actions (e.g., condom use, carrying protection) and substance use (alcohol, tobacco, and marijuana). Results For males and females, increased negotiated unsupervised time was strongly associated with increased risk behavior (e.g., sexual activity, alcohol and marijuana use) but also sex-related protective actions. In males, high parental monitoring was associated with less alcohol use and consistent condom use. Parental monitoring had no affect on female behavior. Perceived parental trust served as a protective factor against sexual activity, tobacco, and marijuana use in females, and alcohol use in males. Conclusions Although monitoring is an important practice for parents of older adolescents, managing their behavior through negotiation of unsupervised time may have mixed results leading to increased experimentation with sexuality and substances, but perhaps in a more responsible way. Trust established between an adolescent female and her parents continues to be a strong deterrent for risky behaviors but appears to have little effect on behaviors of adolescent males. PMID:12890596

  15. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm

    PubMed Central

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895

  16. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    PubMed

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  17. Unsupervised iterative detection of land mines in highly cluttered environments.

    PubMed

    Batman, Sinan; Goutsias, John

    2003-01-01

    An unsupervised iterative scheme is proposed for land mine detection in heavily cluttered scenes. This scheme is based on iterating hybrid multispectral filters that consist of a decorrelating linear transform coupled with a nonlinear morphological detector. Detections extracted from the first pass are used to improve results in subsequent iterations. The procedure stops after a predetermined number of iterations. The proposed scheme addresses several weaknesses associated with previous adaptations of morphological approaches to land mine detection. Improvement in detection performance, robustness with respect to clutter inhomogeneities, a completely unsupervised operation, and computational efficiency are the main highlights of the method. Experimental results reveal excellent performance.

  18. Unsupervised progressive elastic band exercises for frail geriatric inpatients objectively monitored by new exercise-integrated technology-a feasibility trial with an embedded qualitative study.

    PubMed

    Rathleff, C R; Bandholm, T; Spaich, E G; Jorgensen, M; Andreasen, J

    2017-01-01

    Frailty is a serious condition frequently present in geriatric inpatients that potentially causes serious adverse events. Strength training is acknowledged as a means of preventing or delaying frailty and loss of function in these patients. However, limited hospital resources challenge the amount of supervised training, and unsupervised training could possibly supplement supervised training thereby increasing the total exercise dose during admission. A new valid and reliable technology, the BandCizer, objectively measures the exact training dosage performed. The purpose was to investigate feasibility and acceptability of an unsupervised progressive strength training intervention monitored by BandCizer for frail geriatric inpatients. This feasibility trial included 15 frail inpatients at a geriatric ward. At hospitalization, the patients were prescribed two elastic band exercises to be performed unsupervised once daily. A BandCizer Datalogger enabling measurement of the number of sets, repetitions, and time-under-tension was attached to the elastic band. The patients were instructed in performing strength training: 3 sets of 10 repetitions (10-12 repetition maximum (RM)) with a separation of 2-min pauses and a time-under-tension of 8 s. The feasibility criterion for the unsupervised progressive exercises was that 33% of the recommended number of sets would be performed by at least 30% of patients. In addition, patients and staff were interviewed about their experiences with the intervention. Four (27%) out of 15 patients completed 33% of the recommended number of sets. For the total sample, the average percent of performed sets was 23% and for those who actually trained ( n  = 12) 26%. Patients and staff expressed a general positive attitude towards the unsupervised training as an addition to the supervised training sessions. However, barriers were also described-especially constant interruptions. Based on the predefined criterion for feasibility, the unsupervised training was not feasible, although the criterion was almost met. The patients and staff mainly expressed positive attitudes towards the unsupervised training. As even a small training dosage has been shown to improve the physical performance of geriatric inpatients, the proposed intervention might be relevant if the interruptions are decreased in future large-scale trials and if the adherence is increased. ClinicalTrials.gov: NCT02702557, February 29, 2016. Data Protection Agency: 2016-42, February 25, 2016. Ethics Committee: No registration needed, December 8, 2015 (e-mail correspondence).

  19. A comparative analysis of pixel- and object-based detection of landslides from very high-resolution images

    NASA Astrophysics Data System (ADS)

    Keyport, Ren N.; Oommen, Thomas; Martha, Tapas R.; Sajinkumar, K. S.; Gierke, John S.

    2018-02-01

    A comparative analysis of landslides detected by pixel-based and object-oriented analysis (OOA) methods was performed using very high-resolution (VHR) remotely sensed aerial images for the San Juan La Laguna, Guatemala, which witnessed widespread devastation during the 2005 Hurricane Stan. A 3-band orthophoto of 0.5 m spatial resolution together with a 115 field-based landslide inventory were used for the analysis. A binary reference was assigned with a zero value for landslide and unity for non-landslide pixels. The pixel-based analysis was performed using unsupervised classification, which resulted in 11 different trial classes. Detection of landslides using OOA includes 2-step K-means clustering to eliminate regions based on brightness; elimination of false positives using object properties such as rectangular fit, compactness, length/width ratio, mean difference of objects, and slope angle. Both overall accuracy and F-score for OOA methods outperformed pixel-based unsupervised classification methods in both landslide and non-landslide classes. The overall accuracy for OOA and pixel-based unsupervised classification was 96.5% and 94.3%, respectively, whereas the best F-score for landslide identification for OOA and pixel-based unsupervised methods: were 84.3% and 77.9%, respectively.Results indicate that the OOA is able to identify the majority of landslides with a few false positive when compared to pixel-based unsupervised classification.

  20. Efficient hyperspectral image segmentation using geometric active contour formulation

    NASA Astrophysics Data System (ADS)

    Albalooshi, Fatema A.; Sidike, Paheding; Asari, Vijayan K.

    2014-10-01

    In this paper, we present a new formulation of geometric active contours that embeds the local hyperspectral image information for an accurate object region and boundary extraction. We exploit self-organizing map (SOM) unsupervised neural network to train our model. The segmentation process is achieved by the construction of a level set cost functional, in which, the dynamic variable is the best matching unit (BMU) coming from SOM map. In addition, we use Gaussian filtering to discipline the deviation of the level set functional from a signed distance function and this actually helps to get rid of the re-initialization step that is computationally expensive. By using the properties of the collective computational ability and energy convergence capability of the active control models (ACM) energy functional, our method optimizes the geometric ACM energy functional with lower computational time and smoother level set function. The proposed algorithm starts with feature extraction from raw hyperspectral images. In this step, the principal component analysis (PCA) transformation is employed, and this actually helps in reducing dimensionality and selecting best sets of the significant spectral bands. Then the modified geometric level set functional based ACM is applied on the optimal number of spectral bands determined by the PCA. By introducing local significant spectral band information, our proposed method is capable to force the level set functional to be close to a signed distance function, and therefore considerably remove the need of the expensive re-initialization procedure. To verify the effectiveness of the proposed technique, we use real-life hyperspectral images and test our algorithm in varying textural regions. This framework can be easily adapted to different applications for object segmentation in aerial hyperspectral imagery.

  1. Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye

    PubMed Central

    Yoshioka, Nayuta; Zangerl, Barbara; Nivison-Smith, Lisa; Khuu, Sieu K.; Jones, Bryan W.; Pfeiffer, Rebecca L.; Marc, Robert E.; Kalloniatis, Michael

    2017-01-01

    Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease. PMID:28632847

  2. Automatic detection of blood versus non-blood regions on intravascular ultrasound (IVUS) images using wavelet packet signatures

    NASA Astrophysics Data System (ADS)

    Katouzian, Amin; Baseri, Babak; Konofagou, Elisa E.; Laine, Andrew F.

    2008-03-01

    Intravascular ultrasound (IVUS) has been proven a reliable imaging modality that is widely employed in cardiac interventional procedures. It can provide morphologic as well as pathologic information on the occluded plaques in the coronary arteries. In this paper, we present a new technique using wavelet packet analysis that differentiates between blood and non-blood regions on the IVUS images. We utilized the multi-channel texture segmentation algorithm based on the discrete wavelet packet frames (DWPF). A k-mean clustering algorithm was deployed to partition the extracted textural features into blood and non-blood in an unsupervised fashion. Finally, the geometric and statistical information of the segmented regions was used to estimate the closest set of pixels to the lumen border and a spline curve was fitted to the set. The presented algorithm may be helpful in delineating the lumen border automatically and more reliably prior to the process of plaque characterization, especially with 40 MHz transducers, where appearance of the red blood cells renders the border detection more challenging, even manually. Experimental results are shown and they are quantitatively compared with manually traced borders by an expert. It is concluded that our two dimensional (2-D) algorithm, which is independent of the cardiac and catheter motions performs well in both in-vivo and in-vitro cases.

  3. Fabric defect detection based on visual saliency using deep feature and low-rank recovery

    NASA Astrophysics Data System (ADS)

    Liu, Zhoufeng; Wang, Baorui; Li, Chunlei; Li, Bicao; Dong, Yan

    2018-04-01

    Fabric defect detection plays an important role in improving the quality of fabric product. In this paper, a novel fabric defect detection method based on visual saliency using deep feature and low-rank recovery was proposed. First, unsupervised training is carried out by the initial network parameters based on MNIST large datasets. The supervised fine-tuning of fabric image library based on Convolutional Neural Networks (CNNs) is implemented, and then more accurate deep neural network model is generated. Second, the fabric images are uniformly divided into the image block with the same size, then we extract their multi-layer deep features using the trained deep network. Thereafter, all the extracted features are concentrated into a feature matrix. Third, low-rank matrix recovery is adopted to divide the feature matrix into the low-rank matrix which indicates the background and the sparse matrix which indicates the salient defect. In the end, the iterative optimal threshold segmentation algorithm is utilized to segment the saliency maps generated by the sparse matrix to locate the fabric defect area. Experimental results demonstrate that the feature extracted by CNN is more suitable for characterizing the fabric texture than the traditional LBP, HOG and other hand-crafted features extraction method, and the proposed method can accurately detect the defect regions of various fabric defects, even for the image with complex texture.

  4. Learning of Chunking Sequences in Cognition and Behavior

    PubMed Central

    Rabinovich, Mikhail

    2015-01-01

    We often learn and recall long sequences in smaller segments, such as a phone number 858 534 22 30 memorized as four segments. Behavioral experiments suggest that humans and some animals employ this strategy of breaking down cognitive or behavioral sequences into chunks in a wide variety of tasks, but the dynamical principles of how this is achieved remains unknown. Here, we study the temporal dynamics of chunking for learning cognitive sequences in a chunking representation using a dynamical model of competing modes arranged to evoke hierarchical Winnerless Competition (WLC) dynamics. Sequential memory is represented as trajectories along a chain of metastable fixed points at each level of the hierarchy, and bistable Hebbian dynamics enables the learning of such trajectories in an unsupervised fashion. Using computer simulations, we demonstrate the learning of a chunking representation of sequences and their robust recall. During learning, the dynamics associates a set of modes to each information-carrying item in the sequence and encodes their relative order. During recall, hierarchical WLC guarantees the robustness of the sequence order when the sequence is not too long. The resulting patterns of activities share several features observed in behavioral experiments, such as the pauses between boundaries of chunks, their size and their duration. Failures in learning chunking sequences provide new insights into the dynamical causes of neurological disorders such as Parkinson’s disease and Schizophrenia. PMID:26584306

  5. Feature Extraction Using an Unsupervised Neural Network

    DTIC Science & Technology

    1991-05-03

    with this neural netowrk is given and its connection to exploratory projection pursuit methods is established. DD I 2 P JA d 73 EDITIONj Of I NOV 6s...IS OBSOLETE $IN 0102- LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Daoes Enlered) Feature Extraction using an Unsupervised Neural Network

  6. An Unsupervised Method for Uncovering Morphological Chains (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2015-03-08

    Consortium. Marco Baroni, Johannes Matiasek, and Harald Trost. 2002. Unsupervised discovery of morphologically re- lated words based on orthographic and...Better word representations with re- cursive neural networks for morphology. In CoNLL, Sofia, Bulgaria. Mohamed Maamouri, Ann Bies, Hubert Jin, and Tim

  7. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhbardeh, Alireza; Jacobs, Michael A.; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

    2012-04-15

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), andmore » diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both synthetic and clinical data. In the synthetic data, the authors demonstrated the performance of the NLDR method compared with conventional linear DR methods. The NLDR approach enabled successful segmentation of the structures, whereas, in most cases, PCA and MDS failed. The NLDR approach was able to segment different breast tissue types with a high accuracy and the embedded image of the breast MRI data demonstrated fuzzy boundaries between the different types of breast tissue, i.e., fatty, glandular, and tissue with lesions (>86%). Conclusions: The proposed hybrid NLDR methods were able to segment clinical breast data with a high accuracy and construct an embedded image that visualized the contribution of different radiological parameters.« less

  8. Behavior-Based Language Generation for Believable Agents,

    DTIC Science & Technology

    1995-03-01

    retaining only those aspects of the agent that are essential to express its personality and its role in the work of which it is part.1 While full realism is...must contain a type and a role feature. The type provides information about the expected elements of the group and the level of the group in the...linguistic hierarchy, for example morpheme, word, phrase, or clause. The role specifies the group’s function within its parent group. All subgroups

  9. Effects of a Conversation-Based Intervention on the Linguistic Skills of Children With Motor Speech Disorders Who Use Augmentative and Alternative Communication.

    PubMed

    Soto, Gloria; Clarke, Michael T

    2017-07-12

    This study was conducted to evaluate the effects of a conversation-based intervention on the expressive vocabulary and grammatical skills of children with severe motor speech disorders and expressive language delay who use augmentative and alternative communication. Eight children aged from 8 to 13 years participated in the study. After a baseline period, a conversation-based intervention was provided for each participant, in which they were supported to learn and use linguistic structures essential for the formation of clauses and the grammaticalization of their utterances, such as pronouns, verbs, and bound morphemes, in the context of personally meaningful and scaffolded conversations with trained clinicians. The conversations were videotaped, transcribed, and analyzed using the Systematic Analysis of Language Transcripts (SALT; Miller & Chapman, 1991). Results indicate that participants showed improvements in their use of spontaneous clauses, and a greater use of pronouns, verbs, and bound morphemes. These improvements were sustained and generalized to conversations with familiar partners. The results demonstrate the positive effects of the conversation-based intervention for improving the expressive vocabulary and grammatical skills of children with severe motor speech disorders and expressive language delay who use augmentative and alternative communication. Clinical and theoretical implications of conversation-based interventions are discussed and future research needs are identified. https://doi.org/10.23641/asha.5150113.

  10. Using Language Sample Analysis in Clinical Practice: Measures of Grammatical Accuracy for Identifying Language Impairment in Preschool and School-Aged Children.

    PubMed

    Eisenberg, Sarita; Guo, Ling-Yu

    2016-05-01

    This article reviews the existing literature on the diagnostic accuracy of two grammatical accuracy measures for differentiating children with and without language impairment (LI) at preschool and early school age based on language samples. The first measure, the finite verb morphology composite (FVMC), is a narrow grammatical measure that computes children's overall accuracy of four verb tense morphemes. The second measure, percent grammatical utterances (PGU), is a broader grammatical measure that computes children's accuracy in producing grammatical utterances. The extant studies show that FVMC demonstrates acceptable (i.e., 80 to 89% accurate) to good (i.e., 90% accurate or higher) diagnostic accuracy for children between 4;0 (years;months) and 6;11 in conversational or narrative samples. In contrast, PGU yields acceptable to good diagnostic accuracy for children between 3;0 and 8;11 regardless of sample types. Given the diagnostic accuracy shown in the literature, we suggest that FVMC and PGU can be used as one piece of evidence for identifying children with LI in assessment when appropriate. However, FVMC or PGU should not be used as therapy goals directly. Instead, when children are low in FVMC or PGU, we suggest that follow-up analyses should be conducted to determine the verb tense morphemes or grammatical structures that children have difficulty with. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. The Separability of Morphological Processes from Semantic Meaning and Syntactic Class in Production of Single Words: Evidence from the Hebrew Root Morpheme.

    PubMed

    Deutsch, Avital

    2016-02-01

    In the present study we investigated to what extent the morphological facilitation effect induced by the derivational root morpheme in Hebrew is independent of semantic meaning and grammatical information of the part of speech involved. Using the picture-word interference paradigm with auditorily presented distractors, Experiment 1 compared the facilitation effect induced by semantically transparent versus semantically opaque morphologically related distractor words (i.e., a shared root) on the production latency of bare nouns. The results revealed almost the same amount of facilitation for both relatedness conditions. These findings accord with the results of the few studies that have addressed this issue in production in Indo-European languages, as well as previous studies in written word perception in Hebrew. Experiment 2 compared the root's facilitation effect, induced by morphologically related nominal versus verbal distractors, on the production latency of bare nouns. The results revealed a facilitation effect of similar size induced by the shared root, regardless of the distractor's part of speech. It is suggested that the principle that governs lexical organization at the level of morphology, at least for Hebrew roots, is form-driven and independent of semantic meaning. This principle of organization crosses the linguistic domains of production and written word perception, as well as grammatical organization according to part of speech.

  12. Effects of a Conversation-Based Intervention on the Linguistic Skills of Children With Motor Speech Disorders Who Use Augmentative and Alternative Communication

    PubMed Central

    Clarke, Michael T.

    2017-01-01

    Purpose This study was conducted to evaluate the effects of a conversation-based intervention on the expressive vocabulary and grammatical skills of children with severe motor speech disorders and expressive language delay who use augmentative and alternative communication. Method Eight children aged from 8 to 13 years participated in the study. After a baseline period, a conversation-based intervention was provided for each participant, in which they were supported to learn and use linguistic structures essential for the formation of clauses and the grammaticalization of their utterances, such as pronouns, verbs, and bound morphemes, in the context of personally meaningful and scaffolded conversations with trained clinicians. The conversations were videotaped, transcribed, and analyzed using the Systematic Analysis of Language Transcripts (SALT; Miller & Chapman, 1991). Results Results indicate that participants showed improvements in their use of spontaneous clauses, and a greater use of pronouns, verbs, and bound morphemes. These improvements were sustained and generalized to conversations with familiar partners. Conclusion The results demonstrate the positive effects of the conversation-based intervention for improving the expressive vocabulary and grammatical skills of children with severe motor speech disorders and expressive language delay who use augmentative and alternative communication. Clinical and theoretical implications of conversation-based interventions are discussed and future research needs are identified. Supplemental Materials https://doi.org/10.23641/asha.5150113 PMID:28672283

  13. Exploiting Redundancy for Flexible Behavior: Unsupervised Learning in a Modular Sensorimotor Control Architecture

    ERIC Educational Resources Information Center

    Butz, Martin V.; Herbort, Oliver; Hoffmann, Joachim

    2007-01-01

    Autonomously developing organisms face several challenges when learning reaching movements. First, motor control is learned unsupervised or self-supervised. Second, knowledge of sensorimotor contingencies is acquired in contexts in which action consequences unfold in time. Third, motor redundancies must be resolved. To solve all 3 of these…

  14. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    ERIC Educational Resources Information Center

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  15. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    PubMed Central

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  16. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.

    PubMed

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-06-13

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).

  17. Relationships of parental monitoring and emotion regulation with early adolescents' sexual behaviors.

    PubMed

    Hadley, Wendy; Houck, Christopher D; Barker, David; Senocak, Natali

    2015-06-01

    The purpose of this study was to examine the moderating influence of parental monitoring (e.g., unsupervised time with opposite sex peers) and adolescent emotional competence on sexual behaviors, among a sample of at-risk early adolescents. This study included 376 seventh-grade adolescents (age, 12-14 years) with behavioral or emotional difficulties. Questionnaires were completed on private laptop computers and assessed adolescent Emotional Competence (including Regulation and Negativity/Lability), Unsupervised Time, and a range of Sexual Behaviors. Generalized linear models were used to evaluate the independent and combined influence of Emotional Competency and Unsupervised Time on adolescent report of Sexual Behaviors. Analyses were stratified by gender to account for the notable gender differences in the targeted moderators and outcome variables. Findings indicated that more unsupervised time was a risk factor for all youth but was influenced by an adolescent's ability to regulate their emotions. Specifically, for males and females, poorer Emotion Regulation was associated with having engaged in a greater variety of Sexual Behaviors. However, lower Negativity/Lability and >1× per week Unsupervised Time were associated with a higher number of sexual behaviors among females only. Based on the findings of this study, a lack of parental supervision seems to be particularly problematic for both male and female adolescents with poor emotion regulation abilities. It may be important to impact both emotion regulation abilities and increase parental knowledge and skills associated with effective monitoring to reduce risk-taking for these youth.

  18. An Extended Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Akbari, D.

    2017-11-01

    In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.

  19. Object-based change detection method using refined Markov random field

    NASA Astrophysics Data System (ADS)

    Peng, Daifeng; Zhang, Yongjun

    2017-01-01

    In order to fully consider the local spatial constraints between neighboring objects in object-based change detection (OBCD), an OBCD approach is presented by introducing a refined Markov random field (MRF). First, two periods of images are stacked and segmented to produce image objects. Second, object spectral and textual histogram features are extracted and G-statistic is implemented to measure the distance among different histogram distributions. Meanwhile, object heterogeneity is calculated by combining spectral and textual histogram distance using adaptive weight. Third, an expectation-maximization algorithm is applied for determining the change category of each object and the initial change map is then generated. Finally, a refined change map is produced by employing the proposed refined object-based MRF method. Three experiments were conducted and compared with some state-of-the-art unsupervised OBCD methods to evaluate the effectiveness of the proposed method. Experimental results demonstrate that the proposed method obtains the highest accuracy among the methods used in this paper, which confirms its validness and effectiveness in OBCD.

  20. Automatic Feature Extraction from Planetary Images

    NASA Technical Reports Server (NTRS)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  1. Hierarchical models for epidermal nerve fiber data.

    PubMed

    Andersson, Claes; Rajala, Tuomas; Särkkä, Aila

    2018-02-10

    While epidermal nerve fiber (ENF) data have been used to study the effects of small fiber neuropathies through the density and the spatial patterns of the ENFs, little research has been focused on the effects on the individual nerve fibers. Studying the individual nerve fibers might give a better understanding of the effects of the neuropathy on the growth process of the individual ENFs. In this study, data from 32 healthy volunteers and 20 diabetic subjects, obtained from suction induced skin blister biopsies, are analyzed by comparing statistics for the nerve fibers as a whole and for the segments that a nerve fiber is composed of. Moreover, it is evaluated whether this type of data can be used to detect diabetic neuropathy, by using hierarchical models to perform unsupervised classification of the subjects. It is found that using the information about the individual nerve fibers in combination with the ENF counts yields a considerable improvement as compared to using the ENF counts only. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Tumor angiogenesis assessment using multi-fluorescent scans on murine slices by Markov random field framework

    NASA Astrophysics Data System (ADS)

    Laifa, Oumeima; Le Guillou-Buffello, Delphine; Racoceanu, Daniel

    2017-11-01

    The fundamental role of vascular supply in tumor growth makes the evaluation of the angiogenesis crucial in assessing effect of anti-angiogenic therapies. Since many years, such therapies are designed to inhibit the vascular endothelial growth factor (VEGF). To contribute to the assessment of anti-angiogenic agent (Pazopanib) effect on vascular and cellular structures, we acquired data from tumors extracted from a murine tumor model using Multi- Fluorescence Scanning. In this paper, we implemented an unsupervised algorithm combining the Watershed segmentation and Markov Random Field model (MRF). This algorithm allowed us to quantify the proportion of apoptotic endothelial cells and to generate maps according to cell density. Stronger association between apoptosis and endothelial cells was revealed in the tumors receiving anti-angiogenic therapy (n = 4) as compared to those receiving placebo (n = 4). A high percentage of apoptotic cells in the tumor area are endothelial. Lower density cells were detected in tumor slices presenting higher apoptotic endothelial areas.

  3. Imaging and machine learning techniques for diagnosis of Alzheimer's disease.

    PubMed

    Mirzaei, Golrokh; Adeli, Anahita; Adeli, Hojjat

    2016-12-01

    Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.

  4. Evaluation of multiband, multitemporal, and transformed LANDSAT MSS data for land cover area estimation. [North Central Missouri

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; May, G. A.; Kalcic, M. T. (Principal Investigator)

    1981-01-01

    Sample segments of ground-verified land cover data collected in conjunction with the USDA/ESS June Enumerative Survey were merged with LANDSAT data and served as a focus for unsupervised spectral class development and accuracy assessment. Multitemporal data sets were created from single-date LANDSAT MSS acquisitions from a nominal scene covering an eleven-county area in north central Missouri. Classification accuracies for the four land cover types predominant in the test site showed significant improvement in going from unitemporal to multitemporal data sets. Transformed LANDSAT data sets did not significantly improve classification accuracies. Regression estimators yielded mixed results for different land covers. Misregistration of two LANDSAT data sets by as much and one half pixels did not significantly alter overall classification accuracies. Existing algorithms for scene-to scene overlay proved adequate for multitemporal data analysis as long as statistical class development and accuracy assessment were restricted to field interior pixels.

  5. Color normalization of histology slides using graph regularized sparse NMF

    NASA Astrophysics Data System (ADS)

    Sha, Lingdao; Schonfeld, Dan; Sethi, Amit

    2017-03-01

    Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.

  6. Unsupervised discovery of information structure in biomedical documents.

    PubMed

    Kiela, Douwe; Guo, Yufan; Stenius, Ulla; Korhonen, Anna

    2015-04-01

    Information structure (IS) analysis is a text mining technique, which classifies text in biomedical articles into categories that capture different types of information, such as objectives, methods, results and conclusions of research. It is a highly useful technique that can support a range of Biomedical Text Mining tasks and can help readers of biomedical literature find information of interest faster, accelerating the highly time-consuming process of literature review. Several approaches to IS analysis have been presented in the past, with promising results in real-world biomedical tasks. However, all existing approaches, even weakly supervised ones, require several hundreds of hand-annotated training sentences specific to the domain in question. Because biomedicine is subject to considerable domain variation, such annotations are expensive to obtain. This makes the application of IS analysis across biomedical domains difficult. In this article, we investigate an unsupervised approach to IS analysis and evaluate the performance of several unsupervised methods on a large corpus of biomedical abstracts collected from PubMed. Our best unsupervised algorithm (multilevel-weighted graph clustering algorithm) performs very well on the task, obtaining over 0.70 F scores for most IS categories when applied to well-known IS schemes. This level of performance is close to that of lightly supervised IS methods and has proven sufficient to aid a range of practical tasks. Thus, using an unsupervised approach, IS could be applied to support a wide range of tasks across sub-domains of biomedicine. We also demonstrate that unsupervised learning brings novel insights into IS of biomedical literature and discovers information categories that are not present in any of the existing IS schemes. The annotated corpus and software are available at http://www.cl.cam.ac.uk/∼dk427/bio14info.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Effects of an off-season conditioning program on the physical characteristics of adolescent rugby union players.

    PubMed

    Smart, Daniel J; Gill, Nicholas D

    2013-03-01

    The aims of the study were to determine if a supervised off-season conditioning program enhanced gains in physical characteristics compared with the same program performed in an unsupervised manner and to establish the persistence of the physical changes after a 6-month unsupervised competition period. Forty-four provincial representative adolescent rugby union players (age, mean ± SD, 15.3 ± 1.3 years) participated in a 15-week off-season conditioning program either under supervision from an experienced strength and conditioning coach or unsupervised. Measures of body composition, strength, vertical jump, speed, and anaerobic and aerobic running performance were taken, before, immediately after, and 6 months after the conditioning. Post conditioning program the supervised group had greater improvements in all strength measures than the unsupervised group, with small, moderate and large differences between the groups\\x{2019} changes for chin-ups (9.1%; ± 11.6%), bench-press (16.9%; ± 11.7%) and box-squat (50.4%; ± 20.9%) estimated 1RM respectively. Both groups showed trivial increases in mass; however increases in fat free mass were small and trivial for supervised and unsupervised players respectively. Strength declined in the supervised group while the unsupervised group had small increases during the competition phase, resulting in only a small difference between the long-term changes in box-squat 1RM (15.9%; ± 13.2%). The supervised group had further small increases in fat free mass resulting in a small difference (2.4%; ± 2.7%) in the long-term changes. The postconditioning differences between the 2 groups may have been a result of increased adherence and the attainment of higher training loads during supervised training. The lack of differences in strength after the competition period indicates that supervision should be maintained to reduce substantial decrements in performance.

  8. Systematic Asymmetries in Perception and Production of L2 Inflections in Mandarin L2 Learners of English: The Effects of Phonotactics, Salience, and Processing Pressure on Inflectional Variability

    ERIC Educational Resources Information Center

    Bonner, Timothy E.

    2013-01-01

    The study of language production by adults who are learning a second language (L2) has received a good deal of attention especially when it comes to omission of inflectional morphemes within L2 utterances. Several explanations have been proposed for these inflectional errors. One explanation is that the L2 learner simply does not have the L2…

  9. Combining Unsupervised and Supervised Classification to Build User Models for Exploratory Learning Environments

    ERIC Educational Resources Information Center

    Amershi, Saleema; Conati, Cristina

    2009-01-01

    In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…

  10. Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation

    ERIC Educational Resources Information Center

    Hinton, Geoffrey; Osindero, Simon; Welling, Max; Teh, Yee-Whye

    2006-01-01

    We describe a way of modeling high-dimensional data vectors by using an unsupervised, nonlinear, multilayer neural network in which the activity of each neuron-like unit makes an additive contribution to a global energy score that indicates how surprised the network is by the data vector. The connection weights that determine how the activity of…

  11. Validation of Unsupervised Computer-Based Screening for Reading Disability in Greek Elementary Grades 3 and 4

    ERIC Educational Resources Information Center

    Protopapas, Athanassios; Skaloumbakas, Christos; Bali, Persefoni

    2008-01-01

    After reviewing past efforts related to computer-based reading disability (RD) assessment, we present a fully automated screening battery that evaluates critical skills relevant for RD diagnosis designed for unsupervised application in the Greek educational system. Psychometric validation in 301 children, 8-10 years old (grades 3 and 4; including…

  12. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  13. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

    NASA Astrophysics Data System (ADS)

    Serb, Alexander; Bill, Johannes; Khiat, Ali; Berdan, Radu; Legenstein, Robert; Prodromakis, Themis

    2016-09-01

    In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors.

  14. Classification of earth terrain using polarimetric synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Lim, H. H.; Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Shin, R. T.; Van Zyl, J. J.

    1989-01-01

    Supervised and unsupervised classification techniques are developed and used to classify the earth terrain components from SAR polarimetric images of San Francisco Bay and Traverse City, Michigan. The supervised techniques include the Bayes classifiers, normalized polarimetric classification, and simple feature classification using discriminates such as the absolute and normalized magnitude response of individual receiver channel returns and the phase difference between receiver channels. An algorithm is developed as an unsupervised technique which classifies terrain elements based on the relationship between the orientation angle and the handedness of the transmitting and receiving polariation states. It is found that supervised classification produces the best results when accurate classifier training data are used, while unsupervised classification may be applied when training data are not available.

  15. A probabilistic topic model for clinical risk stratification from electronic health records.

    PubMed

    Huang, Zhengxing; Dong, Wei; Duan, Huilong

    2015-12-01

    Risk stratification aims to provide physicians with the accurate assessment of a patient's clinical risk such that an individualized prevention or management strategy can be developed and delivered. Existing risk stratification techniques mainly focus on predicting the overall risk of an individual patient in a supervised manner, and, at the cohort level, often offer little insight beyond a flat score-based segmentation from the labeled clinical dataset. To this end, in this paper, we propose a new approach for risk stratification by exploring a large volume of electronic health records (EHRs) in an unsupervised fashion. Along this line, this paper proposes a novel probabilistic topic modeling framework called probabilistic risk stratification model (PRSM) based on Latent Dirichlet Allocation (LDA). The proposed PRSM recognizes a patient clinical state as a probabilistic combination of latent sub-profiles, and generates sub-profile-specific risk tiers of patients from their EHRs in a fully unsupervised fashion. The achieved stratification results can be easily recognized as high-, medium- and low-risk, respectively. In addition, we present an extension of PRSM, called weakly supervised PRSM (WS-PRSM) by incorporating minimum prior information into the model, in order to improve the risk stratification accuracy, and to make our models highly portable to risk stratification tasks of various diseases. We verify the effectiveness of the proposed approach on a clinical dataset containing 3463 coronary heart disease (CHD) patient instances. Both PRSM and WS-PRSM were compared with two established supervised risk stratification algorithms, i.e., logistic regression and support vector machine, and showed the effectiveness of our models in risk stratification of CHD in terms of the Area Under the receiver operating characteristic Curve (AUC) analysis. As well, in comparison with PRSM, WS-PRSM has over 2% performance gain, on the experimental dataset, demonstrating that incorporating risk scoring knowledge as prior information can improve the performance in risk stratification. Experimental results reveal that our models achieve competitive performance in risk stratification in comparison with existing supervised approaches. In addition, the unsupervised nature of our models makes them highly portable to the risk stratification tasks of various diseases. Moreover, patient sub-profiles and sub-profile-specific risk tiers generated by our models are coherent and informative, and provide significant potential to be explored for the further tasks, such as patient cohort analysis. We hypothesize that the proposed framework can readily meet the demand for risk stratification from a large volume of EHRs in an open-ended fashion. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Pelvic floor muscle exercises utilizing trunk stabilization for treating postpartum urinary incontinence: randomized controlled pilot trial of supervised versus unsupervised training.

    PubMed

    Kim, Eun-Young; Kim, Suhn-Yeop; Oh, Duck-Won

    2012-02-01

    To investigate the effect of supervised and unsupervised pelvic floor muscle exercises utilizing trunk stabilization for treating postpartum urinary incontinence and to compare the outcomes. Randomized, single-blind controlled study. Outpatient rehabilitation hospital. Eighteen subjects with postpartum urinary incontinence. Subjects were randomized to either a supervised training group with verbal instruction from a physiotherapist, or an unsupervised training group after undergoing a supervised demonstration session. Bristol Female Lower Urinary Tract Symptom questionnaire (urinary symptoms and quality of life) and vaginal function test (maximal vaginal squeeze pressure and holding time) using a perineometer. The change values for urinary symptoms (-27.22 ± 6.20 versus -18.22 ± 5.49), quality of life (-5.33 ± 2.96 versus -1.78 ± 3.93), total score (-32.56 ± 8.17 versus -20.00 ± 6.67), maximal vaginal squeeze pressure (18.96 ± 9.08 versus 2.67 ± 3.64 mmHg), and holding time (11.32 ± 3.17 versus 5.72 ± 2.29 seconds) were more improved in the supervised group than in the unsupervised group (P < 0.05). In the supervised group, significant differences were found for all variables between pre- and post-test values (P < 0.01), whereas the unsupervised group showed significant differences for urinary symptom score, total score and holding time between the pre- and post-test results (P < 0.05). These findings suggest that exercising the pelvic floor muscles by utilizing trunk stabilization under physiotherapist supervision may be beneficial for the management of postpartum urinary incontinence.

  17. Hanging out with Which Friends? Friendship-Level Predictors of Unstructured and Unsupervised Socializing in Adolescence

    ERIC Educational Resources Information Center

    Siennick, Sonja E.; Osgood, D. Wayne

    2012-01-01

    Companions are central to explanations of the risky nature of unstructured and unsupervised socializing, yet we know little about whom adolescents are with when hanging out. We examine predictors of how often friendship dyads hang out via multilevel analyses of longitudinal friendship-level data on over 5,000 middle schoolers. Adolescents hang out…

  18. Teacher and learner: Supervised and unsupervised learning in communities.

    PubMed

    Shafto, Michael G; Seifert, Colleen M

    2015-01-01

    How far can teaching methods go to enhance learning? Optimal methods of teaching have been considered in research on supervised and unsupervised learning. Locally optimal methods are usually hybrids of teaching and self-directed approaches. The costs and benefits of specific methods have been shown to depend on the structure of the learning task, the learners, the teachers, and the environment.

  19. Unsupervised hierarchical partitioning of hyperspectral images: application to marine algae identification

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chehdi, K.; De Oliveria, E.; Cariou, C.; Charbonnier, B.

    2015-10-01

    In this paper a new unsupervised top-down hierarchical classification method to partition airborne hyperspectral images is proposed. The unsupervised approach is preferred because the difficulty of area access and the human and financial resources required to obtain ground truth data, constitute serious handicaps especially over large areas which can be covered by airborne or satellite images. The developed classification approach allows i) a successive partitioning of data into several levels or partitions in which the main classes are first identified, ii) an estimation of the number of classes automatically at each level without any end user help, iii) a nonsystematic subdivision of all classes of a partition Pj to form a partition Pj+1, iv) a stable partitioning result of the same data set from one run of the method to another. The proposed approach was validated on synthetic and real hyperspectral images related to the identification of several marine algae species. In addition to highly accurate and consistent results (correct classification rate over 99%), this approach is completely unsupervised. It estimates at each level, the optimal number of classes and the final partition without any end user intervention.

  20. Unsupervised learning of discriminative edge measures for vehicle matching between nonoverlapping cameras.

    PubMed

    Shan, Ying; Sawhney, Harpreet S; Kumar, Rakesh

    2008-04-01

    This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images from two distinct cameras being from the same vehicle or different vehicle(s). We employ a novel measurement vector that consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each measure is determined by an unsupervised learning algorithm that optimally separates the same-different classes in the combined measurement space. This is achieved with a weak classification algorithm that automatically collects representative samples from same-different classes, followed by a more discriminative classifier based on Fisher' s Linear Discriminants and Gibbs Sampling. The robustness of the match measures and the use of unsupervised discriminant analysis in the classification ensures that the proposed method performs consistently in the presence of missing/false features, temporally and spatially changing illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results.

Top