Sample records for unsupervised statistical learning

  1. Modelling unsupervised online-learning of artificial grammars: linking implicit and statistical learning.

    PubMed

    Rohrmeier, Martin A; Cross, Ian

    2014-07-01

    Humans rapidly learn complex structures in various domains. Findings of above-chance performance of some untrained control groups in artificial grammar learning studies raise questions about the extent to which learning can occur in an untrained, unsupervised testing situation with both correct and incorrect structures. The plausibility of unsupervised online-learning effects was modelled with n-gram, chunking and simple recurrent network models. A novel evaluation framework was applied, which alternates forced binary grammaticality judgments and subsequent learning of the same stimulus. Our results indicate a strong online learning effect for n-gram and chunking models and a weaker effect for simple recurrent network models. Such findings suggest that online learning is a plausible effect of statistical chunk learning that is possible when ungrammatical sequences contain a large proportion of grammatical chunks. Such common effects of continuous statistical learning may underlie statistical and implicit learning paradigms and raise implications for study design and testing methodologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Spatiotemporal information during unsupervised learning enhances viewpoint invariant object recognition

    PubMed Central

    Tian, Moqian; Grill-Spector, Kalanit

    2015-01-01

    Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning is used to link among object views. Specifically, researchers argue whether temporal proximity, motion, or spatiotemporal continuity among object views during unsupervised learning is beneficial. Here, we untangled the role of each of these factors in unsupervised learning of novel three-dimensional (3-D) objects. We found that after unsupervised training with 24 object views spanning a 180° view space, participants showed significant improvement in their ability to recognize 3-D objects across rotation. Surprisingly, there was no advantage to unsupervised learning with spatiotemporal continuity or motion information than training with temporal proximity. However, we discovered that when participants were trained with just a third of the views spanning the same view space, unsupervised learning via spatiotemporal continuity yielded significantly better recognition performance on novel views than learning via temporal proximity. These results suggest that while it is possible to obtain view-invariant recognition just from observing many views of an object presented in temporal proximity, spatiotemporal information enhances performance by producing representations with broader view tuning than learning via temporal association. Our findings have important implications for theories of object recognition and for the development of computational algorithms that learn from examples. PMID:26024454

  3. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  4. Machine learning for neuroimaging with scikit-learn

    PubMed Central

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  5. Neural Evidence of Statistical Learning: Efficient Detection of Visual Regularities without Awareness

    ERIC Educational Resources Information Center

    Turk-Browne, Nicholas B.; Scholl, Brian J.; Chun, Marvin M.; Johnson, Marcia K.

    2009-01-01

    Our environment contains regularities distributed in space and time that can be detected by way of statistical learning. This unsupervised learning occurs without intent or awareness, but little is known about how it relates to other types of learning, how it affects perceptual processing, and how quickly it can occur. Here we use fMRI during…

  6. Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses

    NASA Astrophysics Data System (ADS)

    Huang, Haiping

    2017-05-01

    Revealing hidden features in unlabeled data is called unsupervised feature learning, which plays an important role in pretraining a deep neural network. Here we provide a statistical mechanics analysis of the unsupervised learning in a restricted Boltzmann machine with binary synapses. A message passing equation to infer the hidden feature is derived, and furthermore, variants of this equation are analyzed. A statistical analysis by replica theory describes the thermodynamic properties of the model. Our analysis confirms an entropy crisis preceding the non-convergence of the message passing equation, suggesting a discontinuous phase transition as a key characteristic of the restricted Boltzmann machine. Continuous phase transition is also confirmed depending on the embedded feature strength in the data. The mean-field result under the replica symmetric assumption agrees with that obtained by running message passing algorithms on single instances of finite sizes. Interestingly, in an approximate Hopfield model, the entropy crisis is absent, and a continuous phase transition is observed instead. We also develop an iterative equation to infer the hyper-parameter (temperature) hidden in the data, which in physics corresponds to iteratively imposing Nishimori condition. Our study provides insights towards understanding the thermodynamic properties of the restricted Boltzmann machine learning, and moreover important theoretical basis to build simplified deep networks.

  7. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning

    PubMed Central

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986

  8. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    PubMed

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  9. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning.

    PubMed

    Sadeghi, Zahra; Testolin, Alberto

    2017-08-01

    In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

  10. Mere exposure alters category learning of novel objects.

    PubMed

    Folstein, Jonathan R; Gauthier, Isabel; Palmeri, Thomas J

    2010-01-01

    We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning.

  11. Mere Exposure Alters Category Learning of Novel Objects

    PubMed Central

    Folstein, Jonathan R.; Gauthier, Isabel; Palmeri, Thomas J.

    2010-01-01

    We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning. PMID:21833209

  12. Unsupervised learning of natural languages

    PubMed Central

    Solan, Zach; Horn, David; Ruppin, Eytan; Edelman, Shimon

    2005-01-01

    We address the problem, fundamental to linguistics, bioinformatics, and certain other disciplines, of using corpora of raw symbolic sequential data to infer underlying rules that govern their production. Given a corpus of strings (such as text, transcribed speech, chromosome or protein sequence data, sheet music, etc.), our unsupervised algorithm recursively distills from it hierarchically structured patterns. The adios (automatic distillation of structure) algorithm relies on a statistical method for pattern extraction and on structured generalization, two processes that have been implicated in language acquisition. It has been evaluated on artificial context-free grammars with thousands of rules, on natural languages as diverse as English and Chinese, and on protein data correlating sequence with function. This unsupervised algorithm is capable of learning complex syntax, generating grammatical novel sentences, and proving useful in other fields that call for structure discovery from raw data, such as bioinformatics. PMID:16087885

  13. Unsupervised learning of natural languages.

    PubMed

    Solan, Zach; Horn, David; Ruppin, Eytan; Edelman, Shimon

    2005-08-16

    We address the problem, fundamental to linguistics, bioinformatics, and certain other disciplines, of using corpora of raw symbolic sequential data to infer underlying rules that govern their production. Given a corpus of strings (such as text, transcribed speech, chromosome or protein sequence data, sheet music, etc.), our unsupervised algorithm recursively distills from it hierarchically structured patterns. The adios (automatic distillation of structure) algorithm relies on a statistical method for pattern extraction and on structured generalization, two processes that have been implicated in language acquisition. It has been evaluated on artificial context-free grammars with thousands of rules, on natural languages as diverse as English and Chinese, and on protein data correlating sequence with function. This unsupervised algorithm is capable of learning complex syntax, generating grammatical novel sentences, and proving useful in other fields that call for structure discovery from raw data, such as bioinformatics.

  14. Ellipsoidal fuzzy learning for smart car platoons

    NASA Astrophysics Data System (ADS)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  15. Natural-Annotation-based Unsupervised Construction of Korean-Chinese Domain Dictionary

    NASA Astrophysics Data System (ADS)

    Liu, Wuying; Wang, Lin

    2018-03-01

    The large-scale bilingual parallel resource is significant to statistical learning and deep learning in natural language processing. This paper addresses the automatic construction issue of the Korean-Chinese domain dictionary, and presents a novel unsupervised construction method based on the natural annotation in the raw corpus. We firstly extract all Korean-Chinese word pairs from Korean texts according to natural annotations, secondly transform the traditional Chinese characters into the simplified ones, and finally distill out a bilingual domain dictionary after retrieving the simplified Chinese words in an extra Chinese domain dictionary. The experimental results show that our method can automatically build multiple Korean-Chinese domain dictionaries efficiently.

  16. Active Learning with Rationales for Identifying Operationally Significant Anomalies in Aviation

    NASA Technical Reports Server (NTRS)

    Sharma, Manali; Das, Kamalika; Bilgic, Mustafa; Matthews, Bryan; Nielsen, David Lynn; Oza, Nikunj C.

    2016-01-01

    A major focus of the commercial aviation community is discovery of unknown safety events in flight operations data. Data-driven unsupervised anomaly detection methods are better at capturing unknown safety events compared to rule-based methods which only look for known violations. However, not all statistical anomalies that are discovered by these unsupervised anomaly detection methods are operationally significant (e.g., represent a safety concern). Subject Matter Experts (SMEs) have to spend significant time reviewing these statistical anomalies individually to identify a few operationally significant ones. In this paper we propose an active learning algorithm that incorporates SME feedback in the form of rationales to build a classifier that can distinguish between uninteresting and operationally significant anomalies. Experimental evaluation on real aviation data shows that our approach improves detection of operationally significant events by as much as 75% compared to the state-of-the-art. The learnt classifier also generalizes well to additional validation data sets.

  17. A parallelized binary search tree

    USDA-ARS?s Scientific Manuscript database

    PTTRNFNDR is an unsupervised statistical learning algorithm that detects patterns in DNA sequences, protein sequences, or any natural language texts that can be decomposed into letters of a finite alphabet. PTTRNFNDR performs complex mathematical computations and its processing time increases when i...

  18. Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications

    PubMed Central

    Qian, Guoqi; Wu, Yuehua; Ferrari, Davide; Qiao, Puxue; Hollande, Frédéric

    2016-01-01

    Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to the least squares and robust statistical methods. We also provide a model selection based technique to determine the number of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell marking in neuroscience to illustrate and interpret the method. PMID:27212939

  19. Collected Notes on the Workshop for Pattern Discovery in Large Databases

    NASA Technical Reports Server (NTRS)

    Buntine, Wray (Editor); Delalto, Martha (Editor)

    1991-01-01

    These collected notes are a record of material presented at the Workshop. The core data analysis is addressed that have traditionally required statistical or pattern recognition techniques. Some of the core tasks include classification, discrimination, clustering, supervised and unsupervised learning, discovery and diagnosis, i.e., general pattern discovery.

  20. Unsupervised learning toward brain imaging data analysis: cigarette craving and resistance related neuronal activations from functional magnetic resonance imaging data analysis

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Youl; Lee, Jong-Hwan

    2014-05-01

    A data-driven unsupervised learning such as an independent component analysis was gainfully applied to bloodoxygenation- level-dependent (BOLD) functional magnetic resonance imaging (fMRI) data compared to a model-based general linear model (GLM). This is due to an ability of this unsupervised learning method to extract a meaningful neuronal activity from BOLD signal that is a mixture of confounding non-neuronal artifacts such as head motions and physiological artifacts as well as neuronal signals. In this study, we support this claim by identifying neuronal underpinnings of cigarette craving and cigarette resistance. The fMRI data were acquired from heavy cigarette smokers (n = 14) while they alternatively watched images with and without cigarette smoking. During acquisition of two fMRI runs, they were asked to crave when they watched cigarette smoking images or to resist the urge to smoke. Data driven approaches of group independent component analysis (GICA) method based on temporal concatenation (TC) and TCGICA with an extension of iterative dual-regression (TC-GICA-iDR) were applied to the data. From the results, cigarette craving and cigarette resistance related neuronal activations were identified in the visual area and superior frontal areas, respectively with a greater statistical significance from the TC-GICA-iDR method than the TC-GICA method. On the other hand, the neuronal activity levels in many of these regions were not statistically different from the GLM method between the cigarette craving and cigarette resistance due to potentially aberrant BOLD signals.

  1. Implementing Machine Learning in Radiology Practice and Research.

    PubMed

    Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond

    2017-04-01

    The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.

  2. Alternative to Proctoring in Introductory Statistics Community College Courses

    ERIC Educational Resources Information Center

    Feinman, Yalena

    2018-01-01

    The credibility of unsupervised exams, one of the biggest challenges of e-learning, is currently maintained by proctoring. However, little has been done to determine whether expensive and inconvenient proctoring is necessary. The purpose of this quantitative study was to determine whether the use of security mechanisms, based on the taxonomy of…

  3. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    NASA Technical Reports Server (NTRS)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  4. Robust Real-Time Music Transcription with a Compositional Hierarchical Model.

    PubMed

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.

  5. A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio

    2015-01-01

    Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.

  6. Metric Learning to Enhance Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Castano, Rebecca; Bue, Brian; Gilmore, Martha S.

    2013-01-01

    Unsupervised hyperspectral image segmentation can reveal spatial trends that show the physical structure of the scene to an analyst. They highlight borders and reveal areas of homogeneity and change. Segmentations are independently helpful for object recognition, and assist with automated production of symbolic maps. Additionally, a good segmentation can dramatically reduce the number of effective spectra in an image, enabling analyses that would otherwise be computationally prohibitive. Specifically, using an over-segmentation of the image instead of individual pixels can reduce noise and potentially improve the results of statistical post-analysis. In this innovation, a metric learning approach is presented to improve the performance of unsupervised hyperspectral image segmentation. The prototype demonstrations attempt a superpixel segmentation in which the image is conservatively over-segmented; that is, the single surface features may be split into multiple segments, but each individual segment, or superpixel, is ensured to have homogenous mineralogy.

  7. Subtyping of Children with Developmental Dyslexia via Bootstrap Aggregated Clustering and the Gap Statistic: Comparison with the Double-Deficit Hypothesis

    ERIC Educational Resources Information Center

    King, Wayne M.; Giess, Sally A.; Lombardino, Linda J.

    2007-01-01

    Background: The marked degree of heterogeneity in persons with developmental dyslexia has motivated the investigation of possible subtypes. Attempts have proceeded both from theoretical models of reading and the application of unsupervised learning (clustering) methods. Previous cluster analyses of data obtained from persons with reading…

  8. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  9. Unsupervised learning on scientific ocean drilling datasets from the South China Sea

    NASA Astrophysics Data System (ADS)

    Tse, Kevin C.; Chiu, Hon-Chim; Tsang, Man-Yin; Li, Yiliang; Lam, Edmund Y.

    2018-06-01

    Unsupervised learning methods were applied to explore data patterns in multivariate geophysical datasets collected from ocean floor sediment core samples coming from scientific ocean drilling in the South China Sea. Compared to studies on similar datasets, but using supervised learning methods which are designed to make predictions based on sample training data, unsupervised learning methods require no a priori information and focus only on the input data. In this study, popular unsupervised learning methods including K-means, self-organizing maps, hierarchical clustering and random forest were coupled with different distance metrics to form exploratory data clusters. The resulting data clusters were externally validated with lithologic units and geologic time scales assigned to the datasets by conventional methods. Compact and connected data clusters displayed varying degrees of correspondence with existing classification by lithologic units and geologic time scales. K-means and self-organizing maps were observed to perform better with lithologic units while random forest corresponded best with geologic time scales. This study sets a pioneering example of how unsupervised machine learning methods can be used as an automatic processing tool for the increasingly high volume of scientific ocean drilling data.

  10. Semi-supervised and unsupervised extreme learning machines.

    PubMed

    Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng

    2014-12-01

    Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

  11. Assessing the Linguistic Productivity of Unsupervised Deep Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Lawrence A.; Hodas, Nathan O.

    Increasingly, cognitive scientists have demonstrated interest in applying tools from deep learning. One use for deep learning is in language acquisition where it is useful to know if a linguistic phenomenon can be learned through domain-general means. To assess whether unsupervised deep learning is appropriate, we first pose a smaller question: Can unsupervised neural networks apply linguistic rules productively, using them in novel situations. We draw from the literature on determiner/noun productivity by training an unsupervised, autoencoder network measuring its ability to combine nouns with determiners. Our simple autoencoder creates combinations it has not previously encountered, displaying a degree ofmore » overlap similar to actual children. While this preliminary work does not provide conclusive evidence for productivity, it warrants further investigation with more complex models. Further, this work helps lay the foundations for future collaboration between the deep learning and cognitive science communities.« less

  12. Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering

    DTIC Science & Technology

    2005-08-04

    describe a four-band magnetic resonance image (MRI) consisting of 23,712 pixels of a brain with a tumor 2. Because of the size of the dataset, it is not...the Royal Statistical Society, Series B 56, 363–375. Figueiredo, M. A. T. and A. K. Jain (2002). Unsupervised learning of finite mixture models. IEEE...20 5.4 Brain MRI

  13. Hyperparameterization of soil moisture statistical models for North America with Ensemble Learning Models (Elm)

    NASA Astrophysics Data System (ADS)

    Steinberg, P. D.; Brener, G.; Duffy, D.; Nearing, G. S.; Pelissier, C.

    2017-12-01

    Hyperparameterization, of statistical models, i.e. automated model scoring and selection, such as evolutionary algorithms, grid searches, and randomized searches, can improve forecast model skill by reducing errors associated with model parameterization, model structure, and statistical properties of training data. Ensemble Learning Models (Elm), and the related Earthio package, provide a flexible interface for automating the selection of parameters and model structure for machine learning models common in climate science and land cover classification, offering convenient tools for loading NetCDF, HDF, Grib, or GeoTiff files, decomposition methods like PCA and manifold learning, and parallel training and prediction with unsupervised and supervised classification, clustering, and regression estimators. Continuum Analytics is using Elm to experiment with statistical soil moisture forecasting based on meteorological forcing data from NASA's North American Land Data Assimilation System (NLDAS). There Elm is using the NSGA-2 multiobjective optimization algorithm for optimizing statistical preprocessing of forcing data to improve goodness-of-fit for statistical models (i.e. feature engineering). This presentation will discuss Elm and its components, including dask (distributed task scheduling), xarray (data structures for n-dimensional arrays), and scikit-learn (statistical preprocessing, clustering, classification, regression), and it will show how NSGA-2 is being used for automate selection of soil moisture forecast statistical models for North America.

  14. Teacher and learner: Supervised and unsupervised learning in communities.

    PubMed

    Shafto, Michael G; Seifert, Colleen M

    2015-01-01

    How far can teaching methods go to enhance learning? Optimal methods of teaching have been considered in research on supervised and unsupervised learning. Locally optimal methods are usually hybrids of teaching and self-directed approaches. The costs and benefits of specific methods have been shown to depend on the structure of the learning task, the learners, the teachers, and the environment.

  15. Exploiting Redundancy for Flexible Behavior: Unsupervised Learning in a Modular Sensorimotor Control Architecture

    ERIC Educational Resources Information Center

    Butz, Martin V.; Herbort, Oliver; Hoffmann, Joachim

    2007-01-01

    Autonomously developing organisms face several challenges when learning reaching movements. First, motor control is learned unsupervised or self-supervised. Second, knowledge of sensorimotor contingencies is acquired in contexts in which action consequences unfold in time. Third, motor redundancies must be resolved. To solve all 3 of these…

  16. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    PubMed Central

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  17. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.

    PubMed

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-06-13

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).

  18. An Integrated approach to the Space Situational Awareness Problem

    DTIC Science & Technology

    2016-12-15

    data coming from the sensors. We developed particle-based Gaussian Mixture Filters that are immune to the “curse of dimensionality”/ “particle...depletion” problem inherent in particle filtering . This method maps the data assimilation/ filtering problem into an unsupervised learning problem. Results...Gaussian Mixture Filters ; particle depletion; Finite Set Statistics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 1

  19. Exploiting Secondary Sources for Unsupervised Record Linkage

    DTIC Science & Technology

    2004-01-01

    paper, we present an extension to Apollo’s active learning component to Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting...Sources address the issue of user involvement. Using secondary sources, a system can autonomously answer questions posed by its active learning component...over, we present how Apollo utilizes the identified sec- ondary sources in an unsupervised active learning pro- cess. Apollo’s learning algorithm

  20. Combining Unsupervised and Supervised Classification to Build User Models for Exploratory Learning Environments

    ERIC Educational Resources Information Center

    Amershi, Saleema; Conati, Cristina

    2009-01-01

    In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…

  1. Unsupervised Transfer Learning via Multi-Scale Convolutional Sparse Coding for Biomedical Applications

    PubMed Central

    Chang, Hang; Han, Ju; Zhong, Cheng; Snijders, Antoine M.; Mao, Jian-Hua

    2017-01-01

    The capabilities of (I) learning transferable knowledge across domains; and (II) fine-tuning the pre-learned base knowledge towards tasks with considerably smaller data scale are extremely important. Many of the existing transfer learning techniques are supervised approaches, among which deep learning has the demonstrated power of learning domain transferrable knowledge with large scale network trained on massive amounts of labeled data. However, in many biomedical tasks, both the data and the corresponding label can be very limited, where the unsupervised transfer learning capability is urgently needed. In this paper, we proposed a novel multi-scale convolutional sparse coding (MSCSC) method, that (I) automatically learns filter banks at different scales in a joint fashion with enforced scale-specificity of learned patterns; and (II) provides an unsupervised solution for learning transferable base knowledge and fine-tuning it towards target tasks. Extensive experimental evaluation of MSCSC demonstrates the effectiveness of the proposed MSCSC in both regular and transfer learning tasks in various biomedical domains. PMID:28129148

  2. Training strategy for convolutional neural networks in pedestrian gender classification

    NASA Astrophysics Data System (ADS)

    Ng, Choon-Boon; Tay, Yong-Haur; Goi, Bok-Min

    2017-06-01

    In this work, we studied a strategy for training a convolutional neural network in pedestrian gender classification with limited amount of labeled training data. Unsupervised learning by k-means clustering on pedestrian images was used to learn the filters to initialize the first layer of the network. As a form of pre-training, supervised learning for the related task of pedestrian classification was performed. Finally, the network was fine-tuned for gender classification. We found that this strategy improved the network's generalization ability in gender classification, achieving better test results when compared to random weights initialization and slightly more beneficial than merely initializing the first layer filters by unsupervised learning. This shows that unsupervised learning followed by pre-training with pedestrian images is an effective strategy to learn useful features for pedestrian gender classification.

  3. Information-Based Approach to Unsupervised Machine Learning

    DTIC Science & Technology

    2013-06-19

    Leibler , R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86. Minka, T. P. (2000). Old and new matrix algebra use ...and Arabie, P. Comparing partitions. Journal of Classification, 2(1):193–218, 1985. Kullback , S. and Leibler , R. A. On information and suf- ficiency...the test input density to a lin- ear combination of class-wise input distributions under the Kullback - Leibler (KL) divergence ( Kullback

  4. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.

    PubMed

    Yamazaki, Keisuke

    2015-09-01

    Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

    NASA Astrophysics Data System (ADS)

    Serb, Alexander; Bill, Johannes; Khiat, Ali; Berdan, Radu; Legenstein, Robert; Prodromakis, Themis

    2016-09-01

    In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors.

  6. Unsupervised learning of structure in spectroscopic cubes

    NASA Astrophysics Data System (ADS)

    Araya, M.; Mendoza, M.; Solar, M.; Mardones, D.; Bayo, A.

    2018-07-01

    We consider the problem of analyzing the structure of spectroscopic cubes using unsupervised machine learning techniques. We propose representing the target's signal as a homogeneous set of volumes through an iterative algorithm that separates the structured emission from the background while not overestimating the flux. Besides verifying some basic theoretical properties, the algorithm is designed to be tuned by domain experts, because its parameters have meaningful values in the astronomical context. Nevertheless, we propose a heuristic to automatically estimate the signal-to-noise ratio parameter of the algorithm directly from data. The resulting light-weighted set of samples (≤ 1% compared to the original data) offer several advantages. For instance, it is statistically correct and computationally inexpensive to apply well-established techniques of the pattern recognition and machine learning domains; such as clustering and dimensionality reduction algorithms. We use ALMA science verification data to validate our method, and present examples of the operations that can be performed by using the proposed representation. Even though this approach is focused on providing faster and better analysis tools for the end-user astronomer, it also opens the possibility of content-aware data discovery by applying our algorithm to big data.

  7. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees.

    PubMed

    Hübner, David; Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan

    2017-01-01

    Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP.

  8. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees

    PubMed Central

    Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan

    2017-01-01

    Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016

  9. Impact of feature saliency on visual category learning.

    PubMed

    Hammer, Rubi

    2015-01-01

    People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the 'essence' of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies.

  10. Impact of feature saliency on visual category learning

    PubMed Central

    Hammer, Rubi

    2015-01-01

    People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the ‘essence’ of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies. PMID:25954220

  11. Supervised Machine Learning for Regionalization of Environmental Data: Distribution of Uranium in Groundwater in Ukraine

    NASA Astrophysics Data System (ADS)

    Govorov, Michael; Gienko, Gennady; Putrenko, Viktor

    2018-05-01

    In this paper, several supervised machine learning algorithms were explored to define homogeneous regions of con-centration of uranium in surface waters in Ukraine using multiple environmental parameters. The previous study was focused on finding the primary environmental parameters related to uranium in ground waters using several methods of spatial statistics and unsupervised classification. At this step, we refined the regionalization using Artifi-cial Neural Networks (ANN) techniques including Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Convolutional Neural Network (CNN). The study is focused on building local ANN models which may significantly improve the prediction results of machine learning algorithms by taking into considerations non-stationarity and autocorrelation in spatial data.

  12. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification.

    PubMed

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V; Robles, Montserrat; Aparici, F; Martí-Bonmatí, L; García-Gómez, Juan M

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation.

  13. Analyzing Distributional Learning of Phonemic Categories in Unsupervised Deep Neural Networks

    PubMed Central

    Räsänen, Okko; Nagamine, Tasha; Mesgarani, Nima

    2017-01-01

    Infants’ speech perception adapts to the phonemic categories of their native language, a process assumed to be driven by the distributional properties of speech. This study investigates whether deep neural networks (DNNs), the current state-of-the-art in distributional feature learning, are capable of learning phoneme-like representations of speech in an unsupervised manner. We trained DNNs with unlabeled and labeled speech and analyzed the activations of each layer with respect to the phones in the input segments. The analyses reveal that the emergence of phonemic invariance in DNNs is dependent on the availability of phonemic labeling of the input during the training. No increased phonemic selectivity of the hidden layers was observed in the purely unsupervised networks despite successful learning of low-dimensional representations for speech. This suggests that additional learning constraints or more sophisticated models are needed to account for the emergence of phone-like categories in distributional learning operating on natural speech. PMID:29359204

  14. True Zero-Training Brain-Computer Interfacing – An Online Study

    PubMed Central

    Kindermans, Pieter-Jan; Schreuder, Martijn; Schrauwen, Benjamin; Müller, Klaus-Robert; Tangermann, Michael

    2014-01-01

    Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording, in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI's classifier can learn to decode the individual's brain signals. Unfortunately, this calibration recording consumes valuable time. Furthermore, it is unproductive with respect to the final BCI application, e.g. text entry. Therefore, the calibration period must be reduced to a minimum, which is especially important for patients with a limited concentration ability. The main contribution of this manuscript is an online study on unsupervised learning in an auditory event-related potential (ERP) paradigm. Our results demonstrate that the calibration recording can be bypassed by utilizing an unsupervised trained classifier, that is initialized randomly and updated during usage. Initially, the unsupervised classifier tends to make decoding mistakes, as the classifier might not have seen enough data to build a reliable model. Using a constant re-analysis of the previously spelled symbols, these initially misspelled symbols can be rectified posthoc when the classifier has learned to decode the signals. We compare the spelling performance of our unsupervised approach and of the unsupervised posthoc approach to the standard supervised calibration-based dogma for n = 10 healthy users. To assess the learning behavior of our approach, it is unsupervised trained from scratch three times per user. Even with the relatively low SNR of an auditory ERP paradigm, the results show that after a limited number of trials (30 trials), the unsupervised approach performs comparably to a classic supervised model. PMID:25068464

  15. Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity.

    PubMed

    Blake, David T

    2017-06-18

    The brain is capable of remodeling throughout life. The sensory cortices provide a useful preparation for studying neuroplasticity both during development and thereafter. In adulthood, sensory cortices change in the cortical area activated by behaviorally relevant stimuli, by the strength of response within that activated area, and by the temporal profiles of those responses. Evidence supports forms of unsupervised, reinforcement, and fully supervised network learning rules. Studies on experience-dependent plasticity have mostly not controlled for learning, and they find support for unsupervised learning mechanisms. Changes occur with greatest ease in neurons containing α-CamKII, which are pyramidal neurons in layers II/III and layers V/VI. These changes use synaptic mechanisms including long term depression. Synaptic strengthening at NMDA-containing synapses does occur, but its weak association with activity suggests other factors also initiate changes. Studies that control learning find support of reinforcement learning rules and limited evidence of other forms of supervised learning. Behaviorally associating a stimulus with reinforcement leads to a strengthening of cortical response strength and enlarging of response area with poor selectivity. Associating a stimulus with omission of reinforcement leads to a selective weakening of responses. In some preparations in which these associations are not as clearly made, neurons with the most informative discharges are relatively stronger after training. Studies analyzing the temporal profile of responses associated with omission of reward, or of plasticity in studies with different discriminanda but statistically matched stimuli, support the existence of limited supervised network learning. © 2017 American Physiological Society. Compr Physiol 7:977-1008, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  16. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.

    PubMed

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  17. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    NASA Astrophysics Data System (ADS)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  18. Video mining using combinations of unsupervised and supervised learning techniques

    NASA Astrophysics Data System (ADS)

    Divakaran, Ajay; Miyahara, Koji; Peker, Kadir A.; Radhakrishnan, Regunathan; Xiong, Ziyou

    2003-12-01

    We discuss the meaning and significance of the video mining problem, and present our work on some aspects of video mining. A simple definition of video mining is unsupervised discovery of patterns in audio-visual content. Such purely unsupervised discovery is readily applicable to video surveillance as well as to consumer video browsing applications. We interpret video mining as content-adaptive or "blind" content processing, in which the first stage is content characterization and the second stage is event discovery based on the characterization obtained in stage 1. We discuss the target applications and find that using a purely unsupervised approach are too computationally complex to be implemented on our product platform. We then describe various combinations of unsupervised and supervised learning techniques that help discover patterns that are useful to the end-user of the application. We target consumer video browsing applications such as commercial message detection, sports highlights extraction etc. We employ both audio and video features. We find that supervised audio classification combined with unsupervised unusual event discovery enables accurate supervised detection of desired events. Our techniques are computationally simple and robust to common variations in production styles etc.

  19. Supervised versus unsupervised categorization: two sides of the same coin?

    PubMed

    Pothos, Emmanuel M; Edwards, Darren J; Perlman, Amotz

    2011-09-01

    Supervised and unsupervised categorization have been studied in separate research traditions. A handful of studies have attempted to explore a possible convergence between the two. The present research builds on these studies, by comparing the unsupervised categorization results of Pothos et al. ( 2011 ; Pothos et al., 2008 ) with the results from two procedures of supervised categorization. In two experiments, we tested 375 participants with nine different stimulus sets and examined the relation between ease of learning of a classification, memory for a classification, and spontaneous preference for a classification. After taking into account the role of the number of category labels (clusters) in supervised learning, we found the three variables to be closely associated with each other. Our results provide encouragement for researchers seeking unified theoretical explanations for supervised and unsupervised categorization, but raise a range of challenging theoretical questions.

  20. Penalized unsupervised learning with outliers

    PubMed Central

    Witten, Daniela M.

    2013-01-01

    We consider the problem of performing unsupervised learning in the presence of outliers – that is, observations that do not come from the same distribution as the rest of the data. It is known that in this setting, standard approaches for unsupervised learning can yield unsatisfactory results. For instance, in the presence of severe outliers, K-means clustering will often assign each outlier to its own cluster, or alternatively may yield distorted clusters in order to accommodate the outliers. In this paper, we take a new approach to extending existing unsupervised learning techniques to accommodate outliers. Our approach is an extension of a recent proposal for outlier detection in the regression setting. We allow each observation to take on an “error” term, and we penalize the errors using a group lasso penalty in order to encourage most of the observations’ errors to exactly equal zero. We show that this approach can be used in order to develop extensions of K-means clustering and principal components analysis that result in accurate outlier detection, as well as improved performance in the presence of outliers. These methods are illustrated in a simulation study and on two gene expression data sets, and connections with M-estimation are explored. PMID:23875057

  1. Unsupervised Feature Learning With Winner-Takes-All Based STDP

    PubMed Central

    Ferré, Paul; Mamalet, Franck; Thorpe, Simon J.

    2018-01-01

    We present a novel strategy for unsupervised feature learning in image applications inspired by the Spike-Timing-Dependent-Plasticity (STDP) biological learning rule. We show equivalence between rank order coding Leaky-Integrate-and-Fire neurons and ReLU artificial neurons when applied to non-temporal data. We apply this to images using rank-order coding, which allows us to perform a full network simulation with a single feed-forward pass using GPU hardware. Next we introduce a binary STDP learning rule compatible with training on batches of images. Two mechanisms to stabilize the training are also presented : a Winner-Takes-All (WTA) framework which selects the most relevant patches to learn from along the spatial dimensions, and a simple feature-wise normalization as homeostatic process. This learning process allows us to train multi-layer architectures of convolutional sparse features. We apply our method to extract features from the MNIST, ETH80, CIFAR-10, and STL-10 datasets and show that these features are relevant for classification. We finally compare these results with several other state of the art unsupervised learning methods. PMID:29674961

  2. Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling

    PubMed Central

    Zhao, Liang; Chen, Feng; Dai, Jing; Hua, Ting; Lu, Chang-Tien; Ramakrishnan, Naren

    2014-01-01

    Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach. PMID:25350136

  3. Unsupervised universal steganalyzer for high-dimensional steganalytic features

    NASA Astrophysics Data System (ADS)

    Hou, Xiaodan; Zhang, Tao

    2016-11-01

    The research in developing steganalytic features has been highly successful. These features are extremely powerful when applied to supervised binary classification problems. However, they are incompatible with unsupervised universal steganalysis because the unsupervised method cannot distinguish embedding distortion from varying levels of noises caused by cover variation. This study attempts to alleviate the problem by introducing similarity retrieval of image statistical properties (SRISP), with the specific aim of mitigating the effect of cover variation on the existing steganalytic features. First, cover images with some statistical properties similar to those of a given test image are searched from a retrieval cover database to establish an aided sample set. Then, unsupervised outlier detection is performed on a test set composed of the given test image and its aided sample set to determine the type (cover or stego) of the given test image. Our proposed framework, called SRISP-aided unsupervised outlier detection, requires no training. Thus, it does not suffer from model mismatch mess. Compared with prior unsupervised outlier detectors that do not consider SRISP, the proposed framework not only retains the universality but also exhibits superior performance when applied to high-dimensional steganalytic features.

  4. Coexistence of Reward and Unsupervised Learning During the Operant Conditioning of Neural Firing Rates

    PubMed Central

    Kerr, Robert R.; Grayden, David B.; Thomas, Doreen A.; Gilson, Matthieu; Burkitt, Anthony N.

    2014-01-01

    A fundamental goal of neuroscience is to understand how cognitive processes, such as operant conditioning, are performed by the brain. Typical and well studied examples of operant conditioning, in which the firing rates of individual cortical neurons in monkeys are increased using rewards, provide an opportunity for insight into this. Studies of reward-modulated spike-timing-dependent plasticity (RSTDP), and of other models such as R-max, have reproduced this learning behavior, but they have assumed that no unsupervised learning is present (i.e., no learning occurs without, or independent of, rewards). We show that these models cannot elicit firing rate reinforcement while exhibiting both reward learning and ongoing, stable unsupervised learning. To fix this issue, we propose a new RSTDP model of synaptic plasticity based upon the observed effects that dopamine has on long-term potentiation and depression (LTP and LTD). We show, both analytically and through simulations, that our new model can exhibit unsupervised learning and lead to firing rate reinforcement. This requires that the strengthening of LTP by the reward signal is greater than the strengthening of LTD and that the reinforced neuron exhibits irregular firing. We show the robustness of our findings to spike-timing correlations, to the synaptic weight dependence that is assumed, and to changes in the mean reward. We also consider our model in the differential reinforcement of two nearby neurons. Our model aligns more strongly with experimental studies than previous models and makes testable predictions for future experiments. PMID:24475240

  5. Rough Set Based Splitting Criterion for Binary Decision Tree Classifiers

    DTIC Science & Technology

    2006-09-26

    Alata O. Fernandez-Maloigne C., and Ferrie J.C. (2001). Unsupervised Algorithm for the Segmentation of Three-Dimensional Magnetic Resonance Brain ...instinctual and learned responses in the brain , causing it to make decisions based on patterns in the stimuli. Using this deceptively simple process...2001. [2] Bohn C. (1997). An Incremental Unsupervised Learning Scheme for Function Approximation. In: Proceedings of the 1997 IEEE International

  6. An Introduction to Topic Modeling as an Unsupervised Machine Learning Way to Organize Text Information

    ERIC Educational Resources Information Center

    Snyder, Robin M.

    2015-01-01

    The field of topic modeling has become increasingly important over the past few years. Topic modeling is an unsupervised machine learning way to organize text (or image or DNA, etc.) information such that related pieces of text can be identified. This paper/session will present/discuss the current state of topic modeling, why it is important, and…

  7. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    PubMed

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  8. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding

    PubMed Central

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent “deep learning revolution” in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems. PMID:28377709

  9. Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

    PubMed Central

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V.; Robles, Montserrat; Aparici, F.; Martí-Bonmatí, L.; García-Gómez, Juan M.

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. PMID:25978453

  10. A new simple /spl infin/OH neuron model as a biologically plausible principal component analyzer.

    PubMed

    Jankovic, M V

    2003-01-01

    A new approach to unsupervised learning in a single-layer neural network is discussed. An algorithm for unsupervised learning based upon the Hebbian learning rule is presented. A simple neuron model is analyzed. A dynamic neural model, which contains both feed-forward and feedback connections between the input and the output, has been adopted. The, proposed learning algorithm could be more correctly named self-supervised rather than unsupervised. The solution proposed here is a modified Hebbian rule, in which the modification of the synaptic strength is proportional not to pre- and postsynaptic activity, but instead to the presynaptic and averaged value of postsynaptic activity. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence. Usually accepted additional decaying terms for the stabilization of the original Hebbian rule are avoided. Implementation of the basic Hebbian scheme would not lead to unrealistic growth of the synaptic strengths, thanks to the adopted network structure.

  11. Infrared vehicle recognition using unsupervised feature learning based on K-feature

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Tan, Yihua; Xia, Haijiao; Tian, Jinwen

    2018-02-01

    Subject to the complex battlefield environment, it is difficult to establish a complete knowledge base in practical application of vehicle recognition algorithms. The infrared vehicle recognition is always difficult and challenging, which plays an important role in remote sensing. In this paper we propose a new unsupervised feature learning method based on K-feature to recognize vehicle in infrared images. First, we use the target detection algorithm which is based on the saliency to detect the initial image. Then, the unsupervised feature learning based on K-feature, which is generated by Kmeans clustering algorithm that extracted features by learning a visual dictionary from a large number of samples without label, is calculated to suppress the false alarm and improve the accuracy. Finally, the vehicle target recognition image is finished by some post-processing. Large numbers of experiments demonstrate that the proposed method has satisfy recognition effectiveness and robustness for vehicle recognition in infrared images under complex backgrounds, and it also improve the reliability of it.

  12. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  13. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists

    PubMed Central

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior. PMID:23653617

  14. Sparse alignment for robust tensor learning.

    PubMed

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  15. Audio-based, unsupervised machine learning reveals cyclic changes in earthquake mechanisms in the Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Paté, A.; Paisley, J.; Waldhauser, F.; Repetto, D.; Boschi, L.

    2017-12-01

    The earthquake process reflects complex interactions of stress, fracture and frictional properties. New machine learning methods reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Our methods are based closely on those developed for music information retrieval and voice recognition, using the spectrogram instead of the waveform directly. Unsupervised learning involves identification of patterns based on differences among signals without any additional information provided to the algorithm. Clustering of 46,000 earthquakes of $0.3

  16. Space coding for sensorimotor transformations can emerge through unsupervised learning.

    PubMed

    De Filippo De Grazia, Michele; Cutini, Simone; Lisi, Matteo; Zorzi, Marco

    2012-08-01

    The posterior parietal cortex (PPC) is fundamental for sensorimotor transformations because it combines multiple sensory inputs and posture signals into different spatial reference frames that drive motor programming. Here, we present a computational model mimicking the sensorimotor transformations occurring in the PPC. A recurrent neural network with one layer of hidden neurons (restricted Boltzmann machine) learned a stochastic generative model of the sensory data without supervision. After the unsupervised learning phase, the activity of the hidden neurons was used to compute a motor program (a population code on a bidimensional map) through a simple linear projection and delta rule learning. The average motor error, calculated as the difference between the expected and the computed output, was less than 3°. Importantly, analyses of the hidden neurons revealed gain-modulated visual receptive fields, thereby showing that space coding for sensorimotor transformations similar to that observed in the PPC can emerge through unsupervised learning. These results suggest that gain modulation is an efficient coding strategy to integrate visual and postural information toward the generation of motor commands.

  17. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    PubMed

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  18. Quantum-Enhanced Machine Learning

    NASA Astrophysics Data System (ADS)

    Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.

    2016-09-01

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  19. Unsupervised learning of discriminative edge measures for vehicle matching between nonoverlapping cameras.

    PubMed

    Shan, Ying; Sawhney, Harpreet S; Kumar, Rakesh

    2008-04-01

    This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images from two distinct cameras being from the same vehicle or different vehicle(s). We employ a novel measurement vector that consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each measure is determined by an unsupervised learning algorithm that optimally separates the same-different classes in the combined measurement space. This is achieved with a weak classification algorithm that automatically collects representative samples from same-different classes, followed by a more discriminative classifier based on Fisher' s Linear Discriminants and Gibbs Sampling. The robustness of the match measures and the use of unsupervised discriminant analysis in the classification ensures that the proposed method performs consistently in the presence of missing/false features, temporally and spatially changing illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results.

  20. SUSTAIN: a network model of category learning.

    PubMed

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  1. Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions.

    PubMed

    Yang, Yang; Saleemi, Imran; Shah, Mubarak

    2013-07-01

    This paper proposes a novel representation of articulated human actions and gestures and facial expressions. The main goals of the proposed approach are: 1) to enable recognition using very few examples, i.e., one or k-shot learning, and 2) meaningful organization of unlabeled datasets by unsupervised clustering. Our proposed representation is obtained by automatically discovering high-level subactions or motion primitives, by hierarchical clustering of observed optical flow in four-dimensional, spatial, and motion flow space. The completely unsupervised proposed method, in contrast to state-of-the-art representations like bag of video words, provides a meaningful representation conducive to visual interpretation and textual labeling. Each primitive action depicts an atomic subaction, like directional motion of limb or torso, and is represented by a mixture of four-dimensional Gaussian distributions. For one--shot and k-shot learning, the sequence of primitive labels discovered in a test video are labeled using KL divergence, and can then be represented as a string and matched against similar strings of training videos. The same sequence can also be collapsed into a histogram of primitives or be used to learn a Hidden Markov model to represent classes. We have performed extensive experiments on recognition by one and k-shot learning as well as unsupervised action clustering on six human actions and gesture datasets, a composite dataset, and a database of facial expressions. These experiments confirm the validity and discriminative nature of the proposed representation.

  2. Probability density function learning by unsupervised neurons.

    PubMed

    Fiori, S

    2001-10-01

    In a recent work, we introduced the concept of pseudo-polynomial adaptive activation function neuron (FAN) and presented an unsupervised information-theoretic learning theory for such structure. The learning model is based on entropy optimization and provides a way of learning probability distributions from incomplete data. The aim of the present paper is to illustrate some theoretical features of the FAN neuron, to extend its learning theory to asymmetrical density function approximation, and to provide an analytical and numerical comparison with other known density function estimation methods, with special emphasis to the universal approximation ability. The paper also provides a survey of PDF learning from incomplete data, as well as results of several experiments performed on real-world problems and signals.

  3. Semi-automated surface mapping via unsupervised classification

    NASA Astrophysics Data System (ADS)

    D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.

    2017-09-01

    Due to the increasing volume of the returned data from space mission, the human search for correlation and identification of interesting features becomes more and more unfeasible. Statistical extraction of features via machine learning methods will increase the scientific output of remote sensing missions and aid the discovery of yet unknown feature hidden in dataset. Those methods exploit algorithm trained on features from multiple instrument, returning classification maps that explore intra-dataset correlation, allowing for the discovery of unknown features. We present two applications, one for Mercury and one for Vesta.

  4. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  5. Prediction task guided representation learning of medical codes in EHR.

    PubMed

    Cui, Liwen; Xie, Xiaolei; Shen, Zuojun

    2018-06-18

    There have been rapidly growing applications using machine learning models for predictive analytics in Electronic Health Records (EHR) to improve the quality of hospital services and the efficiency of healthcare resource utilization. A fundamental and crucial step in developing such models is to convert medical codes in EHR to feature vectors. These medical codes are used to represent diagnoses or procedures. Their vector representations have a tremendous impact on the performance of machine learning models. Recently, some researchers have utilized representation learning methods from Natural Language Processing (NLP) to learn vector representations of medical codes. However, most previous approaches are unsupervised, i.e. the generation of medical code vectors is independent from prediction tasks. Thus, the obtained feature vectors may be inappropriate for a specific prediction task. Moreover, unsupervised methods often require a lot of samples to obtain reliable results, but most practical problems have very limited patient samples. In this paper, we develop a new method called Prediction Task Guided Health Record Aggregation (PTGHRA), which aggregates health records guided by prediction tasks, to construct training corpus for various representation learning models. Compared with unsupervised approaches, representation learning models integrated with PTGHRA yield a significant improvement in predictive capability of generated medical code vectors, especially for limited training samples. Copyright © 2018. Published by Elsevier Inc.

  6. Intelligent Fault Diagnosis of Rotary Machinery Based on Unsupervised Multiscale Representation Learning

    NASA Astrophysics Data System (ADS)

    Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun

    2017-11-01

    The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.

  7. Unsupervised feature learning for autonomous rock image classification

    NASA Astrophysics Data System (ADS)

    Shu, Lei; McIsaac, Kenneth; Osinski, Gordon R.; Francis, Raymond

    2017-09-01

    Autonomous rock image classification can enhance the capability of robots for geological detection and enlarge the scientific returns, both in investigation on Earth and planetary surface exploration on Mars. Since rock textural images are usually inhomogeneous and manually hand-crafting features is not always reliable, we propose an unsupervised feature learning method to autonomously learn the feature representation for rock images. In our tests, rock image classification using the learned features shows that the learned features can outperform manually selected features. Self-taught learning is also proposed to learn the feature representation from a large database of unlabelled rock images of mixed class. The learned features can then be used repeatedly for classification of any subclass. This takes advantage of the large dataset of unlabelled rock images and learns a general feature representation for many kinds of rocks. We show experimental results supporting the feasibility of self-taught learning on rock images.

  8. A single-layer network unsupervised feature learning method for white matter hyperintensity segmentation

    NASA Astrophysics Data System (ADS)

    Vijverberg, Koen; Ghafoorian, Mohsen; van Uden, Inge W. M.; de Leeuw, Frank-Erik; Platel, Bram; Heskes, Tom

    2016-03-01

    Cerebral small vessel disease (SVD) is a disorder frequently found among the old people and is associated with deterioration in cognitive performance, parkinsonism, motor and mood impairments. White matter hyperintensities (WMH) as well as lacunes, microbleeds and subcortical brain atrophy are part of the spectrum of image findings, related to SVD. Accurate segmentation of WMHs is important for prognosis and diagnosis of multiple neurological disorders such as MS and SVD. Almost all of the published (semi-)automated WMH detection models employ multiple complex hand-crafted features, which require in-depth domain knowledge. In this paper we propose to apply a single-layer network unsupervised feature learning (USFL) method to avoid hand-crafted features, but rather to automatically learn a more efficient set of features. Experimental results show that a computer aided detection system with a USFL system outperforms a hand-crafted approach. Moreover, since the two feature sets have complementary properties, a hybrid system that makes use of both hand-crafted and unsupervised learned features, shows a significant performance boost compared to each system separately, getting close to the performance of an independent human expert.

  9. Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network.

    PubMed

    Wu, Yonghui; Jiang, Min; Lei, Jianbo; Xu, Hua

    2015-01-01

    Rapid growth in electronic health records (EHRs) use has led to an unprecedented expansion of available clinical data in electronic formats. However, much of the important healthcare information is locked in the narrative documents. Therefore Natural Language Processing (NLP) technologies, e.g., Named Entity Recognition that identifies boundaries and types of entities, has been extensively studied to unlock important clinical information in free text. In this study, we investigated a novel deep learning method to recognize clinical entities in Chinese clinical documents using the minimal feature engineering approach. We developed a deep neural network (DNN) to generate word embeddings from a large unlabeled corpus through unsupervised learning and another DNN for the NER task. The experiment results showed that the DNN with word embeddings trained from the large unlabeled corpus outperformed the state-of-the-art CRF's model in the minimal feature engineering setting, achieving the highest F1-score of 0.9280. Further analysis showed that word embeddings derived through unsupervised learning from large unlabeled corpus remarkably improved the DNN with randomized embedding, denoting the usefulness of unsupervised feature learning.

  10. Deep Unfolding for Topic Models.

    PubMed

    Chien, Jen-Tzung; Lee, Chao-Hsi

    2018-02-01

    Deep unfolding provides an approach to integrate the probabilistic generative models and the deterministic neural networks. Such an approach is benefited by deep representation, easy interpretation, flexible learning and stochastic modeling. This study develops the unsupervised and supervised learning of deep unfolded topic models for document representation and classification. Conventionally, the unsupervised and supervised topic models are inferred via the variational inference algorithm where the model parameters are estimated by maximizing the lower bound of logarithm of marginal likelihood using input documents without and with class labels, respectively. The representation capability or classification accuracy is constrained by the variational lower bound and the tied model parameters across inference procedure. This paper aims to relax these constraints by directly maximizing the end performance criterion and continuously untying the parameters in learning process via deep unfolding inference (DUI). The inference procedure is treated as the layer-wise learning in a deep neural network. The end performance is iteratively improved by using the estimated topic parameters according to the exponentiated updates. Deep learning of topic models is therefore implemented through a back-propagation procedure. Experimental results show the merits of DUI with increasing number of layers compared with variational inference in unsupervised as well as supervised topic models.

  11. Multilayer Extreme Learning Machine With Subnetwork Nodes for Representation Learning.

    PubMed

    Yang, Yimin; Wu, Q M Jonathan

    2016-11-01

    The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of clustering, regression, and classification. It presents competitive accuracy with superb efficiency in many applications. However, ELM with subnetwork nodes architecture has not attracted much research attentions. Recently, many methods have been proposed for supervised/unsupervised dimension reduction or representation learning, but these methods normally only work for one type of problem. This paper studies the general architecture of multilayer ELM (ML-ELM) with subnetwork nodes, showing that: 1) the proposed method provides a representation learning platform with unsupervised/supervised and compressed/sparse representation learning and 2) experimental results on ten image datasets and 16 classification datasets show that, compared to other conventional feature learning methods, the proposed ML-ELM with subnetwork nodes performs competitively or much better than other feature learning methods.

  12. Feature Discovery by Competitive Learning.

    ERIC Educational Resources Information Center

    Rumelhart, David E.; Zipser, David

    1985-01-01

    Reports results of studies with an unsupervised learning paradigm called competitive learning which is examined using computer simulation and formal analysis. When competitive learning is applied to parallel networks of neuron-like elements, many potentially useful learning tasks can be accomplished. (Author)

  13. Unsupervised Deep Hashing With Pseudo Labels for Scalable Image Retrieval.

    PubMed

    Zhang, Haofeng; Liu, Li; Long, Yang; Shao, Ling

    2018-04-01

    In order to achieve efficient similarity searching, hash functions are designed to encode images into low-dimensional binary codes with the constraint that similar features will have a short distance in the projected Hamming space. Recently, deep learning-based methods have become more popular, and outperform traditional non-deep methods. However, without label information, most state-of-the-art unsupervised deep hashing (DH) algorithms suffer from severe performance degradation for unsupervised scenarios. One of the main reasons is that the ad-hoc encoding process cannot properly capture the visual feature distribution. In this paper, we propose a novel unsupervised framework that has two main contributions: 1) we convert the unsupervised DH model into supervised by discovering pseudo labels; 2) the framework unifies likelihood maximization, mutual information maximization, and quantization error minimization so that the pseudo labels can maximumly preserve the distribution of visual features. Extensive experiments on three popular data sets demonstrate the advantages of the proposed method, which leads to significant performance improvement over the state-of-the-art unsupervised hashing algorithms.

  14. Unsupervised learning of facial emotion decoding skills.

    PubMed

    Huelle, Jan O; Sack, Benjamin; Broer, Katja; Komlewa, Irina; Anders, Silke

    2014-01-01

    Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practice without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear, and sadness) was shown in each clip. Although no external information about the correctness of the participant's response or the sender's true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple stimuli described in previous studies and practice effects often observed in cognitive tasks.

  15. Unsupervised learning of facial emotion decoding skills

    PubMed Central

    Huelle, Jan O.; Sack, Benjamin; Broer, Katja; Komlewa, Irina; Anders, Silke

    2013-01-01

    Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practice without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear, and sadness) was shown in each clip. Although no external information about the correctness of the participant’s response or the sender’s true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple visual stimuli described in previous studies and practice effects often observed in cognitive tasks. PMID:24578686

  16. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    ERIC Educational Resources Information Center

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  17. A Learning Model for L/M Specificity in Ganglion Cells

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  18. A Deep Machine Learning Method for Classifying Cyclic Time Series of Biological Signals Using Time-Growing Neural Network.

    PubMed

    Gharehbaghi, Arash; Linden, Maria

    2017-10-12

    This paper presents a novel method for learning the cyclic contents of stochastic time series: the deep time-growing neural network (DTGNN). The DTGNN combines supervised and unsupervised methods in different levels of learning for an enhanced performance. It is employed by a multiscale learning structure to classify cyclic time series (CTS), in which the dynamic contents of the time series are preserved in an efficient manner. This paper suggests a systematic procedure for finding the design parameter of the classification method for a one-versus-multiple class application. A novel validation method is also suggested for evaluating the structural risk, both in a quantitative and a qualitative manner. The effect of the DTGNN on the performance of the classifier is statistically validated through the repeated random subsampling using different sets of CTS, from different medical applications. The validation involves four medical databases, comprised of 108 recordings of the electroencephalogram signal, 90 recordings of the electromyogram signal, 130 recordings of the heart sound signal, and 50 recordings of the respiratory sound signal. Results of the statistical validations show that the DTGNN significantly improves the performance of the classification and also exhibits an optimal structural risk.

  19. An unsupervised classification technique for multispectral remote sensing data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Cummings, R. E.

    1973-01-01

    Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.

  20. Unsupervised classification of earth resources data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Jayroe, R. R., Jr.; Cummings, R. E.

    1972-01-01

    A new clustering technique is presented. It consists of two parts: (a) a sequential statistical clustering which is essentially a sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by existing supervised maximum liklihood classification technique.

  1. Predicting protein complexes using a supervised learning method combined with local structural information.

    PubMed

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  2. Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering.

    PubMed

    Yang, Guang; Raschke, Felix; Barrick, Thomas R; Howe, Franklyn A

    2015-09-01

    To investigate whether nonlinear dimensionality reduction improves unsupervised classification of (1) H MRS brain tumor data compared with a linear method. In vivo single-voxel (1) H magnetic resonance spectroscopy (55 patients) and (1) H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With (1) H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. The LE method is promising for unsupervised clustering to separate brain and tumor tissue with automated color-coding for visualization of (1) H MRSI data after cluster analysis. © 2014 Wiley Periodicals, Inc.

  3. Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity.

    PubMed

    Bichler, Olivier; Querlioz, Damien; Thorpe, Simon J; Bourgoin, Jean-Philippe; Gamrat, Christian

    2012-08-01

    A biologically inspired approach to learning temporally correlated patterns from a spiking silicon retina is presented. Spikes are generated from the retina in response to relative changes in illumination at the pixel level and transmitted to a feed-forward spiking neural network. Neurons become sensitive to patterns of pixels with correlated activation times, in a fully unsupervised scheme. This is achieved using a special form of Spike-Timing-Dependent Plasticity which depresses synapses that did not recently contribute to the post-synaptic spike activation, regardless of their activation time. Competitive learning is implemented with lateral inhibition. When tested with real-life data, the system is able to extract complex and overlapping temporally correlated features such as car trajectories on a freeway, after only 10 min of traffic learning. Complete trajectories can be learned with a 98% detection rate using a second layer, still with unsupervised learning, and the system may be used as a car counter. The proposed neural network is extremely robust to noise and it can tolerate a high degree of synaptic and neuronal variability with little impact on performance. Such results show that a simple biologically inspired unsupervised learning scheme is capable of generating selectivity to complex meaningful events on the basis of relatively little sensory experience. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The New Possibilities from "Big Data" to Overlooked Associations Between Diabetes, Biochemical Parameters, Glucose Control, and Osteoporosis.

    PubMed

    Kruse, Christian

    2018-06-01

    To review current practices and technologies within the scope of "Big Data" that can further our understanding of diabetes mellitus and osteoporosis from large volumes of data. "Big Data" techniques involving supervised machine learning, unsupervised machine learning, and deep learning image analysis are presented with examples of current literature. Supervised machine learning can allow us to better predict diabetes-induced osteoporosis and understand relative predictor importance of diabetes-affected bone tissue. Unsupervised machine learning can allow us to understand patterns in data between diabetic pathophysiology and altered bone metabolism. Image analysis using deep learning can allow us to be less dependent on surrogate predictors and use large volumes of images to classify diabetes-induced osteoporosis and predict future outcomes directly from images. "Big Data" techniques herald new possibilities to understand diabetes-induced osteoporosis and ascertain our current ability to classify, understand, and predict this condition.

  5. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    PubMed

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Galaxy morphology - An unsupervised machine learning approach

    NASA Astrophysics Data System (ADS)

    Schutter, A.; Shamir, L.

    2015-09-01

    Structural properties poses valuable information about the formation and evolution of galaxies, and are important for understanding the past, present, and future universe. Here we use unsupervised machine learning methodology to analyze a network of similarities between galaxy morphological types, and automatically deduce a morphological sequence of galaxies. Application of the method to the EFIGI catalog show that the morphological scheme produced by the algorithm is largely in agreement with the De Vaucouleurs system, demonstrating the ability of computer vision and machine learning methods to automatically profile galaxy morphological sequences. The unsupervised analysis method is based on comprehensive computer vision techniques that compute the visual similarities between the different morphological types. Rather than relying on human cognition, the proposed system deduces the similarities between sets of galaxy images in an automatic manner, and is therefore not limited by the number of galaxies being analyzed. The source code of the method is publicly available, and the protocol of the experiment is included in the paper so that the experiment can be replicated, and the method can be used to analyze user-defined datasets of galaxy images.

  7. Incorporating linguistic knowledge for learning distributed word representations.

    PubMed

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.

  8. Incorporating Linguistic Knowledge for Learning Distributed Word Representations

    PubMed Central

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581

  9. Metric Learning for Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  10. Glaucomatous patterns in Frequency Doubling Technology (FDT) perimetry data identified by unsupervised machine learning classifiers.

    PubMed

    Bowd, Christopher; Weinreb, Robert N; Balasubramanian, Madhusudhanan; Lee, Intae; Jang, Giljin; Yousefi, Siamak; Zangwill, Linda M; Medeiros, Felipe A; Girkin, Christopher A; Liebmann, Jeffrey M; Goldbaum, Michael H

    2014-01-01

    The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing statistically independent patterns of defect in the glaucoma clusters. FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal FDT results from the UCSD-based Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES). For all eyes, VIM input was 52 threshold test points from the 24-2 test pattern, plus age. FDT mean deviation was -1.00 dB (S.D. = 2.80 dB) and -5.57 dB (S.D. = 5.09 dB) in FDT-normal eyes and FDT-abnormal eyes, respectively (p<0.001). VIM identified meaningful clusters of FDT data and positioned a set of statistically independent axes through the mean of each cluster. The optimal VIM model separated the FDT fields into 3 clusters. Cluster N contained primarily normal fields (1109/1190, specificity 93.1%) and clusters G1 and G2 combined, contained primarily abnormal fields (651/786, sensitivity 82.8%). For clusters G1 and G2 the optimal number of axes were 2 and 5, respectively. Patterns automatically generated along axes within the glaucoma clusters were similar to those known to be indicative of glaucoma. Fields located farther from the normal mean on each glaucoma axis showed increasing field defect severity. VIM successfully separated FDT fields from healthy and glaucoma eyes without a priori information about class membership, and identified familiar glaucomatous patterns of loss.

  11. Unsupervised nonlinear dimensionality reduction machine learning methods applied to multiparametric MRI in cerebral ischemia: preliminary results

    NASA Astrophysics Data System (ADS)

    Parekh, Vishwa S.; Jacobs, Jeremy R.; Jacobs, Michael A.

    2014-03-01

    The evaluation and treatment of acute cerebral ischemia requires a technique that can determine the total area of tissue at risk for infarction using diagnostic magnetic resonance imaging (MRI) sequences. Typical MRI data sets consist of T1- and T2-weighted imaging (T1WI, T2WI) along with advanced MRI parameters of diffusion-weighted imaging (DWI) and perfusion weighted imaging (PWI) methods. Each of these parameters has distinct radiological-pathological meaning. For example, DWI interrogates the movement of water in the tissue and PWI gives an estimate of the blood flow, both are critical measures during the evolution of stroke. In order to integrate these data and give an estimate of the tissue at risk or damaged; we have developed advanced machine learning methods based on unsupervised non-linear dimensionality reduction (NLDR) techniques. NLDR methods are a class of algorithms that uses mathematically defined manifolds for statistical sampling of multidimensional classes to generate a discrimination rule of guaranteed statistical accuracy and they can generate a two- or three-dimensional map, which represents the prominent structures of the data and provides an embedded image of meaningful low-dimensional structures hidden in their high-dimensional observations. In this manuscript, we develop NLDR methods on high dimensional MRI data sets of preclinical animals and clinical patients with stroke. On analyzing the performance of these methods, we observed that there was a high of similarity between multiparametric embedded images from NLDR methods and the ADC map and perfusion map. It was also observed that embedded scattergram of abnormal (infarcted or at risk) tissue can be visualized and provides a mechanism for automatic methods to delineate potential stroke volumes and early tissue at risk.

  12. A Granular Self-Organizing Map for Clustering and Gene Selection in Microarray Data.

    PubMed

    Ray, Shubhra Sankar; Ganivada, Avatharam; Pal, Sankar K

    2016-09-01

    A new granular self-organizing map (GSOM) is developed by integrating the concept of a fuzzy rough set with the SOM. While training the GSOM, the weights of a winning neuron and the neighborhood neurons are updated through a modified learning procedure. The neighborhood is newly defined using the fuzzy rough sets. The clusters (granules) evolved by the GSOM are presented to a decision table as its decision classes. Based on the decision table, a method of gene selection is developed. The effectiveness of the GSOM is shown in both clustering samples and developing an unsupervised fuzzy rough feature selection (UFRFS) method for gene selection in microarray data. While the superior results of the GSOM, as compared with the related clustering methods, are provided in terms of β -index, DB-index, Dunn-index, and fuzzy rough entropy, the genes selected by the UFRFS are not only better in terms of classification accuracy and a feature evaluation index, but also statistically more significant than the related unsupervised methods. The C-codes of the GSOM and UFRFS are available online at http://avatharamg.webs.com/software-code.

  13. Supervised and Unsupervised Learning of Multidimensional Acoustic Categories

    ERIC Educational Resources Information Center

    Goudbeek, Martijn; Swingley, Daniel; Smits, Roel

    2009-01-01

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…

  14. Perception Evolution Network Based on Cognition Deepening Model--Adapting to the Emergence of New Sensory Receptor.

    PubMed

    Xing, Youlu; Shen, Furao; Zhao, Jinxi

    2016-03-01

    The proposed perception evolution network (PEN) is a biologically inspired neural network model for unsupervised learning and online incremental learning. It is able to automatically learn suitable prototypes from learning data in an incremental way, and it does not require the predefined prototype number or the predefined similarity threshold. Meanwhile, being more advanced than the existing unsupervised neural network model, PEN permits the emergence of a new dimension of perception in the perception field of the network. When a new dimension of perception is introduced, PEN is able to integrate the new dimensional sensory inputs with the learned prototypes, i.e., the prototypes are mapped to a high-dimensional space, which consists of both the original dimension and the new dimension of the sensory inputs. In the experiment, artificial data and real-world data are used to test the proposed PEN, and the results show that PEN can work effectively.

  15. Nonlinear projection methods for visualizing Barcode data and application on two data sets.

    PubMed

    Olteanu, Madalina; Nicolas, Violaine; Schaeffer, Brigitte; Denys, Christiane; Missoup, Alain-Didier; Kennis, Jan; Larédo, Catherine

    2013-11-01

    Developing tools for visualizing DNA sequences is an important issue in the Barcoding context. Visualizing Barcode data can be put in a purely statistical context, unsupervised learning. Clustering methods combined with projection methods have two closely linked objectives, visualizing and finding structure in the data. Multidimensional scaling (MDS) and Self-organizing maps (SOM) are unsupervised statistical tools for data visualization. Both algorithms map data onto a lower dimensional manifold: MDS looks for a projection that best preserves pairwise distances while SOM preserves the topology of the data. Both algorithms were initially developed for Euclidean data and the conditions necessary to their good implementation were not satisfied for Barcode data. We developed a workflow consisting in four steps: collapse data into distinct sequences; compute a dissimilarity matrix; run a modified version of SOM for dissimilarity matrices to structure the data and reduce dimensionality; project the results using MDS. This methodology was applied to Astraptes fulgerator and Hylomyscus, an African rodent with debated taxonomy. We obtained very good results for both data sets. The results were robust against unbalanced species. All the species in Astraptes were well displayed in very distinct groups in the various visualizations, except for LOHAMP and FABOV that were mixed up. For Hylomyscus, our findings were consistent with known species, confirmed the existence of four unnamed taxa and suggested the existence of potentially new species. © 2013 John Wiley & Sons Ltd.

  16. Methods for Assessment of Memory Reactivation.

    PubMed

    Liu, Shizhao; Grosmark, Andres D; Chen, Zhe

    2018-04-13

    It has been suggested that reactivation of previously acquired experiences or stored information in declarative memories in the hippocampus and neocortex contributes to memory consolidation and learning. Understanding memory consolidation depends crucially on the development of robust statistical methods for assessing memory reactivation. To date, several statistical methods have seen established for assessing memory reactivation based on bursts of ensemble neural spike activity during offline states. Using population-decoding methods, we propose a new statistical metric, the weighted distance correlation, to assess hippocampal memory reactivation (i.e., spatial memory replay) during quiet wakefulness and slow-wave sleep. The new metric can be combined with an unsupervised population decoding analysis, which is invariant to latent state labeling and allows us to detect statistical dependency beyond linearity in memory traces. We validate the new metric using two rat hippocampal recordings in spatial navigation tasks. Our proposed analysis framework may have a broader impact on assessing memory reactivations in other brain regions under different behavioral tasks.

  17. Resting-State fMRI Activity Predicts Unsupervised Learning and Memory in an Immersive Virtual Reality Environment

    PubMed Central

    Wong, Chi Wah; Olafsson, Valur; Plank, Markus; Snider, Joseph; Halgren, Eric; Poizner, Howard; Liu, Thomas T.

    2014-01-01

    In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI) measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment. PMID:25286145

  18. Unsupervised visual discrimination learning of complex stimuli: Accuracy, bias and generalization.

    PubMed

    Montefusco-Siegmund, Rodrigo; Toro, Mauricio; Maldonado, Pedro E; Aylwin, María de la L

    2018-07-01

    Through same-different judgements, we can discriminate an immense variety of stimuli and consequently, they are critical in our everyday interaction with the environment. The quality of the judgements depends on familiarity with stimuli. A way to improve the discrimination is through learning, but to this day, we lack direct evidence of how learning shapes the same-different judgments with complex stimuli. We studied unsupervised visual discrimination learning in 42 participants, as they performed same-different judgments with two types of unfamiliar complex stimuli in the absence of labeling or individuation. Across nine daily training sessions with equiprobable same and different stimuli pairs, participants increased the sensitivity and the criterion by reducing the errors with both same and different pairs. With practice, there was a superior performance for different pairs and a bias for different response. To evaluate the process underlying this bias, we manipulated the proportion of same and different pairs, which resulted in an additional proportion-induced bias, suggesting that the bias observed with equal proportions was a stimulus processing bias. Overall, these results suggest that unsupervised discrimination learning occurs through changes in the stimulus processing that increase the sensory evidence and/or the precision of the working memory. Finally, the acquired discrimination ability was fully transferred to novel exemplars of the practiced stimuli category, in agreement with the acquisition of a category specific perceptual expertise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Incrementally learning objects by touch: online discriminative and generative models for tactile-based recognition.

    PubMed

    Soh, Harold; Demiris, Yiannis

    2014-01-01

    Human beings not only possess the remarkable ability to distinguish objects through tactile feedback but are further able to improve upon recognition competence through experience. In this work, we explore tactile-based object recognition with learners capable of incremental learning. Using the sparse online infinite Echo-State Gaussian process (OIESGP), we propose and compare two novel discriminative and generative tactile learners that produce probability distributions over objects during object grasping/palpation. To enable iterative improvement, our online methods incorporate training samples as they become available. We also describe incremental unsupervised learning mechanisms, based on novelty scores and extreme value theory, when teacher labels are not available. We present experimental results for both supervised and unsupervised learning tasks using the iCub humanoid, with tactile sensors on its five-fingered anthropomorphic hand, and 10 different object classes. Our classifiers perform comparably to state-of-the-art methods (C4.5 and SVM classifiers) and findings indicate that tactile signals are highly relevant for making accurate object classifications. We also show that accurate "early" classifications are possible using only 20-30 percent of the grasp sequence. For unsupervised learning, our methods generate high quality clusterings relative to the widely-used sequential k-means and self-organising map (SOM), and we present analyses into the differences between the approaches.

  20. Function approximation using combined unsupervised and supervised learning.

    PubMed

    Andras, Peter

    2014-03-01

    Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.

  1. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.

    PubMed

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance--competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  2. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    NASA Astrophysics Data System (ADS)

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  3. Post-Graduate Student Performance in "Supervised In-Class" vs. "Unsupervised Online" Multiple Choice Tests: Implications for Cheating and Test Security

    ERIC Educational Resources Information Center

    Ladyshewsky, Richard K.

    2015-01-01

    This research explores differences in multiple choice test (MCT) scores in a cohort of post-graduate students enrolled in a management and leadership course. A total of 250 students completed the MCT in either a supervised in-class paper and pencil test or an unsupervised online test. The only statistically significant difference between the nine…

  4. Comparisons of non-Gaussian statistical models in DNA methylation analysis.

    PubMed

    Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-06-16

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.

  5. Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis

    PubMed Central

    Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-01-01

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687

  6. MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image Classification

    NASA Astrophysics Data System (ADS)

    Lin, Daoyu; Fu, Kun; Wang, Yang; Xu, Guangluan; Sun, Xian

    2017-11-01

    With the development of deep learning, supervised learning has frequently been adopted to classify remotely sensed images using convolutional networks (CNNs). However, due to the limited amount of labeled data available, supervised learning is often difficult to carry out. Therefore, we proposed an unsupervised model called multiple-layer feature-matching generative adversarial networks (MARTA GANs) to learn a representation using only unlabeled data. MARTA GANs consists of both a generative model $G$ and a discriminative model $D$. We treat $D$ as a feature extractor. To fit the complex properties of remote sensing data, we use a fusion layer to merge the mid-level and global features. $G$ can produce numerous images that are similar to the training data; therefore, $D$ can learn better representations of remotely sensed images using the training data provided by $G$. The classification results on two widely used remote sensing image databases show that the proposed method significantly improves the classification performance compared with other state-of-the-art methods.

  7. Filtering large-scale event collections using a combination of supervised and unsupervised learning for event trigger classification.

    PubMed

    Mehryary, Farrokh; Kaewphan, Suwisa; Hakala, Kai; Ginter, Filip

    2016-01-01

    Biomedical event extraction is one of the key tasks in biomedical text mining, supporting various applications such as database curation and hypothesis generation. Several systems, some of which have been applied at a large scale, have been introduced to solve this task. Past studies have shown that the identification of the phrases describing biological processes, also known as trigger detection, is a crucial part of event extraction, and notable overall performance gains can be obtained by solely focusing on this sub-task. In this paper we propose a novel approach for filtering falsely identified triggers from large-scale event databases, thus improving the quality of knowledge extraction. Our method relies on state-of-the-art word embeddings, event statistics gathered from the whole biomedical literature, and both supervised and unsupervised machine learning techniques. We focus on EVEX, an event database covering the whole PubMed and PubMed Central Open Access literature containing more than 40 million extracted events. The top most frequent EVEX trigger words are hierarchically clustered, and the resulting cluster tree is pruned to identify words that can never act as triggers regardless of their context. For rarely occurring trigger words we introduce a supervised approach trained on the combination of trigger word classification produced by the unsupervised clustering method and manual annotation. The method is evaluated on the official test set of BioNLP Shared Task on Event Extraction. The evaluation shows that the method can be used to improve the performance of the state-of-the-art event extraction systems. This successful effort also translates into removing 1,338,075 of potentially incorrect events from EVEX, thus greatly improving the quality of the data. The method is not solely bound to the EVEX resource and can be thus used to improve the quality of any event extraction system or database. The data and source code for this work are available at: http://bionlp-www.utu.fi/trigger-clustering/.

  8. Unsupervised Learning Through Randomized Algorithms for High-Volume High-Velocity Data (ULTRA-HV).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinar, Ali; Kolda, Tamara G.; Carlberg, Kevin Thomas

    Through long-term investments in computing, algorithms, facilities, and instrumentation, DOE is an established leader in massive-scale, high-fidelity simulations, as well as science-leading experimentation. In both cases, DOE is generating more data than it can analyze and the problem is intensifying quickly. The need for advanced algorithms that can automatically convert the abundance of data into a wealth of useful information by discovering hidden structures is well recognized. Such efforts however, are hindered by the massive volume of the data and its high velocity. Here, the challenge is developing unsupervised learning methods to discover hidden structure in high-volume, high-velocity data.

  9. Full-body gestures and movements recognition: user descriptive and unsupervised learning approaches in GDL classifier

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2014-09-01

    Gesture Description Language (GDL) is a classifier that enables syntactic description and real time recognition of full-body gestures and movements. Gestures are described in dedicated computer language named Gesture Description Language script (GDLs). In this paper we will introduce new GDLs formalisms that enable recognition of selected classes of movement trajectories. The second novelty is new unsupervised learning method with which it is possible to automatically generate GDLs descriptions. We have initially evaluated both proposed extensions of GDL and we have obtained very promising results. Both the novel methodology and evaluation results will be described in this paper.

  10. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain.

    PubMed

    Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.

  11. Adding Learning to Knowledge-Based Systems: Taking the "Artificial" Out of AI

    Treesearch

    Daniel L. Schmoldt

    1997-01-01

    Both, knowledge-based systems (KBS) development and maintenance require time-consuming analysis of domain knowledge. Where example cases exist, KBS can be built, and later updated, by incorporating learning capabilities into their architecture. This applies to both supervised and unsupervised learning scenarios. In this paper, the important issues for learning systems-...

  12. Author Detection on a Mobile Phone

    DTIC Science & Technology

    2011-03-01

    handwriting , and to mine sales data for profitable trends. Two broad categories of machine learning are supervised learn- ing and unsupervised learning...evaluation,” AI 2006: Advances in Artificial Intelligence, p. 1015–1021, 2006. [23] “Gartner says worldwide mobile phone sales grew 17 per cent in first

  13. Unsupervised Feature Learning for Heart Sounds Classification Using Autoencoder

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Lv, Jiancheng; Liu, Dongbo; Chen, Yao

    2018-04-01

    Cardiovascular disease seriously threatens the health of many people. It is usually diagnosed during cardiac auscultation, which is a fast and efficient method of cardiovascular disease diagnosis. In recent years, deep learning approach using unsupervised learning has made significant breakthroughs in many fields. However, to our knowledge, deep learning has not yet been used for heart sound classification. In this paper, we first use the average Shannon energy to extract the envelope of the heart sounds, then find the highest point of S1 to extract the cardiac cycle. We convert the time-domain signals of the cardiac cycle into spectrograms and apply principal component analysis whitening to reduce the dimensionality of the spectrogram. Finally, we apply a two-layer autoencoder to extract the features of the spectrogram. The experimental results demonstrate that the features from the autoencoder are suitable for heart sound classification.

  14. Strong systematicity through sensorimotor conceptual grounding: an unsupervised, developmental approach to connectionist sentence processing

    NASA Astrophysics Data System (ADS)

    Jansen, Peter A.; Watter, Scott

    2012-03-01

    Connectionist language modelling typically has difficulty with syntactic systematicity, or the ability to generalise language learning to untrained sentences. This work develops an unsupervised connectionist model of infant grammar learning. Following the semantic boostrapping hypothesis, the network distils word category using a developmentally plausible infant-scale database of grounded sensorimotor conceptual representations, as well as a biologically plausible semantic co-occurrence activation function. The network then uses this knowledge to acquire an early benchmark clausal grammar using correlational learning, and further acquires separate conceptual and grammatical category representations. The network displays strongly systematic behaviour indicative of the general acquisition of the combinatorial systematicity present in the grounded infant-scale language stream, outperforms previous contemporary models that contain primarily noun and verb word categories, and successfully generalises broadly to novel untrained sensorimotor grounded sentences composed of unfamiliar nouns and verbs. Limitations as well as implications to later grammar learning are discussed.

  15. Unsupervised classification of major depression using functional connectivity MRI.

    PubMed

    Zeng, Ling-Li; Shen, Hui; Liu, Li; Hu, Dewen

    2014-04-01

    The current diagnosis of psychiatric disorders including major depressive disorder based largely on self-reported symptoms and clinical signs may be prone to patients' behaviors and psychiatrists' bias. This study aims at developing an unsupervised machine learning approach for the accurate identification of major depression based on single resting-state functional magnetic resonance imaging scans in the absence of clinical information. Twenty-four medication-naive patients with major depression and 29 demographically similar healthy individuals underwent resting-state functional magnetic resonance imaging. We first clustered the voxels within the perigenual cingulate cortex into two subregions, a subgenual region and a pregenual region, according to their distinct resting-state functional connectivity patterns and showed that a maximum margin clustering-based unsupervised machine learning approach extracted sufficient information from the subgenual cingulate functional connectivity map to differentiate depressed patients from healthy controls with a group-level clustering consistency of 92.5% and an individual-level classification consistency of 92.5%. It was also revealed that the subgenual cingulate functional connectivity network with the highest discriminative power primarily included the ventrolateral and ventromedial prefrontal cortex, superior temporal gyri and limbic areas, indicating that these connections may play critical roles in the pathophysiology of major depression. The current study suggests that subgenual cingulate functional connectivity network signatures may provide promising objective biomarkers for the diagnosis of major depression and that maximum margin clustering-based unsupervised machine learning approaches may have the potential to inform clinical practice and aid in research on psychiatric disorders. Copyright © 2013 Wiley Periodicals, Inc.

  16. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects.

    PubMed

    Lötsch, Jörn; Thrun, Michael; Lerch, Florian; Brunkhorst, Robert; Schiffmann, Susanne; Thomas, Dominique; Tegder, Irmgard; Geisslinger, Gerd; Ultsch, Alfred

    2017-06-07

    Lipid metabolism has been suggested to be a major pathophysiological mechanism of multiple sclerosis (MS). With the increasing knowledge about lipid signaling, acquired data become increasingly complex making bioinformatics necessary in lipid research. We used unsupervised machine-learning to analyze lipid marker serum concentrations, pursuing the hypothesis that for the most relevant markers the emerging data structures will coincide with the diagnosis of MS. Machine learning was implemented as emergent self-organizing feature maps (ESOM) combined with the U*-matrix visualization technique. The data space consisted of serum concentrations of three main classes of lipid markers comprising eicosanoids ( d = 11 markers), ceramides ( d = 10), and lyosophosphatidic acids ( d = 6). They were analyzed in cohorts of MS patients ( n = 102) and healthy subjects ( n = 301). Clear data structures in the high-dimensional data space were observed in eicosanoid and ceramides serum concentrations whereas no clear structure could be found in lysophosphatidic acid concentrations. With ceramide concentrations, the structures that had emerged from unsupervised machine-learning almost completely overlapped with the known grouping of MS patients versus healthy subjects. This was only partly provided by eicosanoid serum concentrations. Thus, unsupervised machine-learning identified distinct data structures of bioactive lipid serum concentrations. These structures could be superimposed with the known grouping of MS patients versus healthy subjects, which was almost completely possible with ceramides. Therefore, based on the present analysis, ceramides are first-line candidates for further exploration as drug-gable targets or biomarkers in MS.

  17. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    Here, we apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models - the square and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-one Ising (BSI) model, and the 2D XY model, and examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow exploration of different phases and symmetry-breaking, but can distinguish phase transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which ismore » particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the 'charge' correlations (vorticity) in the BSI model (XY model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the 'antoencoder method', and demonstrate that it too can be trained to capture phase transitions and critical points.« less

  18. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    DOE PAGES

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    2017-06-19

    Here, we apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models - the square and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-one Ising (BSI) model, and the 2D XY model, and examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow exploration of different phases and symmetry-breaking, but can distinguish phase transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which ismore » particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the 'charge' correlations (vorticity) in the BSI model (XY model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the 'antoencoder method', and demonstrate that it too can be trained to capture phase transitions and critical points.« less

  19. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    NASA Astrophysics Data System (ADS)

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    2017-06-01

    We apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models—the square- and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-1 Ising (BSI) model, and the two-dimensional X Y model—and we examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow the exploration of different phases and symmetry-breaking, but they can distinguish phase-transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which is particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the "charge" correlations (vorticity) in the BSI model (X Y model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the "autoencoder method," and we demonstrate that it too can be trained to capture phase transitions and critical points.

  20. Modeling language and cognition with deep unsupervised learning: a tutorial overview

    PubMed Central

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P.

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition. PMID:23970869

  1. Modeling language and cognition with deep unsupervised learning: a tutorial overview.

    PubMed

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition.

  2. Age and gender classification in the wild with unsupervised feature learning

    NASA Astrophysics Data System (ADS)

    Wan, Lihong; Huo, Hong; Fang, Tao

    2017-03-01

    Inspired by unsupervised feature learning (UFL) within the self-taught learning framework, we propose a method based on UFL, convolution representation, and part-based dimensionality reduction to handle facial age and gender classification, which are two challenging problems under unconstrained circumstances. First, UFL is introduced to learn selective receptive fields (filters) automatically by applying whitening transformation and spherical k-means on random patches collected from unlabeled data. The learning process is fast and has no hyperparameters to tune. Then, the input image is convolved with these filters to obtain filtering responses on which local contrast normalization is applied. Average pooling and feature concatenation are then used to form global face representation. Finally, linear discriminant analysis with part-based strategy is presented to reduce the dimensions of the global representation and to improve classification performances further. Experiments on three challenging databases, namely, Labeled faces in the wild, Gallagher group photos, and Adience, demonstrate the effectiveness of the proposed method relative to that of state-of-the-art approaches.

  3. Unsupervised spike sorting based on discriminative subspace learning.

    PubMed

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2014-01-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. In this paper, we present two unsupervised spike sorting algorithms based on discriminative subspace learning. The first algorithm simultaneously learns the discriminative feature subspace and performs clustering. It uses histogram of features in the most discriminative projection to detect the number of neurons. The second algorithm performs hierarchical divisive clustering that learns a discriminative 1-dimensional subspace for clustering in each level of the hierarchy until achieving almost unimodal distribution in the subspace. The algorithms are tested on synthetic and in-vivo data, and are compared against two widely used spike sorting methods. The comparative results demonstrate that our spike sorting methods can achieve substantially higher accuracy in lower dimensional feature space, and they are highly robust to noise. Moreover, they provide significantly better cluster separability in the learned subspace than in the subspace obtained by principal component analysis or wavelet transform.

  4. Functional requirements for reward-modulated spike-timing-dependent plasticity.

    PubMed

    Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram

    2010-10-06

    Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.

  5. Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System.

    PubMed

    Lucena, Caroline Vieira; Lacerda, Marcelo; Caldas, Rafael; De Lima Neto, Fernando Buarque; Rativa, Diego

    2018-01-01

    There is a direct relationship between the prevalence of musculoskeletal disorders of the temporomandibular joint and orofacial disorders. A well-elaborated analysis of the jaw movements provides relevant information for healthcare professionals to conclude their diagnosis. Different approaches have been explored to track jaw movements such that the mastication analysis is getting less subjective; however, all methods are still highly subjective, and the quality of the assessments depends much on the experience of the health professional. In this paper, an accurate and non-invasive method based on a commercial low-cost inertial sensor (MPU6050) to measure jaw movements is proposed. The jaw-movement feature values are compared to the obtained with clinical analysis, showing no statistically significant difference between both methods. Moreover, We propose to use unsupervised paradigm approaches to cluster mastication patterns of healthy subjects and simulated patients with facial trauma. Two techniques were used in this paper to instantiate the method: Kohonen's Self-Organizing Maps and K-Means Clustering. Both algorithms have excellent performances to process jaw-movements data, showing encouraging results and potential to bring a full assessment of the masticatory function. The proposed method can be applied in real-time providing relevant dynamic information for health-care professionals.

  6. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    PubMed

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-05-27

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.

  7. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  8. Linear time relational prototype based learning.

    PubMed

    Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara

    2012-10-01

    Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.

  9. Communications and control for electric power systems: Power flow classification for static security assessment

    NASA Technical Reports Server (NTRS)

    Niebur, D.; Germond, A.

    1993-01-01

    This report investigates the classification of power system states using an artificial neural network model, Kohonen's self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen's self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in this report, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.

  10. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.

    PubMed

    Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2017-06-01

    Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.

  11. Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets

    NASA Astrophysics Data System (ADS)

    Goel, Amit; Montgomery, Michele

    2015-08-01

    Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.

  12. Synaptic State Matching: A Dynamical Architecture for Predictive Internal Representation and Feature Detection

    PubMed Central

    Tavazoie, Saeed

    2013-01-01

    Here we explore the possibility that a core function of sensory cortex is the generation of an internal simulation of sensory environment in real-time. A logical elaboration of this idea leads to a dynamical neural architecture that oscillates between two fundamental network states, one driven by external input, and the other by recurrent synaptic drive in the absence of sensory input. Synaptic strength is modified by a proposed synaptic state matching (SSM) process that ensures equivalence of spike statistics between the two network states. Remarkably, SSM, operating locally at individual synapses, generates accurate and stable network-level predictive internal representations, enabling pattern completion and unsupervised feature detection from noisy sensory input. SSM is a biologically plausible substrate for learning and memory because it brings together sequence learning, feature detection, synaptic homeostasis, and network oscillations under a single unifying computational framework. PMID:23991161

  13. Computational modeling of the neural representation of object shape in the primate ventral visual system

    PubMed Central

    Eguchi, Akihiro; Mender, Bedeho M. W.; Evans, Benjamin D.; Humphreys, Glyn W.; Stringer, Simon M.

    2015-01-01

    Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognize the whole object. PMID:26300766

  14. Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire

    PubMed Central

    Taralova, Ekaterina; Dupre, Christophe; Yuste, Rafael

    2018-01-01

    Animal behavior has been studied for centuries, but few efficient methods are available to automatically identify and classify it. Quantitative behavioral studies have been hindered by the subjective and imprecise nature of human observation, and the slow speed of annotating behavioral data. Here, we developed an automatic behavior analysis pipeline for the cnidarian Hydra vulgaris using machine learning. We imaged freely behaving Hydra, extracted motion and shape features from the videos, and constructed a dictionary of visual features to classify pre-defined behaviors. We also identified unannotated behaviors with unsupervised methods. Using this analysis pipeline, we quantified 6 basic behaviors and found surprisingly similar behavior statistics across animals within the same species, regardless of experimental conditions. Our analysis indicates that the fundamental behavioral repertoire of Hydra is stable. This robustness could reflect a homeostatic neural control of "housekeeping" behaviors which could have been already present in the earliest nervous systems. PMID:29589829

  15. Unsupervised classification of variable stars

    NASA Astrophysics Data System (ADS)

    Valenzuela, Lucas; Pichara, Karim

    2018-03-01

    During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.

  16. A Benchmark Dataset and Saliency-guided Stacked Autoencoders for Video-based Salient Object Detection.

    PubMed

    Li, Jia; Xia, Changqun; Chen, Xiaowu

    2017-10-12

    Image-based salient object detection (SOD) has been extensively studied in past decades. However, video-based SOD is much less explored due to the lack of large-scale video datasets within which salient objects are unambiguously defined and annotated. Toward this end, this paper proposes a video-based SOD dataset that consists of 200 videos. In constructing the dataset, we manually annotate all objects and regions over 7,650 uniformly sampled keyframes and collect the eye-tracking data of 23 subjects who free-view all videos. From the user data, we find that salient objects in a video can be defined as objects that consistently pop-out throughout the video, and objects with such attributes can be unambiguously annotated by combining manually annotated object/region masks with eye-tracking data of multiple subjects. To the best of our knowledge, it is currently the largest dataset for videobased salient object detection. Based on this dataset, this paper proposes an unsupervised baseline approach for video-based SOD by using saliencyguided stacked autoencoders. In the proposed approach, multiple spatiotemporal saliency cues are first extracted at the pixel, superpixel and object levels. With these saliency cues, stacked autoencoders are constructed in an unsupervised manner that automatically infers a saliency score for each pixel by progressively encoding the high-dimensional saliency cues gathered from the pixel and its spatiotemporal neighbors. In experiments, the proposed unsupervised approach is compared with 31 state-of-the-art models on the proposed dataset and outperforms 30 of them, including 19 imagebased classic (unsupervised or non-deep learning) models, six image-based deep learning models, and five video-based unsupervised models. Moreover, benchmarking results show that the proposed dataset is very challenging and has the potential to boost the development of video-based SOD.

  17. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels

    PubMed Central

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J.

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively “hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378

  18. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    PubMed

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

  19. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  20. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects

    PubMed Central

    Lötsch, Jörn; Thrun, Michael; Lerch, Florian; Brunkhorst, Robert; Schiffmann, Susanne; Thomas, Dominique; Tegder, Irmgard; Geisslinger, Gerd; Ultsch, Alfred

    2017-01-01

    Lipid signaling has been suggested to be a major pathophysiological mechanism of multiple sclerosis (MS). With the increasing knowledge about lipid signaling, acquired data become increasingly complex making bioinformatics necessary in lipid research. We used unsupervised machine-learning to analyze lipid marker serum concentrations, pursuing the hypothesis that for the most relevant markers the emerging data structures will coincide with the diagnosis of MS. Machine learning was implemented as emergent self-organizing feature maps (ESOM) combined with the U*-matrix visualization technique. The data space consisted of serum concentrations of three main classes of lipid markers comprising eicosanoids (d = 11 markers), ceramides (d = 10), and lyosophosphatidic acids (d = 6). They were analyzed in cohorts of MS patients (n = 102) and healthy subjects (n = 301). Clear data structures in the high-dimensional data space were observed in eicosanoid and ceramides serum concentrations whereas no clear structure could be found in lysophosphatidic acid concentrations. With ceramide concentrations, the structures that had emerged from unsupervised machine-learning almost completely overlapped with the known grouping of MS patients versus healthy subjects. This was only partly provided by eicosanoid serum concentrations. Thus, unsupervised machine-learning identified distinct data structures of bioactive lipid serum concentrations. These structures could be superimposed with the known grouping of MS patients versus healthy subjects, which was almost completely possible with ceramides. Therefore, based on the present analysis, ceramides are first-line candidates for further exploration as drug-gable targets or biomarkers in MS. PMID:28590455

  1. Some simple guides to finding useful information in exploration geochemical data

    USGS Publications Warehouse

    Singer, D.A.; Kouda, R.

    2001-01-01

    Most regional geochemistry data reflect processes that can produce superfluous bits of noise and, perhaps, information about the mineralization process of interest. There are two end-member approaches to finding patterns in geochemical data-unsupervised learning and supervised learning. In unsupervised learning, data are processed and the geochemist is given the task of interpreting and identifying possible sources of any patterns. In supervised learning, data from known subgroups such as rock type, mineralized and nonmineralized, and types of mineralization are used to train the system which then is given unknown samples to classify into these subgroups. To locate patterns of interest, it is helpful to transform the data and to remove unwanted masking patterns. With trace elements use of a logarithmic transformation is recommended. In many situations, missing censored data can be estimated using multiple regression of other uncensored variables on the variable with censored values. In unsupervised learning, transformed values can be standardized, or normalized, to a Z-score by subtracting the subset's mean and dividing by its standard deviation. Subsets include any source of differences that might be related to processes unrelated to the target sought such as different laboratories, regional alteration, analytical procedures, or rock types. Normalization removes effects of different means and measurement scales as well as facilitates comparison of spatial patterns of elements. These adjustments remove effects of different subgroups and hopefully leave on the map the simple and uncluttered pattern(s) related to the mineralization only. Supervised learning methods, such as discriminant analysis and neural networks, offer the promise of consistent and, in certain situations, unbiased estimates of where mineralization might exist. These methods critically rely on being trained with data that encompasses all populations fairly and that can possibly fall into only the identified populations. ?? 2001 International Association for Mathematical Geology.

  2. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    PubMed

    Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil

    2016-10-01

    We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  3. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP

    PubMed Central

    Staras, Kevin

    2016-01-01

    We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture. PMID:27760125

  4. Spectral gene set enrichment (SGSE).

    PubMed

    Frost, H Robert; Li, Zhigang; Moore, Jason H

    2015-03-03

    Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters. We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes the statistical association between gene sets and principal components (PCs) using our principal component gene set enrichment (PCGSE) method. The overall statistical association between each gene set and the spectral structure of the data is then computed by combining the PC-level p-values using the weighted Z-method with weights set to the PC variance scaled by Tracy-Widom test p-values. Using simulated data, we show that the SGSE algorithm can accurately recover spectral features from noisy data. To illustrate the utility of our method on real data, we demonstrate the superior performance of the SGSE method relative to standard cluster-based techniques for testing the association between MSigDB gene sets and the variance structure of microarray gene expression data. Unsupervised gene set testing can provide important information about the biological signal held in high-dimensional genomic data sets. Because it uses the association between gene sets and samples PCs to generate a measure of unsupervised enrichment, the SGSE method is independent of cluster or network creation algorithms and, most importantly, is able to utilize the statistical significance of PC eigenvalues to ignore elements of the data most likely to represent noise.

  5. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.

    PubMed

    Young, Jonathan D; Cai, Chunhui; Lu, Xinghua

    2017-10-03

    One approach to improving the personalized treatment of cancer is to understand the cellular signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used unsupervised deep learning to learn the hierarchical structure within cancer gene expression data. Deep learning is a group of machine learning algorithms that use multiple layers of hidden units to capture hierarchically related, alternative representations of the input data. We hypothesize that this hierarchical structure learned by deep learning will be related to the cellular signaling system. Robust deep learning model selection identified a network architecture that is biologically plausible. Our model selection results indicated that the 1st hidden layer of our deep learning model should contain about 1300 hidden units to most effectively capture the covariance structure of the input data. This agrees with the estimated number of human transcription factors, which is approximately 1400. This result lends support to our hypothesis that the 1st hidden layer of a deep learning model trained on gene expression data may represent signals related to transcription factor activation. Using the 3rd hidden layer representation of each tumor as learned by our unsupervised deep learning model, we performed consensus clustering on all tumor samples-leading to the discovery of clusters of glioblastoma multiforme with differential survival. One of these clusters contained all of the glioblastoma samples with G-CIMP, a known methylation phenotype driven by the IDH1 mutation and associated with favorable prognosis, suggesting that the hidden units in the 3rd hidden layer representations captured a methylation signal without explicitly using methylation data as input. We also found differentially expressed genes and well-known mutations (NF1, IDH1, EGFR) that were uniquely correlated with each of these clusters. Exploring these unique genes and mutations will allow us to further investigate the disease mechanisms underlying each of these clusters. In summary, we show that a deep learning model can be trained to represent biologically and clinically meaningful abstractions of cancer gene expression data. Understanding what additional relationships these hidden layer abstractions have with the cancer cellular signaling system could have a significant impact on the understanding and treatment of cancer.

  6. Interactive Algorithms for Unsupervised Machine Learning

    DTIC Science & Technology

    2015-06-01

    committee members, Nina Balcan, Sanjoy Dasgupta, and John Langford. Nina’s unbounded energy and her passion for machine learning are qualities that I...52 3.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Real World Experiments...80 4.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4.2 Real World

  7. Neurons with two sites of synaptic integration learn invariant representations.

    PubMed

    Körding, K P; König, P

    2001-12-01

    Neurons in mammalian cerebral cortex combine specific responses with respect to some stimulus features with invariant responses to other stimulus features. For example, in primary visual cortex, complex cells code for orientation of a contour but ignore its position to a certain degree. In higher areas, such as the inferotemporal cortex, translation-invariant, rotation-invariant, and even view point-invariant responses can be observed. Such properties are of obvious interest to artificial systems performing tasks like pattern recognition. It remains to be resolved how such response properties develop in biological systems. Here we present an unsupervised learning rule that addresses this problem. It is based on a neuron model with two sites of synaptic integration, allowing qualitatively different effects of input to basal and apical dendritic trees, respectively. Without supervision, the system learns to extract invariance properties using temporal or spatial continuity of stimuli. Furthermore, top-down information can be smoothly integrated in the same framework. Thus, this model lends a physiological implementation to approaches of unsupervised learning of invariant-response properties.

  8. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns

    PubMed Central

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191

  9. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    PubMed

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  10. CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Dustin L.; Komurlu, Caner; Blaha, Leslie M.

    We developed CHISSL, a human-machine interface that utilizes supervised machine learning in an unsupervised context to help the user group unlabeled instances by her own mental model. The user primarily interacts via correction (moving a misplaced instance into its correct group) or confirmation (accepting that an instance is placed in its correct group). Concurrent with the user's interactions, CHISSL trains a classification model guided by the user's grouping of the data. It then predicts the group of unlabeled instances and arranges some of these alongside the instances manually organized by the user. We hypothesize that this mode of human andmore » machine collaboration is more effective than Active Learning, wherein the machine decides for itself which instances should be labeled by the user. We found supporting evidence for this hypothesis in a pilot study where we applied CHISSL to organize a collection of handwritten digits.« less

  11. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning.

    PubMed

    Wu, Mon-Ju; Mwangi, Benson; Bauer, Isabelle E; Passos, Ives C; Sanches, Marsal; Zunta-Soares, Giovana B; Meyer, Thomas D; Hasan, Khader M; Soares, Jair C

    2017-01-15

    Diagnosis, clinical management and research of psychiatric disorders remain subjective - largely guided by historically developed categories which may not effectively capture underlying pathophysiological mechanisms of dysfunction. Here, we report a novel approach of identifying and validating distinct and biologically meaningful clinical phenotypes of bipolar disorders using both unsupervised and supervised machine learning techniques. First, neurocognitive data were analyzed using an unsupervised machine learning approach and two distinct clinical phenotypes identified namely; phenotype I and phenotype II. Second, diffusion weighted imaging scans were pre-processed using the tract-based spatial statistics (TBSS) method and 'skeletonized' white matter fractional anisotropy (FA) and mean diffusivity (MD) maps extracted. The 'skeletonized' white matter FA and MD maps were entered into the Elastic Net machine learning algorithm to distinguish individual subjects' phenotypic labels (e.g. phenotype I vs. phenotype II). This calculation was performed to ascertain whether the identified clinical phenotypes were biologically distinct. Original neurocognitive measurements distinguished individual subjects' phenotypic labels with 94% accuracy (sensitivity=92%, specificity=97%). TBSS derived FA and MD measurements predicted individual subjects' phenotypic labels with 76% and 65% accuracy respectively. In addition, individual subjects belonging to phenotypes I and II were distinguished from healthy controls with 57% and 92% accuracy respectively. Neurocognitive task variables identified as most relevant in distinguishing phenotypic labels included; Affective Go/No-Go (AGN), Cambridge Gambling Task (CGT) coupled with inferior fronto-occipital fasciculus and callosal white matter pathways. These results suggest that there may exist two biologically distinct clinical phenotypes in bipolar disorders which can be identified from healthy controls with high accuracy and at an individual subject level. We suggest a strong clinical utility of the proposed approach in defining and validating biologically meaningful and less heterogeneous clinical sub-phenotypes of major psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Weakly supervised visual dictionary learning by harnessing image attributes.

    PubMed

    Gao, Yue; Ji, Rongrong; Liu, Wei; Dai, Qionghai; Hua, Gang

    2014-12-01

    Bag-of-features (BoFs) representation has been extensively applied to deal with various computer vision applications. To extract discriminative and descriptive BoF, one important step is to learn a good dictionary to minimize the quantization loss between local features and codewords. While most existing visual dictionary learning approaches are engaged with unsupervised feature quantization, the latest trend has turned to supervised learning by harnessing the semantic labels of images or regions. However, such labels are typically too expensive to acquire, which restricts the scalability of supervised dictionary learning approaches. In this paper, we propose to leverage image attributes to weakly supervise the dictionary learning procedure without requiring any actual labels. As a key contribution, our approach establishes a generative hidden Markov random field (HMRF), which models the quantized codewords as the observed states and the image attributes as the hidden states, respectively. Dictionary learning is then performed by supervised grouping the observed states, where the supervised information is stemmed from the hidden states of the HMRF. In such a way, the proposed dictionary learning approach incorporates the image attributes to learn a semantic-preserving BoF representation without any genuine supervision. Experiments in large-scale image retrieval and classification tasks corroborate that our approach significantly outperforms the state-of-the-art unsupervised dictionary learning approaches.

  13. Calibration model maintenance in melamine resin production: Integrating drift detection, smart sample selection and model adaptation.

    PubMed

    Nikzad-Langerodi, Ramin; Lughofer, Edwin; Cernuda, Carlos; Reischer, Thomas; Kantner, Wolfgang; Pawliczek, Marcin; Brandstetter, Markus

    2018-07-12

    The physico-chemical properties of Melamine Formaldehyde (MF) based thermosets are largely influenced by the degree of polymerization (DP) in the underlying resin. On-line supervision of the turbidity point by means of vibrational spectroscopy has recently emerged as a promising technique to monitor the DP of MF resins. However, spectroscopic determination of the DP relies on chemometric models, which are usually sensitive to drifts caused by instrumental and/or sample-associated changes occurring over time. In order to detect the time point when drifts start causing prediction bias, we here explore a universal drift detector based on a faded version of the Page-Hinkley (PH) statistic, which we test in three data streams from an industrial MF resin production process. We employ committee disagreement (CD), computed as the variance of model predictions from an ensemble of partial least squares (PLS) models, as a measure for sample-wise prediction uncertainty and use the PH statistic to detect changes in this quantity. We further explore supervised and unsupervised strategies for (semi-)automatic model adaptation upon detection of a drift. For the former, manual reference measurements are requested whenever statistical thresholds on Hotelling's T 2 and/or Q-Residuals are violated. Models are subsequently re-calibrated using weighted partial least squares in order to increase the influence of newer samples, which increases the flexibility when adapting to new (drifted) states. Unsupervised model adaptation is carried out exploiting the dual antecedent-consequent structure of a recently developed fuzzy systems variant of PLS termed FLEXFIS-PLS. In particular, antecedent parts are updated while maintaining the internal structure of the local linear predictors (i.e. the consequents). We found improved drift detection capability of the CD compared to Hotelling's T 2 and Q-Residuals when used in combination with the proposed PH test. Furthermore, we found that active selection of samples by active learning (AL) used for subsequent model adaptation is advantageous compared to passive (random) selection in case that a drift leads to persistent prediction bias allowing more rapid adaptation at lower reference measurement rates. Fully unsupervised adaptation using FLEXFIS-PLS could improve predictive accuracy significantly for light drifts but was not able to fully compensate for prediction bias in case of significant lack of fit w.r.t. the latent variable space. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Learning a Generative Probabilistic Grammar of Experience: A Process-Level Model of Language Acquisition

    ERIC Educational Resources Information Center

    Kolodny, Oren; Lotem, Arnon; Edelman, Shimon

    2015-01-01

    We introduce a set of biologically and computationally motivated design choices for modeling the learning of language, or of other types of sequential, hierarchically structured experience and behavior, and describe an implemented system that conforms to these choices and is capable of unsupervised learning from raw natural-language corpora. Given…

  15. An Evaluation of Feature Learning Methods for High Resolution Image Classification

    NASA Astrophysics Data System (ADS)

    Tokarczyk, P.; Montoya, J.; Schindler, K.

    2012-07-01

    Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier.

  16. A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback.

    PubMed

    Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C

    2007-01-01

    A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.

  17. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.

  18. Random forests for classification in ecology

    USGS Publications Warehouse

    Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J.

    2007-01-01

    Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature. ?? 2007 by the Ecological Society of America.

  19. Ensemble learning with trees and rules: supervised, semi-supervised, unsupervised

    USDA-ARS?s Scientific Manuscript database

    In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised and semi-supervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by the post processing the rules with ...

  20. Learning a generative probabilistic grammar of experience: a process-level model of language acquisition.

    PubMed

    Kolodny, Oren; Lotem, Arnon; Edelman, Shimon

    2015-03-01

    We introduce a set of biologically and computationally motivated design choices for modeling the learning of language, or of other types of sequential, hierarchically structured experience and behavior, and describe an implemented system that conforms to these choices and is capable of unsupervised learning from raw natural-language corpora. Given a stream of linguistic input, our model incrementally learns a grammar that captures its statistical patterns, which can then be used to parse or generate new data. The grammar constructed in this manner takes the form of a directed weighted graph, whose nodes are recursively (hierarchically) defined patterns over the elements of the input stream. We evaluated the model in seventeen experiments, grouped into five studies, which examined, respectively, (a) the generative ability of grammar learned from a corpus of natural language, (b) the characteristics of the learned representation, (c) sequence segmentation and chunking, (d) artificial grammar learning, and (e) certain types of structure dependence. The model's performance largely vindicates our design choices, suggesting that progress in modeling language acquisition can be made on a broad front-ranging from issues of generativity to the replication of human experimental findings-by bringing biological and computational considerations, as well as lessons from prior efforts, to bear on the modeling approach. Copyright © 2014 Cognitive Science Society, Inc.

  1. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline

    PubMed Central

    Zhang, Jie; Li, Qingyang; Caselli, Richard J.; Thompson, Paul M.; Ye, Jieping; Wang, Yalin

    2017-01-01

    Alzheimer’s Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms. PMID:28943731

  2. An automatic taxonomy of galaxy morphology using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil

    2018-01-01

    We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.

  3. Simultaneous Stimulus Preexposure Enhances Human Tactile Perceptual Learning

    ERIC Educational Resources Information Center

    Rodríguez, Gabriel; Angulo, Rocío

    2014-01-01

    An experiment with human participants established a novel procedure to assess perceptual learning with tactile stimuli. Participants received unsupervised exposure to two sandpaper surfaces differing in roughness (A and B). The ability of the participants to discriminate between the stimuli was subsequently assessed on a same/different test. It…

  4. AHaH computing-from metastable switches to attractors to machine learning.

    PubMed

    Nugent, Michael Alexander; Molter, Timothy Wesley

    2014-01-01

    Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures-all key capabilities of biological nervous systems and modern machine learning algorithms with real world application.

  5. AHaH Computing–From Metastable Switches to Attractors to Machine Learning

    PubMed Central

    Nugent, Michael Alexander; Molter, Timothy Wesley

    2014-01-01

    Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures–all key capabilities of biological nervous systems and modern machine learning algorithms with real world application. PMID:24520315

  6. Enhanced HMAX model with feedforward feature learning for multiclass categorization.

    PubMed

    Li, Yinlin; Wu, Wei; Zhang, Bo; Li, Fengfu

    2015-01-01

    In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX) is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT) layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 ms of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: (1) To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; (2) To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; (3) Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.

  7. Information processing of motion in facial expression and the geometry of dynamical systems

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Eghbalnia, Hamid; McMenamin, Brenton W.

    2005-01-01

    An interesting problem in analysis of video data concerns design of algorithms that detect perceptually significant features in an unsupervised manner, for instance methods of machine learning for automatic classification of human expression. A geometric formulation of this genre of problems could be modeled with help of perceptual psychology. In this article, we outline one approach for a special case where video segments are to be classified according to expression of emotion or other similar facial motions. The encoding of realistic facial motions that convey expression of emotions for a particular person P forms a parameter space XP whose study reveals the "objective geometry" for the problem of unsupervised feature detection from video. The geometric features and discrete representation of the space XP are independent of subjective evaluations by observers. While the "subjective geometry" of XP varies from observer to observer, levels of sensitivity and variation in perception of facial expressions appear to share a certain level of universality among members of similar cultures. Therefore, statistical geometry of invariants of XP for a sample of population could provide effective algorithms for extraction of such features. In cases where frequency of events is sufficiently large in the sample data, a suitable framework could be provided to facilitate the information-theoretic organization and study of statistical invariants of such features. This article provides a general approach to encode motion in terms of a particular genre of dynamical systems and the geometry of their flow. An example is provided to illustrate the general theory.

  8. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    PubMed

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  9. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data.

    PubMed

    Lasko, Thomas A; Denny, Joshua C; Levy, Mia A

    2013-01-01

    Inferring precise phenotypic patterns from population-scale clinical data is a core computational task in the development of precision, personalized medicine. The traditional approach uses supervised learning, in which an expert designates which patterns to look for (by specifying the learning task and the class labels), and where to look for them (by specifying the input variables). While appropriate for individual tasks, this approach scales poorly and misses the patterns that we don't think to look for. Unsupervised feature learning overcomes these limitations by identifying patterns (or features) that collectively form a compact and expressive representation of the source data, with no need for expert input or labeled examples. Its rising popularity is driven by new deep learning methods, which have produced high-profile successes on difficult standardized problems of object recognition in images. Here we introduce its use for phenotype discovery in clinical data. This use is challenging because the largest source of clinical data - Electronic Medical Records - typically contains noisy, sparse, and irregularly timed observations, rendering them poor substrates for deep learning methods. Our approach couples dirty clinical data to deep learning architecture via longitudinal probability densities inferred using Gaussian process regression. From episodic, longitudinal sequences of serum uric acid measurements in 4368 individuals we produced continuous phenotypic features that suggest multiple population subtypes, and that accurately distinguished (0.97 AUC) the uric-acid signatures of gout vs. acute leukemia despite not being optimized for the task. The unsupervised features were as accurate as gold-standard features engineered by an expert with complete knowledge of the domain, the classification task, and the class labels. Our findings demonstrate the potential for achieving computational phenotype discovery at population scale. We expect such data-driven phenotypes to expose unknown disease variants and subtypes and to provide rich targets for genetic association studies.

  10. Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data

    PubMed Central

    Lasko, Thomas A.; Denny, Joshua C.; Levy, Mia A.

    2013-01-01

    Inferring precise phenotypic patterns from population-scale clinical data is a core computational task in the development of precision, personalized medicine. The traditional approach uses supervised learning, in which an expert designates which patterns to look for (by specifying the learning task and the class labels), and where to look for them (by specifying the input variables). While appropriate for individual tasks, this approach scales poorly and misses the patterns that we don’t think to look for. Unsupervised feature learning overcomes these limitations by identifying patterns (or features) that collectively form a compact and expressive representation of the source data, with no need for expert input or labeled examples. Its rising popularity is driven by new deep learning methods, which have produced high-profile successes on difficult standardized problems of object recognition in images. Here we introduce its use for phenotype discovery in clinical data. This use is challenging because the largest source of clinical data – Electronic Medical Records – typically contains noisy, sparse, and irregularly timed observations, rendering them poor substrates for deep learning methods. Our approach couples dirty clinical data to deep learning architecture via longitudinal probability densities inferred using Gaussian process regression. From episodic, longitudinal sequences of serum uric acid measurements in 4368 individuals we produced continuous phenotypic features that suggest multiple population subtypes, and that accurately distinguished (0.97 AUC) the uric-acid signatures of gout vs. acute leukemia despite not being optimized for the task. The unsupervised features were as accurate as gold-standard features engineered by an expert with complete knowledge of the domain, the classification task, and the class labels. Our findings demonstrate the potential for achieving computational phenotype discovery at population scale. We expect such data-driven phenotypes to expose unknown disease variants and subtypes and to provide rich targets for genetic association studies. PMID:23826094

  11. Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System

    PubMed Central

    Lucena, Caroline Vieira; Lacerda, Marcelo; Caldas, Rafael; De Lima Neto, Fernando Buarque

    2018-01-01

    There is a direct relationship between the prevalence of musculoskeletal disorders of the temporomandibular joint and orofacial disorders. A well-elaborated analysis of the jaw movements provides relevant information for healthcare professionals to conclude their diagnosis. Different approaches have been explored to track jaw movements such that the mastication analysis is getting less subjective; however, all methods are still highly subjective, and the quality of the assessments depends much on the experience of the health professional. In this paper, an accurate and non-invasive method based on a commercial low-cost inertial sensor (MPU6050) to measure jaw movements is proposed. The jaw-movement feature values are compared to the obtained with clinical analysis, showing no statistically significant difference between both methods. Moreover, We propose to use unsupervised paradigm approaches to cluster mastication patterns of healthy subjects and simulated patients with facial trauma. Two techniques were used in this paper to instantiate the method: Kohonen’s Self-Organizing Maps and K-Means Clustering. Both algorithms have excellent performances to process jaw-movements data, showing encouraging results and potential to bring a full assessment of the masticatory function. The proposed method can be applied in real-time providing relevant dynamic information for health-care professionals. PMID:29651365

  12. Teaching children with autism appropriate play in unsupervised environments using a self-management treatment package.

    PubMed Central

    Stahmer, A C; Schreibman, L

    1992-01-01

    The present study used a self-management treatment package to teach 3 children with autism, who exhibited inappropriate play behaviors, to play appropriately in the absence of a treatment provider. After self-management training, generalization and maintenance of the behavior change were assessed. Because of the detrimental effects of self-stimulation (arm flapping, spinning toys, twirling, etc.) on learning, the relationship between self-stimulatory behaviors and appropriate play was measured. Results indicated that the children learned to exhibit appropriate play skills in unsupervised settings, appropriate play skills generalized to new settings, and 2 of the children maintained their gains at 1-month follow-up. In addition, self-stimulatory behaviors decreased as appropriate play increased. Treatment implications of these findings are discussed. PMID:1634432

  13. Classification of ROTSE Variable Stars using Machine Learning

    NASA Astrophysics Data System (ADS)

    Wozniak, P. R.; Akerlof, C.; Amrose, S.; Brumby, S.; Casperson, D.; Gisler, G.; Kehoe, R.; Lee, B.; Marshall, S.; McGowan, K. E.; McKay, T.; Perkins, S.; Priedhorsky, W.; Rykoff, E.; Smith, D. A.; Theiler, J.; Vestrand, W. T.; Wren, J.; ROTSE Collaboration

    2001-12-01

    We evaluate several Machine Learning algorithms as potential tools for automated classification of variable stars. Using the ROTSE sample of ~1800 variables from a pilot study of 5% of the whole sky, we compare the effectiveness of a supervised technique (Support Vector Machines, SVM) versus unsupervised methods (K-means and Autoclass). There are 8 types of variables in the sample: RR Lyr AB, RR Lyr C, Delta Scuti, Cepheids, detached eclipsing binaries, contact binaries, Miras and LPVs. Preliminary results suggest a very high ( ~95%) efficiency of SVM in isolating a few best defined classes against the rest of the sample, and good accuracy ( ~70-75%) for all classes considered simultaneously. This includes some degeneracies, irreducible with the information at hand. Supervised methods naturally outperform unsupervised methods, in terms of final error rate, but unsupervised methods offer many advantages for large sets of unlabeled data. Therefore, both types of methods should be considered as promising tools for mining vast variability surveys. We project that there are more than 30,000 periodic variables in the ROTSE-I data base covering the entire local sky between V=10 and 15.5 mag. This sample size is already stretching the time capabilities of human analysts.

  14. Discrete Wavelet Transform-Based Whole-Spectral and Subspectral Analysis for Improved Brain Tumor Clustering Using Single Voxel MR Spectroscopy.

    PubMed

    Yang, Guang; Nawaz, Tahir; Barrick, Thomas R; Howe, Franklyn A; Slabaugh, Greg

    2015-12-01

    Many approaches have been considered for automatic grading of brain tumors by means of pattern recognition with magnetic resonance spectroscopy (MRS). Providing an improved technique which can assist clinicians in accurately identifying brain tumor grades is our main objective. The proposed technique, which is based on the discrete wavelet transform (DWT) of whole-spectral or subspectral information of key metabolites, combined with unsupervised learning, inspects the separability of the extracted wavelet features from the MRS signal to aid the clustering. In total, we included 134 short echo time single voxel MRS spectra (SV MRS) in our study that cover normal controls, low grade and high grade tumors. The combination of DWT-based whole-spectral or subspectral analysis and unsupervised clustering achieved an overall clustering accuracy of 94.8% and a balanced error rate of 7.8%. To the best of our knowledge, it is the first study using DWT combined with unsupervised learning to cluster brain SV MRS. Instead of dimensionality reduction on SV MRS or feature selection using model fitting, our study provides an alternative method of extracting features to obtain promising clustering results.

  15. Recent progresses of neural network unsupervised learning: I. Independent component analyses generalizing PCA

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1999-03-01

    The early vision principle of redundancy reduction of 108 sensor excitations is understandable from computer vision viewpoint toward sparse edge maps. It is only recently derived using a truly unsupervised learning paradigm of artificial neural networks (ANN). In fact, the biological vision, Hubel- Wiesel edge maps, is reproduced seeking the underlying independent components analyses (ICA) among 102 image samples by maximizing the ANN output entropy (partial)H(V)/(partial)[W] equals (partial)[W]/(partial)t. When a pair of newborn eyes or ears meet the bustling and hustling world without supervision, they seek ICA by comparing 2 sensory measurements (x1(t), x2(t))T equalsV X(t). Assuming a linear and instantaneous mixture model of the external world X(t) equals [A] S(t), where both the mixing matrix ([A] equalsV [a1, a2] of ICA vectors and the source percentages (s1(t), s2(t))T equalsV S(t) are unknown, we seek the independent sources approximately equals [I] where the approximated sign indicates that higher order statistics (HOS) may not be trivial. Without a teacher, the ANN weight matrix [W] equalsV [w1, w2] adjusts the outputs V(t) equals tanh([W]X(t)) approximately equals [W]X(t) until no desired outputs except the (Gaussian) 'garbage' (neither YES '1' nor NO '-1' but at linear may-be range 'origin 0') defined by Gaussian covariance G equals [I] equals [W][A] at the fixed point (partial)E/(partial)wi equals 0 resulted in an exact Toplitz matrix inversion for a stationary covariance assumption. We generalize AR by a nonlinear output vi(t+1) equals tanh(wiTX(t)) within E equals <[x(t+1) - vi(t+1)]2>, and the gradient descent (partial)E/(partial)wi equals - (partial)wi/(partial)t. Further generalization is possible because of specific image/speech having a specific histogram whose gray scale statistics departs from that of Gaussian random variable and can be measured by the fourth order cumulant, Kurtosis K(vi) equals - 3 2 (K greater than or equal to 0 super-G for speeches, K less than or equal to 0 sub-G for images). Thus, the stationary value at (partial)K/(partial)wi equals plus or minus 4 PTLwi/(partial)t can de-mix unknown mixtures of noisy images/speeches without a teacher. This stationary statistics may be parallel implemented using the 'factorized pdf code: (rho) (v1, v2) equals (rho) (v1) (rho) (v2)' occurred at a maximal entropy algorithm improved by the natural gradient of Amari. Real world applications are given in Part II, (Wavelet Appl-VI, SPIE Proc. Vol. 3723) such as remote sensing subpixel composition, speech segmentation by means of ICA de-hyphenation, and cable TV bandwidth enhancement by simultaneously mixing sport and movie entertainment events.

  16. Exploring Genome-Wide Expression Profiles Using Machine Learning Techniques.

    PubMed

    Kebschull, Moritz; Papapanou, Panos N

    2017-01-01

    Although contemporary high-throughput -omics methods produce high-dimensional data, the resulting wealth of information is difficult to assess using traditional statistical procedures. Machine learning methods facilitate the detection of additional patterns, beyond the mere identification of lists of features that differ between groups.Here, we demonstrate the utility of (1) supervised classification algorithms in class validation, and (2) unsupervised clustering in class discovery. We use data from our previous work that described the transcriptional profiles of gingival tissue samples obtained from subjects suffering from chronic or aggressive periodontitis (1) to test whether the two diagnostic entities were also characterized by differences on the molecular level, and (2) to search for a novel, alternative classification of periodontitis based on the tissue transcriptomes.Using machine learning technology, we provide evidence for diagnostic imprecision in the currently accepted classification of periodontitis, and demonstrate that a novel, alternative classification based on differences in gingival tissue transcriptomes is feasible. The outlined procedures allow for the unbiased interrogation of high-dimensional datasets for characteristic underlying classes, and are applicable to a broad range of -omics data.

  17. Deep Learning to Classify Radiology Free-Text Reports.

    PubMed

    Chen, Matthew C; Ball, Robyn L; Yang, Lingyao; Moradzadeh, Nathaniel; Chapman, Brian E; Larson, David B; Langlotz, Curtis P; Amrhein, Timothy J; Lungren, Matthew P

    2018-03-01

    Purpose To evaluate the performance of a deep learning convolutional neural network (CNN) model compared with a traditional natural language processing (NLP) model in extracting pulmonary embolism (PE) findings from thoracic computed tomography (CT) reports from two institutions. Materials and Methods Contrast material-enhanced CT examinations of the chest performed between January 1, 1998, and January 1, 2016, were selected. Annotations by two human radiologists were made for three categories: the presence, chronicity, and location of PE. Classification of performance of a CNN model with an unsupervised learning algorithm for obtaining vector representations of words was compared with the open-source application PeFinder. Sensitivity, specificity, accuracy, and F1 scores for both the CNN model and PeFinder in the internal and external validation sets were determined. Results The CNN model demonstrated an accuracy of 99% and an area under the curve value of 0.97. For internal validation report data, the CNN model had a statistically significant larger F1 score (0.938) than did PeFinder (0.867) when classifying findings as either PE positive or PE negative, but no significant difference in sensitivity, specificity, or accuracy was found. For external validation report data, no statistical difference between the performance of the CNN model and PeFinder was found. Conclusion A deep learning CNN model can classify radiology free-text reports with accuracy equivalent to or beyond that of an existing traditional NLP model. © RSNA, 2017 Online supplemental material is available for this article.

  18. Deep generative learning for automated EHR diagnosis of traditional Chinese medicine.

    PubMed

    Liang, Zhaohui; Liu, Jun; Ou, Aihua; Zhang, Honglai; Li, Ziping; Huang, Jimmy Xiangji

    2018-05-04

    Computer-aided medical decision-making (CAMDM) is the method to utilize massive EMR data as both empirical and evidence support for the decision procedure of healthcare activities. Well-developed information infrastructure, such as hospital information systems and disease surveillance systems, provides abundant data for CAMDM. However, the complexity of EMR data with abstract medical knowledge makes the conventional model incompetent for the analysis. Thus a deep belief networks (DBN) based model is proposed to simulate the information analysis and decision-making procedure in medical practice. The purpose of this paper is to evaluate a deep learning architecture as an effective solution for CAMDM. A two-step model is applied in our study. At the first step, an optimized seven-layer deep belief network (DBN) is applied as an unsupervised learning algorithm to perform model training to acquire feature representation. Then a support vector machine model is adopted to DBN at the second step of the supervised learning. There are two data sets used in the experiments. One is a plain text data set indexed by medical experts. The other is a structured dataset on primary hypertension. The data are randomly divided to generate the training set for the unsupervised learning and the testing set for the supervised learning. The model performance is evaluated by the statistics of mean and variance, the average precision and coverage on the data sets. Two conventional shallow models (support vector machine / SVM and decision tree / DT) are applied as the comparisons to show the superiority of our proposed approach. The deep learning (DBN + SVM) model outperforms simple SVM and DT on two data sets in terms of all the evaluation measures, which confirms our motivation that the deep model is good at capturing the key features with less dependence when the index is built up by manpower. Our study shows the two-step deep learning model achieves high performance for medical information retrieval over the conventional shallow models. It is able to capture the features of both plain text and the highly-structured database of EMR data. The performance of the deep model is superior to the conventional shallow learning models such as SVM and DT. It is an appropriate knowledge-learning model for information retrieval of EMR system. Therefore, deep learning provides a good solution to improve the performance of CAMDM systems. Copyright © 2018. Published by Elsevier B.V.

  19. Learning spatially coherent properties of the visual world in connectionist networks

    NASA Astrophysics Data System (ADS)

    Becker, Suzanna; Hinton, Geoffrey E.

    1991-10-01

    In the unsupervised learning paradigm, a network of neuron-like units is presented with an ensemble of input patterns from a structured environment, such as the visual world, and learns to represent the regularities in that input. The major goal in developing unsupervised learning algorithms is to find objective functions that characterize the quality of the network's representation without explicitly specifying the desired outputs of any of the units. The sort of objective functions considered cause a unit to become tuned to spatially coherent features of visual images (such as texture, depth, shading, and surface orientation), by learning to predict the outputs of other units which have spatially adjacent receptive fields. Simulations show that using an information-theoretic algorithm called IMAX, a network can be trained to represent depth by observing random dot stereograms of surfaces with continuously varying disparities. Once a layer of depth-tuned units has developed, subsequent layers are trained to perform surface interpolation of curved surfaces, by learning to predict the depth of one image region based on depth measurements in surrounding regions. An extension of the basic model allows a population of competing neurons to learn a distributed code for disparity, which naturally gives rise to a representation of discontinuities.

  20. SUSTAIN: A Network Model of Category Learning

    ERIC Educational Resources Information Center

    Love, Bradley C.; Medin, Douglas L.; Gureckis, Todd M.

    2004-01-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN…

  1. Noise-enhanced clustering and competitive learning algorithms.

    PubMed

    Osoba, Osonde; Kosko, Bart

    2013-01-01

    Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The Convallis Rule for Unsupervised Learning in Cortical Networks

    PubMed Central

    Yger, Pierre; Harris, Kenneth D.

    2013-01-01

    The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but the computational principles by which cortical plasticity enables the development of sensory representations are unclear. Here we describe a framework for cortical synaptic plasticity termed the “Convallis rule”, mathematically derived from a principle of unsupervised learning via constrained optimization. Implementation of the rule caused a recurrent cortex-like network of simulated spiking neurons to develop rate representations of real-world speech stimuli, enabling classification by a downstream linear decoder. Applied to spike patterns used in in vitro plasticity experiments, the rule reproduced multiple results including and beyond STDP. However STDP alone produced poorer learning performance. The mathematical form of the rule is consistent with a dual coincidence detector mechanism that has been suggested by experiments in several synaptic classes of juvenile neocortex. Based on this confluence of normative, phenomenological, and mechanistic evidence, we suggest that the rule may approximate a fundamental computational principle of the neocortex. PMID:24204224

  3. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less

  4. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    NASA Astrophysics Data System (ADS)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  5. Geological applications of machine learning on hyperspectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.

    2015-02-01

    The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.

  6. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning.

    PubMed

    Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing

    2018-01-11

    By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.

  7. Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire.

    PubMed

    Han, Shuting; Taralova, Ekaterina; Dupre, Christophe; Yuste, Rafael

    2018-03-28

    Animal behavior has been studied for centuries, but few efficient methods are available to automatically identify and classify it. Quantitative behavioral studies have been hindered by the subjective and imprecise nature of human observation, and the slow speed of annotating behavioral data. Here, we developed an automatic behavior analysis pipeline for the cnidarian Hydra vulgaris using machine learning. We imaged freely behaving Hydra , extracted motion and shape features from the videos, and constructed a dictionary of visual features to classify pre-defined behaviors. We also identified unannotated behaviors with unsupervised methods. Using this analysis pipeline, we quantified 6 basic behaviors and found surprisingly similar behavior statistics across animals within the same species, regardless of experimental conditions. Our analysis indicates that the fundamental behavioral repertoire of Hydra is stable. This robustness could reflect a homeostatic neural control of "housekeeping" behaviors which could have been already present in the earliest nervous systems. © 2018, Han et al.

  8. Class imbalance in unsupervised change detection - A diagnostic analysis from urban remote sensing

    NASA Astrophysics Data System (ADS)

    Leichtle, Tobias; Geiß, Christian; Lakes, Tobia; Taubenböck, Hannes

    2017-08-01

    Automatic monitoring of changes on the Earth's surface is an intrinsic capability and simultaneously a persistent methodological challenge in remote sensing, especially regarding imagery with very-high spatial resolution (VHR) and complex urban environments. In order to enable a high level of automatization, the change detection problem is solved in an unsupervised way to alleviate efforts associated with collection of properly encoded prior knowledge. In this context, this paper systematically investigates the nature and effects of class distribution and class imbalance in an unsupervised binary change detection application based on VHR imagery over urban areas. For this purpose, a diagnostic framework for sensitivity analysis of a large range of possible degrees of class imbalance is presented, which is of particular importance with respect to unsupervised approaches where the content of images and thus the occurrence and the distribution of classes are generally unknown a priori. Furthermore, this framework can serve as a general technique to evaluate model transferability in any two-class classification problem. The applied change detection approach is based on object-based difference features calculated from VHR imagery and subsequent unsupervised two-class clustering using k-means, genetic k-means and self-organizing map (SOM) clustering. The results from two test sites with different structural characteristics of the built environment demonstrated that classification performance is generally worse in imbalanced class distribution settings while best results were reached in balanced or close to balanced situations. Regarding suitable accuracy measures for evaluating model performance in imbalanced settings, this study revealed that the Kappa statistics show significant response to class distribution while the true skill statistic was widely insensitive to imbalanced classes. In general, the genetic k-means clustering algorithm achieved the most robust results with respect to class imbalance while the SOM clustering exhibited a distinct optimization towards a balanced distribution of classes.

  9. Interactive classification and content-based retrieval of tissue images

    NASA Astrophysics Data System (ADS)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  10. Classifying seismic noise and sources from OBS data using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Mosher, S. G.; Audet, P.

    2017-12-01

    The paradigm of plate tectonics was established mainly by recognizing the central role of oceanic plates in the production and destruction of tectonic plates at their boundaries. Since that realization, however, seismic studies of tectonic plates and their associated deformation have slowly shifted their attention toward continental plates due to the ease of installation and maintenance of high-quality seismic networks on land. The result has been a much more detailed understanding of the seismicity patterns associated with continental plate deformation in comparison with the low-magnitude deformation patterns within oceanic plates and at their boundaries. While the number of high-quality ocean-bottom seismometer (OBS) deployments within the past decade has demonstrated the potential to significantly increase our understanding of tectonic systems in oceanic settings, OBS data poses significant challenges to many of the traditional data processing techniques in seismology. In particular, problems involving the detection, location, and classification of seismic sources occurring within oceanic settings are much more difficult due to the extremely noisy seafloor environment in which data are recorded. However, classifying data without a priori constraints is a problem that is routinely pursued via unsupervised machine learning algorithms, which remain robust even in cases involving complicated datasets. In this research, we apply simple unsupervised machine learning algorithms (e.g., clustering) to OBS data from the Cascadia Initiative in an attempt to classify and detect a broad range of seismic sources, including various noise sources and tremor signals occurring within ocean settings.

  11. Quasi-Supervised Scoring of Human Sleep in Polysomnograms Using Augmented Input Variables

    PubMed Central

    Yaghouby, Farid; Sunderam, Sridhar

    2015-01-01

    The limitations of manual sleep scoring make computerized methods highly desirable. Scoring errors can arise from human rater uncertainty or inter-rater variability. Sleep scoring algorithms either come as supervised classifiers that need scored samples of each state to be trained, or as unsupervised classifiers that use heuristics or structural clues in unscored data to define states. We propose a quasi-supervised classifier that models observations in an unsupervised manner but mimics a human rater wherever training scores are available. EEG, EMG, and EOG features were extracted in 30s epochs from human-scored polysomnograms recorded from 42 healthy human subjects (18 to 79 years) and archived in an anonymized, publicly accessible database. Hypnograms were modified so that: 1. Some states are scored but not others; 2. Samples of all states are scored but not for transitional epochs; and 3. Two raters with 67% agreement are simulated. A framework for quasi-supervised classification was devised in which unsupervised statistical models—specifically Gaussian mixtures and hidden Markov models—are estimated from unlabeled training data, but the training samples are augmented with variables whose values depend on available scores. Classifiers were fitted to signal features incorporating partial scores, and used to predict scores for complete recordings. Performance was assessed using Cohen's K statistic. The quasi-supervised classifier performed significantly better than an unsupervised model and sometimes as well as a completely supervised model despite receiving only partial scores. The quasi-supervised algorithm addresses the need for classifiers that mimic scoring patterns of human raters while compensating for their limitations. PMID:25679475

  12. Quasi-supervised scoring of human sleep in polysomnograms using augmented input variables.

    PubMed

    Yaghouby, Farid; Sunderam, Sridhar

    2015-04-01

    The limitations of manual sleep scoring make computerized methods highly desirable. Scoring errors can arise from human rater uncertainty or inter-rater variability. Sleep scoring algorithms either come as supervised classifiers that need scored samples of each state to be trained, or as unsupervised classifiers that use heuristics or structural clues in unscored data to define states. We propose a quasi-supervised classifier that models observations in an unsupervised manner but mimics a human rater wherever training scores are available. EEG, EMG, and EOG features were extracted in 30s epochs from human-scored polysomnograms recorded from 42 healthy human subjects (18-79 years) and archived in an anonymized, publicly accessible database. Hypnograms were modified so that: 1. Some states are scored but not others; 2. Samples of all states are scored but not for transitional epochs; and 3. Two raters with 67% agreement are simulated. A framework for quasi-supervised classification was devised in which unsupervised statistical models-specifically Gaussian mixtures and hidden Markov models--are estimated from unlabeled training data, but the training samples are augmented with variables whose values depend on available scores. Classifiers were fitted to signal features incorporating partial scores, and used to predict scores for complete recordings. Performance was assessed using Cohen's Κ statistic. The quasi-supervised classifier performed significantly better than an unsupervised model and sometimes as well as a completely supervised model despite receiving only partial scores. The quasi-supervised algorithm addresses the need for classifiers that mimic scoring patterns of human raters while compensating for their limitations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Competitive repetition suppression (CoRe) clustering: a biologically inspired learning model with application to robust clustering.

    PubMed

    Bacciu, Davide; Starita, Antonina

    2008-11-01

    Determining a compact neural coding for a set of input stimuli is an issue that encompasses several biological memory mechanisms as well as various artificial neural network models. In particular, establishing the optimal network structure is still an open problem when dealing with unsupervised learning models. In this paper, we introduce a novel learning algorithm, named competitive repetition-suppression (CoRe) learning, inspired by a cortical memory mechanism called repetition suppression (RS). We show how such a mechanism is used, at various levels of the cerebral cortex, to generate compact neural representations of the visual stimuli. From the general CoRe learning model, we derive a clustering algorithm, named CoRe clustering, that can automatically estimate the unknown cluster number from the data without using a priori information concerning the input distribution. We illustrate how CoRe clustering, besides its biological plausibility, posses strong theoretical properties in terms of robustness to noise and outliers, and we provide an error function describing CoRe learning dynamics. Such a description is used to analyze CoRe relationships with the state-of-the art clustering models and to highlight CoRe similitude with rival penalized competitive learning (RPCL), showing how CoRe extends such a model by strengthening the rival penalization estimation by means of loss functions from robust statistics.

  14. Advances in optical information processing IV; Proceedings of the Meeting, Orlando, FL, Apr. 18-20, 1990

    NASA Astrophysics Data System (ADS)

    Pape, Dennis R.

    1990-09-01

    The present conference discusses topics in optical image processing, optical signal processing, acoustooptic spectrum analyzer systems and components, and optical computing. Attention is given to tradeoffs in nonlinearly recorded matched filters, miniature spatial light modulators, detection and classification using higher-order statistics of optical matched filters, rapid traversal of an image data base using binary synthetic discriminant filters, wideband signal processing for emitter location, an acoustooptic processor for autonomous SAR guidance, and sampling of Fresnel transforms. Also discussed are an acoustooptic RF signal-acquisition system, scanning acoustooptic spectrum analyzers, the effects of aberrations on acoustooptic systems, fast optical digital arithmetic processors, information utilization in analog and digital processing, optical processors for smart structures, and a self-organizing neural network for unsupervised learning.

  15. Learning Long-Range Vision for an Offroad Robot

    DTIC Science & Technology

    2008-09-01

    robot to perceive and navigate in an unstructured natural world is a difficult task. Without learning, navigation systems are short-range and extremely...unsupervised or weakly supervised learning methods are necessary for training general feature representations for natural scenes. The process was...the world looked dark, and Legos when I was weary. iii ABSTRACT Teaching a robot to perceive and navigate in an unstructured natural world is a

  16. Learning LM Specificity for Ganglion Cells

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  17. Multispectral and Panchromatic used Enhancement Resolution and Study Effective Enhancement on Supervised and Unsupervised Classification Land – Cover

    NASA Astrophysics Data System (ADS)

    Salman, S. S.; Abbas, W. A.

    2018-05-01

    The goal of the study is to support analysis Enhancement of Resolution and study effect on classification methods on bands spectral information of specific and quantitative approaches. In this study introduce a method to enhancement resolution Landsat 8 of combining the bands spectral of 30 meters resolution with panchromatic band 8 of 15 meters resolution, because of importance multispectral imagery to extracting land - cover. Classification methods used in this study to classify several lands -covers recorded from OLI- 8 imagery. Two methods of Data mining can be classified as either supervised or unsupervised. In supervised methods, there is a particular predefined target, that means the algorithm learn which values of the target are associated with which values of the predictor sample. K-nearest neighbors and maximum likelihood algorithms examine in this work as supervised methods. In other hand, no sample identified as target in unsupervised methods, the algorithm of data extraction searches for structure and patterns between all the variables, represented by Fuzzy C-mean clustering method as one of the unsupervised methods, NDVI vegetation index used to compare the results of classification method, the percent of dense vegetation in maximum likelihood method give a best results.

  18. Unsupervised categorization with individuals diagnosed as having moderate traumatic brain injury: Over-selective responding.

    PubMed

    Edwards, Darren J; Wood, Rodger

    2016-01-01

    This study explored over-selectivity (executive dysfunction) using a standard unsupervised categorization task. Over-selectivity has been demonstrated using supervised categorization procedures (where training is given); however, little has been done in the way of unsupervised categorization (without training). A standard unsupervised categorization task was used to assess levels of over-selectivity in a traumatic brain injury (TBI) population. Individuals with TBI were selected from the Tertiary Traumatic Brain Injury Clinic at Swansea University and were asked to categorize two-dimensional items (pictures on cards), into groups that they felt were most intuitive, and without any learning (feedback from experimenter). This was compared against categories made by a control group for the same task. The findings of this study demonstrate that individuals with TBI had deficits for both easy and difficult categorization sets, as indicated by a larger amount of one-dimensional sorting compared to control participants. Deficits were significantly greater for the easy condition. The implications of these findings are discussed in the context of over-selectivity, and the processes that underlie this deficit. Also, the implications for using this procedure as a screening measure for over-selectivity in TBI are discussed.

  19. Segmentation of fluorescence microscopy cell images using unsupervised mining.

    PubMed

    Du, Xian; Dua, Sumeet

    2010-05-28

    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

  20. Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines.

    PubMed

    Neftci, Emre O; Pedroni, Bruno U; Joshi, Siddharth; Al-Shedivat, Maruan; Cauwenberghs, Gert

    2016-01-01

    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate and fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based S2Ms outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware.

  1. Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    PubMed Central

    Neftci, Emre O.; Pedroni, Bruno U.; Joshi, Siddharth; Al-Shedivat, Maruan; Cauwenberghs, Gert

    2016-01-01

    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate and fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based S2Ms outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware. PMID:27445650

  2. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    NASA Technical Reports Server (NTRS)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (< 1 ms) across a broad range of frequencies, and can be confused with signals from sources of interest such as pulsars. With ever-increasing volumes of data being produced by observatories, automated strategies are required to detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  3. Unsupervised segmentation with dynamical units.

    PubMed

    Rao, A Ravishankar; Cecchi, Guillermo A; Peck, Charles C; Kozloski, James R

    2008-01-01

    In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the components of each input object that most contribute to its classification. The network consists of amplitude-phase units that can synchronize their dynamics, so that separation is determined by the amplitude of units in an output layer, and segmentation by phase similarity between input and output layer units. Learning is unsupervised and based on a Hebbian update, and the architecture is very simple. Moreover, efficient segmentation can be achieved even when there is considerable superposition of the inputs. The network dynamics are derived from an objective function that rewards sparse coding in the generalized amplitude-phase variables. We argue that this objective function can provide a possible formal interpretation of the binding problem and that the implementation of the network architecture and dynamics is biologically plausible.

  4. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain.

    PubMed

    Higgins, Irina; Stringer, Simon; Schnupp, Jan

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable.

  5. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain

    PubMed Central

    Stringer, Simon

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable. PMID:28797034

  6. Radio Model-free Noise Reduction of Radio Transmissions with Convolutional Autoencoders

    DTIC Science & Technology

    2016-09-01

    Encoder-Decoder Architecture for Image Segmentation .” Cornell University Library. Computing Research Repository (CoRR). abs/1511.00561. 2. Anthony J. Bell...Aaron C Courville, and Pascal Vincent. 2012. “Unsupervised Feature Learning and Deep Learning : A Review and New Perspectives.” Cornell University...Linux Journal 122(June):1–4. 5. Francois Chollet. 2015.“Keras: Deep Learning Library for TensorFlow and Theano.” Available online at https://github.com

  7. An introduction to kernel-based learning algorithms.

    PubMed

    Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B

    2001-01-01

    This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.

  8. Stratification Learning: Detecting Mixed Density and Dimensionality in High Dimensional Point Clouds (PREPRINT)

    DTIC Science & Technology

    2006-09-01

    Medioni, [11], estimates the local dimension using tensor voting . These recent works have clearly shown the necessity to go beyond manifold learning, into...2005. [11] P. Mordohai and G. Medioni. Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting . In...walking, jumping, and arms waving. The whole run took 361 seconds in Matlab , while the classification time (PMM) can be neglected compared to the kNN

  9. How to Select a Good Training-data Subset for Transcription: Submodular Active Selection for Sequences

    DTIC Science & Technology

    2009-01-01

    selection and uncertainty sampling signif- icantly. Index Terms: Transcription, labeling, submodularity, submod- ular selection, active learning , sequence...name of batch active learning , where a subset of data that is most informative and represen- tative of the whole is selected for labeling. Often...representative subset. Note that our Fisher ker- nel is over an unsupervised generative model, which enables us to bootstrap our active learning approach

  10. Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Jianbo

    2017-01-01

    This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.

  11. Visualization of multiple influences on ocellar flight control in giant honeybees with the data-mining tool Viscovery SOMine.

    PubMed

    Kastberger, G; Kranner, G

    2000-02-01

    Viscovery SOMine is a software tool for advanced analysis and monitoring of numerical data sets. It was developed for professional use in business, industry, and science and to support dependency analysis, deviation detection, unsupervised clustering, nonlinear regression, data association, pattern recognition, and animated monitoring. Based on the concept of self-organizing maps (SOMs), it employs a robust variant of unsupervised neural networks--namely, Kohonen's Batch-SOM, which is further enhanced with a new scaling technique for speeding up the learning process. This tool provides a powerful means by which to analyze complex data sets without prior statistical knowledge. The data representation contained in the trained SOM is systematically converted to be used in a spectrum of visualization techniques, such as evaluating dependencies between components, investigating geometric properties of the data distribution, searching for clusters, or monitoring new data. We have used this software tool to analyze and visualize multiple influences of the ocellar system on free-flight behavior in giant honeybees. Occlusion of ocelli will affect orienting reactivities in relation to flight target, level of disturbance, and position of the bee in the flight chamber; it will induce phototaxis and make orienting imprecise and dependent on motivational settings. Ocelli permit the adjustment of orienting strategies to environmental demands by enforcing abilities such as centering or flight kinetics and by providing independent control of posture and flight course.

  12. Unsupervised Learning of Overlapping Image Components Using Divisive Input Modulation

    PubMed Central

    Spratling, M. W.; De Meyer, K.; Kompass, R.

    2009-01-01

    This paper demonstrates that nonnegative matrix factorisation is mathematically related to a class of neural networks that employ negative feedback as a mechanism of competition. This observation inspires a novel learning algorithm which we call Divisive Input Modulation (DIM). The proposed algorithm provides a mathematically simple and computationally efficient method for the unsupervised learning of image components, even in conditions where these elementary features overlap considerably. To test the proposed algorithm, a novel artificial task is introduced which is similar to the frequently-used bars problem but employs squares rather than bars to increase the degree of overlap between components. Using this task, we investigate how the proposed method performs on the parsing of artificial images composed of overlapping features, given the correct representation of the individual components; and secondly, we investigate how well it can learn the elementary components from artificial training images. We compare the performance of the proposed algorithm with its predecessors including variations on these algorithms that have produced state-of-the-art performance on the bars problem. The proposed algorithm is more successful than its predecessors in dealing with overlap and occlusion in the artificial task that has been used to assess performance. PMID:19424442

  13. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    PubMed Central

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system. PMID:27713685

  14. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface.

    PubMed

    Waytowich, Nicholas R; Lawhern, Vernon J; Bohannon, Addison W; Ball, Kenneth R; Lance, Brent J

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  15. Automatic microseismic event picking via unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2018-01-01

    Effective and efficient arrival picking plays an important role in microseismic and earthquake data processing and imaging. Widely used short-term-average long-term-average ratio (STA/LTA) based arrival picking algorithms suffer from the sensitivity to moderate-to-strong random ambient noise. To make the state-of-the-art arrival picking approaches effective, microseismic data need to be first pre-processed, for example, removing sufficient amount of noise, and second analysed by arrival pickers. To conquer the noise issue in arrival picking for weak microseismic or earthquake event, I leverage the machine learning techniques to help recognizing seismic waveforms in microseismic or earthquake data. Because of the dependency of supervised machine learning algorithm on large volume of well-designed training data, I utilize an unsupervised machine learning algorithm to help cluster the time samples into two groups, that is, waveform points and non-waveform points. The fuzzy clustering algorithm has been demonstrated to be effective for such purpose. A group of synthetic, real microseismic and earthquake data sets with different levels of complexity show that the proposed method is much more robust than the state-of-the-art STA/LTA method in picking microseismic events, even in the case of moderately strong background noise.

  16. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity.

    PubMed

    Pedretti, G; Milo, V; Ambrogio, S; Carboni, R; Bianchi, S; Calderoni, A; Ramaswamy, N; Spinelli, A S; Ielmini, D

    2017-07-13

    Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain operation, and second to identify a scalable microelectronic technology capable of reproducing some of the inherent functions of the human brain, such as the high synaptic connectivity (~10 4 ) and the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the local time-dependent superposition of pre- and post-synaptic spikes within a hybrid one-transistor/one-resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning of a static pattern and tracking of a dynamic pattern of up to 4 × 4 pixels are demonstrated, paving the way for intelligent hardware technology with up-scaled memristive neural networks.

  17. Evaluation of Deep Learning Representations of Spatial Storm Data

    NASA Astrophysics Data System (ADS)

    Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.

    2017-12-01

    The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.

  18. A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction

    NASA Astrophysics Data System (ADS)

    Benvenuto, Federico; Piana, Michele; Campi, Cristina; Massone, Anna Maria

    2018-01-01

    This paper introduces a novel method for flare forecasting, combining prediction accuracy with the ability to identify the most relevant predictive variables. This result is obtained by means of a two-step approach: first, a supervised regularization method for regression, namely, LASSO is applied, where a sparsity-enhancing penalty term allows the identification of the significance with which each data feature contributes to the prediction; then, an unsupervised fuzzy clustering technique for classification, namely, Fuzzy C-Means, is applied, where the regression outcome is partitioned through the minimization of a cost function and without focusing on the optimization of a specific skill score. This approach is therefore hybrid, since it combines supervised and unsupervised learning; realizes classification in an automatic, skill-score-independent way; and provides effective prediction performances even in the case of imbalanced data sets. Its prediction power is verified against NOAA Space Weather Prediction Center data, using as a test set, data in the range between 1996 August and 2010 December and as training set, data in the range between 1988 December and 1996 June. To validate the method, we computed several skill scores typically utilized in flare prediction and compared the values provided by the hybrid approach with the ones provided by several standard (non-hybrid) machine learning methods. The results showed that the hybrid approach performs classification better than all other supervised methods and with an effectiveness comparable to the one of clustering methods; but, in addition, it provides a reliable ranking of the weights with which the data properties contribute to the forecast.

  19. Vibration control of building structures using self-organizing and self-learning neural networks

    NASA Astrophysics Data System (ADS)

    Madan, Alok

    2005-11-01

    Past research in artificial intelligence establishes that artificial neural networks (ANN) are effective and efficient computational processors for performing a variety of tasks including pattern recognition, classification, associative recall, combinatorial problem solving, adaptive control, multi-sensor data fusion, noise filtering and data compression, modelling and forecasting. The paper presents a potentially feasible approach for training ANN in active control of earthquake-induced vibrations in building structures without the aid of teacher signals (i.e. target control forces). A counter-propagation neural network is trained to output the control forces that are required to reduce the structural vibrations in the absence of any feedback on the correctness of the output control forces (i.e. without any information on the errors in output activations of the network). The present study shows that, in principle, the counter-propagation network (CPN) can learn from the control environment to compute the required control forces without the supervision of a teacher (unsupervised learning). Simulated case studies are presented to demonstrate the feasibility of implementing the unsupervised learning approach in ANN for effective vibration control of structures under the influence of earthquake ground motions. The proposed learning methodology obviates the need for developing a mathematical model of structural dynamics or training a separate neural network to emulate the structural response for implementation in practice.

  20. History matching through dynamic decision-making

    PubMed Central

    Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson

    2017-01-01

    History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413

  1. Reconstruction of three-dimensional porous media using generative adversarial neural networks

    NASA Astrophysics Data System (ADS)

    Mosser, Lukas; Dubrule, Olivier; Blunt, Martin J.

    2017-10-01

    To evaluate the variability of multiphase flow properties of porous media at the pore scale, it is necessary to acquire a number of representative samples of the void-solid structure. While modern x-ray computer tomography has made it possible to extract three-dimensional images of the pore space, assessment of the variability in the inherent material properties is often experimentally not feasible. We present a method to reconstruct the solid-void structure of porous media by applying a generative neural network that allows an implicit description of the probability distribution represented by three-dimensional image data sets. We show, by using an adversarial learning approach for neural networks, that this method of unsupervised learning is able to generate representative samples of porous media that honor their statistics. We successfully compare measures of pore morphology, such as the Euler characteristic, two-point statistics, and directional single-phase permeability of synthetic realizations with the calculated properties of a bead pack, Berea sandstone, and Ketton limestone. Results show that generative adversarial networks can be used to reconstruct high-resolution three-dimensional images of porous media at different scales that are representative of the morphology of the images used to train the neural network. The fully convolutional nature of the trained neural network allows the generation of large samples while maintaining computational efficiency. Compared to classical stochastic methods of image reconstruction, the implicit representation of the learned data distribution can be stored and reused to generate multiple realizations of the pore structure very rapidly.

  2. Learning relevant features of data with multi-scale tensor networks

    NASA Astrophysics Data System (ADS)

    Miles Stoudenmire, E.

    2018-07-01

    Inspired by coarse-graining approaches used in physics, we show how similar algorithms can be adapted for data. The resulting algorithms are based on layered tree tensor networks and scale linearly with both the dimension of the input and the training set size. Computing most of the layers with an unsupervised algorithm, then optimizing just the top layer for supervised classification of the MNIST and fashion MNIST data sets gives very good results. We also discuss mixing a prior guess for supervised weights together with an unsupervised representation of the data, yielding a smaller number of features nevertheless able to give good performance.

  3. Comparative study of feature selection with ensemble learning using SOM variants

    NASA Astrophysics Data System (ADS)

    Filali, Ameni; Jlassi, Chiraz; Arous, Najet

    2017-03-01

    Ensemble learning has succeeded in the growth of stability and clustering accuracy, but their runtime prohibits them from scaling up to real-world applications. This study deals the problem of selecting a subset of the most pertinent features for every cluster from a dataset. The proposed method is another extension of the Random Forests approach using self-organizing maps (SOM) variants to unlabeled data that estimates the out-of-bag feature importance from a set of partitions. Every partition is created using a various bootstrap sample and a random subset of the features. Then, we show that the process internal estimates are used to measure variable pertinence in Random Forests are also applicable to feature selection in unsupervised learning. This approach aims to the dimensionality reduction, visualization and cluster characterization at the same time. Hence, we provide empirical results on nineteen benchmark data sets indicating that RFS can lead to significant improvement in terms of clustering accuracy, over several state-of-the-art unsupervised methods, with a very limited subset of features. The approach proves promise to treat with very broad domains.

  4. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.

    PubMed

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.

  5. Topic Model for Graph Mining.

    PubMed

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  6. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks

    PubMed Central

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building. PMID:28540284

  7. An Empirical Study of Neural Network-Based Audience Response Technology in a Human Anatomy Course for Pharmacy Students.

    PubMed

    Fernández-Alemán, José Luis; López-González, Laura; González-Sequeros, Ofelia; Jayne, Chrisina; López-Jiménez, Juan José; Carrillo-de-Gea, Juan Manuel; Toval, Ambrosio

    2016-04-01

    This paper presents an empirical study of a formative neural network-based assessment approach by using mobile technology to provide pharmacy students with intelligent diagnostic feedback. An unsupervised learning algorithm was integrated with an audience response system called SIDRA in order to generate states that collect some commonality in responses to questions and add diagnostic feedback for guided learning. A total of 89 pharmacy students enrolled on a Human Anatomy course were taught using two different teaching methods. Forty-four students employed intelligent SIDRA (i-SIDRA), whereas 45 students received the same training but without using i-SIDRA. A statistically significant difference was found between the experimental group (i-SIDRA) and the control group (traditional learning methodology), with T (87) = 6.598, p < 0.001. In four MCQs tests, the difference between the number of correct answers in the first attempt and in the last attempt was also studied. A global effect size of 0.644 was achieved in the meta-analysis carried out. The students expressed satisfaction with the content provided by i-SIDRA and the methodology used during the process of learning anatomy (M = 4.59). The new empirical contribution presented in this paper allows instructors to perform post hoc analyses of each particular student's progress to ensure appropriate training.

  8. Integrated, Independent and Individual Learning Activities, First and Second Grades. Summer Learning Activities, Second and Third Grades. Boston-Northampton Language Arts Program, ESEA - 1965, Projects to Advance Creativity in Education.

    ERIC Educational Resources Information Center

    Baldwin, Virginia

    The purpose of this document is to help teachers stimulate children and provide successful learning experiences in order to develop positive self-concepts. Part I contains lists of suggestions of activities for unsupervised work at the following centers: (1) language, (2) chalk, (3) math, (4) measuring, (5) music, (6) games, toys, and puzzles, (7)…

  9. LEARNING SEMANTICS-ENHANCED LANGUAGE MODELS APPLIED TO UNSUEPRVISED WSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VERSPOOR, KARIN; LIN, SHOU-DE

    An N-gram language model aims at capturing statistical syntactic word order information from corpora. Although the concept of language models has been applied extensively to handle a variety of NLP problems with reasonable success, the standard model does not incorporate semantic information, and consequently limits its applicability to semantic problems such as word sense disambiguation. We propose a framework that integrates semantic information into the language model schema, allowing a system to exploit both syntactic and semantic information to address NLP problems. Furthermore, acknowledging the limited availability of semantically annotated data, we discuss how the proposed model can be learnedmore » without annotated training examples. Finally, we report on a case study showing how the semantics-enhanced language model can be applied to unsupervised word sense disambiguation with promising results.« less

  10. LANDSAT landcover information applied to regional planning decisions. [Prince Edward County, Virginia

    NASA Technical Reports Server (NTRS)

    Dixon, C. M.

    1981-01-01

    Land cover information derived from LANDSAT is being utilized by Piedmont Planning District Commission located in the State of Virginia. Progress to date is reported on a level one land cover classification map being produced with nine categories. The nine categories of classification are defined. The computer compatible tape selection is presented. Two unsupervised classifications were done, with 50 and 70 classes respectively. Twenty-eight spectral classes were developed using the supervised technique, employing actual ground truth training sites. The accuracy of the unsupervised classifications are estimated through comparison with local county statistics and with an actual pixel count of LANDSAT information compared to ground truth.

  11. An unsupervised machine learning model for discovering latent infectious diseases using social media data.

    PubMed

    Lim, Sunghoon; Tucker, Conrad S; Kumara, Soundar

    2017-02-01

    The authors of this work propose an unsupervised machine learning model that has the ability to identify real-world latent infectious diseases by mining social media data. In this study, a latent infectious disease is defined as a communicable disease that has not yet been formalized by national public health institutes and explicitly communicated to the general public. Most existing approaches to modeling infectious-disease-related knowledge discovery through social media networks are top-down approaches that are based on already known information, such as the names of diseases and their symptoms. In existing top-down approaches, necessary but unknown information, such as disease names and symptoms, is mostly unidentified in social media data until national public health institutes have formalized that disease. Most of the formalizing processes for latent infectious diseases are time consuming. Therefore, this study presents a bottom-up approach for latent infectious disease discovery in a given location without prior information, such as disease names and related symptoms. Social media messages with user and temporal information are extracted during the data preprocessing stage. An unsupervised sentiment analysis model is then presented. Users' expressions about symptoms, body parts, and pain locations are also identified from social media data. Then, symptom weighting vectors for each individual and time period are created, based on their sentiment and social media expressions. Finally, latent-infectious-disease-related information is retrieved from individuals' symptom weighting vectors. Twitter data from August 2012 to May 2013 are used to validate this study. Real electronic medical records for 104 individuals, who were diagnosed with influenza in the same period, are used to serve as ground truth validation. The results are promising, with the highest precision, recall, and F 1 score values of 0.773, 0.680, and 0.724, respectively. This work uses individuals' social media messages to identify latent infectious diseases, without prior information, quicker than when the disease(s) is formalized by national public health institutes. In particular, the unsupervised machine learning model using user, textual, and temporal information in social media data, along with sentiment analysis, identifies latent infectious diseases in a given location. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. An unsupervised method for quantifying the behavior of paired animals

    NASA Astrophysics Data System (ADS)

    Klibaite, Ugne; Berman, Gordon J.; Cande, Jessica; Stern, David L.; Shaevitz, Joshua W.

    2017-02-01

    Behaviors involving the interaction of multiple individuals are complex and frequently crucial for an animal’s survival. These interactions, ranging across sensory modalities, length scales, and time scales, are often subtle and difficult to characterize. Contextual effects on the frequency of behaviors become even more difficult to quantify when physical interaction between animals interferes with conventional data analysis, e.g. due to visual occlusion. We introduce a method for quantifying behavior in fruit fly interaction that combines high-throughput video acquisition and tracking of individuals with recent unsupervised methods for capturing an animal’s entire behavioral repertoire. We find behavioral differences between solitary flies and those paired with an individual of the opposite sex, identifying specific behaviors that are affected by social and spatial context. Our pipeline allows for a comprehensive description of the interaction between two individuals using unsupervised machine learning methods, and will be used to answer questions about the depth of complexity and variance in fruit fly courtship.

  13. Neural networks for learning and prediction with applications to remote sensing and speech perception

    NASA Astrophysics Data System (ADS)

    Gjaja, Marin N.

    1997-11-01

    Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored. A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites. Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems. The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An unsupervised neural network model is proposed that embodies two principal hypotheses supported by experimental data--that sensory experience guides language-specific development of an auditory neural map and that a population vector can predict psychological phenomena based on map cell activities. Model simulations show how a nonuniform distribution of map cell firing preferences can develop from language-specific input and give rise to the magnet effect.

  14. FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection.

    PubMed

    Noto, Keith; Brodley, Carla; Slonim, Donna

    2012-01-01

    Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called "normal" instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach.

  15. FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection

    PubMed Central

    Brodley, Carla; Slonim, Donna

    2011-01-01

    Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called “normal” instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach. PMID:22639542

  16. Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data.

    PubMed

    Mwangi, Benson; Soares, Jair C; Hasan, Khader M

    2014-10-30

    Neuroimaging machine learning studies have largely utilized supervised algorithms - meaning they require both neuroimaging scan data and corresponding target variables (e.g. healthy vs. diseased) to be successfully 'trained' for a prediction task. Noticeably, this approach may not be optimal or possible when the global structure of the data is not well known and the researcher does not have an a priori model to fit the data. We set out to investigate the utility of an unsupervised machine learning technique; t-distributed stochastic neighbour embedding (t-SNE) in identifying 'unseen' sample population patterns that may exist in high-dimensional neuroimaging data. Multimodal neuroimaging scans from 92 healthy subjects were pre-processed using atlas-based methods, integrated and input into the t-SNE algorithm. Patterns and clusters discovered by the algorithm were visualized using a 2D scatter plot and further analyzed using the K-means clustering algorithm. t-SNE was evaluated against classical principal component analysis. Remarkably, based on unlabelled multimodal scan data, t-SNE separated study subjects into two very distinct clusters which corresponded to subjects' gender labels (cluster silhouette index value=0.79). The resulting clusters were used to develop an unsupervised minimum distance clustering model which identified 93.5% of subjects' gender. Notably, from a neuropsychiatric perspective this method may allow discovery of data-driven disease phenotypes or sub-types of treatment responders. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Automated age-related macular degeneration classification in OCT using unsupervised feature learning

    NASA Astrophysics Data System (ADS)

    Venhuizen, Freerk G.; van Ginneken, Bram; Bloemen, Bart; van Grinsven, Mark J. J. P.; Philipsen, Rick; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I.

    2015-03-01

    Age-related Macular Degeneration (AMD) is a common eye disorder with high prevalence in elderly people. The disease mainly affects the central part of the retina, and could ultimately lead to permanent vision loss. Optical Coherence Tomography (OCT) is becoming the standard imaging modality in diagnosis of AMD and the assessment of its progression. However, the evaluation of the obtained volumetric scan is time consuming, expensive and the signs of early AMD are easy to miss. In this paper we propose a classification method to automatically distinguish AMD patients from healthy subjects with high accuracy. The method is based on an unsupervised feature learning approach, and processes the complete image without the need for an accurate pre-segmentation of the retina. The method can be divided in two steps: an unsupervised clustering stage that extracts a set of small descriptive image patches from the training data, and a supervised training stage that uses these patches to create a patch occurrence histogram for every image on which a random forest classifier is trained. Experiments using 384 volume scans show that the proposed method is capable of identifying AMD patients with high accuracy, obtaining an area under the Receiver Operating Curve of 0:984. Our method allows for a quick and reliable assessment of the presence of AMD pathology in OCT volume scans without the need for accurate layer segmentation algorithms.

  18. Machine learning in cardiovascular medicine: are we there yet?

    PubMed

    Shameer, Khader; Johnson, Kipp W; Glicksberg, Benjamin S; Dudley, Joel T; Sengupta, Partho P

    2018-01-19

    Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Closed-form expressions of some stochastic adapting equations for nonlinear adaptive activation function neurons.

    PubMed

    Fiori, Simone

    2003-12-01

    In recent work, we introduced nonlinear adaptive activation function (FAN) artificial neuron models, which learn their activation functions in an unsupervised way by information-theoretic adapting rules. We also applied networks of these neurons to some blind signal processing problems, such as independent component analysis and blind deconvolution. The aim of this letter is to study some fundamental aspects of FAN units' learning by investigating the properties of the associated learning differential equation systems.

  20. Methods of Sparse Modeling and Dimensionality Reduction to Deal with Big Data

    DTIC Science & Technology

    2015-04-01

    supervised learning (c). Our framework consists of two separate phases: (a) first find an initial space in an unsupervised manner; then (b) utilize label...model that can learn thousands of topics from a large set of documents and infer the topic mixture of each document, 2) a supervised dimension reduction...model that can learn thousands of topics from a large set of documents and infer the topic mixture of each document, (i) a method of supervised

  1. Translating statistical images to text summaries for partially sighted persons on mobile devices: iconic image maps approach

    NASA Astrophysics Data System (ADS)

    Williams, Godfried B.

    2005-03-01

    This paper attempts to demonstrate a novel based idea for transforming statistical image data to text using autoassociative and unsupervised artificial neural network and iconic image maps using the shape and texture genetic algorithm, underlying concepts translating the image data to text. Full details of experiments could be assessed at http://www.uel.ac.uk/seis/applications/.

  2. Discovery of Deep Structure from Unlabeled Data

    DTIC Science & Technology

    2014-11-01

    GPU processors . To evaluate the unsupervised learning component of the algorithms (which has become of less importance in the era of “big data...representations to those in biological visual, auditory, and somatosensory cortex ; and ran numerous control experiments investigating the impact of

  3. Introduction to Concepts in Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  4. Binary Multidimensional Scaling for Hashing.

    PubMed

    Huang, Yameng; Lin, Zhouchen

    2017-10-04

    Hashing is a useful technique for fast nearest neighbor search due to its low storage cost and fast query speed. Unsupervised hashing aims at learning binary hash codes for the original features so that the pairwise distances can be best preserved. While several works have targeted on this task, the results are not satisfactory mainly due to the oversimplified model. In this paper, we propose a unified and concise unsupervised hashing framework, called Binary Multidimensional Scaling (BMDS), which is able to learn the hash code for distance preservation in both batch and online mode. In the batch mode, unlike most existing hashing methods, we do not need to simplify the model by predefining the form of hash map. Instead, we learn the binary codes directly based on the pairwise distances among the normalized original features by Alternating Minimization. This enables a stronger expressive power of the hash map. In the online mode, we consider the holistic distance relationship between current query example and those we have already learned, rather than only focusing on current data chunk. It is useful when the data come in a streaming fashion. Empirical results show that while being efficient for training, our algorithm outperforms state-of-the-art methods by a large margin in terms of distance preservation, which is practical for real-world applications.

  5. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

    PubMed Central

    Miotto, Riccardo; Li, Li; Kidd, Brian A.; Dudley, Joel T.

    2016-01-01

    Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems. PMID:27185194

  6. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    DOE PAGES

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; ...

    2016-09-22

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less

  7. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

    NASA Astrophysics Data System (ADS)

    Miotto, Riccardo; Li, Li; Kidd, Brian A.; Dudley, Joel T.

    2016-05-01

    Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems.

  8. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less

  9. Color normalization of histology slides using graph regularized sparse NMF

    NASA Astrophysics Data System (ADS)

    Sha, Lingdao; Schonfeld, Dan; Sethi, Amit

    2017-03-01

    Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.

  10. Unsupervised discovery of information structure in biomedical documents.

    PubMed

    Kiela, Douwe; Guo, Yufan; Stenius, Ulla; Korhonen, Anna

    2015-04-01

    Information structure (IS) analysis is a text mining technique, which classifies text in biomedical articles into categories that capture different types of information, such as objectives, methods, results and conclusions of research. It is a highly useful technique that can support a range of Biomedical Text Mining tasks and can help readers of biomedical literature find information of interest faster, accelerating the highly time-consuming process of literature review. Several approaches to IS analysis have been presented in the past, with promising results in real-world biomedical tasks. However, all existing approaches, even weakly supervised ones, require several hundreds of hand-annotated training sentences specific to the domain in question. Because biomedicine is subject to considerable domain variation, such annotations are expensive to obtain. This makes the application of IS analysis across biomedical domains difficult. In this article, we investigate an unsupervised approach to IS analysis and evaluate the performance of several unsupervised methods on a large corpus of biomedical abstracts collected from PubMed. Our best unsupervised algorithm (multilevel-weighted graph clustering algorithm) performs very well on the task, obtaining over 0.70 F scores for most IS categories when applied to well-known IS schemes. This level of performance is close to that of lightly supervised IS methods and has proven sufficient to aid a range of practical tasks. Thus, using an unsupervised approach, IS could be applied to support a wide range of tasks across sub-domains of biomedicine. We also demonstrate that unsupervised learning brings novel insights into IS of biomedical literature and discovers information categories that are not present in any of the existing IS schemes. The annotated corpus and software are available at http://www.cl.cam.ac.uk/∼dk427/bio14info.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…

  12. Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection.

    PubMed

    Zhu, Xiaofeng; Li, Xuelong; Zhang, Shichao; Ju, Chunhua; Wu, Xindong

    2017-06-01

    In this paper, we propose a new unsupervised spectral feature selection model by embedding a graph regularizer into the framework of joint sparse regression for preserving the local structures of data. To do this, we first extract the bases of training data by previous dictionary learning methods and, then, map original data into the basis space to generate their new representations, by proposing a novel joint graph sparse coding (JGSC) model. In JGSC, we first formulate its objective function by simultaneously taking subspace learning and joint sparse regression into account, then, design a new optimization solution to solve the resulting objective function, and further prove the convergence of the proposed solution. Furthermore, we extend JGSC to a robust JGSC (RJGSC) via replacing the least square loss function with a robust loss function, for achieving the same goals and also avoiding the impact of outliers. Finally, experimental results on real data sets showed that both JGSC and RJGSC outperformed the state-of-the-art algorithms in terms of k -nearest neighbor classification performance.

  13. Self-Organizing Hidden Markov Model Map (SOHMMM).

    PubMed

    Ferles, Christos; Stafylopatis, Andreas

    2013-12-01

    A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Waveform classification and statistical analysis of seismic precursors to the July 2008 Vulcanian Eruption of Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Rodgers, Mel; Smith, Patrick; Pyle, David; Mather, Tamsin

    2016-04-01

    Understanding the transition between quiescence and eruption at dome-forming volcanoes, such as Soufrière Hills Volcano (SHV), Montserrat, is important for monitoring volcanic activity during long-lived eruptions. Statistical analysis of seismic events (e.g. spectral analysis and identification of multiplets via cross-correlation) can be useful for characterising seismicity patterns and can be a powerful tool for analysing temporal changes in behaviour. Waveform classification is crucial for volcano monitoring, but consistent classification, both during real-time analysis and for retrospective analysis of previous volcanic activity, remains a challenge. Automated classification allows consistent re-classification of events. We present a machine learning (random forest) approach to rapidly classify waveforms that requires minimal training data. We analyse the seismic precursors to the July 2008 Vulcanian explosion at SHV and show systematic changes in frequency content and multiplet behaviour that had not previously been recognised. These precursory patterns of seismicity may be interpreted as changes in pressure conditions within the conduit during magma ascent and could be linked to magma flow rates. Frequency analysis of the different waveform classes supports the growing consensus that LP and Hybrid events should be considered end members of a continuum of low-frequency source processes. By using both supervised and unsupervised machine-learning methods we investigate the nature of waveform classification and assess current classification schemes.

  15. Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12

    PubMed Central

    Chen, Chi; Lu, Ziheng; Ciucci, Francesco

    2017-01-01

    Understanding Li diffusion in solid conductors is essential for the next generation Li batteries. Here we show that density-based clustering of the trajectories computed using molecular dynamics simulations helps elucidate the Li diffusion mechanism within the Li7La3Zr2O12 (LLZO) crystal lattice. This unsupervised learning method recognizes lattice sites, is able to give the site type, and can identify Li hopping events. Results show that, while the cubic LLZO has a much higher hopping rate compared to its tetragonal counterpart, most of the Li hops in the cubic LLZO do not contribute to the diffusivity due to the dominance of back-and-forth type jumps. The hopping analysis and local Li configuration statistics give evidence that Li diffusivity in cubic LLZO is limited by the low vacancy concentration. The hopping statistics also shows uncorrelated Poisson-like diffusion for Li in the cubic LLZO, and correlated diffusion for Li in the tetragonal LLZO in the temporal scale. Further analysis of the spatio-temporal correlation using site-to-site mutual information confirms the weak site dependence of Li diffusion in the cubic LLZO as the origin for the uncorrelated diffusion. This work puts forward a perspective on combining machine learning and information theory to interpret results of molecular dynamics simulations. PMID:28094317

  16. Molecular heterogeneity at the network level: high-dimensional testing, clustering and a TCGA case study.

    PubMed

    Städler, Nicolas; Dondelinger, Frank; Hill, Steven M; Akbani, Rehan; Lu, Yiling; Mills, Gordon B; Mukherjee, Sach

    2017-09-15

    Molecular pathways and networks play a key role in basic and disease biology. An emerging notion is that networks encoding patterns of molecular interplay may themselves differ between contexts, such as cell type, tissue or disease (sub)type. However, while statistical testing of differences in mean expression levels has been extensively studied, testing of network differences remains challenging. Furthermore, since network differences could provide important and biologically interpretable information to identify molecular subgroups, there is a need to consider the unsupervised task of learning subgroups and networks that define them. This is a nontrivial clustering problem, with neither subgroups nor subgroup-specific networks known at the outset. We leverage recent ideas from high-dimensional statistics for testing and clustering in the network biology setting. The methods we describe can be applied directly to most continuous molecular measurements and networks do not need to be specified beforehand. We illustrate the ideas and methods in a case study using protein data from The Cancer Genome Atlas (TCGA). This provides evidence that patterns of interplay between signalling proteins differ significantly between cancer types. Furthermore, we show how the proposed approaches can be used to learn subtypes and the molecular networks that define them. As the Bioconductor package nethet. staedler.n@gmail.com or sach.mukherjee@dzne.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  17. Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Chen, Chi; Lu, Ziheng; Ciucci, Francesco

    2017-01-01

    Understanding Li diffusion in solid conductors is essential for the next generation Li batteries. Here we show that density-based clustering of the trajectories computed using molecular dynamics simulations helps elucidate the Li diffusion mechanism within the Li7La3Zr2O12 (LLZO) crystal lattice. This unsupervised learning method recognizes lattice sites, is able to give the site type, and can identify Li hopping events. Results show that, while the cubic LLZO has a much higher hopping rate compared to its tetragonal counterpart, most of the Li hops in the cubic LLZO do not contribute to the diffusivity due to the dominance of back-and-forth type jumps. The hopping analysis and local Li configuration statistics give evidence that Li diffusivity in cubic LLZO is limited by the low vacancy concentration. The hopping statistics also shows uncorrelated Poisson-like diffusion for Li in the cubic LLZO, and correlated diffusion for Li in the tetragonal LLZO in the temporal scale. Further analysis of the spatio-temporal correlation using site-to-site mutual information confirms the weak site dependence of Li diffusion in the cubic LLZO as the origin for the uncorrelated diffusion. This work puts forward a perspective on combining machine learning and information theory to interpret results of molecular dynamics simulations.

  18. Hard exudates segmentation based on learned initial seeds and iterative graph cut.

    PubMed

    Kusakunniran, Worapan; Wu, Qiang; Ritthipravat, Panrasee; Zhang, Jian

    2018-05-01

    (Background and Objective): The occurrence of hard exudates is one of the early signs of diabetic retinopathy which is one of the leading causes of the blindness. Many patients with diabetic retinopathy lose their vision because of the late detection of the disease. Thus, this paper is to propose a novel method of hard exudates segmentation in retinal images in an automatic way. (Methods): The existing methods are based on either supervised or unsupervised learning techniques. In addition, the learned segmentation models may often cause miss-detection and/or fault-detection of hard exudates, due to the lack of rich characteristics, the intra-variations, and the similarity with other components in the retinal image. Thus, in this paper, the supervised learning based on the multilayer perceptron (MLP) is only used to identify initial seeds with high confidences to be hard exudates. Then, the segmentation is finalized by unsupervised learning based on the iterative graph cut (GC) using clusters of initial seeds. Also, in order to reduce color intra-variations of hard exudates in different retinal images, the color transfer (CT) is applied to normalize their color information, in the pre-processing step. (Results): The experiments and comparisons with the other existing methods are based on the two well-known datasets, e_ophtha EX and DIARETDB1. It can be seen that the proposed method outperforms the other existing methods in the literature, with the sensitivity in the pixel-level of 0.891 for the DIARETDB1 dataset and 0.564 for the e_ophtha EX dataset. The cross datasets validation where the training process is performed on one dataset and the testing process is performed on another dataset is also evaluated in this paper, in order to illustrate the robustness of the proposed method. (Conclusions): This newly proposed method integrates the supervised learning and unsupervised learning based techniques. It achieves the improved performance, when compared with the existing methods in the literature. The robustness of the proposed method for the scenario of cross datasets could enhance its practical usage. That is, the trained model could be more practical for unseen data in the real-world situation, especially when the capturing environments of training and testing images are not the same. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    PubMed Central

    Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko

    2014-01-01

    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations. PMID:25538637

  20. The composite sequential clustering technique for analysis of multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The clustering technique consists of two parts: (1) a sequential statistical clustering which is essentially a sequential variance analysis, and (2) a generalized K-means clustering. In this composite clustering technique, the output of (1) is a set of initial clusters which are input to (2) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum likelihood classification techniques. The mathematical algorithms for the composite sequential clustering program and a detailed computer program description with job setup are given.

  1. Central auditory neurons have composite receptive fields.

    PubMed

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  2. Quantification and Segmentation of Brain Tissues from MR Images: A Probabilistic Neural Network Approach

    PubMed Central

    Wang, Yue; Adalý, Tülay; Kung, Sun-Yuan; Szabo, Zsolt

    2007-01-01

    This paper presents a probabilistic neural network based technique for unsupervised quantification and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can be solved by distribution learning and relaxation labeling, resulting in an efficient method that may be particularly useful in quantifying and segmenting abnormal brain tissues where the number of tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses suitable statistical models for both the pixel and context images and formulates the problem in terms of model-histogram fitting and global consistency labeling. The quantification is achieved by probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation network. The experimental results show the efficient and robust performance of the new algorithm and that it outperforms the conventional classification based approaches. PMID:18172510

  3. An empirical generative framework for computational modeling of language acquisition.

    PubMed

    Waterfall, Heidi R; Sandbank, Ben; Onnis, Luca; Edelman, Shimon

    2010-06-01

    This paper reports progress in developing a computer model of language acquisition in the form of (1) a generative grammar that is (2) algorithmically learnable from realistic corpus data, (3) viable in its large-scale quantitative performance and (4) psychologically real. First, we describe new algorithmic methods for unsupervised learning of generative grammars from raw CHILDES data and give an account of the generative performance of the acquired grammars. Next, we summarize findings from recent longitudinal and experimental work that suggests how certain statistically prominent structural properties of child-directed speech may facilitate language acquisition. We then present a series of new analyses of CHILDES data indicating that the desired properties are indeed present in realistic child-directed speech corpora. Finally, we suggest how our computational results, behavioral findings, and corpus-based insights can be integrated into a next-generation model aimed at meeting the four requirements of our modeling framework.

  4. Multi-scale Modeling of Radiation Damage: Large Scale Data Analysis

    NASA Astrophysics Data System (ADS)

    Warrier, M.; Bhardwaj, U.; Bukkuru, S.

    2016-10-01

    Modification of materials in nuclear reactors due to neutron irradiation is a multiscale problem. These neutrons pass through materials creating several energetic primary knock-on atoms (PKA) which cause localized collision cascades creating damage tracks, defects (interstitials and vacancies) and defect clusters depending on the energy of the PKA. These defects diffuse and recombine throughout the whole duration of operation of the reactor, thereby changing the micro-structure of the material and its properties. It is therefore desirable to develop predictive computational tools to simulate the micro-structural changes of irradiated materials. In this paper we describe how statistical averages of the collision cascades from thousands of MD simulations are used to provide inputs to Kinetic Monte Carlo (KMC) simulations which can handle larger sizes, more defects and longer time durations. Use of unsupervised learning and graph optimization in handling and analyzing large scale MD data will be highlighted.

  5. Face recognition using an enhanced independent component analysis approach.

    PubMed

    Kwak, Keun-Chang; Pedrycz, Witold

    2007-03-01

    This paper is concerned with an enhanced independent component analysis (ICA) and its application to face recognition. Typically, face representations obtained by ICA involve unsupervised learning and high-order statistics. In this paper, we develop an enhancement of the generic ICA by augmenting this method by the Fisher linear discriminant analysis (LDA); hence, its abbreviation, FICA. The FICA is systematically developed and presented along with its underlying architecture. A comparative analysis explores four distance metrics, as well as classification with support vector machines (SVMs). We demonstrate that the FICA approach leads to the formation of well-separated classes in low-dimension subspace and is endowed with a great deal of insensitivity to large variation in illumination and facial expression. The comprehensive experiments are completed for the facial-recognition technology (FERET) face database; a comparative analysis demonstrates that FICA comes with improved classification rates when compared with some other conventional approaches such as eigenface, fisherface, and the ICA itself.

  6. A New Stochastic Technique for Painlevé Equation-I Using Neural Network Optimized with Swarm Intelligence

    PubMed Central

    Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor

    2012-01-01

    A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method. PMID:22919371

  7. Three Dimensional Object Recognition Using an Unsupervised Neural Network: Understanding the Distinguishing Features

    DTIC Science & Technology

    1992-12-23

    predominance of structural models of recognition, of which a recent example is the Recognition By Components (RBC) theory ( Biederman , 1987 ). Structural...related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived from a biologically motivated computational theory (Bienenstock et...dimensional object recognition (Intrator and Gold, 1991). The method is related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived

  8. Data Mining for Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Mack, Daniel; Mylaraswamy, Dinkar; Bharadwaj, Raj

    2013-01-01

    The Vehicle Integrated Prognostics Reasoner (VIPR) program describes methods for enhanced diagnostics as well as a prognostic extension to current state of art Aircraft Diagnostic and Maintenance System (ADMS). VIPR introduced a new anomaly detection function for discovering previously undetected and undocumented situations, where there are clear deviations from nominal behavior. Once a baseline (nominal model of operations) is established, the detection and analysis is split between on-aircraft outlier generation and off-aircraft expert analysis to characterize and classify events that may not have been anticipated by individual system providers. Offline expert analysis is supported by data curation and data mining algorithms that can be applied in the contexts of supervised learning methods and unsupervised learning. In this report, we discuss efficient methods to implement the Kolmogorov complexity measure using compression algorithms, and run a systematic empirical analysis to determine the best compression measure. Our experiments established that the combination of the DZIP compression algorithm and CiDM distance measure provides the best results for capturing relevant properties of time series data encountered in aircraft operations. This combination was used as the basis for developing an unsupervised learning algorithm to define "nominal" flight segments using historical flight segments.

  9. A recurrent neural network for classification of unevenly sampled variable stars

    NASA Astrophysics Data System (ADS)

    Naul, Brett; Bloom, Joshua S.; Pérez, Fernando; van der Walt, Stéfan

    2018-02-01

    Astronomical surveys of celestial sources produce streams of noisy time series measuring flux versus time (`light curves'). Unlike in many other physical domains, however, large (and source-specific) temporal gaps in data arise naturally due to intranight cadence choices as well as diurnal and seasonal constraints1-5. With nightly observations of millions of variable stars and transients from upcoming surveys4,6, efficient and accurate discovery and classification techniques on noisy, irregularly sampled data must be employed with minimal human-in-the-loop involvement. Machine learning for inference tasks on such data traditionally requires the laborious hand-coding of domain-specific numerical summaries of raw data (`features')7. Here, we present a novel unsupervised autoencoding recurrent neural network8 that makes explicit use of sampling times and known heteroskedastic noise properties. When trained on optical variable star catalogues, this network produces supervised classification models that rival other best-in-class approaches. We find that autoencoded features learned in one time-domain survey perform nearly as well when applied to another survey. These networks can continue to learn from new unlabelled observations and may be used in other unsupervised tasks, such as forecasting and anomaly detection.

  10. Predictive uncertainty in auditory sequence processing

    PubMed Central

    Hansen, Niels Chr.; Pearce, Marcus T.

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty—a property of listeners' prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex). Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature. The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music. PMID:25295018

  11. Understanding Student Language: An Unsupervised Dialogue Act Classification Approach

    ERIC Educational Resources Information Center

    Ezen-Can, Aysu; Boyer, Kristy Elizabeth

    2015-01-01

    Within the landscape of educational data, textual natural language is an increasingly vast source of learning-centered interactions. In natural language dialogue, student contributions hold important information about knowledge and goals. Automatically modeling the dialogue act of these student utterances is crucial for scaling natural language…

  12. 76 FR 16521 - National Poison Prevention Week, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ..., and learn how to respond if a poison emergency should occur. Children are particularly susceptible to unintentional poisoning. More than half of all reported poison exposures involve children under the age of six, and many occur when unsupervised children find and consume medicines or harmful chemicals...

  13. Unsupervised algorithms for intrusion detection and identification in wireless ad hoc sensor networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2009-05-01

    In previous work by the author, parameters across network protocol layers were selected as features in supervised algorithms that detect and identify certain intrusion attacks on wireless ad hoc sensor networks (WSNs) carrying multisensor data. The algorithms improved the residual performance of the intrusion prevention measures provided by any dynamic key-management schemes and trust models implemented among network nodes. The approach of this paper does not train algorithms on the signature of known attack traffic, but, instead, the approach is based on unsupervised anomaly detection techniques that learn the signature of normal network traffic. Unsupervised learning does not require the data to be labeled or to be purely of one type, i.e., normal or attack traffic. The approach can be augmented to add any security attributes and quantified trust levels, established during data exchanges among nodes, to the set of cross-layer features from the WSN protocols. A two-stage framework is introduced for the security algorithms to overcome the problems of input size and resource constraints. The first stage is an unsupervised clustering algorithm which reduces the payload of network data packets to a tractable size. The second stage is a traditional anomaly detection algorithm based on a variation of support vector machines (SVMs), whose efficiency is improved by the availability of data in the packet payload. In the first stage, selected algorithms are adapted to WSN platforms to meet system requirements for simple parallel distributed computation, distributed storage and data robustness. A set of mobile software agents, acting like an ant colony in securing the WSN, are distributed at the nodes to implement the algorithms. The agents move among the layers involved in the network response to the intrusions at each active node and trustworthy neighborhood, collecting parametric values and executing assigned decision tasks. This minimizes the need to move large amounts of audit-log data through resource-limited nodes and locates routines closer to that data. Performance of the unsupervised algorithms is evaluated against the network intrusions of black hole, flooding, Sybil and other denial-of-service attacks in simulations of published scenarios. Results for scenarios with intentionally malfunctioning sensors show the robustness of the two-stage approach to intrusion anomalies.

  14. Design of partially supervised classifiers for multispectral image data

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, David

    1993-01-01

    A partially supervised classification problem is addressed, especially when the class definition and corresponding training samples are provided a priori only for just one particular class. In practical applications of pattern classification techniques, a frequently observed characteristic is the heavy, often nearly impossible requirements on representative prior statistical class characteristics of all classes in a given data set. Considering the effort in both time and man-power required to have a well-defined, exhaustive list of classes with a corresponding representative set of training samples, this 'partially' supervised capability would be very desirable, assuming adequate classifier performance can be obtained. Two different classification algorithms are developed to achieve simplicity in classifier design by reducing the requirement of prior statistical information without sacrificing significant classifying capability. The first one is based on optimal significance testing, where the optimal acceptance probability is estimated directly from the data set. In the second approach, the partially supervised classification is considered as a problem of unsupervised clustering with initially one known cluster or class. A weighted unsupervised clustering procedure is developed to automatically define other classes and estimate their class statistics. The operational simplicity thus realized should make these partially supervised classification schemes very viable tools in pattern classification.

  15. An improved clustering algorithm based on reverse learning in intelligent transportation

    NASA Astrophysics Data System (ADS)

    Qiu, Guoqing; Kou, Qianqian; Niu, Ting

    2017-05-01

    With the development of artificial intelligence and data mining technology, big data has gradually entered people's field of vision. In the process of dealing with large data, clustering is an important processing method. By introducing the reverse learning method in the clustering process of PAM clustering algorithm, to further improve the limitations of one-time clustering in unsupervised clustering learning, and increase the diversity of clustering clusters, so as to improve the quality of clustering. The algorithm analysis and experimental results show that the algorithm is feasible.

  16. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.

    PubMed

    Rabiul Islam, Md; Khademul Islam Molla, Md; Nakanishi, Masaki; Tanaka, Toshihisa

    2017-04-01

    Recently developed effective methods for detection commands of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) that need calibration for visual stimuli, which cause more time and fatigue prior to the use, as the number of commands increases. This paper develops a novel unsupervised method based on canonical correlation analysis (CCA) for accurate detection of stimulus frequency. A novel unsupervised technique termed as binary subband CCA (BsCCA) is implemented in a multiband approach to enhance the frequency recognition performance of SSVEP. In BsCCA, two subbands are used and a CCA-based correlation coefficient is computed for the individual subbands. In addition, a reduced set of artificial reference signals is used to calculate CCA for the second subband. The analyzing SSVEP is decomposed into multiple subband and the BsCCA is implemented for each one. Then, the overall recognition score is determined by a weighted sum of the canonical correlation coefficients obtained from each band. A 12-class SSVEP dataset (frequency range: 9.25-14.75 Hz with an interval of 0.5 Hz) for ten healthy subjects are used to evaluate the performance of the proposed method. The results suggest that BsCCA significantly improves the performance of SSVEP-based BCI compared to the state-of-the-art methods. The proposed method is an unsupervised approach with averaged information transfer rate (ITR) of 77.04 bits min -1 across 10 subjects. The maximum individual ITR is 107.55 bits min -1 for 12-class SSVEP dataset, whereas, the ITR of 69.29 and 69.44 bits min -1 are achieved with CCA and NCCA respectively. The statistical test shows that the proposed unsupervised method significantly improves the performance of the SSVEP-based BCI. It can be usable in real world applications.

  17. Implementation of novel statistical procedures and other advanced approaches to improve analysis of CASA data.

    PubMed

    Ramón, M; Martínez-Pastor, F

    2018-04-23

    Computer-aided sperm analysis (CASA) produces a wealth of data that is frequently ignored. The use of multiparametric statistical methods can help explore these datasets, unveiling the subpopulation structure of sperm samples. In this review we analyse the significance of the internal heterogeneity of sperm samples and its relevance. We also provide a brief description of the statistical tools used for extracting sperm subpopulations from the datasets, namely unsupervised clustering (with non-hierarchical, hierarchical and two-step methods) and the most advanced supervised methods, based on machine learning. The former method has allowed exploration of subpopulation patterns in many species, whereas the latter offering further possibilities, especially considering functional studies and the practical use of subpopulation analysis. We also consider novel approaches, such as the use of geometric morphometrics or imaging flow cytometry. Finally, although the data provided by CASA systems provides valuable information on sperm samples by applying clustering analyses, there are several caveats. Protocols for capturing and analysing motility or morphometry should be standardised and adapted to each experiment, and the algorithms should be open in order to allow comparison of results between laboratories. Moreover, we must be aware of new technology that could change the paradigm for studying sperm motility and morphology.

  18. Semi-Supervised Clustering for High-Dimensional and Sparse Features

    ERIC Educational Resources Information Center

    Yan, Su

    2010-01-01

    Clustering is one of the most common data mining tasks, used frequently for data organization and analysis in various application domains. Traditional machine learning approaches to clustering are fully automated and unsupervised where class labels are unknown a priori. In real application domains, however, some "weak" form of side…

  19. Unsupervised method for automatic construction of a disease dictionary from a large free text collection.

    PubMed

    Xu, Rong; Supekar, Kaustubh; Morgan, Alex; Das, Amar; Garber, Alan

    2008-11-06

    Concept specific lexicons (e.g. diseases, drugs, anatomy) are a critical source of background knowledge for many medical language-processing systems. However, the rapid pace of biomedical research and the lack of constraints on usage ensure that such dictionaries are incomplete. Focusing on disease terminology, we have developed an automated, unsupervised, iterative pattern learning approach for constructing a comprehensive medical dictionary of disease terms from randomized clinical trial (RCT) abstracts, and we compared different ranking methods for automatically extracting con-textual patterns and concept terms. When used to identify disease concepts from 100 randomly chosen, manually annotated clinical abstracts, our disease dictionary shows significant performance improvement (F1 increased by 35-88%) over available, manually created disease terminologies.

  20. Unsupervised Method for Automatic Construction of a Disease Dictionary from a Large Free Text Collection

    PubMed Central

    Xu, Rong; Supekar, Kaustubh; Morgan, Alex; Das, Amar; Garber, Alan

    2008-01-01

    Concept specific lexicons (e.g. diseases, drugs, anatomy) are a critical source of background knowledge for many medical language-processing systems. However, the rapid pace of biomedical research and the lack of constraints on usage ensure that such dictionaries are incomplete. Focusing on disease terminology, we have developed an automated, unsupervised, iterative pattern learning approach for constructing a comprehensive medical dictionary of disease terms from randomized clinical trial (RCT) abstracts, and we compared different ranking methods for automatically extracting contextual patterns and concept terms. When used to identify disease concepts from 100 randomly chosen, manually annotated clinical abstracts, our disease dictionary shows significant performance improvement (F1 increased by 35–88%) over available, manually created disease terminologies. PMID:18999169

  1. Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks.

    PubMed

    Azcorra, A; Chiroque, L F; Cuevas, R; Fernández Anta, A; Laniado, H; Lillo, R E; Romo, J; Sguera, C

    2018-05-03

    Billions of users interact intensively every day via Online Social Networks (OSNs) such as Facebook, Twitter, or Google+. This makes OSNs an invaluable source of information, and channel of actuation, for sectors like advertising, marketing, or politics. To get the most of OSNs, analysts need to identify influential users that can be leveraged for promoting products, distributing messages, or improving the image of companies. In this report we propose a new unsupervised method, Massive Unsupervised Outlier Detection (MUOD), based on outliers detection, for providing support in the identification of influential users. MUOD is scalable, and can hence be used in large OSNs. Moreover, it labels the outliers as of shape, magnitude, or amplitude, depending of their features. This allows classifying the outlier users in multiple different classes, which are likely to include different types of influential users. Applying MUOD to a subset of roughly 400 million Google+ users, it has allowed identifying and discriminating automatically sets of outlier users, which present features associated to different definitions of influential users, like capacity to attract engagement, capacity to attract a large number of followers, or high infection capacity.

  2. Learned filters for object detection in multi-object visual tracking

    NASA Astrophysics Data System (ADS)

    Stamatescu, Victor; Wong, Sebastien; McDonnell, Mark D.; Kearney, David

    2016-05-01

    We investigate the application of learned convolutional filters in multi-object visual tracking. The filters were learned in both a supervised and unsupervised manner from image data using artificial neural networks. This work follows recent results in the field of machine learning that demonstrate the use learned filters for enhanced object detection and classification. Here we employ a track-before-detect approach to multi-object tracking, where tracking guides the detection process. The object detection provides a probabilistic input image calculated by selecting from features obtained using banks of generative or discriminative learned filters. We present a systematic evaluation of these convolutional filters using a real-world data set that examines their performance as generic object detectors.

  3. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  4. The Livermore Brain: Massive Deep Learning Networks Enabled by High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Barry Y.

    The proliferation of inexpensive sensor technologies like the ubiquitous digital image sensors has resulted in the collection and sharing of vast amounts of unsorted and unexploited raw data. Companies and governments who are able to collect and make sense of large datasets to help them make better decisions more rapidly will have a competitive advantage in the information era. Machine Learning technologies play a critical role for automating the data understanding process; however, to be maximally effective, useful intermediate representations of the data are required. These representations or “features” are transformations of the raw data into a form where patternsmore » are more easily recognized. Recent breakthroughs in Deep Learning have made it possible to learn these features from large amounts of labeled data. The focus of this project is to develop and extend Deep Learning algorithms for learning features from vast amounts of unlabeled data and to develop the HPC neural network training platform to support the training of massive network models. This LDRD project succeeded in developing new unsupervised feature learning algorithms for images and video and created a scalable neural network training toolkit for HPC. Additionally, this LDRD helped create the world’s largest freely-available image and video dataset supporting open multimedia research and used this dataset for training our deep neural networks. This research helped LLNL capture several work-for-others (WFO) projects, attract new talent, and establish collaborations with leading academic and commercial partners. Finally, this project demonstrated the successful training of the largest unsupervised image neural network using HPC resources and helped establish LLNL leadership at the intersection of Machine Learning and HPC research.« less

  5. Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and Semantic Feature Learning.

    PubMed

    Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei

    2016-10-01

    Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.

  6. Unsupervised Outlier Profile Analysis

    PubMed Central

    Ghosh, Debashis; Li, Song

    2014-01-01

    In much of the analysis of high-throughput genomic data, “interesting” genes have been selected based on assessment of differential expression between two groups or generalizations thereof. Most of the literature focuses on changes in mean expression or the entire distribution. In this article, we explore the use of C(α) tests, which have been applied in other genomic data settings. Their use for the outlier expression problem, in particular with continuous data, is problematic but nevertheless motivates new statistics that give an unsupervised analog to previously developed outlier profile analysis approaches. Some simulation studies are used to evaluate the proposal. A bivariate extension is described that can accommodate data from two platforms on matched samples. The proposed methods are applied to data from a prostate cancer study. PMID:25452686

  7. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C.

    2015-01-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art. PMID:26552069

  8. Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning.

    PubMed

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C; Shen, Dinggang

    2016-07-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.

  9. Modeling development of natural multi-sensory integration using neural self-organisation and probabilistic population codes

    NASA Astrophysics Data System (ADS)

    Bauer, Johannes; Dávila-Chacón, Jorge; Wermter, Stefan

    2015-10-01

    Humans and other animals have been shown to perform near-optimally in multi-sensory integration tasks. Probabilistic population codes (PPCs) have been proposed as a mechanism by which optimal integration can be accomplished. Previous approaches have focussed on how neural networks might produce PPCs from sensory input or perform calculations using them, like combining multiple PPCs. Less attention has been given to the question of how the necessary organisation of neurons can arise and how the required knowledge about the input statistics can be learned. In this paper, we propose a model of learning multi-sensory integration based on an unsupervised learning algorithm in which an artificial neural network learns the noise characteristics of each of its sources of input. Our algorithm borrows from the self-organising map the ability to learn latent-variable models of the input and extends it to learning to produce a PPC approximating a probability density function over the latent variable behind its (noisy) input. The neurons in our network are only required to perform simple calculations and we make few assumptions about input noise properties and tuning functions. We report on a neurorobotic experiment in which we apply our algorithm to multi-sensory integration in a humanoid robot to demonstrate its effectiveness and compare it to human multi-sensory integration on the behavioural level. We also show in simulations that our algorithm performs near-optimally under certain plausible conditions, and that it reproduces important aspects of natural multi-sensory integration on the neural level.

  10. Unsupervised learning in general connectionist systems.

    PubMed

    Dente, J A; Mendes, R Vilela

    1996-01-01

    There is a common framework in which different connectionist systems may be treated in a unified way. The general system in which they may all be mapped is a network which, in addition to the connection strengths, has an adaptive node parameter controlling the output intensity. In this paper we generalize two neural network learning schemes to networks with node parameters. In generalized Hebbian learning we find improvements to the convergence rate for small eigenvalues in principal component analysis. For competitive learning the use of node parameters also seems useful in that, by emphasizing or de-emphasizing the dominance of winning neurons, either improved robustness or discrimination is obtained.

  11. Machine learning applications in genetics and genomics.

    PubMed

    Libbrecht, Maxwell W; Noble, William Stafford

    2015-06-01

    The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.

  12. A Case Study on Sepsis Using PubMed and Deep Learning for Ontology Learning.

    PubMed

    Arguello Casteleiro, Mercedes; Maseda Fernandez, Diego; Demetriou, George; Read, Warren; Fernandez Prieto, Maria Jesus; Des Diz, Julio; Nenadic, Goran; Keane, John; Stevens, Robert

    2017-01-01

    We investigate the application of distributional semantics models for facilitating unsupervised extraction of biomedical terms from unannotated corpora. Term extraction is used as the first step of an ontology learning process that aims to (semi-)automatic annotation of biomedical concepts and relations from more than 300K PubMed titles and abstracts. We experimented with both traditional distributional semantics methods such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) as well as the neural language models CBOW and Skip-gram from Deep Learning. The evaluation conducted concentrates on sepsis, a major life-threatening condition, and shows that Deep Learning models outperform LSA and LDA with much higher precision.

  13. Revealing biological information using data structuring and automated learning.

    PubMed

    Mohorianu, Irina; Moulton, Vincent

    2010-11-01

    The intermediary steps between a biological hypothesis, concretized in the input data, and meaningful results, validated using biological experiments, commonly employ bioinformatics tools. Starting with storage of the data and ending with a statistical analysis of the significance of the results, every step in a bioinformatics analysis has been intensively studied and the resulting methods and models patented. This review summarizes the bioinformatics patents that have been developed mainly for the study of genes, and points out the universal applicability of bioinformatics methods to other related studies such as RNA interference. More specifically, we overview the steps undertaken in the majority of bioinformatics analyses, highlighting, for each, various approaches that have been developed to reveal details from different perspectives. First we consider data warehousing, the first task that has to be performed efficiently, optimizing the structure of the database, in order to facilitate both the subsequent steps and the retrieval of information. Next, we review data mining, which occupies the central part of most bioinformatics analyses, presenting patents concerning differential expression, unsupervised and supervised learning. Last, we discuss how networks of interactions of genes or other players in the cell may be created, which help draw biological conclusions and have been described in several patents.

  14. LIA at TREC 2012 Web Track: Unsupervised Search Concepts Identification from General Sources of Information

    DTIC Science & Technology

    2012-11-01

    use in this work the variational approximation algo- rithm implemented and distributed by Pr . Blei1. Each learned multinomial distribution φk is tra...4,111,240 newswire articles collected from four distinct international sources including the New York Times (Graff and Cieri, 2003). The New York Times

  15. Promising Ideas for Collective Advancement of Communal Knowledge Using Temporal Analytics and Cluster Analysis

    ERIC Educational Resources Information Center

    Lee, Alwyn Vwen Yen; Tan, Seng Chee

    2017-01-01

    Understanding ideas in a discourse is challenging, especially in textual discourse analysis. We propose using temporal analytics with unsupervised machine learning techniques to investigate promising ideas for the collective advancement of communal knowledge in an online knowledge building discourse. A discourse unit network was constructed and…

  16. An Empirical Generative Framework for Computational Modeling of Language Acquisition

    ERIC Educational Resources Information Center

    Waterfall, Heidi R.; Sandbank, Ben; Onnis, Luca; Edelman, Shimon

    2010-01-01

    This paper reports progress in developing a computer model of language acquisition in the form of (1) a generative grammar that is (2) algorithmically learnable from realistic corpus data, (3) viable in its large-scale quantitative performance and (4) psychologically real. First, we describe new algorithmic methods for unsupervised learning of…

  17. High-Dimensional Semantic Space Accounts of Priming

    ERIC Educational Resources Information Center

    Jones, Michael N.; Kintsch, Walter; Mewhort, Douglas J. K.

    2006-01-01

    A broad range of priming data has been used to explore the structure of semantic memory and to test between models of word representation. In this paper, we examine the computational mechanisms required to learn distributed semantic representations for words directly from unsupervised experience with language. To best account for the variety of…

  18. Robust Arm and Hand Tracking by Unsupervised Context Learning

    PubMed Central

    Spruyt, Vincent; Ledda, Alessandro; Philips, Wilfried

    2014-01-01

    Hand tracking in video is an increasingly popular research field due to the rise of novel human-computer interaction methods. However, robust and real-time hand tracking in unconstrained environments remains a challenging task due to the high number of degrees of freedom and the non-rigid character of the human hand. In this paper, we propose an unsupervised method to automatically learn the context in which a hand is embedded. This context includes the arm and any other object that coherently moves along with the hand. We introduce two novel methods to incorporate this context information into a probabilistic tracking framework, and introduce a simple yet effective solution to estimate the position of the arm. Finally, we show that our method greatly increases robustness against occlusion and cluttered background, without degrading tracking performance if no contextual information is available. The proposed real-time algorithm is shown to outperform the current state-of-the-art by evaluating it on three publicly available video datasets. Furthermore, a novel dataset is created and made publicly available for the research community. PMID:25004155

  19. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images.

    PubMed

    Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao

    2018-03-01

    We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.

  20. Quick fuzzy backpropagation algorithm.

    PubMed

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  1. Classify epithelium-stroma in histopathological images based on deep transferable network.

    PubMed

    Yu, X; Zheng, H; Liu, C; Huang, Y; Ding, X

    2018-04-20

    Recently, the deep learning methods have received more attention in histopathological image analysis. However, the traditional deep learning methods assume that training data and test data have the same distributions, which causes certain limitations in real-world histopathological applications. However, it is costly to recollect a large amount of labeled histology data to train a new neural network for each specified image acquisition procedure even for similar tasks. In this paper, an unsupervised domain adaptation is introduced into a typical deep convolutional neural network (CNN) model to mitigate the repeating of the labels. The unsupervised domain adaptation is implemented by adding two regularisation terms, namely the feature-based adaptation and entropy minimisation, to the object function of a widely used CNN model called the AlexNet. Three independent public epithelium-stroma datasets were used to verify the proposed method. The experimental results have demonstrated that in the epithelium-stroma classification, the proposed method can achieve better performance than the commonly used deep learning methods and some existing deep domain adaptation methods. Therefore, the proposed method can be considered as a better option for the real-world applications of histopathological image analysis because there is no requirement for recollection of large-scale labeled data for every specified domain. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  2. Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins

    PubMed Central

    Handfield, Louis-François; Chong, Yolanda T.; Simmons, Jibril; Andrews, Brenda J.; Moses, Alan M.

    2013-01-01

    Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images. PMID:23785265

  3. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, N. E.; Soderberg, A. M.; Betancourt, M., E-mail: nsanders@cfa.harvard.edu

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. Wemore » present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.« less

  4. Respiratory Artefact Removal in Forced Oscillation Measurements: A Machine Learning Approach.

    PubMed

    Pham, Thuy T; Thamrin, Cindy; Robinson, Paul D; McEwan, Alistair L; Leong, Philip H W

    2017-08-01

    Respiratory artefact removal for the forced oscillation technique can be treated as an anomaly detection problem. Manual removal is currently considered the gold standard, but this approach is laborious and subjective. Most existing automated techniques used simple statistics and/or rejected anomalous data points. Unfortunately, simple statistics are insensitive to numerous artefacts, leading to low reproducibility of results. Furthermore, rejecting anomalous data points causes an imbalance between the inspiratory and expiratory contributions. From a machine learning perspective, such methods are unsupervised and can be considered simple feature extraction. We hypothesize that supervised techniques can be used to find improved features that are more discriminative and more highly correlated with the desired output. Features thus found are then used for anomaly detection by applying quartile thresholding, which rejects complete breaths if one of its features is out of range. The thresholds are determined by both saliency and performance metrics rather than qualitative assumptions as in previous works. Feature ranking indicates that our new landmark features are among the highest scoring candidates regardless of age across saliency criteria. F1-scores, receiver operating characteristic, and variability of the mean resistance metrics show that the proposed scheme outperforms previous simple feature extraction approaches. Our subject-independent detector, 1IQR-SU, demonstrated approval rates of 80.6% for adults and 98% for children, higher than existing methods. Our new features are more relevant. Our removal is objective and comparable to the manual method. This is a critical work to automate forced oscillation technique quality control.

  5. Space Object Classification Using Fused Features of Time Series Data

    NASA Astrophysics Data System (ADS)

    Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.

    In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.

  6. Identifying product order with restricted Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Rao, Wen-Jia; Li, Zhenyu; Zhu, Qiong; Luo, Mingxing; Wan, Xin

    2018-03-01

    Unsupervised machine learning via a restricted Boltzmann machine is a useful tool in distinguishing an ordered phase from a disordered phase. Here we study its application on the two-dimensional Ashkin-Teller model, which features a partially ordered product phase. We train the neural network with spin configuration data generated by Monte Carlo simulations and show that distinct features of the product phase can be learned from nonergodic samples resulting from symmetry breaking. Careful analysis of the weight matrices inspires us to define a nontrivial machine-learning motivated quantity of the product form, which resembles the conventional product order parameter.

  7. An Unsupervised Change Detection Method Using Time-Series of PolSAR Images from Radarsat-2 and GaoFen-3.

    PubMed

    Liu, Wensong; Yang, Jie; Zhao, Jinqi; Shi, Hongtao; Yang, Le

    2018-02-12

    The traditional unsupervised change detection methods based on the pixel level can only detect the changes between two different times with same sensor, and the results are easily affected by speckle noise. In this paper, a novel method is proposed to detect change based on time-series data from different sensors. Firstly, the overall difference image of the time-series PolSAR is calculated by omnibus test statistics, and difference images between any two images in different times are acquired by R j test statistics. Secondly, the difference images are segmented with a Generalized Statistical Region Merging (GSRM) algorithm which can suppress the effect of speckle noise. Generalized Gaussian Mixture Model (GGMM) is then used to obtain the time-series change detection maps in the final step of the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection using time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can not only detect the time-series change from different sensors, but it can also better suppress the influence of speckle noise and improve the overall accuracy and Kappa coefficient.

  8. Synaptic and nonsynaptic plasticity approximating probabilistic inference

    PubMed Central

    Tully, Philip J.; Hennig, Matthias H.; Lansner, Anders

    2014-01-01

    Learning and memory operations in neural circuits are believed to involve molecular cascades of synaptic and nonsynaptic changes that lead to a diverse repertoire of dynamical phenomena at higher levels of processing. Hebbian and homeostatic plasticity, neuromodulation, and intrinsic excitability all conspire to form and maintain memories. But it is still unclear how these seemingly redundant mechanisms could jointly orchestrate learning in a more unified system. To this end, a Hebbian learning rule for spiking neurons inspired by Bayesian statistics is proposed. In this model, synaptic weights and intrinsic currents are adapted on-line upon arrival of single spikes, which initiate a cascade of temporally interacting memory traces that locally estimate probabilities associated with relative neuronal activation levels. Trace dynamics enable synaptic learning to readily demonstrate a spike-timing dependence, stably return to a set-point over long time scales, and remain competitive despite this stability. Beyond unsupervised learning, linking the traces with an external plasticity-modulating signal enables spike-based reinforcement learning. At the postsynaptic neuron, the traces are represented by an activity-dependent ion channel that is shown to regulate the input received by a postsynaptic cell and generate intrinsic graded persistent firing levels. We show how spike-based Hebbian-Bayesian learning can be performed in a simulated inference task using integrate-and-fire (IAF) neurons that are Poisson-firing and background-driven, similar to the preferred regime of cortical neurons. Our results support the view that neurons can represent information in the form of probability distributions, and that probabilistic inference could be a functional by-product of coupled synaptic and nonsynaptic mechanisms operating over several timescales. The model provides a biophysical realization of Bayesian computation by reconciling several observed neural phenomena whose functional effects are only partially understood in concert. PMID:24782758

  9. ISO learning approximates a solution to the inverse-controller problem in an unsupervised behavioral paradigm.

    PubMed

    Porr, Bernd; von Ferber, Christian; Wörgötter, Florentin

    2003-04-01

    In "Isotropic Sequence Order Learning" (pp. 831-864 in this issue), we introduced a novel algorithm for temporal sequence learning (ISO learning). Here, we embed this algorithm into a formal nonevaluating (teacher free) environment, which establishes a sensor-motor feedback. The system is initially guided by a fixed reflex reaction, which has the objective disadvantage that it can react only after a disturbance has occurred. ISO learning eliminates this disadvantage by replacing the reflex-loop reactions with earlier anticipatory actions. In this article, we analytically demonstrate that this process can be understood in terms of control theory, showing that the system learns the inverse controller of its own reflex. Thereby, this system is able to learn a simple form of feedforward motor control.

  10. On the Implementation of a Land Cover Classification System for SAR Images Using Khoros

    NASA Technical Reports Server (NTRS)

    Medina Revera, Edwin J.; Espinosa, Ramon Vasquez

    1997-01-01

    The Synthetic Aperture Radar (SAR) sensor is widely used to record data about the ground under all atmospheric conditions. The SAR acquired images have very good resolution which necessitates the development of a classification system that process the SAR images to extract useful information for different applications. In this work, a complete system for the land cover classification was designed and programmed using the Khoros, a data flow visual language environment, taking full advantages of the polymorphic data services that it provides. Image analysis was applied to SAR images to improve and automate the processes of recognition and classification of the different regions like mountains and lakes. Both unsupervised and supervised classification utilities were used. The unsupervised classification routines included the use of several Classification/Clustering algorithms like the K-means, ISO2, Weighted Minimum Distance, and the Localized Receptive Field (LRF) training/classifier. Different texture analysis approaches such as Invariant Moments, Fractal Dimension and Second Order statistics were implemented for supervised classification of the images. The results and conclusions for SAR image classification using the various unsupervised and supervised procedures are presented based on their accuracy and performance.

  11. VHR satellite multitemporal data to extract cultural landscape changes in the roman site of Grumentum

    NASA Astrophysics Data System (ADS)

    masini, nicola; Lasaponara, Rosa

    2013-04-01

    The papers deals with the use of VHR satellite multitemporal data set to extract cultural landscape changes in the roman site of Grumentum Grumentum is an ancient town, 50 km south of Potenza, located near the roman road of Via Herculea which connected the Venusia, in the north est of Basilicata, with Heraclea in the Ionian coast. The first settlement date back to the 6th century BC. It was resettled by the Romans in the 3rd century BC. Its urban fabric which evidences a long history from the Republican age to late Antiquity (III BC-V AD) is composed of the typical urban pattern of cardi and decumani. Its excavated ruins include a large amphitheatre, a theatre, the thermae, the Forum and some temples. There are many techniques nowadays available to capture and record differences in two or more images. In this paper we focus and apply the two main approaches which can be distinguished into : (i) unsupervised and (ii) supervised change detection methods. Unsupervised change detection methods are generally based on the transformation of the two multispectral images in to a single band or multiband image which are further analyzed to identify changes Unsupervised change detection techniques are generally based on three basic steps (i) the preprocessing step, (ii) a pixel-by-pixel comparison is performed, (iii). Identification of changes according to the magnitude an direction (positive /negative). Unsupervised change detection are generally based on the transformation of the two multispectral images into a single band or multiband image which are further analyzed to identify changes. Than the separation between changed and unchanged classes is obtained from the magnitude of the resulting spectral change vectors by means of empirical or theoretical well founded approaches Supervised change detection methods are generally based on supervised classification methods, which require the availability of a suitable training set for the learning process of the classifiers. Unsupervised change detection techniques are generally based on three basic steps (i) the preprocessing step, (ii) supervised classification is performed on the single dates or on the map obtained as the difference of two dates, (iii). Identification of changes according to the magnitude an direction (positive /negative). Supervised change detection are generally based on supervised classification methods, which require the availability of a suitable training set for the learning process of the classifiers, therefore these algorithms require a preliminary knowledge necessary: (i) to generate representative parameters for each class of interest; and (ii) to carry out the training stage Advantages and disadvantages of the supervised and unsupervised approaches are discuss. Finally results from the the satellite multitemporal dataset was also integrated with aerial photos from historical archive in order to expand the time window of the investigation and capture landscape changes occurred from the Agrarian Reform, in the 50s, up today.

  12. Learning implicit brain MRI manifolds with deep learning

    NASA Astrophysics Data System (ADS)

    Bermudez, Camilo; Plassard, Andrew J.; Davis, Larry T.; Newton, Allen T.; Resnick, Susan M.; Landman, Bennett A.

    2018-03-01

    An important task in image processing and neuroimaging is to extract quantitative information from the acquired images in order to make observations about the presence of disease or markers of development in populations. Having a low-dimensional manifold of an image allows for easier statistical comparisons between groups and the synthesis of group representatives. Previous studies have sought to identify the best mapping of brain MRI to a low-dimensional manifold, but have been limited by assumptions of explicit similarity measures. In this work, we use deep learning techniques to investigate implicit manifolds of normal brains and generate new, high-quality images. We explore implicit manifolds by addressing the problems of image synthesis and image denoising as important tools in manifold learning. First, we propose the unsupervised synthesis of T1-weighted brain MRI using a Generative Adversarial Network (GAN) by learning from 528 examples of 2D axial slices of brain MRI. Synthesized images were first shown to be unique by performing a cross-correlation with the training set. Real and synthesized images were then assessed in a blinded manner by two imaging experts providing an image quality score of 1-5. The quality score of the synthetic image showed substantial overlap with that of the real images. Moreover, we use an autoencoder with skip connections for image denoising, showing that the proposed method results in higher PSNR than FSL SUSAN after denoising. This work shows the power of artificial networks to synthesize realistic imaging data, which can be used to improve image processing techniques and provide a quantitative framework to structural changes in the brain.

  13. Joint Clustering and Component Analysis of Correspondenceless Point Sets: Application to Cardiac Statistical Modeling.

    PubMed

    Gooya, Ali; Lekadir, Karim; Alba, Xenia; Swift, Andrew J; Wild, Jim M; Frangi, Alejandro F

    2015-01-01

    Construction of Statistical Shape Models (SSMs) from arbitrary point sets is a challenging problem due to significant shape variation and lack of explicit point correspondence across the training data set. In medical imaging, point sets can generally represent different shape classes that span healthy and pathological exemplars. In such cases, the constructed SSM may not generalize well, largely because the probability density function (pdf) of the point sets deviates from the underlying assumption of Gaussian statistics. To this end, we propose a generative model for unsupervised learning of the pdf of point sets as a mixture of distinctive classes. A Variational Bayesian (VB) method is proposed for making joint inferences on the labels of point sets, and the principal modes of variations in each cluster. The method provides a flexible framework to handle point sets with no explicit point-to-point correspondences. We also show that by maximizing the marginalized likelihood of the model, the optimal number of clusters of point sets can be determined. We illustrate this work in the context of understanding the anatomical phenotype of the left and right ventricles in heart. To this end, we use a database containing hearts of healthy subjects, patients with Pulmonary Hypertension (PH), and patients with Hypertrophic Cardiomyopathy (HCM). We demonstrate that our method can outperform traditional PCA in both generalization and specificity measures.

  14. Role of diversity in ICA and IVA: theory and applications

    NASA Astrophysics Data System (ADS)

    Adalı, Tülay

    2016-05-01

    Independent component analysis (ICA) has been the most popular approach for solving the blind source separation problem. Starting from a simple linear mixing model and the assumption of statistical independence, ICA can recover a set of linearly-mixed sources to within a scaling and permutation ambiguity. It has been successfully applied to numerous data analysis problems in areas as diverse as biomedicine, communications, finance, geo- physics, and remote sensing. ICA can be achieved using different types of diversity—statistical property—and, can be posed to simultaneously account for multiple types of diversity such as higher-order-statistics, sample dependence, non-circularity, and nonstationarity. A recent generalization of ICA, independent vector analysis (IVA), generalizes ICA to multiple data sets and adds the use of one more type of diversity, statistical dependence across the data sets, for jointly achieving independent decomposition of multiple data sets. With the addition of each new diversity type, identification of a broader class of signals become possible, and in the case of IVA, this includes sources that are independent and identically distributed Gaussians. We review the fundamentals and properties of ICA and IVA when multiple types of diversity are taken into account, and then ask the question whether diversity plays an important role in practical applications as well. Examples from various domains are presented to demonstrate that in many scenarios it might be worthwhile to jointly account for multiple statistical properties. This paper is submitted in conjunction with the talk delivered for the "Unsupervised Learning and ICA Pioneer Award" at the 2016 SPIE Conference on Sensing and Analysis Technologies for Biomedical and Cognitive Applications.

  15. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA

    NASA Astrophysics Data System (ADS)

    Rabiul Islam, Md; Khademul Islam Molla, Md; Nakanishi, Masaki; Tanaka, Toshihisa

    2017-04-01

    Objective. Recently developed effective methods for detection commands of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) that need calibration for visual stimuli, which cause more time and fatigue prior to the use, as the number of commands increases. This paper develops a novel unsupervised method based on canonical correlation analysis (CCA) for accurate detection of stimulus frequency. Approach. A novel unsupervised technique termed as binary subband CCA (BsCCA) is implemented in a multiband approach to enhance the frequency recognition performance of SSVEP. In BsCCA, two subbands are used and a CCA-based correlation coefficient is computed for the individual subbands. In addition, a reduced set of artificial reference signals is used to calculate CCA for the second subband. The analyzing SSVEP is decomposed into multiple subband and the BsCCA is implemented for each one. Then, the overall recognition score is determined by a weighted sum of the canonical correlation coefficients obtained from each band. Main results. A 12-class SSVEP dataset (frequency range: 9.25-14.75 Hz with an interval of 0.5 Hz) for ten healthy subjects are used to evaluate the performance of the proposed method. The results suggest that BsCCA significantly improves the performance of SSVEP-based BCI compared to the state-of-the-art methods. The proposed method is an unsupervised approach with averaged information transfer rate (ITR) of 77.04 bits min-1 across 10 subjects. The maximum individual ITR is 107.55 bits min-1 for 12-class SSVEP dataset, whereas, the ITR of 69.29 and 69.44 bits min-1 are achieved with CCA and NCCA respectively. Significance. The statistical test shows that the proposed unsupervised method significantly improves the performance of the SSVEP-based BCI. It can be usable in real world applications.

  16. Scale-invariant feature extraction of neural network and renormalization group flow

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Shiba, Shotaro; Yokoo, Sumito

    2018-05-01

    Theoretical understanding of how a deep neural network (DNN) extracts features from input images is still unclear, but it is widely believed that the extraction is performed hierarchically through a process of coarse graining. It reminds us of the basic renormalization group (RG) concept in statistical physics. In order to explore possible relations between DNN and RG, we use the restricted Boltzmann machine (RBM) applied to an Ising model and construct a flow of model parameters (in particular, temperature) generated by the RBM. We show that the unsupervised RBM trained by spin configurations at various temperatures from T =0 to T =6 generates a flow along which the temperature approaches the critical value Tc=2.2 7 . This behavior is the opposite of the typical RG flow of the Ising model. By analyzing various properties of the weight matrices of the trained RBM, we discuss why it flows towards Tc and how the RBM learns to extract features of spin configurations.

  17. Evolution and Vaccination of Influenza Virus.

    PubMed

    Lam, Ham Ching; Bi, Xuan; Sreevatsan, Srinand; Boley, Daniel

    2017-08-01

    In this study, we present an application paradigm in which an unsupervised machine learning approach is applied to the high-dimensional influenza genetic sequences to investigate whether vaccine is a driving force to the evolution of influenza virus. We first used a visualization approach to visualize the evolutionary paths of vaccine-controlled and non-vaccine-controlled influenza viruses in a low-dimensional space. We then quantified the evolutionary differences between their evolutionary trajectories through the use of within- and between-scatter matrices computation to provide the statistical confidence to support the visualization results. We used the influenza surface Hemagglutinin (HA) gene for this study as the HA gene is the major target of the immune system. The visualization is achieved without using any clustering methods or prior information about the influenza sequences. Our results clearly showed that the evolutionary trajectories between vaccine-controlled and non-vaccine-controlled influenza viruses are different and vaccine as an evolution driving force cannot be completely eliminated.

  18. Maximum likelihood estimation of finite mixture model for economic data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-06-01

    Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.

  19. Diagnostic index of 3D osteoarthritic changes in TMJ condylar morphology

    NASA Astrophysics Data System (ADS)

    Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João. Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia

    2015-03-01

    The aim of this study was to investigate imaging statistical approaches for classifying 3D osteoarthritic morphological variations among 169 Temporomandibular Joint (TMJ) condyles. Cone beam Computed Tomography (CBCT) scans were acquired from 69 patients with long-term TMJ Osteoarthritis (OA) (39.1 ± 15.7 years), 15 patients at initial diagnosis of OA (44.9 ± 14.8 years) and 7 healthy controls (43 ± 12.4 years). 3D surface models of the condyles were constructed and Shape Correspondence was used to establish correspondent points on each model. The statistical framework included a multivariate analysis of covariance (MANCOVA) and Direction-Projection- Permutation (DiProPerm) for testing statistical significance of the differences between healthy control and the OA group determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering (HAC) was then conducted. Condylar morphology in OA and healthy subjects varied widely. Compared with healthy controls, OA average condyle was statistically significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis (p < 0.05). It was observed areas of 3.88 mm bone resorption at the superior surface and 3.10 mm bone apposition at the anterior aspect of the long-term OA average model. 1000 permutation statistics of DiProPerm supported a significant difference between the healthy control group and OA group (t = 6.7, empirical p-value = 0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition.

  20. Deep Learning the Universe

    NASA Astrophysics Data System (ADS)

    Singh, Shiwangi; Bard, Deborah

    2017-01-01

    Weak gravitational lensing is an effective tool to map the structure of matter in the universe, and has been used for more than ten years as a probe of the nature of dark energy. Beyond the well-established two-point summary statistics, attention is now turning to methods that use the full statistical information available in the lensing observables, through analysis of the reconstructed shear field. This offers an opportunity to take advantage of powerful deep learning methods for image analysis. We present two early studies that demonstrate that deep learning can be used to characterise features in weak lensing convergence maps, and to identify the underlying cosmological model that produced them.We developed an unsupervised Denoising Convolutional Autoencoder model in order to learn an abstract representation directly from our data. This model uses a convolution-deconvolution architecture, which is fed with input data (corrupted with binomial noise to prevent over-fitting). Our model effectively trains itself to minimize the mean-squared error between the input and the output using gradient descent, resulting in a model which, theoretically, is broad enough to tackle other similarly structured problems. Using this model we were able to successfully reconstruct simulated convergence maps and identify the structures in them. We also determined which structures had the highest “importance” - i.e. which structures were most typical of the data. We note that the structures that had the highest importance in our reconstruction were around high mass concentrations, but were highly non-Gaussian.We also developed a supervised Convolutional Neural Network (CNN) for classification of weak lensing convergence maps from two different simulated theoretical models. The CNN uses a softmax classifier which minimizes a binary cross-entropy loss between the estimated distribution and true distribution. In other words, given an unseen convergence map the trained CNN determines probabilistically which theoretical model fits the data best. This preliminary work demonstrates that we can classify the cosmological model that produced the convergence maps with 80% accuracy.

  1. Surface mapping via unsupervised classification of remote sensing: application to MESSENGER/MASCS and DAWN/VIRS data.

    NASA Astrophysics Data System (ADS)

    D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.

    2017-12-01

    Machine-learning achieved unprecedented results in high-dimensional data processing tasks with wide applications in various fields. Due to the growing number of complex nonlinear systems that have to be investigated in science and the bare raw size of data nowadays available, ML offers the unique ability to extract knowledge, regardless the specific application field. Examples are image segmentation, supervised/unsupervised/ semi-supervised classification, feature extraction, data dimensionality analysis/reduction.The MASCS instrument has mapped Mercury surface in the 400-1145 nm wavelength range during orbital observations by the MESSENGER spacecraft. We have conducted k-means unsupervised hierarchical clustering to identify and characterize spectral units from MASCS observations. The results display a dichotomy: a polar and equatorial units, possibly linked to compositional differences or weathering due to irradiation. To explore possible relations between composition and spectral behavior, we have compared the spectral provinces with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS).For the Vesta application on DAWN Visible and infrared spectrometer (VIR) data, we explored several Machine Learning techniques: image segmentation method, stream algorithm and hierarchical clustering.The algorithm successfully separates the Olivine outcrops around two craters on Vesta's surface [1]. New maps summarizing the spectral and chemical signature of the surface could be automatically produced.We conclude that instead of hand digging in data, scientist could choose a subset of algorithms with well known feature (i.e. efficacy on the particular problem, speed, accuracy) and focus their effort in understanding what important characteristic of the groups found in the data mean. [1] E Ammannito et al. "Olivine in an unexpected location on Vesta's surface". In: Nature 504.7478 (2013), pp. 122-125.

  2. "Kicked out into the real world": prostate cancer patients' experiences with transitioning from hospital-based supervised exercise to unsupervised exercise in the community.

    PubMed

    Schmidt, Mette L K; Østergren, Peter; Cormie, Prue; Ragle, Anne-Mette; Sønksen, Jens; Midtgaard, Julie

    2018-06-21

    Regular exercise is recommended to mitigate the adverse effects of androgen deprivation therapy in men with prostate cancer. The purpose of this study was to explore the experience of transition to unsupervised, community-based exercise among men who had participated in a hospital-based supervised exercise programme in order to propose components that supported transition to unsupervised exercise. Participants were selected by means of purposive, criteria-based sampling. Men undergoing androgen deprivation therapy who had completed a 12-week hospital-based, supervised, group exercise intervention were invited to participate. The programme involved aerobic and resistance training using machines and included a structured transition to a community-based fitness centre. Data were collected by means of semi-structured focus group interviews and analysed using thematic analysis. Five focus group interviews were conducted with a total of 29 men, of whom 25 reported to have continued to exercise at community-based facilities. Three thematic categories emerged: Development and practice of new skills; Establishing social relationships; and Familiarising with bodily well-being. These were combined into an overarching theme: From learning to doing. Components suggested to support transition were as follows: a structured transition involving supervised exercise sessions at a community-based facility; strategies to facilitate peer support; transferable tools including an individual exercise chart; and access to 'check-ups' by qualified exercise specialists. Hospital-based, supervised exercise provides a safe learning environment. Transferring to community-based exercise can be experienced as a confrontation with the real world and can be eased through securing a structured transition, having transferable tools, sustained peer support and monitoring.

  3. PixelLearn

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph

    2006-01-01

    PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.

  4. Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.

    PubMed

    Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq

    2016-01-01

    This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.

  5. Intelligent control of robotic arm/hand systems for the NASA EVA retriever using neural networks

    NASA Technical Reports Server (NTRS)

    Mclauchlan, Robert A.

    1989-01-01

    Adaptive/general learning algorithms using varying neural network models are considered for the intelligent control of robotic arm plus dextrous hand/manipulator systems. Results are summarized and discussed for the use of the Barto/Sutton/Anderson neuronlike, unsupervised learning controller as applied to the stabilization of an inverted pendulum on a cart system. Recommendations are made for the application of the controller and a kinematic analysis for trajectory planning to simple object retrieval (chase/approach and capture/grasp) scenarios in two dimensions.

  6. 2-Way k-Means as a Model for Microbiome Samples.

    PubMed

    Jackson, Weston J; Agarwal, Ipsita; Pe'er, Itsik

    2017-01-01

    Motivation . Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k -means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project.

  7. 2-Way k-Means as a Model for Microbiome Samples

    PubMed Central

    2017-01-01

    Motivation. Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k-means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project. PMID:29177026

  8. NDRAM: nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns.

    PubMed

    Chartier, Sylvain; Proulx, Robert

    2005-11-01

    This paper presents a new unsupervised attractor neural network, which, contrary to optimal linear associative memory models, is able to develop nonbipolar attractors as well as bipolar attractors. Moreover, the model is able to develop less spurious attractors and has a better recall performance under random noise than any other Hopfield type neural network. Those performances are obtained by a simple Hebbian/anti-Hebbian online learning rule that directly incorporates feedback from a specific nonlinear transmission rule. Several computer simulations show the model's distinguishing properties.

  9. Using Machine Learning Techniques in the Analysis of Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Falcinelli, K. E.; Abuomar, S.

    2017-12-01

    Acoustic Doppler Current Profilers (ADCPs) are oceanographic tools capable of collecting large amounts of current profile data. Using unsupervised machine learning techniques such as principal component analysis, fuzzy c-means clustering, and self-organizing maps, patterns and trends in an ADCP dataset are found. Cluster validity algorithms such as visual assessment of cluster tendency and clustering index are used to determine the optimal number of clusters in the ADCP dataset. These techniques prove to be useful in analysis of ADCP data and demonstrate potential for future use in other oceanographic applications.

  10. Image segmentation using fuzzy LVQ clustering networks

    NASA Technical Reports Server (NTRS)

    Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.

    1992-01-01

    In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.

  11. Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout.

    PubMed

    Das, Anup; Pradhapan, Paruthi; Groenendaal, Willemijn; Adiraju, Prathyusha; Rajan, Raj Thilak; Catthoor, Francky; Schaafsma, Siebren; Krichmar, Jeffrey L; Dutt, Nikil; Van Hoof, Chris

    2018-03-01

    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine learning technique to estimate heart-rate from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery-life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects is considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder.

    PubMed

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed self-supervised video hashing (SSVH), which is able to capture the temporal nature of videos in an end-to-end learning to hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary auto-encoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world data sets show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the current best performance on the task of unsupervised video retrieval.

  13. Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits.

    PubMed

    Tiwari, Pradeep; Kutum, Rintu; Sethi, Tavpritesh; Shrivastava, Ankita; Girase, Bhushan; Aggarwal, Shilpi; Patil, Rutuja; Agarwal, Dhiraj; Gautam, Pramod; Agrawal, Anurag; Dash, Debasis; Ghosh, Saurabh; Juvekar, Sanjay; Mukerji, Mitali; Prasher, Bhavana

    2017-01-01

    In Ayurveda system of medicine individuals are classified into seven constitution types, "Prakriti", for assessing disease susceptibility and drug responsiveness. Prakriti evaluation involves clinical examination including questions about physiological and behavioural traits. A need was felt to develop models for accurately predicting Prakriti classes that have been shown to exhibit molecular differences. The present study was carried out on data of phenotypic attributes in 147 healthy individuals of three extreme Prakriti types, from a genetically homogeneous population of Western India. Unsupervised and supervised machine learning approaches were used to infer inherent structure of the data, and for feature selection and building classification models for Prakriti respectively. These models were validated in a North Indian population. Unsupervised clustering led to emergence of three natural clusters corresponding to three extreme Prakriti classes. The supervised modelling approaches could classify individuals, with distinct Prakriti types, in the training and validation sets. This study is the first to demonstrate that Prakriti types are distinct verifiable clusters within a multidimensional space of multiple interrelated phenotypic traits. It also provides a computational framework for predicting Prakriti classes from phenotypic attributes. This approach may be useful in precision medicine for stratification of endophenotypes in healthy and diseased populations.

  14. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

  15. Supervised and Unsupervised Learning Technology in the Study of Rodent Behavior

    PubMed Central

    Gris, Katsiaryna V.; Coutu, Jean-Philippe; Gris, Denis

    2017-01-01

    Quantifying behavior is a challenge for scientists studying neuroscience, ethology, psychology, pathology, etc. Until now, behavior was mostly considered as qualitative descriptions of postures or labor intensive counting of bouts of individual movements. Many prominent behavioral scientists conducted studies describing postures of mice and rats, depicting step by step eating, grooming, courting, and other behaviors. Automated video assessment technologies permit scientists to quantify daily behavioral patterns/routines, social interactions, and postural changes in an unbiased manner. Here, we extensively reviewed published research on the topic of the structural blocks of behavior and proposed a structure of behavior based on the latest publications. We discuss the importance of defining a clear structure of behavior to allow professionals to write viable algorithms. We presented a discussion of technologies that are used in automated video assessment of behavior in mice and rats. We considered advantages and limitations of supervised and unsupervised learning. We presented the latest scientific discoveries that were made using automated video assessment. In conclusion, we proposed that the automated quantitative approach to evaluating animal behavior is the future of understanding the effect of brain signaling, pathologies, genetic content, and environment on behavior. PMID:28804452

  16. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder

    NASA Astrophysics Data System (ADS)

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed Self-Supervised Video Hashing (SSVH), that is able to capture the temporal nature of videos in an end-to-end learning-to-hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos; and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary autoencoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world datasets (FCVID and YFCC) show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the currently best performance on the task of unsupervised video retrieval.

  17. Evolution patterns and parameter regimes in edge localized modes on the National Spherical Torus Experiment

    DOE Data Explorer

    Smith, D. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Podesta, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Smith, D. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fonck, R. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); McKee, G. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Diallo, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kaye, S. M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Sabbagh, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-09-01

    We implement unsupervised machine learning techniques to identify characteristic evolution patterns and associated parameter regimes in edge localized mode (ELM) events observed on the National Spherical Torus Experiment. Multi-channel, localized measurements spanning the pedestal region capture the complex evolution patterns of ELM events on Alfven timescales. Some ELM events are active for less than 100~microsec, but others persist for up to 1~ms. Also, some ELM events exhibit a single dominant perturbation, but others are oscillatory. Clustering calculations with time-series similarity metrics indicate the ELM database contains at least two and possibly three groups of ELMs with similar evolution patterns. The identified ELM groups trigger similar stored energy loss, but the groups occupy distinct parameter regimes for ELM-relevant quantities like plasma current, triangularity, and pedestal height. Notably, the pedestal electron pressure gradient is not an effective parameter for distinguishing the ELM groups, but the ELM groups segregate in terms of electron density gradient and electron temperature gradient. The ELM evolution patterns and corresponding parameter regimes can shape the formulation or validation of nonlinear ELM models. Finally, the techniques and results demonstrate an application of unsupervised machine learning at a data-rich fusion facility.

  18. Data Exploration using Unsupervised Feature Extraction for Mixed Micro-Seismic Signals

    NASA Astrophysics Data System (ADS)

    Meyer, Matthias; Weber, Samuel; Beutel, Jan

    2017-04-01

    We present a system for the analysis of data originating in a multi-sensor and multi-year experiment focusing on slope stability and its underlying processes in fractured permafrost rock walls undertaken at 3500m a.s.l. on the Matterhorn Hörnligrat, (Zermatt, Switzerland). This system incorporates facilities for the transmission, management and storage of large-scales of data ( 7 GB/day), preprocessing and aggregation of multiple sensor types, machine-learning based automatic feature extraction for micro-seismic and acoustic emission data and interactive web-based visualization of the data. Specifically, a combination of three types of sensors are used to profile the frequency spectrum from 1 Hz to 80 kHz with the goal to identify the relevant destructive processes (e.g. micro-cracking and fracture propagation) leading to the eventual destabilization of large rock masses. The sensors installed for this profiling experiment (2 geophones, 1 accelerometers and 2 piezo-electric sensors for detecting acoustic emission), are further augmented with sensors originating from a previous activity focusing on long-term monitoring of temperature evolution and rock kinematics with the help of wireless sensor networks (crackmeters, cameras, weather station, rock temperature profiles, differential GPS) [Hasler2012]. In raw format, the data generated by the different types of sensors, specifically the micro-seismic and acoustic emission sensors, is strongly heterogeneous, in part unsynchronized and the storage and processing demand is large. Therefore, a purpose-built signal preprocessing and event-detection system is used. While the analysis of data from each individual sensor follows established methods, the application of all these sensor types in combination within a field experiment is unique. Furthermore, experience and methods from using such sensors in laboratory settings cannot be readily transferred to the mountain field site setting with its scale and full exposure to the natural environment. Consequently, many state-of-the-art algorithms for big data analysis and event classification requiring a ground truth dataset cannot be applied. The above mentioned challenges require a tool for data exploration. In the presented system, data exploration is supported by unsupervised feature learning based on convolutional neural networks, which is used to automatically extract common features for preliminary clustering and outlier detection. With this information, an interactive web-tool allows for a fast identification of interesting time segments on which segment-selective algorithms for visualization, feature extraction and statistics can be applied. The combination of manual labeling based and unsupervised feature extraction provides an event catalog for classification of different characteristic events related to internal progression of micro-crack in steep fractured bedrock permafrost. References Hasler, A., S. Gruber, and J. Beutel (2012), Kinematics of steep bedrock permafrost, J. Geophys. Res., 117, F01016, doi:10.1029/2011JF001981.

  19. Four-Week Unstructured Break Improved Athletic Performance in Collegiate Rugby Players.

    PubMed

    Jensen, Courtney D; Gleason, Derrick; VanNess, Mark

    2018-06-01

    Jensen, CD, Gleason, D, and VanNess, JM. Four-week unstructured break improved athletic performance in collegiate rugby players. J Strength Cond Res 32(6): 1671-1677, 2018-This study analyzed the changes in athletic performance and anthropometric characteristics in collegiate male club rugby athletes (n = 14) after a 4-week winter break. All measurements were collected before and after the break. Body composition was assessed by body mass index and hydrostatic weighing. Performance measurements were as follows: V[Combining Dot Above]O2max, vertical jump, 10-yard sprint, squat max, and bench press max. Before testing, each subject was acclimated to the protocols to reduce learning effects. During the 4-week break, no workouts were provided for the athletes; it was unsupervised and unstructured. Participants were required to maintain and submit self-reported nutritional and activity logs during this period. After the break, the athletes demonstrated a 5.0% improvement in V[Combining Dot Above]O2max (absolute increase of 2.25 ml·kg·min), 6.8% improvement in vertical jump (1.50 inches), and a 14.3% increase in squat max (38.64 lb). Although increases in body mass (1.0%) were not significant, the body fat percentage exhibited a relative increase of 19.3% (absolute change from 13.35 to 15.93%). A significant discriminate function analysis indicated statistical differences between groups based on these variables. Self-reported behavior logs confirmed participation in >3 days of moderate to intense physical activity per week but somewhat poor dietary habits. These results indicate that collegiate rugby athletes may not need prescribed exercise routines during seasonal breaks in the athletic schedule. However, it may be beneficial to provide structured nutritional advice during unsupervised periods.

  20. Entanglement-Based Machine Learning on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  1. A Comparative Study of Unsupervised Anomaly Detection Techniques Using Honeypot Data

    NASA Astrophysics Data System (ADS)

    Song, Jungsuk; Takakura, Hiroki; Okabe, Yasuo; Inoue, Daisuke; Eto, Masashi; Nakao, Koji

    Intrusion Detection Systems (IDS) have been received considerable attention among the network security researchers as one of the most promising countermeasures to defend our crucial computer systems or networks against attackers on the Internet. Over the past few years, many machine learning techniques have been applied to IDSs so as to improve their performance and to construct them with low cost and effort. Especially, unsupervised anomaly detection techniques have a significant advantage in their capability to identify unforeseen attacks, i.e., 0-day attacks, and to build intrusion detection models without any labeled (i.e., pre-classified) training data in an automated manner. In this paper, we conduct a set of experiments to evaluate and analyze performance of the major unsupervised anomaly detection techniques using real traffic data which are obtained at our honeypots deployed inside and outside of the campus network of Kyoto University, and using various evaluation criteria, i.e., performance evaluation by similarity measurements and the size of training data, overall performance, detection ability for unknown attacks, and time complexity. Our experimental results give some practical and useful guidelines to IDS researchers and operators, so that they can acquire insight to apply these techniques to the area of intrusion detection, and devise more effective intrusion detection models.

  2. Automatic cloud coverage assessment of Formosat-2 image

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2011-11-01

    Formosat-2 satellite equips with the high-spatial-resolution (2m ground sampling distance) remote sensing instrument. It has been being operated on the daily-revisiting mission orbit by National Space organization (NSPO) of Taiwan since May 21 2004. NSPO has also serving as one of the ground receiving stations for daily processing the received Formosat- 2 images. The current cloud coverage assessment of Formosat-2 image for NSPO Image Processing System generally consists of two major steps. Firstly, an un-supervised K-means method is used for automatically estimating the cloud statistic of Formosat-2 image. Secondly, manual estimation of cloud coverage from Formosat-2 image is processed by manual examination. Apparently, a more accurate Automatic Cloud Coverage Assessment (ACCA) method certainly increases the efficiency of processing step 2 with a good prediction of cloud statistic. In this paper, mainly based on the research results from Chang et al, Irish, and Gotoh, we propose a modified Formosat-2 ACCA method which considered pre-processing and post-processing analysis. For pre-processing analysis, cloud statistic is determined by using un-supervised K-means classification, Sobel's method, Otsu's method, non-cloudy pixels reexamination, and cross-band filter method. Box-Counting fractal method is considered as a post-processing tool to double check the results of pre-processing analysis for increasing the efficiency of manual examination.

  3. Classification and unsupervised clustering of LIGO data with Deep Transfer Learning

    NASA Astrophysics Data System (ADS)

    George, Daniel; Shen, Hongyu; Huerta, E. A.

    2018-05-01

    Gravitational wave detection requires a detailed understanding of the response of the LIGO and Virgo detectors to true signals in the presence of environmental and instrumental noise. Of particular interest is the study of anomalous non-Gaussian transients, such as glitches, since their occurrence rate in LIGO and Virgo data can obscure or even mimic true gravitational wave signals. Therefore, successfully identifying and excising these anomalies from gravitational wave data is of utmost importance for the detection and characterization of true signals and for the accurate computation of their significance. To facilitate this work, we present the first application of deep learning combined with transfer learning to show that knowledge from pretrained models for real-world object recognition can be transferred for classifying spectrograms of glitches. To showcase this new method, we use a data set of twenty-two classes of glitches, curated and labeled by the Gravity Spy project using data collected during LIGO's first discovery campaign. We demonstrate that our Deep Transfer Learning method enables an optimal use of very deep convolutional neural networks for glitch classification given small and unbalanced training data sets, significantly reduces the training time, and achieves state-of-the-art accuracy above 98.8%, lowering the previous error rate by over 60%. More importantly, once trained via transfer learning on the known classes, we show that our neural networks can be truncated and used as feature extractors for unsupervised clustering to automatically group together new unknown classes of glitches and anomalous signals. This novel capability is of paramount importance to identify and remove new types of glitches which will occur as the LIGO/Virgo detectors gradually attain design sensitivity.

  4. The effects of range-of-motion therapy on the plantar pressures of patients with diabetes mellitus.

    PubMed

    Goldsmith, Jon R; Lidtke, Roy H; Shott, Susan

    2002-10-01

    A randomized controlled study of 19 patients with diabetes mellitus (10 men, 9 women) was undertaken to determine the effects of home exercise therapy on joint mobility and plantar pressures. Of the 19 subjects, 9 subjects performed unsupervised active and passive range-of-motion exercises of the joints in their feet. Each subject was evaluated for joint stiffness and peak plantar pressures at the beginning and conclusion of the study. After only 1 month of therapy, a statistically significant average decrease of 4.2% in peak plantar pressures was noted in the subjects performing the range-of-motion exercises. In the control group, an average increase of 4.4% in peak plantar pressures was noted. Although the joint mobility data revealed no statistically significant differences between the groups, there was a trend for a decrease in joint stiffness in the treatment group. The results of this study demonstrate that an unsupervised range-of-motion exercise program can reduce peak plantar pressures in the diabetic foot. Given that high plantar pressures have been linked to diabetic neuropathic ulceration, it may be possible to reduce the risk of such ulceration with this therapy.

  5. Multisensor and Multispectral Approach in Documenting and Analyzing Liquefaction Hazard using Remote Sensing

    NASA Astrophysics Data System (ADS)

    Oommen, T.; Baise, L. G.; Gens, R.; Prakash, A.; Gupta, R. P.

    2008-12-01

    Seismic liquefaction is the loss of strength of soil due to shaking that leads to various ground failures such as lateral spreading, settlements, tilting, and sand boils. It is important to document these failures after earthquakes to advance our study of when and where liquefaction occurs. The current approach of mapping these failures by field investigation teams suffers due to the inaccessibility to some of the sites immediately after the event, short life of some of these failures, difficulties in mapping the aerial extent of the failure, incomplete coverage etc. After the 2001 Bhuj earthquake (India), researchers, using the Indian remote sensing satellite, illustrated that satellite remote sensing can provide a synoptic view of the terrain and offer unbiased estimates of liquefaction failures. However, a multisensor (data from different sensors onboard of the same or different satellites) and multispectral (data collected in different spectral regions) approach is needed to efficiently document liquefaction incidences and/or its potential of occurrence due to the possibility of a particular satellite being located inappropriately to image an area shortly after an earthquake. The use of SAR satellite imagery ensures the acquisition of data in all weather conditions at day and night as well as information complimentary to the optical data sets. In this study, we analyze the applicability of the various satellites (Landsat, RADARSAT, Terra-MISR, IRS-1C, IRS-1D) in mapping liquefaction failures after the 2001 Bhuj earthquake using Support Vector Data Description (SVDD). The SVDD is a kernel based nonparametric outlier detection algorithm inspired by the Support Vector Machines (SVMs), which is a new generation learning algorithm based on the statistical learning theory. We present the applicability of SVDD for unsupervised change-detection studies (i.e. to identify post-earthquake liquefaction failures). The liquefaction occurrences identified from the different satellites using SVDD have been compared to the ground truth in terms of documented liquefaction failures by other researchers. We present the applicability and appropriateness of the various satellites and spectral regions for documenting liquefaction related failures. Results illustrate that the SVDD is a promising unsupervised change-detection algorithm, which can help in automating the documentation of earthquake induced liquefaction failures.

  6. Mining FDA drug labels using an unsupervised learning technique--topic modeling.

    PubMed

    Bisgin, Halil; Liu, Zhichao; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2011-10-18

    The Food and Drug Administration (FDA) approved drug labels contain a broad array of information, ranging from adverse drug reactions (ADRs) to drug efficacy, risk-benefit consideration, and more. However, the labeling language used to describe these information is free text often containing ambiguous semantic descriptions, which poses a great challenge in retrieving useful information from the labeling text in a consistent and accurate fashion for comparative analysis across drugs. Consequently, this task has largely relied on the manual reading of the full text by experts, which is time consuming and labor intensive. In this study, a novel text mining method with unsupervised learning in nature, called topic modeling, was applied to the drug labeling with a goal of discovering "topics" that group drugs with similar safety concerns and/or therapeutic uses together. A total of 794 FDA-approved drug labels were used in this study. First, the three labeling sections (i.e., Boxed Warning, Warnings and Precautions, Adverse Reactions) of each drug label were processed by the Medical Dictionary for Regulatory Activities (MedDRA) to convert the free text of each label to the standard ADR terms. Next, the topic modeling approach with latent Dirichlet allocation (LDA) was applied to generate 100 topics, each associated with a set of drugs grouped together based on the probability analysis. Lastly, the efficacy of the topic modeling was evaluated based on known information about the therapeutic uses and safety data of drugs. The results demonstrate that drugs grouped by topics are associated with the same safety concerns and/or therapeutic uses with statistical significance (P<0.05). The identified topics have distinct context that can be directly linked to specific adverse events (e.g., liver injury or kidney injury) or therapeutic application (e.g., antiinfectives for systemic use). We were also able to identify potential adverse events that might arise from specific medications via topics. The successful application of topic modeling on the FDA drug labeling demonstrates its potential utility as a hypothesis generation means to infer hidden relationships of concepts such as, in this study, drug safety and therapeutic use in the study of biomedical documents.

  7. A comparison of unsupervised classification procedures on LANDSAT MSS data for an area of complex surface conditions in Basilicata, Southern Italy

    NASA Technical Reports Server (NTRS)

    Justice, C.; Townshend, J. (Principal Investigator)

    1981-01-01

    Two unsupervised classification procedures were applied to ratioed and unratioed LANDSAT multispectral scanner data of an area of spatially complex vegetation and terrain. An objective accuracy assessment was undertaken on each classification and comparison was made of the classification accuracies. The two unsupervised procedures use the same clustering algorithm. By on procedure the entire area is clustered and by the other a representative sample of the area is clustered and the resulting statistics are extrapolated to the remaining area using a maximum likelihood classifier. Explanation is given of the major steps in the classification procedures including image preprocessing; classification; interpretation of cluster classes; and accuracy assessment. Of the four classifications undertaken, the monocluster block approach on the unratioed data gave the highest accuracy of 80% for five coarse cover classes. This accuracy was increased to 84% by applying a 3 x 3 contextual filter to the classified image. A detailed description and partial explanation is provided for the major misclassification. The classification of the unratioed data produced higher percentage accuracies than for the ratioed data and the monocluster block approach gave higher accuracies than clustering the entire area. The moncluster block approach was additionally the most economical in terms of computing time.

  8. Online feedback assessments in physiology: effects on students' learning experiences and outcomes.

    PubMed

    Marden, Nicole Y; Ulman, Lesley G; Wilson, Fiona S; Velan, Gary M

    2013-06-01

    Online formative assessments have become increasingly popular; however, formal evidence supporting their educational benefits is limited. This study investigated the impact of online feedback quizzes on the learning experiences and outcomes of undergraduate students enrolled in an introductory physiology course. Four quiz models were tested, which differed in the amount of credit available, the number of attempts permitted, and whether the quizzes were invigilated or unsupervised, timed or untimed, or open or closed book. All quizzes were composed of multiple-choice questions and provided immediate individualized feedback. Summative end-of-course examination marks were analyzed with respect to performance in quizzes and were also compared with examination performance in the year before the quizzes were introduced. Online surveys were conducted to gather students' perceptions regarding the quizzes. The vast majority of students perceived online quizzes as a valuable learning tool. For all quiz models tested, there was a significant relationship between performance in quizzes and end-of-course examination scores. Importantly, students who performed poorly in quizzes were more likely to fail the examination, suggesting that formative online quizzes may be a useful tool to identify students in need of assistance. Of the four quiz models, only one quiz model was associated with a significant increase in mean examination performance. This model had the strongest formative focus, allowing multiple unsupervised and untimed attempts. This study suggests that the format of online formative assessments is critical in achieving the desired impact on student learning. Specifically, such assessments are most effective when they are low stakes.

  9. Unsupervised learning of digit recognition using spike-timing-dependent plasticity

    PubMed Central

    Diehl, Peter U.; Cook, Matthew

    2015-01-01

    In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN) can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns), since most such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e., conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks. PMID:26941637

  10. Unsupervised and self-mapping category formation and semantic object recognition for mobile robot vision used in an actual environment

    NASA Astrophysics Data System (ADS)

    Madokoro, H.; Tsukada, M.; Sato, K.

    2013-07-01

    This paper presents an unsupervised learning-based object category formation and recognition method for mobile robot vision. Our method has the following features: detection of feature points and description of features using a scale-invariant feature transform (SIFT), selection of target feature points using one class support vector machines (OC-SVMs), generation of visual words using self-organizing maps (SOMs), formation of labels using adaptive resonance theory 2 (ART-2), and creation and classification of categories on a category map of counter propagation networks (CPNs) for visualizing spatial relations between categories. Classification results of dynamic images using time-series images obtained using two different-size robots and according to movements respectively demonstrate that our method can visualize spatial relations of categories while maintaining time-series characteristics. Moreover, we emphasize the effectiveness of our method for category formation of appearance changes of objects.

  11. Harmonic Training and the Formation of Pitch Representation in a Neural Network Model of the Auditory Brain

    PubMed Central

    Ahmad, Nasir; Higgins, Irina; Walker, Kerry M. M.; Stringer, Simon M.

    2016-01-01

    Attempting to explain the perceptual qualities of pitch has proven to be, and remains, a difficult problem. The wide range of sounds which elicit pitch and a lack of agreement across neurophysiological studies on how pitch is encoded by the brain have made this attempt more difficult. In describing the potential neural mechanisms by which pitch may be processed, a number of neural networks have been proposed and implemented. However, no unsupervised neural networks with biologically accurate cochlear inputs have yet been demonstrated. This paper proposes a simple system in which pitch representing neurons are produced in a biologically plausible setting. Purely unsupervised regimes of neural network learning are implemented and these prove to be sufficient in identifying the pitch of sounds with a variety of spectral profiles, including sounds with missing fundamental frequencies and iterated rippled noises. PMID:27047368

  12. Early breast tumor and late SARS detections using space-variant multispectral infrared imaging at a single pixel

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.; Buss, James R.; Kopriva, Ivica

    2004-04-01

    We proposed the physics approach to solve a physical inverse problem, namely to choose the unique equilibrium solution (at the minimum free energy: H= E - ToS, including the Wiener, l.m.s E, and ICA, Max S, as special cases). The "unsupervised classification" presumes that required information must be learned and derived directly and solely from the data alone, in consistence with the classical Duda-Hart ATR definition of the "unlabelled data". Such truly unsupervised methodology is presented for space-variant imaging processing for a single pixel in the real world case of remote sensing, early tumor detections and SARS. The indeterminacy of the multiple solutions of the inverse problem is regulated or selected by means of the absolute minimum of isothermal free energy as the ground truth of local equilibrium condition at the single-pixel foot print.

  13. Data mining with unsupervised clustering using photonic micro-ring resonators

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2013-09-01

    Data is commonly moved through optical fiber in modern data centers and may be stored optically. We propose an optical method of data mining for future data centers to enhance performance. For example, in clustering, a form of unsupervised learning, we propose that parameters corresponding to information in a database are converted from analog values to frequencies, as in the brain's neurons, where similar data will have close frequencies. We describe the Wilson-Cowan model for oscillating neurons. In optics we implement the frequencies with micro ring resonators. Due to the influence of weak coupling, a group of resonators will form clusters of similar frequencies that will indicate the desired parameters having close relations. Fewer clusters are formed as clustering proceeds, which allows the creation of a tree showing topics of importance and their relationships in the database. The tree can be used for instance to target advertising and for planning.

  14. Weighted Distance Functions Improve Analysis of High-Dimensional Data: Application to Molecular Dynamics Simulations.

    PubMed

    Blöchliger, Nicolas; Caflisch, Amedeo; Vitalis, Andreas

    2015-11-10

    Data mining techniques depend strongly on how the data are represented and how distance between samples is measured. High-dimensional data often contain a large number of irrelevant dimensions (features) for a given query. These features act as noise and obfuscate relevant information. Unsupervised approaches to mine such data require distance measures that can account for feature relevance. Molecular dynamics simulations produce high-dimensional data sets describing molecules observed in time. Here, we propose to globally or locally weight simulation features based on effective rates. This emphasizes, in a data-driven manner, slow degrees of freedom that often report on the metastable states sampled by the molecular system. We couple this idea to several unsupervised learning protocols. Our approach unmasks slow side chain dynamics within the native state of a miniprotein and reveals additional metastable conformations of a protein. The approach can be combined with most algorithms for clustering or dimensionality reduction.

  15. Improving zero-training brain-computer interfaces by mixing model estimators

    NASA Astrophysics Data System (ADS)

    Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.

    2017-06-01

    Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.

  16. Computational intelligence in gait research: a perspective on current applications and future challenges.

    PubMed

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  17. Metrics for Systems Thinking in the Human Dimension

    DTIC Science & Technology

    2016-11-01

    corpora of documents. 2 Methodology Overview We present a human-in-the- loop methodology that assists researchers and analysts by characterizing...supervised learning methods. Building on this foundation, we present an unsupervised, human-in-the- loop methodology that utilizes topic models to...the definition of strong systems thinking and in the interpretation of topics, but this is what makes the human-in-the- loop methodology so effective

  18. Unsupervised Learning (Clustering) of Odontocete Echolocation Clicks

    DTIC Science & Technology

    2015-09-30

    of their bandwidth. Results on Risso’s dolphins (Grampus griseus), Pacific white-sided dolphins (Lagenorhynchus obliquidens), and Cuvier’s beaked...acoustic encounters to see which ones appeared to be closely related to one another. We noted that some of the Pacific white-sided and Risso’s dolphin ...should be clusterable. The group of odontocetes that we cannot label reliably by their acoustic features, primarily common dolphins (Delphinus spp

  19. The evaluation of alternate methodologies for land cover classification in an urbanizing area

    NASA Technical Reports Server (NTRS)

    Smekofski, R. M.

    1981-01-01

    The usefulness of LANDSAT in classifying land cover and in identifying and classifying land use change was investigated using an urbanizing area as the study area. The question of what was the best technique for classification was the primary focus of the study. The many computer-assisted techniques available to analyze LANDSAT data were evaluated. Techniques of statistical training (polygons from CRT, unsupervised clustering, polygons from digitizer and binary masks) were tested with minimum distance to the mean, maximum likelihood and canonical analysis with minimum distance to the mean classifiers. The twelve output images were compared to photointerpreted samples, ground verified samples and a current land use data base. Results indicate that for a reconnaissance inventory, the unsupervised training with canonical analysis-minimum distance classifier is the most efficient. If more detailed ground truth and ground verification is available, the polygons from the digitizer training with the canonical analysis minimum distance is more accurate.

  20. Validation of a free software for unsupervised assessment of abdominal fat in MRI.

    PubMed

    Maddalo, Michele; Zorza, Ivan; Zubani, Stefano; Nocivelli, Giorgio; Calandra, Giulio; Soldini, Pierantonio; Mascaro, Lorella; Maroldi, Roberto

    2017-05-01

    To demonstrate the accuracy of an unsupervised (fully automated) software for fat segmentation in magnetic resonance imaging. The proposed software is a freeware solution developed in ImageJ that enables the quantification of metabolically different adipose tissues in large cohort studies. The lumbar part of the abdomen (19cm in craniocaudal direction, centered in L3) of eleven healthy volunteers (age range: 21-46years, BMI range: 21.7-31.6kg/m 2 ) was examined in a breath hold on expiration with a GE T1 Dixon sequence. Single-slice and volumetric data were considered for each subject. The results of the visceral and subcutaneous adipose tissue assessments obtained by the unsupervised software were compared to supervised segmentations of reference. The associated statistical analysis included Pearson correlations, Bland-Altman plots and volumetric differences (VD % ). Values calculated by the unsupervised software significantly correlated with corresponding supervised segmentations of reference for both subcutaneous adipose tissue - SAT (R=0.9996, p<0.001) and visceral adipose tissue - VAT (R=0.995, p<0.001). Bland-Altman plots showed the absence of systematic errors and a limited spread of the differences. In the single-slice analysis, VD % were (1.6±2.9)% for SAT and (4.9±6.9)% for VAT. In the volumetric analysis, VD % were (1.3±0.9)% for SAT and (2.9±2.7)% for VAT. The developed software is capable of segmenting the metabolically different adipose tissues with a high degree of accuracy. This free add-on software for ImageJ can easily have a widespread and enable large-scale population studies regarding the adipose tissue and its related diseases. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Advanced Treatment Monitoring for Olympic-Level Athletes Using Unsupervised Modeling Techniques

    PubMed Central

    Siedlik, Jacob A.; Bergeron, Charles; Cooper, Michael; Emmons, Russell; Moreau, William; Nabhan, Dustin; Gallagher, Philip; Vardiman, John P.

    2016-01-01

    Context Analysis of injury and illness data collected at large international competitions provides the US Olympic Committee and the national governing bodies for each sport with information to best prepare for future competitions. Research in which authors have evaluated medical contacts to provide the expected level of medical care and sports medicine services at international competitions is limited. Objective To analyze the medical-contact data for athletes, staff, and coaches who participated in the 2011 Pan American Games in Guadalajara, Mexico, using unsupervised modeling techniques to identify underlying treatment patterns. Design Descriptive epidemiology study. Setting Pan American Games. Patients or Other Participants A total of 618 US athletes (337 males, 281 females) participated in the 2011 Pan American Games. Main Outcome Measure(s) Medical data were recorded from the injury-evaluation and injury-treatment forms used by clinicians assigned to the central US Olympic Committee Sport Medicine Clinic and satellite locations during the operational 17-day period of the 2011 Pan American Games. We used principal components analysis and agglomerative clustering algorithms to identify and define grouped modalities. Lift statistics were calculated for within-cluster subgroups. Results Principal component analyses identified 3 components, accounting for 72.3% of the variability in datasets. Plots of the principal components showed that individual contacts focused on 4 treatment clusters: massage, paired manipulation and mobilization, soft tissue therapy, and general medical. Conclusions Unsupervised modeling techniques were useful for visualizing complex treatment data and provided insights for improved treatment modeling in athletes. Given its ability to detect clinically relevant treatment pairings in large datasets, unsupervised modeling should be considered a feasible option for future analyses of medical-contact data from international competitions. PMID:26794628

  2. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.

    PubMed

    Beltrame, Thomas; Amelard, Robert; Wong, Alexander; Hughson, Richard L

    2018-02-01

    Physical activity levels are related through algorithms to the energetic demand, with no information regarding the integrity of the multiple physiological systems involved in the energetic supply. Longitudinal analysis of the oxygen uptake (V̇o 2 ) by wearable sensors in realistic settings might permit development of a practical tool for the study of the longitudinal aerobic system dynamics (i.e., V̇o 2 kinetics). This study evaluated aerobic system dynamics based on predicted V̇o 2 data obtained from wearable sensors during unsupervised activities of daily living (μADL). Thirteen healthy men performed a laboratory-controlled moderate exercise protocol and were monitored for ≈6 h/day for 4 days (μADL data). Variables derived from hip accelerometer (ACC HIP ), heart rate monitor, and respiratory bands during μADL were extracted and processed by a validated random forest regression model to predict V̇o 2 . The aerobic system analysis was based on the frequency-domain analysis of ACC HIP and predicted V̇o 2 data obtained during μADL. Optimal samples for frequency domain analysis (constrained to ≤0.01 Hz) were selected when ACC HIP was higher than 0.05 g at a given frequency (i.e., participants were active). The temporal characteristics of predicted V̇o 2 data during μADL correlated with the temporal characteristics of measured V̇o 2 data during laboratory-controlled protocol ([Formula: see text] = 0.82, P < 0.001, n = 13). In conclusion, aerobic system dynamics can be investigated during unsupervised activities of daily living by wearable sensors. Although speculative, these algorithms have the potential to be incorporated into wearable systems for early detection of changes in health status in realistic environments by detecting changes in aerobic response dynamics. NEW & NOTEWORTHY The early detection of subclinical aerobic system impairments might be indicative of impaired physiological reserves that impact the capacity for physical activity. This study is the first to use wearable sensors in unsupervised activities of daily living in combination with novel machine learning algorithms to investigate the aerobic system dynamics with the potential to contribute to models of functional health status and guide future individualized health care in the normal population.

  3. Unsupervised learning in persistent sensing for target recognition by wireless ad hoc networks of ground-based sensors

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.

  4. Unsupervised ensemble ranking of terms in electronic health record notes based on their importance to patients.

    PubMed

    Chen, Jinying; Yu, Hong

    2017-04-01

    Allowing patients to access their own electronic health record (EHR) notes through online patient portals has the potential to improve patient-centered care. However, EHR notes contain abundant medical jargon that can be difficult for patients to comprehend. One way to help patients is to reduce information overload and help them focus on medical terms that matter most to them. Targeted education can then be developed to improve patient EHR comprehension and the quality of care. The aim of this work was to develop FIT (Finding Important Terms for patients), an unsupervised natural language processing (NLP) system that ranks medical terms in EHR notes based on their importance to patients. We built FIT on a new unsupervised ensemble ranking model derived from the biased random walk algorithm to combine heterogeneous information resources for ranking candidate terms from each EHR note. Specifically, FIT integrates four single views (rankers) for term importance: patient use of medical concepts, document-level term salience, word co-occurrence based term relatedness, and topic coherence. It also incorporates partial information of term importance as conveyed by terms' unfamiliarity levels and semantic types. We evaluated FIT on 90 expert-annotated EHR notes and used the four single-view rankers as baselines. In addition, we implemented three benchmark unsupervised ensemble ranking methods as strong baselines. FIT achieved 0.885 AUC-ROC for ranking candidate terms from EHR notes to identify important terms. When including term identification, the performance of FIT for identifying important terms from EHR notes was 0.813 AUC-ROC. Both performance scores significantly exceeded the corresponding scores from the four single rankers (P<0.001). FIT also outperformed the three ensemble rankers for most metrics. Its performance is relatively insensitive to its parameter. FIT can automatically identify EHR terms important to patients. It may help develop future interventions to improve quality of care. By using unsupervised learning as well as a robust and flexible framework for information fusion, FIT can be readily applied to other domains and applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Image fusion using sparse overcomplete feature dictionaries

    DOEpatents

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  6. A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images.

    PubMed

    Windrim, Lloyd; Ramakrishnan, Rishi; Melkumyan, Arman; Murphy, Richard J

    2018-02-01

    This paper proposes the Relit Spectral Angle-Stacked Autoencoder, a novel unsupervised feature learning approach for mapping pixel reflectances to illumination invariant encodings. This work extends the Spectral Angle-Stacked Autoencoder so that it can learn a shadow-invariant mapping. The method is inspired by a deep learning technique, Denoising Autoencoders, with the incorporation of a physics-based model for illumination such that the algorithm learns a shadow invariant mapping without the need for any labelled training data, additional sensors, a priori knowledge of the scene or the assumption of Planckian illumination. The method is evaluated using datasets captured from several different cameras, with experiments to demonstrate the illumination invariance of the features and how they can be used practically to improve the performance of high-level perception algorithms that operate on images acquired outdoors.

  7. Age Differences in the Effects of Experimenter-Instructed Versus Self-Generated Strategy Use

    PubMed Central

    Hertzog, Christopher; Price, Jodi; Dunlosky, John

    2013-01-01

    Background/Study Context Interactive imagery is superior to rote repetition as an encoding strategy for paired associate (PA) recall. Younger and older individuals often rate these strategies as equally effective before they gain experience using each strategy. The present study investigated how experimenter-supervised and participant-chosen strategy experience affected younger and older adults’ knowledge about the effectiveness of these two strategies. Methods Ninety-nine younger (M = 19.0 years, SD = 1.4) and 90 older adults (M = 70.4 years, SD = 5.2) participated in the experiment. In learning a first PA list participants were either instructed to use imagery or repetition to study specific items (supervised) or could choose their own strategies (unsupervised). All participants were unsupervised on a second PA list to evaluate whether strategy experience affected strategy knowledge, strategy use, and PA recall. Results Both instruction groups learned about the superiority of imagery use through task experience, downgrading repetition ratings and upgrading imagery ratings on the second list. However, older adults showed less knowledge updating than did younger adults. Previously supervised younger adults increased their imagery use, improving PA recall; older adults maintained a higher level of repetition use. Conclusions Older adults update knowledge of the differential effectiveness of the rote and imagery strategies, but to a lesser degree than younger adults. Older adults manifest an inertial tendency to continue using the repetition strategy even though they have learned that it is inferior to interactive imagery. PMID:22224949

  8. Epithelium-Stroma Classification via Convolutional Neural Networks and Unsupervised Domain Adaptation in Histopathological Images.

    PubMed

    Huang, Yue; Zheng, Han; Liu, Chi; Ding, Xinghao; Rohde, Gustavo K

    2017-11-01

    Epithelium-stroma classification is a necessary preprocessing step in histopathological image analysis. Current deep learning based recognition methods for histology data require collection of large volumes of labeled data in order to train a new neural network when there are changes to the image acquisition procedure. However, it is extremely expensive for pathologists to manually label sufficient volumes of data for each pathology study in a professional manner, which results in limitations in real-world applications. A very simple but effective deep learning method, that introduces the concept of unsupervised domain adaptation to a simple convolutional neural network (CNN), has been proposed in this paper. Inspired by transfer learning, our paper assumes that the training data and testing data follow different distributions, and there is an adaptation operation to more accurately estimate the kernels in CNN in feature extraction, in order to enhance performance by transferring knowledge from labeled data in source domain to unlabeled data in target domain. The model has been evaluated using three independent public epithelium-stroma datasets by cross-dataset validations. The experimental results demonstrate that for epithelium-stroma classification, the proposed framework outperforms the state-of-the-art deep neural network model, and it also achieves better performance than other existing deep domain adaptation methods. The proposed model can be considered to be a better option for real-world applications in histopathological image analysis, since there is no longer a requirement for large-scale labeled data in each specified domain.

  9. Learning atoms for materials discovery.

    PubMed

    Zhou, Quan; Tang, Peizhe; Liu, Shenxiu; Pan, Jinbo; Yan, Qimin; Zhang, Shou-Cheng

    2018-06-26

    Exciting advances have been made in artificial intelligence (AI) during recent decades. Among them, applications of machine learning (ML) and deep learning techniques brought human-competitive performances in various tasks of fields, including image recognition, speech recognition, and natural language understanding. Even in Go, the ancient game of profound complexity, the AI player has already beat human world champions convincingly with and without learning from the human. In this work, we show that our unsupervised machines (Atom2Vec) can learn the basic properties of atoms by themselves from the extensive database of known compounds and materials. These learned properties are represented in terms of high-dimensional vectors, and clustering of atoms in vector space classifies them into meaningful groups consistent with human knowledge. We use the atom vectors as basic input units for neural networks and other ML models designed and trained to predict materials properties, which demonstrate significant accuracy. Copyright © 2018 the Author(s). Published by PNAS.

  10. Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring.

    PubMed

    Kallenberg, Michiel; Petersen, Kersten; Nielsen, Mads; Ng, Andrew Y; Pengfei Diao; Igel, Christian; Vachon, Celine M; Holland, Katharina; Winkel, Rikke Rass; Karssemeijer, Nico; Lillholm, Martin

    2016-05-01

    Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.

  11. Hybrid image representation learning model with invariant features for basal cell carcinoma detection

    NASA Astrophysics Data System (ADS)

    Arevalo, John; Cruz-Roa, Angel; González, Fabio A.

    2013-11-01

    This paper presents a novel method for basal-cell carcinoma detection, which combines state-of-the-art methods for unsupervised feature learning (UFL) and bag of features (BOF) representation. BOF, which is a form of representation learning, has shown a good performance in automatic histopathology image classi cation. In BOF, patches are usually represented using descriptors such as SIFT and DCT. We propose to use UFL to learn the patch representation itself. This is accomplished by applying a topographic UFL method (T-RICA), which automatically learns visual invariance properties of color, scale and rotation from an image collection. These learned features also reveals these visual properties associated to cancerous and healthy tissues and improves carcinoma detection results by 7% with respect to traditional autoencoders, and 6% with respect to standard DCT representations obtaining in average 92% in terms of F-score and 93% of balanced accuracy.

  12. A Computational Framework for Understanding Decision Making through Integration of Basic Learning Rules

    PubMed Central

    Bazhenov, Maxim; Huerta, Ramon; Smith, Brian H.

    2013-01-01

    Nonassociative and associative learning rules simultaneously modify neural circuits. However, it remains unclear how these forms of plasticity interact to produce conditioned responses. Here we integrate nonassociative and associative conditioning within a uniform model of olfactory learning in the honeybee. Honeybees show a fairly abrupt increase in response after a number of conditioning trials. The occurrence of this abrupt change takes many more trials after exposure to nonassociative trials than just using associative conditioning. We found that the interaction of unsupervised and supervised learning rules is critical for explaining latent inhibition phenomenon. Associative conditioning combined with the mutual inhibition between the output neurons produces an abrupt increase in performance despite smooth changes of the synaptic weights. The results show that an integrated set of learning rules implemented using fan-out connectivities together with neural inhibition can explain the broad range of experimental data on learning behaviors. PMID:23536082

  13. The effects of an unsupervised water exercise program on low back pain and sick leave among healthy pregnant women - A randomised controlled trial.

    PubMed

    Backhausen, Mette G; Tabor, Ann; Albert, Hanne; Rosthøj, Susanne; Damm, Peter; Hegaard, Hanne K

    2017-01-01

    Low back pain is highly prevalent among pregnant women, but evidence of an effective treatment are still lacking. Supervised exercise-either land or water based-has shown benefits for low back pain, but no trial has investigated the evidence of an unsupervised water exercise program on low back pain. We aimed to assess the effect of an unsupervised water exercise program on low back pain intensity and days spent on sick leave among healthy pregnant women. In this randomised, controlled, parallel-group trial, 516 healthy pregnant women were randomly assigned to either unsupervised water exercise twice a week for a period of 12 weeks or standard prenatal care. Healthy pregnant women aged 18 years or older, with a single fetus and between 16-17 gestational weeks were eligible. The primary outcome was low back pain intensity measured by the Low Back Pain Rating scale at 32 weeks. The secondary outcomes were self-reported days spent on sick leave, disability due to low back pain (Roland Morris Disability Questionnaire) and self-rated general health (EQ-5D and EQ-VAS). Low back pain intensity was significantly lower in the water exercise group, with a score of 2.01 (95% CI 1.75-2.26) vs. 2.38 in the control group (95% CI 2.12-2.64) (mean difference = 0.38, 95% CI 0.02-0.74 p = 0.04). No difference was found in the number of days spent on sick leave (median 4 vs. 4, p = 0.83), disability due to low back pain nor self-rated general health. There was a trend towards more women in the water exercise group reporting no low back pain at 32 weeks (21% vs. 14%, p = 0.07). Unsupervised water exercise results in a statistically significant lower intensity of low back pain in healthy pregnant women, but the result was most likely not clinically significant. It did not affect the number of days on sick leave, disability due to low back pain nor self-rated health. ClinicalTrials.gov NCT02354430.

  14. The effects of an unsupervised water exercise program on low back pain and sick leave among healthy pregnant women – A randomised controlled trial

    PubMed Central

    Tabor, Ann; Albert, Hanne; Rosthøj, Susanne; Damm, Peter; Hegaard, Hanne K.

    2017-01-01

    Background Low back pain is highly prevalent among pregnant women, but evidence of an effective treatment are still lacking. Supervised exercise–either land or water based–has shown benefits for low back pain, but no trial has investigated the evidence of an unsupervised water exercise program on low back pain. We aimed to assess the effect of an unsupervised water exercise program on low back pain intensity and days spent on sick leave among healthy pregnant women. Methods In this randomised, controlled, parallel-group trial, 516 healthy pregnant women were randomly assigned to either unsupervised water exercise twice a week for a period of 12 weeks or standard prenatal care. Healthy pregnant women aged 18 years or older, with a single fetus and between 16–17 gestational weeks were eligible. The primary outcome was low back pain intensity measured by the Low Back Pain Rating scale at 32 weeks. The secondary outcomes were self-reported days spent on sick leave, disability due to low back pain (Roland Morris Disability Questionnaire) and self-rated general health (EQ-5D and EQ-VAS). Results Low back pain intensity was significantly lower in the water exercise group, with a score of 2.01 (95% CI 1.75–2.26) vs. 2.38 in the control group (95% CI 2.12–2.64) (mean difference = 0.38, 95% CI 0.02–0.74 p = 0.04). No difference was found in the number of days spent on sick leave (median 4 vs. 4, p = 0.83), disability due to low back pain nor self-rated general health. There was a trend towards more women in the water exercise group reporting no low back pain at 32 weeks (21% vs. 14%, p = 0.07). Conclusions Unsupervised water exercise results in a statistically significant lower intensity of low back pain in healthy pregnant women, but the result was most likely not clinically significant. It did not affect the number of days on sick leave, disability due to low back pain nor self-rated health. Trial registration ClinicalTrials.gov NCT02354430 PMID:28877165

  15. Advanced methods in NDE using machine learning approaches

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank

    2018-04-01

    Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability prediction based on big data becomes possible, even if components are used in different versions or configurations. This is the promise behind German Industry 4.0.

  16. Human semi-supervised learning.

    PubMed

    Gibson, Bryan R; Rogers, Timothy T; Zhu, Xiaojin

    2013-01-01

    Most empirical work in human categorization has studied learning in either fully supervised or fully unsupervised scenarios. Most real-world learning scenarios, however, are semi-supervised: Learners receive a great deal of unlabeled information from the world, coupled with occasional experiences in which items are directly labeled by a knowledgeable source. A large body of work in machine learning has investigated how learning can exploit both labeled and unlabeled data provided to a learner. Using equivalences between models found in human categorization and machine learning research, we explain how these semi-supervised techniques can be applied to human learning. A series of experiments are described which show that semi-supervised learning models prove useful for explaining human behavior when exposed to both labeled and unlabeled data. We then discuss some machine learning models that do not have familiar human categorization counterparts. Finally, we discuss some challenges yet to be addressed in the use of semi-supervised models for modeling human categorization. Copyright © 2013 Cognitive Science Society, Inc.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchill, R. Michael

    Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.

  18. Maximum Margin Clustering of Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2013-09-01

    In recent decades, large margin methods such as Support Vector Machines (SVMs) are supposed to be the state-of-the-art of supervised learning methods for classification of hyperspectral data. However, the results of these algorithms mainly depend on the quality and quantity of available training data. To tackle down the problems associated with the training data, the researcher put effort into extending the capability of large margin algorithms for unsupervised learning. One of the recent proposed algorithms is Maximum Margin Clustering (MMC). The MMC is an unsupervised SVMs algorithm that simultaneously estimates both the labels and the hyperplane parameters. Nevertheless, the optimization of the MMC algorithm is a non-convex problem. Most of the existing MMC methods rely on the reformulating and the relaxing of the non-convex optimization problem as semi-definite programs (SDP), which are computationally very expensive and only can handle small data sets. Moreover, most of these algorithms are two-class classification, which cannot be used for classification of remotely sensed data. In this paper, a new MMC algorithm is used that solve the original non-convex problem using Alternative Optimization method. This algorithm is also extended for multi-class classification and its performance is evaluated. The results of the proposed algorithm show that the algorithm has acceptable results for hyperspectral data clustering.

  19. An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.

    PubMed

    Faigl, Jan

    2016-01-01

    In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.

  20. An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective

    PubMed Central

    Faigl, Jan

    2016-01-01

    In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning. PMID:27340395

  1. Unsupervised spatiotemporal analysis of fMRI data using graph-based visualizations of self-organizing maps.

    PubMed

    Katwal, Santosh B; Gore, John C; Marois, Rene; Rogers, Baxter P

    2013-09-01

    We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.

  2. Accuracy of un-supervised versus provider-supervised self-administered HIV testing in Uganda: A randomized implementation trial.

    PubMed

    Asiimwe, Stephen; Oloya, James; Song, Xiao; Whalen, Christopher C

    2014-12-01

    Unsupervised HIV self-testing (HST) has potential to increase knowledge of HIV status; however, its accuracy is unknown. To estimate the accuracy of unsupervised HST in field settings in Uganda, we performed a non-blinded, randomized controlled, non-inferiority trial of unsupervised compared with supervised HST among selected high HIV risk fisherfolk (22.1 % HIV Prevalence) in three fishing villages in Uganda between July and September 2013. The study enrolled 246 participants and randomized them in a 1:1 ratio to unsupervised HST or provider-supervised HST. In an intent-to-treat analysis, the HST sensitivity was 90 % in the unsupervised arm and 100 % among the provider-supervised, yielding a difference 0f -10 % (90 % CI -21, 1 %); non-inferiority was not shown. In a per protocol analysis, the difference in sensitivity was -5.6 % (90 % CI -14.4, 3.3 %) and did show non-inferiority. We conclude that unsupervised HST is feasible in rural Africa and may be non-inferior to provider-supervised HST.

  3. Sequence-structure relationship study in all-α transmembrane proteins using an unsupervised learning approach.

    PubMed

    Esque, Jérémy; Urbain, Aurélie; Etchebest, Catherine; de Brevern, Alexandre G

    2015-11-01

    Transmembrane proteins (TMPs) are major drug targets, but the knowledge of their precise topology structure remains highly limited compared with globular proteins. In spite of the difficulties in obtaining their structures, an important effort has been made these last years to increase their number from an experimental and computational point of view. In view of this emerging challenge, the development of computational methods to extract knowledge from these data is crucial for the better understanding of their functions and in improving the quality of structural models. Here, we revisit an efficient unsupervised learning procedure, called Hybrid Protein Model (HPM), which is applied to the analysis of transmembrane proteins belonging to the all-α structural class. HPM method is an original classification procedure that efficiently combines sequence and structure learning. The procedure was initially applied to the analysis of globular proteins. In the present case, HPM classifies a set of overlapping protein fragments, extracted from a non-redundant databank of TMP 3D structure. After fine-tuning of the learning parameters, the optimal classification results in 65 clusters. They represent at best similar relationships between sequence and local structure properties of TMPs. Interestingly, HPM distinguishes among the resulting clusters two helical regions with distinct hydrophobic patterns. This underlines the complexity of the topology of these proteins. The HPM classification enlightens unusual relationship between amino acids in TMP fragments, which can be useful to elaborate new amino acids substitution matrices. Finally, two challenging applications are described: the first one aims at annotating protein functions (channel or not), the second one intends to assess the quality of the structures (X-ray or models) via a new scoring function deduced from the HPM classification.

  4. An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data - A case study in complex temperate forest stands

    NASA Astrophysics Data System (ADS)

    Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans

    2017-05-01

    Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.

  5. Diagnostic index of three-dimensional osteoarthritic changes in temporomandibular joint condylar morphology

    PubMed Central

    Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia

    2015-01-01

    Abstract. This study aimed to investigate imaging statistical approaches for classifying three-dimensional (3-D) osteoarthritic morphological variations among 169 temporomandibular joint (TMJ) condyles. Cone-beam computed tomography scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA), 15 subjects at initial diagnosis of OA, and 7 healthy controls. Three-dimensional surface models of the condyles were constructed and SPHARM-PDM established correspondent points on each model. Multivariate analysis of covariance and direction-projection-permutation (DiProPerm) were used for testing statistical significance of the differences between the groups determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering was then conducted. Compared with healthy controls, OA average condyle was significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis. We observed areas of 3.88-mm bone resorption at the superior surface and 3.10-mm bone apposition at the anterior aspect of the long-term OA average model. DiProPerm supported a significant difference between the healthy control and OA group (p-value=0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3-D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition. PMID:26158119

  6. Modeling an aquatic ecosystem: application of an evolutionary algorithm with genetic doping to reduce prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Buscema, Massimo

    2016-04-01

    Aquatic ecosystem models can potentially be used to understand the influence of stresses on catchment resource quality. Given that catchment responses are functions of natural and anthropogenic stresses reflected in sparse and spatiotemporal biological, physical, and chemical measurements, an ecosystem is difficult to model using statistical or numerical methods. We propose an artificial adaptive systems approach to model ecosystems. First, an unsupervised machine-learning (ML) network is trained using the set of available sparse and disparate data variables. Second, an evolutionary algorithm with genetic doping is applied to reduce the number of ecosystem variables to an optimal set. Third, the optimal set of ecosystem variables is used to retrain the ML network. Fourth, a stochastic cross-validation approach is applied to quantify and compare the nonlinear uncertainty in selected predictions of the original and reduced models. Results are presented for aquatic ecosystems (tens of thousands of square kilometers) undergoing landscape change in the USA: Upper Illinois River Basin and Central Colorado Assessment Project Area, and Southland region, NZ.

  7. An Unsupervised Deep Hyperspectral Anomaly Detector

    PubMed Central

    Ma, Ning; Peng, Yu; Wang, Shaojun

    2018-01-01

    Hyperspectral image (HSI) based detection has attracted considerable attention recently in agriculture, environmental protection and military applications as different wavelengths of light can be advantageously used to discriminate different types of objects. Unfortunately, estimating the background distribution and the detection of interesting local objects is not straightforward, and anomaly detectors may give false alarms. In this paper, a Deep Belief Network (DBN) based anomaly detector is proposed. The high-level features and reconstruction errors are learned through the network in a manner which is not affected by previous background distribution assumption. To reduce contamination by local anomalies, adaptive weights are constructed from reconstruction errors and statistical information. By using the code image which is generated during the inference of DBN and modified by adaptively updated weights, a local Euclidean distance between under test pixels and their neighboring pixels is used to determine the anomaly targets. Experimental results on synthetic and recorded HSI datasets show the performance of proposed method outperforms the classic global Reed-Xiaoli detector (RXD), local RX detector (LRXD) and the-state-of-the-art Collaborative Representation detector (CRD). PMID:29495410

  8. Using Support Vector Machine Ensembles for Target Audience Classification on Twitter

    PubMed Central

    Lo, Siaw Ling; Chiong, Raymond; Cornforth, David

    2015-01-01

    The vast amount and diversity of the content shared on social media can pose a challenge for any business wanting to use it to identify potential customers. In this paper, our aim is to investigate the use of both unsupervised and supervised learning methods for target audience classification on Twitter with minimal annotation efforts. Topic domains were automatically discovered from contents shared by followers of an account owner using Twitter Latent Dirichlet Allocation (LDA). A Support Vector Machine (SVM) ensemble was then trained using contents from different account owners of the various topic domains identified by Twitter LDA. Experimental results show that the methods presented are able to successfully identify a target audience with high accuracy. In addition, we show that using a statistical inference approach such as bootstrapping in over-sampling, instead of using random sampling, to construct training datasets can achieve a better classifier in an SVM ensemble. We conclude that such an ensemble system can take advantage of data diversity, which enables real-world applications for differentiating prospective customers from the general audience, leading to business advantage in the crowded social media space. PMID:25874768

  9. Global Quantitative Modeling of Chromatin Factor Interactions

    PubMed Central

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  10. Using support vector machine ensembles for target audience classification on Twitter.

    PubMed

    Lo, Siaw Ling; Chiong, Raymond; Cornforth, David

    2015-01-01

    The vast amount and diversity of the content shared on social media can pose a challenge for any business wanting to use it to identify potential customers. In this paper, our aim is to investigate the use of both unsupervised and supervised learning methods for target audience classification on Twitter with minimal annotation efforts. Topic domains were automatically discovered from contents shared by followers of an account owner using Twitter Latent Dirichlet Allocation (LDA). A Support Vector Machine (SVM) ensemble was then trained using contents from different account owners of the various topic domains identified by Twitter LDA. Experimental results show that the methods presented are able to successfully identify a target audience with high accuracy. In addition, we show that using a statistical inference approach such as bootstrapping in over-sampling, instead of using random sampling, to construct training datasets can achieve a better classifier in an SVM ensemble. We conclude that such an ensemble system can take advantage of data diversity, which enables real-world applications for differentiating prospective customers from the general audience, leading to business advantage in the crowded social media space.

  11. Physician performance assessment using a composite quality index.

    PubMed

    Liu, Kaibo; Jain, Shabnam; Shi, Jianjun

    2013-07-10

    Assessing physician performance is important for the purposes of measuring and improving quality of service and reducing healthcare delivery costs. In recent years, physician performance scorecards have been used to provide feedback on individual measures; however, one key challenge is how to develop a composite quality index that combines multiple measures for overall physician performance evaluation. A controversy arises over establishing appropriate weights to combine indicators in multiple dimensions, and cannot be easily resolved. In this study, we proposed a generic unsupervised learning approach to develop a single composite index for physician performance assessment by using non-negative principal component analysis. We developed a new algorithm named iterative quadratic programming to solve the numerical issue in the non-negative principal component analysis approach. We conducted real case studies to demonstrate the performance of the proposed method. We provided interpretations from both statistical and clinical perspectives to evaluate the developed composite ranking score in practice. In addition, we implemented the root cause assessment techniques to explain physician performance for improvement purposes. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Independent component analysis (ICA) and self-organizing map (SOM) approach to multidetection system for network intruders

    NASA Astrophysics Data System (ADS)

    Abdi, Abdi M.; Szu, Harold H.

    2003-04-01

    With the growing rate of interconnection among computer systems, network security is becoming a real challenge. Intrusion Detection System (IDS) is designed to protect the availability, confidentiality and integrity of critical network information systems. Today"s approach to network intrusion detection involves the use of rule-based expert systems to identify an indication of known attack or anomalies. However, these techniques are less successful in identifying today"s attacks. Hackers are perpetually inventing new and previously unanticipated techniques to compromise information infrastructure. This paper proposes a dynamic way of detecting network intruders on time serious data. The proposed approach consists of a two-step process. Firstly, obtaining an efficient multi-user detection method, employing the recently introduced complexity minimization approach as a generalization of a standard ICA. Secondly, we identified unsupervised learning neural network architecture based on Kohonen"s Self-Organizing Map for potential functional clustering. These two steps working together adaptively will provide a pseudo-real time novelty detection attribute to supplement the current intrusion detection statistical methodology.

  13. Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons.

    PubMed

    Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin

    2017-01-01

    Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.

  14. Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons

    PubMed Central

    Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin

    2017-01-01

    Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas. PMID:29163117

  15. Machine learning in APOGEE. Unsupervised spectral classification with K-means

    NASA Astrophysics Data System (ADS)

    Garcia-Dias, Rafael; Allende Prieto, Carlos; Sánchez Almeida, Jorge; Ordovás-Pascual, Ignacio

    2018-05-01

    Context. The volume of data generated by astronomical surveys is growing rapidly. Traditional analysis techniques in spectroscopy either demand intensive human interaction or are computationally expensive. In this scenario, machine learning, and unsupervised clustering algorithms in particular, offer interesting alternatives. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) offers a vast data set of near-infrared stellar spectra, which is perfect for testing such alternatives. Aims: Our research applies an unsupervised classification scheme based on K-means to the massive APOGEE data set. We explore whether the data are amenable to classification into discrete classes. Methods: We apply the K-means algorithm to 153 847 high resolution spectra (R ≈ 22 500). We discuss the main virtues and weaknesses of the algorithm, as well as our choice of parameters. Results: We show that a classification based on normalised spectra captures the variations in stellar atmospheric parameters, chemical abundances, and rotational velocity, among other factors. The algorithm is able to separate the bulge and halo populations, and distinguish dwarfs, sub-giants, RC, and RGB stars. However, a discrete classification in flux space does not result in a neat organisation in the parameters' space. Furthermore, the lack of obvious groups in flux space causes the results to be fairly sensitive to the initialisation, and disrupts the efficiency of commonly-used methods to select the optimal number of clusters. Our classification is publicly available, including extensive online material associated with the APOGEE Data Release 12 (DR12). Conclusions: Our description of the APOGEE database can help greatly with the identification of specific types of targets for various applications. We find a lack of obvious groups in flux space, and identify limitations of the K-means algorithm in dealing with this kind of data. Full Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A98

  16. Learning through ferroelectric domain dynamics in solid-state synapses

    NASA Astrophysics Data System (ADS)

    Boyn, Sören; Grollier, Julie; Lecerf, Gwendal; Xu, Bin; Locatelli, Nicolas; Fusil, Stéphane; Girod, Stéphanie; Carrétéro, Cécile; Garcia, Karin; Xavier, Stéphane; Tomas, Jean; Bellaiche, Laurent; Bibes, Manuel; Barthélémy, Agnès; Saïghi, Sylvain; Garcia, Vincent

    2017-04-01

    In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.

  17. Artificial Intelligence in Cardiology.

    PubMed

    Johnson, Kipp W; Torres Soto, Jessica; Glicksberg, Benjamin S; Shameer, Khader; Miotto, Riccardo; Ali, Mohsin; Ashley, Euan; Dudley, Joel T

    2018-06-12

    Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach

    NASA Astrophysics Data System (ADS)

    Besic, Nikola; Ventura, Jordi Figueras i.; Grazioli, Jacopo; Gabella, Marco; Germann, Urs; Berne, Alexis

    2016-09-01

    Polarimetric radar-based hydrometeor classification is the procedure of identifying different types of hydrometeors by exploiting polarimetric radar observations. The main drawback of the existing supervised classification methods, mostly based on fuzzy logic, is a significant dependency on a presumed electromagnetic behaviour of different hydrometeor types. Namely, the results of the classification largely rely upon the quality of scattering simulations. When it comes to the unsupervised approach, it lacks the constraints related to the hydrometeor microphysics. The idea of the proposed method is to compensate for these drawbacks by combining the two approaches in a way that microphysical hypotheses can, to a degree, adjust the content of the classes obtained statistically from the observations. This is done by means of an iterative approach, performed offline, which, in a statistical framework, examines clustered representative polarimetric observations by comparing them to the presumed polarimetric properties of each hydrometeor class. Aside from comparing, a routine alters the content of clusters by encouraging further statistical clustering in case of non-identification. By merging all identified clusters, the multi-dimensional polarimetric signatures of various hydrometeor types are obtained for each of the studied representative datasets, i.e. for each radar system of interest. These are depicted by sets of centroids which are then employed in operational labelling of different hydrometeors. The method has been applied on three C-band datasets, each acquired by different operational radar from the MeteoSwiss Rad4Alp network, as well as on two X-band datasets acquired by two research mobile radars. The results are discussed through a comparative analysis which includes a corresponding supervised and unsupervised approach, emphasising the operational potential of the proposed method.

  19. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B–induced local skin hypersensitization in healthy subjects: a machine-learned analysis

    PubMed Central

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G.; Ultsch, Alfred

    2018-01-01

    Abstract The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models. PMID:28700537

  20. Learning situation models in a smart home.

    PubMed

    Brdiczka, Oliver; Crowley, James L; Reignier, Patrick

    2009-02-01

    This paper addresses the problem of learning situation models for providing context-aware services. Context for modeling human behavior in a smart environment is represented by a situation model describing environment, users, and their activities. A framework for acquiring and evolving different layers of a situation model in a smart environment is proposed. Different learning methods are presented as part of this framework: role detection per entity, unsupervised extraction of situations from multimodal data, supervised learning of situation representations, and evolution of a predefined situation model with feedback. The situation model serves as frame and support for the different methods, permitting to stay in an intuitive declarative framework. The proposed methods have been integrated into a whole system for smart home environment. The implementation is detailed, and two evaluations are conducted in the smart home environment. The obtained results validate the proposed approach.

  1. Classification of multispectral or hyperspectral satellite imagery using clustering of sparse approximations on sparse representations in learned dictionaries obtained using efficient convolutional sparse coding

    DOEpatents

    Moody, Daniela; Wohlberg, Brendt

    2018-01-02

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  2. Phase transitions in restricted Boltzmann machines with generic priors

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele

    2017-10-01

    We study generalized restricted Boltzmann machines with generic priors for units and weights, interpolating between Boolean and Gaussian variables. We present a complete analysis of the replica symmetric phase diagram of these systems, which can be regarded as generalized Hopfield models. We underline the role of the retrieval phase for both inference and learning processes and we show that retrieval is robust for a large class of weight and unit priors, beyond the standard Hopfield scenario. Furthermore, we show how the paramagnetic phase boundary is directly related to the optimal size of the training set necessary for good generalization in a teacher-student scenario of unsupervised learning.

  3. Detecting Abnormal Vehicular Dynamics at Intersections Based on an Unsupervised Learning Approach and a Stochastic Model

    PubMed Central

    Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa

    2010-01-01

    This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems. PMID:22163616

  4. Detecting abnormal vehicular dynamics at intersections based on an unsupervised learning approach and a stochastic model.

    PubMed

    Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa

    2010-01-01

    This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems.

  5. Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics.

    PubMed

    Yang, Jian; Zhang, David; Yang, Jing-Yu; Niu, Ben

    2007-04-01

    This paper develops an unsupervised discriminant projection (UDP) technique for dimensionality reduction of high-dimensional data in small sample size cases. UDP can be seen as a linear approximation of a multimanifolds-based learning framework which takes into account both the local and nonlocal quantities. UDP characterizes the local scatter as well as the nonlocal scatter, seeking to find a projection that simultaneously maximizes the nonlocal scatter and minimizes the local scatter. This characteristic makes UDP more intuitive and more powerful than the most up-to-date method, Locality Preserving Projection (LPP), which considers only the local scatter for clustering or classification tasks. The proposed method is applied to face and palm biometrics and is examined using the Yale, FERET, and AR face image databases and the PolyU palmprint database. The experimental results show that UDP consistently outperforms LPP and PCA and outperforms LDA when the training sample size per class is small. This demonstrates that UDP is a good choice for real-world biometrics applications.

  6. Transformer fault diagnosis using continuous sparse autoencoder.

    PubMed

    Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou

    2016-01-01

    This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis.

  7. Model–Free Visualization of Suspicious Lesions in Breast MRI Based on Supervised and Unsupervised Learning

    PubMed Central

    Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.

    2008-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616

  8. Automatic identification of the number of food items in a meal using clustering techniques based on the monitoring of swallowing and chewing.

    PubMed

    Lopez-Meyer, Paulo; Schuckers, Stephanie; Makeyev, Oleksandr; Fontana, Juan M; Sazonov, Edward

    2012-09-01

    The number of distinct foods consumed in a meal is of significant clinical concern in the study of obesity and other eating disorders. This paper proposes the use of information contained in chewing and swallowing sequences for meal segmentation by food types. Data collected from experiments of 17 volunteers were analyzed using two different clustering techniques. First, an unsupervised clustering technique, Affinity Propagation (AP), was used to automatically identify the number of segments within a meal. Second, performance of the unsupervised AP method was compared to a supervised learning approach based on Agglomerative Hierarchical Clustering (AHC). While the AP method was able to obtain 90% accuracy in predicting the number of food items, the AHC achieved an accuracy >95%. Experimental results suggest that the proposed models of automatic meal segmentation may be utilized as part of an integral application for objective Monitoring of Ingestive Behavior in free living conditions.

  9. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    PubMed

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  10. ARK: Aggregation of Reads by K-Means for Estimation of Bacterial Community Composition.

    PubMed

    Koslicki, David; Chatterjee, Saikat; Shahrivar, Damon; Walker, Alan W; Francis, Suzanna C; Fraser, Louise J; Vehkaperä, Mikko; Lan, Yueheng; Corander, Jukka

    2015-01-01

    Estimation of bacterial community composition from high-throughput sequenced 16S rRNA gene amplicons is a key task in microbial ecology. Since the sequence data from each sample typically consist of a large number of reads and are adversely impacted by different levels of biological and technical noise, accurate analysis of such large datasets is challenging. There has been a recent surge of interest in using compressed sensing inspired and convex-optimization based methods to solve the estimation problem for bacterial community composition. These methods typically rely on summarizing the sequence data by frequencies of low-order k-mers and matching this information statistically with a taxonomically structured database. Here we show that the accuracy of the resulting community composition estimates can be substantially improved by aggregating the reads from a sample with an unsupervised machine learning approach prior to the estimation phase. The aggregation of reads is a pre-processing approach where we use a standard K-means clustering algorithm that partitions a large set of reads into subsets with reasonable computational cost to provide several vectors of first order statistics instead of only single statistical summarization in terms of k-mer frequencies. The output of the clustering is then processed further to obtain the final estimate for each sample. The resulting method is called Aggregation of Reads by K-means (ARK), and it is based on a statistical argument via mixture density formulation. ARK is found to improve the fidelity and robustness of several recently introduced methods, with only a modest increase in computational complexity. An open source, platform-independent implementation of the method in the Julia programming language is freely available at https://github.com/dkoslicki/ARK. A Matlab implementation is available at http://www.ee.kth.se/ctsoftware.

  11. Time-Frequency Learning Machines for Nonstationarity Detection Using Surrogates

    NASA Astrophysics Data System (ADS)

    Borgnat, Pierre; Flandrin, Patrick; Richard, Cédric; Ferrari, André; Amoud, Hassan; Honeine, Paul

    2012-03-01

    Time-frequency representations provide a powerful tool for nonstationary signal analysis and classification, supporting a wide range of applications [12]. As opposed to conventional Fourier analysis, these techniques reveal the evolution in time of the spectral content of signals. In Ref. [7,38], time-frequency analysis is used to test stationarity of any signal. The proposed method consists of a comparison between global and local time-frequency features. The originality is to make use of a family of stationary surrogate signals for defining the null hypothesis of stationarity and, based upon this information, to derive statistical tests. An open question remains, however, about how to choose relevant time-frequency features. Over the last decade, a number of new pattern recognition methods based on reproducing kernels have been introduced. These learning machines have gained popularity due to their conceptual simplicity and their outstanding performance [30]. Initiated by Vapnik’s support vector machines (SVM) [35], they offer now a wide class of supervised and unsupervised learning algorithms. In Ref. [17-19], the authors have shown how the most effective and innovative learning machines can be tuned to operate in the time-frequency domain. This chapter follows this line of research by taking advantage of learning machines to test and quantify stationarity. Based on one-class SVM, our approach uses the entire time-frequency representation and does not require arbitrary feature extraction. Applied to a set of surrogates, it provides the domain boundary that includes most of these stationarized signals. This allows us to test the stationarity of the signal under investigation. This chapter is organized as follows. In Section 22.2, we introduce the surrogate data method to generate stationarized signals, namely, the null hypothesis of stationarity. The concept of time-frequency learning machines is presented in Section 22.3, and applied to one-class SVM in order to derive a stationarity test in Section 22.4. The relevance of the latter is illustrated by simulation results in Section 22.5.

  12. Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults: A Systematic Review and Meta-Analysis.

    PubMed

    Lacroix, André; Hortobágyi, Tibor; Beurskens, Rainer; Granacher, Urs

    2017-11-01

    Balance and resistance training can improve healthy older adults' balance and muscle strength. Delivering such exercise programs at home without supervision may facilitate participation for older adults because they do not have to leave their homes. To date, no systematic literature analysis has been conducted to determine if supervision affects the effectiveness of these programs to improve healthy older adults' balance and muscle strength/power. The objective of this systematic review and meta-analysis was to quantify the effectiveness of supervised vs. unsupervised balance and/or resistance training programs on measures of balance and muscle strength/power in healthy older adults. In addition, the impact of supervision on training-induced adaptive processes was evaluated in the form of dose-response relationships by analyzing randomized controlled trials that compared supervised with unsupervised trials. A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SportDiscus to detect articles examining the role of supervision in balance and/or resistance training in older adults. The initially identified 6041 articles were systematically screened. Studies were included if they examined balance and/or resistance training in adults aged ≥65 years with no relevant diseases and registered at least one behavioral balance (e.g., time during single leg stance) and/or muscle strength/power outcome (e.g., time for 5-Times-Chair-Rise-Test). Finally, 11 studies were eligible for inclusion in this meta-analysis. Weighted mean standardized mean differences between subjects (SMD bs ) of supervised vs. unsupervised balance/resistance training studies were calculated. The included studies were coded for the following variables: number of participants, sex, age, number and type of interventions, type of balance/strength tests, and change (%) from pre- to post-intervention values. Additionally, we coded training according to the following modalities: period, frequency, volume, modalities of supervision (i.e., number of supervised/unsupervised sessions within the supervised or unsupervised training groups, respectively). Heterogeneity was computed using I 2 and χ 2 statistics. The methodological quality of the included studies was evaluated using the Physiotherapy Evidence Database scale. Our analyses revealed that in older adults, supervised balance/resistance training was superior compared with unsupervised balance/resistance training in improving measures of static steady-state balance (mean SMD bs  = 0.28, p = 0.39), dynamic steady-state balance (mean SMD bs  = 0.35, p = 0.02), proactive balance (mean SMD bs  = 0.24, p = 0.05), balance test batteries (mean SMD bs  = 0.53, p = 0.02), and measures of muscle strength/power (mean SMD bs  = 0.51, p = 0.04). Regarding the examined dose-response relationships, our analyses showed that a number of 10-29 additional supervised sessions in the supervised training groups compared with the unsupervised training groups resulted in the largest effects for static steady-state balance (mean SMD bs  = 0.35), dynamic steady-state balance (mean SMD bs  = 0.37), and muscle strength/power (mean SMD bs  = 1.12). Further, ≥30 additional supervised sessions in the supervised training groups were needed to produce the largest effects on proactive balance (mean SMD bs  = 0.30) and balance test batteries (mean SMD bs  = 0.77). Effects in favor of supervised programs were larger for studies that did not include any supervised sessions in their unsupervised programs (mean SMD bs : 0.28-1.24) compared with studies that implemented a few supervised sessions in their unsupervised programs (e.g., three supervised sessions throughout the entire intervention program; SMD bs : -0.06 to 0.41). The present findings have to be interpreted with caution because of the low number of eligible studies and the moderate methodological quality of the included studies, which is indicated by a median Physiotherapy Evidence Database scale score of 5. Furthermore, we indirectly compared dose-response relationships across studies and not from single controlled studies. Our analyses suggest that supervised balance and/or resistance training improved measures of balance and muscle strength/power to a greater extent than unsupervised programs in older adults. Owing to the small number of available studies, we were unable to establish a clear dose-response relationship with regard to the impact of supervision. However, the positive effects of supervised training are particularly prominent when compared with completely unsupervised training programs. It is therefore recommended to include supervised sessions (i.e., two out of three sessions/week) in balance/resistance training programs to effectively improve balance and muscle strength/power in older adults.

  13. Towards a new classification of stable phase schizophrenia into major and simple neuro-cognitive psychosis: Results of unsupervised machine learning analysis.

    PubMed

    Kanchanatawan, Buranee; Sriswasdi, Sira; Thika, Supaksorn; Stoyanov, Drozdstoy; Sirivichayakul, Sunee; Carvalho, André F; Geffard, Michel; Maes, Michael

    2018-05-23

    Deficit schizophrenia, as defined by the Schedule for Deficit Syndrome, may represent a distinct diagnostic class defined by neurocognitive impairments coupled with changes in IgA/IgM responses to tryptophan catabolites (TRYCATs). Adequate classifications should be based on supervised and unsupervised learning rather than on consensus criteria. This study used machine learning as means to provide a more accurate classification of patients with stable phase schizophrenia. We found that using negative symptoms as discriminatory variables, schizophrenia patients may be divided into two distinct classes modelled by (A) impairments in IgA/IgM responses to noxious and generally more protective tryptophan catabolites, (B) impairments in episodic and semantic memory, paired associative learning and false memory creation, and (C) psychotic, excitation, hostility, mannerism, negative, and affective symptoms. The first cluster shows increased negative, psychotic, excitation, hostility, mannerism, depression and anxiety symptoms, and more neuroimmune and cognitive disorders and is therefore called "major neurocognitive psychosis" (MNP). The second cluster, called "simple neurocognitive psychosis" (SNP) is discriminated from normal controls by the same features although the impairments are less well developed than in MNP. The latter is additionally externally validated by lowered quality of life, body mass (reflecting a leptosome body type), and education (reflecting lower cognitive reserve). Previous distinctions including "type 1" (positive)/"type 2" (negative) and DSM-IV-TR (eg, paranoid) schizophrenia could not be validated using machine learning techniques. Previous names of the illness, including schizophrenia, are not very adequate because they do not describe the features of the illness, namely, interrelated neuroimmune, cognitive, and clinical features. Stable-phase schizophrenia consists of 2 relevant qualitatively distinct categories or nosological entities with SNP being a less well-developed phenotype, while MNP is the full blown phenotype or core illness. Major neurocognitive psychosis and SNP should be added to the DSM-5 and incorporated into the Research Domain Criteria project. © 2018 John Wiley & Sons, Ltd.

  14. Analysing exoplanetary data using unsupervised machine-learning

    NASA Astrophysics Data System (ADS)

    Waldmann, I. P.

    2012-04-01

    The field of transiting extrasolar planets and especially the study of their atmospheres is one of the youngest and most dynamic subjects in current astrophysics. Permanently at the edge of technical feasibility, we are successfully discovering and characterising smaller and smaller planets. To study exoplanetary atmospheres, we typically require a 10-4 to 10-5 level of accuracy in flux. Achieving such a precision has become the central challenge to exoplanetary research and is often impeded by systematic (nongaussian) noise from either the instrument, stellar activity or both. Dedicated missions, such as Kepler, feature an a priori instrument calibration plan to the required accuracy but nonetheless remain limited by stellar systematics. More generic instruments often lack a sufficiently defined instrument response function, making it very hard to calibrate. In these cases, it becomes interesting to know how well we can calibrate the data without any additional or prior knowledge of the instrument or star. In this conference, we present a non-parametric machine-learning algorithm, based on the concept of independent component analysis, to de-convolve the systematic noise and all non-Gaussian signals from the desired astrophysical signal. Such a 'blind' signal de-mixing is commonly known as the 'Cocktail Party problem' in signal-processing. We showcase the importance and broad applicability of unsupervised machine learning in exoplanetary data analysis by discussing: 1) the removal of instrument systematics in a re-analysis of an HD189733b transmission spectrum obtained with Hubble/NICMOS; 2) the removal of time-correlated stellar noise in individual lightcurves observed by the Kepler mission.

  15. Low-dimensional dynamical characterization of human performance of cancer patients using motion data.

    PubMed

    Hasnain, Zaki; Li, Ming; Dorff, Tanya; Quinn, David; Ueno, Naoto T; Yennu, Sriram; Kolatkar, Anand; Shahabi, Cyrus; Nocera, Luciano; Nieva, Jorge; Kuhn, Peter; Newton, Paul K

    2018-05-18

    Biomechanical characterization of human performance with respect to fatigue and fitness is relevant in many settings, however is usually limited to either fully qualitative assessments or invasive methods which require a significant experimental setup consisting of numerous sensors, force plates, and motion detectors. Qualitative assessments are difficult to standardize due to their intrinsic subjective nature, on the other hand, invasive methods provide reliable metrics but are not feasible for large scale applications. Presented here is a dynamical toolset for detecting performance groups using a non-invasive system based on the Microsoft Kinect motion capture sensor, and a case study of 37 cancer patients performing two clinically monitored tasks before and after therapy regimens. Dynamical features are extracted from the motion time series data and evaluated based on their ability to i) cluster patients into coherent fitness groups using unsupervised learning algorithms and to ii) predict Eastern Cooperative Oncology Group performance status via supervised learning. The unsupervised patient clustering is comparable to clustering based on physician assigned Eastern Cooperative Oncology Group status in that they both have similar concordance with change in weight before and after therapy as well as unexpected hospitalizations throughout the study. The extracted dynamical features can predict physician, coordinator, and patient Eastern Cooperative Oncology Group status with an accuracy of approximately 80%. The non-invasive Microsoft Kinect sensor and the proposed dynamical toolset comprised of data preprocessing, feature extraction, dimensionality reduction, and machine learning offers a low-cost and general method for performance segregation and can complement existing qualitative clinical assessments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Unsupervised Topic Discovery by Anomaly Detection

    DTIC Science & Technology

    2013-09-01

    Kullback , and R. A. Leibler , “On information and sufficiency,” Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951. [14] S. Basu, A...read known publicly. There is a strong interest in the analysis of these opinions and comments as they provide useful information about the sentiments...them as topics. The difficulty in this approach is finding a good set of keywords that accurately represents the documents. The method used to

  17. A neural-visualization IDS for honeynet data.

    PubMed

    Herrero, Álvaro; Zurutuza, Urko; Corchado, Emilio

    2012-04-01

    Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and comparison of the proposed projection methods are performed in a real domain, where two different case studies are defined and analyzed.

  18. Taxonomy-aware feature engineering for microbiome classification.

    PubMed

    Oudah, Mai; Henschel, Andreas

    2018-06-15

    What is a healthy microbiome? The pursuit of this and many related questions, especially in light of the recently recognized microbial component in a wide range of diseases has sparked a surge in metagenomic studies. They are often not simply attributable to a single pathogen but rather are the result of complex ecological processes. Relatedly, the increasing DNA sequencing depth and number of samples in metagenomic case-control studies enabled the applicability of powerful statistical methods, e.g. Machine Learning approaches. For the latter, the feature space is typically shaped by the relative abundances of operational taxonomic units, as determined by cost-effective phylogenetic marker gene profiles. While a substantial body of microbiome/microbiota research involves unsupervised and supervised Machine Learning, very little attention has been put on feature selection and engineering. We here propose the first algorithm to exploit phylogenetic hierarchy (i.e. an all-encompassing taxonomy) in feature engineering for microbiota classification. The rationale is to exploit the often mono- or oligophyletic distribution of relevant (but hidden) traits by virtue of taxonomic abstraction. The algorithm is embedded in a comprehensive microbiota classification pipeline, which we applied to a diverse range of datasets, distinguishing healthy from diseased microbiota samples. We demonstrate substantial improvements over the state-of-the-art microbiota classification tools in terms of classification accuracy, regardless of the actual Machine Learning technique while using drastically reduced feature spaces. Moreover, generalized features bear great explanatory value: they provide a concise description of conditions and thus help to provide pathophysiological insights. Indeed, the automatically and reproducibly derived features are consistent with previously published domain expert analyses.

  19. Exploring supervised and unsupervised methods to detect topics in biomedical text

    PubMed Central

    Lee, Minsuk; Wang, Weiqing; Yu, Hong

    2006-01-01

    Background Topic detection is a task that automatically identifies topics (e.g., "biochemistry" and "protein structure") in scientific articles based on information content. Topic detection will benefit many other natural language processing tasks including information retrieval, text summarization and question answering; and is a necessary step towards the building of an information system that provides an efficient way for biologists to seek information from an ocean of literature. Results We have explored the methods of Topic Spotting, a task of text categorization that applies the supervised machine-learning technique naïve Bayes to assign automatically a document into one or more predefined topics; and Topic Clustering, which apply unsupervised hierarchical clustering algorithms to aggregate documents into clusters such that each cluster represents a topic. We have applied our methods to detect topics of more than fifteen thousand of articles that represent over sixteen thousand entries in the Online Mendelian Inheritance in Man (OMIM) database. We have explored bag of words as the features. Additionally, we have explored semantic features; namely, the Medical Subject Headings (MeSH) that are assigned to the MEDLINE records, and the Unified Medical Language System (UMLS) semantic types that correspond to the MeSH terms, in addition to bag of words, to facilitate the tasks of topic detection. Our results indicate that incorporating the MeSH terms and the UMLS semantic types as additional features enhances the performance of topic detection and the naïve Bayes has the highest accuracy, 66.4%, for predicting the topic of an OMIM article as one of the total twenty-five topics. Conclusion Our results indicate that the supervised topic spotting methods outperformed the unsupervised topic clustering; on the other hand, the unsupervised topic clustering methods have the advantages of being robust and applicable in real world settings. PMID:16539745

  20. Using Unsupervised Learning to Unlock the Potential of Hydrologic Similarity

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Newman, A. J.

    2017-12-01

    By clustering environmental data into representative hydrologic response units (HRUs), hydrologic similarity aims to harness the covariance between a system's physical environment and its hydrologic response to create reduced-order models. This is the primary approach through which sub-grid hydrologic processes are represented in large-scale models (e.g., Earth System Models). Although the possibilities of hydrologic similarity are extensive, its practical implementations have been limited to 1-d bins of oversimplistic metrics of hydrologic response (e.g., topographic index)—this is a missed opportunity. In this presentation we will show how unsupervised learning is unlocking the potential of hydrologic similarity; clustering methods enable generalized frameworks to effectively and efficiently harness the petabytes of global environmental data to robustly characterize sub-grid heterogeneity in large-scale models. To illustrate the potential that unsupervised learning has towards advancing hydrologic similarity, we introduce a hierarchical clustering algorithm (HCA) that clusters very high resolution (30-100 meters) elevation, soil, climate, and land cover data to assemble a domain's representative HRUs. These HRUs are then used to parameterize the sub-grid heterogeneity in land surface models; for this study we use the GFDL LM4 model—the land component of the GFDL Earth System Model. To explore HCA and its impacts on the hydrologic system we use a ¼ grid cell in southeastern California as a test site. HCA is used to construct an ensemble of 9 different HRU configurations—each configuration has a different number of HRUs; for each ensemble member LM4 is run between 2002 and 2014 with a 26 year spinup. The analysis of the ensemble of model simulations show that: 1) clustering the high-dimensional environmental data space leads to a robust representation of the role of the physical environment in the coupled water, energy, and carbon cycles at a relatively low number of HRUs; 2) the reduced-order model with around 300 HRUs effectively reproduces the fully distributed model simulation (30 meters) with less than 1/1000 of computational expense; 3) assigning each grid cell of the fully distributed grid to an HRU via HCA enables novel visualization methods for large-scale models—this has significant implications for how these models are applied and evaluated. We will conclude by outlining the potential that this work has within operational prediction systems including numerical weather prediction, Earth System models, and Early Warning systems.

  1. Unsupervised laparoscopic appendicectomy by surgical trainees is safe and time-effective.

    PubMed

    Wong, Kenneth; Duncan, Tristram; Pearson, Andrew

    2007-07-01

    Open appendicectomy is the traditional standard treatment for appendicitis. Laparoscopic appendicectomy is perceived as a procedure with greater potential for complications and longer operative times. This paper examines the hypothesis that unsupervised laparoscopic appendicectomy by surgical trainees is a safe and time-effective valid alternative. Medical records, operating theatre records and histopathology reports of all patients undergoing laparoscopic and open appendicectomy over a 15-month period in two hospitals within an area health service were retrospectively reviewed. Data were analysed to compare patient features, pathology findings, operative times, complications, readmissions and mortality between laparoscopic and open groups and between unsupervised surgical trainee operators versus consultant surgeon operators. A total of 143 laparoscopic and 222 open appendicectomies were reviewed. Unsupervised trainees performed 64% of the laparoscopic appendicectomies and 55% of the open appendicectomies. There were no significant differences in complication rates, readmissions, mortality and length of stay between laparoscopic and open appendicectomy groups or between trainee and consultant surgeon operators. Conversion rates (laparoscopic to open approach) were similar for trainees and consultants. Unsupervised senior surgical trainees did not take significantly longer to perform laparoscopic appendicectomy when compared to unsupervised trainee-performed open appendicectomy. Unsupervised laparoscopic appendicectomy by surgical trainees is safe and time-effective.

  2. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States

    USGS Publications Warehouse

    Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2016-01-01

    Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.

  3. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network

    PubMed Central

    He, Jun; Yang, Shixi; Gan, Chunbiao

    2017-01-01

    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods. PMID:28677638

  4. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network.

    PubMed

    He, Jun; Yang, Shixi; Gan, Chunbiao

    2017-07-04

    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods.

  5. Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela Irina

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detectmore » geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.« less

  6. Discriminative Cooperative Networks for Detecting Phase Transitions

    NASA Astrophysics Data System (ADS)

    Liu, Ye-Hua; van Nieuwenburg, Evert P. L.

    2018-04-01

    The classification of states of matter and their corresponding phase transitions is a special kind of machine-learning task, where physical data allow for the analysis of new algorithms, which have not been considered in the general computer-science setting so far. Here we introduce an unsupervised machine-learning scheme for detecting phase transitions with a pair of discriminative cooperative networks (DCNs). In this scheme, a guesser network and a learner network cooperate to detect phase transitions from fully unlabeled data. The new scheme is efficient enough for dealing with phase diagrams in two-dimensional parameter spaces, where we can utilize an active contour model—the snake—from computer vision to host the two networks. The snake, with a DCN "brain," moves and learns actively in the parameter space, and locates phase boundaries automatically.

  7. Syntactic transfer in artificial grammar learning.

    PubMed

    Beesley, T; Wills, A J; Le Pelley, M E

    2010-02-01

    In an artificial grammar learning (AGL) experiment, participants were trained with instances of one grammatical structure before completing a test phase in which they were required to discriminate grammatical from randomly created strings. Importantly, the underlying structure used to generate test strings was different from that used to generate the training strings. Despite the fact that grammatical training strings were more similar to nongrammatical test strings than they were to grammatical test strings, this manipulation resulted in a positive transfer effect, as compared with controls trained with nongrammatical strings. It is suggested that training with grammatical strings leads to an appreciation of set variance that aids the detection of grammatical test strings in AGL tasks. The analysis presented demonstrates that it is useful to conceptualize test performance in AGL as a form of unsupervised category learning.

  8. Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification

    PubMed Central

    Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid

    2015-01-01

    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice. PMID:25823003

  9. Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.

    PubMed

    Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid

    2015-01-01

    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.

  10. Unsupervised Learning for Monaural Source Separation Using Maximization–Minimization Algorithm with Time–Frequency Deconvolution †

    PubMed Central

    Bouridane, Ahmed; Ling, Bingo Wing-Kuen

    2018-01-01

    This paper presents an unsupervised learning algorithm for sparse nonnegative matrix factor time–frequency deconvolution with optimized fractional β-divergence. The β-divergence is a group of cost functions parametrized by a single parameter β. The Itakura–Saito divergence, Kullback–Leibler divergence and Least Square distance are special cases that correspond to β=0, 1, 2, respectively. This paper presents a generalized algorithm that uses a flexible range of β that includes fractional values. It describes a maximization–minimization (MM) algorithm leading to the development of a fast convergence multiplicative update algorithm with guaranteed convergence. The proposed model operates in the time–frequency domain and decomposes an information-bearing matrix into two-dimensional deconvolution of factor matrices that represent the spectral dictionary and temporal codes. The deconvolution process has been optimized to yield sparse temporal codes through maximizing the likelihood of the observations. The paper also presents a method to estimate the fractional β value. The method is demonstrated on separating audio mixtures recorded from a single channel. The paper shows that the extraction of the spectral dictionary and temporal codes is significantly more efficient by using the proposed algorithm and subsequently leads to better source separation performance. Experimental tests and comparisons with other factorization methods have been conducted to verify its efficacy. PMID:29702629

  11. Novel Histogram Based Unsupervised Classification Technique to Determine Natural Classes From Biophysically Relevant Fit Parameters to Hyperspectral Data

    DOE PAGES

    McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra; ...

    2017-05-23

    Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less

  12. Novel Histogram Based Unsupervised Classification Technique to Determine Natural Classes From Biophysically Relevant Fit Parameters to Hyperspectral Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra

    Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less

  13. Unsupervised Categorization in a Sample of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Edwards, Darren J.; Perlman, Amotz; Reed, Phil

    2012-01-01

    Studies of supervised Categorization have demonstrated limited Categorization performance in participants with autism spectrum disorders (ASD), however little research has been conducted regarding unsupervised Categorization in this population. This study explored unsupervised Categorization using two stimulus sets that differed in their…

  14. Learning the Gestalt rule of collinearity from object motion.

    PubMed

    Prodöhl, Carsten; Würtz, Rolf P; von der Malsburg, Christoph

    2003-08-01

    The Gestalt principle of collinearity (and curvilinearity) is widely regarded as being mediated by the long-range connection structure in primary visual cortex. We review the neurophysiological and psychophysical literature to argue that these connections are developed from visual experience after birth, relying on coherent object motion. We then present a neural network model that learns these connections in an unsupervised Hebbian fashion with input from real camera sequences. The model uses spatiotemporal retinal filtering, which is very sensitive to changes in the visual input. We show that it is crucial for successful learning to use the correlation of the transient responses instead of the sustained ones. As a consequence, learning works best with video sequences of moving objects. The model addresses a special case of the fundamental question of what represents the necessary a priori knowledge the brain is equipped with at birth so that the self-organized process of structuring by experience can be successful.

  15. Complex scenes and situations visualization in hierarchical learning algorithm with dynamic 3D NeoAxis engine

    NASA Astrophysics Data System (ADS)

    Graham, James; Ternovskiy, Igor V.

    2013-06-01

    We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.

  16. Fully Decentralized Semi-supervised Learning via Privacy-preserving Matrix Completion.

    PubMed

    Fierimonte, Roberto; Scardapane, Simone; Uncini, Aurelio; Panella, Massimo

    2016-08-26

    Distributed learning refers to the problem of inferring a function when the training data are distributed among different nodes. While significant work has been done in the contexts of supervised and unsupervised learning, the intermediate case of Semi-supervised learning in the distributed setting has received less attention. In this paper, we propose an algorithm for this class of problems, by extending the framework of manifold regularization. The main component of the proposed algorithm consists of a fully distributed computation of the adjacency matrix of the training patterns. To this end, we propose a novel algorithm for low-rank distributed matrix completion, based on the framework of diffusion adaptation. Overall, the distributed Semi-supervised algorithm is efficient and scalable, and it can preserve privacy by the inclusion of flexible privacy-preserving mechanisms for similarity computation. The experimental results and comparison on a wide range of standard Semi-supervised benchmarks validate our proposal.

  17. Models in search of a brain.

    PubMed

    Love, Bradley C; Gureckis, Todd M

    2007-06-01

    Mental localization efforts tend to stress the where more than the what. We argue that the proper targets for localization are well-specified cognitive models. We make this case by relating an existing cognitive model of category learning to a learning circuit involving the hippocampus, perirhinal, and prefrontal cortices. Results from groups varying in function along this circuit (e.g., infants, amnesics, and older adults) are successfully simulated by reducing the model's ability to form new clusters in response to surprising events, such as an error in supervised learning or an unfamiliar stimulus in unsupervised learning. Clusters in the model are akin to conjunctive codes that are rooted in an episodic experience (the surprising event) yet can develop to resemble abstract codes as they are updated by subsequent experiences. Thus, the model holds that the line separating episodic and semantic information can become blurred. Dissociations (categorization vs. recognition) are explained in terms of cluster recruitment demands.

  18. Classification-free threat detection based on material-science-informed clustering

    NASA Astrophysics Data System (ADS)

    Yuan, Siyang; Wolter, Scott D.; Greenberg, Joel A.

    2017-05-01

    X-ray diffraction (XRD) is well-known for yielding composition and structural information about a material. However, in some applications (such as threat detection in aviation security), the properties of a material are more relevant to the task than is a detailed material characterization. Furthermore, the requirement that one first identify a material before determining its class may be difficult or even impossible for a sufficiently large pool of potentially present materials. We therefore seek to learn relevant composition-structure-property relationships between materials to enable material-identification-free classification. We use an expert-informed, data-driven approach operating on a library of XRD spectra from a broad array of stream of commerce materials. We investigate unsupervised learning techniques in order to learn about naturally emergent groupings, and apply supervised learning techniques to determine how well XRD features can be used to separate user-specified classes in the presence of different types and degrees of signal degradation.

  19. Embedded security system for multi-modal surveillance in a railway carriage

    NASA Astrophysics Data System (ADS)

    Zouaoui, Rhalem; Audigier, Romaric; Ambellouis, Sébastien; Capman, François; Benhadda, Hamid; Joudrier, Stéphanie; Sodoyer, David; Lamarque, Thierry

    2015-10-01

    Public transport security is one of the main priorities of the public authorities when fighting against crime and terrorism. In this context, there is a great demand for autonomous systems able to detect abnormal events such as violent acts aboard passenger cars and intrusions when the train is parked at the depot. To this end, we present an innovative approach which aims at providing efficient automatic event detection by fusing video and audio analytics and reducing the false alarm rate compared to classical stand-alone video detection. The multi-modal system is composed of two microphones and one camera and integrates onboard video and audio analytics and fusion capabilities. On the one hand, for detecting intrusion, the system relies on the fusion of "unusual" audio events detection with intrusion detections from video processing. The audio analysis consists in modeling the normal ambience and detecting deviation from the trained models during testing. This unsupervised approach is based on clustering of automatically extracted segments of acoustic features and statistical Gaussian Mixture Model (GMM) modeling of each cluster. The intrusion detection is based on the three-dimensional (3D) detection and tracking of individuals in the videos. On the other hand, for violent events detection, the system fuses unsupervised and supervised audio algorithms with video event detection. The supervised audio technique detects specific events such as shouts. A GMM is used to catch the formant structure of a shout signal. Video analytics use an original approach for detecting aggressive motion by focusing on erratic motion patterns specific to violent events. As data with violent events is not easily available, a normality model with structured motions from non-violent videos is learned for one-class classification. A fusion algorithm based on Dempster-Shafer's theory analyses the asynchronous detection outputs and computes the degree of belief of each probable event.

  20. Detection of Erroneous Payments Utilizing Supervised And Unsupervised Data Mining Techniques

    DTIC Science & Technology

    2004-09-01

    will look at which statistical analysis technique will work best in developing and enhancing existing erroneous payment models . Chapter I and II... payment models that are used for selection of records to be audited. The models are set up such that if two or more records have the same payment...Identification Number, Invoice Number and Delivery Order Number are not compared. The DM0102 Duplicate Payment Model will be analyzed in this thesis

  1. A Self-Organizing Incremental Neural Network based on local distribution learning.

    PubMed

    Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi

    2016-12-01

    In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of UV-A and UV-B irradiation on the metabolic profile of aqueous humor in rabbits analyzed by 1H NMR spectroscopy.

    PubMed

    Tessem, May-Britt; Bathen, Tone F; Cejková, Jitka; Midelfart, Anna

    2005-03-01

    This study was conducted to investigate metabolic changes in aqueous humor from rabbit eyes exposed to either UV-A or -B radiation, by using (1)H nuclear magnetic resonance (NMR) spectroscopy and unsupervised pattern recognition methods. Both eyes of adult albino rabbits were irradiated with UV-A (366 nm, 0.589 J/cm(2)) or UV-B (312 nm, 1.667 J/cm(2)) radiation for 8 minutes, once a day for 5 days. Three days after the last irradiation, samples of aqueous humor were aspirated, and the metabolic profiles analyzed with (1)H NMR spectroscopy. The metabolic concentrations in the exposed and control materials were statistically analyzed and compared, with multivariate methods and one-way ANOVA. UV-B radiation caused statistically significant alterations of betaine, glucose, ascorbate, valine, isoleucine, and formate in the rabbit aqueous humor. By using principal component analysis, the UV-B-irradiated samples were clearly separated from the UV-A-irradiated samples and the control group. No significant metabolic changes were detected in UV-A-irradiated samples. This study demonstrates the potential of using unsupervised pattern recognition methods to extract valuable metabolic information from complex (1)H NMR spectra. UV-B irradiation of rabbit eyes led to significant metabolic changes in the aqueous humor detected 3 days after the last exposure.

  3. Big data bioinformatics.

    PubMed

    Greene, Casey S; Tan, Jie; Ung, Matthew; Moore, Jason H; Cheng, Chao

    2014-12-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the "big data" era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both "machine learning" algorithms as well as "unsupervised" and "supervised" examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. © 2014 Wiley Periodicals, Inc.

  4. Predicting category intuitiveness with the rational model, the simplicity model, and the generalized context model.

    PubMed

    Pothos, Emmanuel M; Bailey, Todd M

    2009-07-01

    Naïve observers typically perceive some groupings for a set of stimuli as more intuitive than others. The problem of predicting category intuitiveness has been historically considered the remit of models of unsupervised categorization. In contrast, this article develops a measure of category intuitiveness from one of the most widely supported models of supervised categorization, the generalized context model (GCM). Considering different category assignments for a set of instances, the authors asked how well the GCM can predict the classification of each instance on the basis of all the other instances. The category assignment that results in the smallest prediction error is interpreted as the most intuitive for the GCM-the authors refer to this way of applying the GCM as "unsupervised GCM." The authors systematically compared predictions of category intuitiveness from the unsupervised GCM and two models of unsupervised categorization: the simplicity model and the rational model. The unsupervised GCM compared favorably with the simplicity model and the rational model. This success of the unsupervised GCM illustrates that the distinction between supervised and unsupervised categorization may need to be reconsidered. However, no model emerged as clearly superior, indicating that there is more work to be done in understanding and modeling category intuitiveness.

  5. Instructional Videos for Unsupervised Harvesting and Learning of Action Examples

    DTIC Science & Technology

    2014-11-03

    collection of image or video anno - tations has been tackled in different ways, but most existing methods still require a human in the loop. The...the views of ARO and NSF. 7. REFERENCES [1] C.-C. Chang and C.- J . Lin. LIBSVM: A library for support vector machines. In ACM Transactions on...feature encoding methods. In BMVC, 2011. [3] J . Chen, Y. Cui, G. Ye, D. Liu, and S.-F. Chang. Event-driven semantic concept discovery by exploiting

  6. Robust location and spread measures for nonparametric probability density function estimation.

    PubMed

    López-Rubio, Ezequiel

    2009-10-01

    Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.

  7. A self-organizing neural network for the traveling salesman problem that is competitive with simulated annealing.

    PubMed

    Budinich, M

    1996-02-15

    Unsupervised learning applied to an unstructured neural network can give approximate solutions to the traveling salesman problem. For 50 cities in the plane this algorithm performs like the elastic net of Durbin and Willshaw (1987) and it improves when increasing the number of cities to get better than simulated annealing for problems with more than 500 cities. In all the tests this algorithm requires a fraction of the time taken by simulated annealing.

  8. The influence of unsupervised time on elementary school children at high risk for inattention and problem behaviors.

    PubMed

    Na, Kyoung-Sae; Lee, Soyoung Irene; Hong, Hyun Ju; Oh, Myoung-Ja; Bahn, Geon Ho; Ha, Kyunghee; Shin, Yun Mi; Song, Jungeun; Park, Eun Jin; Yoo, Heejung; Kim, Hyunsoo; Kyung, Yun-Mi

    2014-06-01

    In the last few decades, changing socioeconomic and family structures have increasingly left children alone without adult supervision. Carefully prepared and limited periods of unsupervised time are not harmful for children. However, long unsupervised periods have harmful effects, particularly for those children at high risk for inattention and problem behaviors. In this study, we examined the influence of unsupervised time on behavior problems by studying a sample of elementary school children at high risk for inattention and problem behaviors. The study analyzed data from the Children's Mental Health Promotion Project, which was conducted in collaboration with education, government, and mental health professionals. The child behavior checklist (CBCL) was administered to assess problem behaviors among first- and fourth-grade children. Multivariate logistic regression analysis was used to evaluate the influence of unsupervised time on children's behavior. A total of 3,270 elementary school children (1,340 first-graders and 1,930 fourth-graders) were available for this study; 1,876 of the 3,270 children (57.4%) reportedly spent a significant amount of time unsupervised during the day. Unsupervised time that exceeded more than 2h per day increased the risk of delinquency, aggressive behaviors, and somatic complaints, as well as externalizing and internalizing problems. Carefully planned afterschool programming and care should be provided to children at high risk for inattention and problem behaviors. Also, a more comprehensive approach is needed to identify the possible mechanisms by which unsupervised time aggravates behavior problems in children predisposed for these behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Learning through ferroelectric domain dynamics in solid-state synapses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyn, Soren; Grollier, Julie; Lecerf, Gwendal

    In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport andmore » atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Finally, based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.« less

  10. Learning through ferroelectric domain dynamics in solid-state synapses

    DOE PAGES

    Boyn, Soren; Grollier, Julie; Lecerf, Gwendal; ...

    2017-04-03

    In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport andmore » atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Finally, based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.« less

  11. The impact of machine learning techniques in the study of bipolar disorder: A systematic review.

    PubMed

    Librenza-Garcia, Diego; Kotzian, Bruno Jaskulski; Yang, Jessica; Mwangi, Benson; Cao, Bo; Pereira Lima, Luiza Nunes; Bermudez, Mariane Bagatin; Boeira, Manuela Vianna; Kapczinski, Flávio; Passos, Ives Cavalcante

    2017-09-01

    Machine learning techniques provide new methods to predict diagnosis and clinical outcomes at an individual level. We aim to review the existing literature on the use of machine learning techniques in the assessment of subjects with bipolar disorder. We systematically searched PubMed, Embase and Web of Science for articles published in any language up to January 2017. We found 757 abstracts and included 51 studies in our review. Most of the included studies used multiple levels of biological data to distinguish the diagnosis of bipolar disorder from other psychiatric disorders or healthy controls. We also found studies that assessed the prediction of clinical outcomes and studies using unsupervised machine learning to build more consistent clinical phenotypes of bipolar disorder. We concluded that given the clinical heterogeneity of samples of patients with BD, machine learning techniques may provide clinicians and researchers with important insights in fields such as diagnosis, personalized treatment and prognosis orientation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Supervised detection of exoplanets in high-contrast imaging sequences

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, C. A.; Absil, O.; Van Droogenbroeck, M.

    2018-06-01

    Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise. Aims: In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images. Methods: We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA). Results: This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from 2 to 10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level. Conclusions: The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve the demographics of directly imaged exoplanets.

  13. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.

    PubMed

    Oluwadare, Oluwatosin; Cheng, Jianlin

    2017-11-14

    With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD .

  14. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity

    PubMed Central

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns—both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity. PMID:25566045

  15. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    PubMed

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  16. Psoriasis image representation using patch-based dictionary learning for erythema severity scoring.

    PubMed

    George, Yasmeen; Aldeen, Mohammad; Garnavi, Rahil

    2018-06-01

    Psoriasis is a chronic skin disease which can be life-threatening. Accurate severity scoring helps dermatologists to decide on the treatment. In this paper, we present a semi-supervised computer-aided system for automatic erythema severity scoring in psoriasis images. Firstly, the unsupervised stage includes a novel image representation method. We construct a dictionary, which is then used in the sparse representation for local feature extraction. To acquire the final image representation vector, an aggregation method is exploited over the local features. Secondly, the supervised phase is where various multi-class machine learning (ML) classifiers are trained for erythema severity scoring. Finally, we compare the proposed system with two popular unsupervised feature extractor methods, namely: bag of visual words model (BoVWs) and AlexNet pretrained model. Root mean square error (RMSE) and F1 score are used as performance measures for the learned dictionaries and the trained ML models, respectively. A psoriasis image set consisting of 676 images, is used in this study. Experimental results demonstrate that the use of the proposed procedure can provide a setup where erythema scoring is accurate and consistent. Also, it is revealed that dictionaries with large number of atoms and small patch sizes yield the best representative erythema severity features. Further, random forest (RF) outperforms other classifiers with F1 score 0.71, followed by support vector machine (SVM) and boosting with 0.66 and 0.64 scores, respectively. Furthermore, the conducted comparative studies confirm the effectiveness of the proposed approach with improvement of 9% and 12% over BoVWs and AlexNet based features, respectively. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  17. Identifying quantum phase transitions with adversarial neural networks

    NASA Astrophysics Data System (ADS)

    Huembeli, Patrick; Dauphin, Alexandre; Wittek, Peter

    2018-04-01

    The identification of phases of matter is a challenging task, especially in quantum mechanics, where the complexity of the ground state appears to grow exponentially with the size of the system. Traditionally, physicists have to identify the relevant order parameters for the classification of the different phases. We here follow a radically different approach: we address this problem with a state-of-the-art deep learning technique, adversarial domain adaptation. We derive the phase diagram of the whole parameter space starting from a fixed and known subspace using unsupervised learning. This method has the advantage that the input of the algorithm can be directly the ground state without any ad hoc feature engineering. Furthermore, the dimension of the parameter space is unrestricted. More specifically, the input data set contains both labeled and unlabeled data instances. The first kind is a system that admits an accurate analytical or numerical solution, and one can recover its phase diagram. The second type is the physical system with an unknown phase diagram. Adversarial domain adaptation uses both types of data to create invariant feature extracting layers in a deep learning architecture. Once these layers are trained, we can attach an unsupervised learner to the network to find phase transitions. We show the success of this technique by applying it on several paradigmatic models: the Ising model with different temperatures, the Bose-Hubbard model, and the Su-Schrieffer-Heeger model with disorder. The method finds unknown transitions successfully and predicts transition points in close agreement with standard methods. This study opens the door to the classification of physical systems where the phase boundaries are complex such as the many-body localization problem or the Bose glass phase.

  18. A New Distance Metric for Unsupervised Learning of Categorical Data.

    PubMed

    Jia, Hong; Cheung, Yiu-Ming; Liu, Jiming

    2016-05-01

    Distance metric is the basis of many learning algorithms, and its effectiveness usually has a significant influence on the learning results. In general, measuring distance for numerical data is a tractable task, but it could be a nontrivial problem for categorical data sets. This paper, therefore, presents a new distance metric for categorical data based on the characteristics of categorical values. In particular, the distance between two values from one attribute measured by this metric is determined by both the frequency probabilities of these two values and the values of other attributes that have high interdependence with the calculated one. Dynamic attribute weight is further designed to adjust the contribution of each attribute-distance to the distance between the whole data objects. Promising experimental results on different real data sets have shown the effectiveness of the proposed distance metric.

  19. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  20. Efficiency Improvement of Action Acquisition in Two-Link Robot Arm Using Fuzzy ART with Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kotani, Naoki; Taniguchi, Kenji

    An efficient learning method using Fuzzy ART with Genetic Algorithm is proposed. The proposed method reduces the number of trials by using a policy acquired in other tasks because a reinforcement learning needs a lot of the number of trials until an agent acquires appropriate actions. Fuzzy ART is an incremental unsupervised learning algorithm in responce to arbitrary sequences of analog or binary input vectors. Our proposed method gives a policy by crossover or mutation when an agent observes unknown states. Selection controls the category proliferation problem of Fuzzy ART. The effectiveness of the proposed method was verified with the simulation of the reaching problem for the two-link robot arm. The proposed method achieves a reduction of both the number of trials and the number of states.

  1. e-IQ and IQ knowledge mining for generalized LDA

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; van Bergem, Rutger; Sweet, Charles; Vietsch, Eveline; Szu, Harold

    2015-05-01

    How can the human brain uncover patterns, associations and features in real-time, real-world data? There must be a general strategy used to transform raw signals into useful features, but representing this generalization in the context of our information extraction tool set is lacking. In contrast to Big Data (BD), Large Data Analysis (LDA) has become a reachable multi-disciplinary goal in recent years due in part to high performance computers and algorithm development, as well as the availability of large data sets. However, the experience of Machine Learning (ML) and information communities has not been generalized into an intuitive framework that is useful to researchers across disciplines. The data exploration phase of data mining is a prime example of this unspoken, ad-hoc nature of ML - the Computer Scientist works with a Subject Matter Expert (SME) to understand the data, and then build tools (i.e. classifiers, etc.) which can benefit the SME and the rest of the researchers in that field. We ask, why is there not a tool to represent information in a meaningful way to the researcher asking the question? Meaning is subjective and contextual across disciplines, so to ensure robustness, we draw examples from several disciplines and propose a generalized LDA framework for independent data understanding of heterogeneous sources which contribute to Knowledge Discovery in Databases (KDD). Then, we explore the concept of adaptive Information resolution through a 6W unsupervised learning methodology feedback system. In this paper, we will describe the general process of man-machine interaction in terms of an asymmetric directed graph theory (digging for embedded knowledge), and model the inverse machine-man feedback (digging for tacit knowledge) as an ANN unsupervised learning methodology. Finally, we propose a collective learning framework which utilizes a 6W semantic topology to organize heterogeneous knowledge and diffuse information to entities within a society in a personalized way.

  2. STDP-based spiking deep convolutional neural networks for object recognition.

    PubMed

    Kheradpisheh, Saeed Reza; Ganjtabesh, Mohammad; Thorpe, Simon J; Masquelier, Timothée

    2018-03-01

    Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainable. Another line of research has demonstrated - using rate-based neural networks trained with back-propagation - that having many layers increases the recognition robustness, an approach known as deep learning. We thus designed a deep SNN, comprising several convolutional (trainable with STDP) and pooling layers. We used a temporal coding scheme where the most strongly activated neurons fire first, and less activated neurons fire later or not at all. The network was exposed to natural images. Thanks to STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient and frequent. Only a few tens of examples per category were required and no label was needed. After learning, the complexity of the extracted features increased along the hierarchy, from edge detectors in the first layer to object prototypes in the last layer. Coding was very sparse, with only a few thousands spikes per image, and in some cases the object category could be reasonably well inferred from the activity of a single higher-order neuron. More generally, the activity of a few hundreds of such neurons contained robust category information, as demonstrated using a classifier on Caltech 101, ETH-80, and MNIST databases. We also demonstrate the superiority of STDP over other unsupervised techniques such as random crops (HMAX) or auto-encoders. Taken together, our results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption. These mechanisms are also interesting for artificial vision systems, particularly for hardware solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. MutSα's Multi-Domain Allosteric Response to Three DNA Damage Types Revealed by Machine Learning

    NASA Astrophysics Data System (ADS)

    Melvin, Ryan L.; Thompson, William G.; Godwin, Ryan C.; Gmeiner, William H.; Salsbury, Freddie R.

    2017-03-01

    MutSalpha is a key component in the mismatch repair (MMR) pathway. This protein is responsible for initiating the signaling pathways for DNA repair or cell death. Herein we investigate this heterodimer’s post-recognition, post-binding response to three types of DNA damage involving cytotoxic, anti-cancer agents - carboplatin, cisplatin, and FdU. Through a combination of supervised and unsupervised machine learning techniques along with more traditional structural and kinetic analysis applied to all-atom molecular dynamics (MD) calculations, we predict that MutSalpha has a distinct response to each of the three damage types. Via a binary classification tree (a supervised machine learning technique), we identify key hydrogen bond motifs unique to each type of damage and suggest residues for experimental mutation studies. Through a combination of a recently developed clustering (unsupervised learning) algorithm, RMSF calculations, PCA, and correlated motions we predict that each type of damage causes MutS↵to explore a specific region of conformation space. Detailed analysis suggests a short range effect for carboplatin - primarily altering the structures and kinetics of residues within 10 angstroms of the damaged DNA - and distinct longer-range effects for cisplatin and FdU. In our simulations, we also observe that a key phenylalanine residue - known to stack with a mismatched or unmatched bases in MMR - stacks with the base complementary to the damaged base in 88.61% of MD frames containing carboplatinated DNA. Similarly, this Phe71 stacks with the base complementary to damage in 91.73% of frames with cisplatinated DNA. This residue, however, stacks with the damaged base itself in 62.18% of trajectory frames with FdU-substituted DNA and has no stacking interaction at all in 30.72% of these frames. Each drug investigated here induces a unique perturbation in the MutS↵complex, indicating the possibility of a distinct signaling event and specific repair or death pathway (or set of pathways) for a given type of damage.

  4. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  5. Unsupervised Anomaly Detection Based on Clustering and Multiple One-Class SVM

    NASA Astrophysics Data System (ADS)

    Song, Jungsuk; Takakura, Hiroki; Okabe, Yasuo; Kwon, Yongjin

    Intrusion detection system (IDS) has played an important role as a device to defend our networks from cyber attacks. However, since it is unable to detect unknown attacks, i.e., 0-day attacks, the ultimate challenge in intrusion detection field is how we can exactly identify such an attack by an automated manner. Over the past few years, several studies on solving these problems have been made on anomaly detection using unsupervised learning techniques such as clustering, one-class support vector machine (SVM), etc. Although they enable one to construct intrusion detection models at low cost and effort, and have capability to detect unforeseen attacks, they still have mainly two problems in intrusion detection: a low detection rate and a high false positive rate. In this paper, we propose a new anomaly detection method based on clustering and multiple one-class SVM in order to improve the detection rate while maintaining a low false positive rate. We evaluated our method using KDD Cup 1999 data set. Evaluation results show that our approach outperforms the existing algorithms reported in the literature; especially in detection of unknown attacks.

  6. High Throughput Multispectral Image Processing with Applications in Food Science.

    PubMed

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  7. Post-processing interstitialcy diffusion from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bhardwaj, U.; Bukkuru, S.; Warrier, M.

    2016-01-01

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.

  8. An Embodied Multi-Sensor Fusion Approach to Visual Motion Estimation Using Unsupervised Deep Networks.

    PubMed

    Shamwell, E Jared; Nothwang, William D; Perlis, Donald

    2018-05-04

    Aimed at improving size, weight, and power (SWaP)-constrained robotic vision-aided state estimation, we describe our unsupervised, deep convolutional-deconvolutional sensor fusion network, Multi-Hypothesis DeepEfference (MHDE). MHDE learns to intelligently combine noisy heterogeneous sensor data to predict several probable hypotheses for the dense, pixel-level correspondence between a source image and an unseen target image. We show how our multi-hypothesis formulation provides increased robustness against dynamic, heteroscedastic sensor and motion noise by computing hypothesis image mappings and predictions at 76⁻357 Hz depending on the number of hypotheses being generated. MHDE fuses noisy, heterogeneous sensory inputs using two parallel, inter-connected architectural pathways and n (1⁻20 in this work) multi-hypothesis generating sub-pathways to produce n global correspondence estimates between a source and a target image. We evaluated MHDE on the KITTI Odometry dataset and benchmarked it against the vision-only DeepMatching and Deformable Spatial Pyramids algorithms and were able to demonstrate a significant runtime decrease and a performance increase compared to the next-best performing method.

  9. Post-processing interstitialcy diffusion from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, U., E-mail: haptork@gmail.com; Bukkuru, S.; Warrier, M.

    2016-01-15

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures ismore » studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms. -- Graphical abstract:.« less

  10. Data Analytics for Smart Parking Applications.

    PubMed

    Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele

    2016-09-23

    We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset.

  11. Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions

    PubMed Central

    Testolin, Alberto; Zorzi, Marco

    2016-01-01

    Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage. PMID:27468262

  12. Quantum neural network-based EEG filtering for a brain-computer interface.

    PubMed

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  13. Data Analytics for Smart Parking Applications

    PubMed Central

    Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele

    2016-01-01

    We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset. PMID:27669259

  14. Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions.

    PubMed

    Testolin, Alberto; Zorzi, Marco

    2016-01-01

    Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage.

  15. Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes.

    PubMed

    Cannistraci, Carlo Vittorio; Ravasi, Timothy; Montevecchi, Franco Maria; Ideker, Trey; Alessio, Massimo

    2010-09-15

    Nonlinear small datasets, which are characterized by low numbers of samples and very high numbers of measures, occur frequently in computational biology, and pose problems in their investigation. Unsupervised hybrid-two-phase (H2P) procedures-specifically dimension reduction (DR), coupled with clustering-provide valuable assistance, not only for unsupervised data classification, but also for visualization of the patterns hidden in high-dimensional feature space. 'Minimum Curvilinearity' (MC) is a principle that-for small datasets-suggests the approximation of curvilinear sample distances in the feature space by pair-wise distances over their minimum spanning tree (MST), and thus avoids the introduction of any tuning parameter. MC is used to design two novel forms of nonlinear machine learning (NML): Minimum Curvilinear embedding (MCE) for DR, and Minimum Curvilinear affinity propagation (MCAP) for clustering. Compared with several other unsupervised and supervised algorithms, MCE and MCAP, whether individually or combined in H2P, overcome the limits of classical approaches. High performance was attained in the visualization and classification of: (i) pain patients (proteomic measurements) in peripheral neuropathy; (ii) human organ tissues (genomic transcription factor measurements) on the basis of their embryological origin. MC provides a valuable framework to estimate nonlinear distances in small datasets. Its extension to large datasets is prefigured for novel NMLs. Classification of neuropathic pain by proteomic profiles offers new insights for future molecular and systems biology characterization of pain. Improvements in tissue embryological classification refine results obtained in an earlier study, and suggest a possible reinterpretation of skin attribution as mesodermal. https://sites.google.com/site/carlovittoriocannistraci/home.

  16. Identifying reliable independent components via split-half comparisons

    PubMed Central

    Groppe, David M.; Makeig, Scott; Kutas, Marta

    2011-01-01

    Independent component analysis (ICA) is a family of unsupervised learning algorithms that have proven useful for the analysis of the electroencephalogram (EEG) and magnetoencephalogram (MEG). ICA decomposes an EEG/MEG data set into a basis of maximally temporally independent components (ICs) that are learned from the data. As with any statistic, a concern with using ICA is the degree to which the estimated ICs are reliable. An IC may not be reliable if ICA was trained on insufficient data, if ICA training was stopped prematurely or at a local minimum (for some algorithms), or if multiple global minima were present. Consequently, evidence of ICA reliability is critical for the credibility of ICA results. In this paper, we present a new algorithm for assessing the reliability of ICs based on applying ICA separately to split-halves of a data set. This algorithm improves upon existing methods in that it considers both IC scalp topographies and activations, uses a probabilistically interpretable threshold for accepting ICs as reliable, and requires applying ICA only three times per data set. As evidence of the method’s validity, we show that the method can perform comparably to more time intensive bootstrap resampling and depends in a reasonable manner on the amount of training data. Finally, using the method we illustrate the importance of checking the reliability of ICs by demonstrating that IC reliability is dramatically increased by removing the mean EEG at each channel for each epoch of data rather than the mean EEG in a prestimulus baseline. PMID:19162199

  17. Machinery running state identification based on discriminant semi-supervised local tangent space alignment for feature fusion and extraction

    NASA Astrophysics Data System (ADS)

    Su, Zuqiang; Xiao, Hong; Zhang, Yi; Tang, Baoping; Jiang, Yonghua

    2017-04-01

    Extraction of sensitive features is a challenging but key task in data-driven machinery running state identification. Aimed at solving this problem, a method for machinery running state identification that applies discriminant semi-supervised local tangent space alignment (DSS-LTSA) for feature fusion and extraction is proposed. Firstly, in order to extract more distinct features, the vibration signals are decomposed by wavelet packet decomposition WPD, and a mixed-domain feature set consisted of statistical features, autoregressive (AR) model coefficients, instantaneous amplitude Shannon entropy and WPD energy spectrum is extracted to comprehensively characterize the properties of machinery running state(s). Then, the mixed-dimension feature set is inputted into DSS-LTSA for feature fusion and extraction to eliminate redundant information and interference noise. The proposed DSS-LTSA can extract intrinsic structure information of both labeled and unlabeled state samples, and as a result the over-fitting problem of supervised manifold learning and blindness problem of unsupervised manifold learning are overcome. Simultaneously, class discrimination information is integrated within the dimension reduction process in a semi-supervised manner to improve sensitivity of the extracted fusion features. Lastly, the extracted fusion features are inputted into a pattern recognition algorithm to achieve the running state identification. The effectiveness of the proposed method is verified by a running state identification case in a gearbox, and the results confirm the improved accuracy of the running state identification.

  18. Unsupervised self-care predicts conduct problems: The moderating roles of hostile aggression and gender.

    PubMed

    Atherton, Olivia E; Schofield, Thomas J; Sitka, Angela; Conger, Rand D; Robins, Richard W

    2016-04-01

    Despite widespread speculation about the detrimental effect of unsupervised self-care on adolescent outcomes, little is known about which children are particularly prone to problem behaviors when left at home without adult supervision. The present research used data from a longitudinal study of 674 Mexican-origin children residing in the United States to examine the prospective effect of unsupervised self-care on conduct problems, and the moderating roles of hostile aggression and gender. Results showed that unsupervised self-care was related to increases over time in conduct problems such as lying, stealing, and bullying. However, unsupervised self-care only led to conduct problems for boys and for children with an aggressive temperament. The main and interactive effects held for both mother-reported and observational-rated hostile aggression and after controlling for potential confounds. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  19. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach.

    PubMed

    Liang, Muxuan; Li, Zhizhong; Chen, Ting; Zeng, Jianyang

    2015-01-01

    Identification of cancer subtypes plays an important role in revealing useful insights into disease pathogenesis and advancing personalized therapy. The recent development of high-throughput sequencing technologies has enabled the rapid collection of multi-platform genomic data (e.g., gene expression, miRNA expression, and DNA methylation) for the same set of tumor samples. Although numerous integrative clustering approaches have been developed to analyze cancer data, few of them are particularly designed to exploit both deep intrinsic statistical properties of each input modality and complex cross-modality correlations among multi-platform input data. In this paper, we propose a new machine learning model, called multimodal deep belief network (DBN), to cluster cancer patients from multi-platform observation data. In our integrative clustering framework, relationships among inherent features of each single modality are first encoded into multiple layers of hidden variables, and then a joint latent model is employed to fuse common features derived from multiple input modalities. A practical learning algorithm, called contrastive divergence (CD), is applied to infer the parameters of our multimodal DBN model in an unsupervised manner. Tests on two available cancer datasets show that our integrative data analysis approach can effectively extract a unified representation of latent features to capture both intra- and cross-modality correlations, and identify meaningful disease subtypes from multi-platform cancer data. In addition, our approach can identify key genes and miRNAs that may play distinct roles in the pathogenesis of different cancer subtypes. Among those key miRNAs, we found that the expression level of miR-29a is highly correlated with survival time in ovarian cancer patients. These results indicate that our multimodal DBN based data analysis approach may have practical applications in cancer pathogenesis studies and provide useful guidelines for personalized cancer therapy.

  20. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    PubMed Central

    Bill, Johannes; Legenstein, Robert

    2014-01-01

    Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP) with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network's spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic architectures. PMID:25565943

Top